X Toolkit Intrinsics — C Language Interface

X Window System

Joel McCormack, Digital EQuipment Corporation
Paul Asente, Digital EQuipment Corporation
Ralph R. Swick, Digital EQquipment Corporation

X Toolkit Intrinsics — C Language Interface: X Window System
by Joel McCormack, Paul Asente, and Ralph R. Swick

X Version 11, Release 7.7
X Toolkit Intrinsics Version 1.2.0

XWindow System is atrademark of X Consortium, Inc.
Copyright © 1985, 1986, 1987, 1988, 1991, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the“ Software”), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in al copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “ASI1S’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE
LIABLEFORANY CLAIM, DAMAGESOR OTHERLIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to
promote the sale, use or other dealingsin this Software without prior written authorization from the X Consortium.

Copyright © 1985, 1986, 1987, 1988, 1991, 1994 Digital Equipment Corporation, Maynard, M assachusetts.

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appearsin al copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Digital not be used in in advertising or publicity
pertaining to distribution of the software without specific, written prior permission. Digital makes no representations
about the suitability of the software described herein for any purpose. It isprovided “asis’ without express or implied
warranty.

Acknowledgments

Acknowledgmentsfor X11R7

This update to the X11 Intrinsics drops support for K&R C, as well as improving its use of
Standard C features, notably const.

» Matt Dew did theinitial conversion of this specification from nroff to DocBook.

Later, | expanded on that, improving the formatting, aswell asupdating the function prototypes
in the specification as well as the related manual pages.

» Matthieu Herrb modified the Intrinsics header files to drop support for K&R C, leaving the
Standard C prototypes.

Later, he applied my changes to complete the conversion of the library source from a mixture
of K&R C and Standard C to just use the standard language features.

* Others(including Alan Coopersmith, Gaetan Nadon, Walter Harms, and Kevin E. Martin) have
worked to maintain the library's build-scripts and documentation.

Thomas E. Dickey
invisible-island.net
April 2019

Acknowledgmentsfor X11R6

The design of the X11 Intrinsics was done primarily by Joel McCormack of Digital WSL. Major
contributions to the design and implementation also were done by Charles Haynes, Mike Chow,
and Paul Asente of Digital WSL. Additional contributors to the design and/or implementation

were:

Loretta Guarino-Reid (Digital WSL) Rich Hyde (Digital WSL)

Susan Angebranndt (Digital WSL) Terry Weissman (Digital WSL)
Mary Larson (Digital UEG) Mark Manasse (Digital SRC)
Jim Gettys (Digital SRC) Leo Treggiari (Digital SDT)
Ralph Swick (Project Athena and Digital ERP) Mark Ackerman (Project Athena)
Ron Newman (Project Athena) Bob Scheifler (MIT LCS)

The contributors to the X 10 toolkit also deserve mention. Although the X11 Intrinsics present an
entirely different programming style, they borrow heavily from theimplicit and explicit concepts
in the X10 toolkit.

The design and implementation of the X10 Intrinsics were done by:

Terry Weissman (Digital WSL)
Smokey Wallace (Digital WSL)
Phil Karlton (Digital WSL)
Charles Haynes (Digital WSL)
Frank Hall (HP)

Acknowledgments

The design and implementation of the X 10 toolkit's sample widgets were by the above, as well
as by:

Ram Rao (Digita UEG)

Mary Larson (Digital UEG)
Mike Gancarz (Digital UEG)
Kathleen Langone (Digital UEG)

These widgets provided a checklist of requirements that we had to addressin the X11 Intrinsics.

Thanks go to Al Mento of Digital’s UEG Documentation Group for formatting and generally
improving this document and to John Ousterhout of Berkeley for extensively reviewing early
drafts of it.

Finally, aspecia thanksto Mike Chow, whose extensive performance analysis of the X10 toolkit
provided the justification to redesign it entirely for X11.

Joel McCormack

Western Software Laboratory
Digital Equipment Corporation
March 1988

The current design of the Intrinsics has benefited greatly from the input of several dedicated
reviewers in the membership of the X Consortium. In addition to those already mentioned,
the following individuals have dedicated significant time to suggesting improvements to the
Intrinsics:

Steve Pitschke (Stellar) C. Doug Blewett (AT&T)

Bob Miller (HP) David Schiferl (Tektronix)

Fred Taft (HP) Michael Squires (Sequent)

Marcel Meth (AT&T) Jim Fulton (MIT)

Mike Collins (Digital) Kerry Kimbrough (Texas Instruments)
Scott McGregor (Digital) Phil Karlton (Digital)

Julian Payne (ESS) Jacques Davy (Bull)

Gabriel Beged-Dov (HP) Glenn Widener (Tektronix)

Thanks go to each of them for the countless hours spent reviewing drafts and code.

Ralph R. Swick

External Research Group
Digital Equipment Corporation
MIT Project Athena

June 1988

From Release 3to Release 4, several new members joined the design team. We greatly appreciate
the thoughtful comments, suggestions, lengthy discussions, and in some cases implementation
code contributed by each of the following:

Acknowledgments

Don Alecci (AT&T) Ellis Cohen (OSF)
Donna Converse (MIT) Clive Feather (I1X1)
Nayeem Islam (Sun) Dana Laursen (HP)
Keith Packard (MIT) Chris Peterson (MIT)
Richard Probst (Sun) Larry Cable (Sun)

In Release 5, the effort to define the internati onalization additions was headed by Bill McMahon
of Hewlett Packard and Frank Rojas of IBM. Thishasbeen an educational processfor many of us,
and Bill and Frank’ s tutelage has carried us through. Vania Joloboff of the OSF also contributed
to the internationalization additions. The implementation efforts of Bill, Gabe Beged-Dov, and
especialy Donna Converse for this release are also gratefully acknowledged.

Ralph R. Swick
December 1989
and

July 1991

The Release 6 Intrinsics is a result of the collaborative efforts of participants in the X
Consortium’s intrinsics working group. A few individuals contributed substantial design
proposals, participated in lengthy discussions, reviewed final specifications, and in most cases,
were also responsible for sections of the implementation. They deserve recognition and thanks
for their major contributions:

Paul Asente (Adobe) Larry Cable (SunSoft)

Ellis Cohen (OSF) Daniel Dardailler (OSF)

Vania Joloboff (OSF) Kaleb Keithley (X Consortium)
Courtney Loomis (HP) Douglas Rand (OSF)

Bob Scheifler (X Consortium) Ajay Vohra (SunSoft)

Many others analyzed designs, offered useful comments and suggestions, and participated in a
significant subset of the process. The following people deserve thanks for their contributions:
Andy Bovingdon, Sam Chang, Chris Craig, George Erwin-Grotsky, Keith Edwards, Clive
Feather, Stephen Gildea, Dan Heller, Steve Humphrey, David Kaelbling, Jaime Lau, Rob
Lembree, Stuart Marks, Beth Mynatt, Tom Paquin, Chris Peterson, Kamesh Ramakrishna, Tom
Rodriguez, Jim VanGilder, Will Walker, and Mike Wexler.

| am especially grateful to two of my colleagues: Ralph Swick for expert editorial guidance, and
Kaleb Keithley for leadership in the implementation and the specification work.

Donna Converse
X Consortium
April 1994

Table of Contents

ADOUL THIS IMANUAL ...ttt ettt e e e e e et e e eai e e eeaans iX
1. INErNSICS AN WILGELS ...ttt et ettt e e ettt e e e e eenees 1
L1 0 o TP PP TPPPPTPUPPPPTN 1
(=g To 0= L= PP UPTUPTN 1
ProCcedureS @O IMACTOSvuiiiiiti ettt ettt e et ettt e e ettt e e et e e e et e e e et e e e entaeaeens 2
L YT o PO PPT TR PPPPT 2
COrE WIGELS ...ttt et e e et e et e e e ab s 2
COMPOSITE WIGELS ..ottt et 6
CONSIFAINT WIAGELSveeeeeei et e et e e et e eeeat e eees 8
IMplementation-SPECITIC TYPESiiiiii e e e e 10
WILGEL ClASSING .. evtteieiti ettt ettt ettt e e et e et e e e et et e e e na e e ennens 11
Widget Naming CONVENLIONSuuiiieiieeiiiie ettt e et e s 11
Widget Subclassing in Public h FIleS ..o 12
Widget Subclassing in Private .n FIleS ... 13
Widget Subclassing in .C FIlES ...coouueii e 15
Widget Class and Superclass LOOK UPcieiiiiiiiiiieiiiiie e 17
Widget SUbClass VErifiCationuieiiiiiiiiiii e 18
SUPErCIasS ChaINIMNG .. .cccuuueiiii ettt e e e et e eeaans 19
Class Initidization: class _initialize and class part_initialize Procedures 20
INitializing @ WIAQEL ClaSSuiiiiiiieiei e 21
Inheritance of SUPEerclass OPEratioNScveuruiieiiiiie e 21
Invocation of SUPErclass OPEratioNSuu.eeeruneeieii ettt e r e eeeans 23
Class EXIENSION RECOMTSuuiiiiiiiieiiiii ettt et e e 23

2. WiIdget INSEANLIBIION ...ttt ettt ettt ettt et et eeerb e e ennas 25
Initializing the X TOOIKItoooiei e 25
Establishing the LOCAIEuiiiiii e 28
Loading the ReSOUICE Dal@haSecieueiieieiii et 29
Parsing the CommMaNd LiNEcouuuiiiiii et 32
Crealing WILGELSoeeeei ettt ettt e et e 34
Creating and Merging Argument LiStSviiiieiiiiie e 34
Creating a Widget INSTANCEovvuniiiiiii e 37
Creating an Application Shell INSaNCeovvvviiiiiiii e 38
Convenience Procedure to Initialize an AppliCationcccuuviiiiiiiiiiiiiieeceii e 39
Widget Instance Allocation: The allocate Procedureooovvviieiiiinneiiiiiieeecie, 41
Widget Instance Initialization: The initialize Procedurecccoovviiiiiiiiiiiiinecceenn, 42
Constraint Instance Initialization: The ConstraintClassPart initialize Procedure 43
Nonwidget Data Initialization: The initialize_hook Procedurecccooeevvviiieiennnnnn. 44
REAIIZING WILGELS ...ttt ettt e et e e e nb e e enees 44
Widget Instance Window Creation: The realize Procedureocoevviiieiiiiinnenennnnnn. 45
Window Creation Convenience ROULINEccoouuiiiiiiiiieiiiii e 46
Obtaining Window Information from aWidgetoooeeiiiiiiiiiii e 47
UNrealizing WILGELScoeeie et e e e e e e 48
DeStroying WIOGELSccevuieeeeit ettt e e e e 48
Adding and Removing Destroy Callbackscoouviiiiiiiiiiiiii e 50
Dynamic Data Deallocation: The destroy Procedure ..., 50
Dynamic Constraint Data Deallocation: The ConstraintClassPart destroy Procedure 51
Widget Instance Deallocation: The deallocate Procedurecooevieviieeiiiiiieeiininnnn. 51
Exiting from an APPIICLIONco.uuiiiiiie e 51
3. Composite Widgets and Their Childrencoouuiiiiiiii e 52
Addition of Children to a Composite Widget: The insert_child Procedurec...cc......e. 53
Insertion Order of Children: The insert_position Procedureccoooveveiiiiiiiiiiiieciiieeeees 53

X Toolkit Intrinsics —
C Language Interface

Deletion of Children: The delete_child Procedureccooveviiiiiiiiiiiiicee e, 54
Adding and Removing Children fromthe Managed Setcccooeiiiiiiii i, 54
Managing Childrenooouiiii e 54
Unmanaging Children ..o e e e 56
Bundling Changes to the Managed Sefoveiiiieiiiii i 56
Determining if aWidget ISManagedcoooviiiiiiiiii e 58
Controlling When Widgets Get Mappedcoovuiiiiiiiiiii e 58
Constrained CompoSite WIAJELSceuuiiiiieiiii e e e e e e e e e e aaas 59
S g Tc VAV (o= PPN 61
Shell Widget DEfINITIONSiiiiiiciie e e e e e e et e e e eaens 61
ShellClassPart DEfiNITIONSuuiiiiiiieeiiii e e e e e e e eae e eeen 62
ShellPart DEfiNItIONuiiiei e 65

ShEll RESOUICES ...ttt e et e e e s 68
ShellPart Default ValUESiiiiiiieiiei e e s 70
SESSION PartiCIPalionccve i e e e e e e e e 75
N o o HgTe = TS = T o PN 75
Saving APPLICAHION SEAEEuiiiiieii e e 76
Responding t0 @ SNULAOWNcuuiiii e e e 79
RESIGNING frOM @ SESSIONiiiiiii e e e e e e e eaes 79

LI o] o S o AV T (o= 80
Lo o BT oIV o o= A Y/ == 80
Creating a Pop-Up ShEll ...covnii e 81
Creating Pop-UpP Childrencoouiiii e e e e e e e e e eees 82
Mapping @ Pop-UpP WIAGELuiiiiieii e e e e e 82
Unmapping a Pop-UP WIGELc.uiiiiiii e 84
6. GEOMELTY MaANAGEIMENE e ittt ittt ettt ettt et r et e r et e et r et e et r et e et r et e et neteeanens 86
Initiating GEOMELTY ChaNGgES ... cvviiiiiii e e e e e e e e e e e e e e e et e e eaaeaee 86
General Geometry Manager REJUESESouuuiiiieiiii et ee e e e e e e e e e e e e 87
RESIZE REGUESES ...etiiiii e ettt e e e e e e e e e e e e e e e e et e e e e 88
Potential GEOMELTY ChangESiiii e e e e e e e e e eaes 89
Child Geometry Management: The geometry_manager Procedureccooceveveviieeiineennnn. 89
Widget Placement and SIZINGevveieiinieiieee e e e e e e e e e e e e e et e e e aaas 91
Preferred GEOMEITYciii it e e e e e e et e e et e e et e e e e e eaneeeen 92
Size Change Management: The reSize ProCEAUIEvevuiieiiiieeiii e eee e ei e 94
7. EVENE MaNagOmMIENT ..ttt e 95
Adding and Deleting Additional EVENt SOUICESccvuniiiiiieiiieei e e ee e e e e een 95
Adding and ReEmMoVIiNg INPUL SOUICESuuiiiiiieiiieeii e e e e e aens 95
Adding and Removing Blocking NOtificationsccocvuiieiiiieiiiic e 96
Adding and ReEMOVING TIMEOULSuiiiiniiiiiiceie e e e e e e e e e e e e eaens 97
Adding and Removing Signal Callbackscciiiiiiiiiiii e, 98
Constraining Events to a Cascade of WidgetSoovvuiiiiiiiiiii e 99
Requesting Key and BUtON Grabscouviiiiiiiiiiiiccn e e 100
Focusing Events 0n @ Childco.iiiiiiiii e e 103
Events for Drawables That Are Not a Widget's Windowcccooeveieiiiiieiiineinnnenns 104
QUENYING EVENE SOUICESiiiiiiiiie e e et e e et e e e e e e e et e et e e et eeaaeeaaneas 105
DiSPatChiNg EVENESiii i e e e e e e e e e e e e e et e e et e eaneee 106
The Application INPUE LOOPcvvineii e e e e e e e e e e e e e e e e e eeanes 107
Setting and Checking the Sensitivity State of aWidgetcooiiiiiiiiiiiii e, 107
Adding Background WOrk ProCeOUIEScouuuiiiiiiiii e 108
D Y= 0| 1L = T PR 109
Pointer Motion COMPIESSIONuuiiiteiiieiiii e ee e e e e e e et e e e et e e e eaens 109
Enter/Leave COMPIESSIONuiiueiiiieeiie e e e et e e e e e e e e et e e et e e st e e et e eanaeeanaas 109
EXPOSUrE COMPIESSIONuiiiieiiieeei e et e e e et e e e e e e e e et e e et e e ea e e et e e aaeeanaas 109
Widget Exposure and Visibilitycoooiiiiiiiii e 111

X Toolkit Intrinsics —
C Language Interface

Redisplay of a Widget: The expose Procedurec.ooveeuieiiiiiiiieeeie e 111
WIAGEL VISIDIITY Lovniiiiiiice e eaaeas 112
XOEVENE HANAIE'S ...vvieeii et e et e e et e e e e at e e e eateneeeees 112
Event Handlers That SEleCt EVENESoccvviiiiiiiiiiiiii e 112
Event Handlers That DO NOt SEleCt EVENESccvvniiiiiiiiieiiieeeei e 114
CUITENt EVENE IMASK ... ciiiiiie et e et e et e e e e et e e e eate e eeenes 116
Event Handlers for X11 Protocol EXTENSIONSocvvvviieiiiiieeiiiieeeeeie e e e e i 116
Using the Intrinsics in a Multi-Threaded Environmentccccooiieiiiiiiiiiecin e, 120
Initializing a Multi-Threaded Intrinsics Applicationccoovvviieiiieci e, 120
Locking X ToolKit Data StIUCIUIEScvvviiii e e eee e e e e e e e 120
Event Management in a Multi-Threaded Environmentccooevviveiiiiiiiiinevineeennnn, 122

8. CAllBCKS ...ttt 123
Using Callback Procedure and Callback List Definitionscccooevviiiiiiiciiiiccie e, 123
Identifying Callback ListSccuuiiiiiiiii e e e e e 124
Adding Callback ProCeaUIEScciuiieiii e e 124
Removing Callback ProCEAUIEScouuiiiiiiei e e e e s 125
Executing Callback ProCeAUIESccuuiiiiiiiii e 125
Checking the Status of a Callback Listc.uoiiiiiiiiiiieiii e 126
9. RESOUICE M aANAGEIMENTE .. vuiviitieiete et e e e e et e e r e et r et e e et ear et e enneens 127
RESOUICE LISES .. iiiiii ettt ettt ettt e e ettt e e e e et e e e e et e e e eata e e e eereaeaees 127
Byte Offset CalCUIAIONS ... ceuiiiiiciie e e e e e e e e e e e e aaeees 131
Superclass-to-Subclass Chaining of ReSoUrce ListSccvvviiiiiiiiiiiiiiiciiee e, 132
S o= o 1 o=~ PP 132
Obtaining AppPliCation RESOUICESccvuiiiiiieii et e e e e e e e e e e e eens 133
RESOUINCE CONVEISIONSiiiiiieeeiii s ettt s e et e ettt e e e et e e e et e e e e et e e e e et e e e e et e eeaetnnes 134
Predefined ReSOUICE CONVEITEIScccuuiieeiiiiie e e e 135

NEW RESOUICE CONVEITEISeeieiiei ettt et et e e e e e e e eneees 137
ISsUING CoNVErSION WarnNiNQScvvuneiiiieiiiieeei e e e e e e e e e e e e e et e e ean e eanas 140
Registering a New Resource CONVETETcc.uieiiiieiiiiieiiieeeii e e e e e eananas 141
Resource Converter INVOCALIONvvveeuiieiiiiis e e e e e 144
Reading and Writing WIdgQEL Staecovuiiiiicii e e e e e 146
Obtaining WIQEL StAEEuivieiii e e e e e e e e e e e ees 146
Setting WIAGEL SEaEvvv i e e e 149

10. Trandation ManaQEMENcvuueiii e e e e e e e e e et e e e et e e e st e e et e e et e eanaeeennas 154
ACHON TADIES ... e e e e e et aae 154
Action Table REQISLIAtiONooiuiiiiii e e e e e e 155
Action Names to Procedure TranslationSceuuuieveiiiieeeiiii e e e e e eeii e 155
ACtion HOOK REGISITAHIONuuiiiiieiii e e e e e e e e e e et e e e eaens 156
Translation TaDIES i et 157
EVENT SEOUENCES ... vt e et e e e 157

P o L0 IS = (1= P 158
MUIEI-CHICK TIMIE .. e e e e e e s 158
Trandation Table ManagemMeNtooouiiiiii e e e 158
USING ACCEIEIBIONS ..ot iii et e e e e e e e e e e et e et e e et e e et e eeaaeeanaees 160
KeyCode-to-KeySymM CONVEISIONSciutieiieeiiieeieeeieeeat e eeteestee st e s e e eateeerneesanans 161
Obtaining a KeySym in an Action Procedureoovevi i 164
KeySym-t0-KeyCode CONVEISIONSuueiurieiieeiieeeiee et e eateeesteeste e st eeanaeeate e et eennnns 164
Registering Button and Key Grabs for ACHONSoovviiiiiiiieiiie e 165
INVOKING ACHIONS DITECHY ...ceviiiii e e e e 166
Obtaining a Widget's ACHION LiStuiiiiiiiiiiciii e 166
132 W T 1 167
Determining the Number of EIementSin an Arraycoevvieiiiiciieeie e 167
Trandating Strings to Widget INStANCESuuiviiiiiiii e e e e 167
Managing MemMOrY USAQEuuciuuieiiiieiieeeteeie e e e e e e e e e e e et e et e e st e e st e e st eeanaees 168

Vi

X Toolkit Intrinsics —
C Language Interface

Sharing GraphiCS CONMEXLSivviiiii e e e e e e e e e e et e et e e e eeaaaee 169
ManNagiNGg SElECHIONSuuiiii i et e e e e e e e e e e et e et e et e e an e eeen 171
Setting and Getting the Selection Timeout Valuecoeeevviiiiiiiiiiiieciiccceeis 171
USING ATOMIC TraNSFErS . oovuiii e e e e e e e e e e 171
Using Incremental TranSferSvivuiiiiiieiie e e e e e 176
Setting and Retrieving Selection Target Parametersoccvvevviieiiii e, 181
Generating MULTIPLE REQUESESuuiiiiciiiie e e e e e et e et e e eaens 182
Auxiliary SEleCtion PrOPertiESciuueiiii et e e e 183
Retrieving the Most Recent TIMEStamMPocvvviiiiiiiiii e ee e e e e 183
Retrieving the Most RECENE EVENTuiiiiiiiiii e 184
Merging Exposure EVents into @ REJIONcciuiiiiiiiieiii e e e e 184
Trandating Widget COOTAINGIESccvuiiiiiieiiieei e e e e e e e anas 184
Trandating a Window t0 aWIAQELcoiiiiiiiiici e e e 185
[F= 110 1T e = T N 185
Setting WM_COLORMAP_WINDOWSuiiiiiiiiieiiiii ettt e et eeeiinaeaees 189
FINdiNg FIlE NAMES .. .ouiiii e e e e e e aan s 189
[(070 R (0T o A (=g = A0 = | P 192
HOOK OBJECt RESOUICES ... ivvieii et e e e e e e e e aens 193
QUENYING OPEN DiSPlayS .ovueiiiieiie et 197

22 N o g o (o T A @ o=l 198
D@l SIIUCLUIES ...ttt et et e et e et et e e e ea e e e e e e e eeeennes 198
(@ o 1= o O o] = £ PPN 198
ODbJeCtClassPart SLUCIUIEveiiciie e e e e e aens 198
ODBJECIPAT SLIUCIUIE .. .ivvi e e e e e e e e e e e et e e et e e e e aaaas 200

(@ o)L= ol 2 (=< o LU o= N 200
ObjectPart Defallt VAIUESccvviiiiii e 200
Object Arguments to INtriNSICS ROULINGESc.vuiiiieiiiiieci e e e e e e e 200

UL SN o @ o] = ox PPN 201
RECtaNGIE OBJECES ...ove i e 202
RECtOD] ClassPart SIIUCIUIEuueiii e e e e e e e e e ean s 202
RECLOD]PArt SITUCIUIEievi e e e e e e e e e e e e ees 203
RECLOD] RESOUICESuuiiiiiciii ettt e e e e e et e e e eaa s 203
RectObjPart DEfallt ValUEScovuiiiiii e 204
Widget Arguments to INtriNSICS ROULINEScvvviiiiiiiiiei e 204

Use Of RECLANGIE ObJECLSivuiiii i e e e e e e e e eaen 204
UNAECIAIEA ClaSS ...vuiiiiiiiie ettt e et e e e et e e e e et e e e eeta e aeeenes 205
Widget Arguments to INtriNSICS ROULINEScccvuiiiiiiciii e e e e e 205
13. Evolution Of the INEINSICSuiiiiiii et e e a e e et e e e eeteaaeeees 207
Determining Specification ReVISION LEVE!cocoviiiiiiiiiic e 207
Release 3 t0 Release 4 Compatibilitycooveiiiiiiiii e 207
Additional ATQUMENESceeeiiii e e e e e e e et e e et e e e eaaes 207

set values almost PrOCEAUIEScivuniiiii i e e e e e e 208
QUETY GBOIMELIY ..evitietiitiet ettt ettt et et e et e et et et et n et et n et r et e e aeanaas 208
unrealizeCallback Callback Listcccuuiiiiiiiiiiiiiii e 208
Subclasses of WIMSHEIDooueiii e 208
RESOUICE TYPE CONVEITEIS . cuiitiiiiiti it e e 208
KeySym Case Conversion ProCEOUNEccuuiiiiiieiii e e e e e e e e e eaes 209

[N Lo gV o (o 1= A @ o= PN 209
Release 4 to Release 5 Compatibilityccooveiiiiiii e 209
DaSETraNS atiONS RESOUICE iieiii ittt e et e e e 209
Resource File Search Pathcoooiiiiiii e 210
CUSLOMIZALTON RESOUICEeeeeiiiee ettt e et e et s e e et s e e e et e e e e et s e e e eae e e e eeaenaeeeee 210
Per-Screen ReSOUrCe Datalasevuiviiiiieiiii e 210
Internationalization of APPIICAIONSuciiiiiiiiiee e e 210

Vii

X Toolkit Intrinsics —
C Language Interface

Permanently AIOCated SIINGSovvvneiii e e 211
Arguments t0 EXIiSting FUNCHIONSoiiviiiiiieie e e e 211

Release 5 t0 Release 6 Compatibilityoveviiiiiiiiii e 211

LAY e o 1= G g1 (= 4 = 211

General Application DeVEIOPMENEoiiiiiiiiiceie e e e e 212
Communication with Window and Session Managerscoceuveveieeiinievinieeinneennnn. 212

GEOMELTY MaNAGEIMENT ...ttt e e e e e e en 212

EVent Management 212

RESOUICE MaNaQEMENT 213
Trandation ManagemENTociuuieiii e e e e e e e e e e e e e e e eaes 213

SEECIONS ..ottt aaaan 213

External Agent HOOKSiiiiiiiiiii e e e e e 214

Release 6 to Release 7 Compatibilityoveviiiiiiii e 214
Changes DUNNG XLIRGcvuniiiiieiiii e e e e e e e e e e e e e e e e e aaeeaens 214

Changes DUNNG XLIRT7 ...uuiiiieiiii e e e e e e e e e e e et e e aa e aens 215
Converting to Standard Cooiiiiiiii e 215

A. RESOUICE FIlE FOMMELiieii et e et e e et e e e eaa e e e eennns 219
B. Trandation Table SYNEAXccuuiiiiiiiii i e e e e e e e e e e e 220
C. Compatibility FUNCHIONSuuiii e e e e e e e et e e e e et e e aanaees 228
D. INtrNSICS ErTOr MESSAJES .. cvvuiiiiiiiiii e i e ettt e e e e e e e e e e e e e e et e e e e e et e et e et e e et e eannas 237
I B = 1T 0= S {1 o 245
F. Resource Configuration Managementcooeuiiiiiiiiii e e e e e e e e e ane e 256

viii

About This Manual

X Toolkit Intrinsics — C Language Interface is intended to be read by both application programmers
who will use one or more of the many widget sets built with the Intrinsics and by widget programmers
who will use the Intrinsics to build widgets for one of the widget sets. Not all the information in this
manual, however, applies to both audiences. That is, because the application programmer islikely to use
only a number of the Intrinsics functions in writing an application and because the widget programmer is
likely to use many more, if not al, of the Intrinsics functions in building a widget, an attempt has been
made to highlight those areas of information that are deemed to be of special interest for the application
programmer. (It is assumed the widget programmer will have to be familiar with all the information.)
Therefore, all entriesin the table of contents that are printed in bold indicate the information that should
be of special interest to an application programmer.

It is also assumed that, as application programmers become more familiar with the concepts discussed
in this manual, they will find it more convenient to implement portions of their applications as special-
purpose or custom widgets. It is possible, nonethel ess, to use widgets without knowing how to build them.

Conventions Used in this Manual

This document uses the following conventions:

* Global symbolsareprintedint hi s speci al font. These can be either function names, symbols
defined in include files, data types, or structure names. Arguments to functions, procedures, or macros
are printed initalics.

» Each function is introduced by a general discussion that distinguishes it from other functions. The
function declaration itself follows, and each argument is specifically explained. General discussion of
the function, if any isrequired, follows the arguments.

» To eliminate any ambiguity between those arguments that you pass and those that a function returns
to you, the explanations for all arguments that you pass start with the word specifies or, in the case of
multiple arguments, the word specify. The explanations for all arguments that are returned to you start
with the word returns or, in the case of multiple arguments, the word return.

Chapter 1. Intrinsics and Widgets

The Intrinsics are aprogramming library tailored to the special requirements of user interface construction
within anetwork window system, specifically the X Window System. TheIntrinsicsand awidget set make
up an X Toolkit.

Intrinsics

The Intrinsics provide the base mechanism necessary to build awide variety of interoperating widget sets
and application environments. The Intrinsics are a layer on top of Xlib, the C Library X Interface. They
extend the fundamental abstractions provided by the X Window System while still remaining independent
of any particular user interface policy or style.

The Intrinsics use object-oriented programming techniques to supply a consistent architecture for
constructing and composing user interface components, known as widgets. This allows programmers to
extend a widget set in new ways, either by deriving new widgets from existing ones (subclassing) or by
writing entirely new widgets following the established conventions.

When the Intrinsics were first conceived, the root of the object hierarchy was awidget class named Core.
In Release 4 of the Intrinsics, three nonwidget superclasses were added above Core. These superclassesare
described in Chapter 12, Nonwidget Objects. The name of the class now at the root of the Intrinsics class
hierarchy is Object. The remainder of this specification refers uniformly to widgets and Core as if they
were the base class for all Intrinsics operations. The argument descriptions for each Intrinsics procedure
and Chapter 12, Nonwidget Objects describe which operations are defined for the nonwidget superclasses
of Core. The reader may determine by context whether a specific reference to widget actualy means
“widget” or “object.”

Languages

The Intrinsics are intended to be used for two programming purposes. Programmers writing widgets will
be using most of the facilities provided by the Intrinsics to construct user interface components from
the simple, such as buttons and scrollbars, to the complex, such as control panels and property sheets.
Application programmers will use a much smaller subset of the Intrinsics procedures in combination
with one or more sets of widgets to construct and present complete user interfaces on an X display. The
Intrinsics programming interfaces primarily intended for application use are designed to be callable from
most procedural programming languages. Therefore, most arguments are passed by reference rather than
by value. The interfaces primarily intended for widget programmers are expected to be used principally
from the C language. In these cases, the usual C programming conventions apply. In this specification, the
term client refers to any module, widget, or application that calls an Intrinsics procedure.

Applications that use the Intrinsics mechanisms must include the header files <X11/ I ntrinsic. h>
and <X11/ Stri ngDef s. h>, or their equivalent, and they may also include <X11/ Xat ons. h>
and <X11/ Shel | . h>. In addition, widget implementations should include <X11/ I nt ri nsi cP. h>
instead of <X11/ I ntrinsic. h>.

The applications must also include the additional header files for each widget class that they are to use
(for example, <X11/ Xaw/ Label . h>or<X11/ Xaw Scr ol | bar . h>). OnaPOSIX-based system,
the Intrinsics object library file isnamed | i bXt . a and is usualy referenced as -IXt when linking the
application.

Intrinsics and Widgets

Procedures and Macros

All functions defined in this specification except those specified below may be implemented as C macros
with arguments. C applications may use “#undef” to remove a macro definition and ensure that the actual
function is referenced. Any such macro will expand to a single expression that has the same precedence
asafunction call and that evaluates each of its arguments exactly once, fully protected by parentheses, so
that arbitrary expressions may be used as arguments.

The following symbols are macros that do not have function equivalents and that may expand their
arguments in a manner other than that described above: Xt CheckSubcl ass, Xt New, Xt Nunber,
Xt O fset OF, Xt OF f set, and Xt Set Ar g.

Widgets

The fundamental abstraction and data type of the X Toolkit isthe widget, which is a combination of an X
window and its associated input and display semantics and which is dynamically allocated and contains
state information. Some widgets display information (for example, text or graphics), and others are merely
containers for other widgets (for example, amenu box). Some widgets are output-only and do not react to
pointer or keyboard input, and others change their display in response to input and can invoke functions
that an application has attached to them.

Every widget belongs to exactly one widget class, which is statically allocated and initialized and which
contains the operations allowable on widgets of that class. Logically, awidget class is the procedures and
data associated with all widgets belonging to that class. These procedures and data can be inherited by
subclasses. Physically, awidget classis apointer to a structure. The contents of this structure are constant
for al widgets of the widget class but will vary from class to class. (Here, “constant” means the class
structure is initialized at compile time and never changed, except for a one-time class initialization and
in-place compilation of resource lists, which takes place when the first widget of the class or subclassis
created.) For further information, see the section called “ Creating Widgets’

The distribution of the declarations and code for a new widget class among apublic .h file for application
programmer use, a private .h file for widget programmer use, and the implementation .c file is described
in the section called “Widget Classing” The predefined widget classes adhere to these conventions.

A widget instance is composed of two parts:

* A data structure which contains instance-specific values.
* A class structure which contains information that is applicable to al widgets of that class.

Much of the input/output of awidget (for example, fonts, colors, sizes, or border widths) is customizable
by users.

Thischapter discussesthe basewidget classes, Core, Composite, and Constraint, and endswith adiscussion
of widget classing.

Core Widgets

The Core widget class contains the definitions of fields common to all widgets. All widgets classes are
subclasses of the Core class, which is defined by the Cor eCl assPart and Cor ePart structures.

CoreClassPart Structure

All widget classes contain the fields defined in the Cor el assPart structure.

Intrinsics and Widgets

typedef struct {

W dget Cl ass supercl ass; See Wdget d assing

String class_nane; See Resource Managenent

Car di nal wi dget _si ze; See Wdget d assing

XtProc class_initialize; See Wdget C assing

Xt Wdget Gl assProc class_part_initialize; See Wdget C assing
Xt Enum cl ass_i ni ted; See Wdget C assing

XtlnitProc initialize; See Creating Wdgets

Xt ArgsProc initialize hook; See Creating Wdgets

Xt Real i zeProc realize; See Real i zing Wdgets

Xt ActionLi st actions; See Transl ati on Managenent

Cardi nal num acti ons; See Transl ati on Managenent

Xt Resour celLi st resources; See Resour ce Managenent

Car di nal num_resources; See Resource Managenent

XrmCl ass xrm cl ass; Private to resource nanager
Bool ean conpress_noti on; See X Event Filters

Xt Enum conpr ess_exposur e; See X Event Filters

Bool ean conpress_enterl eave; See X Event Filters

Bool ean visible_interest; See Wdget Exposure and Visibility
Xt W dget Proc destroy; See Destroying Wdgets

Xt W dget Proc resize; See Ceonetry Managenent

Xt ExposePr oc expose; See Wdget Exposure and Visibility

Xt Set Val uesFunc set_val ues; See Reading and Witing Wdget State

Xt ArgsFunc set_val ues_hook; See Reading and Witing Wdget State
Xt Al nost Proc set_val ues_al nost; See Reading and Witing Wdget State
Xt ArgsProc get_val ues_hook; See Reading and Witing Wdget State

Xt Accept FocusProc accept _focus; See Focusing Events on a Child

Xt Ver si onType ver si on; See Wdget C assing
Xt Poi nter call back private; Private to call backs
String tmtable; See Transl ati on Managenent

Xt Geonet ryHandl er query_geonetry; See Geometry Managenent
Xt StringProc display_accel erator; See Transl ati on Managenent
Xt Poi nt er extension; See Wdget C assing

} Cored assPart;

All widget classes have the Core class fields as their first component. The prototypical W dget C ass
and Cor eW dget Cl ass are defined with only this set of fields.

typedef struct {
CoreC assPart core_cl ass;
} Wdgetd assRec, *Wdget C ass, Cored assRec, *CoreW dget d ass;

Various routines can cast widget class pointers, as needed, to specific widget class types.
The single occurrences of the class record and pointer for creating instances of Core are

Inl ntrinsicP. h:

extern Wdget G assRec wi dget Cl assRec;
#defi ne coreC assRec wi dget O assRec

InIntrinsic.h:

Intrinsics and Widgets

extern Wdget O ass wi dget Cl ass, coreW dget d ass;

The opaque types W dget and W dget O ass and the opaque variablewi dget Cl ass are defined for
generic actions on widgets. I n order to make these types opagque and ensure that the compiler doesnot allow
applications to access private data, the Intrinsics use incomplete structure definitionsin | ntri nsi c. h:

typedef struct _WdgetC assRec *W dget Cl ass, *CoreW dget C ass;

CorePart Structure

All widget instances contain the fields defined in the Cor ePar t structure.

typedef struct _CorePart ({

W dget self; Descri bed bel ow

W dget Cl ass wi dget _cl ass; See Wdget C assing

W dget parent; See Creating Wdgets

Bool ean bei ng_destroyed; See Destroying Wdgets

Xt Cal | backLi st destroy_cal | backs; See Destroying Wdgets

Xt Poi nter constraints; See Constrai ned Conposite Wdgets
Position x; See Ceonetry Managenent

Position y; See Ceonetry Managenent

Di nensi on wi dt h; See Ceonetry Managenent

Di nensi on hei ght; See Ceonetry Managenent

Di nensi on border _wi dt h; See Ceonetry Managenent

Bool ean managed; See Conposite Wdgets and Their Children
Bool ean sensitive; See Setting and Checking the Sensitivity State o

Bool ean ancestor_sensitive; See Setting and Checking the Sensitivity State o
Xt Transl ati ons accel erators; See Transl ati on Managenent

Pi xel border_pi xel ; See Real i zing Wdgets

Pi xmap bor der _pi xmap; See Real i zing Wdgets

W dget Li st popup_list; See Pop-Up Wdgets

Car di nal num _popups; See Pop-Up Wdgets

String nane; See Resour ce Managenent

Screen *screen; See Real i zing Wdgets

Col ormap col or map; See Real i zing Wdgets

W ndow wi ndow; See Real i zing Wdgets

Car di nal dept h; See Real i zing Wdgets

Pi xel background_pi xel ; See Real i zing Wdgets

Pi xmap backgr ound_pi xmap; See Real i zing Wdgets

Bool ean vi si bl e; See Wdget Exposure and Visibility

Bool ean mapped_when_managed; See Conposite Wdgets and Their Children
} CorePart;

All widget instances havethe Corefieldsastheir first component. The prototypical type W dget isdefined
with only this set of fields.

typedef struct {
CorePart core,
} Wdget Rec, *Wdget, CoreRec, *CoreW dget;

Various routines can cast widget pointers, as needed, to specific widget types.

Intrinsics and Widgets

In order to make these types opaque and ensure that the compiler does not allow applications to access
private data, the Intrinsics use incomplete structure definitionsin | ntri nsi c. h.

typedef struct _WdgetRec *Wdget, *CoreW dget;
Core Resources

The resource names, classes, and representation types specified in the cor eCl assRec resource list are

Name Class Representation
XtNaccelerators XtCAccelerators XtRAcceleratorTable
XtNbackground XtCBackground XtRPixel
XtNbackgroundPixmap XtCPixmap XtRPixmap
XtNborderColor XtCBorderColor XtRPixel
XtNborderPixmap XtCPixmap XtRPixmap
XtNcolormap XtCColormap XtRColormap
XtNdepth XtCDepth XtRInt
XtNmappedWhenManaged XtCMappedWhenManaged XtRBoolean
XtNscreen XtCScreen XtRScreen
XtNtranslations XtCTranglations XtRTrangdationTable

Additional resources are defined for all widgets viathe obj ect C assRec andr ect Cbj Cl assRec
resourcelists; seethe section called “ Object Objects’ and the section called “ Rectangle Objects’ for details.

CorePart Default Values

The default values for the Core fields, which are filled in by the Intrinsics, from the resource lists, and
by the initialize procedures, are

Intrinsics and Widgets

Field Default Value

self Address of the widget structure (may not be changed).

widget class widget_class argument to Xt Cr eat eW dget (may not be changed).
parent parent argument to Xt Cr eat eW dget (may not be changed).
being_destroyed Parent's being_destroyed value.

destroy_callbacks NULL

constraints NULL

X 0

y 0

width 0

height 0

border_width 1

managed Fal se

sensitive True

ancestor_sensitive

logical AND of parent's sensitive and ancestor_sensitive values.

accelerators NULL

border_pixel Xt Def aul t For egr ound

border_pixmap Xt Unspeci fi edPi xmap

popup_list NULL

num_popups 0

name name argument to Xt Cr eat eW dget (may not be changed).

screen Parent's screen; top-level widget gets screen from display specifier (may
not be changed).

colormap Parent's colormap value.

window NULL

depth Parent's depth; top-level widget gets root window depth.

background_pixel Xt Def aul t Backgr ound

background_pixmap Xt Unspeci fi edPi xmap

visible True

mapped_when_managed True

Xt Unspeci fi edPi xmap is a symbolic constant guaranteed to be unegual to any valid Pixmap id,
None, and Par ent Rel ati ve.

Composite Widgets

The Composite widget class is a subclass of the Core widget class (see Chapter 3, Composite Widgets
and Their Children). Composite widgets are intended to be containers for other widgets. The additional
data used by composite widgets are defined by the Conposi t eCl assPart and Conposi t ePart

structures.

CompositeClassPart Structure

In addition to the Core class fields, widgets of the Composite class have the following class fields.

Intrinsics and Widgets

typedef struct {
Xt Geonet ryHandl er geonetry_nmanager; See CGeonetry Managenent
Xt W dget Proc change_managed; See Conposite Wdgets and Their Children
Xt Wdget Proc insert_child; See Conposite Wdgets and Their Children
Xt Wdget Proc del ete_child; See Conposite Wdgets and Their Children
Xt Poi nt er extension; See Wdget d assing

} Conposited assPart;

The extension record defined for Conposi t eCl assPart with record_type equal to NULLQUARK
isConposi t eC assExt ensi onRec.

typedef struct {

Xt Poi nt er next _extension; See C ass Extension Records
XrmQuark record_type; See C ass Extension Records
| ong version; See C ass Extension Records
Cardi nal record_size; See Cl ass Extension Records
Bool ean accepts_obj ects; See Creating a Wdget Instance

Bool ean al | ows_change_nanaged_set; See Bundling Changes to the Managed Set
} Conposited assExt ensi onRec, *ConpositeC assExtensi on;

Composite classes have the Composite class fields immediately following the Core class fields.

typedef struct {
CoreCd assPart core_cl ass;
Conposi ted assPart conposite_cl ass;
} Conposited assRec, *ConpositeW dgetd ass;

The single occurrences of the class record and pointer for creating instances of Composite are

Inl ntrinsicP.h:

extern ConpositeCd assRec conposited assRec;

Inlntrinsic.h:

extern Wdget O ass conpositeW dget d ass;

The opague types Conposi t eW dget and Conposit eW dget Cl ass and the opague variable
conposi t eW dget Cl ass are defined for generic operations on widgets whose class is Composite
or a subclass of Composite. The symbolic constant for the Conposi t eCl assExt ensi on version
identifier is Xt Conrposi t eExt ensi onVer si on (see the section called “ Class Extension Records’).
I ntrinsic.h usesanincomplete structure definition to ensure that the compiler catches attempts to
access private data.

typedef struct _ComnpositeC assRec *ConpositeW dgetd ass;

CompositePart Structure

In addition to the Core instance fields, widgets of the Composite class have the following instance fields
defined in the Conposi t ePart structure.

Intrinsics and Widgets

typedef struct {

W dget Li st chil dren; See Conposite Wdgets and Their Children
Cardi nal num chil dren; See Conposite Wdgets and Their Children
Cardi nal num sl ots; See Conposite Wdgets and Their Children

XtOrderProc insert_position; See Insertion Order of Children: The insert_posi
} ConpositePart;

Composite widgets have the Composite instance fieldsimmediately following the Core instance fields.

typedef struct {
CorePart core;
Conposi tePart conposite;
} ConpositeRec, *ConpositeW dget;

I ntrinsic.h usesanincomplete structure definition to ensure that the compiler catches attempts to

access private data.

typedef struct _ConpositeRec *ConpositeW dget;

Composite Resources

The resource names, classes, and representation types that are specified in the conposi t el assRec
resourcelist are

Name Class Representation
XtNchildren XtCReadOnly XtRWidgetList
XtNinsertPosition XtClnsertPosition XtRFunction
XtNnumChildren XtCReadOnly XtRCardinal

CompositePart Default Values

The default values for the Composite fields, which are filled in from the Composite resource list and by
the Composite initialize procedure, are

Field Default Value

children NULL

num_children 0

num_slots 0

insert_position Internal function to
insert at end

The children, num_children, and insert_position fields are declared as resources; XtNinsertPosition is a
settableresource, XtNchildren and XtNnumChildren may be read by any client but should only bemodified
by the composite widget class procedures.

Constraint Widgets

The Constraint widget classisasubclass of the Composite widget class (seethe section called “ Constrained
Composite Widgets”). Constraint widgets maintain additional state datafor each child; for example, client-

Intrinsics and Widgets

defined constraints on the child's geometry. The additional data used by constraint widgets are defined by
theConstrai nt Cl assPart and Constr ai nt Part structures.

