
X Logical Font
Description Conventions

X Consortium Standard

Jim Flowers, Digital Equipment Corporation
Edited by Stephen Gildea

X Logical Font Description Conventions: X Consortium Standard
by Jim Flowers and Stephen Gildea
X Version 11, Release 7.7
Version 1.5
Copyright © 1988, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

X Window System is a trademark of The Open Group.

Copyright © 1988, 1989 Digital Equipment Corporation, Maynard MA. All rights reserved.

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice and this permission notice appear in all copies. Digital Equipment
Corporation makes no representations about the suitability for any purpose of the information in this document. This
documentation is provided as is without express or implied warranty.

Helvetica and Times are registered trademarks of Linotype Company.

ITC Avant Garde Gothic is a registered trademark of International Typeface Corporation.

Times Roman is a registered trademark of Monotype Corporation.

Bitstream Amerigo is a registered trademark of Bitstream Inc.

Stone is a registered trademark of Adobe Systems Inc.

Table of Contents
1. Introduction .. 1
2. Requirements and Goals .. 2

Provide Unique and Descriptive Font Names .. 2
Support Multiple Font Vendors and Character Sets 2
Support Scalable and Polymorphic Fonts .. 2
Support Transformations and Subsetting of Fonts .. 3
Be Independent of X Server and Operating or File System
Implementations ... 3
Support Arbitrarily Complex Font Matching and Substitution 3
Be Extensible .. 3

3. X Logical Font Description .. 4
FontName .. 4

FontName Syntax .. 4
FontName Field Definitions .. 5
Examples ... 11

Font Properties ... 12
FOUNDRY .. 13
FAMILY_NAME .. 13
WEIGHT_NAME ... 14
SLANT ... 14
SETWIDTH_NAME .. 14
ADD_STYLE_NAME ... 14
PIXEL_SIZE ... 14
POINT_SIZE ... 15
RESOLUTION_X .. 15
RESOLUTION_Y .. 15
SPACING .. 15
AVERAGE_WIDTH ... 16
CHARSET_REGISTRY .. 16
CHARSET_ENCODING .. 16
MIN_SPACE ... 16
NORM_SPACE ... 16
MAX_SPACE ... 17
END_SPACE ... 17
AVG_CAPITAL_WIDTH ... 17
AVG_LOWERCASE_WIDTH ... 18
QUAD_WIDTH ... 18
FIGURE_WIDTH .. 18
SUPERSCRIPT_X ... 18
SUPERSCRIPT_Y ... 19
SUBSCRIPT_X ... 19
SUBSCRIPT_Y .. 19
SUPERSCRIPT_SIZE ... 20
SUBSCRIPT_SIZE .. 20
SMALL_CAP_SIZE ... 20
UNDERLINE_POSITION ... 20
UNDERLINE_THICKNESS .. 21
STRIKEOUT_ASCENT ... 21
STRIKEOUT_DESCENT ... 21
ITALIC_ANGLE .. 22
CAP_HEIGHT ... 22

iii

X Logical Font
Description Conventions

X_HEIGHT ... 22
RELATIVE_SETWIDTH .. 23
RELATIVE_WEIGHT .. 23
WEIGHT ... 24
RESOLUTION .. 24
FONT ... 25
FACE_NAME .. 25
FULL_NAME .. 25
COPYRIGHT ... 25
NOTICE ... 25
DESTINATION ... 26
FONT_TYPE ... 26
FONT_VERSION .. 27
RASTERIZER_NAME ... 27
RASTERIZER_VERSION .. 27
RAW_ASCENT ... 27
RAW_DESCENT ... 27
RAW_* .. 28
AXIS_NAMES ... 28
AXIS_LIMITS ... 28
AXIS_TYPES ... 28

Built-in Font Property Atoms .. 28
4. Matrix Transformations ... 30

Metrics and Font Properties .. 31
5. Scalable Fonts .. 33
6. Polymorphic Fonts .. 35
7. Affected Elements of Xlib and the X Protocol ... 38
8. BDF Conformance .. 39

XLFD Conformance Requirements ... 39
FONT_ASCENT, FONT_DESCENT, and DEFAULT_CHAR 39

FONT_ASCENT .. 39
FONT_DESCENT ... 40
DEFAULT_CHAR .. 40

iv

Chapter 1. Introduction
It is a requirement that X client applications must be portable across server
implementations, with very different file systems, naming conventions, and font
libraries. However, font access requests, as defined by the X Window System
Protocol, neither specify server-independent conventions for font names nor provide
adequate font properties for logically describing typographic fonts.

X clients must be able to dynamically determine the fonts available on any given
server so that understandable information can be presented to the user or so that
intelligent font fallbacks can be chosen. It is desirable for the most common queries
to be accomplished without the overhead of opening each font and inspecting font
properties, by means of simple ListFonts requests. For example, if a user selected
a Helvetica typeface family, a client application should be able to query the server
for all Helvetica fonts and present only those setwidths, weights, slants, point sizes,
and character sets available for that family.

This document gives a standard logical font description (hereafter referred to as
XLFD) and the conventions to be used in the core protocol so that clients can query
and access screen type libraries in a consistent manner across all X servers. In
addition to completely specifying a given font by means of its FontName, the XLFD
also provides for a standard set of key FontProperties that describe the font in
more detail.

The XLFD provides an adequate set of typographic font properties, such as
CAP_HEIGHT, X_HEIGHT, and RELATIVE_SETWIDTH, for publishing and other
applications to do intelligent font matching or substitution when handling
documents created on some foreign server that use potentially unknown fonts.
In addition, this information is required by certain clients to position subscripts
automatically and determine small capital heights, recommended leading, word-
space values, and so on.

1

Chapter 2. Requirements and Goals
The XLFD meets the short-term and long-term goals to have a standard logical font
description that:

• Provides unique, descriptive font names that support simple pattern matching

• Supports multiple font vendors, arbitrary character sets, and encodings

• Supports naming and instancing of scalable and polymorphic fonts

• Supports transformations and subsetting of fonts

• Is independent of X server and operating or file system implementations

• Supports arbitrarily complex font matching or substitution

• Is extensible

Provide Unique and Descriptive Font Names
It should be possible to have font names that are long enough and descriptive
enough to have a reasonable probability of being unique without inventing a new
registration organization. Resolution and size-dependent font masters, multivendor
font libraries, and so on must be anticipated and handled by the font name alone.

The name itself should be structured to be amenable to simple pattern matching
and parsing, thus allowing X clients to restrict font queries to some subset of all
possible fonts in the server.

Support Multiple Font Vendors and Character
Sets

The font name and properties should distinguish between fonts that were supplied
by different font vendors but that possibly share the same name. We anticipate a
highly competitive font market where users will be able to buy fonts from many
sources according to their particular requirements.

A number of font vendors deliver each font with all glyphs designed for that
font, where charset mappings are defined by encoding vectors. Some server
implementations may force these mappings to proprietary or standard charsets
statically in the font data. Others may desire to perform the mapping dynamically in
the server. Provisions must be made in the font name that allows a font request to
specify or identify specific charset mappings in server environments where multiple
charsets are supported.

Support Scalable and Polymorphic Fonts
If a font source can be scaled to an arbitrary size or varied in other ways, it should
be possible for an application to determine that fact from the font name, and the
application should be able to construct a font name for any specific instance.

2

Requirements and Goals

Support Transformations and Subsetting of
Fonts

Arbitrary two-dimensional linear transformations of fonts should be able to be
requested by applications. Since such transformed fonts may be used for special
effects requiring a few characters from each of many differently transformed fonts,
it should be possible to request only a few characters from a font for efficiency.

Be Independent of X Server and Operating or
File System Implementations

X client applications that require a particular font should be able to use the
descriptive name without knowledge of the file system or other repository in use by
the server. However, it should be possible for servers to translate a given font name
into a file name syntax that it knows how to deal with, without compromising the
uniqueness of the font name. This algorithm should be reversible (exactly how this
translation is done is implementation dependent).

Support Arbitrarily Complex Font Matching and
Substitution

In addition to the font name, the XLFD should define a standard list of descriptive
font properties, with agreed-upon fallbacks for all fonts. This allows client
applications to derive font-specific formatting or display data and to perform font
matching or substitution when asked to handle potentially unknown fonts, as
required.

Be Extensible
The XLFD must be extensible so that new and/or private descriptive font properties
can be added to conforming fonts without making existing X client or server
implementations obsolete.

3

Chapter 3. X Logical Font Description
XLFD is divided into two basic components: the FontName, which gives all font
information needed to uniquely identify a font in X protocol requests (for example,
OpenFont, ListFonts, and so on) and a variable list of optional FontProperties,
which describe a font in more detail.

The FontName is used in font queries and is returned as data in certain X protocol
requests. It is also specified as the data value for the FONT item in the X Consortium
Character Bitmap Distribution Format Standard (BDF V2.1).

The FontProperties are supplied on a font-by-font basis and are returned as data
in certain X protocol requests as part of the XFontStruct data structure. The names
and associated data values for each of the FontProperties may also appear as items
of the STARTPROPERTIES...ENDPROPERTIESlist in the BDF V2.1 specification.

FontName
Each FontName is logically composed of two strings: a FontNameRegistry prefix that
is followed by a FontNameSuffix. The FontName uses the ISO 8859-1 encoding. The
FontNameRegistry is an x-registered-name (a name that has been registered with
the X Consortium) that identifies the registration authority that owns the specified
FontNameSuffix syntax and semantics.

All font names that conform to this specification are to use a FontNameRegistry
prefix, which is defined to be the string "-" (HYPHEN). All FontNameRegistry
prefixes of the form: +version-, where the specified version indicates some future
XLFD specification, are reserved by the X Consortium for future extensions to
XLFD font names. If required, extensions to the current XLFD font name shall be
constructed by appending new fields to the current structure, each delimited by the
existing field delimiter. The availability of other FontNameRegistry prefixes or fonts
that support other registries is server implementation dependent.