ConstraintClassPart Structure

In addition to the Core and Composite class fields, widgets of the Constraint class have the following
classfields.

typedef struct {

Xt Resour ceLi st resources; See Resource Managenent

Cardi nal numresources; See Resource Managenent

Cardi nal constraint_si ze; See Constrai ned Conposite Wdgets
XtlnitProc initialize; See Constrai ned Conposite Wdgets
Xt W dget Proc destroy; See Constrai ned Conposite Wdgets
Xt Set Val uesFunc set _val ues; See Setting Wdget State

Xt Poi nt er extension; See Wdget C assing

} Constraintd assPart;

The extension record defined for Const r ai nt Cl assPart withrecord_type equal to NULL QUARK
isConst rai nt Cl assExt ensi onRec.

typedef struct {

Xt Poi nt er next _extension,; See O ass Extension Records
Xrmuark record_type; See Cl ass Extension Records
| ong version; See C ass Extension Records
Cardi nal record_size; See Cl ass Extension Records

Xt ArgsProc get_val ues_hook; See Obtaining Wdget State
} Constraint G assExt ensi onRec, *Constrai nt 0 assExt ensi on;

Constraint classes have the Constraint class fields immediately following the Composite class fields.

typedef struct _ConstraintC assRec {
Cor eC assPart core_cl ass;
Conposi t ed assPart conposite_cl ass;
Constrai nt Cl assPart constraint_cl ass;

} ConstraintC assRec, *Constraint Wdget d ass;

The single occurrences of the class record and pointer for creating instances of Constraint are

Inl ntrinsicP. h:

extern ConstraintCl assRec constrai nt Cl assRec;

InIntrinsic.h:

extern Wdget O ass constrai nt Wdget d ass;

The opaque types Const r ai nt W dget and Const rai nt Wdget d ass and the opaque variable
constrai nt Wdget O ass are defined for generic operations on widgets whose class is Constraint
or a subclass of Constraint. The symbolic constant for the Const r ai nt O assExt ensi on version

Intrinsics and Widgets

identifierisXt Const r ai nt Ext ensi onVer si on (seethe section called “ Class Extension Records”).
I ntrinsic.h usesanincomplete structure definition to ensure that the compiler catches attempts to
access private data.

typedef struct _ConstraintC assRec *Constrai nt Wdget d ass;

ConstraintPart Structure

In addition to the Core and Composite instance fields, widgets of the Constraint class have the following
unused instance fields defined in the Const r ai nt Par t structure

t ypedef struct {

int enpty;
} ConstraintPart;

Constraint widgets have the Constraint instance fields immediately following the Composite instance
fields.

typedef struct {
CorePart core;
Conposi tePart conposite;
ConstraintPart constraint;

} ConstraintRec, *ConstraintWdget;

I ntrinsic.h usesanincomplete structure definition to ensure that the compiler catches attempts to

access private data.

typedef struct _Constraint Rec *Constrai nt Wdget;

Constraint Resources
The constrai nt O assRec core class and constraint_class resources fields are NULL, and the

num _resources fields are zero; no additional resources beyond those declared by the superclasses are
defined for Constraint.

Implementation-Specific Types

To increase the portability of widget and application source code between different system environments,
the Intrinsics define several types whose precise representation is explicitly dependent upon, and chosen
by, each individua implementation of the Intrinsics.

These implementation-defined types are

Boolean A datum that contains a zero or nonzero value. Unless explicitly stated,
clients should not assumethat the nonzero valueisequal to the symbolic
value Tr ue.

Cardinal An unsigned integer datum with a minimum range of [0..2%6-1].

Dimension An unsigned integer datum with a minimum range of [0..2%6-1].

10

Intrinsics and Widgets

Position A signed integer datum with aminimum range of [-2%°..21%-1].

XtPointer A datum large enough to contain the largest of a char*, int*, function
pointer, structure pointer, or long value. A pointer to any type or
function, or along value may be converted to an Xt Poi nt er and back
again and theresult will compare equal to the original value. INnANSI C
environmentsit is expected that Xt Poi nt er will be defined as void*.

XtArgVal A datum large enough to contain an Xt Poi nter, Cardi nal ,
Di mensi on, or Posi ti on value.

XtEnum An integer datum large enough to encode at least 128 distinct values,
two of which are the symbolic values Tr ue and Fal se. The symbolic
values TRUE and FAL SE are aso defined to be equal to Tr ue and
Fal se, respectively.

In addition to these specific types, the precise order of the fields within the structure declarations
for any of the instance part records Obj ect Part, Rect Cbj Part, Cor ePart, Conposi t ePart,
Shel | Part, WvBhel | Part, ToplLevel Shell Part, and ApplicationShellPart is
implementation-defined. These structures may also have additional private fields internal to the
implementation. The Qbj ect Part, Rect Cbj Part, and Cor ePart structures must be defined so
that any member with the same name appears at the same offset in Qbj ect Rec, Rect Obj Rec, and
Cor eRec (W dget Rec). No other relations between the offsets of any two fields may be assumed.

Widget Classing

The widget_class field of a widget points to its widget class structure, which contains information that
is constant across all widgets of that class. As a consequence, widgets usually do not implement directly
callable procedures; rather, they implement procedures, called methods, that are available through their
widget class structure. These methods are invoked by generic procedures that envelop common actions
around the methodsimplemented by the widget class. Such procedures are applicableto all widgets of that
class and also to widgets whose classes are subclasses of that class.

All widget classes are a subclass of Core and can be subclassed further. Subclassing reduces the amount
of code and declarations necessary to make a new widget class that is similar to an existing class. For
example, you do not have to describe every resource your widget usesin an Xt Resour celi st . Instead,
you describe only the resources your widget has that its superclass does not. Subclasses usually inherit
many of their superclasses procedures (for example, the expose procedure or geometry handler).

Subclassing, however, can be taken too far. If you create a subclass that inherits none of the procedures of
its superclass, you should consider whether you have chosen the most appropriate superclass.

To make good use of subclassing, widget declarations and naming conventions are highly stylized. A
widget consists of threefiles:

» A public .hfile, used by client widgets or applications.
» A private .hfile, used by widgets whose classes are subclasses of the widget class.
» A .cfile, which implements the widget.

Widget Naming Conventions

Thelntrinsics provide avehicle by which programmers can create new widgets and organize acollection of
widgetsinto an application. To ensure that applications need not deal with as many styles of capitalization

11

Intrinsics and Widgets

and spelling as the number of widget classes it uses, the following guidelines should be followed when
writing new widgets:

e Usethe X library naming conventions that are applicable. For example, a record component name is
al lowercase and uses underscores () for compound words (for example, background _pixmap). Type
and procedure names start with uppercase and use capitalization for compound words (for example,
Ar gLi st or Xt Set Val ues).

» A resource nameis spelled identically to the field name except that compound names use capitalization
rather than underscore. To let the compiler catch spelling errors, each resource name should have
a symbolic identifier prefixed with “XtN”. For example, the background pixmap field has the
corresponding identifier XtNbackgroundPixmap, which is defined as the string “ backgroundPixmap”.
Many predefined names are listed in <X11/ St ri ngDef s. h>. Before you invent a new name, you
should make sure there is not already a name that you can use.

» A resource class string starts with a capital letter and uses capitalization for compound names
(for example,“BorderWidth"). Each resource class string should have a symbolic identifier prefixed
with “XtC" (for example, XtCBorderWidth). Many predefined classes are listed in <X11/
StringDefs. h>.

* A resource representation string is spelled identically to the type name (for example,
“TrandationTable”). Each representation string should have a symbolic identifier prefixed with
“XtR” (for example, XtRTrandationTable). Many predefined representation types are listed in <X11/
StringDefs. h>.

» New widget classes start with a capital and use uppercase for compound words. Given anew class name
AbcXyz, you should derive several names:

« Additional widget instance structure part name AbcXyzPart.

¢ Complete widget instance structure names AbcXyzRec and _AbcXyzRec.
« Widget instance structure pointer type name AbcXyzWidget.

» Additional class structure part name AbcXyzClassPart.

¢ Complete class structure names AbcXyzClassRec and _AbcXyzClassRec.
« Class structure pointer type name AbcXyzWidgetClass.

¢ Class structure variable abcXyzClassRec.

¢ Class structure pointer variable abcXyzWidgetClass.

 Action procedures available to translation specifications should follow the same naming conventions as
procedures. That is, they start with a capital |etter, and compound names use uppercase (for example,
“Highlight” and “NotifyClient™).

The symbolic identifiers XtN..., XtC..., and XtR... may be implemented as macros, as global symbals, or
as a mixture of the two. The (implicit) type of the identifier is St r i ng. The pointer value itself is not
significant; clients must not assume that inequality of two identifiers implies inequality of the resource
name, class, or representation string. Clients should also note that although global symbols permit savings
in literal storage in some environments, they also introduce the possibility of multiple definition conflicts
when applications attempt to use independently developed widgets simultaneously.

Widget Subclassing in Public .h Files

The public .h file for awidget classisimported by clients and contains

A reference to the public .h file for the superclass.

» Symbolicidentifiersfor the namesand classes of the new resourcesthat thiswidget addsto itssuperclass.
The definitions should have a single space between the definition name and the value and no trailing
space or comment in order to reduce the possibility of compiler warnings from similar declarations in
multiple classes.

» Type declarations for any new resource data types defined by the class.

» The class record pointer variable used to create widget instances.

e The C type that corresponds to widget instances of this class.

12

Intrinsics and Widgets

 Entry points for new class methods.

For example, the following is the public .h file for a possible implementation of aLabel widget:

#i f ndef LABEL_H
#defi ne LABEL_H

/* New resources */

#define XtNjustify "justify"

#def i ne Xt Nf or egr ound "foreground"
#defi ne Xt N abel "| abel "

#def i ne Xt Nf ont "font"

#define XtN nternal Wdth "internal Wdth"
#def i ne Xt Ni nt er nal Hei ght "i nternal Hei ght"

/* Class record pointer */
extern Wdget C ass | abel Wdget d ass;

/* C Wdget type definition */
typedef struct _Label Rec *Label W dget ;

/* New class nethod entry points */
extern void Label Set Text (Wdget w, String text);
extern String Label Get Text (Wdget w);

#endi f LABEL_H

The conditional inclusion of the text allows the application to include header files for different widgets
without being concerned that they already may be included as a superclass of another widget.

To accommodate operating systems with file name length restrictions, the name of the public .h file is
the first ten characters of the widget class. For example, the public .h file for the Constraint widget class
isConstraint. h.

Widget Subclassing in Private .h Files

The private .hfilefor awidget isimported by widget classesthat are subclasses of the widget and contains

» A referenceto the public .h file for the class.

* A referenceto the private .h file for the superclass.

» Symbolic identifiers for any new resource representation types defined by the class. The definitions
should have a single space between the definition name and the value and no trailing space or comment.

A structure part definition for the new fields that the widget instance adds to its superclass's widget
structure.

» The complete widget instance structure definition for this widget.

» A structure part definition for the new fields that this widget class adds to its superclass's constraint
structure if the widget classis a subclass of Constraint.

» The complete constraint structure definition if the widget classis a subclass of Constraint.

» Type definitions for any new procedure types used by class methods declared in the widget class part.

» A structure part definition for the new fields that this widget class adds to its superclass's widget class
structure.

» The complete widget class structure definition for this widget.

» The complete widget class extension structure definition for this widget, if any.

13

Intrinsics and Widgets

e The symbolic constant identifying the class extension version, if any.
» The name of the global class structure variable containing the generic class structure for this class.
» Aninherit constant for each new procedure in the widget class part structure.

For example, the following is the private .h file for a possible Label widget:
#i f ndef LABELP_H

#defi ne LABELP_H

#i ncl ude <X11/ Label . h>

/* New representation types used by the Label wi dget */
#define XtRJustify "Justify"

/* New fields for the Label wi dget record */
typedef struct {
[* Settable resources */

Pi xel f or egr ound;

XFont Struct *font;

String | abel ; /* text to display */

XtJustify justify;

Di nension internal _w dth; /* # pixels horizontal border */

Di nensi on internal _height; /* # pixels vertical border */
/* Data derived fromresources */

cC nor mal _GC;

cC gray_GC,

Pi xmap gray_pi xmap;

Position | abel _x;

Posi tion | abel _y;

Di mensi on | abel _wi dth;
Di nensi on | abel _hei ght;

Car di nal | abel | en;
Bool ean di spl ay_sensitive;
} Label Part;
/* Full instance record declaration */

typedef struct _Label Rec {
Cor ePart core;
Label Part | abel;

} Label Rec;

/* Types for Label class nmethods */
typedef void (*Label Set TextProc) (Wdget w, String text);
typedef String (*Label Get Text Proc) (W dget w);

/* New fields for the Label wi dget class record */
typedef struct {

Label Set Text Proc set text;

Label Get Text Proc get _text;

Xt Poi nter extension;
} Label O assPart ;

/* Full class record declaration */

14

Intrinsics and Widgets

typedef struct _Label d assRec {
CoreC assPart core_cl ass;
Label d assPart | abel cl ass;
} Label d assRec;

/* Class record variable */
extern Label Cl assRec | abel C assRec;

#def i ne Label I nherit Set Text ((Label Set Text Proc) _XtInherit)
#def i ne Label I nherit Get Text ((Label Get Text Proc) _XtInherit)

#endi f LABELP_H

To accommodate operating systems with file name length restrictions, the name of the private .h file is
the first nine characters of the widget class followed by a capital P. For example, the private .h file for the
Constraint widget classis Const r ai nP. h.

Widget Subclassing in .c Files

The .c file for awidget contains the structure initializer for the class record variable, which contains the
following parts:

* Classinformation (for example, superclass, class name, widget_size, class initialize, and class inited).

» Data constants (for example, resources and num_resources, actions and num_actions, visible interest,
compress_motion, compress_exposure, and version).

» Widget operations (for example, initialize, realize, destroy, resize, expose, set_values, accept_focus,
and any new operations specific to the widget).

The superclass field points to the superclass global class record, declared in the superclass private .h
file. For direct subclasses of the generic core widget, superclass should be initialized to the address of
thewi dget C assRec structure. The superclassis used for class chaining operations and for inheriting
or enveloping a superclass's operations (see the section called “ Superclass Chaining”, the section called
“Initializing a Widget Class’, and the section called “Inheritance of Superclass Operations’.

The class_name field contains the text name for this class, which is used by the resource manager. For
example, the Label widget hasthe string “Label”. More than one widget class can share the sametext class
name. This string must be permanently allocated prior to or during the execution of the classinitialization
procedure and must not be subsequently deallocated.

The widget_size field is the size of the corresponding widget instance structure (not the size of the class
structure).

The version field indicates the tool kit implementation version number and is used for runtime consistency
checking of the X Toolkit and widgetsin an application. Widget writers must set it to the implementation-
defined symbolic value Xt Ver si on in the widget class structure initialization. Those widget writers
who believe that their widget binaries are compatible with other implementations of the Intrinsics can
put the special value Xt Ver si onDont Check in the version field to disable version checking for those
widgets. If awidget needs to compile aternative code for different revisions of the Intrinsics interface
definition, it may use the symbol Xt Speci fi cati onRel ease, asdescribed in Chapter 13, Evolution
of the Intrinsics. Use of Xt Ver si on alows the Intrinsics implementation to recognize widget binaries
that were compiled with older implementations.

The extension field is for future upward compatibility. If the widget programmer adds fields to class
parts, all subclass structure layouts change, requiring complete recompilation. To alow clients to avoid

15

Intrinsics and Widgets

recompilation, an extension field at the end of each class part can point to a record that contains any
additional classinformation required.

All other fields are described in their respective sections.

The .cfilea so containsthe declaration of the global class structure pointer variable used to createinstances
of the class. The following is an abbreviated version of the .c file for a Label widget. The resources table
is described in Chapter 9, Resource Management.

/* Resources specific to Label */
static XtResource resources[] = {
{ Xt Nf or egr ound, Xt CForeground, XtRPixel, sizeof (Pixel),
Xt O f set (Label Wdget, |abel.foreground), XtRString,
Xt Def aul t For egr ound},
{Xt Nfont, XtCFont, XtRFontStruct, sizeof(XFontStruct *),
Xt O f set (Label Wdget, |abel.font), XtRString,
Xt Def aul t Font },
{Xt Nl abel , XtCLabel, XtRString, sizeof(String),
Xt O f set (Label Wdget, |abel.label), XtRString, NULL},

}

/* Forward decl arations of procedures */

static void Casslnitialize(void);

static void Initialize(Wdget, Wdget, ArgList, Cardinal*);
static void Realize(Wdget, XtValueMask*, XSetW ndowAttributes*);
static void Set Text(Wdget, String);

static void Get Text (Wdget);

/* Class record constant */
Label Cl assRec | abel O assRec = {

{
/* core_class fields */
/* supercl ass */ (W dget d ass) &cor eCl assRec,
/* class_nane */ "Label ",
/* wi dget_size */ si zeof (Label Rec),
/* class_initialize */ Classlnitialize,
/* class_part_initialize */ NULL,
/* class_inited */ Fal se,
/[* initialize */ Initialize,
/* initialize_hook */ NULL,
/* realize */ Real i ze,
/* actions */ NULL,
/* num_ actions */ o,
/* resources */ resour ces,
/* num_resources */ Xt Nunber (resour ces),
/* xrmcl ass */ NULLQUARK,
/* conpress_notion */ True,

16

Intrinsics and Widgets

/* conpress_exposure */ True,
/* conpress_enterl eave */ True,
/* visible_interest */ Fal se,
/* destroy */ NULL,
/* resize */ Resi ze,
/* expose */ Redi spl ay,
/* set _val ues */ Set Val ues,
/* set _val ues_hook */ NULL,
/* set _val ues_al nost */ Xt I nherit Set Val uesAl nost ,
/* get_val ues_hook */ NULL,
/* accept _focus */ NULL,
/* version */ Xt Ver si on,
/* call back_of fsets */ NULL,
/* tmtable */ NULL,
/* query_geonetry */ Xt1I nheritQueryGeonetry,
/* di splay_accel erat or */ NULL,
/* extension */ NULL
}
{
/* Label _class fields */
/* get _text */ CGet Text
/* set_text */ Set Text ,
/* extension */ NULL
}

b

/* Class record pointer */
W dget Cl ass | abel Wdget C ass = (Wdget O ass) & abel d assRec;

/* New net hod access routines */
voi d Label Set Text (Wdget w, String text)

{
Label Wdget O ass |we = (Label WdgetC ass) Xt Cl ass(w);
Xt CheckSubcl ass(w, | abel W dget C ass, NULL);
*(lwe->l abel _cl ass. set_text)(w, text)

}

/* Private procedures */

Widget Class and Superclass Look Up

To obtain the class of awidget, use Xt Cl ass.

W dget G ass Xtd ass(w);

w Specifies the widget. Must be of class Object or any subclass thereof.
The Xt C ass function returns a pointer to the widget's class structure.

To obtain the superclass of awidget, use Xt Super cl ass.

W dget Cl ass Xt Super Cl ass(W) ;

17

Intrinsics and Widgets

w Specifies the widget. Must be of class Object or any subclass thereof.

The Xt Super cl ass function returns a pointer to the widget's superclass class structure.

Widget Subclass Verification

To check the subclass to which awidget belongs, use Xt | sSubcl ass.
Bool ean XtlsSubcl ass(w, wi dget_cl ass);

w Specifiesthewidget or object instance whose classisto be checked.
Must be of class Object or any subclass thereof.

widget_class Specifies the widget class for which to test. Must be objectClass
or any subclass thereof.

TheXt | sSubcl ass functionreturns Tr ue if the class of the specified widget is equal to or isasubclass
of the specified class. The widget's class can be any number of subclasses down the chain and need not be
an immediate subclass of the specified class. Composite widgets that need to restrict the class of the items
they contain can use Xt | sSubcl ass to find out if awidget belongs to the desired class of objects.

To test if a given widget belongs to a subclass of an Intrinsics-defined
class, the Intrinsics define macros or functions equivaent to XtlsSubcl ass for
each of the built-in classes. These procedures are XtlsObject, XtlsRectj,
Xt1sWdget, XtlsConposite, XtlsConstraint, XtlsShell, XtlsOverrideShell,
Xt sWvshel I, XtlsVendorShell, XtlsTransientShell, XtlsTopLevel Shell,
Xt1sApplicationShell,andXt|sSessi onShel | .

All these macros and functions have the same argument description.
Bool ean XtlScciass>(W ;

w Specifies the widget or object instance whose class is to be checked. Must be of
class Object or any subclass thereof.

These procedures may be faster than calling Xt | sSubcl ass directly for the built-in classes.

To check awidget's class and to generate a debugging error message, use Xt CheckSubcl ass, defined
in<X11/IntrinsicP. h>:

voi d Xt CheckSubclass(w, wi dget_class, nessage);

w Specifies the widget or object whose class is to be checked. Must
be of class Object or any subclass thereof.

widget_class Specifies the widget class for which to test. Must be objectClass
or any subclass thereof.

message Specifies the message to be used.

The Xt CheckSubcl ass macro determinesif the class of the specified widget is equal to or isasubclass
of the specified class. The widget's class can be any number of subclasses down the chain and need
not be an immediate subclass of the specified class. If the specified widget's class is not a subclass,
Xt CheckSubcl ass constructs an error message from the supplied message, the widget's actual class,

18

Intrinsics and Widgets

and the expected class and calls Xt Er r or Msg. Xt CheckSubcl ass should be used at the entry point
of exported routines to ensure that the client has passed in avalid widget class for the exported operation.

Xt CheckSubcl ass isonly executed when the module has been compiled with the compiler symbol
DEBUG defined; otherwise, it is defined as the empty string and generates no code.

Superclass Chaining

While most fields in a widget class structure are self-contained, some fields are linked to their
corresponding fieldsin their superclass structures. With alinked field, the Intrinsics accessthefield'svalue
only after accessing its corresponding superclass value (called downward superclass chaining) or before
accessing itscorresponding superclass val ue (called upward superclass chaining). The self-contained fields
are

In all w dget classes: cl ass_nane
class_initialize
wi dget _si ze
realize
vi si bl e_interest
resize
expose
accept _focus
conpress_notion
conpr ess_exposure
conpress_enterl eave
set _val ues_al nost
tmtable
version
al | ocate
deal | ocat e

In Conposite wi dget classes: geonet ry_nanager
change_nanaged
insert _child
delete child
accepts_objects
al | ows_change_nmanaged_set

In Constraint w dget classes: constrai nt _si ze

In Shell w dget classes: root _geonetry_manager

With downward superclass chaining, theinvocation of an operation first accessesthefield from the Object,
RectObj, and Core class structures, then from the subclass structure, and so on down the class chain to that
widget's class structure. These superclass-to-subclass fields are

class_part_initialize
get _val ues_hook
initialize
initialize_hook

set _val ues

set _val ues_hook

19

Intrinsics and Widgets

resour ces

In addition, for subclasses of Constraint, the following fields of the Const rai nt O assPart and
Const rai nt O assExt ensi onRec structures are chained from the Constraint class down to the
subclass:

resour ces
initialize
set _val ues
get val ues_hook

With upward superclass chaining, the invocation of an operation first accesses the field from the widget
class structure, then from the superclass structure, and so on up the class chain to the Core, RectObj, and
Object class structures. The subclass-to-superclass fields are

destroy
actions

For subclasses of Constraint, the following field of Constrai nt C assPart is chained from the
subclass up to the Constraint class:

destroy

Class Initialization: class_initialize and
class_part_initialize Procedures

Many class records can be initialized completely at compile or link time. In some cases, however, a class
may need to register type converters or perform other sorts of once-only runtime initialization.

Because the C language does not have initialization procedures that are invoked automatically when a
program starts up, awidget class can declare a class initialize procedure that will be automatically called
exactly once by the Intrinsics. A class initialization procedure pointer is of type Xt Pr oc:

typedef void (* XtProc)(void);

A widget class indicates that it has no class initialization procedure by specifying NULL in the
class initialize field.

In addition to the classinitialization that is done exactly once, some classes perform initialization for fields
in their parts of the class record. These are performed not just for the particular class, but for subclasses
as well, and are done in the class's class part initialization procedure, a pointer to which is stored in the
class part _initializefield. Theclass part_initialize procedure pointer isof type Xt W dget Cl assPr oc.

typedef void (*XtWdget d assProc) (W dgetC ass)(w dget _cl ass);
widget_class Points to the class structure for the class being initialized.

During classinitialization, the class part initialization procedures for the class and all its superclasses are
called in superclass-to-subclass order on the class record. These procedures have the responsibility of
doing any dynamic initializations necessary to their class's part of the record. The most common is the
resolution of any inherited methods defined in the class. For example, if awidget class C has superclasses
Core, Composite, A, and B, the classrecord for C first is passed to Core'sclass_part_initialize procedure.
This resolves any inherited Core methods and compiles the textual representations of the resource list and

20

Intrinsics and Widgets

action tablethat are defined in the class record. Next, Composite'sclass part_initialize procedureiscalled
to initialize the composite part of C's class record. Finally, the class part initialize procedures for A, B,
and C, inthat order, are called. For further information, see the section called “Initializing aWidget Class”
Classesthat do not define any new classfields or that need no extra processing for them can specify NULL
inthe class part_initialize field.

All widget classes, whether they have a class initialization procedure or not, must start with their
class inited field Fal se.

The first time a widget of a class is created, Xt Cr eat eW dget ensures that the widget class and all
superclasses are initialized, in superclass-to-subclass order, by checking each class inited field and, if
it is Fal se, by calling the class initialize and the class part_initialize procedures for the class and all
its superclasses. The Intrinsics then set the class inited field to a nonzero value. After the one-time
initialization, a class structure is constant.

The following example provides the class initialization procedure for a Label class.

static void Classlnitialize(void)

{
Xt Set TypeConverter (XtRString, XtRJustify, CvtStringToJustify,
NULL, 0, XtCacheNone, NULL);

}
Initializing a Widget Class

A classisinitialized when the first widget of that class or any subclass is created. To initialize a widget
class without creating any widgets, use Xt I ni ti al i zeW dget C ass.

void XtlnitializeWdgetd ass(object _class);

object_class Specifies the object class to initialize. May be obj ect C ass or
any subclass thereof.

If the specified widget classisalready initidlized, Xt I ni ti al i zeW dget O ass returnsimmediately.

If the classinitialization procedure registers type converters, these type converters are not available until
the first object of the class or subclassiscreated or Xt I niti al i zeW dget Cl ass is called (see the
section called “Resource Conversions’).

Inheritance of Superclass Operations

A widget classisfreeto use any of its superclass's self-contained operations rather than implementing its
own code. The most frequently inherited operations are

* expose

* redlize

* insert_child

* delete child

* geometry_manager
e set values amost

To inherit an operation xyz, specify the constant Xt | nher i t Xyzin your class record.

Every classthat declares anew procedurein itswidget class part must provide for inheriting the procedure
in its class part_initialize procedure. The chained operations declared in Core and Constraint records

21

Intrinsics and Widgets

are never inherited. Widget classes that do nothing beyond what their superclass does specify NULL for
chained procedures in their class records.

Inheriting works by comparing the value of the field with a known, special value and by copying in the
superclass's value for that field if a match occurs. This specia value, called the inheritance constant,
is usualy the Intrinsics internal value _Xt | nherit cast to the appropriate type. Xt I nherit isa
procedure that issues an error message if it isactually called.

For example, Conposi t eP. h contains these definitions:

#defi ne XtlnheritGeonetryManager ((XtGeonetryHandler) _Xtlnherit)

#def i ne Xt nherit ChangeManaged ((Xt W dget Proc) _Xtlnherit)
#define XtlnheritlnsertChild ((Xt ArgsProc) _Xtlnherit)
#define XtlnheritDeleteChild ((Xt W dget Proc) _Xtlnherit)

Composite's class_part_initialize procedure begins as follows:

static void ConpositeC assPartlnitialize(Wdgetd ass wi dget C ass)
{
Conposi t eW dget G ass wc = (Conposi t eW dget Cl ass) wi dget O ass;
Conposi t eW dget Cl ass super = (ComnpositeW dget Cl ass)we->core_cl ass. super cl ass;
i f (wc->conposite_class.geonetry manager == Xtlnherit GeonetryManager) {
wc- >conposi te_cl ass. geonetry_nanager = super->conposite_cl ass. geonetry_na
}
i f (wc->conposite_class.change_nanaged == Xt nherit ChangeManaged) {
wc- >conposi t e_cl ass. change_managed = super->conposite_cl ass. change_manage

}

}

Nonprocedure fields may be inherited in the same manner as procedure fields. The class may declare any
reserved valueit wishesfor theinheritance constant for its new fields. The following inheritance constants
are defined:

For Object:

e XtlnheritAllocate
e XtlnheritDeal | ocate

For Core:

 XtlnheritRealize

e XtlnheritResize

e XtlnheritExpose

e Xtlnherit SetVal uesAl nost

» XtlnheritAccept Focus

e XtlnheritQueryGeonetry

e XtlnheritTransl ations

e XtInheritDi splayAccel erat or

For Composite:

22

Intrinsics and Widgets

e Xtlnherit GeonetryManager
e Xt I nherit ChangeManaged

e XtlnheritlnsertChild

e XtlnheritDeleteChild

For Shell:

e Xt I nheritRoot Geonet r yManager

Invocation of Superclass Operations

A widget sometimes needs to call a superclass operation that is not chained. For example, a widget's
expose procedure might call its superclass's expose and then perform a little more work on its own. For
example, a Composite class with predefined managed children can implement insert_child by first calling
its superclasssinsert_child and then calling Xt ManageChi | d to add the child to the managed set.

Note

A class method should not use Xt Super cl ass but should instead call the class method of its
own specific superclass directly through the superclassrecord. That is, it should useits own class
pointers only, not the widget's class pointers, as the widget's class may be a subclass of the class
whose implementation is being referenced.

Thistechnique is referred to as envel oping the superclass's operation.

Class Extension Records

It may be necessary at timesto add new fields to already existing widget class structures. To permit thisto
be done without requiring recompilation of al subclasses, the last field in a class part structure should be
an extension pointer. If no extension fields for a class have yet been defined, subclasses should initiaize
the value of the extension pointer to NULL.

If extension fields exist, asis the case with the Composite, Constraint, and Shell classes, subclasses can
providevaluesfor thesefieldsby setting the extension pointer for the appropriate part intheir classstructure
to point to astatically declared extension record containing the additional fields. Setting the extension field
is never mandatory; code that uses fields in the extension record must always check the extension field
and take some appropriate default action if it isNULL.

In order to permit multiple subclasses and librariesto chain extension recordsfrom asingle extensionfield,
extension records should be declared as alinked list, and each extension record definition should contain
the following four fields at the beginning of the structure declaration:

struct {
Xt Poi nt er next _extension;
XrmQuark record_type;
| ong versi on;
Cardinal record_size;

s
next_extension Specifies the next record in the list, or NULL.
record_type Specifies the particular structure declaration to which each

extension record instance conforms.

23

Intrinsics and Widgets

version Specifies aversion id symbolic constant supplied by the definer of
the structure.

record size Specifies the total number of bytes alocated for the extension
record.

Therecord_typefieldidentifiesthe contents of the extension record and is used by the definer of the record
to locate its particular extension record in the list. The record_type field is normally assigned the result
of Xr 5t ri ngToQuar k for aregistered string constant. The Intrinsics reserve all record type strings
beginning with the two characters “XT” for future standard uses. The value NUL L QUARK may aso be
used by the class part owner in extension records attached to its own class part extension field to identify
the extension record unique to that particular class.

The version field is an owner-defined constant that may be used to identify binary files that have been
compiled with alternate definitions of the remainder of the extension record data structure. The private
header filefor awidget class should provide asymbolic constant for subclassesto useto initialize thisfield.
The record_size field value includes the four common header fields and should normally be initialized
with si zeof ().

Any vaue stored in the class pat extenson fields of Conposited assPart,
Constrai nt C assPart,orShel | A assPart must point to an extension record conforming to this
definition.

The Intrinsics provide a utility function for widget writers to locate a particular class extension record in
alinked list, given awidget class and the offset of the extension field in the class record.

To locate a class extension record, use Xt Get Cl assExt ensi on.

Xt Poi nter Xt Getd assExtension(object _class, byt e of f set, type,

version, record_size);

object_class Specifies the object class containing the extension list to be
searched.

byte offset Specifiesthe offset in bytes from the base of the class record of the
extension field to be searched.

type Specifies the record_type of the class extension to be located.

version Specifies the minimum acceptable version of the class extension

required for a match.

record size Specifies the minimum acceptable length of the class extension
record required for amatch, or 0.

Thelist of extension records at the specified offset in the specified object classwill be searched for amatch
on the specified type, a version greater than or equal to the specified version, and a record size greater
than or equal the specified record_size if it is nonzero. Xt Get Cl assExt ensi on returns a pointer to
a matching extension record or NULL if no match is found. The returned extension record must not be
modified or freed by the caller if the caller is not the extension owner.

24

Chapter 2. Widget Instantiation

A hierarchy of widget instances constitutes a widget tree. The shell widget returned by
Xt AppCr eat eShel | istheroot of the widget tree instance. The widgets with one or more children are
theintermediate nodes of that tree, and the widgets with no children of any kind arethe leaves of the widget
tree. With the exception of pop-up children (see Chapter 5, Pop-Up Widgets), this widget tree instance
defines the associated X Window tree.

Widgets can be either composite or primitive. Both kinds of widgets can contain children, but the Intrinsics
provide a set of management mechanisms for constructing and interfacing between composite widgets,
their children, and other clients.

Composite widgets, that is, members of the class conposi t eW dget C ass, are containers for an
arbitrary, but widget implementation-defined, collection of children, which may be instantiated by the
composite widget itself, by other clients, or by a combination of the two. Composite widgets also
contain methods for managing the geometry (layout) of any child widget. Under unusual circumstances,
acomposite widget may have zero children, but it usually has at least one. By contrast, primitive widgets
that contain children typically instantiate specific children of known classes themselves and do not expect
externa clientsto do so. Primitive widgets also do not have general geometry management methods.

In addition, the Intrinsics recursively perform many operations (for example, realization and destruction)
on composite widgets and all their children. Primitive widgets that have children must be prepared to
perform the recursive operations themselves on behalf of their children.

A widget treeismanipulated by several Intrinsicsfunctions. For example, Xt Real i zeW dget traverses
the tree downward and recursively realizes all pop-up widgets and children of composite widgets.
Xt Destr oyW dget traverses the tree downward and destroys all pop-up widgets and children of
composite widgets. The functions that fetch and modify resources traverse the tree upward and determine
the inheritance of resources from a widget's ancestors. Xt MakeCGeonet r yRequest traverses the tree
up one level and calls the geometry manager that is responsible for awidget child's geometry.

To facilitate upward traversal of the widget tree, each widget has a pointer to its parent widget. The Shell
widget that Xt AppCr eat eShel | returns has a parent pointer of NULL.

Tofacilitate downward traversal of the widget tree, the children field of each composite widget isa pointer
to an array of child widgets, which includes all normal children created, not just the subset of children
that are managed by the composite widget's geometry manager. Primitive widgets that instantiate children
are entirely responsible for al operations that require downward traversal below themselves. In addition,
every widget has a pointer to an array of pop-up children.

Initializing the X Toolkit

Before an application can call any Intrinsics function other than Xt Set LanguagePr oc and
Xt Tool ki t Threadl ni ti al i ze, it must initialize the Intrinsics by using

e Xt Tool kitlnitialize,whichinitializesthe Intrinsicsinternals

e Xt Creat eAppl i cati onCont ext , which initializes the per-application state

o XtDisplaylnitializeorXtOpenDi spl ay, whichinitializesthe per-display state
» Xt AppCr eat eShel | , which creates the root of awidget tree

Or an application can call the convenience procedure Xt OpenAppl i cat i on, which combines the
functions of the preceding procedures. An application wishing to use the ANSI C locale mechanism
should call Xt Set LanguagePr oc prior to caling Xt Di spl ayl niti al i ze, Xt OpenDi spl ay,
Xt OpenApplication,or Xt Applnitialize.

25

Widget Instantiation

Multiple instances of X Toolkit applications may be implemented in asingle address space. Each instance
needs to be able to read input and dispatch events independently of any other instance. Further, an
application instance may need multiple display connections to have widgets on multiple displays. From
the application's point of view, multiple display connections usually are treated together as a single unit
for purposes of event dispatching. To accommodate both requirements, the Intrinsics define application
contexts, each of which provides the information needed to distinguish one application instance from
another. The major component of an application context is a list of one or more X Di spl ay pointers
for that application. The Intrinsics handle all display connections within a single application context
simultaneously, handling input in a round-robin fashion. The application context type Xt AppCont ext
is opaque to clients.

Toinitidizethe Intrinsicsinternals, use Xt Tool ki tlniti ali ze.
void XtToolkitlnitialize(void);

If XtToolkitlnitialize was previousy caled, it returns immediately. When
Xt Tool ki t Threadl nitializeiscalled before Xt Tool ki tlnitialize,thelatteris protected
against simultaneous activation by multiple threads.

To create an application context, use Xt Cr eat eAppl i cat i onCont ext .
Xt AppCont ext Xt Creat eAppl i cati onCont ext (voi d);

The Xt Cr eat eAppl i cati onCont ext function returns an application context, which is an opague
type. Every application must have at least one application context.

To destroy an application context and close any remaining display connections in it, use
Xt Dest r oyAppl i cati onCont ext .

voi d Xt DestroyApplicati onCont ext (app_cont ext);
app_context Specifies the application context.

The Xt DestroyApplicati onContext function destroys the specified application context.
If caled from within an event dispatch (for example, in a calback procedure),
Xt DestroyAppl i cati onCont ext does not destroy the application context until the dispatch is
complete.

To get the application context in which a given widget was created, use
Xt W dget ToAppl i cati onCont ext .

Xt AppCont ext Xt W dget ToAppl i cati onCont ext (W) ;

w Specifies the widget for which you want the application context. Must be of class
Object or any subclass thereof.

The Xt W dget ToAppl i cati onCont ext function returns the application context for the specified
widget.

Toinitialize adisplay and add it to an application context, use Xt Di spl ayl ni ti al i ze.

voi d XtDisplaylnitialize(app_context, di spl ay, appl i cati on_nane,
application_class, options, numoptions, argc, argv);

app_context Specifies the application context.

display Specifiesapreviously opened display connection. Notethat asingle
display connection can bein at most one application context.

26

Widget Instantiation

application_name

application_class

options

num_options
argc

argv

Specifies the name of the application instance.

Specifies the class name of this application, which is usually the
generic name for all instances of this application.

Specifies how to parse the command line for any application-
specific resources. The options argument is passed as a parameter
to Xr mPar seCommand. For further information, see Parsing
Command Line Optionsin Xlib— C Language X Interface and the
section called “Parsing the Command Line” of this specification.

Specifies the number of entriesin the options list.
Specifies apointer to the number of command line parameters.

Specifiesthe list of command line parameters.

TheXt Di spl ayl ni ti al i ze function retrievesthe language string to be used for the specified display
(see the section called “Finding File Names'), calls the language procedure (if set) with that language
string, builds the resource database for the default screen, calls the Xlib Xr nPar seConmand function
to parse the command line, and performs other per-display initialization. After Xr nPar seCommrand has
been called, argc and argv contain only those parameters that were not in the standard option table or in
the table specified by the options argument. If the modified argc is not zero, most applications simply
print out the modified argv along with amessage listing the allowabl e options. On POSI X -based systems,
the application name is usualy the final component of argv[Q]. If the synchronous resource is Tr ue,
Xt Di spl ayl nitialize calstheXlib XSynchr oni ze function to put Xlib into synchronous mode
for this display connection and any others currently open in the application context. See the section called
“Loading the Resource Database” and the section called “Parsing the Command Line” for details on the
application_name, application_class, options, and num_options arguments.

XtDi splaylnitialize calsXrnSet Dat abase to associate the resource database of the default
screen with the display before returning.

To open adisplay, initializeit, and then add it to an application context, use Xt QpenDi spl ay.

Di spl ay *Xt OpenDi spl ay(app_context, display_string, application_nane,

application_cl ass,

app_context
display_string
application_name

application_class

options

num_options

argc

argv

options, numoptions, argc, argv);

Specifies the application context.
Specifies the display string, or NULL.
Specifies the name of the application instance, or NULL.

Specifies the class name of this application, which is usually the
generic name for all instances of this application.

Specifies how to parse the command line for any application-
specific resources. The options argument is passed as a parameter
to Xr mPar seComand.

Specifies the number of entriesin the optionslist.

Specifies a pointer to the number of command line parameters.

Specifiesthe list of command line parameters.

27

Widget Instantiation

The Xt QpenDi spl ay function calls XOpenDi spl ay with the specified display string. If
display_stringisNULL, Xt OpenDi spl ay usesthe current value of the -display option specifiedinargv.
If no display is specified in argv, the user's default display isretrieved from the environment. On POSI X -
based systems, thisisthe value of the DISPLAY environment variable.

If this succeeds, Xt OpenDi splay then cals XtDisplaylnitialize and passes it the
opened display and the value of the -name option specified in argv as the application name.
If no -name option is specified and application_name is non-NULL, application name is passed
to XtDi splaylnitialize. If application_name is NULL and if the environment variable
RESOURCE_NAME isset, thevalue of RESOURCE_NAME isused. Otherwise, the application name
isthe name used to invoke the program. On implementationsthat conform to ANSI C Hosted Environment
support, the application name will be argv{0] less any directory and file type components, that is, the final
component of argv{0], if specified. If argv[0] does not exist or is the empty string, the application name
is“main”. Xt OpenDi spl ay returnsthe newly opened display or NULL if it failed.

See the section called “Using the Intrinsics in a Multi-Threaded Environment” for information regarding
the use of Xt OpenDi spl ay in multiple threads.

To close adisplay and remove it from an application context, use Xt Cl oseDi spl ay.
voi d Xt C oseDi spl ay(di spl ay);
display Specifies the display.

The Xt A oseDi spl ay function cals XCl oseDi spl ay with the specified display as soon asit is safe
to do so. If called from within an event dispatch (for example, a callback procedure), Xt Cl oseDi spl ay
does not close the display until the dispatch is complete. Note that applications need only call
Xt Cl oseDi spl ay if they areto continue executing after closing the display; otherwise, they should call
Xt Dest r oyAppl i cati onCont ext .

See the section called “Using the Intrinsics in a Multi-Threaded Environment” for information regarding
theuse of Xt Cl oseDi spl ay in multiple threads.

Establishing the Locale

Resource databases are specified to be created in the current process locale. During display initialization
prior to creating the per-screen resource database, the Intrinsics will call out to a specified application
procedure to set the locale according to options found on the command line or in the per-display resource
specifications.

The callout procedure provided by the application is of type Xt LanguagePr oc.
typedef String (*XtLanguageProc) (display, |anguage, client_data);
display Passes the display.

language Passes theinitia language val ue obtained from the command line or
server per-display resource specifications.

client_data Passes the additional client data specified in the call to
Xt Set LanguagePr oc.

The language procedure allows an application to set the locale to the value of the language resource
determined by Xt Di spl ayl ni ti al i ze. The function returns a new language string that will be
subsequently used by Xt Di spl ayl nitiali ze to establish the path for loading resource files. The
returned string will be copied by the Intrinsics into new memory.

28

Widget Instantiation

Initially, no language procedure is set by the Intrinsics. To set the language procedure for use by
Xt Di splaylnitialize,useXtSetlLanguageProc.

Xt LanguagePr oc Xt Set LanguagePr oc(app_context, proc, client_data);

app_context Specifies the application context in which the language procedureis
to be used, or NULL.

proc Specifies the language procedure.

client_data Specifies additional client data to be passed to the language

procedure when it is called.

Xt Set LanguagePr oc setsthelanguage procedurethat will becalledfrom Xt Di spl ayl niti al i ze
for al subsequent Displays initialized in the specified application context. If app_context is NULL,
the specified language procedure is registered in all application contexts created by the calling process,
including any future application contexts that may be created. If proc is NULL, a default language
procedure isregistered. Xt Set LanguagePr oc returnsthe previously registered language procedure. If
a language procedure has not yet been registered, the return value is unspecified, but if this return value
is used in a subsequent call to Xt Set LanguagePr oc, it will cause the default language procedure to
be registered.

The default language procedure does the following:

» Sets the locale according to the environment. On ANSI C-based systems this is done by calling
set| ocal e(LC_ALL, language). If an error is encountered, a warning message is issued with
Xt Vr ni ng.

» CalsXSupport sLocal e to verify that the current locale is supported. If the localeis not supported,
awarning message isissued with Xt War ni ng and thelocaleissetto “C”.

» CadlsXSet Local eModi fi er s specifying the empty string.

» Returnsthe value of the current locale. On ANSI C-based systems this is the return value from afinal
call toset | ocal e(LC_ALL,NULL).

A client wishing to use this mechanism to establish locale can do so by calling Xt Set LanguagePr oc
priorto Xt Di spl ayl nitialize, asinthefollowing example.

W dget top;
Xt Set LanguagePr oc(NULL, NULL, NULL);
top = Xt OpenApplication(...);

Loading the Resource Database

The Xt Di spl ayl ni ti al i ze function first determines the language string to be used for the specified
display. It then creates aresource database for the default screen of the display by combining the following
sources in order, with the entries in the first named source having highest precedence:

» Application command line (argc, argv).