In the X protocol specification, the FontName is required to be a string; hence,
numeric field values are represented in the name as string equivalents. All
FontNameSuffix fields are also defined as FontProperties; numeric property
values are represented as signed or unsigned integers, as appropriate.

FontName Syntax

The FontName is a structured, parseable string (of type STRING8) whose Backus-
Naur Form syntax description is as follows:

4

X Logical Font Description

FontName ::= XFontNameRegistry XFontNameSuffix |
PrivFontNameRegistry PrivFontNameSuffix

XFontNameRegistry ::= XFNDelim | XFNExtPrefix Version XFNDelim
XFontNameSuffix ::= FOUNDRY XFNDelim FAMILY_NAME XFNDelim

WEIGHT_NAME XFNDelim SLANT XFNDelim
SETWIDTH_NAME XFNDelim ADD_STYLE_NAME
XFNDelim PIXEL_SIZE XFNDelim POINT_SIZE
XFNDelim RESOLUTION_X XFNDelim
RESOLUTION_Y XFNDelim SPACING XFNDelim
AVERAGE_WIDTH XFNDelim CHARSET_REGISTRY
XFNDelim CHARSET_ENCODING

Version ::= STRING8 - the XLFD version that defines an
extension to the font name syntax (for example, "1.4")

XFNExtPrefix ::= OCTET - "+" (PLUS)
XFNDelim ::= OCTET - "-" (HYPHEN)
PrivFontNameRegistry ::= STRING8 - other than those strings reserved by XLFD
PrivFontNameSuffix ::= STRING8

Field values are constructed as strings of ISO 8859-1 graphic characters, excluding
the following:

• '-' (HYPHEN), the XLFD font name delimiter character

• '?' (QUESTION MARK) and "*" (ASTERISK), the X protocol font name wildcard
characters

• ',' (COMMA), used by Xlib to separate XLFD font names in a font set.

• '"' (QUOTATION MARK), used by some commercial products to quote a font name.

Alphabetic case distinctions are allowed but are for human readability concerns
only. Conforming X servers will perform matching on font name query or open
requests independent of case. The entire font name string must have no more than
255 characters. It is recommended that clients construct font name query patterns
by explicitly including all field delimiters to avoid unexpected results. Note that
SPACE is a valid character of a FontName field; for example, the string "ITC Avant
Garde Gothic" might be a FAMILY_NAME.

FontName Field Definitions
This section discusses the FontName:

• FOUNDRY field

• FAMILY_NAME field

• WEIGHT_NAME field

• SLANT field

• SETWIDTH_NAME field

• ADD_STYLE_NAME field

5

X Logical Font Description

• PIXEL_SIZE field

• POINT_SIZE field

• RESOLUTION_X and RESOLUTION_Y fields

• SPACING field

• AVERAGE_WIDTH field

• CHARSET_REGISTRY and CHARSET_ENCODING fields

FOUNDRY Field

FOUNDRY is an x-registered-name, the name or identifier of the digital type foundry
that digitized and supplied the font data, or if different, the identifier of the
organization that last modified the font shape or metric information.

The reason this distinction is necessary is that a given font design may be licensed
from one source (for example, ITC) but digitized and sold by any number of different
type suppliers. Each digital version of the original design, in general, will be
somewhat different in metrics and shape from the idealized original font data,
because each font foundry, for better or for worse, has its own standards and
practices for tweaking a typeface for a particular generation of output technologies
or has its own perception of market needs.

It is up to the type supplier to register with the X Consortium a suitable name for this
FontName field according to the registration procedures defined by the Consortium.

The X Consortium shall define procedures for registering foundry and other names
and shall maintain and publish, as part of its public distribution, a registry of such
registered names for use in XLFD font names and properties.

FAMILY_NAME Field

FAMILY_NAME is a string that identifies the range or family of typeface designs that
are all variations of one basic typographic style. This must be spelled out in full, with
words separated by spaces, as required. This name must be human-understandable
and suitable for presentation to a font user to identify the typeface family.

It is up to the type supplier to supply and maintain a suitable string for this
field and font property, to secure the proper legal title to a given name, and to
guard against the infringement of other's copyrights or trademarks. By convention,
FAMILY_NAME is not translated. FAMILY_NAME may include an indication of
design ownership if considered a valid part of the typeface family name.

The following are examples of FAMILY_NAME:

• Helvetica

• ITC Avant Garde Gothic

• Times

• Times Roman

• Bitstream Amerigo

6

X Logical Font Description

• Stone

WEIGHT_NAME Field

WEIGHT_NAME is a string that identifies the font's typographic weight, that is, the
nominal blackness of the font, according to the FOUNDRY's judgment. This name
must be human-understandable and suitable for presentation to a font user. The
value "0" is used to indicate a polymorphic font (see Polymorphic Fonts).

The interpretation of this field is somewhat problematic because the typographic
judgment of weight has traditionally depended on the overall design of the typeface
family in question; that is, it is possible that the DemiBold weight of one font could
be almost equivalent in typographic feel to a Bold font from another family.

WEIGHT_NAME is captured as an arbitrary string because it is an important part
of a font's complete human-understandable name. However, it should not be used
for font matching or substitution. For this purpose, X client applications should use
the weight-related font properties (RELATIVE_WEIGHT and WEIGHT) that give the
coded relative weight and the calculated weight, respectively.

SLANT Field

SLANT is a code-string that indicates the overall posture of the typeface design
used in the font. The encoding is as follows:

Code English Translation Description
"R" Roman Upright design
"I" Italic Italic design, slanted clockwise from the

vertical
"O" Oblique Obliqued upright design, slanted clockwise

from the vertical
"RI" Reverse Italic Italic design, slanted counterclockwise from

the vertical
"RO" Reverse Oblique Obliqued upright design, slanted

counterclockwise from the vertical
"OT" Other Other
numeric Polymorphic See Polymorphic Fonts.

The SLANT codes are for programming convenience only and usually are converted
into their equivalent human-understandable form before being presented to a user.

SETWIDTH_NAME Field

SETWIDTH_NAME is a string that gives the font's typographic proportionate
width, that is, the nominal width per horizontal unit of the font, according to the
FOUNDRY's judgment. The value "0" is used to indicate a polymorphic font (see
Polymorphic Fonts).

As with WEIGHT_NAME, the interpretation of this field or font property is somewhat
problematic, because the designer's judgment of setwidth has traditionally
depended on the overall design of the typeface family in question. For purposes
of font matching or substitution, X client applications should either use the

7

X Logical Font Description

RELATIVE_SETWIDTH font property that gives the relative coded proportionate
width or calculate the proportionate width.

The following are examples of SETWIDTH_NAME:

• Normal

• Condensed

• Narrow

• Double Wide

ADD_STYLE_NAME Field

ADD_STYLE_NAME is a string that identifies additional typographic style
information that is not captured by other fields but is needed to identify the
particular font. The character "[" anywhere in the field is used to indicate a
polymorphic font (see Polymorphic Fonts).

ADD_STYLE_NAME is not a typeface classification field and is only used for
uniqueness. Its use, as such, is not limited to typographic style distinctions.

The following are examples of ADD_STYLE_NAME:

• Serif

• Sans Serif

• Informal

• Decorated

PIXEL_SIZE Field

PIXEL_SIZE gives the body size of the font at a particular POINT_SIZE and
RESOLUTION_Y. PIXEL_SIZE is either an integer-string or a string beginning with
"[". A string beginning with "[" represents a matrix (see Matrix Transformations).
PIXEL_SIZE usually incorporates additional vertical spacing that is considered part
of the font design. (Note, however, that this value is not necessarily equivalent to
the height of the font bounding box.) Zero is used to indicate a scalable font (see
Scalable Fonts).

PIXEL_SIZE usually is used by X client applications that need to query fonts
according to device-dependent size, regardless of the point size or vertical
resolution for which the font was designed.

SN POINT_SIZE Field

POINT_SIZE gives the body size for which the font was designed. POINT_SIZE is
either an integer-string or a string beginning with "[". A string beginning with "["
represents a matrix (see Matrix Transformations). This field usually incorporates
additional vertical spacing that is considered part of the font design. (Note, however,
that POINT_SIZE is not necessarily equivalent to the height of the font bounding
box.) POINT_SIZE is expressed in decipoints (where points are as defined in the X
protocol or 72.27 points equal 1 inch). Zero is used to indicate a scalable font (see
Scalable Fonts).

8

X Logical Font Description

POINT_SIZE and RESOLUTION_Y are used by X clients to query fonts according to
device-independent size to maintain constant text size on the display regardless of
the PIXEL_SIZE used for the font.

RESOLUTION_X and RESOLUTION_Y Fields

RESOLUTION_X and RESOLUTION_Y are unsigned integer-strings that give the
horizontal and vertical resolution, measured in pixels or dots per inch (dpi), for
which the font was designed. Zero is used to indicate a scalable font (see Scalable
Fonts). Horizontal and vertical values are required because a separate bitmap font
must be designed for displays with very different aspect ratios (for example, 1:1,
4:3, 2:1, and so on).

The separation of pixel or point size and resolution is necessary because X allows
for servers with very different video characteristics (for example, horizontal and
vertical resolution, screen and pixel size, pixel shape, and so on) to potentially
access the same font library. The font name, for example, must differentiate between
a 14-point font designed for 75 dpi (body size of about 14 pixels) or a 14-point
font designed for 150 dpi (body size of about 28 pixels). Further, in servers that
implement some or all fonts as continuously scaled and scan-converted outlines,
POINT_SIZE and RESOLUTION_Y will help the server to differentiate between
potentially separate font masters for text, title, and display sizes or for other
typographic considerations.

SPACING Field

SPACING is a code-string that indicates the escapement class of the font, that
is, monospace (fixed pitch), proportional (variable pitch), or charcell (a special
monospaced font that conforms to the traditional data-processing character cell
font model). The encoding is as follows:

Code English Translation Description
"P" Proportional A font whose logical character widths vary for

each glyph. Note that no other restrictions are
placed on the metrics of a proportional font.