* Per-host user environment resource file on the local host.

* Per-screen resource specifications from the server.

* Per-display resource specifications from the server or from the user preference file on the local host.
» Application-specific user resource file on the local host.

 Application-specific class resource file on the local host.

29

Widget Instantiation

When the resource database for a particular screen on the display is needed (either internally, or when
Xt Scr eenDat abase iscalled), it is created in the following manner using the sources listed abovein
the same order:

» A temporary database, the “server resource database”, is created from the string returned by
XResour ceManager St ri ng or, if XResour ceManager St ri ng returns NULL, the contents of
a resource file in the user's home directory. On POSIX-based systems, the usual name for this user
preference resource fileis$HOME/. Xdef aul t s.

« If alanguage procedure has been set, Xt Di spl ayl ni ti al i ze first searches the command line for
the option “-xnlLanguage”, or for a-xrm option that specifies the xnlL anguage/X nlLanguage resource,
asspecified by Section 2.4. If such aresourceisfound, thevalueisassumed to be entirely in XPCS, the X
Portable Character Set. If neither option is specified on the command ling, Xt Di spl ayl niti al i ze
queries the server resource database (which is assumed to be entirely in XPCS) for the resource
name. xnl Language, classClass. Xnl Language where name and Class are the application_name
and application_classspecifiedtoXt Di spl ayl ni ti al i ze. Thelanguageprocedureistheninvoked
with the resource value if found, else the empty string. The string returned from the language procedure
issaved for al future referencesin the Intrinsics that require the per-display language string.

» The screen resource database is initialized by parsing the command line in the manner specified by
Section 2.4.

« If a language procedure has not been set, the initial database is then queried for the resource
name. xnl Language, class Class. Xnl Language as specified above. If this database query falls,
the server resource database is queried; if this query also fails, the language is determined from the
environment; on POSI X-based systems, thisis done by retrieving the value of the LANG environment
variable. If no language string is found, the empty string is used. This language string is saved for all
future references in the Intrinsics that require the per-display language string.

« After determining the language string, the user's environment resource fileisthen merged into theinitial
resourcedatabaseif thefileexists. Thisfileisuser-, host-, and process-specific and isexpected to contain
user preferences that are to override those specifications in the per-display and per-screen resources.
On POSIX-based systems, the user's environment resource file name is specified by the value of the
XENVIRONMENT environment variable. If this environment variable does not exist, the user's home
directory is searched for afile named . Xdef aul t s- host, where host is the host name of the machine
on which the application is running.

» The per-screen resource specifications are then merged into the screen resource database, if they exist.
These specifications are the string returned by XScr eenResour ceSt r i ng for the respective screen
and are owned entirely by the user.

» Next, the server resource database created earlier ismerged into the screen resource database. The server
property, and corresponding user preference file, are owned and constructed entirely by the user.

» The application-specific user resource file from the local host is then merged into the screen resource
database. This file contains user customizations and is stored in a directory owned by the user. Either
the user or the application or both can store resource specifications in the file. Each should be prepared
to find and respect entries made by the other. The file name is found by calling Xr nSet Dat abase
with the current screen resource database, after preserving the original display-associated database, then
calling Xt Resol vePat hnane with the parameters (display, NULL, NULL, NULL, path, NULL, O,
NULL), where path is defined in an operating-system-specific way. On POSI X-based systems, path is
defined to be the value of the environment variable XUSERFILESEARCHPATH if thisis defined.
If XUSERFILESEARCHPATH is not defined, an implementation-dependent default value is used.
This default value is constrained in the following manner:

« If the environment variadble XAPPLRESDIR is not defined, the default
XUSERFILESEARCHPATH must contain at least six entries. These entries must contain SHOME
asthe directory prefix, plus the following substitutions:

1. 9% W, %A or 9uC, W, %, %, %
2. 9%, W, %

30

Widget Instantiation

3. 9%, N

4. UN, % or N, %, %, %
5. UN, %

6. UN

Theorder of these six entrieswithin the path must be asgiven above. The order and use of substitutions
within a given entry are implementation-dependent.

» |f XAPPLRESDIR isdefined, thedefault XUSERFILESEARCHPATH must contain at least seven
entries. These entries must contain the following directory prefixes and substitutions:

$XAPPLRESDI R with UC, W, % or UC, N, W, %, %
$XAPPLRESDI R with UC, UN, %

$XAPPLRESDI R with 9uC, N

$XAPPLRESDI R with wN, % or MW, %, %, %
$XAPPLRESDI R with W, %

$XAPPLRESDI R with N

$HOVE with N

NoohkwnkE

The order of these seven entries within the path must be as given above. The order and use of
substitutions within a given entry are implementation-dependent.

* Ladt, the application-specific class resource file from the local host is merged into the screen resource
database. This file is owned by the application and is usualy installed in a system directory when
the application is installed. It may contain sitewide customizations specified by the system manager.
The name of the application class resource file is found by calling Xt Resol vePat hnane with
the parameters (display, “app-defaults’, NULL, NULL, NULL, NULL, O, NULL). This file is
expected to be provided by the developer of the application and may be required for the application
to function properly. A simple application that wants to be assured of having a minimal set of
resources in the absence of its class resource file can declare fallback resource specifications with
Xt AppSet Fal | backResour ces. Note that the customization substitution string is retrieved
dynamically by Xt Resol vePat hname so that the resolved file name of the application classresource
file can be affected by any of the earlier sources for the screen resource database, even though the
contents of the class resource file have lowest precedence. After calling Xt Resol vePat hnane, the
original display-associated database is restored.

To obtain the resource database for a particular screen, use Xt Scr eenDat abase.
Xr nDat abase Xt ScreenDat abase(screen);
screen Specifies the screen whose resource database is to be returned.

The Xt Scr eenDat abase function returns the fully merged resource database as specified above,
associated with the specified screen. If the specified screen does not belong to aDi spl ay initialized by
Xt Di splaylnitialize,theresultsare undefined.

To obtain the default resource database associated with a particular display, use Xt Dat abase.
Xr mDat abase Xt Dat abase(di spl ay) ;
display Specifies the display.

The Xt Dat abase function is equivalent to Xr mGet Dat abase. It returns the database associated with
the specified display, or NULL if a database has not been set.

To specify a default set of resource values that will be used to initialize the resource database if
no application-specific class resource file is found (the last of the six sources listed above), use
Xt AppSet Fal | backResour ces.

31

Widget Instantiation

voi d Xt AppSet Fal | backResour ces(app_context, specification_list);

app_context Specifies the application context in which the fallback
specifications will be used.

specification_list Specifies a NULL-terminated list of resource specifications to
preload the database, or NULL.

Each entry in specification_list points to a string in the format of Xr nPut Li neResour ce. Following
acal to Xt AppSet Fal | backResour ces, when aresource database is being created for a particular
screen and the Intrinsics are not able to find or read an application-specific class resource file according to
therulesgiven above and if specification_listisnot NULL, the resource specificationsin specification_list
will be merged into the screen resource database in place of the application-specific class resource file.
Xt AppSet Fal | backResour ces isnot required to copy specification _list; the caller must ensure that
the contents of thelist and of the stringsaddressed by thelist remain valid until all displaysareinitialized or
until Xt AppSet Fal | backResour ces iscalled again. Thevalue NULL for specification_list removes
any previous fallback resource specification for the application context. The intended use for fallback
resources is to provide a minima number of resources that will make the application usable (or at
least terminate with helpful diagnostic messages) when some problem exists in finding and loading the
application defaultsfile.

Parsing the Command Line

The Xt OpenDi spl ay function first parses the command line for the following options:
-display Specifiesthe display name for XOpenDi spl ay.

-name Sets the resource name prefix, which overrides the application name passed to
Xt OpenDi spl ay.

-xnllanguage Specifiestheinitial language string for establishing locale and for finding application
class resource files.

XtDisplaylnitialize has a table of standard command line options that are passed to
Xr nPar seConmand for adding resources to the resource database, and it takes as a parameter additional
application-specific resource abbreviations. The format of this table is described in Section 15.9 in Xlib
— C Language X Interface.

typedef enum {

Xr mopt i onNoAr g, /* Value is specified in OptionDescRec. val ue */

Xrmopt i onl SAr g, /* Value is the option string itself */
XrmoptionStickyArg, /* Value is characters i mediately follow ng option */

Xr mopt i onSepAr g, /* Value is next argunent in argv */

Xr mopt i onResAr g, /* Use the next argunment as input to XrnPutLineResource*/
Xr mopt i onSki pAr g, /* lgnore this option and the next argument in argv */

Xrmopt i onSki pNArgs, /* lgnore this option and the next */
/* OptionDescRec.val ue argunments in argv */
Xr mopt i onSki pLi ne /* lgnore this option and the rest of argv */
} XrnOpti onKi nd;

typedef struct {
char *option; /* Option name in argv */
char *specifier; /* Resource name (wi thout application nane) */
XrmOptionKind argKind; /* Location of the resource val ue */

32

Widget Instantiation

XPoi nt er val ue;
} XrnOpti onDescRec,

The standard table contains the following entries:

/* Value to provide if XrnoptionNoArg */
*Xr mOpt i onDesclLi st ;

Option String Resour ce Name Argument Kind Resour ce Value
-background *background SepArg next argument
-bd *borderColor SepArg next argument
-bg *packground SepArg next argument
-borderwidth .borderWidth SepArg next argument
-bordercolor *borderColor SepArg next argument
-bw .borderWidth SepArg next argument
-display display SepArg next argument
-fg *foreground SepArg next argument
-fn *font SepArg next argument
-font *font SepArg next argument
-foreground *foreground SepArg next argument
-geometry .geometry SepArg next argument
-iconic .iconic NoArg "true"

-name .name SepArg next argument
-reverse reverseVideo NoArg "on"

-rv reverseVideo NoArg "on"

+rv reverseVideo NoArg "off"
-selectionTimeout .selectionTimeout SepArg next argument
-synchronous .synchronous NoArg "on"
+synchronous .synchronous NoArg "off"

-title title SepArg next argument
-xnllanguage XnlLanguage SepArg next argument
-Xrm next argument ResArg next argument
-xtsessionlD .sessionlD SepArg next argument

Note that any unique abbreviation for an option name in the standard table or in the application table is
accepted.

If reverseVideo is Tr ue, the values of Xt Def aul t For egr ound and Xt Def aul t Backgr ound are
exchanged for al screens on the Display.

The value of the synchronous resource specifies whether or not Xlib is put into synchronous mode. If a
valueisfound in the resource database during display initialization, Xt Di spl ayl niti al i ze makesa
call to XSynchr oni ze for al display connections currently open in the application context. Therefore,
when multiple displays are initialized in the same application context, the most recent value specified for
the synchronous resource is used for all displaysin the application context.

The value of the selectionTimeout resource appliesto all displays opened in the same application context.
When multiple displays are initialized in the same application context, the most recent value specified is
used for all displaysin the application context.

33

Widget Instantiation

The -xrm option provides amethod of setting any resourcein an application. The next argument should be
aquoted string identical in format to alinein the user resourcefile. For example, to give ared background
to all command buttons in an application named xh, you can start it up as

xmh -xrm ' xmh* Command. backgr ound: red'

Whenit parsesthecommandline, Xt Di spl ayl ni ti al i ze mergestheapplication optiontablewiththe
standard option table before calling the Xlib Xr mPar seCommrand function. An entry in the application
table with the same name as an entry in the standard table overrides the standard table entry. If an option
name is a prefix of another option name, both names are kept in the merged table. The Intrinsics reserve
all option names beginning with the characters “-xt” for future standard uses.

Creating Widgets

The creation of widget instances is a three-phase process:

1. Thewidgetsare allocated and initialized with resources and are optionally added to the managed subset
of their parent.

2. All compositewidgets are notified of their managed children in abottom-up traversal of the widget tree.
3. The widgets create X windows, which then are mapped.

To start thefirst phase, theapplication calls Xt Cr eat eW dget for al itswidgetsand addssome (usually,
most or all) of itswidgetsto their respective parents managed set by calling Xt ManageChi | d. To avoid
an O(nz) creation process where each composite widget lays itself out each time a widget is created and
managed, parent widgets are not notified of changesin their managed set during this phase.

After all widgets have been created, the application calls Xt Real i zeW dget with the top-level widget
to execute the second and third phases. Xt Real i zeW dget first recursively traverses the widget tree
in a postorder (bottom-up) traversal and then notifies each composite widget with one or more managed
children by means of its change_managed procedure.

Notifying a parent about its managed set involves geometry layout and possibly geometry negotiation.
A parent deals with constraints on its size imposed from above (for example, when a user specifies the
application window size) and suggestions made from below (for example, when aprimitive child computes
its preferred size). One difference between the two can cause geometry changesto ripplein both directions
through the widget tree. The parent may force some of its children to change size and position and may
issue geometry requests to its own parent in order to better accommodate al its children. You cannot
predict where anything will go on the screen until this process finishes.

Consequently, in the first and second phases, no X windows are actually created, because it is likely that
they will get moved around after creation. This avoids unnecessary requests to the X server.

Finally, Xt Real i zeW dget starts the third phase by making a preorder (top-down) traversal of the
widget tree, allocates an X window to each widget by means of its realize procedure, and finally maps
the widgets that are managed.

Creating and Merging Argument Lists

Many Intrinsicsfunctions may be passed pairs of resource namesand values. These are passed asan arglist,
apointer to an array of Ar g structures, which contains

typedef struct {

Widget Instantiation

String nane;
Xt ArgVal val ue;
} Arg, *ArglList;

where Xt Ar gVal isasdefined in Section 1.5.

If the size of the resource is less than or equal to the size of an Xt Ar gVal , the resource value is stored
directly in value; otherwise, apointer to it is stored in value.

Tosetvaluesinan Ar gLi st , use Xt Set Ar g.

void XtSetArg(arg, nane, value);

arg Specifies the name/value pair to set.

name Specifies the name of the resource.

value Specifies the value of the resource if it will fit in an Xt Ar gVval , else the
address.

TheXt Set Ar g functionisusually used in ahighly stylized manner to minimizethe probability of making
amistake; for example:

Arg args[20];

int n;
n = 0;
Xt Set Arg(args[n], XtNheight, 100); n++;
Xt Set Arg(args[n], XtNwi dth, 200); n++;

Xt Set Val ues(w dget, args, n);

Alternatively, an application can statically declare the argument list and use Xt Nurrber :

static Args args[] = {
{ Xt Nnei ght, (XtArgVal) 100},
{Xt N\wi dt h, (XtArgVal) 200},

b
Xt Set Val ues(W dget, args, XtNunber(args));

Notethat you should not use expressionswith side effects such as auto-increment or auto-decrement within
the first argument to Xt Set Ar g. Xt Set Ar g can be implemented as a macro that evaluates the first
argument twice.

To merge two arglist arrays, use Xt Mer geAr gLi st s.

ArgLi st XtMergeArgLists(argsl, numargsl, args2, numargs2);

argsl Specifies the first argument list.

num_argsl Specifies the number of entriesin the first argument list.
args2 Specifies the second argument list.

num_args2 Specifies the number of entries in the second argument list.

The Xt Mer geAr gLi st s function allocates enough storage to hold the combined arglist arrays and
copies them into it. Note that it does not check for duplicate entries. The length of the returned list isthe

35

Widget Instantiation

sum of the lengths of the specified lists. When it is no longer needed, free the returned storage by using
Xt Fr ee.

All Intrinsicsinterfacesthat require Ar gLi st argumentshave analogs conforming tothe ANSI C variable
argument list (traditionally called “varargs’) calling convention. The name of the analog is formed by
prefixing “Va’ to the name of the corresponding Ar gLi st procedure; e.g., Xt VaCr eat eW dget . Each
procedure named Xt Vasomething takes as its last arguments, in place of the corresponding Ar gLi st/
Car di nal parameters, a variable parameter list of resource name and value pairs where each name is
of type St ri ng and each value is of type Xt Ar gVal . The end of the list is identified by a name entry
containing NULL . Developerswriting in the C language wishing to pass resource name and value pairsto
any of these interfaces may use the Ar gLi st and varargs forms interchangeably.

Two specia hames are defined for use only in varargs lists: Xt VaTypedAr g and Xt VaNest edLi st .

#def i ne Xt VaTypedArg "Xt VaTypedArg"

If the name Xt VaTypedAr g is specified in place of aresource name, then the following four arguments
are interpreted as a name/type/value/size tuple where name is of type St ri ng, typeisof type St ri ng,
value is of type Xt Ar gVal , and sizeis of type int. When a varargs list containing Xt VaTypedAr g is
processed, a resource type conversion (see the section called “Resource Conversions’) is performed if
necessary to convert the value into the format required by the associated resource. If type is XtRString,
then value contains a pointer to the string and size contains the number of bytes allocated, including the
trailing null byte. If type is not XtRString, then if size is less than or equal to si zeof (Xt Ar gVal), the
value should be the data cast to the type Xt Ar gVal , otherwise value is a pointer to the data. If the type
conversion fails for any reason, awarning message isissued and the list entry is skipped.

#def i ne Xt VaNest edLi st " Xt VaNest edLi st"

If the name Xt VaNest edLi st isspecified in place of aresource name, then the following argument is
interpreted as an Xt Var Ar gsLi st vaue, which specifies another varargs list that is logically inserted
into the origina list at the point of declaration. The end of the nested list is identified with a name entry
containing NULL. Varargs lists may nest to any depth.

To dynamically alocate a varargs list for use with Xt VaNest edLi st in multiple calls, use
Xt VaCr eat eAr gsLi st .

t ypedef Xt Poi nter XtVarArgsList;

Xt Var ArgsLi st Xt VaCr eat eArgsLi st (unused, ...);

unused Thisargument is not currently used and must be specified as NULL.
Specifies avariable parameter list of resource name and value pairs.

The Xt VaCr eat eAr gsLi st function allocates memory and copies its arguments into a single list
pointer, which may be used with Xt VaNest edLi st . The end of both lists is identified by a name
entry containing NULL. Any entries of type Xt VaTypedAr g are copied as specified without applying
conversions. Data passed by reference (including Strings) are not copied, only the pointers themselves,
the caller must ensure that the dataremain valid for the lifetime of the created varargslist. Thelist should
be freed using Xt Fr ee when no longer needed.

Use of resource files and of the resource database is generally encouraged over lengthy arglist or varargs
lists whenever possible in order to permit modification without recompilation.

36

Widget Instantiation

Creating a Widget Instance

To create an instance of awidget, use Xt Cr eat eW dget .

W dget Xt Creat eW dget (nane, object _class, parent, args, numargs);

name Specifies the resource instance name for the created widget, which

is used for retrieving resources and, for that reason, should not be
the same as any other widget that is achild of the same parent.

object_class Specifies the widget class pointer for the created object. Must be

objectClass or any subclass thereof.

parent Specifiesthe parent widget. Must be of class Object or any subclass
thereof.

args Specifies the argument list to override any other resource
specifications.

num args Specifies the number of entries in the argument list.

The Xt Cr eat eW dget function performs all the boilerplate operations of widget creation, doing the
following in order:

Checksto seeif the class initialize procedure has been called for this class and for all superclasses and,
if not, calls those necessary in a superclass-to-subclass order.

If the specified class is not cor eW dget Cl ass or a subclass thereof, and the parent's class is a
subclassof conposi t eW dget Cl ass and either no extension record in the parent's composite class
part extension field exists with the record_type NULLQUARK or the accepts objects field in the
extension record is Fal se, Xt Cr eat eW dget issues afatal error; see the section called “Addition
of Children to a Composite Widget: Theinsert_child Procedure” and Chapter 12, Nonwidget Objects.
If the specified class contains an extension record in the obj ect classpart extension field withrecord_type
NULLQUARK and the allocate field is not NULL, the procedure is invoked to allocate memory
for the widget instance. If the parent is a member of the class const r ai nt W dget Cl ass, the
procedure also allocates memory for the parent's constraints and stores the address of this memory into
the constraints field. If no allocate procedure is found, the Intrinsics allocate memory for the widget
and, when applicable, the constraints, and initializes the constraints field.

Initializesthe Core nonresource data fields self, parent, widget_class, being_destroyed, name, managed,
window, visible, popup_list, and num_popups.

Initializestheresourcefields (for example, background pixel) by usingtheCor el assPart resource
lists specified for this class and all superclasses.

If the parent is a member of the classconst r ai nt W dget Cl ass, initializes the resource fields of
the constraints record by using the Const r ai nt C assPart resource lists specified for the parent's
classand al superclassesupto const rai nt W dget C ass.

Callsthe initialize procedures for the widget starting at the Object initialize procedure on down to the
widget's initialize procedure.

If the parent is a member of the class constrai nt WdgetC ass, cals the
Constrai nt Cl assPart initialize procedures, starting at const r ai nt W dget C ass on down
tothe parent's Const r ai nt Cl assPart initiaize procedure.

If the parent is a member of the class conposi t eW dget Cl ass, puts the widget into its parent's
childrenlist by calling its parent'sinsert_child procedure. For further information, see the section called
“Addition of Children to a Composite Widget: The insert_child Procedure”.

To create an instance of awidget using varargslists, use Xt VaCr eat eW dget .

W dget Xt VaCreateW dget (nane, object_class, parent, ...);

37

Widget Instantiation

name Specifies the resource name for the created widget.

object_class Specifies the widget class pointer for the created object. Must be
objectClass or any subclass thereof.

parent Specifiesthe parent widget. Must be of class Object or any subclass
thereof.

Specifies the variable argument list to override any other resource
specifications.

The Xt VaCr eat eW dget procedureisidentical in function to Xt Cr eat eW dget with the args and
num_args parameters replaced by avarargs list, as described in Section 2.5.1.

Creating an Application Shell Instance

An application can have multiple top-level widgets, each of which specifies a unique widget tree that
can potentially be on different screens or displays. An application uses Xt AppCr eat eShel | to create
independent widget trees.

W dget Xt AppCr eat eShel | (name, application_class, w dget cl ass, displ ay,
args, num args);

name Specifies the instance name of the shell widget. If nameis NULL,
theapplicationnamepassedto Xt Di spl ayl niti al i zeisused.

application_class Specifies the resource class string to be used in place
of the widget class name string when widget class is
appl i cati onShel | Wdget C ass or asubclass thereof.

widget_class Specifies the widget class for the top-level widget (e.g.,
appl i cati onShel | Wdget d ass).

display Specifies the display for the default screen and for the resource
database used to retrieve the shell widget resources.

args Specifies the argument list to override any other resource
specifications.

num args Specifies the number of entries in the argument list.

The Xt AppCr eat eShel | function creates a new shell widget instance as the root of a widget tree.
The screen resource for this widget is determined by first scanning args for the XtNscreen argument.
If no XtNscreen argument is found, the resource database associated with the default screen of the
specified display is queried for the resource name.screen, class Class.Screen where Class is the specified
application_class if widget_class is appl i cati onShel | W dget O ass or a subclass thereof. If
widget_classisnot appl i cati onShel | W dget C ass or asubclass, Class is the class name field
from the Cor e assPart of the specified widget_class. If this query fails, the default screen of the
specified display is used. Once the screen is determined, the resource database associated with that screen
isused to retrieve all remaining resources for the shell widget not specified in args. The widget name and
Class as determined above are used as the leftmost (i.e., root) components in al fully qualified resource
names for objects within this widget tree.

If the specified widget class is a subclass of WM Shell, the name and Class as determined above will be
stored into the WM _CL ASS property on the widget's window when it becomes realized. If the specified
widget_class is appl i cati onShel | W dget C ass or a subclass thereof, the WM_COMMAND
property will also be set from the values of the XtNargv and XtNargc resources.

38

Widget Instantiation

To create multiple top-level shellswithin asingle (logical) application, you can use one of two methods:

» Designate one shell as the real top-level shell and create the others as pop-up children of it by using
Xt Cr eat ePopupShel | .
» Haveall shells as pop-up children of an unrealized top-level shell.

The first method, which is best used when there is a clear choice for what is the main window, leads to
resource specifications like the following:

xmai |l . geonetry: ... (the main w ndow)
xmai | . read. geonetry: ... (the read w ndow)
xmai | . conmpose. geonetry: ... (the conpose w ndow)

The second method, which is best if there is no main window, leads to resource specifications like the

following:

xmai | . headers. geonetry: ... (the headers wi ndow)
xmai | . read. geonetry: ... (the read w ndow)
xmai | . conmpose. geonetry: ... (the conpose w ndow)

To create a top-level widget that is the root of a widget tree using varargs lists, use
Xt VaAppCr eat eShel | .

W dget Xt VaAppCr eat eShel | (nane, application_cl ass, wi dget _cl ass,

di splay,);

name Specifies the instance name of the shell widget. If nameis NULL,
theapplication namepassedto Xt Di spl ayl niti al i zeisused.

application_class Specifies the resource class string to be used in place
of the widget class name string when widget class is
appl i cati onShel | Wdget C ass or asubclass thereof.

widget_class Specifies the widget class for the top-level widget.

display Specifies the display for the default screen and for the resource

database used to retrieve the shell widget resources.

Specifies the variable argument list to override any other resource
specifications.

The Xt VaAppCr eat eShel | procedureisidentical infunctionto Xt AppCr eat eShel | withtheargs
and num_args parameters replaced by avarargs list, as described in Section 2.5.1.

Convenience Procedure to Initialize an Application

To initialize the Intrinsics internals, create an application context, open and initialize a display,
and create the initial root shell instance, an application may use Xt OpenApplication or
Xt VaOpenAppl i cati on.

W dget Xt OpenAppl i cati on(app_cont ext _return, application_cl ass,
options, numoptions, argc_in_out, argv_in_out, fallback_resources,
wi dget _cl ass, args, num.args);

39

Widget Instantiation

app_context_return
application_class
options
num_options
argc_in_out
argv_in_out

fallback resources

widget_class

args

num_args

The Xt OpenApplication

Returns the application context, if non-NULL.

Specifies the class name of the application.

Specifies the command line options table.

Specifies the number of entriesin options.

Specifies a pointer to the number of command line arguments.
Specifies apointer to the command line arguments.

Specifiesresourcevauesto be used if the application classresource
file cannot be opened or read, or NULL.

Specifies the class of the widget to be created. Must be
shellWidgetClass or a subclass.

Specifies the argument list to override any other resource
specifications for the created shell widget.

Specifies the number of entriesin the argument list.

function calls XtToolkitlnitialize followed by

Xt Creat eAppl i cati onCont ext, then cals Xt OpenDi spl ay with display_string NULL and
application_name NULL, and finally cals Xt AppCr eat eShel | with name NULL, the specified
widget_class, an argument list and count, and returns the created shell. The recommended widget_classis
sessi onShel | W dget O ass. Theargument list and count are created by merging the specified args
and num_args with a list containing the specified argc and argv. The modified argc and argv returned
by Xt Di spl ayl nitialize arereturned in argc_in_out and argv_in_out. If app_context_return is
not NULL, the created application context is also returned. If the display specified by the command line
cannot be opened, an error message isissued and Xt OpenAppl i cat i on terminates the application. If
fallback resourcesis non-NULL, Xt AppSet Fal | backResour ces is caled with the value prior to
caling Xt OpenDi spl ay.

W dget Xt VaOpenAppl i cati on(app_context _return, application_cl ass,
options, numoptions, argc_in_out, argv_in_out, fallback_resources,
wi dget _cl ass,);

app_context_return
application_class
options
num_options
argc_in_out
argv_in_out

fallback resources

widget_class

Returns the application context, if non-NULL.

Specifies the class name of the application.

Specifies the command line options table.

Specifies the number of entriesin options.

Specifies a pointer to the number of command line arguments.
Specifies the command line arguments array.

Specifiesresourcevaluesto be used if the application classresource
file cannot be opened, or NULL.

Specifies the class of the widget to be created. Must be
shellWidgetClass or a subclass.

40

Widget Instantiation

Specifies the variable argument list to override any other resource
specifications for the created shell.

The Xt VaOpenAppl i cat i on procedure isidentical in function to Xt OpenAppl i cat i on with the
args and num_args parameters replaced by avarargs list, as described in Section 2.5.1.

Widget Instance Allocation: The allocate Procedure

A widget class may optionally provide an instance allocation procedure in the
nj ect A assExt ensi on record.

When the call to create awidget includesavarargslist containing Xt VaTypedAr g, these arguments will
be passed to the allocation procedure in an Xt TypedAr gLi st .

typedef struct {

String nane;

String type;

Xt ArgVal val ue;

int size;

} Xt TypedArg, *XtTypedArgLi st;

The adlocate procedure pointer in the Objectd assExtension record is of type
(*Xt Al'l ocat eProc).

t ypedef voi d (* Xt Al'l ocat eProc) (w dget _cl ass, constraint_si ze,
nore_bytes, args, num.args, typed args, numtyped _args, new_return,
nore_bytes_return);

widget_class Specifies the widget class of the instance to allocate.

constraint_size Specifies the size of the constraint record to allocate, or O.

more_bytes Specifies the number of auxiliary bytes of memory to allocate.

args Specifies the argument list as given in the call to create the widget.

num_args Specifies the number of arguments.

typed _args Specifies the list of typed arguments given in the call to create the
widget.

num_typed_args Specifies the number of typed arguments.

new_return Returns a pointer to the newly allocated instance, or NULL in case
of error.

more_bytes return Returns the auxiliary memory if it was requested, or NULL if

reguested and an error occurred; otherwise, unchanged.

At widget alocation time, if an extension record with record type equal to NULLQUARK is
located through the object class part extension field and the allocate field is not NULL, the
(*Xt Al'l ocat eProc) will be invoked to alocate memory for the widget. If no ObjectClassPart
extension record is declared with record_type equal to NULLQUARK, then Xt | nheri t Al | ocat e
and Xt | nheri t Deal | ocat e areassumed. If no (* Xt Al | ocat ePr oc) isfound, the Intrinsics will
allocate memory for the widget.

41

Widget Instantiation

An(*Xt Al | ocat ePr oc) must perform the following:

* Allocate memory for the widget instance and return it in new_return. The memory must be at least wc-
>core_class.widget_size bytesin length, double-word aligned.

* Initialize the core.constraints field in the instance record to NULL or to point to a constraint record.
If constraint_size is not 0, the procedure must allocate memory for the constraint record. The memory
must be double-word aligned.

» If more_bytesisnot O, then the address of a block of memory at least more_bytesin size, double-word
aligned, must be returned in the more_bytes return parameter, or NULL to indicate an error.

A class alocation procedure that envelops the allocation procedure of a superclass must rely on the
enveloped procedure to perform the instance and constraint allocation. Allocation procedures should
refrain from initializing fields in the widget record except to store pointers to newly allocated additional
memory. Under no circumstances should an allocation procedure that envelopes its superclass allocation
procedure modify fieldsin the instance part of any superclass.

Widget Instance Initialization: The initialize Procedure

Theinitialize procedure pointer in awidget classisof type (* Xt I ni t Proc) .
typedef void (*XtlnitProc)(request, new, args, num.args);

request Specifies a copy of the widget with resource values as requested by the
argument list, the resource database, and the widget defaults.

new Specifies the widget with the new values, both resource and nonresource,
that are actually allowed.

args Specifies the argument list passed by the client, for computing derived
resource values. If the client created the widget using a varargs form,
any resources specified viaXt VaTypedAr g are converted to the widget
representation and the list is transformed into the Ar gLi st format.

num args Specifies the number of entries in the argument list.
An initialization procedure performs the following:

« Allocates space for and copies any resources referenced by address that the client is allowed to free or
modify after the widget has been created. For example, if awidget hasafieldthatisaSt ri ng, it may
choose not to depend on the characters at that address remaining constant but dynamically all ocate space
for the string and copy it to the new space. Widgets that do not copy one or more resources referenced
by address should clearly so state in their user documentation.

Note

It is not necessary to allocate space for or to copy callback lists.
» Computes values for unspecified resource fields. For example, if width and height are zero, the widget
should compute an appropriate width and height based on its other resources.

Note

A widget may directly assign only its own width and height within the initialize,
initialize_hook, set values, and set values hook procedures, see Chapter 6, Geometry
Management.

42

Widget Instantiation

» Computesvaluesfor uninitialized nonresourcefieldsthat are derived from resourcefields. For example,
graphics contexts (GCs) that the widget uses are derived from resources like background, foreground,
and font.

An initialization procedure also can check certain fields for internal consistency. For example, it makes
no sense to specify a colormap for a depth that does not support that colormap.

Initialization procedures are called in superclass-to-subclass order after all fields specified in the resource
lists have been initialized. The initialize procedure does not need to examine args and num _args if all
public resources are declared in the resource list. Most of theinitialization code for a specific widget class
deals with fields defined in that class and not with fields defined in its superclasses.

If asubclass does not need an initialization procedure because it does not need to perform any of the above
operations, it can specify NULL for the initialize field in the class record.

Sometimes a subclass may want to overwrite values filled in by its superclass. In particular, size
calculations of a superclass often are incorrect for a subclass, and in this case, the subclass must modify
or recalculate fields declared and computed by its superclass.

As an example, a subclass can visually surround its superclass display. In this case, the width and height
calculated by the superclass initialize procedure are too small and need to be incremented by the size of
the surround. The subclass needs to know if its superclass's size was calculated by the superclass or was
specified explicitly. All widgets must place themselves into whatever size is explicitly given, but they
should compute areasonable size if no size is requested.

The request and new arguments provide the necessary information for a subclass to determine the
difference between an explicitly specified field and afield computed by a superclass. The request widget
isacopy of the widget as initialized by the arglist and resource database. The new widget starts with the
values in the request, but it has been updated by all superclass initialization procedures called so far. A
subclass initialize procedure can compare these two to resolve any potential conflicts.

In the above example, the subclass with the visual surround can seeif the width and height in the request
widget are zero. If so, it adds its surround size to the width and height fields in the new widget. If not, it
must make do with the size originally specified.

The new widget will become the actual widget instance record. Therefore, the initialization procedure
should do all its work on the new widget; the request widget should never be modified. If the initialize
procedure needsto call any routines that operate on awidget, it should specify new asthe widget instance.

Constraint Instance Initialization: The
ConstraintClassPart initialize Procedure

The constraint initialization procedure pointer, found in the Const r ai nt Cl assPart initialize field
of the widget class record, is of type (* Xt | ni t Proc) . The values passed to the parent constraint
initialization procedures are the same as those passed to the child's class widget initialization procedures.

The constraints field of the request widget points to a copy of the constraints record as initialized by the
arglist and resource database.

The constraint initialization procedure should compute any constraint fields derived from constraint
resources. It can make further changesto the new widget to make the widget and any other constraint fields
conform to the specified constraints, for example, changing the widget's size or position.

If aconstraint class doesnot need aconstraint initialization procedure, it can specify NULL for theinitialize
field of the Const r ai nt Cl assPart inthe classrecord.

43

Widget Instantiation

Nonwidget Data Initialization: The initialize_hook
Procedure

Note

The initialize_hook procedure is obsolete, as the same information is now available to the
initialize procedure. The procedure has been retained for those widgets that used it in previous
releases.

Theinitialize_hook procedure pointer is of type (* Xt Ar gsProc) :
typedef void (*XtArgsProc)(w, args, numargs);
w Specifies the widget.

args Specifies the argument list passed by the client. If the client
created the widget using a varargs form, any resources specified via
Xt VaTypedAr g are converted to the widget representation and the list
istransformed into the Ar gLi st format.

num args Specifies the number of entries in the argument list.

If this procedure is not NULL, it is called immediately after the corresponding initialize procedure or in
its placeif theinitializefieldisNULL.

The initialize_hook procedure allows a widget instance to initialize nonresource data using information
from the specified argument list asif it were aresource.

Realizing Widgets
Torealize awidget instance, use Xt Real i zeW dget .
voi d Xt Real i zeW dget (w);
w Specifies the widget. Must be of class Core or any subclass thereof.

If the widget is already realized, Xt Real i zeW dget simply returns. Otherwise it performs the
following:

» Binds all action names in the widget's trandation table to procedures (see the section called “Action
Names to Procedure Trandations’).

» Makes apostorder traversal of the widget tree rooted at the specified widget and calls each non-NULL
change_managed procedure of all composite widgets that have one or more managed children.

» Constructsan XSet W ndowAt t ri but es structure filled in with information derived from the Core
widget fields and calls the realize procedure for the widget, which adds any widget-specific attributes
and creates the X window.

« If the widget is not a subclass of conposi t eW dget C ass, Xt Real i zeW dget returns;
otherwise it continues and performs the following:

« Descends recursively to each of the widget's managed children and calls the realize procedures.
Primitive widgets that instantiate children are responsible for realizing those children themselves.

* Maps all of the managed children windows that have mapped when_managed Tr ue. If a widget
is managed but mapped when_managed is Fal se, the widget is allocated visual space but is not

displayed.

Widget Instantiation

If the widget is atop-level shell widget (that is, it has no parent), and mapped when _managed is Tr ue,
Xt Real i zeW dget maps the widget window.

Xt Creat eW dget, XtVaCreateWdget, XtRealizeWdget, XtManageChil dren,
Xt UnmanageChi | dr en, Xt Unreal i zeW dget , Xt Set MappedWhenManaged, and
Xt Dest r oyW dget maintain the following invariants:

« If acomposite widget isrealized, then all its managed children are realized.
« If acompositewidget isrealized, then all its managed children that have mapped when_managed Tr ue
are mapped.

All Intrinsics functions and all widget routines should accept either realized or unrealized widgets.
When calling the realize or change managed procedures for children of a composite widget,
Xt Real i zeW dget calls the procedures in reverse order of appearance in the Conposi t ePart
children list. By default, this ordering of the realize procedures will result in the stacking order of any
newly created subwindows being top-to-bottom in the order of appearance onthelist, and the most recently
created child will be at the bottom.

To check whether or not awidget has been realized, use Xt | sReal i zed.

Bool ean XtlsRealized(w);

w Specifies the widget. Must be of class Object or any subclass thereof.

The Xt | sReal i zed function returns Tr ue if the widget has been realized, that is, if the widget has
a nonzero window ID. If the specified object is not a widget, the state of the nearest widget ancestor is

returned.

Some widget procedures (for example, set_values) might wish to operate differently after the widget has
been realized.

Widget Instance Window Creation: The realize
Procedure

The redlize procedure pointer in awidget classis of type (* Xt Real i zePr oc) .

typedef void (*XtRealizeProc)(w, value_mask, attributes);

w Specifies the widget.
value_mask Specifies which fieldsin the attributes structure are used.
attributes Specifies the window attributes to use in the XCr eat eW ndow call.

The realize procedure must create the widget's window.

Before calling the class reaize procedure, the generic Xt Real i zeW dget function fills in a mask
and a corresponding XSet W ndowAt t ri but es structure. It sets the following fields in attributes and
corresponding bitsin value_mask based on information in the widget core structure:

» The background_pixmap (or background_pixel if background_pixmapis Xt Unspeci f i edPi xmap)
isfilled in from the corresponding field.

e Theborder_pixmap (or border_pixel if border_pixmapisXt Unspeci fi edPi xmap) isfilledinfrom
the corresponding field.

e Thecolormap isfilled in from the corresponding field.

45

Widget Instantiation

e The event_mask is filled in based on the event handlers registered, the event translations specified,
whether the expose field isnon-NULL, and whether visible interest is Tr ue.
» Thebit_gravityissetto Nort hWest Gravi ty if the expose field isNULL.

These or any other fields in attributes and the corresponding bits in value_mask can be set by the realize
procedure.

Note that because realize is not a chained operation, the widget class realize procedure must update the
XSet W ndowAt t ri but es structure with all the appropriate fields from non-Core superclasses.

A widget class can inherit its redlize procedure from its superclass during class initialization.
The realize procedure defined for cor eW dget Cl ass cals Xt Cr eat eW ndow with the passed
value mask and attributes and with window _class and visual set to CopyFr onPar ent. Both
conposi t eW dget Cl ass andconst r ai nt W dget O ass inherit thisrealize procedure, and most
new widget subclasses can do the same (see the section called “Inheritance of Superclass Operations’).

The most common noninherited realize procedures set bit_gravity in the mask and attributes to the
appropriate value and then create the window. For example, depending on its justification, Label might
set bit_gravity to West Gravity, Center Gravi ty, or East Gravi t y. Consequently, shrinking it
would just move the bits appropriately, and no exposure event is needed for repainting.

If a composite widget's children should be realized in an order other than that specified (to control the
stacking order, for example), it should call Xt Real i zeW dget on its children itself in the appropriate
order from within its own realize procedure.

Widgets that have children and whose class is not a subclass of conposi t eW dget Cl ass are
responsiblefor calling Xt Real i zeW dget on their children, usually from within the realize procedure.

Realize procedures cannot manage or unmanage their descendants.

Window Creation Convenience Routine

Rather than call the Xlib XCr eat eW ndow function explicitly, arealize procedure should normally call
the Intrinsics analog Xt Cr eat eW ndow, which simplifies the creation of windows for widgets.

voi d Xt Creat eW ndow(w, wi ndow cl ass, visual, value_nmask, attributes);

w Specifies the widget that defines the additional window attributed.
Must be of class Core or any subclass thereof.

window_class Specifies the Xlib window class (for example, | nput Qut put ,
I nput Onl y, or CopyFr onPar ent).

visual Specifies the visual type (usualy CopyFr onParent).

value_mask Specifies which fieldsin the attributes structure are used.

attributes Specifies the window attributes to use in the XCr eat eW ndow
call.

The Xt Cr eat eW ndowfunction callsthe Xlib XCr eat eW ndowfunction with values from the widget
structure and the passed parameters. Then, it assigns the created window to the widget's window field.

Xt Cr eat eW ndow evaluates the following fields of the widget core structure: depth, screen, parent-
>core.window, X, y, width, height, and border_width.

46

Widget Instantiation

Obtaining Window Information from a Widget

The Core widget class definition contains the screen and window ids. The window field may be NULL for
awhile (see the section called “Creating Widgets’ and the section called “ Realizing Widgets”).

The display pointer, the parent widget, screen pointer, and window of awidget are available to the widget
writer by means of macros and to the application writer by means of functions.

Display * XtDisplay(w;

w Specifies the widget. Must be of class Core or any subclass thereof.
Xt Di spl ay returnsthe display pointer for the specified widget.

W dget Xt Parent(w);

w Specifies the widget. Must be of class Object or any subclass thereof.

Xt Par ent returns the parent object for the specified widget. The returned object will be of class Object
or asubclass.

Screen *Xt Screen(w);

w Specifies the widget. Must be of class Core or any subclass thereof.

Xt Scr een returns the screen pointer for the specified widget.

W ndow Xt W ndow(w) ;

w Specifies the widget. Must be of class Core or any subclass thereof.

Xt W ndow returns the window of the specified widget.

The display pointer, screen pointer, and window of a widget or of the closest widget ancestor of
a nonwidget object are available by means of Xt Di spl ayOf Cbj ect, Xt Scr eenOf Cbj ect , and
Xt W ndowOf Qbj ect .

Di splay *XtDi spl ayOr Obj ect (w) ;

object Specifies the object. Must be of class Object or any subclass thereof.

Xt Di spl ayOf Obj ect isidentical in function to Xt Di spl ay if the object is a widget; otherwise
Xt Di spl ayOf Obj ect returns the display pointer for the nearest ancestor of object that is of class
Widget or a subclass thereof.

Screen *Xt ScreenO™ Obj ect (obj ect) ;

object Specifies the object. Must be of class Object or any subclass thereof.

Xt ScreenOf Qbj ect is identical in function to Xt Scr een if the object is a widget; otherwise
Xt Scr eenOf Qbj ect returnsthe screen pointer for the nearest ancestor of object that is of class Widget
or a subclass thereof.

W ndow Xt W ndowCf Chj ect (obj ect) ;

object Specifies the object. Must be of class Object or any subclass thereof.

47

Widget Instantiation

Xt W ndowCf Qbj ect is identical in function to Xt W ndow if the object is a widget; otherwise
Xt W ndowCf Qbj ect returns the window for the nearest ancestor of object that is of class Widget or
a subclass thereof.

To retrieve the instance name of an object, use Xt Nane.
String XtName(object);

object Specifies the object whose name is desired. Must be of class Object or any
subclass thereof.

Xt Nane returns a pointer to the instance name of the specified object. The storage is owned by the
Intrinsics and must not be modified. The nameisnot qualified by the names of any of the object's ancestors.

Several window attributes are locally cached in the widget instance. Thus, they can be set by the
resource manager and Xt Set Val ues as well as used by routines that derive structures from these
values (for example, depth for deriving pixmaps, background_pixel for deriving GCs, and so on) or in the
Xt Cr eat eW ndowcall.

The x, y, width, height, and border_width window attributes are available to geometry managers. These
fields are maintained synchronously inside the Intrinsics. When an XConf i gur eW ndow s issued by
the Intrinsics on the widget's window (on request of its parent), these values are updated immediately
rather than some time later when the server generates a Conf i gur eNoti fy event. (In fact, most
widgets do not select Subst ruct ur eNot i fy events.) This ensures that all geometry calculations are
based on the internally consistent toolkit world rather than on either an inconsistent world updated by
asynchronous Conf i gur eNot i fy eventsor aconsistent, but slow, world in which geometry managers
ask the server for window sizes whenever they need to lay out their managed children (see Chapter 6,
Geometry Management).

Unrealizing Widgets

To destroy the windows associated with a widget and its non-pop-up descendants, use
Xt Unreal i zeW dget .

voi d Xt UnrealizeWdget(w;
w Specifies the widget. Must be of class Core or any subclass thereof.

If the widget is currently unrealized, Xt Unr eal i zeW dget simply returns. Otherwise it performs the
following:

» Unmanages the widget if the widget is managed.

» Makes a postorder (child-to-parent) traversal of the widget tree rooted at the specified widget and,
for each widget that has declared a callback list resource named “unrealizeCallback”, executes the
procedures on the XtNunrealizeCallback list.

 Destroys the widget's window and any subwindows by calling XDest r oyW ndow with the specified
widget's window field.

Any events in the queue or which arrive following acall to Xt Unr eal i zeW dget will be dispatched
asif the window(s) of the unrealized widget(s) had never existed.

Destroying Widgets

The Intrinsics provide support

48

Widget Instantiation

» To destroy al the pop-up children of the widget being destroyed and destroy all children of composite
widgets.

To remove (and unmap) the widget from its parent.

To call the callback procedures that have been registered to trigger when the widget is destroyed.

To minimize the number of things awidget has to deallocate when destroyed.

To minimize the number of XDest r oyW ndow calls when destroying a widget tree.

To destroy awidget instance, use Xt Dest r oyW dget .
voi d Xt DestroyW dget (w);
w Specifies the widget. Must be of class Object or any subclass thereof.

The Xt Dest r oyW dget function provides the only method of destroying a widget, including widgets
that need to destroy themselves. It can be called at any time, including from an application callback
routine of the widget being destroyed. Thisrequires atwo-phase destroy processin order to avoid dangling
references to destroyed widgets.

In phase 1, Xt Dest r oyW dget performs the following:

« If the being_destroyed field of the widget is Tr ue, it returnsimmediately.

» Recursively descends the widget tree and sets the being_destroyed field to Tr ue for the widget and all
normal and pop-up children.

» Addsthe widget to alist of widgets (the destroy list) that should be destroyed when it is safe to do so.

Entries on the destroy list satisfy the invariant that if w2 occurs after w1l on the destroy list, then w2 is not
a descendent, either normal or pop-up, of wi.

Phase 2 occurs when all procedures that should execute as a result of the current event have been called,
including all procedures registered with the event and translation managers, that is, when the current
invocation of Xt Di spat chEvent isabout to return, or immediately if not in Xt Di spat chEvent .

In phase 2, Xt Dest r oyW dget performs the following on each entry in the destroy list in the order
specified:

« If thewidget isnot apop-up child and the widget's parent isa subclass of conposi t eW dget d ass,
and if the parent is not being destroyed, it calls Xt UnmanageChi | d on the widget and then calls the
widget's parent's delete_child procedure (see the section called “ Deletion of Children: The delete_child
Procedure”).

 Cadllsthe destroy callback procedures registered on the widget and all normal and pop-up descendants
in postorder (it calls child callbacks before parent callbacks).

The Xt Dest r oyW dget function then makes second traversal of the widget and all normal and pop-up
descendants to perform the following three items on each widget in postorder:

e If the widget is not a pop-up child and the widget's parent is a subclass of
const rai nt Wdget d ass, it cdls the Constrai nt O assPart destroy procedure for the
parent, then for the parent's superclass, until finally it calls the Const r ai nt O assPart destroy
procedure for const r ai nt W dget d ass.

e CadlstheCor eC assPart destroy procedure declared in the widget class, then the destroy procedure
declared inits superclass, until finaly it callsthe destroy procedure declared in the Object class record.
Callback lists are deallocated.

« If the widget class object class part contains an Cbj ect C assExt ensi on record with the
record type NULLQUARK and the deallocate field is not NULL, calls the deallocate procedure to
deallocate the instance and if one exists, the constraint record. Otherwise, the Intrinsics will deallocate
the widget instance record and if one exists, the constraint record.

49

Widget Instantiation

e Calls XDest r oyW ndow if the specified widget is realized (that is, has an X window). The server
recursively destroys all normal descendant windows. (Windows of realized pop-up Shell children, and
their descendants, are destroyed by a shell class destroy procedure.)

Adding and Removing Destroy Callbacks

When an application needs to perform additional processing during the destruction of a widget, it
should register a destroy callback procedure for the widget. The destroy callback procedures use the
mechanism described in Chapter 8, Callbacks. The destroy callback list isidentified by the resource name
XtNdestroyCallback.

For example, the following adds an application-supplied destroy callback procedure ClientDestroy with
client datato awidget by calling Xt AddCal | back.

Xt AddCal | back(w, XtNdestroyCall back, dientDestroy, client_data)

Similarly, the following removes the application-supplied destroy callback procedure ClientDestroy by
caling Xt RenovecCal | back.

Xt RenoveCal | back(w, XtNdestroyCall back, dientDestroy, client_data)

The ClientDestroy argument is of type (* Xt Cal | backPr oc) ; see the section called “Using Callback
Procedure and Callback List Definitions”.

Dynamic Data Deallocation: The destroy Procedure

The destroy procedure pointers in the Objectd assPart, Rect Cbjd assPart, and
Cor eC assPart structuresare of type Xt W dget Pr oc.

t ypedef void XtWdgetProc(w);
w Specifies the widget being destroyed.

The destroy procedures are called in subclass-to-superclass order. Therefore, awidget's destroy procedure
should deallocate only storage that is specific to the subclass and should ignore the storage allocated by
any of its superclasses. The destroy procedure should deallocate only resources that have been explicitly
created by the subclass. Any resource that was obtained from the resource database or passed in an
argument list was not created by the widget and therefore should not be destroyed by it. If awidget does
not need to deall ocate any storage, the destroy procedure entry in its class record can be NULL.

Deallocating storage includes, but is not limited to, the following steps:

» Cadling Xt Fr ee on dynamic storage allocated with Xt Mal | oc, Xt Cal | oc, and so on.

» Cdling XFr eePi xmap on pixmaps created with direct X calls.

» Caling Xt Rel easeGC on GCs allocated with Xt Get GC.

» Caling XFr eeGC on GCs allocated with direct X calls.

» Cdling Xt RenpveEvent Handl er on event handlers added to other widgets.

» Cdling Xt RenoveTi meQut on timers created with Xt AppAddTi meCut .

e Cadling Xt Dest r oyW dget for each child if the widget has children and is not a subclass of
conposi t eW dget C ass.

During destroy phase 2 for each widget, the Intrinsics remove the widget from the modal cascade,
unregister all event handlers, remove al key, keyboard, button, and pointer grabs and remove al callback
procedures registered on the widget. Any outstanding selection transfers will time out.

50

Widget Instantiation

Dynamic Constraint Data Deallocation: The
ConstraintClassPart destroy Procedure

The constraint destroy procedure identified in the ConstraintC assPart
const rai nt W dget O ass. This constraint destroy procedure pointer is of type Xt W dget Pr oc.
The constraint destroy procedures are called in subclass-to-superclass order, starting at the class of the
widget's parent and ending at const r ai nt W dget Cl ass. Therefore, a parent's constraint destroy
procedure should deall ocate only storage that is specific to the constraint subclass and not storage allocated
by any of its superclasses.

If a parent does not need to deallocate any constraint storage, the constraint destroy procedure entry in
its class record can be NULL.

Widget Instance Deallocation: The deallocate Procedure

The dedlocate procedure pointer in the Obj ect d assExtension record is of type
Xt Deal | ocat eProc.

t ypedef void (*XtDeal |l ocateProc)(w dget, nore_ bytes);
widget Specifies the widget being destroyed.

more_bytes Specifies the auxiliary memory received from the corresponding
alocator along with the widget, or NULL.

When a widget is destroyed, if an Obj ect O assExt ensi on record exists in the object class
part extension field with record type NULLQUARK and the deallocate field is not NULL, the
Xt Deal | ocat ePr oc will becalled. If no ObjectClassPart extension record isdeclared withrecord_type
equal to NULLQUARK, then Xt | nheri t Al | ocat e and Xt | nheri t Deal | ocat e are assumed.
The responsibilities of the deallocate procedure are to deallocate the memory specified by more_bytes if
itisnot NULL, to deallocate the constraints record as specified by the widget's core.constraints field if it
isnot NULL, and to deallocate the widget instance itself.

If no Xt Deal | ocat ePr oc isfound, it is assumed that the Intrinsics originally allocated the memory
and isresponsible for freeing it.

Exiting from an Application

All X Toolkit applications should terminate by calling Xt Dest r oy Appl i cat i onCont ext and then
exiting using the standard method for their operating system (typically, by callingexi t for POSIX-based
systems). The quickest way to make the windows disappear while exiting isto call Xt UnnapW dget on
each top-level shell widget. The Intrinsics have no resources beyond those in the program image, and the
X server will free its resources when its connection to the application is broken.

Depending upon the widget set in use, it may be necessary to explicitly destroy individual widgets or
widget trees with Xt Dest r oyW dget before calling Xt Dest r oyAppl i cat i onCont ext in order
to ensurethat any required widget cleanupisproperly executed. The application devel oper must refer to the
widget documentation to learn if awidget needs to perform cleanup beyond that performed automatically
by the operating system. If the client isasession participant (seethe section called “ Session Participation”),
then the client may wish to resign from the session before exiting. See the section called “Resigning from
a Session” for details.

51

Chapter 3. Composite Widgets and
Their Children

Composite widgets (widgets whose class is a subclass of conposi t eW dget Cl ass) can have an
arbitrary number of children. Consequently, they are responsible for much more than primitive widgets.
Their responsibilities (either implemented directly by the widget class or indirectly by Intrinsics functions)
include:

» Overall management of children from creation to destruction.

 Destruction of descendants when the composite widget is destroyed.

 Physical arrangement (geometry management) of a displayable subset of children (that is, the managed
children).

» Mapping and unmapping of a subset of the managed children.

Overall management is handled by the generic procedures Xt Creat eW dget and
Xt DestroyW dget . Xt Creat eW dget adds children to their parent by calling the parent's
insert_child procedure. Xt Dest r oyW dget removes children from their parent by calling the parent's
delete_child procedure and ensures that all children of a destroyed composite widget also get destroyed.

Only a subset of the total number of children is actually managed by the geometry manager and hence
possibly visible. For example, acomposite editor widget supporting multiple editing buffersmight allocate
one child widget for each file buffer, but it might display only a small number of the existing buffers.
Widgets that are in this displayable subset are called managed widgets and enter into geometry manager
calculations. The other children are called unmanaged widgets and, by definition, are not mapped by the
Intrinsics.

Children are added to and removed from their parent's managed set by using
Xt ManageChi | d, Xt ManageChi | dren, Xt UnmanageChi | d, Xt UnnmanageChi | dr en, and
Xt ChangeManagedSet , which notify the parent to recalculate the physical layout of its children
by calling the parent's change_managed procedure. The Xt Cr eat eManagedW dget convenience
function calls Xt Cr eat eW dget and Xt ManageChi | d on the resullt.

Most managed children are mapped, but some widgets can be in a state where they take up physical space
but do not show anything. Managed widgets are not mapped automatically if their map when _managed
fieldisFal se. Thedefaultis Tr ue and is changed by using Xt Set MappedWhenManaged.

Each composite widget class declares a geometry manager, which is responsible for figuring out where
the managed children should appear within the composite widget's window. Geometry management
techniques fall into four classes:

Fixed boxes Fixed boxeshave afixed number of children created by the parent. All these
children are managed, and none ever makes geometry manager requests.

Homogeneous boxes Homogeneous boxestreat all children equally and apply the same geometry
constraints to each child. Many clients insert and delete widgets freely.

Heterogeneous boxes Heterogeneous boxes have a specific location where each child is placed.
Thislocation usually isnot specified in pixels, because the window may be
resized, but is expressed rather in terms of the relationship between a child
and the parent or between the child and other specific children. The class
of heterogeneous boxesis usually a subclass of Constraint.

Shell boxes Shell boxes typically have only one child, and the child's size is usually
exactly the size of the shell. The geometry manager must communicate

52

Composite Widgets
and Their Children

with the window manager, if it exists, and the box must also accept
Confi gureNoti fy events when the window size is changed by the
window manager.

Addition of Children to a Composite Widget:
The insert_child Procedure

To add a child to the parent's list of children, the Xt Cr eat eW dget function calls the parent's class
routineinsert_child. Theinsert_child procedure pointer in acompositewidget isof type Xt W dget Pr oc.

typedef void (*XtWdgetProc)(w;
w Passes the newly created child.

Most composite widgets inherit their superclasss operation. The insert child routine in
ConpositeWdgetClass calls the insert_position procedure andinsertsthe child
at the specified position in the children list, expanding it if necessary.

Some composite widgets define their owninsert_child routine so that they can order their children in some
convenient way, create companion controller widgets for a new widget, or limit the number or class of
their child widgets. A composite widget class that wishes to allow nonwidget children (see Chapter 12,
Nonwidget Objects) must specify aConposi t eCl assExt ensi on extension record asdescribed in the
section called “ CompositeClassPart Structure” and set the accepts objectsfield in thisrecord to Tr ue. If
the Conposi t eCl assExt ensi on record is not specified or the accepts objects field is Fal se, the
composite widget can assume that all its children are of a subclass of Core without an explicit subclass
test in theinsert_child procedure.

If there is not enough room to insert a new child in the children array (that is, num_children is equal
to num_slots), the insert_child procedure must first reallocate the array and update num slots. The
insert_child procedure then places the child at the appropriate position in the array and increments the
num_children field.

Insertion Order of Children: The
Insert_position Procedure

Instances of composite widgets sometimes need to specify more about the order in which their children
are kept. For example, an application may want a set of command buttons in some logical order grouped
by function, and it may want buttons that represent file names to be kept in aphabetical order without
constraining the order in which the buttons are created.

An application controls the presentation order of a set of children by supplying an XtNinsertPosition
resource. The insert_position procedure pointer in a composite widget instance is of type
(*Xt O der Proc).

typedef Cardinal (*XtOrderProc)(w;
w Passes the newly created widget.

Composite widgets that allow clients to order their children (usually homogeneous boxes) can call their
widget instance's insert_position procedure from the class's insert_child procedure to determine where a
new child should go inits children array. Thus, a client using acomposite class can apply different sorting
criteriato widget instances of the class, passing in a different insert_position procedure resource when it
creates each composite widget instance.

53

Composite Widgets
and Their Children

Thereturnvalue of theinsert_position procedureindicates how many children should go beforethewidget.
Returning zero indicates that the widget should go before all other children, and returning num_children
indicatesthat it should go after all other children. Thedefault insert_position function returnsnum_children
and can be overridden by a specific composite widget's resource list or by the argument list provided when
the composite widget is created.

Deletion of Children: The delete_child
Procedure

To remove the child from the parent's children list, the Xt Dest r oyW dget function eventually causes
acall tothe Composite parent's class delete_child procedure. The delete_child procedure pointer is of type
Xt W dget Proc.

typedef void (*XtWdgetProc)(w;
w Passes the child being deleted.

Most widgets inherit the delete child procedure from their superclass. Composite widgets that create
companion widgets define their own delete_child procedure to remove these companion widgets.

Adding and Removing Children from the
Managed Set

Thelntrinsics provide aset of generic routinesto permit the addition of widgetsto or theremoval of widgets
from a composite widget's managed set. These generic routines eventually call the composite widget's
change_managed procedure if the procedure pointer is non-NULL. The change managed procedure
pointer is of type Xt W dget Pr oc. Thewidget argument specifies the composite widget whose managed
child set has been modified.

Managing Children

Toadd alist of widgetsto the geometry-managed (and hence displayabl e) subset of their Composite parent,
use Xt ManageChi | dr en.

typedef Widget *WidgetList;
voi d Xt ManageChi | dren(children, numchildren);

children Specifiesalist of child widgets. Each child must be of class RectObj
or any subclass thereof.

num_children Specifies the number of childreninthelist.
The Xt ManageChi | dr en function performs the following:

* Issues an error if the children do not all have the same parent or if the parent's class is not a subclass
of conmposi t eW dget Cl ass.

» Returnsimmediately if the common parent is being destroyed; otherwise, for each unique child on the
list, Xt ManageChi | dr en ignoresthe child if it already is managed or is being destroyed, and marks
itif not.

« If the parent is realized and after all children have been marked, it makes some of the newly managed
children viewable:

Composite Widgets
and Their Children

» Callsthe change _managed routine of the widgets' parent.
e CallsXt Real i zeW dget on each previously unmanaged child that is unrealized.
» Maps each previously unmanaged child that has map_when _managed Tr ue.

Managing children is independent of the ordering of children and independent of creating and deleting
children. The layout routine of the parent should consider children whose managed field is Tr ue
and should ignore all other children. Note that some composite widgets, especialy fixed boxes, call
Xt ManageChi | d from their insert_child procedure.

If the parent widget isrealized, its change_managed procedure is called to notify it that its set of managed
children has changed. The parent can reposition and resize any of its children. It moves each child as needed
by calling Xt MoveW dget , which first updates the x and y fields and which then calls XMoveW ndow.

If the composite widget wishes to change the size or border width of any of its children,
it cals Xt Resi zeW dget, which first updates the width, height, and border_width fields and
then cals XConfi gur eW ndow. Simultaneous repositioning and resizing may be done with
Xt Confi gur eW dget ; seethe section called “Widget Placement and Sizing”.

To add asingle child to its parent widget's set of managed children, use Xt ManageChi | d.

voi d Xt ManageChi | d(chil d);

child Specifies the child. Must be of class RectObj or any subclass thereof.

TheXt ManageChi | d functionconstructsaW dget Li st of length 1and calls Xt ManageChi | dr en.

To create and manage a child widget in a single procedure, use Xt Cr eat eManagedW dget or
Xt VaCr eat eManagedW dget .

W dget Xt Cr eat eManagedW dget (nane, wi dget _cl ass, par ent, args,
num ar gs) ;

name Specifies the resource instance name for the created widget.
widget_class Specifies the widget class pointer for the created widget. (rC
parent Specifies the parent widget. Must be of class Composite or any

subclass thereof.

args Specifies the argument list to override any other resource
specifications.
num args Specifies the number of entries in the argument list.

The Xt Cr eat eManagedW dget function isaconvenience routine that cals Xt Cr eat eW dget and
Xt ManageChi | d.

W dget Xt VaCreat eManagedW dget (nanme, wi dget _cl ass, parent,);

name Specifies the resource instance name for the created widget.
widget_class Specifies the widget class pointer for the created widget. (rC
parent Specifies the parent widget. Must be of class Composite or any

subclass thereof.

Specifies the variable argument list to override any other resource
specifications.

55

Composite Widgets
and Their Children

Xt VaCr eat eManagedW dget isidentical infunctionto Xt Cr eat eManagedW dget withtheargs
and num_args parameters replaced by avarargs list, as described in Section 2.5.1.

Unmanaging Children

Toremove alist of children from a parent widget's managed list, use Xt UnmanageChi | dr en.
voi d Xt UnmanageChi |l dren(children, numchildren);

children Specifiesalist of child widgets. Each child must be of class RectObj
or any subclass thereof.

num_children Specifies the number of children.
The Xt UnmanageChi | dr en function performs the following:

» Returnsimmediately if the common parent is being destroyed.

* Issues an error if the children do not all have the same parent or if the parent is not a subclass of
conposi t eW dget C ass.

» For each unique child on the list, Xt UnmanageChi | dr en ignores the child if it is unmanaged;
otherwise it performs the following:
« Marksthe child as unmanaged.
« If the child isrealized and the map_when_managed field is Tr ue, it is unmapped.

* If the parent isrealized and if any children have become unmanaged, calls the change_managed routine
of the widgets parent.

Xt UnmanageChi | dr en doesnot destroy the child widgets. Removing widgets from a parent's managed
set is often a temporary banishment, and some time later the client may manage the children again. To
destroy widgets entirely, Xt Dest r oyW dget should be called instead; see the section called “Exiting
from an Application”.

To remove asingle child from its parent widget's managed set, use Xt UnmanageChi | d.
voi d Xt UnmanageChi |l d(chil d);
child Specifies the child. Must be of class RectObj or any subclass thereof.

The Xt UnmanageChild function constructs a widget list of length 1 and cals
Xt UnmanageChi | dr en.

These functions are low-level routines that are used by generic composite widget building routines. In
addition, composite widgets can provide widget-specific, high-level convenience procedures.

Bundling Changes to the Managed Set

A client may simultaneously unmanage and manage children with a single call to the Intrinsics. In this
same call the client may provide a callback procedure that can modify the geometries of one or more
children. The composite widget class defines whether this single client call resultsin separate invocations
of the change_managed method, one to unmanage and the other to manage, or in just a single invocation.

To simultaneously remove from and add to the geometry-managed set of children of a composite parent,
use Xt ChangeManagedSet .

voi d Xt ChangeManagedSet (unmanage_chi |l dr en, num unnmanage_chil dren,
do_change _proc, client_data, manage_chil dren, num manage_children);

56

Composite Widgets
and Their Children

unmanage_children Specifies the list of widget children to initially remove from the
managed set.

num_unmanage_children Specifies the number of entriesin the unmanage_children list.

do_change proc Specifies a procedure to invoke between unmanaging and

managing the children, or NULL.

client_data Specifies client data to be passed to the do_change_proc.

manage_children Specifies the list of widget children to finally add to the managed
Set.

num_manage_children Specifies the number of entriesin the manage children list.

The Xt ChangeManagedSet function performs the following:

» Returnsimmediately if num_unmanage children and num _manage children are both O.

* Issuesawarning and returnsif thewidgets specifiedinthemanage_childrenand theunmanage _children
lists do not al have the same parent or if that parent is not a subclass of conposi t eW dget Cl ass.

* Returnsimmediately if the common parent is being destroyed.

e If do change proc is not NULL and the parent's Conposited assExtension
allows _change managed set field isFal se, then Xt ChangeManagedSet performsthe following:

e Calls Xt UnmanageChi | dr en (unmanage_children, num _unmanage_children).

e Callsthedo_change proc.

¢ Calls Xt ManageChi | dr en (manage_children, num_manage children).

» Otherwise, the following is performed:

» For each child on the unmanage children list; if the child is aready unmanaged it is ignored,
otherwise it is marked as unmanaged, and if it isrealized and its map_when_managed fieldis Tr ue,
it is unmapped.

* If do_change _procisnon-NULL, the procedure isinvoked.

 For each child on the manage children list; if the child is already managed or is being destroyed, it
isignored; otherwise it is marked as managed.

« If the parent is realized and after all children have been marked, the change_managed method of
the parent isinvoked, and subsequently some of the newly managed children are made viewable by
calling Xt Real i zeW dget on each previously unmanaged child that is unrealized and mapping
each previously unmanaged child that has map_when _managed Tr ue.

If no ConpositeC assExt ensi on record is found in the parent's composite class part extension
field with record type NULL QUARK and version greater than 1, and if Xt | nher i t ChangeManaged
was specified in the parent's class record during class initidization, the value of the
allows change managed set field is inherited from the superclass. The value inherited from
conposi t eW dget C ass for theallows _change managed set fieldisFal se.

It is not an error to include a child in both the unmanage_children and the manage_children lists. The
effect of such acall isthat the child remains managed following the call, but the do_change proc is able
to affect the child while it isin an unmanaged state.

Thedo_change procis of type Xt DoChangePr oc.

t ypedef voi d * Xt DoChangePr oc(conposite_parent, unmange_chi |l dren,
num unmanage_chi |l dren, manage_chi | dren, num manage_chi | dr en,
client_data);

composite_parent Passes the composite parent whose managed set is being altered.

57

Composite Widgets
and Their Children

unmanage_children Passes the list of children just removed from the managed set.
num_unmanage_children Passes the number of entriesin the unmanage children list.
manage_children Passes the list of children about to be added to the managed set.
num_manage_children Passes the number of entriesin the manage_children list.
client_data Passes the client data passed to Xt ChangeManagedSet .

The do_change proc procedure is used by the caller of Xt ChangeManagedSet to make changes to
one or more children at the point when the managed set contains the fewest entries. These changes may
involve geometry requests, and in this case the caller of Xt ChangeManagedSet may take advantage
of the fact that the Intrinsics internally grant geometry requests made by unmanaged children without
invoking the parent's geometry manager. To achieve this advantage, if the do_change _proc procedure
changes the geometry of a child or of a descendant of a child, then that child should be included in the
unmanage_children and manage _children lists.

Determining if a Widget Is Managed

To determine the managed state of a given child widget, use Xt | sManaged.
Bool ean Xt | sManaged(w);
w Specifies the widget. Must be of class Object or any subclass thereof.

The Xt | sManaged function returns Tr ue if the specified widget is of class RectObj or any subclass
thereof and is managed, or Fal se otherwise.

Controlling When Widgets Get Mapped

A widget is normally mapped if it is managed. However, this behavior can be overridden by
setting the XtNmappedWhenManaged resource for the widget when it is created or by setting the
map_when_managed field to Fal se.

To change the value of agiven widget'smap_when_managed field, use Xt Set MappedWhenManaged.
voi d Xt Set MappedWhenManaged(w, map_when_nanaged) ;
w Specifiesthewidget. Must be of class Core or any subclass thereof.

map_when_managed SpecifiesaBoolean valuethat indicates the new valuethat is stored
into the widget's map_when_managed field.

If the widget is redized and managed, and if map when managed is True,
Xt Set MappedWhenManaged maps the window. If the widget is realized and managed, and if
map_when_managedisFal se, itunmapsthewindow. Xt Set MappedWhenManaged isaconvenience
function that is equivalent to (but dightly faster than) calling Xt Set Val ues and setting the new value
for the XtNmappedWhenM anaged resource then mapping the widget as appropriate. As an aternative to
using Xt Set MappedWhenManaged to control mapping, a client may set mapped when_managed to
Fal se and use Xt MapW dget and Xt UnmapW dget explicitly.

To map awidget explicitly, use Xt MapW dget .

voi d Xt MapW dget (W) ;

58

Composite Widgets
and Their Children

w Specifies the widget. Must be of class Core or any subclass thereof.
To unmap awidget explicitly, use Xt UnmapW dget .
voi d Xt UnmapW dget (W) ;

w Specifies the widget. Must be of class Core or any subclass thereof.

Constrained Composite Widgets

The Constraint widget classis asubclass of conposi t eW dget C ass. The nameis derived from the
fact that constraint widgets may manage the geometry of their children based on constraints associated
with each child. These constraints can be as simple as the maximum width and height the parent will
allow the child to occupy or can be as complicated as how other children should change if this child is
moved or resized. Constraint widgets let a parent define constraints as resources that are supplied for their
children. For example, if the Constraint parent defines the maximum sizesfor its children, these new size
resources are retrieved for each child as if they were resources that were defined by the child widget's
class. Accordingly, constraint resources may be included in the argument list or resourcefile just like any
other resource for the child.

Constraint widgets have all the responsibilities of normal composite widgetsand, in addition, must process
and act upon the constraint information associated with each of their children.

To make it easy for widgets and the Intrinsics to keep track of the constraints associated with a
child, every widget has a constraints field, which is the address of a parent-specific structure that
contains constraint information about the child. If a child's parent does not belong to a subclass of
const r ai nt W dget d ass, then the child's constraints field isNULL.

Subclasses of Constraint can add constraint data to the constraint record defined by their superclass. To
allow this, widget writers should define the constraint records in their private .h file by using the same
conventions as used for widget records. For example, a widget class that needs to maintain a maximum
width and height for each child might defineits constraint record as follows:

typedef struct {
Di mensi on max_wi dt h, max_hei ght;
} MaxConstraint Part;
typedef struct {
MaxConstrai nt Part nax;
} MaxConstrai nt Record, *MaxConstraint;

A subclass of this widget class that also needs to maintain a minimum size would define its constraint
record as follows:

typedef struct {
Di nension min_width, mn_height;
} M nConstraintPart;
typedef struct {
MaxConstrai nt Part max;
M nConstraintPart mn;
} MaxM nConstrai nt Record, *MaxM nConstr ai nt;

Constraints are alocated, initialized, dealocated, and otherwise maintained insofar as possible by
the Intrinsics. The Constraint class record part has several entries that facilitate this. All entries in

59

Composite Widgets
and Their Children

Constrai nt Cl assPart arefieldsand proceduresthat are defined and implemented by the parent, but
they are called whenever actions are performed on the parent's children.

The Xt Cr eat eW dget function uses the constraint_size field in the parent's class record to allocate a
constraint record when a child is created. Xt Cr eat eW dget also uses the constraint resources to fill
in resource fields in the constraint record associated with a child. It then calls the constraint initiaize
procedure so that the parent can compute constraint fields that are derived from constraint resources and
can possibly move or resize the child to conform to the given constraints.

When the Xt Get Val ues and Xt Set Val ues functions are executed on a child, they use the constraint
resources to get the values or set the values of constraints associated with that child. Xt Set Val ues
then calls the constraint set_values procedures so that the parent can recompute derived constraint fields
and move or resize the child as appropriate. If a Constraint widget class or any of its superclasses have
declared aConst r ai nt Cl assExt ensi on recordintheConst r ai nt Cl assPart extensionfields
with arecord type of NULL QUARK andtheget_values_hook field in the extension record isnon-NULL,
Xt Get Val ues callsthe get_values hook procedure(s) to allow the parent to return derived constraint
fields.

The Xt Dest r oyW dget function calls the constraint destroy procedure to deallocate any dynamic
storage associated with a constraint record. The constraint record itself must not be deallocated by the
constraint destroy procedure; Xt Dest r oyW dget does this automatically.

60

Chapter 4. Shell Widgets

Shell widgets hold an application's top-level widgets to allow them to communicate with the window
manager and session manager. Shells have been designed to be asnearly invisible as possible. Clients have
to create them, but they should never have to worry about their sizes.

If ashell widget isresized from the outside (typically by awindow manager), the shell widget also resizes
its managed child widget automatically. Similarly, if the shell's child widget needs to change size, it can
make a geometry request to the shell, and the shell negotiates the size change with the outer environment.
Clients should never attempt to change the size of their shells directly.

Thefive types of public shells are:

OverrideShell Used for shell windows that completely bypass the window manager (for
example, pop-up menu shells).

TransientShell Used for shell windows that have the WM _TRANSIENT_FOR property set.
The effect of this property is dependent upon the window manager being used.

TopLevel Shell Used for normal top-level windows (for example, any additional top-level
widgets an application needs).

ApplicationShell Formerly used for the single main top-level window that the window manager
identifies as an application instance and made obsolete by SessionShell.

SessionShell Used for the single main top-level window that the window manager identifies
as an application instance and that interacts with the session manager.

Shell Widget Definitions

Widgets negotiate their size and position with their parent widget, that is, the widget that directly contains
them. Widgets at the top of the hierarchy do not have parent widgets. Instead, they must deal with the
outside world. To provide for this, each top-level widget is encapsulated in aspecia widget, called a shell
widget.

Shell widgets, whose class is a subclass of the Composite class, encapsulate other widgets and can allow
awidget to avoid the geometry clipping imposed by the parent-child window relationship. They also can
provide alayer of communication with the window manager.

The eight different types of shells are:

Shell The base class for shell widgets; provides the fields needed for all types of
shells. Shell isadirect subclass of compositeWidgetClass.

OverrideShell A subclass of Shell; used for shell windows that completely bypass the window
manager.

WM Shell A subclass of Shell; contains fields needed by the common window manager
protocol.

VendorShell A subclass of WMShell; contains fields used by vendor-specific window
managers.

61

Shell Widgets

TransientShell A subclass of VendorShell; used for shell windows that desire the
WM_TRANSIENT_FOR property.

TopLevel Shell A subclass of VendorShell; used for normal top-level windows.

ApplicationShell A subclass of TopLevelShell; may be used for an application's additional root
windows.

SessionShell A subclass of ApplicationShell; used for an application's main root window.

Note that the classes Shell, WM Shell, and VendorShell are internal and should not be instantiated or
subclassed. Only OverrrideShell, TransientShell, TopLevel Shell, ApplicationShell, and SessionShell are
intended for public use.

ShellClassPart Definitions

Only the Shell class has additional class fields, which are all contained in the
Shel | O assExt ensi onRec. None of the other Shell classes have any additional classfields:

typedef struct {
Xt Poi nt er extension;
} Shell d assPart, OverrideShell d assPart,
WvBhel | O assPart, Vendor Shel |l Cl assPart, Transient Shell d assPart,
TopLevel Shel | Cl assPart, ApplicationShell d assPart, SessionShell d assPart;

The full Shell class record definitions are:

typedef struct _Shell d assRec {

Cor eCl assPart core_cl ass;
Conposi t eC assPart conposite_cl ass;
Shel | Cl assPart shel | _cl ass;

} Shel | d assRec;

typedef struct { See the section called “C ass Extensi on Records”
Xt Poi nt er next _ext ensi on;
Xr mQuar k record_type;
| ong versi on;
Car di nal record_size;

Xt Geonret r yHandl er root _geonetry_nanager; See bel ow
} Shel | O assExt ensi onRec, *Shel | d assExt ensi on;

typedef struct _OverrideShell d assRec {

Cor eCl assPart core_cl ass;
Conposi t e assPart conposi te_cl ass;
Shel | Cl assPart shel | _cl ass;

OverrideShel | d assPart override_shell class;
} OverrideShel | O assRec;

typedef struct _Wshell d assRec {

62

Shell Widgets

} WBhel

Cor ed assPart
Conposi t eC assPart
Shel | Cl assPart
WvBhel | O assPart

| G assRec;

core_cl ass;
conposi te_cl ass;
shel | _cl ass;
wm shel | _cl ass;

typedef struct _Vendor Shell Cl assRec {

Cor e assPart
Conposi t eC assPart
Shel | Cl assPart
WvBhel | O assPart
Vendor Shel | Ol assPart

} Vendor Shel | O assRec;

typedef struct _Transient Shell C

} Transi

t ypedef

Cor ed assPart
Conposi t eC assPart
Shel | Cl assPart
WvBhel | O assPart
Vendor Shel | Cl assPart

core_cl ass;

conposi te_cl ass;
shel | _cl ass;

wm shel | _cl ass;
vendor _shel | _cl ass;

assRec {

core_cl ass;

conposi te_cl ass;
shel | _cl ass;

wm shel | _cl ass;
vendor _shel | _cl ass;

Transi ent Shel | Cl assPart transi ent_shell cl ass;

ent Shel | C assRec;

struct _TopLevel Shel |l d assRec {

Cor ed assPart
Conposi t eC assPart
Shel | Cl assPart
WvBhel | O assPart
Vendor Shel | Cl assPart
TopLevel Shel | Cl assPart

} TopLevel Shel | O assRec;

core_cl ass;

conposi te_cl ass;
shel | _cl ass;

wm shel | _cl ass;
vendor _shel | _cl ass;
top_Il evel _shel | _cl ass;

typedef struct _ApplicationShell d assRec {

Cor e assPart
Conposi t eC assPart
Shel | Cl assPart
WvBhel | O assPart
Vendor Shel | Cl assPart
TopLevel Shel | Cl assPart

core_cl ass;

conposi te_cl ass;
shel | _cl ass;

wm shel | _cl ass;
vendor _shel | _cl ass;
top_Il evel _shel | _cl ass;

ApplicationShel | Cl assPart application_shell _cl ass;
} ApplicationShel | d assRec;

typedef struct _SessionShell O assRec {

Cor ed assPart
Conposi t eC assPart
Shel | Cl assPart
WvBhel | O assPart
Vendor Shel | Cl assPart
TopLevel Shel | Ol assPart

core_cl ass;

conposi te_cl ass;
shel | _cl ass;

wm shel | _cl ass;
vendor _shel | _cl ass;
top_Il evel _shel | _cl ass;

ApplicationShel | Cl assPart application_shell _cl ass;

63

Shell Widgets

Sessi onShel | C assPart sessi on_shel | _cl ass;
} SessionShel | C assRec;

The single occurrences of the class records and pointers for creating instances of shells are:

extern Shel |l C assRec shel | d assRec;

extern OverrideShel | O assRec overri deShel | d assRec;

ext ern WvBhel | O assRec wnBhel | O assRec;

ext ern Vendor Shel | O assRec vendor Shel | Cl assRec;
extern Transi ent Shel | O assRec transi ent Shel | O assRec;
extern TopLevel Shel | O assRec t opLevel Shel | O assRec;
extern ApplicationShell Cl assRec applicationShell d assRec;
ext ern SessionShel | C assRec sessi onShel | Cl assRec;
extern Wdget d ass shel | Wdget d ass;

extern Wdget d ass overri deShel | Wdget d ass;
extern Wdget d ass wnBhel | W dget C ass;

extern Wdget d ass vendor Shel | W dget d ass;
extern Wdget d ass transi ent Shel | W dget Cl ass;
extern Wdget d ass t opLevel Shel | Wdget d ass;
extern Wdget d ass appl i cati onShel | Wdget d ass;
extern Wdget d ass sessi onShel | W dget d ass;

The following opague types and opague variables are defined for generic operations on widgets whose
classisasubclass of Shell.

Types Variables

ShellWidget shellWidgetClass
OverrideShellWidget overrideShellWidgetClass
WM ShellWidget wmShellWidgetClass
Vendor ShellWidget vendor ShellWidgetClass
TransientShellWidget transientShellWidgetClass
TopL evelShellWidget topL evel ShellWidgetClass
ApplicationShellWidget applicationShellWidgetClass
SessionShellWidget sessionShellWidgetClass

ShellWidgetClass
OverrideShellWidgetClass
WM ShellWidgetClass
Vendor ShellWidgetClass
TransientShellWidgetClass
TopL evel ShellWidgetClass
ApplicationShellWidgetClass
SessionShellWidgetClass

Thedeclarationsfor al Intrinsics-defined shellsexcept VendorShell appear in Shel | . h and Shel | P. h.
VendorShell has separate public and private .h fileswhich areincluded by Shel | . h and Shel | P. h.

Shel | . h uses incomplete structure definitions to ensure that the compiler catches attempts to access
private datain any of the Shell instance or class data structures.

64

Shell Widgets

The symbolic constant for the Shell Cl assExtension version identifier is
Xt Shel | Ext ensi onVer si on (seethe section called “Class Extension Records”).

The root_geometry_manager procedure acts as the parent geometry manager for geometry requests
made by shell widgets. When a shell widget cals either Xt MakeGeonetryRequest or
Xt MakeResi zeRequest , the root_geometry manager procedure is invoked to negotiate the new
geometry with the window manager. If the window manager permits the new geometry, the
root_geometry_manager procedure should return Xt Geonet ryYes; if the window manager denies
the geometry request or does not change the window geometry within some timeout interval
(equal to wm timeout in the case of WMShells), the root geometry manager procedure should
return Xt Geonet ryNo. If the window manager makes some aternative geometry change, the
root_geometry _manager procedure may return either Xt Geomnret r yNo and handle the new geometry
as aresize or Xt Geonet r yAl nost in anticipation that the shell will accept the compromise. If the
compromise is not accepted, the new size must then be handled as aresize. Subclasses of Shell that wish
to provide their own root_geometry _manager procedures are strongly encouraged to use enveloping to
invoketheir superclasssroot_geometry manager procedure under most situations, asthe window manager
interaction may be very complex.

If no Shel | O assPart extension record is declared with record type equal to NULL QUARK, then
Xt | nheri t Root Geonet r yManager isassumed.

ShellPart Definition

The various shell widgets have the following additional instance fields defined in their widget records:

typedef struct {

String geonetry;
Xt Cr eat ePopupChi | dProc create_popup_chil d_proc;
Xt GrabKi nd grab_ki nd;
Bool ean spring_| oaded;
Bool ean popped_up;
Bool ean al I ow_shel | _resi ze;
Bool ean client_specified,
Bool ean save_under;
Bool ean override_redirect;
Xt Cal | backLi st popup_cal | back;
Xt Cal | backLi st popdown_cal | back;
Vi sual * vi sual ;

} Shell Part;

typedef struct {

i nt enpty;
} OverrideShell Part;

typedef struct {

String title;

i nt wm ti meout ;
Bool ean wait_for_wm
Bool ean transi ent;

Bool ean ur gency;

W dget client_I eader;

65

Shell Widgets

String wi ndow _r ol e;
struct _A dXSizeH nts {
| ong fl ags;
i nt X, Y;
i nt wi dt h, hei ght;
i nt m n_wi dth, m n_height;
i nt max_wi dt h, max_hei ght;
i nt wi dt h_i nc, height_inc;
struct {
i nt X;
i nt y;

} m n_aspect, nmax_aspect;
} size_hints;

XWWHI nt s wm _hi nt s;
i nt base_wi dt h, base_hei ght, wi n_gravity;
At om title_encoding;

} WwBhel | Part ;

typedef struct {
i nt vendor _speci fic;
} Vendor Shel | Part;

typedef struct {
W dget transient_for;
} Transi ent Shel | Part;
typedef struct {
String icon_nane;
Bool ean i coni c;
At om i con_nane_encodi ng;
} TopLevel Shel |l Part;

typedef struct {
char * cl ass;
XrnCl ass Xrm cl ass;
i nt argc;
char ** argv;
} ApplicationShell Part;

typedef struct {

SncConn connecti on;
String sessi on_i d;
String * restart_conmand;
String * cl one_comuand;
String * di scar d_command,;
String * resi gn_comuand;
String * shut down_conmmand;
String * envi ronnent ;
String current _dir;
String pr ogram pat h;

unsi gned char restart_style;

66

Shell Widgets

Bool ean j oi n_session;
Xt Cal | backLi st save_cal | backs;
Xt Cal | backLi st interact_call backs;
Xt Cal | backLi st cancel _cal |l backs;
Xt Cal | backLi st save_conpl et e_cal | backs;
Xt Cal | backLi st die_call backs;
Xt Cal | backLi st error_call backs;
} SessionShel | Part;

The full shell widget instance record definitions are:

typedef struct {

Cor ePar t core;
Conposi t ePart conposite;
Shel | Part shel | ;

} Shell Rec, *Shel | Wdget;

typedef struct {

Cor ePar t core;
Conposi t ePart conposite;
Shel | Part shel | ;

OverrideShel | Part overri de;
} OverrideShel |l Rec, *OverrideShel | Wdget;

typedef struct {

Cor ePart core;
Conposi t ePart conposite;
Shel | Part shel | ;
VWvBhel | Part wim

} Wwbhel | Rec, *Wwbhel | W dget ;

typedef struct {

Cor ePart core;
Conposi t ePart conposite;
Shel | Part shel | ;
WvBhel | Part wim

Vendor Shel | Part vendor;
} Vendor Shel | Rec, *Vendor Shel | W dget ;

typedef struct {

Cor ePart core;
Conposi t ePart conposite;
Shel | Part shel | ;
WvBhel | Part wim

Vendor Shel | Part vendor ;
Transi ent Shel | Part transient;
} Transi ent Shel | Rec, *Transi ent Shel | Wdget ;

67

Shell Widgets

typedef struct {

Cor ePart core;
Conposi t ePart conposite;
Shel | Part shel | ;
VWvBhel | Part wim

Vendor Shel | Part vendor;
TopLevel Shel | Part topLevel ;

} TopLevel Shel | Rec, *TopLevel Shel | W dget ;

typedef struct {

Cor ePart core;

Conposi t ePart conposite;
Shel | Part shel | ;
WvBhel | Part Wi

Vendor Shel | Part vendor ;
TopLevel Shel | Part topLevel ;
Appl i cationShel | Part application;

} ApplicationShell Rec, *ApplicationShell Wdget;

typedef struct {

Cor ePart core;

Conposi t ePart conposite;
Shel | Part shel | ;
VWBhel | Part wim

Vendor Shel | Part vendor;
TopLevel Shel | Part t opLevel ;
Appl i cationShel | Part application;
Sessi onShel | Part sessi on;

} SessionShel | Rec, *Sessi onShel | W dget ;

Shell Resources

Theresource names, classes, and representation types specifiedintheshel | Gl assRec resourcelist are:

Name Class Representation
XtNallowShellResize XtCAllowShellResize XtRBoolean
XtNcreatePopupChildProc XtCCreatePopupChildProc XtRFunction
XtNgeometry XtCGeometry XtRString
XtNoverrideRedirect XtCOverrideRedirect XtRBoolean
XtNpopdownCallback XtCCallback XtRCallback
XtNpopupCallback XtCCallback XtRCallback
XtNsaveUnder XtCSaveUnder XtRBoolean
XtNvisua XtCVisua XtRVisua

OverrideShell declares no additional resources beyond those defined by Shell.

The resource names, classes, and representation types specified in thewnShel | C assRec resourcelist
are:

68

Shell Widgets

Name Class Representation
XtNbaseHeight XtCBaseHeight XtRInt
XtNbaseWidth XtCBaseWidth XtRInt
XtNclientL eader XtCClientL eader XtRWidget
XtNheightlnc XtCHeightinc XtRInt
XtNiconMask XtClconMask XtRBitmap
XtNiconPixmap XtClconPixmap XtRBitmap
XtNiconWindow XtClconWindow XtRWindow
XtNiconX XtClconX XtRInt
XtNiconY XtClconY XtRInt
XtNinitial State XtClnitial State XtRInitial State
XtNinput XtClnput XtRBool
XtNmaxAspectX XtCMaxAspectX XtRInt
XtNmaxAspectY XtCMaxAspectY XtRInt
XtNmaxHeight XtCMaxHeight XtRInt
XtNmaxWidth XtCMaxWidth XtRInt
XtNminAspectX XtCMinAspectX XtRInt
XtNminAspectY XtCMinAspectY XtRInt
XtNminHeight XtCMinHeight XtRInt
XtNminWidth XtCMinWidth XtRInt
XtNtitle XtCTitle XtRString
XtNtitleEncoding XtCTitleEncoding XtRAtom
XtNtransient XtCTransient XtRBoolean
XtNwaitforwm, XtNwaitForwm XtCWaitforwm, XtCWaitForwWm XtRBoolean
XtNwidthinc XtCWidthinc XtRInt
XtNwindowRole XtCWindowRole XtRString
XtNwinGravity XtCWinGravity XtRGravity
XtNwindowGroup XtCWindowGroup XtRWindow
XtNwmTimeout XtCWmTimeout XtRInt
XtNurgency XtCUrgency XtRBoolean

The classresource list for VendorShell isimplementation-defined.