"M" Monospaced A font whose logical character widths are
constant (that is, every glyph in the font has the
same logical width). No other restrictions are
placed on the metrics of a monospaced font.

"C" CharCell A monospaced font that follows the standard
typewriter character cell model (that is, the
glyphs of the font can be modeled by X clients
as "boxes" of the same width and height that
are imaged side-by-side to form text strings or
top-to-bottom to form text lines). By definition,
all glyphs have the same logical character
width, and no glyphs have "ink" outside of the
character cell. There is no kerning (that is, on
a per-character basis with positive metrics: 0
<= left-bearing <= right-bearing <= width;
with negative metrics: width <= left-bearing
<= right-bearing <= zero). Also, the vertical
extents of the font do not exceed the vertical

9

X Logical Font Description

Code English Translation Description
spacing (that is, on a per-character basis: ascent
<= font-ascent and descent <= font-descent).
The cell height = font-descent + font-ascent,
and the width = AVERAGE_WIDTH.

AVERAGE_WIDTH Field

AVERAGE_WIDTH is an integer-string typographic metric value that gives the
unweighted arithmetic mean of the absolute value of the width of each glyph in the
font (measured in tenths of pixels), multiplied by -1 if the dominant writing direction
for the font is right-to-left. A leading "~" (TILDE) indicates a negative value. For
monospaced and character cell fonts, this is the width of all glyphs in the font. Zero
is used to indicate a scalable font (see Scalable Fonts).

CHARSET_REGISTRY and CHARSET_ENCODING Fields

The character set used to encode the glyphs of the font (and implicitly the font's
glyph repertoire), as maintained by the X Consortium character set registry.
CHARSET_REGISTRY is an x-registered-name that identifies the registration
authority that owns the specified encoding. CHARSET_ENCODING is a registered
name that identifies the coded character set as defined by that registration authority
and, optionally, a subsetting hint.

Although the X protocol does not explicitly have any knowledge about character
set encodings, it is expected that server implementors will prefer to embed
knowledge of certain proprietary or standard charsets into their font library
for reasons of performance and convenience. The CHARSET_REGISTRY and
CHARSET_ENCODING fields or properties allow an X client font request to specify
a specific charset mapping in server environments where multiple charsets are
supported. The availability of any particular character set is font and server
implementation dependent.

To prevent collisions when defining character set names, it is recommended
that CHARSET_REGISTRY and CHARSET_ENCODING name pairs be constructed
according to the following conventions:

CharsetRegistry ::= StdCharsetRegistryName | PrivCharsetRegistryName
CharsetEncoding ::= StdCharsetEncodingName |

PrivCharsetEncodingName
StdCharsetRegistryName ::=StdOrganizationId StdNumber | StdOrganizationId

StdNumber Dot Year
PrivCharsetRegistryName ::=OrganizationId STRING8
StdCharsetEncodingName ::=STRING8-numeric part number of referenced

standard
PrivCharsetEncodingName ::=STRING8
StdOrganizationId ::= STRING8-the registered name or acronym of the

referenced standard organization
StdNumber ::= STRING8-referenced standard number
OrganizationId ::= STRING8-the registered name or acronym of the

organization

10

X Logical Font Description

Dot ::= OCTET-"." (FULL STOP)
Year ::= STRING8-numeric year (for example, 1989)

The X Consortium shall maintain and publish a registry of such character set names
for use in X protocol font names and properties as specified in XLFD.

The ISO Latin-1 character set shall be registered by the X Consortium as the
CHARSET_REGISTRY-CHARSET_ENCODING value pair: "ISO8859-1".

If the CHARSET_ENCODING contains a "[" (LEFT SQUARE BRACKET), the "[" and
the characters after it up to a "]" (RIGHT SQUARE BRACKET) are a subsetting hint
telling the font source that the client is interested only in a subset of the characters
of the font. The font source can, optionally, return a font that contains only those
characters or any superset of those characters. The client can expect to obtain valid
glyphs and metrics only for those characters, and not for any other characters in
the font. The font properties may optionally be calculated by considering only the
characters in the subset.

The BNF for the subsetting hint is

Subset ::= LeftBracket RangeList RightBracket
RangeList ::= Range | Range Space RangeList
Range ::= Number | Number Underscore Number
Number ::= "0x" HexNumber | DecNumber
HexNumber ::= HexDigit | HexDigit HexNumber
DecNumber ::= DecDigit | DecDigit DecNumber
DecDigit ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
HexDigit ::= DecDigit | "a" | "b" | "c" | "d" | "e" | "f"
LeftBracket ::= "[" (LEFT SQUARE BRACKET)
RightBracket ::= "]" (RIGHT SQUARE BRACKET)
Space ::= "\0" (SPACE)
Underscore ::= "_" (LOW LINE)

Each Range specifies characters that are to be part of the subset included in
the font. A Range containing two Numbers specifies the first and last character,
inclusively, of a range of characters. A Range that is a single Number specifies
a single character to be included in the font. A HexNumber is interpreted as a
hexadecimal number. A DecNumber is interpreted as a decimal number. The font
consists of the union of all the Ranges in the RangeList.

For example,

 -misc-fixed-medium-r-normal--0-0-0-0-c-0-iso8859-1[65 70 80_90]

tells the font source that the client is interested only in characters 65, 70, and 80-90.

Examples
The following examples of font names are derived from the screen fonts shipped
with the X Consortium distribution.

11

X Logical Font Description

Font X FontName
75-dpi Fonts

Charter 12 pt -Bitstream-Charter-Medium-R-Normal--12-120-75-75-
P-68-ISO8859-1

Charter Bold 12 pt -Bitstream-Charter-Bold-R-Normal--12-120-75-75-
P-76-ISO8859-1

Charter Bold Italic 12 pt -Bitstream-Charter-Bold-I-Normal--12-120-75-75-P-75-
ISO8859-1

Charter Italic 12 pt -Bitstream-Charter-Medium-I-Normal--12-120-75-75-
P-66-ISO8859-1

Courier 8 pt -Adobe-Courier-Medium-R-Normal--8-80-75-75-M-50-
ISO8859-1

Courier 10 pt -Adobe-Courier-Medium-R-Normal--10-100-75-75-
M-60-ISO8859-1

Courier 12 pt -Adobe-Courier-Medium-R-Normal--12-120-75-75-
M-70-ISO8859-1

Courier 24 pt -Adobe-Courier-Medium-R-Normal--24-240-75-75-
M-150-ISO8859-1

Courier Bold 10 pt -Adobe-Courier-Bold-R-Normal--10-100-75-75-M-60-
ISO8859-1

Courier Bold Oblique 10
pt

-Adobe-Courier-Bold-O-Normal--10-100-75-75-M-60-
ISO8859-1

Courier Oblique 10 pt -Adobe-Courier-Medium-O-Normal--10-100-75-75-
M-60-ISO8859-1

100-dpi Fonts

Symbol 10 pt -Adobe-Symbol-Medium-R-Normal--14-100-100-100-
P-85-Adobe-FONTSPECIFIC

Symbol 14 pt -Adobe-Symbol-Medium-R-Normal--20-140-100-100-
P-107-Adobe-FONTSPECIFIC

Symbol 18 pt -Adobe-Symbol-Medium-R-Normal--25-180-100-100-
P-142-Adobe-FONTSPECIFIC

Symbol 24 pt -Adobe-Symbol-Medium-R-Normal--34-240-100-100-
P-191-Adobe-FONTSPECIFIC

Times Bold 10 pt -Adobe-Times-Bold-R-Normal--14-100-100-100-P-76-
ISO8859-1

Times Bold Italic 10 pt -Adobe-Times-Bold-I-Normal--14-100-100-100-P-77-
ISO8859-1

Times Italic 10 pt -Adobe-Times-Medium-I-Normal--14-100-100-100-
P-73-ISO8859-1

Times Roman 10 pt -Adobe-Times-Medium-R-Normal--14-100-100-100-
P-74-ISO8859-1

Font Properties
All font properties are optional but will generally include the font name fields and,
on a font-by-font basis, any other useful font descriptive and use information that

12

X Logical Font Description

may be required to use the font intelligently. The XLFD specifies an extensive set
of standard X font properties, their interpretation, and fallback rules when the
property is not defined for a given font. The goal is to provide client applications
with enough font information to be able to make automatic formatting and display
decisions with good typographic results.

Font property names use the ISO 8859-1 encoding.

Additional standard X font property definitions may be defined in the future and
private properties may exist in X fonts at any time. Private font properties should be
defined to conform to the general mechanism defined in the X protocol to prevent
overlap of name space and ambiguous property names, that is, private font property
names are of the form: "_" (LOW LINE), followed by the organizational identifier,
followed by "_" (LOW LINE), and terminated with the property name.

The Backus-Naur Form syntax description of X font properties is as follows:

Properties ::= OptFontPropList
OptFontPropList ::= NULL | OptFontProp OptFontPropList
OptFontProp ::= PrivateFontProp | XFontProp
PrivateFontProp ::= STRING8 | Underscore OrganizationId Underscore STRING8
XFontProp ::= FOUNDRY | FAMILY_NAME | WEIGHT_NAME | SLANT

| SETWIDTH_NAME | ADD_STYLE_NAME | PIXEL_SIZE
| POINT_SIZE | RESOLUTION_X | RESOLUTION_Y |
SPACING | AVERAGE_WIDTH | CHARSET_REGISTRY |
CHARSET_ENCODING | QUAD_WIDTH | RESOLUTION
| MIN_SPACE | NORM_SPACE | MAX_SPACE |
END_SPACE | SUPERSCRIPT_X | SUPERSCRIPT_Y |
SUBSCRIPT_X | SUBSCRIPT_Y | UNDERLINE_POSITION
| UNDERLINE_THICKNESS | STRIKEOUT_ASCENT
| STRIKEOUT_DESCENT | ITALIC_ANGLE |
X_HEIGHT | WEIGHT | FACE_NAME | FULL_NAME
| FONT | COPYRIGHT | AVG_CAPITAL_WIDTH |
AVG_LOWERCASE_WIDTH | RELATIVE_SETWIDTH |
RELATIVE_WEIGHT | CAP_HEIGHT | SUPERSCRIPT_ SIZE
| FIGURE_WIDTH | SUBSCRIPT_SIZE | SMALL_CAP_SIZE
| NOTICE | DESTINATION | FONT_TYPE | FONT_VERSION
| RASTERIZER_NAME | RASTERIZER_VERSION |
RAW_ASCENT | RAW_DESCENT | RAW_* | AXIS_NAMES |
AXIS_LIMITS | AXIS_TYPES

Underscore ::= OCTET-"_" (LOW LINE)
OrganizationId ::= STRING8-the registered name of the organization

FOUNDRY
FOUNDRY is as defined in the FontName except that the property type is ATOM.

FOUNDRY cannot be calculated or defaulted if not supplied as a font property.

FAMILY_NAME
FAMILY_NAME is as defined in the FontName except that the property type is ATOM.

13

X Logical Font Description

FAMILY_NAME cannot be calculated or defaulted if not supplied as a font property.

WEIGHT_NAME
WEIGHT_NAME is as defined in the FontName except that the property type is
ATOM.

WEIGHT_NAME can be defaulted if not supplied as a font property, as follows:

if (WEIGHT_NAME undefined) then
 WEIGHT_NAME = ATOM("Medium")

SLANT
SLANT is as defined in the FontName except that the property type is ATOM.

SLANT can be defaulted if not supplied as a font property, as follows:

if (SLANT undefined) then
 SLANT = ATOM("R")

SETWIDTH_NAME
SETWIDTH_NAME is as defined in the FontName except that the property type is
ATOM.

SETWIDTH_NAME can be defaulted if not supplied as a font property, as follows:

if (SETWIDTH_NAME undefined) then
 SETWIDTH_NAME = ATOM("Normal")

ADD_STYLE_NAME
ADD_STYLE_NAME is as defined in the FontName except that the property type is
ATOM.

ADD_STYLE_NAME can be defaulted if not supplied as a font property, as follows:

if (ADD_STYLE_NAME undefined) then
 ADD_STYLE_NAME = ATOM("")

PIXEL_SIZE
PIXEL_SIZE is as defined in the FontName except that the property type is INT32.

X clients requiring pixel values for the various typographic fixed spaces (em space,
en space, and thin space) can use the following algorithm for computing these values
from other properties specified for a font:

14

X Logical Font Description

 DeciPointsPerInch = 722.7
 EMspace = ROUND ((RESOLUTION_X * POINT_SIZE) / DeciPointsPerInch)
 ENspace = ROUND (EMspace / 2)
 THINspace = ROUND (EMspace / 3)\fP

where a slash (/) denotes real division, an asterisk (*) denotes real multiplication,
and ROUND denotes a function that rounds its real argument a up or down to the
next integer. This rounding is done according to X = FLOOR (a + 0.5), where FLOOR
is a function that rounds its real argument down to the nearest integer.

PIXEL_SIZE can be approximated if not supplied as a font property, according to
the following algorithm:

DeciPointsPerInch = 722.7
if (PIXEL_SIZE undefined) then
 PIXEL_SIZE = ROUND ((RESOLUTION_Y * POINT_SIZE) / DeciPointsPerInch)

POINT_SIZE
POINT_SIZE is as defined in the FontName except that the property type is INT32.

X clients requiring device-independent values for em space, en space, and thin space
can use the following algorithm:

 EMspace = ROUND (POINT_SIZE / 10)
 ENspace = ROUND (POINT_SIZE / 20)
 THINspace = ROUND (POINT_SIZE / 30)

Design POINT_SIZE cannot be calculated or approximated.

RESOLUTION_X
RESOLUTION_X is as defined in the FontName except that the property type is
CARD32.

RESOLUTION_X cannot be calculated or approximated.

RESOLUTION_Y
RESOLUTION_Y is as defined in the FontName except that the property type is
CARD32.

RESOLUTION_X cannot be calculated or approximated.

SPACING
SPACING is as defined in the FontName except that the property type is ATOM.

SPACING can be calculated if not supplied as a font property, according to the
definitions given above for the FontName.

15

X Logical Font Description

AVERAGE_WIDTH
AVERAGE_WIDTH is as defined in the FontName except that the property type is
INT32.

AVERAGE_WIDTH can be calculated if not provided as a font property, according
to the following algorithm:

if (AVERAGE_WIDTH undefined) then
 AVERAGE_WIDTH = ROUND (MEAN (ABS (width of each glyph in font)) * 10)
 * (if (dominant writing direction L-to-R) then 1 else -1)

where MEAN is a function that returns the arithmetic mean of its arguments.

X clients that require values for the number of characters per inch (pitch) of a
monospaced font can use the following algorithm using the AVERAGE_WIDTH and
RESOLUTION_X font properties:

if (SPACING not proportional) then
 CharPitch = (RESOLUTION_X * 10) / AVERAGE_WIDTH

CHARSET_REGISTRY
CHARSET_REGISTRY is as defined in the FontName except that the property type
is ATOM.

CHARSET_REGISTRY cannot be defaulted if not supplied as a font property.

CHARSET_ENCODING
CHARSET_ENCODING is as defined in the FontName except that the property type
is ATOM.

CHARSET_ENCODING cannot be defaulted if not supplied as a font property.

MIN_SPACE
MIN_SPACE is an integer value (of type INT32) that gives the recommended
minimum word-space value to be used with this font.

MIN_SPACE can be approximated if not provided as a font property, according to
the following algorithm:

if (MIN_SPACE undefined) then
 MIN_SPACE = ROUND(0.75 * NORM_SPACE)

NORM_SPACE
NORM_SPACE is an integer value (of type INT32) that gives the recommended
normal word-space value to be used with this font.

16

X Logical Font Description

NORM_SPACE can be approximated if not provided as a font property, according
to the following algorithm:

DeciPointsPerInch = 722.7
if (NORM_SPACE undefined) then
 if (SPACE glyph exists) then
 NORM_SPACE = width of SPACE
 else NORM_SPACE = ROUND((0.33 * RESOLUTION_X * POINT_SIZE)/ DeciPointsPerInch)

MAX_SPACE
MAX_SPACE is an integer value (of type INT32) that gives the recommended
maximum word-space value to be used with this font.

MAX_SPACE can be approximated if not provided as a font property, according to
the following algorithm:

if (MAX_SPACE undefined) then
 MAX_SPACE = ROUND(1.5 * NORM_SPACE)

END_SPACE
END_SPACE is an integer value (of type INT32) that gives the recommended spacing
at the end of sentences.

END_SPACE can be approximated if not provided as a font property, according to
the following algorithm:

if (END_SPACE undefined) then
 END_SPACE = NORM_SPACE

AVG_CAPITAL_WIDTH
AVG_CAPITAL_WIDTH is an integer value (of type INT32) that gives the unweighted
arithmetic mean of the absolute value of the width of each capital glyph in the font,
in tenths of pixels, multiplied by -1 if the dominant writing direction for the font is
right-to-left. This property applies to both Latin and non-Latin fonts. For Latin fonts,
capitals are the glyphs A through Z. This property is usually used for font matching
or substitution.

AVG_CAPITAL_WIDTH can be calculated if not provided as a font property,
according to the following algorithm:

if (AVG_CAPITAL_WIDTH undefined) then
 if (capitals exist) then
 AVG_CAPITAL_WIDTH = ROUND (MEAN
 (ABS (width of each capital glyph)) * 10)
 * (if (dominant writing direction L-to-R) then 1 else -1)
 else AVG_CAPITAL_WIDTH undefined

17

X Logical Font Description

AVG_LOWERCASE_WIDTH
AVG_LOWERCASE_WIDTH is an integer value (of type INT32) that gives the
unweighted arithmetic mean width of the absolute value of the width of each
lowercase glyph in the font in tenths of pixels, multiplied by -1 if the dominant
writing direction for the font is right-to-left. For Latin fonts, lowercase are the glyphs
a through z. This property is usually used for font matching or substitution.

Where appropriate, AVG_LOWERCASE_WIDTH can be approximated if not
provided as a font property, according to the following algorithm:

if (AVG_LOWERCASE_WIDTH undefined) then
 if (lowercase exists) then
 AVG_LOWERCASE_WIDTH = ROUND (MEAN
 (ABS (width of each lowercase glyph)) * 10)
 * (if (dominant writing direction L-to-R) then 1 else -1)
 else AVG_LOWERCASE_WIDTH undefined

QUAD_WIDTH
QUAD_WIDTH is an integer typographic metric (of type INT32) that gives the width
of a quad (em) space.

Note
Because all typographic fixed spaces (em, en, and thin) are constant for a
given font size (that is, they do not vary according to setwidth), the use of
this font property has been deprecated. X clients that require typographic
fixed space values are encouraged to discontinue use of QUAD_WIDTH and
compute these values from other font properties (for example, PIXEL_SIZE).
X clients that require a font-dependent width value should use either the
FIGURE_WIDTH or one of the average character width font properties
(AVERAGE_WIDTH, AVG_CAPITAL_WIDTH or AVG_LOWERCASE_WIDTH).

FIGURE_WIDTH
FIGURE_WIDTH is an integer typographic metric (of type INT32) that gives the
width of the tabular figures and the dollar sign, if suitable for tabular setting (all
widths equal). For Latin fonts, these tabular figures are the Arabic numerals 0
through 9.

FIGURE_WIDTH can be approximated if not supplied as a font property, according
to the following algorithm:

if (numerals and DOLLAR sign are defined & widths are equal) then
 FIGURE_WIDTH = width of DOLLAR
else FIGURE_WIDTH property undefined

SUPERSCRIPT_X
SUPERSCRIPT_X is an integer value (of type INT32) that gives the recommended
horizontal offset in pixels from the position point to the X origin of synthetic

18

X Logical Font Description

superscript text. If the current position point is at [X,Y], then superscripts should
begin at [X + SUPERSCRIPT_X, Y - SUPERSCRIPT_Y].