The resource classes, and representation types that are specified in the
t ransi ent Shel | Cl assRec resource list are:

Name Class Representation

XtNtransientFor XtCTransientFor XtRWidget

The resource classes, and representation types that are specified in the

t opLevel Shel | O assRec resourcelist are:

69

Shell Widgets

Name Class Representation

XtNiconName XtClconName XtRString
XtNiconNameEncoding XtClconNameEncoding XtRAtom

XtNiconic XtClconic XtRBoolean

The resource names, classes, and representation that are specified in the
appl i cati onShel | d assRec resourcelist are;

Name Class Representation

XtNargc XtCArgc XtRInt

XtNargv XtCArgv XtRStringArray

The resource names, classes, and representation that are gpecified in the

sessi onShel | C assRec resourcelist are:

Name Class Representation
XtNcancel Callback XtCCallback XtRCallback
XtNcloneCommand XtCCloneCommand XtRCommandArgArray
XtNconnection XtCConnection XtRSmcConn
XtNcurrentDirectory XtCCurrentDirectory XtRDirectoryString
XtNdieCallback XtCCallback XtRCallback
XtNdiscardCommand XtCDiscardCommand XtRCommandArgArray
XtNenvironment XtCEnvironment XtREnvironmentArray
XtNerrorCallback XtCCallback XtRCallback
XtNinteractCallback XtCCallback XtRCallback
XtNjoinSession XtCJoinSession XtRBoolean
XtNprogramPath XtCProgramPath XtRString
XtNresignCommand XtCResignCommand XtRCommandArgArray
XtNrestartCommand XtCRestartCommand XtRCommandArgArray
XtNrestartStyle XtCRestartStyle XtRRestartStyle
XtNsaveCallback XtCCallback XtRCallback
XtNsaveCompl eteCallback XtCCallback XtRCallback
XtNsessionlD XtCSessionlD XtRString
XtNshutdownCommand XtCShutdownCommand XtRCommandArgArray

ShellPart Default Values

The default values for fields common to all classes of public shells (filled in by the Shell resource lists
and the Shell initialize procedures) are:

70

Shell Widgets

Field Default Value

geometry NULL

create_popup_child_proc NULL

grab_kind (none)

spring_loaded (none)

popped_up Fal se

allow_shell_resize Fal se

client_specified (internal)

save_under Tr ue for OverrideShell and TransientShell, False
otherwise

override_redirect Tr ue for OverrideShell, Fal se otherwise

popup_callback NULL

popdown_callback NULL

visual CopyFr onPar ent

The geometry field specifies the size and position and is usually given only on a command line or in a
defaultsfile. If the geometry field isnon-NULL when awidget of class WM Shell isrealized, the geometry
specification is parsed using X\WMGeonet r y with a default geometry string constructed from the values
of X, y, width, height, width_inc, and height_inc and the size and position flags in the window manager
size hints are set. If the geometry specifies an x or y position, then USPosi ti on is set. If the geometry
specifies a width or height, then USSi ze is set. Any fields in the geometry specification override the
corresponding values in the Core x, y, width, and height fields. If geometry is NULL or contains only a
partial specification, then the Core x, y, width, and height fields are used and PPosi ti on and PSi ze
are set as appropriate. The geometry string is not copied by any of the Intrinsics Shell classes; a client
specifying the string in an arglist or varargs list must ensure that the value remains valid until the shell
widget is realized. For further information on the geometry string, see Parsing the Window Geometry in
Xlib— C Language X Interface.

The create_popup_child_proc procedure is called by the Xt Popup procedure and may remain NULL.
Thegrab_kind, spring_loaded, and popped_up fields maintain widget stateinformation as described under
Xt Popup, Xt MenuPopup, Xt Popdown, and Xt MenuPopdown. Theallow_shell_resizefield controls
whether the widget contained by the shell isallowed to try to resizeitself. If allow_shell_resizeisFal se,
any geometry reguests made by the child will alwaysreturn Xt Geonet r yNo without interacting with the
window manager. Setting save_under Tr ue instructsthe server to attempt to save the contents of windows
obscured by the shell when it is mapped and to restore those contents automatically when the shell is
unmapped. It isuseful for pop-up menus. Setting override_redirect Tr ue determineswhether the window
manager can intercede when the shell window is mapped. For further information on override_redirect, see
Window Attributesin Xlib— C Language X Interface and Pop-up Windows and Redirection of Operations
in the Inter-Client Communication Conventions Manual. The pop-up and pop-down callbacks are called
during Xt Popup and Xt Popdown. The default value of the visual resource is the symbolic value
CopyFr onPar ent . The Intrinsics do not need to query the parent'svisua type when the default valueis
used; if aclient using Xt Get Val ues to examinethe visual type receivesthevalue CopyFr onPar ent ,
it must then use XGet W ndowAt t ri but es if it needs the actual visual type.

The default values for Shell fieldsin WM Shell and its subclasses are:

Field Default Value

title Icon name, if specified, otherwise the application's
name

wm_timeout Five seconds, in units of milliseconds

71

Shell Widgets

Field Default Value

wait_for_wm Tr ue

transient Tr ue for TransientShell, Fal se otherwise
urgency Fal se

client_leader NULL

window_role NULL

min_width Xt Unspeci fi edShel | I nt
min_height Xt Unspeci fi edShel I I nt
max_width Xt Unspeci fi edShel I | nt
max_height Xt Unspeci fi edShel I I nt
width_inc Xt Unspeci fi edShel I I nt
height_inc Xt Unspeci fi edShel I | nt
min_aspect_x Xt Unspeci fi edShel | I nt
min_aspect vy Xt Unspeci fi edShel I I nt
max_aspect_x Xt Unspeci fi edShel | | nt
max_aspect_y Xt Unspeci fi edShel I | nt
input Fal se

initial_state Normal

icon_pixmap None

icon_window None

icon_x Xt Unspeci fi edShel I | nt
icon_y Xt Unspeci fi edShel | | nt
icon_mask None

window_group Xt Unspeci fi edW ndow
base width Xt Unspeci fi edShel | | nt
base height Xt Unspeci fi edShel I I nt
win_gravity Xt Unspeci fi edShel I | nt
title_encoding Seetext

The title and title_encoding fields are stored in the WM _NAME property on the shell's window by
the WMShell realize procedure. If the title encoding field is None, the title string is assumed to
be in the encoding of the current locale and the encoding of the WM _NAME property is set to
XSt dl CCText St yl e. If alanguage procedure has not been set the default value of title_encoding is
XA_STRING, otherwise the default value is None. The wm timeout field specifies, in milliseconds,
the amount of time a shell is to wait for confirmation of a geometry request to the window manager. If
none comes back within that time, the shell assumes the window manager is not functioning properly
and sets wait_for wmto Fal se (later events may reset this value). When wait_for wmis Fal se, the
shell does not wait for a response, but relies on asynchronous notification. If transient is Tr ue, the
WM_TRANSIENT_FOR property will be stored on the shell window with a value as specified below.
The interpretation of this property is specific to the window manager under which the application is run;
see the Inter-Client Communication Conventions Manual for more details.

The realize and set_values procedures of WM Shell storethe WM _CLIENT_LEADER property on the
shell window. When client_leader isnot NULL and theclient |eader widget isrealized, the property will be
created with the value of the window of the client leader widget. When client_leader isNULL and the shell

72

Shell Widgets

widget hasa NULL parent, the widget's window is used as the value of the property. When client_leader
isNULL and the shell widget has anon-NULL parent, a search is made for the closest shell ancestor with
anon-NULL client_leader, and if noneisfound the shell ancestor with aNULL parent isthe result. If the
resulting widget is realized, the property is created with the value of the widget's window.

When the value of window role is not NULL, the realize and set values procedures store the
WM_WINDOW_ROLE property on the shell's window with the value of the resource.

All other resources specify fields in the window manager hints and the window manager size hints.
The realize and set_values procedures of WM Shell set the corresponding flag bits in the hints if any of
the fields contain nondefault values. In addition, if a flag bit is set that refers to a field with the value
Xt Unspeci fi edShel I | nt, thevalue of thefield is modified as follows:

Field Replacement

base width, base_height 0

width_inc, height_inc 1

max_width, max_height 32767

min_width, min_height 1

min_aspect X, min_aspect_y -1

max_aspect_X, max_aspect_y -1

icon_x, icon_y -1

win_gravity Value returned by X\WMGeonet ry if called, else

Nort hWest Gravity

If the shell widget has a non-NULL parent, then the realize and set_values procedures replace the value
Xt Unspeci fi edW ndowinthewindow_group field with thewindow id of theroot widget of thewidget
treeif theroot widget isrealized. The symbolic constant Xt Unspeci f i edW ndowG oup may be used
to indicate that the window_group hint flag bit is not to be set. If transient is Tr ue, the shell'sclassis not
asubclass of TransientShell, and window_group isnot Xt Unspeci f i edW ndowG oup, the WM Shell
realize and set_values procedures then store the WM_TRANSIENT_FOR property with the value of
window_group.

Transient shells have the following additional resource:

Field Replacement
transient_for NULL

The realize and set_values procedures of TransientShell store the WM_TRANSIENT_FOR property
on the shell window if transient is Tr ue. If transient_for is non-NULL and the widget specified by
transient_for isrealized, then itswindow is used as the value of the WM_TRANSIENT_FOR property;
otherwise, the value of window_group is used.

TopLevel shellshavethe the following additional resources:

Field Default Value
icon_name Shell widget's name
iconic False
icon_name_encoding See text

The icon_name and icon_name_encoding fields are stored in the WM _ICON_NAME property on
the shell's window by the TopLevelShell realize procedure. If the icon_name_encoding field is None,

73

Shell Widgets

the icon_name string is assumed to be in the encoding of the current locale and the encoding of the
WM _ICON_NAME property is set to XSt dl CCText St yl e. If a language procedure has not been
set, the default value of icon_name_encoding is XA_STRING, otherwise the default valueisNone. The
iconic field may be used by a client to request that the window manager iconify or deiconify the shell;
the TopLevelShell set_values procedure will send the appropriate WM _CHANGE_STATE message
(as specified by the Inter-Client Communication Conventions Manual) if this resource is changed from
Fal se toTr ue and will call Xt Popup specifyinggrab_kind as Xt G- abNone if iconicischanged from
Tr ue to Fal se. The XtNiconic resource is also an alternative way to set the XtNinitial State resource to
indicate that a shell should be initialy displayed as an icon; the TopLevel Shell initialize procedure will
setinitial_stateto | coni cSt at e if iconicisTr ue.

Application shells have the following additional resources:

Field Default Value
argc 0
argv NULL

The argc and argv fields are used to initialize the standard property WM _COMMAND. See the Inter-
Client Communication Conventions Manual for more information.

The default values for the SessionShell instance fields, which are filled in from the resource lists and by
the initialize procedure, are

Field Default Value
cancel_callbacks NULL
clone_command See text
connection NULL
current_dir NULL

die callbacks NULL
discard_command NULL
environment NULL
error_callbacks NULL
interact_callbacks NULL
join_session True
program_path NULL
resign_command NULL
restart_ command Seetext
restart_style SmRestartl fRunning
save callbacks NULL
save_complete callbacks NULL
session_id NULL
shutdown_command NULL

The connection field contains the session connection object or NULL if a session connection is not being
managed by this widget.

The session id is an identification assigned to the session participant by the session manager. The
session_id will be passed to the session manager as the client identifier of the previous session. When a

74

Shell Widgets

connection is established with the session manager, the client id assigned by the session manager is stored
in the session_id field. When not NULL, the session _id of the Session shell widget that is at the root of
the widget tree of the client leader widget will be used to create the SM_CLIENT _ID property on the
client leader's window.

If join_session is Fal se, the widget will not attempt to establish a connection to the session manager at
shell creation time. See the section called “Joining a Session” and the section called “Resigning from a
Session” for more information on the functionality of this resource.

The restart_command, clone_command, discard command, resign_command, shutdown_command,
environment, current_dir, program_path, and restart_style fields contain standard session properties.

When a session connection is established or newly managed by the shell, the shell initialize and set_values
methods check the values of therestart_command, clone_command, and program_path resources. At that
time, if restart_command is NULL, the value of the argv resource will be copied to restart_command.
Whether or not restart_command was NULL, if “-xtsessionID” “<session id>" does not aready appear
in the restart_command, it will be added by the initialize and set_values methods at the beginning of the
command arguments; if the “-xtsessionID” argument already appears with an incorrect session id in the
following argument, that argument will be replaced with the current session id.

After this, the shell initialize and set_values procedures check the clone_command. If clone_command
isNULL, restart_command will be copied to clone_command, except the “-xtsessionID” and following
argument will not be copied.

Finally, the shell initialize and set_values procedures check the program_path. If program_pathisNULL,
the first element of restart_command is copied to program_path.

The possible values of restart style are SnRestart!fRunni ng, SmRestart Anyway,
SnRestart | medi at el y, and SnRest art Never. A resource converter is registered for this
resource; for the strings that it recognizes, see the section called “Predefined Resource Converters’.

The resource type EnvironmentArray is a NULL-terminated array of pointers to strings, each string has
the format “name=value’. The "=' character may not appear in the name, and the string is terminated by
anull character.

Session Participation

Applications can participate in a user's session, exchanging messages with the session manager as
described in the X Session Management Protocol and the X Session Management Library.

When awidget of sessi onShel | W dget C ass or asubclassis created, the widget provides support
for the application as a session participant and continues to provide support until the widget is destroyed.

Joining a Session

When a Session shell is created, if connection is NULL, and if join_session is Tr ue, and if argv or
restart_ command isnot NULL, and if in POSIX environments the SESSION_MANAGER environment
variableis defined, the shell will attempt to establish a new connection with the session manager.

To transfer management of an existing session connection from an application to the shell at widget
creation time, pass the existing session connection ID as the connection resource value when creating the
Session shell, and if the other creation-time conditions on session participation are met, the widget will
mai ntain the connection with the session manager. The application must ensure that only one Session shell
manages the connection.

75

Shell Widgets

In the Session shell set_values procedure, if join_session changesfrom Fal se to Tr ue and connectionis
NULL and when in POSIX environments the SESSION_MANAGER environment variable is defined,
the shell will attempt to open a connection to the session manager. If connection changes from NULL
to non-NULL, the Session shell will take over management of that session connection and will set
join_session to Tr ue. If join_session changes from Fal se to Tr ue and connection is not NULL, the
Session shell will take over management of the session connection.

When a successful connection has been established, connection contains the session connection ID for the
session participant. When the shell begins to manage the connection, it will call Xt AppAddl nput to
register the handler which watches for protocol messages from the session manager. When the attempt to
connect fails, awarning message is issued and connection is set to NULL.

While the connection is being managed, if aSaveYour sel f, SaveYour sel f Phase2, | nt er act,
Shut downCancel | ed, SaveConpl et e, or Di e message is received from the session manager,
the Session shell will call out to application callback procedures registered on the respective callback
list of the Session shell and will send SaveYour sel f Phase2Request, | nt er act Request,
I nt eract Done, SaveYoursel f Done, and Connecti onCl osed messages as appropriate.
Initially, al of the client's session properties are undefined. When any of the session property resource
values are defined or change, the Session shell initialize and set_values procedures will update the client's
session property valueby aSet Properti es oraDel et eProperti es message, asappropriate. The
session ProcessID and Userl D properties are aways set by the shell when it is possible to determine the
value of these properties.

Saving Application State

The session manager instigates an application checkpoint by sending a SaveYour sel f request.
Applications are responsible for saving their state in response to the request.

Whenthe SaveYour sel f request arrives, the procedures registered on the Session shell's save callback
list are called. If the application does not register any save callback procedures on the save callback list,
the shell will report to the session manager that the application failed to save its state. Each procedure on
the save callback list receives atoken in the call_data parameter.

The checkpoint token in the call_data parameter is of type Xt Checkpoi nt Token.

t ypedef struct {
i nt save_type;
i nt i nteract_style;
Bool ean shut down;
Bool ean fast;
Bool ean cancel _shut down

i nt phase;

i nt i nteract dial og_type; /* return */
Bool ean request _cancel; /* return */
Bool ean request next phase; /* return */
Bool ean save_success; /* return */

} Xt Checkpoi nt TokenRec, *Xt Checkpoi nt Token;

The save type, interact style, shutdown, and fast fields of the token contain the parameters of the
SaveYour sel f message. The possiblevaluesof save typeare SnSavelocal , SnSaved obal , and
SnsaveBot h; these indicate the type of information to be saved. The possible values of interact_style
are S nt er act St yl eNone, Smi nt eract Styl eErrors, and Sl nt er act St yl eAny; these
indicate whether user interaction would be permitted and, if so, what kind of interaction. If shutdown

76

Shell Widgets

is Tr ue, the checkpoint is being performed in preparation for the end of the session. If fast is
Tr ue, the client should perform the checkpoint as quickly as possible. If cancel_shutdown is Tr ue,
a Shut downCancel | ed message has been received for the current save operation. (See the section
called “Resigning from a Session”.) The phase is used by manager clients, such as a window manager,
to distinguish between the first and second phase of a save operation. The phase will be either 1 or 2.
The remaining fields in the checkpoint token structure are provided for the application to communicate
with the shell.

Upon entry to the first application save callback procedure, the return fields in the token have
the following initial values: interact_dialog type is SnDi al ogNor mal ; request_cancel is Fal se;
request_next_phaseisFal se; and save successis Tr ue. When atoken is returned with any of the four
return fields containing a noninitial value, and when the field is applicable, subsequent tokens passed to
the application during the current save operation will always contain the noninitial value.

The purpose of the token's save_success field is to indicate the outcome of the entire operation to the
session manager and ultimately, to the user. Returning Fal se indicates some portion of the application
state could not be successfully saved. If any token isreturned to the shell with save successFal se, tokens
subsequently received by the application for the current save operation will show save successasFal se.
When the shell sends the final status of the checkpoint to the session manager, it will indicate failure to
save application state if any token was returned with save success Fal se.

Session participants that manage and save the state of other clients should structure their save
or interact callbacks to set request next_phase to True when phase is 1, which will cause the
shell to send the SaveYour sel f Phase2Request when the first phase is complete. When the
SaveYour sel f Phase2 messageisreceived, the shell will invokethe save callbacksasecond timewith
phase equa to 2. Manager clients should save the state of other clients when the callbacks are invoked
the second time and phase equal to 2.

The application may request additional tokenswhile acheckpoint isunder way, and these additional tokens
must be returned by an explicit call.

To request an additional token for a save callback response that has a deferred outcome, use
Xt Sessi onGet Token.

Xt Checkpoi nt Token Xt Sessi onGet Token(w dget) ;

widget Specifies the Session shell widget which manages session participation.
The Xt Sessi onGet Token function will return NULL if no checkpoint operation is currently under
way.

To indicate the completion of checkpoint processing including user interaction, the application
must signal the Session shell by returning all tokens. (See the section called “Interacting with the
User during a Checkpoint” and the section called “Completing a Save’). To return a token, use
Xt Sessi onRet ur nToken.

voi d Xt Sessi onRet ur nToken(t oken);

token Specifies a token that was received as the call_data by a procedure
on the interact callback list or a token that was received by a call to
Xt Sessi onGet Token.

Tokens passed as call_data to save callbacks are implicitly returned when the save callback procedure
returns. A save callback procedure should not call Xt Sessi onRet ur nToken on the token passed in
itscall_data.

77

Shell Widgets

Requesting Interaction

When thetokeninteract_style allows user interaction, the application may interact with the user during the
checkpoint, but must wait for permission to interact. Applications request permission to interact with the
user during the checkpointing operation by registering a procedure on the Session shell's interact callback
list. When all save callback procedures have returned, and each time a token that was granted by a call to
Xt Sessi onCet Token isreturned, the Session shell examines the interact callback list. If interactionis
permitted and the interact callback list is not empty, the shell will send an | nt er act Request to the
session manager when an interact request is not already outstanding for the application.

The type of interaction dialog that will be requested is specified by the interact dialog_type field
in the checkpoint token. The possible values for interact dialog type are SnDi al ogError and
SnDi al ogNor mal . If atoken isreturned with interact_dialog_type containing SnDi al ogEr r or , the
interact request and any subsequent interact requests will be for an error dialog; otherwise, the request will
be for anormal dialog with the user.

When atoken is returned with save_success Fal se or interact_dialog_type SnDi al ogEr r or , tokens
subsequently passed to callbacks during the same active SaveYour sel f response will reflect these
changed values, indicating that an error condition has occurred during the checkpoint.

Therequest_cancel field isareturn value for interact callbacks only. Upon return from a procedure on the
save callback list, the value of the token's request_cancel field is not examined by the shell. Thisis also
true of tokens received through a call to Xt Sessi onGet Token.

Interacting with the User during a Checkpoint

When the session manager grants the application's request for user interaction, the Session shell receives
an | nt er act message. The procedures registered on the interact callback list are executed, but not
as if executing a typical callback list. These procedures are individually executed in sequence, with
a checkpoint token functioning as the sequencing mechanism. Each step in the sequence begins by
removing a procedure from the interact callback list and executing it with atoken passed in the call_data.
The interact callback will typically pop up a dialog box and return. When the user interaction and
associated application checkpointing has completed, the application must return the token by calling
Xt Sessi onRet ur nToken. Returning the token completes the current step and triggers the next step
in the sequence.

During interaction the client may request cancellation of a shutdown. When a token passed as call_data
to aninteract procedure is returned, if shutdown is Tr ue and cancel_shutdown isFal se, request_cancel
indicates whether the application requests that the pending shutdown be cancelled. If request_cancel is
Tr ue, the field will aso be Tr ue in any tokens subsequently granted during the checkpoint operation.
When a token is returned requesting cancellation of the session shutdown, pending interact procedures
will still be called by the Session shell. When al interact procedures have been removed from the interact
callback list, executed, and the final interact token returned to the shell, an | nt er act Done message is
sent to the session manager, indicating whether a pending session shutdown is requested to be cancelled.

Responding to a Shutdown Cancellation

Callbacks registered on the cancel callback list are invoked when the Session shell processes a
Shut downCancel | ed message from the session manager. This may occur during the processing of
save callbacks, while waiting for interact permission, during user interaction, or after the save operationis
complete and the application is expecting a SaveConpl et e or aDi e message. The call_data for these
callbacksis NULL.

When the shell notices that a pending shutdown has been cancelled, the token cancel _shutdown field will
be Tr ue in tokens subsequently given to the application.

78

Shell Widgets

Receiving notice of a shutdown cancellation does not cancel the pending execution of save callbacks or
interact callbacks. After the cancel callbacks execute, if interact_styleisnot Smi nt er act St yl eNone
and theinteract list is not empty, the procedures on the interact callback list will be executed and passed a
token with interact_style Sni nt er act St yl eNone. The application should not interact with the user,
and the Session shell will not send an | nt er act Done message.

Completing a Save

When there is no user interaction, the shell regards the application as having finished saving state when
all callback procedures on the save callback list have returned, and any additional tokens passed out by
Xt Sessi onGet Token have been returned by corresponding callsto Xt Sessi onRet ur nToken. If
the save operation involved user interaction, the above completion conditions apply, and in addition, all
requests for interaction have been granted or cancelled, and all tokens passed to interact callbacks have
been returned through calls to Xt Sessi onRet ur nToken. If the save operation involved a manager
client that requested the second phase, the above conditions apply to both the first and second phase of
the save operation.

When the application has finished saving state, the Session shell will report the result to the session
manager by sending the SaveYour sel f Done message. If the session is continuing, the shell will
receive the SaveConpl et e message when all applications have completed saving state. This message
indicatesthat applications may again alow changesto their state. The shell will executethe save_complete
callbacks. The call_data for these callbacksis NULL.

Responding to a Shutdown

Callbacks registered on the die callback list are invoked when the session manager sendsaDi e message.
The callbacks on this list should do whatever is appropriate to quit the application. Before executing
procedures on the die callback list, the Session shell will close the connection to the session manager and
will remove the handler that watches for protocol messages. The call_data for these callbacksis NULL.

Resigning from a Session

When the Session shell widget is destroyed, the destroy method will close the connection to the session
manager by sending a Connect i onCl osed protocol message and will remove the input callback that
was watching for session protocol messages.

When Xt Set Val ues isusedtosetjoin_sessiontoFal se,theset valuesmethod of the Session shell will
close the connection to the session manager if one exists by sending a Connect i onCl osed message,
and connection will be set to NULL.

Applications that exit in response to user actions and that do not wait for phase 2 destroy to complete on
the Session shell should set join_session to Fal se before exiting.

When Xt Set Val ues is used to set connection to NULL, the Session shell will stop managing the
connection, if one exists. However, that session connection will not be closed.

Applications that wish to ensure continuation of a session connection beyond the destruction of the shell
should first retrieve the connection resource value, then set the connection resource to NULL, and then
they may safely destroy the widget without losing control of the session connection.

The error callback list will be called if an unrecoverable communications error occurs while the shell is
managing the connection. The shell will close the connection, set connection to NULL, remove the input
callback, and call the procedures registered on the error callback list. The call_data for these callbacks
isSNULL.

79

Chapter 5. Pop-Up Widgets

Pop-

Pop-up widgets are used to create windows outside of the window hierarchy defined by the widget tree.
Each pop-up child has awindow that is a descendant of the root window, so that the pop-up window is not
clipped by the pop-up widget's parent window. Therefore, pop-ups are created and attached differently to
their widget parent than normal widget children.

A parent of a pop-up widget does not actively manage its pop-up children; in fact, it usually does not
operate upon them in any way. The popup_list field in the Cor ePar t structure contains the list of its
pop-up children. This pop-up list exists mainly to provide the proper place in the widget hierarchy for the
pop-up to get resources and to provide aplace for Xt Dest r oyW dget tolook for al extant children.

A composite widget can have both normal and pop-up children. A pop-up can be popped up from almost
anywhere, not just by its parent. Theterm child alwaysrefersto anormal, geometry-managed widget onthe
composite widget'slist of children, and the term pop-up child always refersto awidget on the pop-up list.

Up Widget Types
There are three kinds of pop-up widgets:
» Modeless pop-ups

A modeless pop-up (for example, a dialog box that does not prevent continued interaction with the
rest of the application) can usually be manipulated by the window manager and looks like any other
application window from the user's point of view. The application main window itself is a special case
of amodeless pop-up.

e Modal pop-ups

A modal pop-up (for example, a dialog box that requires user input to continue) can sometimes be
mani pul ated by the window manager, and except for eventsthat occur in the dialog box, it disables user-
event distribution to the rest of the application.

* Spring-loaded pop-ups

A spring-loaded pop-up (for example, a menu) can seldom be manipulated by the window manager,
and except for events that occur in the pop-up or its descendants, it disables user-event distribution to
al other applications.

Modal pop-ups and spring-loaded pop-ups are very similar and should be coded as if they were the same.
In fact, the same widget (for example, a ButtonBox or Menu widget) can be used both as a modal pop-
up and as a spring-loaded pop-up within the same application. The main difference is that spring-loaded
pop-ups are brought up with the pointer and, because of the grab that the pointer button causes, require
different processing by the Intrinsics. Furthermore, all user input remap events occurring outside the
spring-loaded pop-up (e.g., in adescendant) are also delivered to the spring-loaded pop-up after they have
been dispatched to the appropriate descendant, so that, for example, button-up can take down a spring-
loaded pop-up no matter where the button-up occurs.

Any kind of pop-up, in turn, can pop up other widgets. Modal and spring-loaded pop-ups can constrain
user events to the most recent such pop-up or allow user events to be dispatched to any of the modal or
spring-loaded pop-ups currently mapped.

Regardless of their type, al pop-up widget classes are responsible for communicating with the X window
manager and therefore are subclasses of one of the Shell widget classes.

80

Pop-Up Widgets

Creating a Pop-Up Shell

For awidget to be popped up, it must be the child of a pop-up shell widget. None of the Intrinsics-supplied
shellswill simultaneously manage more than one child. Both the shell and child taken together arereferred
to as the pop-up. When you need to use a pop-up, you always refer to the pop-up by the pop-up shell,
not the child.

To create a pop-up shell, use Xt Cr eat ePopupShel | .

W dget Xt Creat ePopupShel | (name, wi dget _cl ass, parent, args, numargs);

name Specifies the instance name for the created shell widget.

widget_class Specifies the widget class pointer for the created shell widget.

parent Specifies the parent widget. Must be of class Core or any subclass
thereof.

args Specifies the argument list to override any other resource
specifications.

num_args Specifies the number of entries in the argument list.

The Xt Cr eat ePopupShel | function ensures that the specified classis a subclass of Shell and, rather
than using insert_child to attach the widget to the parent's children list, attaches the shell to the parent's
popup_list directly.

The screen resource for thiswidget is determined by first scanning args for the XtNscreen argument. If no
XtNscreen argument is found, the resource database associated with the parent's screen is queried for the
resource name.screen, class Class.Screen where Classistheclass namefield fromthe Cor eCl assPar t
of the specified widget_class. If thisquery fails, the parent's screen is used. Once the screen is determined,
the resource database associated with that screen is used to retrieve all remaining resources for the widget
not specified in args.

A spring-loaded pop-up invoked from a translation table via Xt MenuPopup must aready exist at the
timethat thetranslation isinvoked, so the trandl ation manager can find the shell by name. Pop-upsinvoked
in other ways can be created when the pop-up actually is needed. This delayed creation of the shell
is particularly useful when you pop up an unspecified number of pop-ups. You can look to see if an
appropriate unused shell (that is, not currently popped up) exists and create a new shell if needed.

To create a pop-up shell using varargs lists, use Xt VaCr eat ePopupShel | .

W dget Xt VaCreat ePopupShel | (nane, wi dget cl ass, parent, ...);

name Specifies the instance name for the created shell widget.

widget_class Specifies the widget class pointer for the created shell widget.

parent Specifies the parent widget. Must be of class Core or any subclass
thereof.

Specifies the variable argument list to override any other resource
specifications.

Xt VaCr eat ePopupShel | is identical in function to Xt Cr eat ePopupShel | with the args and
num_args parameters replaced by avarargs list as described in Section 2.5.1.

81

Pop-Up Widgets

Creating Pop-Up Children

Once a pop-up shell is created, the single child of the pop-up shell can be created either statically or
dynamically.

At startup, an application can create the child of the pop-up shell, which is appropriate for pop-up children
composed of a fixed set of widgets. The application can change the state of the subparts of the pop-
up child as the application state changes. For example, if an application creates a static menu, it can
call Xt Set Sensi ti ve (or, in genera, Xt Set Val ues) on any of the buttons that make up the menu.
Creating the pop-up child early means that pop-up time is minimized, especidly if the application calls
Xt Real i zeW dget onthe pop-up shell at startup. When the menu is needed, all the widgets that make
up the menu already exist and need only be mapped. The menu should pop up as quickly as the X server
can respond.

Alternatively, an application can postpone the creation of the child until it is needed, which minimizes
application startup time and allows the pop-up child to reconfigure itself each time it is popped up. In
this case, the pop-up child creation routine might poll the application to find out if it should change the
sensitivity of any of its subparts.

Pop-up child creation does not map the pop-up, evenif you create the child and call Xt Real i zeW dget
on the pop-up shell.

All shells have pop-up and pop-down callbacks, which provide the opportunity either to make last-minute
changesto apop-up child beforeit is popped up or to changeit after it is popped down. Note that excessive
use of pop-up callbacks can make popping up occur more slowly.

Mapping a Pop-Up Widget
Pop-ups can be popped up through several mechanisms:

* A cdl to Xt Popup or Xt PopupSpri ngLoaded.

» One of the supplied callback procedures Xt Cal | backNone, Xt Cal | backNonexcl usi ve, or
Xt Cal | backExcl usi ve.

» The standard translation action Xt MenuPopup.

Some of these routines take an argument of type Xt Gr abKi nd, which is defined as

typedef enum { Xt G abNone, Xt GrabNonexcl usive, Xt G abExcl usive} Xt G abKind;

The create popup_child_proc procedure pointer in the shell widget instance record is of type
Xt Cr eat ePopupChi | dProc.

t ypedef void *Xt Creat ePopupChil dProc(w);

w Specifies the shell widget being popped up.
To map a pop-up from within an application, use Xt Popup.

voi d Xt Popup(popup_shell, grab_kind);
popup_shell Specifies the shell widget.

grab kind Specifies the way in which user events should be constrained.

82

Pop-Up Widgets

The Xt Popup function performs the following:

e Cals Xt CheckSubcl ass to ensure popup_shell'sclassisasubclass of shel | W dget Cl ass.

» Raisesthe window and returnsif the shell's popped_up field isalready Tr ue.

 Calls the callback procedures on the shell's popup_callback list, specifying a pointer to the value of
grab_kind asthe call_data argument.

» Setstheshell popped upfieldto Tr ue, theshell spring_loaded fieldto Fal se, and theshell grab_kind
field from grab_kind.

* If the shell's create_popup_child_proc field is non-NULL, Xt Popup calls it with popup_shell as the
parameter.

 If grab_kind iseither Xt G- abNonexcl usi ve or Xt G abExcl usi ve, it cals

Xt AddGr ab(popup_shel I, (grab_kind == Xt G abExcl usive), Fal se)
e CdlsXt Real i zeW dget with popup_shell specified.
» Cals XMapRai sed with the window of popup_shell.

To map a spring-loaded pop-up from within an application, use Xt PopupSpr i ngLoaded.
voi d Xt PopupSpri ngLoaded(popup_shell);
popup_shell Specifies the shell widget to be popped up.

The Xt PopupSpri ngLoaded function performs exactly as Xt Popup except that it sets the shell
spring_loaded fieldto Tr ue and alwayscalls Xt AddGr ab withexclusive Tr ue and spring-loaded Tr ue.

To map apop-up from agiven widget's callback list, you also can register one of the Xt Cal | backNone,
Xt Cal | backNonexcl usi ve, or Xt Cal | backExcl usi ve convenience routines as callbacks,
using the pop-up shell widget as the client data.

voi d Xt Cal | backNone(w, client_data, call _data);

w Specifies the widget.

client_data Specifies the pop-up shell.

call_data Specifies the callback data argument, which is not used by this
procedure.

voi d Xt Cal | backNonexcl usi ve(w, client_data, call _data);

w Specifies the widget.

client_data Specifies the pop-up shell.

call_data Specifies the callback data argument, which is not used by this
procedure.

voi d Xt Cal | backExcl usi ve(w, client_data, call _data);

w Specifies the widget.

client_data Specifies the pop-up shell.

call_data Specifies the callback data argument, which is not used by this
procedure.

83

Pop-Up Widgets

The Xt Cal | backNone, Xt Cal | backNonexcl usi ve, and Xt Cal | backExcl usi ve functions
cal Xt Popup with the shell specified by the client data argument and grab kind set as the
name specifies. Xt Cal | backNone, Xt Cal | backNonexcl usi ve, and Xt Cal | backExcl usi ve
specify Xt GrabNone, Xt GrabNonexcl usi ve, and Xt G- abExcl usi ve, respectively. Each
function then sets the widget that executed the callback list to be insensitive by calling
Xt Set Sensi ti ve. Using these functionsin callbacksis not required. In particular, an application must
provide customized code for callbacks that create pop-up shells dynamically or that must do more than
desensitizing the button.

Within atrang ation table, to pop up a menu when a key or pointer button is pressed or when the pointer
is moved into a widget, use Xt MenuPopup, or its synonym, MenuPopup. From a translation writer's
point of view, the definition for this translation action is

voi d Xt MenuPopup(shel |l _nane);
shell_name Specifies the name of the shell widget to pop up.

Xt MenuPopup is known to the translation manager, which registers the corresponding built-in action
procedure Xt MenuPopupAct i on using Xt Regi st er G abAct i on specifying owner_events Tr ue,
event_mask But t onPr essMask | Butt onRel easeMask, and pointer_mode and keyboard mode
GrabMbdeAsync.

If Xt MenuPopup isinvoked on But t onPr ess, it calls Xt PopupSpr i ngLoaded on the specified
shell widget. If Xt MenuPopup is invoked on KeyPr ess or Ent er W ndow, it calls Xt Popup on
the specified shell widget with grab_kind set to Xt Gr abNonexcl usi ve. Otherwise, the trandation
manager generates a warning message and ignores the action.

Xt MenuPopup tries to find the shell by searching the widget tree starting at the widget in which it is
invoked. If it finds a shell with the specified name in the pop-up children of that widget, it pops up the
shell with the appropriate parameters. Otherwise, it moves up the parent chain to find a pop-up child with
the specified name. If Xt MenuPopup gets to the application top-level shell widget and has not found a
matching shell, it generates awarning and returns immediately.

Unmapping a Pop-Up Widget
Pop-ups can be popped down through several mechanisms:

e A cal to Xt Popdown
» The supplied callback procedure Xt Cal | backPopdown
» The standard tranglation action Xt MenuPopdown

To unmap a pop-up from within an application, use Xt Popdown.

voi d Xt Popdown(popup_shel l);

popup_shell Specifies the shell widget to pop down.
The Xt Popdown function performs the following:

e Cals Xt CheckSubcl ass to ensure popup_shell'sclassisasubclass of shel | W dget Cl ass.

» Checksthat the popped _up field of popup_shell is Tr ue; otherwise, it returnsimmediately.

» Unmaps popup_shell'swindow and, if override redirect is Fal se, sends a synthetic UnmapNot i fy
event as specified by the Inter-Client Communication Conventions Manual.

 If popup_shell's grab kind is either Xt G- abNonexcl usi ve or Xt GrabExcl usi ve, it calls
Xt RenoveG ab.

Pop-Up Widgets

* Sets popup_shell's popped up field to Fal se.

« Callsthe callback procedures on the shell's popdown_callback list, specifying a pointer to the value of
the shell'sgrab_kind field as the call_data argument.

To pop down a pop-up from a callback list, you may use the callback Xt Cal | backPopdown.

voi d Xt Cal | backPopdown(w, client_data, call_data);

w Specifies the widget.

client_data Specifies a pointer to the Xt Popdownl D structure.

call_data Specifies the callback data argument, which is not used by this
procedure.

The Xt Cal | backPopdown function casts the client data parameter to a pointer of type
Xt Popdownl D.

typedef struct {
W dget shel | _wi dget;
W dget enabl e_wi dget ;
} Xt Popdownl DRec, * Xt Popdownl D;

The shell_widget is the pop-up shell to pop down, and the enable widget is usually the widget that was
used to pop it up in one of the pop-up callback convenience procedures.

Xt Cal | backPopdown calls Xt Popdown with the specified shell widget and then calls
Xt Set Sensi ti ve toresensitize enable widget.

Within atrang ation table, to pop down a spring-loaded menu when a key or pointer button is released or
when the pointer is moved into awidget, use Xt MenuPopdown or its synonym, MenuPopdown. From
atranglation writer's point of view, the definition for this trandation action is

voi d Xt MenuPopdown(shel | _nane);
shell_name Specifies the name of the shell widget to pop down.

If a shell name is not given, Xt MenuPopdown calls Xt Popdown with the widget for which the
trangdation is specified. If shell_nameis specified in the trandation table, Xt MenuPopdown triesto find
the shell by looking up the widget tree starting at the widget in which it isinvoked. If it finds a shell with
the specified name in the pop-up children of that widget, it pops down the shell; otherwise, it moves up the
parent chain to find a pop-up child with the specified name. If Xt MenuPopdown gets to the application
top-level shell widget and cannot find a matching shell, it generates a warning and returns immediately.

85

Chapter 6. Geometry Management

A widget does not directly control its size and location; rather, its parent is responsible for controlling
them. Although the position of childrenisusually left up to their parent, the widgets themsel ves often have
the best idea of their optimal sizes and, possibly, preferred locations.

To resolve physical layout conflicts between sibling widgets and between a widget and its parent, the
Intrinsics provide the geometry management mechanism. Almost all composite widgets have a geometry
manager specified in the geometry _manager field inthe widget classrecord that isresponsiblefor the size,
position, and stacking order of the widget's children. The only exception is fixed boxes, which create their
children themselves and can ensure that their children will never make a geometry request.

Initiating Geometry Changes

Parents, children, and clients each initiate geometry changes differently. Because a parent has absolute
control of its children's geometry, it changes the geometry directly by caling Xt MoveW dget ,
Xt Resi zeW dget , or Xt Confi gur eW dget . A child must ask its parent for a geometry change
by calling Xt MakeCGeonet r yRequest or Xt MakeResi zeRequest . An application or other client
code initiates a geometry change by calling Xt Set Val ues on the appropriate geometry fields, thereby
giving the widget the opportunity to modify or reject the client request before it gets propagated to the
parent and the opportunity to respond appropriately to the parent's reply.

When a widget that needs to change its size, position, border width, or stacking depth asks its parent's
geometry manager to make the desired changes, the geometry manager can alow the request, disallow
the request, or suggest a compromise.

When the geometry manager is asked to change the geometry of a child, the geometry manager may also
rearrange and resize any or al of the other children that it controls. The geometry manager can move
children around freely using Xt MoveW dget . When it resizes a child (that is, changes the width, height,
or border width) other than the one making the request, it should do so by calling Xt Resi zeW dget .
Therequesting child may be given special treatment; seethe section called “ Child Geometry M anagement:
The geometry_manager Procedure”. It can simultaneously move and resize a child with a single call to
Xt Confi gur eW dget .

Often, geometry managers find that they can satisfy a request only if they can reconfigure a widget that
they arenot in control of; in particular, the composite widget may want to changeits own size. In thiscase,
the geometry manager makes a request to its parent's geometry manager. Geometry requests can cascade
thisway to arbitrary depth.

Because such cascaded arbitration of widget geometry can involve extended negotiation, windows are not
actually allocated to widgets at application startup until all widgets are satisfied with their geometry; see
the section called “ Creating Widgets’ and the section called “Realizing Widgets'.

Note

1. Thelntrinsicstreatment of stacking requestsisdeficient in several areas. Stacking requestsfor
unrealized widgets are granted but will have no effect. In addition, there is no way to do an
Xt Set Val ues that will generate a stacking geometry request.

2. After asuccessful geometry request (onethat returned Xt Georret r y Yes), awidget does not
know whether its resize procedure has been called. Widgets should have resize procedures
that can be called more than once without ill effects.

86

Geometry Management

General Geometry Manager Requests

When making a geometry request, the child specifiesan Xt W dget Geonet r y structure.

t ypedef unsigned | ong Xt GeonetryMask;
typedef struct {

}

Xt Georret ryMask request _node;

Posi tion X, VY;

Di nensi on wi dt h, hei ght;
Di mensi on border _wi dt h;
W dget si bli ng;

i nt st ack_node;

Xt W dget Geonetry;

To make a general geometry manager request from awidget, use Xt MakeGeonet r yRequest .

Xt GeonetryResul t Xt MakeGeonet r yRequest (w, request, reply_return);

w Specifies the widget making the request. Must be of class RectObj
or any subclass thereof.

request Specifiesthe desired widget geometry (size, position, border width,
and stacking order).

reply_return Returnsthe allowed widget size, or may be NULL if the requesting

widget is not interested in handling Xt Geonet r yAl nost .

Depending on the condition, Xt MakeGeonet r yRequest performsthe following:

If the widget is unmanaged or the widget's parent is not realized, it makes the changes and returns
Xt GeonetryYes.

If the parent's classisnot asubclassof conposi t eW dget Cl ass or the parent'sgeometry_manager
fieldisNULL, it issues an error.

If the widget's being_destroyed field is Tr ue, it returns Xt Geonet r yNo.

If the widget x, y, width, height, and border_width fields are all equal to the requested values, it
returns Xt Geonet r yYes; otherwise, it callsthe parent's geometry _manager procedure with the given
parameters.

If the parent's geometry manager returns Xt Geonet ryYes and if Xt CWQueryOnl y is not set
in request->request_mode and if the widget is realized, Xt MakeGeonet r yRequest calls the
XConf i gur eW ndow Xlib function to reconfigure the widget's window (set its size, location, and
stacking order as appropriate).

If the geometry manager returns Xt Geonet r yDone, the change has been approved and actually
has been done. In this case, Xt MakeGeonetryRequest does no configuring and returns
Xt Geonet ryYes. Xt MakeGeonet r yRequest never returns Xt Geonet r yDone.

Otherwise, Xt MakeGeonet r yRequest just returns the resulting value from the parent's geometry
manager.

Children of primitive widgets are always unmanaged; therefore, Xt MakeCGeonet r yRequest aways
returns Xt Geonet r yYes when called by a child of a primitive widget.

The return codes from geometry managers are

typedef enum {

87

Geometry Management

Xt GeonetryYes,
Xt Geonret r yNo,
Xt Geonet r yAl nost ,
Xt Geonet r yDone
} Xt GeonetryResult;

Therequest_mode definitions are from <X11/ X. h>.