SUPERSCRIPT_X can be approximated if not provided as a font property, according
to the following algorithm:

if (SUPERSCRIPT_X undefined) then
 if (TANGENT(ITALIC_ANGLE) defined) then
 SUPERSCRIPT_X = ROUND((0.40 * CAP_HEIGHT) / TANGENT(ITALIC_ANGLE))
 else SUPERSCRIPT_X = ROUND(0.40 * CAP_HEIGHT)

where TANGENT is a trigonometric function that returns the tangent of its
argument, which is in 1/64 degrees.

SUPERSCRIPT_Y
SUPERSCRIPT_Y is an integer value (of type INT32) that gives the recommended
vertical offset in pixels from the position point to the Y origin of synthetic superscript
text. If the current position point is at [X,Y], then superscripts should begin at [X +
SUPERSCRIPT_X, Y - SUPERSCRIPT_Y].

SUPERSCRIPT_Y can be approximated if not provided as a font property, according
to the following algorithm:

if (SUPERSCRIPT_Y undefined) then
 SUPERSCRIPT_Y = ROUND(0.40 * CAP_HEIGHT)

SUBSCRIPT_X
SUBSCRIPT_X is an integer value (of type INT32) that gives the recommended
horizontal offset in pixels from the position point to the X origin of synthetic
subscript text. If the current position point is at [X,Y], then subscripts should begin
at [X + SUBSCRIPT_X, Y + SUBSCRIPT_Y].

SUBSCRIPT_X can be approximated if not provided as a font property, according
to the following algorithm:

if (SUBSCRIPT_X undefined) then
 if (TANGENT(ITALIC_ANGLE) defined) then
 SUBSCRIPT_X = ROUND((0.40 * CAP_HEIGHT) / TANGENT(ITALIC_ANGLE))
 else SUBSCRIPT_X = ROUND(0.40 * CAP_HEIGHT)

SUBSCRIPT_Y
SUBSCRIPT_Y is an integer value (of type INT32) that gives the recommended
vertical offset in pixels from the position point to the Y origin of synthetic subscript
text. If the current position point is at [X,Y], then subscripts should begin at [X +
SUBSCRIPT_X, Y + SUBSCRIPT_Y].

SUBSCRIPT_Y can be approximated if not provided as a font property, according
to the following algorithm:

19

X Logical Font Description

if (SUBSCRIPT_Y undefined) then
 SUBSCRIPT_Y = ROUND(0.40 * CAP_HEIGHT)

SUPERSCRIPT_SIZE
SUPERSCRIPT_SIZE is an integer value (of type INT32) that gives the
recommended body size of synthetic superscripts to be used with this font, in
pixels. This will generally be smaller than the size of the current font; that is,
superscripts are imaged from a smaller font offset according to SUPERSCRIPT_X
and SUPERSCRIPT_Y.

SUPERSCRIPT_SIZE can be approximated if not provided as a font property,
according to the following algorithm:

if (SUPERSCRIPT_SIZE undefined) then
 SUPERSCRIPT_SIZE = ROUND(0.60 * PIXEL_SIZE)

SUBSCRIPT_SIZE
SUBSCRIPT_SIZE is an integer value (of type INT32) that gives the recommended
body size of synthetic subscripts to be used with this font, in pixels. As with
SUPERSCRIPT_SIZE, this will generally be smaller than the size of the current font;
that is, subscripts are imaged from a smaller font offset according to SUBSCRIPT_X
and SUBSCRIPT_Y.

SUBSCRIPT_SIZE can be approximated if not provided as a font property, according
to the algorithm:

if (SUBSCRIPT_SIZE undefined) then
 SUBSCRIPT_SIZE = ROUND(0.60 * PIXEL_SIZE)

SMALL_CAP_SIZE
SMALL_CAP_SIZE is an integer value (of type INT32) that gives the recommended
body size of synthetic small capitals to be used with this font, in pixels. Small capitals
are generally imaged from a smaller font of slightly more weight. No offset [X,Y]
is necessary.

SMALL_CAP_SIZE can be approximated if not provided as a font property, according
to the following algorithm:

if (SMALL_CAP_SIZE undefined) then
 SMALL_CAP_SIZE = ROUND(PIXEL_SIZE * ((X_HEIGHT
 + ((CAP_HEIGHT - X_HEIGHT) / 3)) / CAP_HEIGHT))

UNDERLINE_POSITION
UNDERLINE_POSITION is an integer value (of type INT32) that gives the
recommended vertical offset in pixels from the baseline to the top of the underline.
If the current position point is at [X,Y], the top of the baseline is given by [X, Y +
UNDERLINE_POSITION].

20

X Logical Font Description

UNDERLINE_POSITION can be approximated if not provided as a font property,
according to the following algorithm:

if (UNDERLINE_POSITION undefined) then
 UNDERLINE_POSITION = ROUND((maximum descent) / 2)

where maximum descent is the maximum descent (below the baseline) in pixels of
any glyph in the font.

UNDERLINE_THICKNESS
UNDERLINE_THICKNESS is an integer value (of type INT32) that gives the
recommended underline thickness, in pixels.

UNDERLINE_THICKNESS can be approximated if not provided as a font property,
according to the following algorithm:

CapStemWidth = average width of the stems of capitals
if (UNDERLINE_THICKNESS undefined) then
 UNDERLINE_THICKNESS = CapStemWidth

STRIKEOUT_ASCENT
STRIKEOUT_ASCENT is an integer value (of type INT32) that gives the vertical
ascent for boxing or voiding glyphs in this font. If the current position is at [X,Y]
and the string extent is EXTENT, the upper-left corner of the strikeout box is at [X,
Y - STRIKEOUT_ASCENT] and the lower-right corner of the box is at [X + EXTENT,
Y + STRIKEOUT_DESCENT].

STRIKEOUT_ASCENT can be approximated if not provided as a font property,
according to the following algorithm:

if (STRIKEOUT_ASCENT undefined)
 STRIKEOUT_ASCENT = maximum ascent

where maximum ascent is the maximum ascent (above the baseline) in pixels of any
glyph in the font.

STRIKEOUT_DESCENT
STRIKEOUT_DESCENT is an integer value (of type INT32) that gives the vertical
descent for boxing or voiding glyphs in this font. If the current position is at [X,Y]
and the string extent is EXTENT, the upper-left corner of the strikeout box is at [X,
Y - STRIKEOUT_ASCENT] and the lower-right corner of the box is at [X + EXTENT,
Y + STRIKEOUT_DESCENT].

STRIKEOUT_DESCENT can be approximated if not provided as a font property,
according to the following algorithm:

if (STRIKEOUT_DESCENT undefined)
 STRIKEOUT_DESCENT = maximum descent

21

X Logical Font Description

where maximum descent is the maximum descent (below the baseline) in pixels of
any glyph in the font.

ITALIC_ANGLE
ITALIC_ANGLE is an integer value (of type INT32) that gives the nominal posture
angle of the typeface design, in 1/64 degrees, measured from the glyph origin
counterclockwise from the three o'clock position.

ITALIC_ANGLE can be defaulted if not provided as a font property, according to the
following algorithm:

if (ITALIC_ANGLE undefined) then
 ITALIC_ANGLE = (90 * 64)

CAP_HEIGHT
CAP_HEIGHT is an integer value (of type INT32) that gives the nominal height of
the capital letters contained in the font, as specified by the FOUNDRY or typeface
designer.

Certain clients require CAP_HEIGHT to compute scale factors and positioning
offsets for synthesized glyphs where this information or designed glyphs are not
explicitly provided by the font (for example, small capitals, superiors, inferiors, and
so on). CAP_HEIGHT is also a critical factor in font matching and substitution.

CAP_HEIGHT can be approximated if not provided as a font property, according to
the following algorithm:

if (CAP_HEIGHT undefined) then
 if (Latin font) then
 CAP_HEIGHT = XCharStruct.ascent[glyph X]
 else if (capitals exist) then
 CAP_HEIGHT = XCharStruct.ascent[some unaccented capital glyph]
 else CAP_HEIGHT undefined

X_HEIGHT
X_HEIGHT is an integer value (of type INT32) that gives the nominal height above
the baseline of the lowercase glyphs contained in the font, as specified by the
FOUNDRY or typeface designer.

As with CAP_HEIGHT, X_HEIGHT is required by certain clients to compute scale
factors for synthesized small capitals where this information is not explicitly
provided by the font resource. X_HEIGHT is a critical factor in font matching and
substitution.

X_HEIGHT can be approximated if not provided as a font property, according to the
following algorithm:

if (X_HEIGHT undefined) then
 if (Latin font) then

22

X Logical Font Description

 X_HEIGHT = XCharStruct.ascent[glyph x]
 else if (lowercase exists) then
 X_HEIGHT = XCharStruct.ascent[some unaccented lc glyph without an ascender]
 else X_HEIGHT undefined

RELATIVE_SETWIDTH
RELATIVE_SETWIDTH is an unsigned integer value (of type CARD32) that gives
the coded proportionate width of the font, relative to all known fonts of the same
typeface family, according to the type designer's or FOUNDRY's judgment.

RELATIVE_SETWIDTH ranges from 10 to 90 or is 0 if undefined or unknown. The
following reference values are defined:

Code English Translation Description
0 Undefined Undefined or unknown
10 UltraCondensed The lowest ratio of average width to height
20 ExtraCondensed
30 Condensed Condensed, Narrow, Compressed, ...
40 SemiCondensed
50 Medium Medium, Normal, Regular, ...
60 SemiExpanded SemiExpanded, DemiExpanded, ...
70 Expanded
80 ExtraExpanded ExtraExpanded, Wide, ...
90 UltraExpanded The highest ratio of average width to height

RELATIVE_SETWIDTH can be defaulted if not provided as a font property, according
to the following algorithm:

if (RELATIVE_SETWIDTH undefined) then
 RELATIVE_SETWIDTH = 50

For polymorphic fonts, RELATIVE_SETWIDTH is not necessarily a linear function
of the font's setwidth axis.

X clients that want to obtain a calculated proportionate width of the font (that is, a
font-independent way of identifying the proportionate width across all fonts and all
font vendors) can use the following algorithm:

SETWIDTH = AVG_CAPITAL_WIDTH / (CAP_HEIGHT * 10)

where SETWIDTH is a real number with zero being the narrowest calculated
setwidth.

RELATIVE_WEIGHT
RELATIVE_WEIGHT is an unsigned integer value (of type CARD32) that gives the
coded weight of the font, relative to all known fonts of the same typeface family,
according to the type designer's or FOUNDRY's judgment.

23

X Logical Font Description

RELATIVE_WEIGHT ranges from 10 to 90 or is 0 if undefined or unknown. The
following reference values are defined:

Code English Translation Description
0 Undefined Undefined or unknown
10 UltraLight The lowest ratio of stem width to height
20 ExtraLight
30 Light
40 SemiLight SemiLight, Book, ...
50 Medium Medium, Normal, Regular,...
60 SemiBold SemiBold, DemiBold, ...
70 Bold
80 ExtraBold ExtraBold, Heavy, ...
90 UltraBold UltraBold, Black, ..., the highest ratio of stem

width to height

RELATIVE_WEIGHT can be defaulted if not provided as a font property, according
to the following algorithm:

if (RELATIVE_WEIGHT undefined) then
 RELATIVE_WEIGHT = 50

For polymorphic fonts, RELATIVE_WEIGHT is not necessarily a linear function of
the font's weight axis.

WEIGHT
Calculated WEIGHT is an unsigned integer value (of type CARD32) that gives
the calculated weight of the font, computed as the ratio of capital stem width to
CAP_HEIGHT, in the range 0 to 1000, where 0 is the lightest weight.

WEIGHT can be calculated if not supplied as a font property, according to the
following algorithm:

CapStemWidth = average width of the stems of capitals
if (WEIGHT undefined) then
 WEIGHT = ROUND ((CapStemWidth * 1000) / CAP_HEIGHT)

A calculated value for weight is necessary when matching fonts from different
families because both the RELATIVE_WEIGHT and the WEIGHT_NAME are
assigned by the typeface supplier, according to its tradition and practice,
and therefore, are somewhat subjective. Calculated WEIGHT provides a font-
independent way of identifying the weight across all fonts and all font vendors.

RESOLUTION
RESOLUTION is an integer value (of type INT32) that gives the resolution for which
this font was created, measured in 1/100 pixels per point.

24

X Logical Font Description

Note
As independent horizontal and vertical design resolution components are
required to accommodate displays with nonsquare aspect ratios, the use of
this font property has been deprecated, and independent RESOLUTION_X
and RESOLUTION_Y font name fields/properties have been defined (see
sections 3.1.2.9 and 3.1.2.10). X clients are encouraged to discontinue use of
the RESOLUTION property and are encouraged to use the appropriate X,Y
resolution properties, as required.

FONT
FONT is a string (of type ATOM) that gives the full XLFD name of the font-that is,
the value can be used to open another instance of the same font.

If not provided, the FONT property cannot be calculated.

FACE_NAME
FACE_NAME is a human-understandable string (of type ATOM) that gives the full
device-independent typeface name, including the owner, weight, slant, set, and so
on but not the resolution, size, and so on. This property may be used as feedback
during font selection.

FACE_NAME cannot be calculated or approximated if not provided as a font
property.

FULL_NAME
FULL_NAME is the same as FACE_NAME. Its use is deprecated, but it is found on
some old fonts.

COPYRIGHT
COPYRIGHT is a human-understandable string (of type ATOM) that gives the
copyright information of the legal owner of the digital font data.

This information is a required component of a font but is independent of the
particular format used to represent it (that is, it cannot be captured as a comment
that could later be thrown away for efficiency reasons).

COPYRIGHT cannot be calculated or approximated if not provided as a font
property.

NOTICE
NOTICE is a human-understandable string (of type ATOM) that gives the copyright
information of the legal owner of the font design or, if not applicable, the trademark
information for the typeface FAMILY_NAME.

Typeface design and trademark protection laws vary from country to country, the
USA having no design copyright protection currently while various countries in

25

X Logical Font Description

Europe offer both design and typeface family name trademark protection. As with
COPYRIGHT, this information is a required component of a font but is independent
of the particular format used to represent it.

NOTICE cannot be calculated or approximated if not provided as a font property.

DESTINATION
DESTINATION is an unsigned integer code (of type CARD32) that gives the font
design destination, that is, whether it was designed as a screen proofing font to
match printer font glyph widths (WYSIWYG), as an optimal video font (possibly with
corresponding printer font) for extended screen viewing (video text), and so on.

The font design considerations are very different, and at current display resolutions,
the readability and legibility of these two kinds of screen fonts are very different.
DESTINATION allows publishing clients that use X to model the printed page and
video text clients, such as on-line documentation browsers, to query for X screen
fonts that suit their particular requirements.

The encoding is as follows:

Code English Translation Description
0 WYSIWYG The font is optimized to match the typographic

design and metrics of an equivalent printer font.
1 Video text The font is optimized for screen legibility and

readability.

FONT_TYPE
FONT_TYPE is a human-understandable string (of type ATOM) that describes the
format of the font data as they are read from permanent storage by the current font
source. It is a static attribute of the source data. It can be used by clients to select
a type of bitmap or outline font without regard to the rasterizer used to render the
font.

Predefined values are as follows:

Value When applicable
"Bitmap" Hand-tuned bitmap fonts. Some attempt has been made to optimize

the visual appearance of the font for the requested size and
resolution.

"Prebuilt" All bitmap format fonts that cannot be described as "Bitmap",
that is, handtuned. For example, a bitmap format font that was
generated mechanically using a scalable font rasterizer would be
considered "Prebuilt", not "Bitmap".

"Type 1" Any Type 1 font.
"TrueType" Any TrueType font.
"Speedo" Any Speedo font.
"F3" Any F3 font.

26

X Logical Font Description

Other values may be registered with the X Consortium.

FONT_VERSION
FONT_VERSION is a human-understandable string (of type ATOM) that describes
the formal or informal version of the font. None is a valid value.

RASTERIZER_NAME
RASTERIZER_NAME is a human-understandable string (of type ATOM) that is the
specific name of the rasterizer that has performed some rasterization operation
(such as scaling from outlines) on this font.

To define a RASTERIZER_NAME, the following format is recommended:

RasterizerName ::= OrganizationId Space Rasterizer
OrganizationId ::= STRING8—the X Registry ORGANIZATION name of the

rasterizer implementor or maintainer.
Rasterizer ::= the case-sensitive, human-understandable product name of

the rasterizer. Words within this name should be separated
by a single SPACE.

Space ::= OCTET−" " (SPACE)

Examples:

 X Consortium Bit Scaler
 X Consortium Type 1 Rasterizer
 X Consortium Speedo Rasterizer
 Adobe Type Manager
 Sun TypeScaler

If RASTERIZER_NAME is not defined, or is None, no rasterization operation has
been applied to the FONT_TYPE.

RASTERIZER_VERSION
RASTERIZER_VERSION is a human-understandable string (of type ATOM)
that represents the formal or informal version of a font rasterizer. The
RASTERIZER_VERSION should match the corresponding product version number
known to users, when applicable.

RAW_ASCENT
For a font with a transformation matrix, RAW_ASCENT is the font ascent in 1000
pixel metrics (see Metrics and Font Properties).

RAW_DESCENT
For a font with a transformation matrix, RAW_DESCENT is the font descent in 1000
pixel metrics (see Metrics and Font Properties).

27

X Logical Font Description

RAW_*
For a font with a transformation matrix, all font properties that represent horizontal
or vertical sizes or displacements will be accompanied by a new property, named as
the original except prefixed with "RAW_", that is computed as described in Metrics
and Font Properties.

AXIS_NAMES
AXIS_NAMES is a list of all the names of the axes for a polymorphic font, separated
by a null (0) byte. These names are suitable for presentation in a user interface (see
section 6).

AXIS_LIMITS
AXIS_LIMITS is a list of integers, two for each axis, giving the minimum and
maximum allowable values for that axis of a polymorphic font (see Polymorphic
Fonts).

AXIS_TYPES
AXIS_TYPES is like AXIS_NAMES, but can be registered as having specific
semantics (see section 6).

Built-in Font Property Atoms
The following font property atom definitions were predefined in the initial version
of the core protocol:

Font Property/Atom
Name

Property Type

MIN_SPACE INT32
NORM_SPACE INT32
MAX_SPACE INT32
END_SPACE INT32
SUPERSCRIPT_X INT32
SUPERSCRIPT_Y INT32
SUBSCRIPT_X INT32
SUBSCRIPT_Y INT32
UNDERLINE_POSITION INT32
UNDERLINE_THICKNESS INT32
STRIKEOUT_ASCENT INT32
STRIKEOUT_DESCENT INT32
FONT_ASCENT INT32
FONT_DESCENT INT32
ITALIC_ANGLE INT32

28

X Logical Font Description

Font Property/Atom
Name

Property Type

X_HEIGHT INT32
QUAD_WIDTH INT32 −deprecated

WEIGHT CARD32
POINT_SIZE INT32
RESOLUTION CARD32 −deprecated

COPYRIGHT ATOM
FULL_NAME ATOM −deprecated

FAMILY_NAME ATOM
DEFAULT_CHAR CARD32

29

Chapter 4. Matrix Transformations
An XLFD name presented to the server can have the POINT_SIZE or PIXEL_SIZE
field begin with the character "[". If the first character of the field is "[", the
character must be followed with ASCII representations of four floating point
numbers and a trailing "]", with white space separating the numbers and optional
white space separating the numbers from the "[" and "]" characters. Numbers use
standard floating point syntax but use the character "~" to represent a minus sign
in the mantissa or exponent.