#define CWK (1<<0)
#define cwy (1<<1)
#define CWA dt h (1<<?2)
#define CWHei ght (1<<3)
#define CWBor der W dt h (1<<4)
#define CWsi bl i ng (1<<5)
#define CWst ackMbde (1<<6)

The Intrinsics a so support the following value.
#define Xt CWueryOnl y (1<<7)

Xt CWuer yOnl y indicates that the corresponding geometry request is only a query as to what would
happen if this geometry request were made and that no widgets should actually be changed.

Xt MakeGeonet r yRequest , like the XConf i gur eW ndow Xlib function, uses request_mode to
determine which fieldsin the Xt W dget Geomet r y structure the caller wants to specify.

The stack_mode definitions are from <X11/ X. h>:

#define Above 0
#define Bel ow 1
#define Topl f 2
#define Bot t ol f 3
#define Opposi te 4
The Intrinsics al so support the following value.

#define Xt SMDont Change 5

For definition and behavior of Above, Bel ow, Topl f,Bott om f, and Opposi t e, BLAH in Xlib —
C Language X Interface. Xt SMDont Change indicates that the widget wants its current stacking order
preserved.

Resize Requests

To make asimple resize request from awidget, you can use Xt MakeResi zeRequest asan adternative
to Xt MakeGeonet r yRequest .

t ypedef Xt GeonmetryResult Xt MakeResi zeRequest(w, width, width return);

w Specifies the widget making the request. Must be of class RectObj
or any subclass thereof.

88

Geometry Management

width Specify the desired widget width and height.
height
width_return Return the allowed widget width and height.

height_return

The Xt MakeResi zeRequest function, a simple interface to Xt MakeGeonet r yRequest , creates
an Xt W dget Geonetry structure and specifies that width and height should change by setting
request_mode to CWN dt h | CWHei ght . The geometry manager is free to modify any of the other
window attributes (position or stacking order) to satisfy the resize request. If the return value is
Xt Geonret r yAl nost , width_return and height_return contain acompromise width and height. If these
are acceptable, the widget should immediately call Xt MakeResi zeRequest again and request that the
compromise width and height be applied. If thewidget isnot interested in Xt Geonet r yAl nost replies,
it can pass NULL for width_return and height_return.

Potential Geometry Changes

Sometimes a geometry manager cannot respond to a geometry request from a child without first making
a geometry request to the widget's own parent (the original regquestor's grandparent). If the request to the
grandparent would allow the parent to satisfy the original request, the geometry manager can make the
intermediate geometry request as if it were the originator. On the other hand, if the geometry manager
already has determined that the original request cannot be completely satisfied (for example, if it always
denies position changes), it needs to tell the grandparent to respond to the intermediate request without
actually changing the geometry because it does not know if the child will accept the compromise. To
accomplish this, the geometry manager uses Xt CWQuer yOnl y in the intermediate request.

When Xt CWuer yOnl y is used, the geometry manager needs to cache enough information to exactly
reconstruct the intermediate request. If the grandparent's response to the intermediate query was
Xt Geonret r yAl nost , the geometry manager needs to cache the entire reply geometry in the event the
child accepts the parent's compromise.

If the grandparent's response was Xt Geonet r yAl nost , it may also be necessary to cache the entire
reply geometry from the grandparent when Xt CWQuer yOnl y isnot used. If the geometry manager is till
able to satisfy the original request, it may immediately accept the grandparent's compromise and then act
on the child'srequest. If the grandparent's compromise geometry isinsufficient to allow the child's request
and if the geometry manager is willing to offer a different compromise to the child, the grandparent's
compromise should not be accepted until the child has accepted the new compromise.

Note that a compromise geometry returned with Xt Geonet r yAl nost is guaranteed only for the next
call to the same widget; therefore, a cache of size 1 is sufficient.

Child Geometry Management: The
geometry_manager Procedure

Thegeometry _manager procedure pointer in acompositewidget classisof type Xt Geonet r yHandl er .

t ypedef Xt Geonet ryResul t * Xt Geonet r yHandl er (w, request,
geonetry_return);

w Passes the widget making the request.

request Passes the new geometry the child desires.

89

Geometry Management

geometry return Passes a geometry structure in which the geometry manager may
store a compromise.

A class can inherit its superclass's geometry manager during class initialization.

A bit set to zero in the request's request_mode field means that the child widget does not care about the
value of the corresponding field, so the geometry manager can change thisfield as it wishes. A bit set to
1 means that the child wants that geometry element set to the value in the corresponding field.

If the geometry manager can satisfy all changes requested and if Xt C\Quer yOnl y is not specified,
it updates the widget's x, y, width, height, and border_width fields appropriately. Then, it returns
Xt Geonret ryYes, and the values pointed to by the geometry return argument are undefined. The
widget's window is moved and resized automatically by Xt MakeGeonet r yRequest .

Homogeneous composite widgets often find it convenient to treat the widget making the request the same
as any other widget, including reconfiguring it using Xt Conf i gur eW dget or Xt Resi zeW dget
as part of its layout process, unless Xt CWuer yOnl y is specified. If it does this, it should return
Xt Geonet r yDone toinform Xt MakeGeonet r yRequest that it doesnot need to do the configuration
itself.

Note

To remain compatible with layout techniques used in older widgets (before Xt Geonet r yDone
was added to the Intrinsics), a geometry manager should avoid using Xt Resi zeW dget or
Xt Confi gur eW dget on the child making the request because the layout process of the child
may be in an intermediate state in which it is not prepared to handle acall to itsresize procedure.
A self-contained widget set may choose this aternative geometry management scheme, however,
provided that it clearly warns widget devel opers of the compatibility consequences.

Although Xt MakeCGeonet r yRequest resizes the widget's window (if the geometry manager returns
Xt Geonet ryYes), it does not cal the widget class's resize procedure. The requesting widget must
perform whatever resizing cal culations are needed explicitly.

If the geometry manager disallows the request, the widget cannot change its geometry. The val ues pointed
to by geometry_return are undefined, and the geometry manager returns Xt Geonet r yNo.

Sometimes the geometry manager cannot satisfy the request exactly but may be able to satisfy a similar
request. That is, it could satisfy only asubset of the requests (for example, size but not position) or alesser
request (for example, it cannot make the child as big as the request but it can make the child bigger than
its current size). In such cases, the geometry manager fillsin the structure pointed to by geometry return
with the actual changesit is willing to make, including an appropriate request_mode mask, and returns
Xt Geonet r yAl nost . If abitin geometry return->request modeis zero, the geometry manager agrees
not to change the corresponding value if geometry return isused immediately in anew request. If abitis
1, the geometry manager does change that element to the corresponding value in geometry return. More
bits may be set in geometry_return->request_mode than in the original request if the geometry manager
intends to change other fields should the child accept the compromise.

When Xt Geonet r yAl nost is returned, the widget must decide if the compromise suggested in
geometry return is acceptable. If it is, the widget must not change its geometry directly; rather, it must
make another call to Xt MakeCGeonet r yRequest .

If the next geometry request from this child uses the geometry return values filled in by the geometry
manager withan Xt Geonet r yAl nost returnand if there have been no intervening geometry requestson
either its parent or any of its other children, the geometry manager must grant the request, if possible. That
is, if the child asksimmediately with the returned geometry, it should get an answer of Xt Geonet r yYes.
However, dynamic behavior in the user's window manager may affect the final outcome.

90

Geometry Management

Toreturn Xt Geonet r yYes, the geometry manager frequently rearranges the position of other managed
children by caling Xt MoveW dget . However, a few geometry managers may sometimes change
the size of other managed children by calling Xt Resi zeW dget or Xt Confi gur eW dget . If
Xt CWuer yOnl y is specified, the geometry manager must return data describing how it would react to
this geometry request without actually moving or resizing any widgets.

Geometry managers must not assumethat the request and geometry_return arguments point to independent
storage. The caller is permitted to use the same field for both, and the geometry manager must allocate
its own temporary storage, if necessary.

Widget Placement and Sizing

To move asibling widget of the child making the geometry request, the parent uses Xt MoveW dget .

voi d Xt MoveW dget (w, X, Vy);

w Specifies the widget. Must be of class RectObj or any subclass thereof.
X
y Specify the new widget X and y coordinates.

The Xt MoveW dget function returns immediately if the specified geometry fields are the same as the
old values. Otherwise, Xt MoveW dget writesthe new x and y values into the object and, if the object is
awidget and isrealized, issues an Xlib XMbveW ndow call on the widget's window.

Toresize asibling widget of the child making the geometry request, the parent uses Xt Resi zeW dget .

voi d Xt Resi zeW dget (w, width, height, border_wi dth);

w Specifies the widget. Must be of class RectObj or any subclass
thereof.

width

height

border_width Specify the new widget size.

The Xt Resi zeW dget function returns immediately if the specified geometry fields are the same as
the old values. Otherwise, Xt Resi zeW dget writes the new width, height, and border_width values
into the object and, if the object is awidget and is realized, issues an XConf i gur eW ndow call on the
widget's window.

If the new width or height is different from the old values, Xt Resi zeW dget callsthe object's resize
procedure to notify it of the size change.

To move and resize the sibling widget of the child making the geometry request, the parent uses
Xt Confi gur eW dget .

voi d Xt ConfigureWdget(w, x, y, width, height, border_w dth);

w Specifies the widget. Must be of class RectObj or any subclass
thereof.

91

Geometry Management

y Specify the new widget x and y coordinates.
width

height

border_width Specify the new widget size.

The Xt Confi gur eW dget function returns immediately if the specified new geometry fields are
all equal to the current values. Otherwise, Xt Conf i gur eW dget writes the new X, y, width, height,
and border_width values into the object and, if the object is a widget and is realized, makes an Xlib
XConf i gur eW ndow call on the widget's window.

If the new width or height is different from itsold value, Xt Conf i gur eW dget callsthe object'sresize
procedure to notify it of the size change; otherwise, it simply returns.

To resize a child widget that already has the new values of its width, height, and border width, the parent
uses Xt Resi zeW ndow.

voi d Xt Resi zeW ndow(W) ;
w Specifies the widget. Must be of class Core or any subclass thereof.

The Xt Resi zeW ndow function calls the XConf i gur eW ndow Xlib function to make the window
of the specified widget match its width, height, and border width. This request is done unconditionally
because there is no inexpensive way to tell if these values match the current values. Note that the widget's
resize procedureis not called.

Therearevery few timesto use Xt Resi zeW ndow; instead, the parent should use Xt Resi zeW dget .

Preferred Geometry

Some parents may be willing to adjust their layouts to accommodate the preferred geometries of their
children. They can use Xt Quer yGeonet r y to obtain the preferred geometry and, as they see fit, can
use or ignore any portion of the response.

To query achild widget's preferred geometry, use Xt Quer yGeonet ry.

Xt GeonretryResult Xt QueryGeonetry(w, intended, preferred_return);

w Specifies the widget. Must be of class RectObj or any subclass
thereof.

intended Specifies the new geometry the parent plans to give to the child,
or NULL.

preferred return Returns the child widget's preferred geometry.

To discover achild's preferred geometry, the child's parent stores the new geometry in the corresponding
fields of the intended structure, sets the corresponding bits in intended.request mode, and calls
Xt Quer yGeonet ry. The parent should set only those fields that are important to it so that the child can
determine whether it may be able to attempt changes to other fields.

Xt Quer yGeonet ry clears al hits in the preferred return->request_mode field and checks the
query_geometry field of the specified widget's class record. If query geometry is not NULL,
Xt Quer yGeonet ry callsthe query_geometry procedure and passes as arguments the specified widget,

92

Geometry Management

intended, and preferred_return structures. If the intended argument is NULL, Xt Quer yGeonet ry
replaces it with a pointer to an Xt W dget Geonet r y structure with request_ mode equal to zero before
calling the query_geometry procedure.

Note

If Xt Quer yGeonetry is caled from within a geometry _manager procedure for the widget
that issued Xt MakeGeonet r yRequest or Xt MakeResi zeRequest , the results are not
guaranteed to be consistent with the requested changes. The change request passed to the
geometry manager takes precedence over the preferred geometry.

The query_geometry procedure pointer is of type Xt Geonet r yHandl er .

t ypedef Xt Geonet ryResul t (* Xt Geonet ryHandl er) (w, request,
preferred_return);

w Passes the child widget whose preferred geometry is required.
request Passes the geometry changes that the parent plans to make.
preferred _return Passes a structure in which the child returnsits preferred geometry.

The query_geometry procedure is expected to examine the bits set in request->request_mode,
evaluate the preferred geometry of the widget, and store the result in preferred return (setting
the bits in preferred return->request_mode corresponding to those geometry fields that it cares
about). If the proposed geometry change is acceptable without modification, the query geometry
procedure should return Xt Geonet ryYes. If at least one field in preferred return with a bit set in
preferred return->request_mode is different from the corresponding field in request or if a bit was
set in preferred _return->request_mode that was not set in the request, the query _geometry procedure
should return Xt Geonet r yAl nost . If the preferred geometry isidentical to the current geometry, the
query_geometry procedure should return Xt Geonet r yNo.

Note

The query_geometry procedure may assume that no Xt MakeResi zeRequest or
Xt MakeGeonet r yRequest isin progress for the specified widget; that is, it is not required
to construct a reply consistent with the requested geometry if such a request were actually
outstanding.

After caling the query geometry procedure or if the query geometry field is NULL,
Xt Quer yGeonet ry examines al the unset bits in preferred return->request_mode and sets the
corresponding fieldsin preferred_return to the current valuesfrom the widget instance. If CWSt ackMbde
is not set, the stack_mode field is set to Xt SMDont Change. Xt Quer yGeonet ry returns the value
returned by the query _geometry procedure or Xt Geonet r yYes if the query_geometry field isNULL.

Therefore, the caller can interpret areturn of Xt Geonet r y Yes asnot needing to eval uate the contents of
the reply and, more important, not needing to modify itslayout plans. A return of Xt Geonet r yAl nost
means either that both the parent and the child expressed interest in at least one common field and the
child's preference does not match the parent'sintentions or that the child expressed interest in afield that the
parent might need to consider. A return value of Xt Geonret r yNo meansthat both the parent and the child
expressed interest in afield and that the child suggests that the field's current value in the widget instance
isits preferred value. In addition, whether or not the caller ignores the return value or the reply mask, itis
guaranteed that the preferred_return structure contains complete geometry information for the child.

Parentsare expectedtocall Xt Quer yGeonet r y intheir layout routine and wherever elsetheinformation
is significant after change_managed has been called. The first time it is invoked, the changed _managed

93

Geometry Management

procedure may assume that the child's current geometry isits preferred geometry. Thus, the child is till
responsible for storing values into its own geometry during its initialize procedure.

Size Change Management: The resize
Procedure

A child can be resized by its parent at any time. Widgets usually need to know when they have changed
size so that they can lay out their displayed dataagain to match the new size. When aparent resizesachild,
it calls Xt Resi zeW dget , which updates the geometry fields in the widget, configures the window if
thewidget isrealized, and callsthe child'sresize procedure to notify the child. The resize procedure pointer
isof type Xt W dget Pr oc.

If a class need not recalculate anything when a widget is resized, it can specify NULL for the resize
field in its class record. This is an unusual case and should occur only for widgets with very trivial
display semantics. The resize procedure takes a widget as its only argument. The x, y, width, height, and
border_width fields of the widget contain the new values. The resize procedure should recalculate the
layout of internal data as needed. (For example, a centered Label in a window that changes size should
recalculate the starting position of the text.) The widget must obey resize as acommand and must not treat
it asarequest. A widget must not issue an Xt MakeGeonet r yRequest or Xt MakeResi zeRequest
call from its resize procedure.

94

Chapter 7. Event Management

While Xlib allows the reading and processing of events anywhere in an application, widgets in the X
Toolkit neither directly read events nor grab the server or pointer. Widgets register procedures that are to
be called when an event or class of events occursin that widget.

A typical application consists of startup code followed by an event loop that reads events and dispatches
them by calling the procedures that widgets have registered. The default event loop provided by the
Intrinsicsis Xt AppMai nLoop.

The event manager is a collection of functions to perform the following tasks:

« Add or remove event sources other than X server events (in particular, timer interrupts, file input, or
POSIX signals).

* Query the status of event sources.

» Add or remove procedures to be called when an event occurs for a particular widget.

» Enable and disablethe dispatching of user-initiated events (keyboard and pointer events) for aparticular
widget.

 Constrain the dispatching of eventsto a cascade of pop-up widgets.

* Register procedures to be called when specific events arrive.

 Register procedures to be called when the Intrinsics will block.

» Enable safe operation in a multi-threaded environment.

Most widgets do not need to call any of the event handler functions explicitly. The normal interface to X
eventsisthrough the higher-level translation manager, which maps sequences of X events, with modifiers,
into procedure calls. Applicationsrarely use any of the event manager routinesbesides Xt AppMai nLoop.

Adding and Deleting Additional Event Sources

While most applications are driven only by X events, some applications need to incorporate other sources
of input into the Intrinsics event-handling mechanism. The event manager provides routines to integrate
notification of timer events and file data pending into this mechanism.

The next section describes functions that provide input gathering from files. The application registers the

files with the Intrinsics read routine. When input is pending on one of the files, the registered callback
procedures are invoked.

Adding and Removing Input Sources

To register anew file as an input source for a given application context, use Xt AppAddl nput .

Xt | nputld Xt AppAddl nput (app_cont ext, source, condi tion, proc,
client_data);

app_context Specifies the application context that identifies the application.
source Specifiesthe sourcefile descriptor on a POSI X -based system or other

operating-system-dependent device specification.

condition Specifiesthe mask that indicates aread, write, or exception condition
or some other operating-system-dependent condition.

proc Specifies the procedure to be called when the condition is found.

95

Event Management

client_data Specifies an argument passed to the specified procedure when it is
caled.

The Xt AppAddl nput function registerswith the Intrinsics read routine anew source of events, whichis
usualy file input but can aso be file output. Note that file should be loosely interpreted to mean any sink
or source of data. Xt AppAddI nput also specifies the conditions under which the source can generate
events. When an event is pending on this source, the callback procedureis called.

Thelegal values for the condition argument are operating-system-dependent. On a POSI X -based system,
sourceis afile number and the condition is some union of the following:

XtInputReadM ask Specifiesthat proc is to be called when source has data to be read.
XtlnputWriteM ask Specifiesthat proc isto be called when source isready for writing.
XtlnputExceptM ask Specifiesthat proc is to be called when source has exception data.

Callback procedure pointers used to handle file events are of type (* Xt | nput Cal | backPr oc) .
typedef void (*XtlnputCallbackProc)(client_data, source, id);

client_data Passesthe client data argument that was registered for this procedure
in Xt AppAddl nput .

source Passes the source file descriptor generating the event.
id Passes the id returned from the corresponding Xt AppAddl nput
cal.

See the section called “Using the Intrinsics in a Multi-Threaded Environment” for information regarding
the use of Xt AppAddI nput in multiple threads.

To discontinue a source of input, use Xt Renovel nput .
voi d Xt Renovel nput (i d);
id Specifiesthe id returned from the corresponding Xt AppAddI nput call.

The Xt Renovel nput function causes the Intrinsics read routine to stop watching for events from the
file source specified by id.

See the section called “Using the Intrinsics in a Multi-Threaded Environment” for information regarding
the use of Xt Renovel nput in multiple threads.

Adding and Removing Blocking Notifications

Occasionadly it is desirable for an application to receive notification when the Intrinsics event manager
detects no pending input from file sources and no pending input from X server event sources and is about
to block in an operating system call.

To register ahook that is called immediately prior to event blocking, use Xt AppAddBI ockHook.

Xt Bl ockHookl d Xt AppAddBl ockHook(app_context, proc, client_data);

app_context Specifies the application context that identifies the application.

96

Event Management

proc Specifies the procedure to be called before blocking.
client_data Specifies an argument passed to the specified procedure when it is
called.

The Xt AppAddBl ockHook function registers the specified procedure and returns an identifier for it.
The hook procedure procis called at any timein the future when the Intrinsics are about to block pending
some input.

The procedure pointers used to provide notification of event blocking are of type Xt Bl ockHookPr oc.
typedef void *Xt Bl ockHookProc(client_data);

client_data Passes the client data argument that was registered for this procedure
in Xt AppAddBI ockHook.

To discontinue the use of aprocedure for blocking notification, use Xt RenoveBl ockHook.
voi d Xt RenoveBl ockHook(i d);

id Specifies the identifier returned from the corresponding cal to
Xt AppAddBl ockHook.

The Xt RenpveBl ockHook function removes the specified procedure from the list of procedures that
are called by the Intrinsics read routine before blocking on event sources.

Adding and Removing Timeouts

The timeout facility notifies the application or the widget through a callback procedure that a specified
time interval has elapsed. Timeout values are uniquely identified by an interval id.

To register atimeout callback, use Xt AppAddTi meQut .

Xtinterval I d Xt AppAddTi meQut (app_context, interval, proc, client_data);

app_context Specifies the application context for which the timer isto be set.

interval Specifies the time interval in milliseconds.

proc Specifies the procedure to be called when the time expires.

client_data S;T:;fies an argument passed to the specified procedure when it is
called.

The Xt AppAddTi meQut function creates a timeout and returns an identifier for it. The timeout
value is set to interval. The callback procedure proc is called when Xt AppNext Event or
Xt AppPr ocessEvent isnext called after the time interval elapses, and then the timeout is removed.

Callback procedure pointers used with timeouts are of type Xt Ti mer Cal | backPr oc.
typedef void *XtTimerCall backProc(client_data, timer);

client_data Passes the client data argument that was registered for this procedure
in Xt AppAddTi meCut .

timer Passestheid returned from the corresponding Xt AppAddTi neQut
cal.

97

Event Management

See the section called “Using the Intrinsics in a Multi-Threaded Environment” for information regarding
the use of Xt AppAddTi neQut in multiple threads.

To clear atimeout value, use Xt RenoveTi neQut .
voi d Xt RenmoveTi meQut (timer);
timer Specifiestheid for the timeout request to be cleared.

The Xt RenpveTi meQut function removes the pending timeout. Note that timeouts are automatically
removed once they trigger.

Pleaserefer to Section 7.12 for information regarding the use of Xt RenoveTi neQut inmultiplethreads.

Adding and Removing Signal Callbacks

The signal facility notifies the application or the widget through a callback procedure that asignal or other
external asynchronous event has occurred. The registered callback procedures are uniquely identified by
asigna id.

Prior to establishing asignal handler, the application or widget should call Xt AppAddSi gnal and store
the resulting identifier in aplace accessible to the signal handler. When asignal arrives, the signal handler
should call Xt Not i ceSi gnal to notify the Intrinsics that a signal has occurred. To register a signal
callback use Xt AppAddSi gnal .

Xt Si gnal | d Xt AppAddSi gnal (app_context, proc, client_data);

app_context Specifies the application context that identifies the application.

proc Specifies the procedure to be called when the signal is noticed.

client_data Specifies an argument passed to the specified procedure when it is
called.

The callback procedure pointers wused to handle signa events are of type
(*Xt Si gnal Cal | backProc).

typedef void (*XtSignal Cal |l backProc)(client_data, id);

client_data Passes the client data argument that was registered for this procedure
in Xt AppAddSi gnal .

id Passes the id returned from the corresponding Xt AppAddSi gnal
cal.

To notify the Intrinsics that asignal has occurred, use Xt Not i ceSi gnal .
voi d Xt NoticeSignal (id);
id Specifiesthe id returned from the corresponding Xt AppAddSi gnal call.

On a POSIX-based system, Xt Not i ceSi gnal isthe only Intrinsics function that can safely be called
from asignal handler. If Xt Not i ceSi gnal isinvoked multiple times before the Intrinsics are able to
invoketheregistered callback, the callback isonly called once. Logically, thentrinsicsmaintain“ pending”
flag for each registered callback. Thisflagisinitially Fal se andissetto Tr ue by Xt Not i ceSi gnal .
When Xt AppNext Event or Xt AppPr ocessEvent (withamask including Xt | MsSi gnal) iscalled,
al registered callbacks with “pending” Tr ue areinvoked and the flags arereset to Fal se.

98

Event Management

If the signal handler wants to track how many times the signal has been raised, it can keep its own private
counter. Typically the handler would not do any other work; the callback does the actual processing for
the signal. The Intrinsics never block signals from being raised, so if agiven signal can beraised multiple
times before the Intrinsics can invoke the callback for that signal, the callback must be designed to deal
with this. In another case, asignal might be raised just after the Intrinsics sets the pending flag to Fal se
but before the callback can get control, in which case the pending flag will still be Tr ue after the callback
returns, and the Intrinsics will invoke the callback again, even though all of the signal raises have been
handled. The callback must also be prepared to handle this case.

To remove aregistered signal callback, call Xt RenoveSi gnal .
voi d Xt RemoveSi gnal (id);
id Specifies the id returned by the corresponding call to Xt AppAddSi gnal .

The client should typically disable the source of the signal before calling Xt RenoveSi gnal . If the
signal could have been raised again before the source was disabled and the client wants to process it,
then after disabling the source but before calling Xt RenoveSi gnal the client can test for signals with
Xt AppPendi ng and process them by calling Xt AppPr ocessEvent with themask Xt | M5i gnal .

Constraining Events to a Cascade of Widgets

Modal widgets are widgetsthat, except for theinput directed to them, lock out user input to the application.

When amodal menu or modal dialog box ispopped up using Xt Popup, user events (keyboard and pointer
events) that occur outside the modal widget should be delivered to the modal widget or ignored. In no case
will user events be delivered to awidget outside the modal widget.

Menus can pop up submenus, and dial og boxes can pop up further dialog boxesto create a pop-up cascade.
In this case, user events may be delivered to one of several modal widgetsin the cascade.

Display-related events should be delivered outside the modal cascade so that exposure events and the
like keep the application's display up-to-date. Any event that occurs within the cascade is delivered as
usual. The user events delivered to the most recent spring-loaded shell in the cascade when they occur
outside the cascade are called remap events and are KeyPr ess, KeyRel ease, But t onPr ess, and
But t onRel ease. The user events ignored when they occur outside the cascade are Mot i onNot i fy
and Ent er Not i f y. All other events are delivered normally. In particular, note that thisis one way in
which widgets can receive LeaveNot i fy events without first receiving Ent er Not i f y events; they
should be prepared to deal with this, typically by ignoring any unmatched LeaveNot i f y events.

Xt Popup uses the Xt AddGr ab and Xt RenpoveG ab functions to constrain user events to a modal
cascade and subsequently to remove a grab when the modal widget is popped down.

To constrain or redirect user input to amodal widget, use Xt AddGr ab.
voi d Xt AddG ab(w, exclusive, spring_ | oaded);

w Specifies the widget to add to the modal cascade. Must be of class
Core or any subclass thereof.

exclusive Specifies whether user events should be dispatched exclusively to
this widget or aso to previous widgets in the cascade.

spring_loaded Specifies whether this widget was popped up because the user
pressed a pointer button.

99

Event Management

The Xt AddGr ab function appends the widget to the modal cascade and checks that exclusiveis Tr ue if
spring_loaded is Tr ue. If this condition is not met, Xt AddGr ab generates awarning message.

The modal cascadeisused by Xt Di spat chEvent when it triesto dispatch a user event. When at |east
one modal widget isin the widget cascade, Xt Di spat chEvent first determinesif the event should be
delivered. It starts at the most recent cascade entry and follows the cascade up to and including the most
recent cascade entry added with the exclusive parameter Tr ue.

This subset of the modal cascade along with all descendants of these widgets comprise the active subset.
User events that occur outside the widgets in this subset are ignored or remapped. Modal menus with
submenus generally add a submenu widget to the cascade with exclusive Fal se. Modal dialog boxes that
need to restrict user input to the most deeply nested dialog box add a subdialog widget to the cascade with
exclusive Tr ue. User events that occur within the active subset are delivered to the appropriate widget,
whichis usually achild or further descendant of the modal widget.

Regardless of where in the application they occur, remap events are always delivered to the most recent
widget in the active subset of the cascade registered with spring_loaded Tr ue, if any such widget exists.
If the event occurred in the active subset of the cascade but outside the spring-loaded widget, it isdelivered
normally before being delivered a so to the spring-loaded widget. Regardless of whereit is dispatched, the
Intrinsics do not modify the contents of the event.

To remove the redirection of user input to amodal widget, use Xt RenmoveGr ab.

voi d Xt RemoveG ab(w);

w Specifies the widget to remove from the modal cascade.

TheXt RenmoveG ab function removeswidgetsfrom the modal cascade starting at the most recent widget

up to and including the specified widget. It issues awarning if the specified widget is not on the modal
cascade.

Requesting Key and Button Grabs

Thelntrinsics provide aset of key and button grab interfacesthat are parallel to those provided by Xlib and
that allow the Intrinsics to modify event dispatching when necessary. X Toolkit applications and widgets
that need to passively grab keysor buttonsor actively grab the keyboard or pointer should usethefollowing
Intrinsics routines rather than the corresponding Xlib routines.

To passively grab asingle key of the keyboard, use Xt G- abKey.

voi d Xt G abKey(wi dget, keycode, nodifiers, owner_events, pointer_node,
keyboar d_node);

widget Specifies the widget in whose window the key is to be grabbed.
Must be of class Core or any subclass thereof.

keycode, modifiers, Specify arguments to XGr abKey; see Section 12.2 in Xlib — C

owner_events, pointer_mode, Language X Interface.

keyboard_mode

Xt Gr abKey cals XGr abKey specifying the widget's window as the grab window if the widget is
realized. The remaining arguments are exactly as for XGr abKey. If the widget is not realized, or is
later unrealized, the call to XGr abKey is performed (again) when the widget is realized and its window
becomes mapped. In the future, if Xt Di spat chEvent iscaled with aKeyPr ess event matching the
specified keycode and modifiers (whichmay be Any Key or AnyModi f i er , respectively) for thewidget's

100

Event Management

window, the Intrinsicswill call Xt Ungr abKeyboar d with the timestamp from the Key Pr ess event if
either of the following conditionsistrue:

e Thereisamoda cascade and the widget is not in the active subset of the cascade and the keyboard
was not previously grabbed, or
o XFilterEvent returnsTr ue.

To cancel apassive key grab, use Xt Ungr abKey.
voi d Xt Ungr abKey(w dget, keycode, nodifiers);
widget Specifies the widget in whose window the key was grabbed.

keycode, modifiers Specify arguments to XUngr abKey; see Section 12.2 in Xlib — C
Language X Interface.

TheXt Ungr abKey procedurecallsXUngr abKey specifying thewidget'swindow asthe ungrab window
if the widget is realized. The remaining arguments are exactly as for XUngr abKey. If the widget is
not realized, Xt Ungr abKey removes a deferred Xt Gr abKey request, if any, for the specified widget,
keycode, and modifiers.

To actively grab the keyboard, use Xt G- abKeyboar d.

i nt Xt G abKeyboard(w dget, owner_events, pointer_node, keyboard_node,
time);

widget Specifies the widget for whose window the keyboard is to be

grabbed. Must be of class Core or any subclass thereof.
owner_events, pointer_mode, Specify argumentsto XGr abKeyboar d; see Section 12.2 in Xlib
keyboard mode, time — C Language X Interface.

If the specified widget is redized, Xt G abKeyboard cals XGr abKeyboar d specifying the
widget's window as the grab window. The remaining arguments and return value are exactly
as for XGr abKeyboar d. If the widget is not readlized, Xt G abKeyboar d immediately returns
Gr abNot Vi ewabl e. No future automatic ungrab isimplied by Xt G- abKeyboar d.

To cancel an active keyboard grab, use Xt Ungr abKeyboar d.
voi d Xt Ungr abKeyboar d(w dget, tine);
widget Specifies the widget that has the active keyboard grab.

time Specifiesthe additional argument to XUngr abKeyboar d; see Section 12.2
in Xlib — C Language X Interface.

Xt Ungr abKeyboar d calls XUngr abKeyboar d with the specified time.
To passively grab asingle pointer button, use Xt Gr abBut t on.

voi d Xt G abButton(w dget, button, nodifiers, owner_events, event_nask,
poi nt er _node, keyboard_node, confine_to, cursor);

widget Specifies the widget in whose window the button is to be grabbed.
Must be of class Core or any subclass thereof.

button, modifiers, owner_events Specify argumentsto XGr abBut t on; see Section 12.1in Xlib —
, event_mask, pointer_mode, C Language X Interface.

101

Event Management

keyboard mode, confine to,
cursor

Xt Gr abBut t on calls XGr abBut t on specifying the widget's window as the grab window if the widget
is realized. The remaining arguments are exactly as for XGr abBut t on. If the widget is not realized,
or is later unrealized, the call to XGr abBut t on is performed (again) when the widget is realized and
its window becomes mapped. In the future, if Xt Di spat chEvent is caled with a Butt onPr ess
event matching the specified button and modifiers (which may be AnyButt on or AnyModi fi er,
respectively) for the widget's window, the Intrinsics will call Xt Ungr abPoi nt er with the timestamp
fromthe But t onPr ess event if either of the following conditionsistrue:

e Thereisamodal cascade and the widget is not in the active subset of the cascade and the pointer was
not previously grabbed, or
* XFilterEvent returnsTrue.

To cancel apassive button grab, use Xt Ungr abBut t on.
voi d Xt UngrabButton(w dget, button, nodifiers);
widget Specifies the widget in whose window the button was grabbed.

button, modifiers Specify arguments to XUngr abBut t on; see Section 12.1 in Xlib —
C Language X Interface.

The Xt Ungr abBut t on procedure cals XUngr abBut t on specifying the widget's window as the
ungrab window if the widget is realized. The remaining arguments are exactly asfor XUngr abBut t on.
If the widget is not realized, Xt Ungr abBut t on removes a deferred Xt Gr abBut t on request, if any,
for the specified widget, button, and modifiers.

To actively grab the pointer, use Xt G- abPoi nt er .

int XtGabPointer(wi dget, owner_events, event_mask, pointer_node,
keyboard_node, confine_to, cursor, tinme);

widget Specifiesthe widget for whose window the pointer isto be grabbed.
Must be of class Core or any subclass thereof.

owner_events, event_mask , Specify arguments to XG- abPoi nt er ; see Section 12.1 in Xlib

pointer_mode, keyboard mode, — C Language X Interface.

confine to, cursor, time

If the specified widget is redized, Xt GrabPoi nter cals XG abPoi nt er, specifying the
widget's window as the grab window. The remaining arguments and return value are exactly
as for XG abPoi nter. If the widget is not readlized, Xt G- abPoi nt er immediately returns
G abNot Vi ewabl e. No future automatic ungrab isimplied by Xt G abPoi nt er .

To cancel an active pointer grab, use Xt Ungr abPoi nt er .
voi d Xt UngrabPoi nter (w dget, tinme);
widget Specifies the widget that has the active pointer grab.

time Specifiesthetimeargument to XUngr abPoi nt er ; seeSection12.1inXlib
— C Language X Interface.

Xt Ungr abPoi nt er callsXUngr abPoi nt er with the specified time.

102

Event Management

Focusing Events on a Child

To redirect keyboard input to a normal descendant of awidget without calling XSet | nput Focus, use
Xt Set Keyboar dFocus.

voi d Xt Set Keyboar dFocus(subtree, descendent);

subtree Specifies the subtree of the hierarchy for which the keyboard focusis
to be set. Must be of class Core or any subclass thereof.

descendant Specifies either the normal (non-pop-up) descendant of subtree to
which keyboard events are logically directed, or None. It is not an
error to specify None when no input focus was previously set. Must
be of class Object or any subclass thereof.

Xt Set Keyboar dFocus causes Xt Di spat chEvent to remap keyboard events occurring within the
specified subtree and dispatch them to the specified descendant widget or to an ancestor. If the descendant's
classis not asubclass of Core, the descendant is replaced by its closest windowed ancestor.

When there is ho modal cascade, keyboard events can be dispatched to a widget in one of five ways.
Assume the server delivered the event to the window for widget E (because of X input focus, key or
keyboard grabs, or pointer position).

« If neither E nor any of E's ancestors have redirected the keyboard focus, or if the event activated agrab
for E asspecified by acall to Xt Gr abKey with any value of owner_events, or if the keyboard isactively
grabbed by E with owner_events Fal se via Xt Gr abKeyboar d or Xt G abKey on a previous key
press, the event is dispatched to E.

» Beginning with the ancestor of E closest to the root that has redirected the keyboard focus or E if no
such ancestor exists, if the target of that focus redirection has in turn redirected the keyboard focus,
recursively follow this focus chain to find awidget F that has not redirected focus.

» « |f Eisthefinal focustarget widget F or a descendant of F, the event is dispatched to E.
< If Eisnot F, an ancestor of F, or adescendant of F, and the event activated a grab for E as specified

by acdl to Xt G abKey for E, Xt Ungr abKeyboar d iscalled.

« If Eisanancestor of F, and the event is akey press, and either

* E has grabbed the key with Xt G- abKey and owner_events Fal se, or

» Ehasgrabbedthekey with Xt Gr abKey and owner_events Tr ue, and the coordinates of the event
are outside the rectangle specified by E's geometry, then the event is dispatched to E.

» Otherwise, define A asthe closest common ancestor of E and F:

* If thereisan active keyboard grab for any widget viaeither Xt G- abKeyboar d or Xt G abKey
on aprevious key press, or if no widget between F and A (noninclusive) has grabbed the key and
modifier combination with Xt G- abKey and any value of owner_events, the event is dispatched
toF.

 Else, the event is dispatched to the ancestor of F closest to A that has grabbed the key and modifier
combination with Xt Gr abKey.

When thereisamodal cascade, if the final destination widget asidentified above isin the active subset of
the cascade, the event is dispatched; otherwise the event is remapped to a spring-loaded shell or discarded.
Regardless of where it is dispatched, the Intrinsics do not modify the contents of the event.

When subtree or one of its descendants acquires the X input focus or the pointer moves into the subtree
such that keyboard events would now be delivered to the subtree, a Focus| n event is generated for the
descendant if Focus Change events have been selected by the descendant. Similarly, when subtree loses
the X input focus or the keyboard focus for one of its ancestors, a FocusQut event is generated for
descendant if Focus Change events have been selected by the descendant.

103

Event Management

A widget tree may also actively manage the X server input focus. To do so, a widget class specifies an
accept_focus procedure.

The accept_focus procedure pointer is of type Xt Accept FocusPr oc.

t ypedef Bool ean *Xt Accept FocusProc(w, tine);

w Specifies the widget.

time Specifies the X time of the event causing the accept focus.

Widgets that need the input focus can call XSet | nput Focus explicitly, pursuant to the restrictions of
the Inter-Client Communication Conventions Manual. To allow outside agents, such asthe parent, to cause
a widget to take the input focus, every widget exports an accept_focus procedure. The widget returns a
value indicating whether it actually took the focus or not, so that the parent can give the focus to another
widget. Widgets that need to know when they lose the input focus must use the Xlib focus notification
mechanism explicitly (typically by specifyingtransationsfor Focus| n and FocusQut events). Widgets
classes that never want the input focus should set the accept_focus field to NULL.

To call awidget's accept_focus procedure, use Xt Cal | Accept Focus.

Bool ean Xt Cal | Accept Focus(w, tine);

w Specifies the widget. Must be of class Core or any subclass thereof.
time Specifies the X time of the event that is causing the focus change.

The Xt Cal | Accept Focus function calls the specified widget's accept_focus procedure, passing it the
specified widget and time, and returns what the accept_focus procedure returns. If accept_focusis NULL,
Xt Cal | Accept Focus returnsFal se.

Events for Drawables That Are Not a Widget's Window

Sometimes an application must handle events for drawables that are not associated with widgets in its
widget tree. Examples include handling Gr aphi csExpose and NoExpose events on Pixmaps, and
handling Pr oper t yNot i fy events on the root window.

To register adrawable with the Intrinsics event dispatching, use Xt Regi st er Dr awabl e.

voi d Xt Regi st erDrawabl e(di spl ay, drawable, w dget);

display Specifies the drawable's display.
drawable Specifies the drawable to register.
widget Specifies the widget to register the drawable for.

Xt Regi st er Dr awabl e associates the specified drawable with the specified widget so that future calls
to Xt W ndowToW dget with the drawable will return the widget. The default event dispatcher will
dispatch future events that arrive for the drawable to the widget in the same manner as events that contain
the widget's window.

If the drawable is aready registered with another widget, or if the drawable is the window of awidget in
the client's widget tree, the results of calling Xt Regi st er Dr awabl e are undefined.

To unregister a drawable with the Intrinsics event dispatching, use Xt Unr egi st er Dr awabl e.

voi d Xt Unregi st er Drawabl e(di spl ay, drawable);

104

Event Management

display Specifies the drawable's display.
drawable Specifies the drawable to unregister.

Xt Unr egi st er Dr anabl e removes an association created with Xt Regi st er Drawabl e. If
the drawable is the window of a widget in the client's widget tree the results of calling
Xt Unr egi st er Dr anabl e are undefined.

Querying Event Sources

The event manager provides severa functionsto examine and read events (including file and timer events)
that arein the queue. The next three functionsare Intrinsics equival ents of the XPendi ng, XPeekEvent ,
and XNext Event Xlib calls.

To determine if there are any events on the input queue for a given application, use Xt AppPendi ng.
Xt | nput Mask Xt AppPendi ng(app_cont ext);

app_context Specifies the application context that identifies the application to
check.

The Xt AppPendi ng function returns a nonzero value if there are events pending from the X server,
timer pending, other input sources pending, or signal sources pending. The value returned is a bit mask
that is the OR of Xt | MXEvent, Xt | MTIi ner, Xt 1 MAl t er nat el nput, and Xt | Msi gnal (see
Xt AppPr ocessEvent). If thereareno eventspending, Xt AppPendi ng flushes the output buffers
of each Display in the application context and returns zero.

To return the event from the head of a given application's input queue without removing input from the
gueue, use Xt AppPeekEvent .

Bool ean Xt AppPeekEvent (app_context, event_return);
app_context Specifies the application context that identifies the application.
event_return Returns the event information to the specified event structure.

If thereisan X event inthe queue, Xt AppPeekEvent copiesitintoevent_returnandreturnsTr ue. If no
X input ison the queue, Xt AppPeekEvent flushesthe output buffers of each Display in the application
context and blocks until some input is available (possibly calling some timeout callbacks in the interim).
If the next available input is an X event, Xt AppPeekEvent fillsin event_return and returns Tr ue.
Otherwise, the input is for an input source registered with Xt AppAddI nput , and Xt AppPeekEvent
returns Fal se. The sample implementations provides XtA ppPeekEvent as described. Timeout callbacks
are called while blocking for input. If some input for an input source is available, Xt AppPeekEvent
will return Tr ue without returning an event.

To remove and return the event from the head of a given application's X event queue, use
Xt AppNext Event .

voi d Xt AppNext Event (app_cont ext, event _return);
app_context Specifies the application context that identifies the application.
event_return Returns the event information to the specified event structure.

If the X event queue is empty, Xt AppNext Event flushes the X output buffers of each Display in the
application context and waitsfor an X event whilelooking at the other input sources and timeout valuesand

105

Event Management

calling any callback procedures triggered by them. Thiswait time can be used for background processing;
see the section called “ Adding Background Work Procedures”.

Dispatching Events

The Intrinsics provide functions that dispatch events to widgets or other application code. Every client
interested in X events on awidget uses Xt AddEvent Handl er to register which eventsit is interested
in and a procedure (event handler) to be called when the event happens in that window. The translation
manager automatically registers event handlers for widgets that use trangation tables; see Chapter 10,
Translation Management.

Applications that need direct control of the processing of different types of input should use
Xt AppProcessEvent.

voi d Xt AppProcessEvent (app_cont ext, mask);

app_context Specifies the application context that identifies the application for
which to process input.

mask Specifies what types of events to process. The mask is the bitwise
inclusive OR of any combination of Xt | MXEvent , Xt | MTi ner,
Xt 1 MAl t er nat el nput , and Xt | M5i gnal . As a convenience,
I ntrinsic.h defines the symbolic name Xt | MAI | to be the
bitwise inclusive OR of these four event types.

TheXt AppPr ocessEvent function processesonetimer, input source, signal source, or X event. If there
isno event or input of the appropriatetypeto process, then Xt AppPr ocessEvent blocksuntil thereis. If
there is more than one type of input available to process, it is undefined which will get processed. Usually,
this procedure is not called by client applications; see Xt AppMai nLoop. Xt AppPr ocessEvent
processestimer events by calling any appropriate timer callbacks, input sources by calling any appropriate
input callbacks, signal source by calling any appropriate signal callbacks, and X events by calling
Xt Di spat chEvent .

When an X event is received, it is passed to Xt Di spat chEvent, which calls the appropriate event
handlers and passes them the widget, the event, and client-specific data registered with each procedure. If
no handlers for that event are registered, the event isignored and the dispatcher simply returns.

To dispatch an event returned by Xt AppNext Event, retrieved directly from the Xlib queue, or
synthetically constructed, to any registered event filters or event handlers, call Xt Di spat chEvent .

Bool ean Xt Di spat chEvent (event);

event Specifies a pointer to the event structure to be dispatched to the appropriate
event handlers.