The BNF for a matrix transformation string is as follows:

MatrixString ::= LeftBracket OptionalSpace Float Space Float Space Float
Space Float OptionalSpace RightBracket

OptionalSpace ::= "" | Space
Space ::= SpaceChar | SpaceChar Space
Float ::= Mantissa | Mantissa Exponent
Mantissa ::= Sign Number | Number
Sign ::= Plus | Tilde
Number ::= Integer | Integer Dot Integer | Dot Integer
Integer ::= Digit | Digit Integer
Digit ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
Exponent ::= "e" SignedInteger | "E" SignedInteger
SignedInteger ::= Sign Integer | Integer
LeftBracket ::= OCTET − "[" (LEFT SQUARE BRACKET)
RightBracket ::= OCTET − "]" (RIGHT SQUARE BRACKET)
SpaceChar ::= OCTET − " " (SPACE)
Tilde ::= OCTET − "˜" (TILDE)
Plus ::= OCTET − "+" (PLUS)
Dot ::= OCTET − "." (FULL STOP)

The string "[a b c d]" represents a graphical transformation of the glyphs in the font
by the matrix

[a b 0]
[c d 0]
[0 0 1]

All transformations occur around the origin of the glyph. The relationship between
the current scalar values and the matrix transformation values is that the scalar
value "N" in the POINT_SIZE field produces the same glyphs as the matrix "[N/10
0 0 N/10]" in that field, and the scalar value "N" in the PIXEL_SIZE field produces
the same glyphs as the matrix "[N*RESOLUTION_X/RESOLUTION_Y 0 0 N]" in that
field.

If matrices are specified for both the POINT_SIZE and PIXEL_SIZE, they must
bear the following relationship to each other within an implementation-specific
tolerance:

30

Matrix Transformations

PIXEL_SIZE_MATRIX = [Sx 0 0 Sy] * POINT_SIZE_MATRIX

where

Sx = RESOLUTION_X / 72.27

Sy = RESOLUTION_Y / 72.27

If either the POINT_SIZE or PIXEL_SIZE field is unspecified (either "0" or
wildcarded), the preceding formulas can be used to compute one from the other.

Metrics and Font Properties
In this section, the phrase "1000 pixel metrics" means the metrics that would be
obtained if the rasterizer took the base untransformed design used to generate the
transformed font and scaled it linearly to a height of 1000 pixels, with no rotation
component. Note that there may be no way for the application to actually request
this font since the rasterizer may use different outlines or rasterization techniques
at that size from the ones used to generate the transformed font.

Notes on properties and metrics:

The per-char ink metrics (lbearing, rbearing, ascent, and descent) represent the ink
extent of the transformed glyph around its origin.

The per-char width is the x component of the transformed character width.

The font ascent and descent are the y component of the transformed font ascent
or descent.

The FONT property returns a name reflecting the matrix being used-that is, the
name returned can be used to open another instance of the same font. The returned
name is not necessarily an exact copy of the requested name. If, for example, the
user requests

 -misc-fixed-medium-r-normal--0-[2e1 0 0.0 +10.0]-72-72-c-0-iso8859-1

the resulting FONT property might be

 -misc-fixed-medium-r-normal--[19.9 0 0 10]-[20 0 0 10]-72-72-c-0-iso8859-1

The FONT property will always include matrices in both the PIXEL_SIZE and the
POINT_SIZE fields.

To allow accurate client positioning of transformed characters, the attributes field
of the XCharInfo contains the width of the character in 1000 pixel metrics. This
attributes field should be interpreted as a signed integer.

There will always be 2 new font properties defined, RAW_ASCENT and
RAW_DESCENT, that hold the ascent and descent in 1000 pixel metrics.

All font properties that represent horizontal widths or displacements have as their
value the x component of the transformed width or displacement. All font properties
that represent vertical heights or displacements have as their value the y component

31

Matrix Transformations

of the transformed height or displacement. Each such property will be accompanied
by a new property, named as the original except prefixed with "RAW_", that gives
the value of the width, height, or displacement in 1000 pixel metrics.

32

Chapter 5. Scalable Fonts
The XLFD is designed to support scalable fonts. A scalable font is a font source from
which instances of arbitrary size can be derived. A scalable font source might be
one or more outlines together with zero or more hand-tuned bitmap fonts at specific
sizes and resolutions, or it might be a programmatic description together with zero
or more bitmap fonts, or some other format (perhaps even just a single bitmap font).

The following definitions are useful for discussing scalable fonts:

Well-formed XLFD pattern

• Well-formed XLFD pattern

A pattern string containing 14 hyphens, one of which is the first character of the
pattern. Wildcard characters are permitted in the fields of a well-formed XLFD
pattern.

• Scalable font name

A well-formed XLFD pattern containing no wildcards and containing the digit "0"
in the PIXEL_SIZE, POINT_SIZE, and AVERAGE_WIDTH fields.

• Scalable fields

The XLFD fields PIXEL_SIZE, POINT_SIZE, RESOLUTION_X, RESOLUTION_Y,
and AVERAGE_WIDTH.

• Derived instance

The result of replacing the scalable fields of a font name with values to yield a
font name that could actually be produced from the font source. A scaling engine
is permitted, but not required, to interpret the scalable fields in font names to
support anamorphic scaling.

• Global list

The list of names that would be returned by an X server for a ListFonts protocol
request on the pattern "*" if there were no protocol restrictions on the total
number of names returned.

The global list consists of font names derived from font sources. If a single font
source can support multiple character sets (specified in the CHARSET_REGISTRY
and CHARSET_ENCODING fields), each such character set should be used to form
a separate font name in the list. For a nonscalable font source, the simple font name
for each character set is included in the global list. For a scalable font source, a
scalable font name for each character set is included in the list. In addition to the
scalable font name, specific derived instance names may also be included in the list.
The relative order of derived instances with respect to the scalable font name is not
constrained. Finally, font name aliases may also be included in the list. The relative
order of aliases with respect to the real font name is not constrained.

The values of the RESOLUTION_X and RESOLUTION_Y fields of a scalable font
name are implementation dependent, but to maximize backward compatibility,
they should be reasonable nonzero values, for example, a resolution close to

33

Scalable Fonts

that provided by the screen (in a single-screen server). Because some existing
applications rely on seeing a collection of point and pixel sizes, server vendors are
strongly encouraged in the near term to provide a mechanism for including, for each
scalable font name, a set of specific derived instance names. For font sources that
contain a collection of hand-tuned bitmap fonts, including names of these instances
in the global list is recommended and sufficient.

The X protocol request OpenFont on a scalable font name returns a font
corresponding to an implementation-dependent derived instance of that font name.

The X protocol request ListFonts on a well-formed XLFD pattern returns the
following. Starting with the global list, if the actual pattern argument has values
containing no wildcards in scalable fields, then substitute each such field into the
corresponding field in each scalable font name in the list. For each resulting font
name, if the remaining scalable fields cannot be replaced with values to produce a
derived instance, remove the font name from the list. Now take the modified list, and
perform a simple pattern match against the pattern argument. ListFonts returns
the resulting list.

For example, given the global list:

-Linotype-Times-Bold-I-Normal--0-0-100-100-P-0-ISO8859-1
-Linotype-Times-Bold-R-Normal--0-0-100-100-P-0-ISO8859-1
-Linotype-Times-Medium-I-Normal--0-0-100-100-P-0-ISO8859-1
-Linotype-Times-Medium-R-Normal--0-0-100-100-P-0-ISO8859-1

a ListFonts request with the pattern:

-*-Times-*-R-Normal--*-120-100-100-P-*-ISO8859-1

would return:

-Linotype-Times-Bold-R-Normal--0-120-100-100-P-0-ISO8859-1
-Linotype-Times-Medium-R-Normal--0-120-100-100-P-0-ISO8859-1

ListFonts on a pattern containing wildcards that is not a well-formed XLFD pattern
is only required to return the list obtained by performing a simple pattern match
against the global list. X servers are permitted, but not required, to use a more
sophisticated matching algorithm.

34

Chapter 6. Polymorphic Fonts
Fonts that can be varied in ways other than size or resolution are called polymorphic
fonts. Multiple Master Type 1 font programs are one type of a polymorphic font.
Current examples of axes along which the fonts can be varied are width, weight,
and optical size; others might include formality or x-height.

To support polymorphic fonts, special values indicating variability are defined for
the following XLFD fields:

WEIGHT_NAME

SLANT

SETWIDTH_NAME

ADD_STYLE_NAME

The string "0" is the special polymorphic value. In the WEIGHT_NAME, SLANT,
or SETWIDTH_NAME field, "0" must be the entire field. There may be multiple
polymorphic values in the ADD_STYLE_NAME field. They are surrounded by "[" and
"]" and separated by a Space, as "[0\00]". The polymorphic values may coexist with
other data in the field. It is recommended that the polymorphic values be at the end
of the ADD_STYLE_NAME field.

The font-matching algorithms for a font with polymorphic fields are identical to the
matching algorithms for a font with scalable fields.

There are three new font properties to describe the axes of variation, AXIS_NAMES,
AXIS_LIMITS, and AXIS_TYPES. AXIS_NAMES is a list of all the names of the axes
for the font, separated by a null (0) byte. These names are suitable for presentation
in a user interface. AXIS_LIMITS is a list of integers, two for each axis, giving
the minimum and maximum allowable values for that axis. AXIS_TYPES is like
AXIS_NAMES, but can be registered as having specific semantics.

The axes are listed in the properties in the same order as they appear in the font
name. They are matched with font name fields by looking for the special polymorphic
values in the font name.

Examples:

The Adobe Myriad MM font program has width and weight axes. Weight can vary
from 215 to 830, and width from 300 to 700.