The Xt Di spat chEvent function first calls XFi | t er Event with the event and the window of the
widget to which the Intrinsics intend to dispatch the event, or the event window if the Intrinsics would
not dispatch the event to any handlers. If XFi | t er Event returns Tr ue and the event activated a server
grab as identified by a previous call to Xt Gr abKey or Xt Gr abBut t on, Xt Di spat chEvent calls
Xt Ungr abKeyboar d or Xt Ungr abPoi nt er with the timestamp from the event and immediately
returns Tr ue. If XFi | t er Event returns Tr ue and a grab was not activated, Xt Di spat chEvent
just immediately returns Tr ue. Otherwise, Xt Di spat chEvent sends the event to the event handler
functions that have been previously registered with the dispatch routine. Xt Di spat chEvent returns
True if XFi | t er Event returned Tr ue, or if the event was dispatched to some handler, and Fal se
if it found no handler to which to dispatch the event. Xt Di spat chEvent records the last timestamp

106

Event Management

in any event that contains atimestamp (see Xt Last Ti nest anpPr ocessed), regardless of whether it
was filtered or dispatched. If a modal cascade is active with spring_loaded Tr ue, and if the event isa
remap event as defined by Xt AddGr ab, Xt Di spat chEvent may dispatch the event a second time. If
it doesso, Xt Di spat chEvent will call XFi | t er Event again with the window of the spring-loaded
widget prior to the second dispatch, and if XFi | t er Event returns Tr ue, the second dispatch will not
be performed.

The Application Input Loop

To process al input from a given application in a continuous loop, use the convenience procedure
Xt AppMai nLoop.

voi d Xt AppMai nLoop(app_context);
app_context Specifies the application context that identifies the application.

The Xt AppMai nLoop function processes events using Xt AppPr ocessEvent, varying the mask
parameter and using Xt AppPendi ng to ensure that it has a chance to handle events of all types, i.e.,
X events, timer events, input events and signal sources. This constitutes the main loop of X Toolkit
applications. Thereisnothing special about Xt AppMai nLoop; it simply processes eventsin aconditional
loop. At the bottom of the loop, it checks to see if the specified application context's destroy flag is set.
If the flag is set, the loop breaks. The whole loop is enclosed between a matching Xt AppLock and
Xt AppUnl ock.

Applications can provide their own version of thisloop, which tests some global termination flag or tests
that the number of top-level widgetsis larger than zero before circling back for the next event.

The design of Xt AppMai nLoop has changed since Release 6. Origindly it looped over calls to
Xt AppNext Event , and Xt Di spat chEvent , but because the latter returns only after an X event (not
for timers, signals, inputs), it was modified to allow any type of event to break out of the loop.

Setting and Checking the Sensitivity State of a
Widget

Many widgets have a mode in which they assume a different appearance (for example, are grayed out or
stippled), do not respond to user events, and become dormant.

When dormant, awidget is considered to be insensitive. If awidget isinsensitive, the event manager does
not dispatch any eventsto the widget with an event type of KeyPr ess, KeyRel ease, But t onPr ess,
But t onRel ease, Moti onNoti fy,EnterNotify,LeaveNotify, Focusl n,or FocusQut.

A widget can beinsensitivebecauseitssensitivefieldisFal se or becauseone of itsancestorsisinsensitive
and thusthewidget'sancestor_sensitivefield alsoisFal se. A widget can but does not need to distinguish
these two cases visually.

Note

Pop-up shells will have ancestor_sensitive Fal se if the parent was insensitive when the
shell was created. Since Xt Set Sensi ti ve on the parent will not modify the resource
of the pop-up child, clients are advised to include a resource specification of the form
“*TransientShell.ancestorSensitive: True” in the application defaultsresourcefile or to otherwise
ensure that the parent is sensitive when creating pop-up shells.

107

Event Management

To set the sensitivity state of awidget, use Xt Set Sensi ti ve.

voi d Xt SetSensitive(w, sensitive);

w Specifies the widget. Must be of class RectObj or any subclass thereof.
sensitive Specifies whether the widget should receive keyboard, pointer, and
focus events.

The Xt Set Sensi ti ve function first calls Xt Set Val ues on the current widget with an argument
list specifying the XtNsensitive resource and the new value. If sensitive is Fal se and the widget's
class is a subclass of Composite, Xt Set Sensi ti ve recursively propagates the new value down the
child tree by calling Xt Set Val ues on each child to set ancestor_sensitive to Fal se. If sensitive is
Tr ue and the widget's class is a subclass of Composite and the widget's ancestor_sensitive field is
Tr ue, Xt Set Sensi ti ve setsthe ancestor_sensitive of each child to Tr ue and then recursively calls
Xt Set Val ues on each normal descendant that is now sensitive to set ancestor_sensitiveto Tr ue.

Xt Set Sensi ti ve cals Xt Set Val ues to change the sensitive and ancestor_sensitive fields of each
affected widget. Therefore, when one of these changes, the widget's set_values procedure should take
whatever display actions are needed (for example, graying out or stippling the widget).

Xt Set Sensi t i ve maintains the invariant that, if the parent has either sensitive or ancestor_sensitive
Fal se, then all children have ancestor_sensitive Fal se.

To check the current sensitivity state of awidget, use Xt | sSensi ti ve.
Bool ean XtlsSensitive(w);
w Specifies the object. Must be of class Object or any subclass thereof.

The Xt | sSensi ti ve function returns Tr ue or Fal se to indicate whether user input events are being
dispatched. If object's classis a subclass of RectObj and both sensitive and ancestor_sensitive are Tr ue,
Xt | sSensi ti ve returns Tr ue; otherwise, it returns Fal se.

Adding Background Work Procedures

The Intrinsics have some limited support for background processing. Because most applications spend
most of their time waiting for input, you can register an idle-time work procedure that is called when
the toolkit would otherwise block in Xt AppNext Event or Xt AppPr ocessEvent . Work procedure
pointers are of type (* Xt Wor kPr oc) .

t ypedef Bool ean (*XtWorkProc)(client _data);

client_data Passes the client data specified when the work procedure was
registered.

This procedure should return Tr ue when it is done to indicate that it should be removed. If the procedure
returns Fal se, it will remain registered and called again when the application is next idle. Work
procedures should be very judicious about how much they do. If they run for more than a small part of
asecond, interactive fedl islikely to suffer.

To register awork procedure for a given application, use Xt AppAddWor kPr oc.
Xt Wor kProcl d Xt AppAddWor kProc(app_context, proc, client _data);

app_context Specifies the application context that identifies the application.

108

Event Management

proc Specifies the procedure to be called when the applicationisidle.
client_data Specifies the argument passed to the specified procedure when it is
caled.

The Xt AppAddWor kPr oc function adds the specified work procedure for the application identified by
app_context and returns an opague unique identifier for this work procedure. Multiple work procedures
can be registered, and the most recently added one is always the one that is called. However, if a work
procedure adds another work procedure, the newly added one has lower priority than the current one.

To remove a work procedure, either return True from the procedure when it is called or use
Xt RenoveWor kPr oc outside of the procedure.

voi d Xt RenoveWdr kProc(i d);
id Specifies which work procedure to remove.

The Xt RenmoveWdr kPr oc function explicitly removes the specified background work procedure.

X Event Filters

The event manager providesfilters that can be applied to specific X events. The filters, which screen out
events that are redundant or are temporarily unwanted, handle pointer motion compression, enter/leave
compression, and exposure compression.

Pointer Motion Compression

Widgets can have a hard time keeping up with arapid stream of pointer motion events. Furthermore, they
usually do not care about every motion event. To throw out redundant motion events, the widget classfield
compress_motion should be Tr ue. When arequest for an event would return amotion event, the Intrinsics
check if there are any other motion events for the same widget immediately following the current one and,
if so, skip all but the last of them.

Enter/Leave Compression

To throw out pairs of enter and leave events that have no intervening events, as can happen when the
user moves the pointer across a widget without stopping in it, the widget class field compress_enterleave
should be Tr ue. These enter and leave events are not delivered to the client if they are found together
in the input queue.

Exposure Compression

Many widgets prefer to process a series of exposure events as a single expose region rather than as
individual rectangles. Widgetswith complex displays might usethe exposeregion asaclip listinagraphics
context, and widgets with simple displays might ignore the region entirely and redisplay their whole
window or might get the bounding box from the region and redisplay only that rectangle.

In either case, these widgets do not care about getting partial exposure events. The compress_exposure
field in the widget class structure specifies the type and number of exposure events that are dispatched to
the widget's expose procedure. This field must beinitialized to one of the following values:

#defi ne Xt ExposeNoConpress ((Xt Enum Fal se)

109

Event Management

#def i ne Xt ExposeConpressSeri es ((Xt Enum True)
#def i ne Xt ExposeConpressMul tiple <i npl ement at i on- defi ned>
#def i ne Xt ExposeConpr essMaxi mal <i npl ement at i on- defi ned>

optionally ORed with any combination of the following flags (all with implementation-defined values):
Xt ExposeG aphi csExpose, Xt Expose& aphi csExposeMer ged, Xt ExposeNoExpose,
and Xt ExposeNoRegi on.

If the compress_exposure field in the widget class structure does not specify Xt ExposeNoConpr ess,
the event manager calls the widget's expose procedure only once for a series of exposure events. In
this case, all Expose or Gr aphi csExpose events are accumulated into a region. When the final
event is received, the event manager replaces the rectangle in the event with the bounding box for
the region and calls the widget's expose procedure, passing the modified exposure event and (unless
Xt ExposeNoRegi on isspecified) the region. For more information on regions, see Section 16.5in Xlib
— C Language X Interface.

The values have the following interpretation:
Xt ExposeNoConpr ess

» No exposure compression is performed; every selected event is individually dispatched to the expose
procedure with a region argument of NULL.

Xt ExposeConpr essSeri es

» Each series of exposure events is coalesced into a single event, which is dispatched when an exposure
event with count equal to zero is reached.

Xt ExposeConpressMul tipl e

» Consecutive series of exposure events are coalesced into a single event, which is dispatched when an
exposure event with count equal to zero isreached and either the event queue is empty or the next event
isnot an exposure event for the same widget.

Xt ExposeConpr essMaxi mal

» All expose series currently in the queue for the widget are coalesced into a single event without regard
to intervening nonexposure events. If apartial seriesisin the end of the queue, the Intrinsics will block
until the end of the seriesis received.

The additional flags have the following meaning:

Xt ExposeG aphi csExpose

» Specifies that Gr aphi csExpose events are aso to be dispatched to the expose procedure.
Gr aphi csExpose events are compressed, if specified, in the same manner as Expose events.

Xt ExposeGr aphi csExposeMer ged

» Specifiesinthe caseof Xt ExposeConpr essMil ti pl e and Xt ExposeConpr essMaxi nal that
series of Gr aphi csExpose and Expose events are to be compressed together, with the final event
type determining the type of the event passed to the expose procedure. If this flag is not set, then only
series of the same event type as the event at the head of the queue are coalesced. Thisflag also implies
Xt ExposeG aphi csExpose.

Xt ExposeNoExpose

110

Event Management

» Specifiesthat NoExpose events are also to be dispatched to the expose procedure. NoExpose events
are never coal esced with other exposure events or with each other.

Xt ExposeNoRegi on

» Specifiesthat the final region argument passed to the expose procedureis NULL. The rectanglein the
event will still contain bounding box information for the entire series of compressed exposure events.
This option saves processing time when the region is not needed by the widget.

Widget Exposure and Visibility

Every primitive widget and some composite widgets display data on the screen by means of direct Xlib
calls. Widgets cannot simply write to the screen and forget what they have done. They must keep enough
state to redisplay the window or parts of it if a portion is obscured and then reexposed.

Redisplay of a Widget: The expose Procedure

The expose procedure pointer in awidget classis of type (* Xt ExposePr oc) .

typedef void (*Xt ExposeProc)(w, event, region);

w Specifies the widget instance requiring redisplay.
event Specifies the exposure event giving the rectangle requiring redisplay.
region Specifies the union of al rectanglesin this exposure sequence.

The redisplay of awidget upon exposureisthe responsibility of the expose procedure in the widget's class
record. If awidget has no display semantics, it can specify NULL for the expose field. Many composite
widgets serve only as containers for their children and have no expose procedure.

Note

If the expose procedure is NULL, Xt Real i zeW dget fills in a default bit gravity of
Nor t hWest Gr avi t y beforeit calls the widget's realize procedure.

If the widget's compress exposure class field gpecifies Xt ExposeNoConpress or
Xt ExposeNoRegi on, or if the event type is NoExpose (see the section caled “Exposure
Compression”), region isNULL. If Xt ExposeNoConpr ess is not specified and the event type is not
NoExpose, the event is the final event in the compressed series but x, y, width, and height contain the
bounding box for all the compressed events. The region is created and destroyed by the Intrinsics, but the
widget is permitted to modify the region contents.

A small simple widget (for example, Label) can ignore the bounding box information in the event and
redisplay the entire window. A more complicated widget (for example, Text) can use the bounding box
information to minimize the amount of calculation and redisplay it does. A very complex widget uses the
region asaclip list in a GC and ignores the event information. The expose procedure is not chained and
istherefore responsible for exposure of al superclass data as well asits own.

However, it often is possible to anticipate the display needs of several levels of subclassing. For example,
rather than implement separate display procedures for the widgets Label, Pushbutton, and Toggle, you
could write asingle display routinein Label that uses display state fields like

Bool ean i nvert;

111

Event Management

Bool ean hi ghl i ght ;
Di nensi on hi ghl i ght _wi dt h;

Label would have invert and highlight always Fal se and highlight width zero. Pushbutton would
dynamically set highlight and highlight_width, but it would leave invert always Fal se. Finally, Toggle
would dynamically set all three. In this case, the expose procedures for Pushbutton and Toggleinherit their
superclass's expose procedure; see the section called “Inheritance of Superclass Operations’.

Widget Visibility

Some widgets may use substantial computing resources to produce the data they will display. However,
this effort is wasted if the widget is not actually visible on the screen, that is, if the widget is obscured
by another application or isiconified.

Thevisiblefield in the core widget structure provides a hint to the widget that it need not compute display
data. This field is guaranteed to be Tr ue by the time an exposure event is processed if any part of the
widget isvisible, but isFal se if the widget is fully obscured.

Widgets can use or ignore the visible hint. If they ignore it, they should have visible interest in their
widget class record set Fal se. In such cases, the visible field is initialized Tr ue and never changes. If
visible interest is Tr ue, the event manager asks for Vi si bi [i t yNot i fy events for the widget and
setsvisibleto True on Vi si bi I i t yUnobscured or Vi si bilityPartial |l yObscur ed events
and Fal seonVi si bi lityFul | yObscur ed events.

X Event Handlers

Event handlers are procedures called when specified events occur in awidget. Most widgets need not use
event handlers explicitly. Instead, they use the Intrinsics trandation manager. Event handler procedure
pointers are of the type (* Xt Event Handl er) .

t ypedef voi d (*Xt Event Handl er) (w, client_data, event,

continue_to_di spatch);

w Specifies the widget for which the event arrived.

client_data Specifies any client-specific information registered with the event
handler.

event Specifies the triggering event.

continue_to_dispatch Specifies whether the remaining event handlers registered for the

current event should be called.

After receiving an event and before calling any event handlers, the Boolean pointed to by
continue_to_dispatch isinitialized to Tr ue. When an event handler is called, it may decide that further
processing of the event is not desirable and may store Fal se in this Boolean, in which case any handlers
remaining to be called for the event are ignored.

The circumstances under which the Intrinsics may add event handlers to a widget are
currently implementation-dependent. Clients must therefore be aware that storing Fal se into the
continue_to_dispatch argument can lead to portability problems.

Event Handlers That Select Events

To register an event handler procedure with the dispatch mechanism, use Xt AddEvent Handl er .

112

Event Management

voi d Xt AddEvent Handl er (w, event_mask, nonmaskabl e, proc, client_data);

w Specifies the widget for which this event handler is being registered.
Must be of class Core or any subclass thereof.

event_mask Specifies the event mask for which to call this procedure.

nonmaskable Specifies whether this procedure should be caled
on the nonmaskable events (Gr aphi csExpose,
NoExpose, Sel ecti ond ear, Sel ect i onRequest,
Sel ectionNotify, d i ent Message, and
Mappi ngNotify).

proc Specifies the procedure to be called.

client_data Specifies additional datato be passed to the event handler.

The Xt AddEvent Handl er function registers a procedure with the dispatch mechanism that is to be
called when an event that matches the mask occurs on the specified widget. Each widget has a single
registered event handler list, which will contain any procedure/client_data pair exactly once regardless
of the manner in which it is registered. If the procedure is already registered with the same client_data
value, the specified mask augments the existing mask. If the widget isrealized, Xt AddEvent Handl er
calsXSel ect | nput , if necessary. The order in which this procedureis called relative to other handlers
registered for the same event is not defined.

To remove a previously registered event handler, use Xt RenoveEvent Handl er .

voi d Xt RenoveEvent Handl er (w, event _nask, nonnmaskabl e, proc,
client_data);

w Specifies the widget for which this procedure is registered. Must be
of class Core or any subclass thereof.

event_mask Specifies the event mask for which to unregister this procedure.

nonmaskable Specifies whether this procedure should be removed
on the nonmaskable events (Gr aphi csExpose,
NoExpose, Sel ecti ond ear, Sel ect i onRequest,
Sel ectionNotify, d i ent Message, and
Mappi ngNotify).

proc Specifies the procedure to be removed.

client_data Specifies the registered client data.

The Xt RemoveEvent Handl er function unregisters an event handler registered with
Xt AddEvent Handl er or Xt | nsert Event Handl er for the specified events. Therequest isignored
if client_data does not match the value given when the handler was registered. If the widget is realized
and no other event handler requirestheevent, Xt RenmoveEvent Handl er calsXSel ect | nput . If the
specified procedure has not been registered or if it has been registered with adifferent value of client_data,
Xt RemoveEvent Handl er returns without reporting an error.

To stop a procedure registered with Xt AddEvent Handl er or Xt | nsert Event Handl er from
receiving all selected events, cal Xt RenoveEvent Handl er with an event_mask of Xt Al | Event s
and nonmaskable Tr ue. The procedure will continue to receive any events that have been specified in
callsto Xt AddRawEvent Handl er or Xt | nsert RawEvent Handl er .

113

Event Management

To register an event handler procedure that receives events before or after all previously registered event
handlers, use Xt | nser t Event Handl er .
typedef enum {XtListHead, XtListTail} XtListPosition;

voi d Xt I nsert Event Handl er (w, event _mask, nonmaskabl e, proc,
client_data, position);

w Specifies the widget for which this event handler is being registered.
Must be of class Core or any subclass thereof.

event_mask Specifies the event mask for which to call this procedure.

nonmaskable Specifies whether this procedure should be caled
on the nonmaskable events (Gr aphi csExpose,
NoExpose, Sel ecti ond ear, Sel ect i onRequest,
Sel ectionNotify, d i ent Message, and
Mappi ngNotify).

proc Specifies the procedure to be called.

client_data Specifies additional datato be passed to the client's event handler.

position Specifies when the event handler is to be called relative to other

previously registered handlers.

Xt I nsert Event Handl er is identical to Xt AddEvent Handl er with the additiona position
argument. If position is Xt Li st Head, the event handler is registered so that it is called before any
event handlers that were previoudly registered for the same widget. If position is Xt Li st Tai | , the
event handler is registered to be called after any previously registered event handlers. If the procedure is
already registered with the same client_data value, the specified mask augments the existing mask and
the procedure is repositioned in the list.

Event Handlers That Do Not Select Events

On occasion, clients need to register an event handler procedure with the dispatch mechanism without
explicitly causing the X server to select for that event. To do this, use Xt AddRawEvent Handl er .

voi d Xt AddRawEvent Handl er (w, event _mask, nonmaskabl e, proc,
client_data);

w Specifies the widget for which this event handler is being registered.
Must be of class Core or any subclass thereof.

event_mask Specifies the event mask for which to call this procedure.

nonmaskable Specifies whether this procedure should be caled
on the nonmaskable events (G aphi csExpose,
NoExpose, Sel ecti ond ear, Sel ect i onRequest,
Sel ectionNotify, d i ent Message, and
Mappi ngNotify).

proc Specifies the procedure to be called.

client_data Specifies additional datato be passed to the client's event handler.

114

Event Management

The Xt AddRawEvent Handl er functionissimilar to Xt AddEvent Handl er except that it does not
affect the widget's event mask and never causes an XSel ect | nput for its events. Note that the widget
might already have those mask hits set because of other nonraw event handlers registered on it. If the
procedureis already registered with the same client_data, the specified mask augments the existing mask.
The order in which this procedure is called relative to other handlers registered for the same event is not
defined.

To remove apreviously registered raw event handler, use Xt RenoveRawEvent Handl er .

voi d Xt RenobveRawEvent Handl er (1w, event _mask, nonmaskabl e, proc,
client_data);

w Specifies the widget for which this procedure is registered. Must be
of class Core or any subclass thereof.

event_mask Specifies the event mask for which to unregister this procedure.

nonmaskable Specifies whether this procedure should be removed
on the nonmaskable events (Gr aphi csExpose,
NoExpose, Sel ecti ond ear, Sel ect i onRequest,
Sel ectionNotify, d i ent Message, and
Mappi ngNotify).

proc Specifies the procedure to be registered.

client_data Specifies the registered client data.

The Xt RenbveRawEvent Handl er function unregisters an event handler registered with
Xt AddRawEvent Handl er or Xt | nsert RawEvent Handl er for the specified events without
changing the window event mask. The request is ignored if client_data does not match the value
given when the handler was registered. If the specified procedure has not been registered or if it has
been registered with a different value of client_data, Xt RenbveRawEvent Handl er returns without
reporting an error.

To stop a procedure registered with Xt AddRawEvent Handl er or Xt | nsert RawEvent Handl er
from receiving all nonselected events, call Xt RenoveRawEvent Handl er with an event_ mask of
Xt Al | Event s and nonmaskable Tr ue. The procedure will continue to receive any events that have
been specified in callsto Xt AddEvent Handl er or Xt | nsert Event Handl er.

To register an event handler procedure that receives events before or after all previously registered event
handlers without selecting for the events, use Xt | nser t RawEvent Handl er .

voi d Xt | nsert RawEvent Handl er (w, event _mask, nonmaskabl e, proc,
client_data, position);

w Specifies the widget for which this event handler is being registered.
Must be of class Core or any subclass thereof.

event_mask Specifies the event mask for which to call this procedure.

nonmaskable Specifies whether this procedure should be caled
on the nonmaskable events (G aphi csExpose,
NoExpose, Sel ecti ond ear, Sel ect i onRequest,
Sel ectionNotify, d i ent Message, and

Mappi ngNotify).

proc Specifies the procedure to be registered.

115

Event Management

client_data Specifies additional data to be passed to the client's event handler.

position Specifies when the event handler is to be called relative to other
previously registered handlers.

The Xt | nser t RawEvent Handl er functionissimilar to Xt | nser t Event Handl er except that it
does not modify the widget's event mask and never causes an XSel ect | nput for the specified events.
If the procedure is already registered with the same client_data value, the specified mask augments the
existing mask and the procedure is repositioned in the list.

Current Event Mask

To retrieve the event mask for a given widget, use Xt Bui | dEvent Mask.
Event Mask Xt Bui | dEvent Mask(w);
w Specifies the widget. Must be of class Core or any subclass thereof.

The Xt Bui | dEvent Mask function returns the event mask representing the logical OR of
all event masks for event handlers registered on the widget with Xt AddEvent Handl er and
Xt I nsert Event Handl er and al event trandations, including accelerators, installed on the
widget. This is the same event mask stored into the XSet W ndowAt t ri but es structure by
Xt Real i zeW dget and sent to the server when event handlers and translations are installed or removed
on the realized widget.

Event Handlers for X11 Protocol Extensions

To register an event handler procedure with the Intrinsics dispatch mechanism according to an event type,
use Xt I nsert Event TypeHandl er.

void XtlnsertEvent TypeHandl er (wi dget, event _type, select_data, proc,
client _data, position);

widget Specifies the widget for which this event handler is being registered.
Must be of class Core or any subclass thereof.

event_type Specifies the event type for which to call this event handler.

select_data Specifies data used to request events of the specified type from the
server, or NULL.

proc Specifies the event handler to be called.

client_data Specifies additional data to be passed to the event handler.

position Specifies when the event handler is to be called relative to other
previously registered handlers.

Xt I nsert Event TypeHandl er registersaprocedure with the dispatch mechanism that isto be called
when an event that matches the specified event_type is dispatched to the specified widget.

If event_type specifies one of the core X protocol events, then select data must be a pointer to a
value of type Event Mask, indicating the event mask to be used to select for the desired event.
This event mask is included in the value returned by Xt Bui | dEvent Mask. If the widget is
realized, Xt | nsert Event TypeHandl er calls XSel ect | nput if necessary. Specifying NULL for

116

Event Management

select_data is equivalent to specifying a pointer to an event mask containing 0. This is similar to the
Xt I nsert RawEvent Handl er function.

If event_type specifies an extension event type, then the semantics of the data pointed to by select data
are defined by the extension selector registered for the specified event type.

In either case the Intrinsics are not required to copy the data pointed to by select_data, so the caller must
ensure that it remains valid as long as the event handler remains registered with this value of select_data.

The position argument allows the client to control the order of invocation of event handlers registered for
the same event type. If the client does not care about the order, it should normally specify Xt Li st Tai |,
which registers this event handler after any previoudly registered handlers for this event type.

Each widget has a single registered event handler list, which will contain any procedure/client_data pair
exactly onceif itisregistered with Xt | nser t Event TypeHandl er , regardless of the manner in which
it isregistered and regardless of the value(s) of select_data. If the procedureis already registered with the
same client_data value, the specified mask augments the existing mask and the procedure is repositioned
inthelist.

To remove an event handler registered with XtlnsertEvent TypeHandl er, use
Xt RenoveEvent TypeHandl er.

voi d Xt RemoveEvent TypeHandl er (Wi dget, event _type, select _data, proc,
client _data);

widget Specifiesthewidget for which the event handler wasregistered. Must
be of class Core or any subclass thereof.

event_type Specifies the event type for which the handler was registered.

select_data Specifies data used to deselect events of the specified type from the
server, or NULL.

proc Specifies the event handler to be removed.

client_data Specifies the additional client data with which the procedure was
registered.

The Xt RenpbveEvent TypeHandl er function unregisters an event handler registered with
Xt | nsert Event TypeHandl er for the specified event type. Therequest isignored if client_data does
not match the value given when the handler was registered.

If event_type specifies one of the core X protocol events, select_data must be a pointer to a value of type
Event Mask, indicating the event masktobe usedto deselect for the appropriate event. If the
widget is realized, Xt RenoveEvent TypeHandl er calls XSel ect | nput if necessary. Specifying
NULL for select_data is equivalent to specifying a pointer to an event mask containing 0. Thisis similar
to the Xt RenbveRawEvent Handl er function.

If event_type specifies an extension event type, then the semantics of the data pointed to by select _data
are defined by the extension selector registered for the specified event type.

To register a procedure to select extenson events for a widget, use
Xt Regi st er Ext ensi onSel ect or .

voi d Xt Regi st er Ext ensi onSel ect or (di spl ay, m n_event _type,
max_event _type, proc, client_data);

117

Event Management

display Specifies the display for which the extension selector is to be
registered.

min_event_type

max_event_type Specifies the range of event types for the extension.
proc Specifies the extension selector procedure.
client_data Specifies additional data to be passed to the extension selector.

The Xt Regi st er Ext ensi onSel ect or function registers a procedure to arrange for the delivery of
extension events to widgets.

If min event type and max event type match the parameters to a previous cal to
Xt Regi st er Ext ensi onSel ect or for the same display, then proc and client_data replace the
previously registered values. If the range specified by min_event_type and max_event_type overlaps the
range of the parametersto aprevious call for the same display in any other way, an error results.

When awidget is realized, after the core.realize method is called, the Intrinsics check to seeif any event
handler specifies an event type within the range of a registered extension selector. If so, the Intrinsics
call each such selector. If an event type handler is added or removed, the Intrinsics check to see if the
event type falls within the range of a registered extension selector, and if it does, cals the selector. In
either case the Intrinsics pass alist of al the widget's event types that are within the selector's range. The
corresponding select data are al so passed. The selector isresponsiblefor enabling the delivery of extension
events required by the widget.

An extension selector is of type (* Xt Ext ensi onSel ect Proc) .

typedef void (*Xt Ext ensi onSel ect Proc) (wi dget, event _types, sel ect_dat a,
count, client_data);

widget Specifies the widget that is being realized or is having an event
handler added or removed.

event_types Specifies a list of event types that the widget has registered event
handlersfor.

select_data Specifies a list of the select data parameters specified in
Xt I nsert Event TypeHandl er.

count Specifies the number of entries in the event_types and select_data
lists.

client_data Specifies the additional client data with which the procedure was
registered.

The event_types and select_data lists will always have the same number of elements, specified by count.
Each event type/select data pair representsone call to Xt | nsert Event TypeHandl er .

To register a procedure to dispatch events of a specific type within Xt Di spat chEvent, use
Xt Set Event Di spat cher.

Xt Event Di spat chProc Xt Set Event Di spat cher (di spl ay, event _type, proc);

display Specifiesthe display for which the event dispatcher isto be registered.

118

Event Management

event_type Specifies the event type for which the dispatcher should be invoked.
proc Specifies the event dispatcher procedure.

The Xt Set Event Di spat cher function registers the event dispatcher procedure specified by proc for
events with the type event_type. The previously registered dispatcher (or the default dispatcher if there
was no previously registered dispatcher) is returned. If proc is NULL, the default procedure is restored
for the specified type.

In the future, when Xt Di spat chEvent is called with an event type of event_type, the specified proc
(or the default dispatcher) isinvoked to determine a widget to which to dispatch the event.

The default dispatcher handles the Intrinsics modal cascade and keyboard focus mechanisms, handles the
semantics of compress_enterleave and compress_motion, and discards all extension events.

An event dispatcher procedure pointer is of type (* Xt Event Di spat chProc) .
t ypedef Bool ean (* Xt Event Di spat chProc) (event);
event Passes the event to be dispatched.

The event dispatcher procedure should determine whether this event is of atype that should be dispatched
to awidget.

If the event should be dispatched to a widget, the event dispatcher procedure should determine the
appropriate widget to receive the event, call XFi | t er Event with the window of this widget, or None
if the event isto be discarded, and if XFi | t er Event returns Fal se, dispatch the event to the widget
using Xt Di spat chEvent ToW dget . The procedure should return Tr ue if either XFi | t er Event

or Xt Di spat chEvent ToW dget returned Tr ue and Fal se otherwise.

If the event should not be dispatched to awidget, the event dispatcher procedure should attempt to dispatch
the event elsewhere as appropriate and return Tr ue if it successfully dispatched the event and Fal se
otherwise.

Some dispatchers for extension events may wish to forward events according to the Intrinsics' keyboard
focus mechanism. To determine which widget is the end result of keyboard event forwarding, use
Xt Get Keyboar dFocusW dget .

W dget Xt Get Keyboar dFocusW dget (w dget) ;
widget Specifies the widget to get forwarding information for.

The Xt Get Keyboar dFocusW dget function returns the widget that would be the end result of
keyboard event forwarding for a keyboard event for the specified widget.

To dispatch an event to a specified widget, use Xt Di spat chEvent ToW dget .
Bool ean Xt Di spat chEvent ToW dget (w dget, event);

widget Specifies the widget to which to dispatch the event.
event Specifies a pointer to the event to be dispatched.

The Xt Di spat chEvent ToW dget function scans the list of registered event handlers for the
specified widget and calls each handler that has been registered for the specified event type, subject
to the continue to dispatch value returned by each handler. The Intrinsics behave as if event
handlers were registered at the head of the list for Expose, NoExpose, Gr aphi csExpose, and
VisibilityNotify events to invoke the widget's expose procedure according to the exposure

119

Event Management

compression rules and to update the widget's visiblefield if visible interestis Tr ue. Theseinternal event
handlers never set continue to_dispatch to Fal se.

Xt Di spat chEvent ToW dget returns Tr ue if any event handler was called and Fal se otherwise.

Using the Intrinsics in a Multi-Threaded
Environment

The Intrinsics may be used in environments that offer multiple threads of execution within the context of
asingle process. A multi-threaded application using the Intrinsics must explicitly initialize the toolkit for
mutually exclusive access by calling Xt Tool kit Threadl nitialize.

Initializing a Multi-Threaded Intrinsics Application

To test and initialize Intrinsics support for mutually exclusive thread access, call
Xt Tool kit Threadl nitiali ze.

Bool ean Xt Tool kit Threadlnitialize(void);

Xt Tool kit Threadl nitialize returns True if the Intrinsics support mutualy exclusive
thread access, otherwise it returns Fal se. Xt Tool kit Threadlnitialize must be caled
before Xt Cr eat eAppl i cati onContext, XtApplnitialize, XtOpenApplication, or
Xt Set LanguagePr oc iscalled. Xt Tool ki t Threadl ni ti al i ze may be called more than once;
however, the application writer must ensure that it is not called simultaneously by two or more threads.

Locking X Toolkit Data Structures

The Intrinsics employs two levels of locking: application context and process. Locking an application
context ensures mutually exclusive access by athread to the state associated with the application context,
including all displays and widgets associated with it. Locking a process ensures mutually exclusive access
by athread to Intrinsics process global data.

A client may acquire alock multiple times and the effect is cumulative. The client must ensure that the
lock isreleased an equal number of timesin order for the lock to be acquired by another thread.

Most applicationwriterswill havelittle need to uselocking asthe Intrinsics performsthe necessary locking
internally. Resource converters are an exception. They require the application context or process to be
locked before the application can safely call them directly, for example:

Xt AppLock(app_cont ext);
Xt Cvt StringToPi xel (dpy, args, num.args, fronval, toVal, closure_ret);
Xt AppUnl ock(app_cont ext);

When the application relies upon Xt Conver t AndSt or e or a converter to provide the storage for the
results of aconversion, the application should acquire the processlock before calling out and hold the lock
until the results have been copied.

Application writerswho write their own utility functions, such as one which retrieves the being_destroyed
field from awidget instance, must lock the application context before accessing widget internal data. For
example:

120

Event Management

#i ncl ude <X11/ Cor eP. h>
Bool ean Bei ngDestroyed (W dget wi dget)

{
Bool ean ret;
Xt AppLock(Xt W dget ToAppl i cati onCont ext (w dget));
ret = w dget->core. being_destroyed,;
Xt AppUnl ock(Xt W dget ToAppl i cati onCont ext (w dget));
return ret;
}
A client that wishesto atomically call two or more Intrinsics functions must lock the application context.
For example:

Xt AppLock(Xt W dget ToAppl i cati onCont ext (w dget));
Xt UnmanageChi | d (wi dget1);

Xt ManageChi |l d (w dget 2);

Xt AppUnl ock(Xt W dget ToAppl i cati onCont ext (w dget));

Locking the Application Context
To ensure mutual exclusion of application context, display, or widget internal state, use Xt AppLock.
voi d Xt AppLock(app_context);
app_context Specifies the application context to lock.

Xt AppLock blocks until it is able to acquire the lock. Locking the application context also ensures that
only the thread holding the lock makes Xlib calls from within Xt. An application that makesits own direct
Xlib calls must either lock the application context around every call or enable thread locking in Xlib.

To unlock alocked application context, use Xt AppUnl ock.
voi d Xt AppUnl ock(app_cont ext);

app_context Specifies the application context that was previously locked.

Locking the Process
Toensuremutual exclusion of X Toolkit processglobal data, awidget writer must use Xt Pr ocessLock.
voi d Xt ProcessLock(void);

Xt ProcessLock blocks until it is able to acquire the lock. Widget writers may use XtProcessLock to
guarantee mutually exclusive access to widget static data.

To unlock alocked process, use Xt Pr ocessUnl ock.
voi d Xt ProcessUnl ock(void);

To lock both an application context and the process at the same time, call Xt AppLock first and then
Xt Pr ocessLock. Torelease bothlocks, call Xt Pr ocessUnl ock first and then Xt AppUnl ock. The
order isimportant to avoid deadlock.

121

Event Management

Event Management in a Multi-Threaded Environment

In a nonthreaded environment an application writer could reasonably assume that it is safe to exit the
application from aquit callback. Thisassumption may no longer hold truein amulti-threaded environment;
thereforeit is desirable to provide amechanism to terminate an event-processing loop without necessarily
terminating its thread.

To indicate that the event loop should terminate after the current event dispatch has completed, use
Xt AppSet Exi t Fl ag.

voi d Xt AppSet Exi t Fl ag(app_context);
app_context Specifies the application context.
Xt AppMai nLoop teststhe value of the flag and will return if the flagis Tr ue.

Application writers who implement their own main loop may test the value of the exit flag with
Xt AppCet Exi t FI ag.

Bool ean Xt AppGet Exi t Fl ag(app_cont ext);
app_context Specifies the application context.

Xt AppCet Exi t Fl ag will normally return Fal se, indicating that event processing may continue. When
Xt AppCet Exi t Fl ag returns Tr ue, the loop must terminate and return to the caller, which might then
destroy the application context.

Application writers should be aware that, if a thread is blocked in Xt AppNext Event,
Xt AppPeekEvent , or Xt AppPr ocessEvent and another thread in the same application context
opensanew display, addsan aternateinput, or atimeout, any new source(s) will not normally be“noticed”
by the blocked thread. Any new sources are “noticed” the next time one of these functionsis called.

The Intrinsics manage access to events on a last-in, first-out basis. If multiple threads in the same
application context block in Xt AppNext Event , Xt AppPeekEvent , or Xt AppPr ocessEvent , the
last thread to call one of these functions isthe first thread to return.

122

Chapter 8. Callbacks

Applications and other widgets often need to register a procedure with a widget that gets called under
certain prespecified conditions. For example, when awidget is destroyed, every procedure on the widget's
destroy_callbackslist is called to notify clients of the widget's impending doom.

Every widget has an XtNdestroyCallbacks callback list resource. Widgets can define additional callback
listsasthey seefit. For example, the Pushbutton widget has a callback list to notify clients when the button
has been activated.

Except where otherwise noted, it is the intent that all Intrinsics functions may be called at any time,
including from within callback procedures, action routines, and event handlers.

Using Callback Procedure and Callback List
Definitions

Callback procedure pointers for usein callback lists are of type (* Xt Cal | backPr oc) .

typedef void (*XtCall backProc)(w, client_data, call _data);

w Specifies the widget owning the list in which the callback is
registered.

client_data Specifies additional data supplied by the client when the procedure
was registered.

call_data Specifies any callback-specific data the widget wants to pass to the

client. For example, when Scrollbar executes its XtNthumbChanged
callback ligt, it passes the new position of the thumb.

The client_data argument provides away for the client registering the callback procedure also to register
client-specific data, for example, apointer to additional information about thewidget, areason for invoking
the callback, and so on. The client_data value may be NULL if all necessary information isin the widget.
The call_data argument is a convenience to avoid having simple cases where the client could otherwise
alwayscall Xt Get Val ues or awidget-specific function to retrieve data from the widget. Widgets should
generaly avoid putting complex state information in call_data. The client can use the more general data
retrieval methods, if necessary.

Whenever a client wants to pass a calback list as an argument in an Xt Cr eat eW dget ,
Xt Set Val ues, or Xt Get Val ues cal, it should specify the address of a NULL-terminated array of
type Xt Cal | backLi st .

typedef struct {
Xt Cal | backProc call back;
Xt Poi nt er cl osure;
} XtCal |l backRec, *XtCall backLi st;

For example, the callback list for procedures A and B with client data clientDataA and clientDataB,
respectively, is

static XtCallbackRec call backs[] = {

123

Cadlbacks

{A, (XtPointer) clientDataA},
{B, (XtPointer) clientDataB},
{(XtCal | backProc) NULL, (XtPointer) NULL}

b

Although callback lists are passed by addressin arglists and varargslists, the Intrinsics recognize callback
lists through the widget resource list and will copy the contents when necessary. Widget initiaize
and set_values procedures should not allocate memory for the callback list contents. The Intrinsics
automatically do this, potentially using a different structure for their internal representation.

Identifying Callback Lists

Whenever a widget contains a callback list for use by clients, it also exports in its public .h file the
resource name of the callback list. Applications and client widgets never access callback list fields directly.
Instead, they alwaysidentify the desired callback list by using the exported resource name. All the callback
mani pulation functions described in this chapter except Xt Cal | Cal | backLi st check to see that the
requested callback list isindeed implemented by the widget.

For the Intrinsics to find and correctly handle callback lists, they must be declared with a resource type
of Xt RCal | back. The internal representation of a callback list is implementation-dependent; widgets
may make no assumptions about the value stored in this resource if it is non-NULL. Except to compare

the value to NULL (which is equivalent to Xt Cal | backSt at us Xt Cal | backHasNone), accessto
callback list resources must be made through other Intrinsics procedures.

Adding Callback Procedures

To add a callback procedure to awidget's callback list, use Xt AddCal | back.

voi d Xt AddCal | back(w, call back_nane, call back, client_data);

w Specifies the widget. Must be of class Object or any subclass
thereof.

callback _name Specifiesthe callback list to which the procedure isto be appended.

callback Specifies the callback procedure.

client_data Specifies additional data to be passed to the specified procedure

when it isinvoked, or NULL.
A callback will be invoked as many times asit occursin the callback list.
To add alist of callback proceduresto a given widget's callback list, use Xt AddCal | backs.

voi d Xt AddCal | backs(w, call back_nane, call backs);

w Specifies the widget. Must be of class Object or any subclass
thereof.

callback _name Specifies the callback list to which the procedures are to be
appended.

callbacks Specifies the null-terminated list of callback procedures and

corresponding client data.

124

Cadlbacks

Removing Callback Procedures

To delete a callback procedure from awidget's callback list, use Xt RenoveCal | back.

voi d Xt RenoveCal | back(w, callback name, call back, client_data);

w Specifies the widget. Must be of class Object or any subclass
thereof.

callback_name Specifiesthe callback list from which the procedureisto be del eted.

callback Specifies the callback procedure.

client_data Specifiesthe client datato match with the registered callback entry.

The Xt RenoveCal | back function removes a callback only if both the procedure and the client data
match.

To delete alist of callback procedures from a given widget's callback list, use Xt RenoveCal | backs.

voi d Xt RenmoveCal | backs(w, call back_nane, call backs);

w Specifies the widget. Must be of class Object or any subclass
thereof.

callback_name Specifies the callback list from which the procedures are to be
deleted.

callbacks Specifies the null-terminated list of callback procedures and

corresponding client data.

To delete al callback procedures from a given widget's callback list and free all storage associated with
the callback list, use Xt RenoveAl | Cal | backs.

voi d Xt RenoveAl | Cal | backs(w, call back_nane);

w Specifies the widget. Must be of class Object or any subclass
thereof.
callback_name Specifies the callback list to be cleared.

Executing Callback Procedures

To execute the procedures in a given widget's callback list, specifying the callback list by resource name,
use Xt Cal | Cal | backs.

void Xt Call Cal |l backs(w, callback _name, call _data);

w Specifies the widget. Must be of class Object or any subclass
thereof.

callback_name Specifies the callback list to be executed.

call_data Specifies a callback-list-specific data value to pass to each of the

callback procedurein thelist, or NULL.

125

Cadlbacks

Xt Cal | Cal | backs calls each of the callback procedures in the list named by callback _name in the
specified widget, passing the client data registered with the procedure and call-data.

To execute the procedures in a calback list, specifying the callback list by address, use
Xt Cal | Cal | backLi st .

voi d Xt Call Cal | backLi st (w dget, call backs, call_data);

widget Specifies the widget instance that contains the callback list. Must be of
class Object or any subclass thereof.

callbacks Specifies the callback list to be executed.

call_data Specifies a callback-list-specific data value to pass to each of the

callback proceduresin thelist, or NULL.

The callbacks parameter must specify the contents of a widget or object resource declared
with representation type Xt RCal | back. If callbacks is NULL, Xt Cal | Cal | backLi st returns
immediately; otherwise it calls each of the callback procedures in the list, passing the client data and
call_data.

Checking the Status of a Callback List

To find out the status of a given widget's callback list, use Xt HasCal | backs.
typedef enum { XtCallbackNoL ist, XtCallbackHasNone, XtCallbackHasSome} XtCallbackStatus;

Xt Cal | backSt at us Xt HasCal | backs(w, call back_nane);

w Specifies the widget. Must be of class Object or any subclass
thereof.
callback _name Specifies the callback list to be checked.

The Xt HasCal | backs function first checks to see if the widget has a callback list identified by
callback_name. If the callback list does not exist, Xt HasCal | backs returns Xt Cal | backNoLi st .
If the callback list exists but is empty, it returns Xt Cal | backHasNone. If the callback list exists and
has at |east one callback registered, it returns Xt Cal | backHas Sorme.

126

Chapter 9. Resource Management

A resource is a field in the widget record with a corresponding resource entry in the resources list of
the widget or any of its superclasses. This means that the field is settable by Xt Cr eat eW dget (by
naming the field in the argument list), by an entry in a resource file (by using either the name or class),
and by Xt Set Val ues. In addition, it is readable by Xt Get Val ues. Not all fieldsin awidget record
areresources. Some are for bookkeeping use by the generic routines (like managed and being_destroyed).
Others can be for local bookkeeping, and still others are derived from resources (many graphics contexts
and pixmaps).

Widgets typically need to obtain a large set of resources at widget creation time. Some of the resources
comefromtheargument list suppliedinthecall to Xt Cr eat eW dget , somefrom the resource database,
and somefrom theinternal defaults specified by thewidget. Resources are obtained first from the argument
list, then from the resource database for all resources not specified in the argument list, and last, from the
internal default, if needed.