Name:
 -Adobe-Myriad MM-0-R-0--0-0-0-0-P-0-ISO8859-1
AXIS_NAMES:
 Weight, Width
AXIS_LIMITS:
 215, 830, 300, 700
AXIS_TYPES:
 Adobe-Weight, Adobe-Width
Sample derived instance:
 -Adobe-Myriad MM-412-R-575--*-120-100-100-P-*-ISO8859-1

35

Polymorphic Fonts

The Adobe Minion MM Italic font program has width, weight, and optical size axes.

Name:
 -Adobe-Minion MM-0-I-0-[0]-0-0-0-0-P-0-ISO8859-1
AXIS_NAMES:
 Weight, Width, Optical size
AXIS_LIMITS:
 345, 620, 450, 600, 6, 72
AXIS_TYPES:
 Adobe-Weight, Adobe-Width, Adobe-OpticalSize
Sample derived instance:
 -Adobe-Minion MM-550-I-480-[18]-*-180-100-100-P-*-ISO8859-1

The Adobe Minion MM Swash Italic font program has the same axes and values.
This shows how "[0]" in the ADD_STYLE_NAME field can coexist with other words.

Name:
 -Adobe-Minion MM-0-I-0-Swash[0]-0-0-0-0-P-0-ISO8859-1
AXIS_NAMES:
 Weight, Width, Optical size
AXIS_LIMITS:
 345, 620, 450, 600, 6, 72
AXIS_TYPES:
 Adobe-Weight, Adobe-Width, Adobe-OpticalSize
Sample derived instance:
 -Adobe-Minion MM-550-I-480-Swash[18]-*-180-100-100-P-*-ISO8859-1

The XYZ Abc font, a hypothetical font, has optical size and x-height axes. This shows
how there can be more than one polymorphic value in the ADD_STYLE_NAME field.

Name:
 -XYZ-Abc-Medium-R-Normal-[0 0]-0-0-0-0-P-0-ISO8859-1
AXIS_NAMES:
 Optical size, X-height
AXIS_LIMITS:
 6, 72, 400, 600
AXIS_TYPES:
 XYZ-OpticalSize, XYZ-Xheight
Sample derived instance:
 -XYZ-Abc-Medium-R-Normal-[14 510]-*-140-100-100-P-*-ISO8859-1

If an axis allows negative values, a client requests a negative value by using
"~" (TILDE) as a minus sign.

Axis types can be registered with the X Consortium, along with their semantics.

If a font name that contains the polymorphic value or a wildcard in a polymorphic
field is presented to a font source, the font source is free to substitute any value
that is convenient. However, font sources should try to use a value that would be
considered normal or medium for the particular font. For example, if an optical size
variable is unresolved, the font source should provide a value appropriate to the
size of the font.

36

Polymorphic Fonts

The result of specifying an out-of-range value for a polymorphic field is undefined.
The font source may treat this as a BadName error, treat the value as if it were the
closest legal value, or extrapolate to try to accommodate the value.

37

Chapter 7. Affected Elements of Xlib
and the X Protocol

The following X protocol requests must support the XLFD conventions:

• OpenFont - for the name argument

• ListFonts - for the pattern argument

• ListFontsWithInfo - for the pattern argument

In addition, the following Xlib functions must support the XLFD conventions:

• XLoadFont - for the name argument

• XListFontsWithInfo - for the pattern argument

• XLoadQueryFont - for the name argument

• XListFonts - for the pattern argument

38

../../libX11/libX11/libX11.pdf#XLoadFont
../../libX11/libX11/libX11.pdf#XListFontsWithInfo
../../libX11/libX11/libX11.pdf#XLoadQueryFont
../../libX11/libX11/libX11.pdf#XListFonts

Chapter 8. BDF Conformance
The bitmap font distribution and interchange format adopted by the X Consortium
(BDF V2.1) provides a general mechanism for identifying the font name of an X
font and a variable list of font properties, but it does not mandate the syntax or
semantics of the font name or the semantics of the font properties that might be
provided in a BDF font. This section identifies the requirements for BDF fonts that
conform to XLFD.

XLFD Conformance Requirements
A BDF font conforms to the XLFD specification if and only if the following conditions
are satisfied:

• The value for the BDF item FONT conforms to the syntax and semantic definition
of a XLFD FontName string.

• The FontName begins with the X FontNameRegistry prefix: "-".

• All XLFD FontName fields are defined.

• Any FontProperties provided conform in name and semantics to the XLFD
FontProperty definitions.

A simple method of testing for conformance would entail verifying that the
FontNameRegistry prefix is the string "-", that the number of field delimiters in the
string and coded field values are valid, and that each font property name either
matches a standard XLFD property name or follows the definition of a private
property.

FONT_ASCENT, FONT_DESCENT, and
DEFAULT_CHAR

FONT_ASCENT, FONT_DESCENT, and DEFAULT_CHAR are provided in the BDF
specification as properties that are moved to the XFontStruct by the BDF font
compiler in generating the X server-specific binary font encoding. If present, these
properties shall comply with the following semantic definitions.

FONT_ASCENT
FONT_ASCENT is an integer value (of type INT32) that gives the recommended
typographic ascent above the baseline for determining interline spacing. Specific
glyphs of the font may extend beyond this. If the current position point for line n
is at [X,Y], then the origin of the next line m = n + 1 (allowing for a possible font
change) is [X, Y + FONT_DESCENTn + FONT_ASCENTm].

FONT_ASCENT can be approximated if not provided as a font property, according
to the following algorithm:

if (FONT_ASCENT undefined) then

39

BDF Conformance

 FONT_ASCENT = maximum ascent

where maximum ascent is the maximum ascent (above the baseline) in pixels of any
glyph in the font.

FONT_DESCENT
FONT_DESCENT is an integer value (of type INT32) that gives the recommended
typographic descent below the baseline for determining interline spacing. Specific
glyphs of the font may extend beyond this. If the current position point for line n
is at [X,Y], then the origin of the next line m = n+1 (allowing for a possible font
change) is [X, Y + FONT_DESCENTn + FONT_ASCENTm].

The logical extent of the font is inclusive between the Y-coordinate values: Y -
FONT_ASCENT and Y + FONT_DESCENT + 1.

FONT_DESCENT can be approximated if not provided as a font property, according
to the following algorithm:

if (FONT_DESCENT undefined) then
 FONT_DESCENT = maximum descent

where maximum descent is the maximum descent (below the baseline) in pixels of
any glyph in the font.

DEFAULT_CHAR
The DEFAULT_CHAR is an unsigned integer value (of type CARD32) that specifies
the index of the default character to be used by the X server when an attempt is
made to display an undefined or nonexistent character in the font. (For a font using a
2-byte matrix format, the index bytes are encoded in the integer as byte1 * 65536 +
byte2.) If the DEFAULT_CHAR itself specifies an undefined or nonexistent character
in the font, then no display is performed.

DEFAULT_CHAR cannot be approximated if not provided as a font property.

40

	X Logical Font Description Conventions
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Requirements and Goals
	Provide Unique and Descriptive Font Names
	Support Multiple Font Vendors and Character Sets
	Support Scalable and Polymorphic Fonts
	Support Transformations and Subsetting of Fonts
	Be Independent of X Server and Operating or File System Implementations
	Support Arbitrarily Complex Font Matching and Substitution
	Be Extensible

	Chapter 3. X Logical Font Description
	FontName
	FontName Syntax
	FontName Field Definitions
	FOUNDRY Field
	FAMILY_NAME Field
	WEIGHT_NAME Field
	SLANT Field
	SETWIDTH_NAME Field
	ADD_STYLE_NAME Field
	PIXEL_SIZE Field
	SN POINT_SIZE Field
	RESOLUTION_X and RESOLUTION_Y Fields
	SPACING Field
	AVERAGE_WIDTH Field
	CHARSET_REGISTRY and CHARSET_ENCODING Fields

	Examples

	Font Properties
	FOUNDRY
	FAMILY_NAME
	WEIGHT_NAME
	SLANT
	SETWIDTH_NAME
	ADD_STYLE_NAME
	PIXEL_SIZE
	POINT_SIZE
	RESOLUTION_X
	RESOLUTION_Y
	SPACING
	AVERAGE_WIDTH
	CHARSET_REGISTRY
	CHARSET_ENCODING
	MIN_SPACE
	NORM_SPACE
	MAX_SPACE
	END_SPACE
	AVG_CAPITAL_WIDTH
	AVG_LOWERCASE_WIDTH
	QUAD_WIDTH
	FIGURE_WIDTH
	SUPERSCRIPT_X
	SUPERSCRIPT_Y
	SUBSCRIPT_X
	SUBSCRIPT_Y
	SUPERSCRIPT_SIZE
	SUBSCRIPT_SIZE
	SMALL_CAP_SIZE
	UNDERLINE_POSITION
	UNDERLINE_THICKNESS
	STRIKEOUT_ASCENT
	STRIKEOUT_DESCENT
	ITALIC_ANGLE
	CAP_HEIGHT
	X_HEIGHT
	RELATIVE_SETWIDTH
	RELATIVE_WEIGHT
	WEIGHT
	RESOLUTION
	FONT
	FACE_NAME
	FULL_NAME
	COPYRIGHT
	NOTICE
	DESTINATION
	FONT_TYPE
	FONT_VERSION
	RASTERIZER_NAME
	RASTERIZER_VERSION
	RAW_ASCENT
	RAW_DESCENT
	RAW_*
	AXIS_NAMES
	AXIS_LIMITS
	AXIS_TYPES

	Built-in Font Property Atoms

	Chapter 4. Matrix Transformations
	Metrics and Font Properties

	Chapter 5. Scalable Fonts
	Chapter 6. Polymorphic Fonts
	Chapter 7. Affected Elements of Xlib and the X Protocol
	Chapter 8. BDF Conformance
	XLFD Conformance Requirements
	FONT_ASCENT, FONT_DESCENT, and DEFAULT_CHAR
	FONT_ASCENT
	FONT_DESCENT
	DEFAULT_CHAR