Resource Lists

A resource entry specifiesafield in the widget, the textual name and class of the field that argument lists
and external resource files use to refer to the field, and a default value that the field should get if no value
is specified. The declaration for the Xt Resour ce structureis

typedef struct {

String resour ce_nane;
String resour ce_cl ass;
String resource_type;
Car di nal resource_si ze;
Car di nal resource_of fset;
String defaul t _type;
Xt Poi nt er def aul t _addr;

} XtResource, *XtResourcelist;

When the resource list is gspecified as the CoreC assPart, ObjectC assPart,
Rect Obj Cl assPart, or Constrai ntCl assPart resources field, the strings pointed to by
resource_name, resource_class, resource_type, and default_type must be permanently allocated prior to
or during the execution of the class initialization procedure and must not be subsequently deallocated.

Theresource_namefield containsthe name used by clientsto accessthefield in thewidget. By convention,
it starts with a lowercase letter and is spelled exactly like the field name, except all underscores () are
deleted and the next letter is replaced by its uppercase counterpart. For example, the resource name for
background_pixel becomes backgroundPixel. Resource names beginning with the two-character sequence
“xt”, and resource classes beginning with the two-character sequence “ Xt” are reserved to the Intrinsics
for future standard and implementation-dependent uses. Widget header files typically contain a symbolic
name for each resource name. All resource names, classes, and types used by the Intrinsics are named in
<X11/ St ri ngDef s. h>. Thelntrinsics's symbolic resource names begin with “XtN" and are followed
by the string name (for example, XtNbackgroundPixel for backgroundPixel).

Theresource_classfield contains the class string used in resource specification files to identify the field.
A resource class provides two functions:

* Itisolates an application from different representations that widgets can use for a similar resource.

127

Resource Management

* It lets you specify values for several actual resources with a single name. A resource class should be
chosen to span agroup of closely related fields.

For example, a widget can have several pixel resources: background, foreground, border, block cursor,
pointer cursor, and so on. Typically, the background defaults to white and everything else to black. The
resource class for each of these resources in the resource list should be chosen so that it takes the minimal
number of entriesin the resource database to make the background ivory and everything else darkblue.

In this case, the background pixel should have a resource class of “Background” and all the other pixel
entries aresource class of “Foreground”. Then, the resource file needs only two lines to change all pixels
to ivory or darkblue:

*Backgr ound: ivory
*For egr ound: dar kbl ue

Similarly, awidget may have several font resources (such as normal and bold), but all fonts should have
the class Font. Thus, changing all fonts simply requires only asingle line in the default resourcefile;

*Font : 6x13

By convention, resource classes are always spelled starting with a capital letter to distinguish them from
resource names. Their symbolic names are preceded with “ XtC” (for example, XtCBackground).

Theresource_typefield givesthe physical representation type of the resource and al so encodesinformation
about the specific usage of the field. By convention, it starts with an uppercase letter and is spelled
identically to the type name of the field. The resource type is used when resources are fetched to convert
from the resource database format (usually St r i ng) or the format of the resource default value (almost
anything, but often St ri ng) to the desired physical representation (see the section called “Resource
Conversions’). The Intrinsics define the following resource types:

Resource Type Structureor Field Type
Xt RAccel er at or Tabl e XtAccelerators
Xt RAt om Atom

Xt RBi t map Pixmap, depth=1
Xt RBool ean Boolean

Xt RBool Bool

Xt RCal | back XtCallbackList
Xt RCar di nal Cardina

Xt RCol or XColor

Xt RCol or map Colormap

Xt RCommandAr gAr r ay String*

Xt RCur sor Cursor

Xt RDi mensi on Dimension

Xt RDi rectoryString String

Xt RDi spl ay Display*

Xt REnum XtEnum

Xt REnvi ronment Arr ay String*

128

Resource Management

Resource Type Structureor Field Type
XtRFi | e FILE*

Xt RFI oat float

Xt RFont Font

Xt RFont Set XFontSet

Xt RFont St ruct XFontStruct*
Xt RFuncti on (*)(Widget)
Xt RGeonetry char*, format as defined by XPar seGeonet ry
XtRGavity int
XtRinitial State int

Xt Rl nt int

Xt RLongBool ean long

Xt RObj ect Object

Xt RPi xel Pixel

Xt RPi xmap Pixmap

Xt RPoi nt er XtPointer

Xt RPosi tion Position

Xt RRestart Styl e unsigned char
Xt RScr een Screen*

Xt RShor t short

Xt RSncConn XtPointer
XtRString String

Xt RSt ri ngArray String*

Xt RSt ri ngTabl e String*

Xt RTr ansl ati onTabl e XtTranslations
Xt RUnsi gnedChar unsigned char
Xt RVi sual Visual*

Xt RW dget Widget

Xt RW dget Cl ass WidgetClass
Xt RW dget Li st WidgetList
Xt RW ndow Window

<X11/ Stri ngDefs. h> also defines the following resource types as a convenience for widgets,
although they do not have any corresponding data type assigned: Xt REdi t Mode, Xt RJusti fy, and
XtROrientation.

The resource size fidld is the size of the physical representation in bytes; you should specify it as
si zeof (type) so that the compiler fillsinthe value. Theresource offset field isthe offset in bytes of the
field within the widget. Y ou should use the Xt O f set Of macro to retrieve this value. The default_type
field isthe representation type of the default resource value. If default_typeisdifferent from resource _type
and the default value is needed, the resource manager invokes a conversion procedure from default_type
to resource _type. Whenever possible, the default type should be identical to the resource type in order
to minimize widget creation time. However, there are sometimes no values of the type that the program
can easily specify. In this case, it should be a value for which the converter is guaranteed to work (for

129

Resource Management

example, Xt Def aul t For egr ound for a pixel resource). The default_addr field specifies the address
of the default resource value. As a specia case, if default_type is Xt RSt r i ng, then the value in the
default_addr field is the pointer to the string rather than a pointer to the pointer. The default is used
if aresource is not specified in the argument list or in the resource database or if the conversion from
the representation type stored in the resource database fails, which can happen for various reasons (for
example, amisspelled entry in aresourcefile).

Two special representation types (XtRImmediate and XtRCallProc) are usable only as default resource
types. XtRImmediate indicates that the value in the default_addr field is the actual value of the resource
rather than the address of the value. The value must be in the correct representation type for the resource,
coerced to an Xt Poi nt er. No conversion is possible, since there is no source representation type.
XtRCallProc indicates that the value in the default_addr field is a procedure pointer. This procedure is
automatically invoked with the widget, resource offset, and a pointer to an Xr nVal ue in which to store
the result. XtRCallProc procedure pointers are of type (* Xt Resour ceDef aul t Proc) .

typedef void (*XtResourceDefaultProc)(w, offset, value);

w Specifies the widget whose resource value is to be obtained.
offset Specifiesthe offset of the field in the widget record.
value Specifies the resource value descriptor to return.

The (* Xt Resour ceDef aul t Proc) procedure should fill in the value->addr field with a pointer to
the resource value in its correct representation type.

To get the resource list structure for a particular class, use Xt Get Resour celi st.
voi d Xt Get Resour celLi st (class, resources_return, numresources_return);

class Specifiesthe object classto be queried. It must beobj ect O ass
or any subclass thereof.

resources return Returns the resource list.
num_resources_return Returns the number of entriesin the resource list.

If Xt Get Resour celLi st iscalled beforetheclassisinitialized, it returnstheresourcelist as specifiedin
theclassrecord. If itiscalled after theclasshasbeeninitialized, Xt Get Resour ceLi st returnsamerged
resource list that includes the resources for all superclasses. Thelist returned by Xt Get Resour celi st
should be freed using Xt Fr ee when it is no longer needed.

To get the constraint resource list structure for a particular widget class, use
Xt Get Const r ai nt Resour celi st.

voi d Xt Get Const r ai nt Resour ceLi st (cl ass, resources_return,
num resources_return);

class Specifiesthe object classto be queried. It must beobj ect O ass
or any subclass thereof.

resources return Returns the constraint resource list.
num_resources return Returns the number of entriesin the constraint resource list.

If Xt Get Constrai nt Resour celLi st iscalled before the widget classisinitialized, the resource list
as specified in the widget class Constraint part is returned. If Xt Get Const r ai nt Resour celLi st is
called after the widget class has been initialized, the merged resource list for the class and all Constraint

130

Resource Management

superclasses is returned. If the specified class is not a subclass of const rai nt Wdget d ass,
*resources return is set to NULL and *num resources return is set to zero. The list returned by
Xt Get Const r ai nt Resour ceLi st should be freed using Xt Fr ee when it isno longer needed.

The routines Xt Set Val ues and Xt Get Val ues aso use the resource list to set and get widget state;
see the section called “Obtaining Widget State” and the section called “ Setting Widget State”.

Hereis an abbreviated version of a possible resource list for a Label widget:

/* Resources specific to Label */
static XtResource resources[] = {
{ Xt Nf or eground, Xt CFor eground, XtRPi xel, sizeof (Pixel),
Xt Of fset OF (Label Rec, | abel.foreground), XtRString, XtDefaultForeground},
{Xt Nf ont, XtCFont, XtRFontStruct, sizeof(XFontStruct?*),
Xt fset O (Label Rec, label.font), XtRString, XtDefaultFont},
{Xt Nl abel , XtCLabel, XtRString, sizeof(String),
Xt O fset O (Label Rec, |abel.label), XtRString, NULL},

}

The compl ete resource name for a field of awidget instance is the concatenation of the application shell
name (from Xt AppCr eat eShel |), the instance names of all the widget's parents up to the top of
the widget tree, the instance name of the widget itself, and the resource name of the specified field of
the widget. Similarly, the full resource class of afield of a widget instance is the concatenation of the
application class (from Xt AppCr eat eShel |), the widget class names of all the widget's parents up to
the top of the widget tree, the widget class name of the widget itself, and the resource class of the specified
field of the widget.

Byte Offset Calculations

To determine the byte offset of afield within a structure type, use Xt Of f set O .
Cardinal XtOfsetOf(structure_type, field_name);

structure_type Specifies atype that is declared as a structure.
field_name Specifies the name of a member within the structure.

The Xt OF f set OF macro expands to a constant expression that gives the offset in bytes to the specified
structure member from the beginning of the structure. It is normally used to statically initialize resource
lists and is more portable than Xt O f set , which serves the same function.

To determine the byte offset of afield within a structure pointer type, use Xt Of f set .
Cardinal XtCOffset(pointer_type, field nane);

pointer_type Specifies atype that is declared as a pointer to a structure.
field_name Specifies the name of a member within the structure.

The Xt OF f set macro expands to a constant expression that gives the offset in bytes to the specified
structure member from the beginning of the structure. It may be used to statically initialize resource lists.
Xt O f set islessportablethan Xt Of f set OF .

131

Resource Management

Superclass-to-Subclass Chaining of Resource

Lists

Subr

The Xt Cr eat eW dget function gets resources as a superclass-to-subclass chained operation. That is,
the resources specified in the obj ect O ass resource list are fetched, then thoseinr ect Cbj d ass,
and so on down to the resources specified for this widget's class. Within a class, resources are fetched in
the order they are declared.

In general, if awidget resource field is declared in a superclass, that field isincluded in the superclass's
resource list and need not be included in the subclass's resource list. For example, the Core class contains
aresource entry for background pixel. Consequently, the implementation of Label need not also have a
resource entry for background_pixel. However, a subclass, by specifying aresource entry for that field in
its own resource list, can override the resource entry for any field declared in a superclass. This is most
often done to override the defaults provided in the superclass with new ones. At class initialization time,
resource lists for that class are scanned from the superclass down to the class to look for resources with
the same offset. A matching resource in a subclass will be reordered to override the superclass entry. If
reordering is necessary, a copy of the superclass resource list is made to avoid affecting other subclasses
of the superclass.

Also at class initialization time, the Intrinsics produce an internal representation of the resource list to
optimize access time when creating widgets. In order to save memory, the Intrinsics may overwrite the
storage allocated for the resource list in the class record; therefore, widgets must allocate resource lists
in writable storage and must not access the list contents directly after the class initialize procedure has
returned.

esources

A widget does not do anything to retrieve its own resources; instead, Xt Cr eat eW dget does this
automatically before calling the classinitialize procedure.

Some widgets have subparts that are not widgets but for which the widget would like to fetch resources.
Such widgets call Xt Get Subr esour ces to accomplish this.

voi d Xt Get Subresources(w, base, nane, class, resources, numresources,
args, numargs);

w Specifies the object used to qualify the subpart resource name and
class. Must be of class Object or any subclass thereof.

base Specifies the base address of the subpart data structure into which
the resources will be written.

name Specifies the name of the subpart.

class Specifies the class of the subpart.

resources Specifies the resource list for the subpart.

numM_resources Specifies the number of entriesin the resource list.

args Specifies the argument list to override any other resource
specifications.

num args Specifies the number of entries in the argument list.

132

Resource Management

The Xt Get Subr esour ces function constructs a name and class list from the application name and
class, the names and classes of al the object's ancestors, and the object itself. Then it appends to thislist
the name and class pair passed in. The resources are fetched from the argument list, the resource database,
or the default values in the resource list. Then they are copied into the subpart record. If argsis NULL,
num_args must be zero. However, if num_argsis zero, the argument list is not referenced.

Xt Get Subr esour ces may overwrite the specified resource list with an equivalent representation in
an internal format, which optimizes access time if the list is used repeatedly. The resource list must be
allocated in writable storage, and the caller must not modify the list contents after the call if the same list
isto be used again. Resources fetched by Xt Get Subr esour ces are reference-counted asif they were
referenced by the specified object. Subresources might therefore be freed from the conversion cache and
destroyed when the object is destroyed, but not before then.

To fetch resources for widget subparts using varargs lists, use Xt VaGet Subr esour ces.

voi d Xt VaGet Subr esour ces(w, base, nane, cl ass, resour ces,
num resources,);

w Specifies the object used to qualify the subpart resource name and
class. Must be of class Object or any subclass thereof.

base Specifies the base address of the subpart data structure into which
the resources will be written.

name Specifies the name of the subpart.

class Specifies the class of the subpart.

resources Specifies the resource list for the subpart.

num_resources Specifies the number of entriesin the resource list.

Specifies the variable argument list to override any other resource
specifications.

Xt VaGet Subr esour ces is identical in function to Xt Get Subr esour ces with the args and
num_args parameters replaced by avarargs list, as described in Section 2.5.1.

Obtaining Application Resources

To retrieve resources that are not specific to a widget but apply to the overall application, use
Xt Get Appl i cati onResour ces.

voi d Xt Get Appl i cati onResources(w, base, resources, numresources, args,

num ar gs) ;

w Specifies the object that identifies the resource database to search
(the database is that associated with the display for this object).
Must be of class Object or any subclass thereof.

base Specifies the base address into which the resource values will be
written.

resources Specifiesthe resource list.

num_resources Specifies the number of entriesin the resource list.

133

Resource Management

args Specifies the argument list to override any other resource
specifications.
num args Specifies the number of entries in the argument list.

The Xt Get Appl i cati onResour ces function first uses the passed object, which is usually an
application shell widget, to construct aresource name and classlist. Thefull name and class of the specified
object (that is, including itsancestors, if any) islogically added to the front of each resource name and class.
Then it retrieves the resources from the argument list, the resource database, or the resource list default
values. After adding base to each address, Xt Get Appl i cat i onResour ces copiesthe resourcesinto
the addresses obtained by adding base to each offset in the resource list. If argsisNULL, num_args must
be zero. However, if num_argsis zero, the argument list is not referenced. The portable way to specify
application resources is to declare them as members of a structure and pass the address of the structure
as the base argument.

Xt Get Appl i cati onResour ces may overwrite the specified resource list with an equivalent
representation in an internal format, which optimizesaccesstimeif thelist isused repeatedly. Theresource
list must be allocated in writable storage, and the caller must not modify thelist contents after the call if the
same list is to be used again. Any per-display resources fetched by Xt Get Appl i cati onResour ces
will not be freed from the resource cache until the display is closed.

To retrieve resources for the overall application using varargs lists, use
Xt VaGet Appl i cat i onResour ces.

voi d Xt VaGet Appl i cati onResources(w, base, resources, numresources,);

w Specifies the object that identifies the resource database to search
(the database is that associated with the display for this object).
Must be of class Object or any subclass thereof.

base Specifies the base address into which the resource values will be
written.

resources Specifies the resource list for the subpart.

num_resources Specifies the number of entriesin the resource list.

Specifies the variable argument list to override any other resource
specifications.

Xt VaGet Appl i cat i onResour ces isidentical in function to Xt Get Appl i cati onResour ces
with the args and num_args parameters replaced by avarargs list, as described in Section 2.5.1.

Resource Conversions

Thelntrinsics provide amechanism for registering representation convertersthat are automatically invoked
by the resource-fetching routines. The Intrinsics additionally provide and register several commonly used
converters. This resource conversion mechanism serves several purposes:

* It permits user and application resource files to contain textual representations of nontextual values.

« It alows textual or other representations of default resource values that are dependent on the display,
screen, or colormap, and thus must be computed at runtime.

« It caches conversion source and result data. Conversions that require much computation or space (for
exampl e, string-to-transation-tabl€) or that require round-tripsto the server (for example, string-to-font
or string-to-color) are performed only once.

134

Resource Management

Predefined Resource Converters

Thelntrinsicsdefine all the representations used in the Object, RectObj, Core, Composite, Constraint, and
Shell widget classes. The Intrinsics register the following resource converters that accept input values of
representation type Xt RSt r i ng.

Target Representation Converter Name Additional Args

Xt RAccel erator Tabl e Xt Cvt StringToAccel erat or Tabl e

Xt RAt om Xt Cvt Stri ngToAt om Display*

Xt RBool ean Xt Cvt St ri ngToBool ean

Xt RBool Xt Cvt Stri ngToBool

Xt RConmandAr gAr r ay Xt Cvt St ri ngToConmmandAr gAr r ay

Xt RCur sor Xt Cvt St ringToCur sor Display*

Xt RDi mensi on Xt Cvt St ri ngToDi mensi on

XtRDi rectoryString Xt Cvt StringToDirectoryString

Xt RDi spl ay Xt Cvt St ri ngToDi spl ay

XtRFil e XtCvt StringToFile

Xt RFl oat Xt Cvt Stri ngToFl oat

Xt RFont Xt Cvt St ri ngToFont Display*

Xt RFont Set Xt Cvt St ri ngToFont Set Display*, String locale
Xt RFont Struct Xt Cvt Stri ngToFont Struct Display*
XtRGavity XtCvt StringToGavity

XtRInitial State XtCvt StringTolnitial State

Xt Rl nt Xt Cvt Stri ngTol nt

Xt RPi xel XtCvt StringToPi xel col or Convert Args
Xt RPosi tion Xt Cvt StringToPosition

Xt RRestart Styl e Xt Cvt StringToRestart Styl e

Xt RShor t Xt Cvt StringToShort

Xt RTransl ati onTabl e Xt Cvt StringToTransl ati onTabl e

Xt RUnsi gnedChar Xt Cvt St ri ngToUnsi gnedChar

Xt RVi sual Xt Cvt St ringToVi sual Screen*, Cardinal depth

The String-to-Pixel conversion hastwo predefined constants that are guaranteed to work and contrast with
each other: Xt Def aul t For egr ound and Xt Def aul t Backgr ound. They evaluate to the black and
white pixel values of the widget's screen, respectively. If the application resource reverseVideo is Tr ue,
they evaluate to the white and black pixel values of the widget's screen, respectively. Similarly, the String-
to-Font and String-to-FontStruct converters recognize the constant Xt Def aul t Font and evaluate this
in the following manner:

* Query the resource database for the resource whose full name is “xtDefaultFont”, class
“XtDefaultFont” (that is, no widget name/class prefixes), and use atype Xt RSt r i ng value returned
asthefont name or atype Xt RFont or Xt RFont St r uct value directly asthe resource value.

* If the resource database does not contain a value for xtDefaultFont, class XtDefaultFont, or if the
returned font name cannot be successfully opened, an implementation-defined font in 1SO8859-1
character set encoding is opened. (One possible algorithm is to perform an XLi st Font s using a

135

Resource Management

wildcard font name and use the first font in the list. This wildcard font name should be as broad
as possible to maximize the probability of locating a useable font; for example, “- * - *-*- R-* - *-
-120--*-*-*_]S08859-1".)

« If no suitable 1SO8859-1 font can be found, issue awarning message and return Fal se.

The String-to-FontSet converter recognizes the constant Xt Def aul t Font Set and evaluate this in the
following manner:

* Query the resource database for the resource whose full name is “xtDefaultFontSet”, class
“XtDefaultFontSet” (that is, no widget name/class prefixes), and useatype Xt RSt r i ng valuereturned
asthe base font name list or atype Xt RFont Set value directly as the resource value.

* |If the resource database does not contain a value for xtDefaultFontSet, class XtDefaultFontSet, or if a
font set cannot be successfully created from thisresource, an implementation-defined font set is created.
(One possible algorithm is to perform an XCr eat eFont Set using a wildcard base font name. This
wildcard base font name should be as broad as possible to maximize the probability of locating auseable
font; for example, “- *-*-*- R-*-*_*_120-*-*_-*_*")

« If no suitable font set can be created, issue awarning message and return Fal se.

If afont set is created but missing_charset_list is not empty, awarning is issued and the partial font set
is returned. The Intrinsics register the String-to-FontSet converter with a conversion argument list that
extracts the current process locale at the time the converter isinvoked. This ensures that the converter is
invoked again if the same conversion isrequired in adifferent locale.

The String-to-Gravity conversion accepts string values that are the names of
window and bit gravities and their numerical equivalents, as defined in Xlib —
C Language X Interfaces ForgetGravity, UnmapGavity, NorthWestG avity,
NorthGravity, NorthEastGravity, West Gravity, CenterGravity, EastGavity,
Sout hWest Gravi ty, Sout hGravi ty,Sout hEast Gravity,andSt ati cGr avity.Alphabetic
case is not significant in the conversion.

The String-to-CommandArgArray conversion parses a String into an array of strings. White space
characters separate elements of the command line. The converter recognizes the backslash character “\”
as an escape character to allow the following white space character to be part of the array element.

The String-to-Directory String conversion recognizesthe string “ XtCurrentDirectory” and returnstheresult
of acall to the operating system to get the current directory.

The String-to-RestartStyle conversion accepts the values Rest art | f Runni ng, Rest art Anyway,
Rest art | mredi at el y, and Rest art Never asdefined by the X Session Management Protocol.

The String-to-Initial State conversion accepts the values Nor mal St at e or | coni cSt at e as defined
by the Inter-Client Communication Conventions Manual.

The String-to-Visual conversion calls XMat chVi sual | nf o using the screen and depth fields from the
core part and returnsthefirst matching Visual onthelist. Thewidget resource list must be certain to specify
any resource of type Xt RVi sual after the depth resource. The allowed string values are the visua class
names defined in X Window System Protocol, Section 8; St at i cGr ay, St ati cCol or, TrueCol or,
GrayScal e, PseudoCol or,andDi r ect Col or.

The Intrinsics register the following resource converter that accepts an input value of representation type
Xt RCol or .

Target Representation Converter Name Additional Args
Xt RPi xel Xt Cvt Col or ToPi xel

136

Resource Management

The Intrinsics register the following resource converters that accept input values of representation type

Xt Rl nt.

Target Representation Converter Name Additional Args

Xt RBool ean Xt Cvt | nt ToBool ean

Xt RBool Xt Cvt | nt ToBool

Xt RCol or Xt Cvt I nt ToCol or col or Convert Args
Xt RDi mensi on Xt Cvt | nt ToDi nensi on

Xt RFI oat Xt Cvt | nt ToFl oat

Xt RFont Xt Cvt | nt ToFont

Xt RPi xel Xt Cvt | nt ToPi xel

Xt RPi xmap Xt Cvt | nt ToPi xmap

Xt RPosi tion Xt Cvt I nt ToPosi ti on

Xt RShor t Xt Cvt | nt ToShort

Xt RUnsi gnedChar Xt Cvt | nt ToUnsi gnedChar

The Intrinsics register the following resource converter that accepts an input value of representation type
Xt RPi xel .

Target Representation Converter Name Additional Args

Xt RCol or Xt Cvt Pi xel ToCol or

New Resource Converters

Type converters use pointersto Xr mval ue structures (defined in <X11/ Xr esour ce. h>; see Section
15.4in Xlib — C Language X Interface) for input and output values.

typedef struct {
unsi gned int size;
XPoi nter addr;

} XrnWVal ue, *Xrnval uePtr;

The addr field specifies the address of the data, and the size field gives the total number of significant
bytes in the data. For values of type St ri ng, addr is the address of the first character and size includes
the NULL-terminating byte.

A resource converter procedure pointer is of type (* Xt TypeConverter).

typedef Bool ean (*Xt TypeConverter)(display, args, numargs, from to,
converter_data);

display Specifies the display connection with which this conversion is
associated.
args Specifiesalist of additional Xr nival ue argumentsto the converter

if additional context isneeded to perform the conversion, or NULL.
For example, the String-to-Font converter needs the widget's
display, and the String-to-Pixel converter needsthe widget's screen
and colormap.

137

Resource Management

num args Specifies the number of entriesin args.

from Specifies the value to convert.

to Specifies a descriptor for a location into which to store the
converted value.

converter_data Specifies a location into which the converter may store converter-

specific data associated with this conversion.

The display argument is normally used only when generating error messages, to identify the application
context (with the function Xt Di spl ayToAppl i cati onCont ext).

The to argument specifies the size and location into which the converter should store the converted value.
If the addr fieldis NULL, the converter should allocate appropriate storage and store the size and location
into the to descriptor. If the type converter allocates the storage, it remains under the ownership of the
converter and must not be modified by the caller. The type converter is permitted to use static storage
for this purpose, and therefore the caller must immediately copy the data upon return from the converter.
If the addr field is not NULL, the converter must check the size field to ensure that sufficient space has
been allocated before storing the converted value. If insufficient space is specified, the converter should
update the size field with the number of bytes required and return Fal se without modifying the data at
the specified location. If sufficient space was allocated by the caller, the converter should update the size
field with the number of bytes actually occupied by the converted value. For converted values of type
Xt RSt ri ng, the size should include the NULL-terminating byte, if any. The converter may store any
value in the location specified in converter_data; this value will be passed to the destructor, if any, when
the resourceis freed by the Intrinsics.

The converter must return Tr ue if the conversion was successful and Fal se otherwise. If the conversion
cannot be performed because of an improper source value, awarning message should al so be issued with
Xt AppWar ni nghsg.

Most type convertersjust take the data described by the specified from argument and return data by writing
into the location specified in the to argument. A few need other information, which isavailablein args. A
type converter can invoke another type converter, which allows differing sources that may convert into a
common intermediate result to make maximum use of the type converter cache.

Note that if an address is written into to->addr, it cannot be that of a local variable of the converter
because the data will not be valid after the converter returns. Static variables may be used, as in the
following example. If the converter modifies the resource database, the changes affect any in-progress
widget creation, Xt Get Appl i cat i onResour ces,or Xt Get Subr esour ces inanimplementation-
defined manner; however, insertion of new entries or changes to existing entries is allowed and will not
directly cause an error.

The following is an example of a converter that takes a st ri ng and converts it to a Pi xel . Note
that the display parameter is used only to generate error messages, the Scr een conversion argument is
still required to inform the Intrinsics that the converted value is a function of the particular display (and
colormap).

#def i ne done(type, value) \

if (toVal ->addr != NULL) {
if (toVal ->size < sizeof(type)) {
toVal - >si ze = sizeof (type);
return Fal se;

— — — — -

138

Resource Management

(type)(toVal ->addr) = (val ue);
}
el se {
static type static_val;
static_val = (value);
toVal - >addr = (XPointer)&static_val;
}
toVal - >si ze = sizeof (type);
return True;

— - -

}

static Bool ean Cvt StringToPi xel (
Di spl ay *dpy,
Xrmval ue *args,
Cardinal *num args,
Xrnval ue *fronval,
XrnVal ue *toVal,
Xt Poi nter *converter_data)

static XColor screenCol or;
XCol or exact Col or;
Screen *screen,;

Col or map col or map;

St at us st at us;

if (*numargs != 2)
Xt AppWar ni ngMsg(Xt Di spl ayToAppl i cati onCont ext (dpy),
"wrongParanmeters”, "cvtStringToPi xel ™, "XtTool kitError",
"String to pixel conversion needs screen and col ormap argunents”,
(String *)NULL, (Cardinal *)NULL);
screen = *((Screen**) args[0].addr);
colormap = *((Col ormap *) args[1].addr);
if (Comparel SOLatinl(str, XtDefaultBackground) == 0) {
*closure_ret = Fal se;
done(Pi xel , Wit ePi xel O Scr een(screen));
}
if (Comparel SOLatinl(str, XtDefaultForeground) == 0) {
*closure_ret = Fal se;
done(Pi xel , Bl ackPi xel OF Screen(screen));
}
status = XAl | ocNanedCol or (Di spl ayOf Scr een(scr een),
col ormap, (char*)fronval ->addr,
&screenCol or, &exact Col or);
if (status == 0) {
String parans[1];
Cardi nal num parans = 1;
paranms[0] = (String)fronval ->addr;
Xt AppWar ni ngMsg(Xt Di spl ayToAppl i cati onCont ext (dpy),
"noCol or map",
"cvt StringToPi xel ",
"Xt Tool kitError™,
"Cannot allocate colormap entry for \"9%\"",
par ams, &num par ans) ;
*converter_data = (char *) Fal se;

139

Resource Management

return Fal se;

} else {
*converter_data = (char *) True;
done(Pi xel , &screenCol or. pi xel) ;

}

All type converters should define some set of conversion values for which they are guaranteed to
succeed so these can be used in the resource defaults. This issue arises only with conversions, such as
fonts and colors, where there is no string representation that all server implementations will necessarily
recognize. For resources like these, the converter should define a symbolic constant in the same manner
as Xt Def aul t For egr ound, Xt Def aul t Backgr ound, and Xt Def aul t Font .

Toallow thelntrinsicsto deall ocate resources produced by type converters, aresource destructor procedure
may also be provided.

A resource destructor procedure pointer is of type (* Xt Dest r uct or) .

typedef void (*XtDestructor)(app, to, converter_data, args, num.args);

app Specifies an application context in which the resource is being
freed.

to Specifies a descriptor for the resource produced by the type
converter.

converter_data Specifiesthe converter-specific datareturned by thetype converter.

args Specifies the additional converter arguments as passed to the type

converter when the conversion was performed.
num args Specifies the number of entriesin args.

The destructor procedure is responsible for freeing the resource specified by the to argument, including
any auxiliary storage associated with that resource, but not the memory directly addressed by the size and
location in the to argument or the memory specified by args.

Issuing Conversion Warnings

The Xt Di spl aySt ri ngConver si on\ar ni ng procedure is a convenience routine for resource type
converters that convert from string values.

voi d Xt Di spl ayStri ngConver si onWar ni ng(di splay, fromvalue, to_type);

display Specifies the display connection with which the conversion is
associated.

from value Specifies the string that could not be converted.

to_type Specifies the target representation type requested.

The Xt Di spl ayStringConversi onWarni ng procedure issues a warning message using
Xt AppWar ni ngMs g with name* conversionError”, type“string”, class“ XtToolkitError”, and thedefault
message “ Cannot convert "from value" to typeto_type”.

To issue other types of warning or error messages, the type converter should use Xt AppWar ni ngMsg
or Xt AppErr or Msg.

140

Resource Management

To retrieve the application context associated with a given display connection, use
Xt Di spl ayToAppl i cati onCont ext .

Xt AppCont ext Xt Di spl ayToAppl i cati onCont ext (di spl ay);
display Specifies an open and initialized display connection.

The Xt Di spl ayToAppl i cati onCont ext function returns the application context in which the
specified display was initialized. If the display is not known to the Intrinsics, an error message is issued.

Registering a New Resource Converter

When registering a resource converter, the client must specify the manner in which the conversion cache
isto be used when there are multiple calls to the converter. Conversion cache control is specified viaan
Xt CacheType argument.

typedef int XtCacheType;
An Xt CacheType field may contain one of the following values:
Xt CacheNone

» Specifies that the results of a previous conversion may not be reused to satisfy any other resource
requests; the specified converter will be called each time the converted value is required.

Xt CacheAl |

« Specifiesthat theresults of aprevious conversion should be reused for any resource request that depends
upon the same source value and conversion arguments.

Xt CacheByDi spl ay

 Specifiesthat theresults of aprevious conversion should beused asfor Xt CacheAl | but the destructor
will be called, if specified, if Xt Cl oseDi spl ay iscalled for the display connection associated with
the converted value, and the value will be removed from the conversion cache.

The qualifier Xt CacheRef Count may be ORed with any of the above vaues. If
Xt CacheRef Count is specified, calls to Xt Creat eW dget, Xt Creat eManagedW dget,
Xt Get Appl i cati onResour ces, and Xt Get Subr esour ces that use the converted value will be
counted. When awidget using the converted value is destroyed, the count is decremented, and, if the count
reaches zero, the destructor procedure will be called and the converted value will be removed from the
conversion cache.

To register atype converter for al application contextsin a process, use Xt Set TypeConverter, and
to register atype converter in asingle application context, use Xt AppSet TypeConvert er.

voi d Xt Set TypeConverter(fromtype, to_type, converter, convert_args,
num args, cache_type, destructor);

from type Specifies the source type.

to_type Specifies the destination type.

converter Specifies the resource type converter procedure.
convert_args Specifies additional conversion arguments, or NULL.

141

Resource Management

num args Specifies the number of entriesin convert_args.

cache_type Specifies whether or not resources produced by this converter are
sharable or display-specific and when they should be freed.

destructor Specifies a destroy procedure for resources produced by this
conversion, or NULL if no additional action is required to
deallocate resources produced by the converter.

voi d Xt AppSet TypeConverter(app_context, fromtype, to_type, converter,
convert_args, num.args, cache_ type, destructor);

app_context Specifies the application context.

from_type Specifies the source type.

to_type Specifies the destination type.

converter Specifies the resource type converter procedure.

convert_args Specifies additional conversion arguments, or NULL.

num_args Specifies the number of entriesin convert_args.

cache type Specifies whether or not resources produced by this converter are

sharable or display-specific and when they should be freed.

destructor Specifies a destroy procedure for resources produced by this
conversion, or NULL if no additional action is required to
deallocate resources produced by the converter.

Xt Set TypeConverter registers the specified type converter and destructor in all application
contexts created by the calling process, including any future application contexts that may be created.
Xt AppSet TypeConvert er registers the specified type converter in the single application context
specified. If the same from_type and to_type are specified in multiple calls to either function, the most
recent overrides the previous ones.

For thefew type convertersthat need additional arguments, the I ntrinsics conversion mechanism providesa
method of specifying how these arguments should be computed. The enumerated type Xt Addr essMode
and the structure Xt Convert Ar gRec specify how each argument is derived. These are defined in
<X11/Intrinsic. h>.

typedef enum {
/* address node paraneter representation */

Xt Addr ess, /* address */

Xt BaseOr f set [* offset */

Xt 1 mredi at e, /* constant */

Xt Resour ceStri ng, /* resource nanme string */
Xt Resour ceQuar k, /* resource name quark */
Xt Wdget BaseOf fset, [* offset */

Xt Procedur eAr g /* procedure to call */

} Xt Addr esshbde;

typedef struct {
Xt Addr essMode addr ess_node;
Xt Poi nt er address_id;

142

Resource Management

Car di nal si ze;
} Xt Convert ArgRec, *XtConvert ArgLi st;

Thesizefield specifiesthelength of thedatain bytes. Theaddress modefield specifieshow theaddress id
field should be interpreted. Xt Addr ess causes address id to be interpreted as the address of the data.
Xt BaseOr f set causesaddress idto beinterpreted asthe offset from the widget base. Xt | rmedi at e
causes address id to be interpreted as a constant. Xt Resour ceStri ng causes address id to be
interpreted as the name of a resource that is to be converted into an offset from the widget base.
Xt Resour ceQuar k causes address id to be interpreted as the result of an Xr nSt ri ngToQuar k
conversion on the name of a resource, which is to be converted into an offset from the widget
base. Xt W dget Basef f set is similar to Xt BaseOf f set except that it searches for the closest
windowed ancestor if the object is not of a subclass of Core (see Chapter 12, Nonwidget Objects).
Xt Procedur eAr g specifies that address id is a pointer to a procedure to be invoked to return the
conversion argument. If Xt Procedur eAr g is specified, address id must contain the address of a
function of type (* Xt Convert Ar gProc).

typedef void (*XtConvertArgProc)(object, size, value);

object Passes the object for which the resource is being converted, or NULL if the
converter was invoked by Xt Cal | Converter or Xt Di r ect Convert.

size Passes a pointer to the size field from the XtConvertArgRec.

value Passes a pointer to a descriptor into which the procedure must store the
conversion argument.

When invoked, the Xt Conver t Ar gPr oc procedure must derive a conversion argument and store the
address and size of the argument in the location pointed to by value.

In order to permit reentrancy, the Xt Convert Ar gPr oc should return the address of storage whose
lifetimeisno shorter than thelifetime of object. If objectisNULL, thelifetime of the conversion argument
must be no shorter than the lifetime of the resource with which the conversion argument is associated.
The Intrinsics do not guarantee to copy this storage but do guarantee not to reference it if the resourceis
removed from the conversion cache.

The following example illustrates how to register the Cvt St ri ngToPi xel routine given earlier:

static XtConvert ArgRec col orConvert Args[] = {
{ Xt W dget BaseOf f set ,
(Xt Poi nter) Xt O f set (Wdget, core.screen),
si zeof (Screen*)},
{ Xt W dget BaseOf f set ,
(Xt Poi nter) Xt O f set (W dget, core.col ormap),
si zeof (Col or map) }

b

Xt Set TypeConverter (Xt RStri ng,
Xt RPi xel ,
Cvt Stri ngToPi xel
col or Convert Ar gs,
Xt Nunber (col or Convert Args),
Xt CacheByDi spl ay, NULL);

The conversion argument descriptors colorConvertArgs and screenConvertArg are predefined by the
Intrinsics. Both take the values from the closest windowed ancestor if the object is not of a subclass of

143

Resource Management

Core. The screenConvertArg descriptor puts the widget’s screen field into argg 0]. The colorConvertArgs
descriptor puts the widget's screen field into args[0], and the widget’s colormap field into argg[1].

Conversion routines should not just put a descriptor for the address of the base of the widget into argg[0],
and use that in the routine. They should pass in the actual values on which the conversion depends.
By keeping the dependencies of the conversion procedure specific, it is more likely that subsequent
conversions will find what they need in the conversion cache. Thisway the cache is smaller and has fewer
and more widely applicable entries.

If any conversion arguments of type XtBaseOffset, XtResourceString, XtResourceQuark, and
XtWidgetBaseOffset are specified for conversions performed by XtGetApplicationResources,
XtGetSubresources, XtVaGetApplicationResources, or XtVaGetSubresources, the arguments are
computed with respect to the specified widget, not the base address or resource list specified in the call.

If the Xt Convert ArgProc modifies the resource database, the changes affect any in-progress
widget creation, Xt Get Appl i cati onResour ces,or Xt Get Subr esour ces inanimplementation-
defined manner; however, insertion of new entries or changes to existing entries are allowed and will not
directly cause an error.

Resource Converter Invocation

All resource-fetching routines (for example, Xt Get Subr esour ces,
Xt Get Appl i cati onResour ces, and so on) cal resource converters if the resource database or
varargs list specifies a value that has a different representation from the desired representation or if the
widget's default resource value representation is different from the desired representation.

To invoke explicit resource conversions, use Xt Convert AndSt or e or Xt Cal | Converter.

t ypedef Xt Poi nter XtCacheRef;

Bool ean Xt Cal | Converter(di spl ay, converter, conversion_args, num args,
from to_in_out, cache_ref_return);

display Specifiesthe display with which the conversion is to be associated.
converter Specifies the conversion procedure to be called.
conversion_args Specifies the additional conversion arguments needed to perform

the conversion, or NULL.

num_args Specifies the number of entriesin conversion_args.
from Specifies a descriptor for the source value.
to_in_out Returns the converted value.

cache ref return Returns a conversion cacheid.

The Xt Cal | Convert er function looks up the specified type converter in the application context
associated with the display and, if the converter was not registered or was registered with cache type
Xt CacheAl | or Xt CacheByDi spl ay, looks in the conversion cache to see if this conversion
procedure has been called with the specified conversion arguments. If so, it checks the success status of
the prior call, and if the conversion failed, Xt Cal | Convert er returnsFal se immediately; otherwise
it checks the size specified in the to argument, and, if it is greater than or equal to the size stored in
the cache, copies the information stored in the cache into the location specified by to->addr, stores the

144

Resource Management

cache sizeinto to->size, and returns Tr ue. If the size specified in the to argument is smaller than the size
stored in the cache, Xt Cal | Convert er copiesthe cache size into to->size and returns Fal se. If the
converter was registered with cache type Xt CacheNone or no value was found in the conversion cache,
Xt Cal | Convert er callsthe converter, and if it was not registered with cache type Xt CacheNone,
enterstheresult in the cache. Xt Cal | Conver t er then returns what the converter returned.

The cache ref return field specifies storage alocated by the caller in which an opague value will be
stored. If the type converter has been registered with the Xt CacheRef Count modifier and if the value
returnedin cache ref_returnisnon-NULL, thenthecaller should storethecache ref _returnvaluein order
to decrement the reference count when the converted value is no longer required. The cache ref_return
argument should be NULL if the caller is unwilling or unable to store the value.

To explicitly decrement the reference counts for resources obtained from Xt Cal | Convert er, use
Xt AppRel easeCacheRef s.

voi d Xt AppRel easeCacheRef s(app_context, refs);
app_context Specifies the application context.
refs Specifiesthelist of cache referencesto be released.

Xt AppRel easeCacheRef s decrements the reference count for the conversion entries identified by
the refs argument. This argument is a pointer to a NULL-terminated list of Xt CacheRef values. If any
reference count reaches zero, the destructor, if any, will be called and the resource removed from the
conversion cache.

As a convenience to clients needing to explicitly decrement reference counts via a callback
function, the Intrinsics define two callback procedures, Xt Cal | backRel easeCacheRef and
Xt Cal | backRel easeCacheRef Li st .

voi d Xt Cal | backRel easeCacheRef (obj ect, client_data, call _data);

object Specifies the object with which the resource is associated.
client_data Specifies the conversion cache entry to be released.
call_data Isignored.

This callback procedure may be added to a callback list to release a previously returned Xt CacheRef
value. When adding the callback, the callback client_data argument must be specified as the value of the
Xt CacheRef datacast to type Xt Poi nt er .

voi d Xt Cal | backRel easeCacheRef Li st (obj ect, client_data, call_data);

object Specifies the object with which the resources are associated.
client_data Specifies the conversion cache entries to be released.
call_data Isignored.

This callback procedure may be added to a callback list to release a list of previously returned
Xt CacheRef vaues. When adding the callback, the callback client_data argument must be specified as
apointer to aNULL-terminated list of Xt CacheRef values.

Tolookup and call aresource converter, copy the resulting value, and free acached resource when awidget
isdestroyed, use Xt Convert AndSt or e.

Bool ean Xt Convert AndSt ore(object, fromtype, from to_type, to_in_out);

145

Resource Management

object Specifies the object to use for additional arguments, if any are needed,
and the destroy callback list. Must be of class Object or any subclass
thereof.

from type Specifies the source type.

from Specifies the value to be converted.

to_type Specifies the destination type.

to_in_out Specifies a descriptor for storage into which the converted value will
be returned.

The Xt Convert AndSt or e function looks up the type converter registered to convert from type
to to_type, computes any additiona arguments needed, and then calls Xt Cal | Converter

(or XtDirect Convert if an old-style converter was registered with Xt AddConverter or
Xt AppAddConvert er; see Appendix C) with the from and to_in out arguments. The to_in out
argument specifiesthe size and location into which the converted value will be stored and is passed directly
totheconverter. If thelocationisspecified asNULL, it will bereplaced with apointer to private storageand
the size will be returned in the descriptor. The caller is expected to copy this private storage immediately
and must not modify itin any way. If anon-NULL location is specified, the caller must allocate sufficient
storage to hold the converted value and must also specify the size of that storage in the descriptor. The
size field will be modified on return to indicate the actual size of the converted data. If the conversion
succeeds, Xt Conver t AndSt or e returns Tr ue; otherwiseg, it returns Fal se.

Xt Convert AndSt or e adds Xt Cal | backRel easeCacheRef to the destroyCallback list of the
specified object if the conversion returns an Xt CacheRef value. The resulting resource should not be
referenced after the object has been destroyed.

Xt Cr eat eW dget performs processing equivalent to Xt Conver t AndSt or e when initializing the
object instance. Because thereis extramemory overhead required to implement reference counting, clients
may distinguish those objects that are never destroyed before the application exits from those that may be
destroyed and whose resources should be deallocated.

To specify whether reference counting is to be enabled for the resources of a particular object when the
object is created, the client can specify avalue for the Bool ean resource XtNinitial ResourcesPersistent,
class XtClnitial ResourcesPersistent.

When Xt Cr eat eW dget iscalled, if thisresourceis not specified as Fal se in either the arglist or the
resource database, then the resources referenced by this object are not reference-counted, regardless of
how the type converter may have been registered. The effective default value is Tr ue; thus clients that
expect to destroy one or more objects and want resources deallocated must explicitly specify Fal se for
XtNinitial ResourcesPersistent.

The resources are still freed and destructors called when Xt Cl oseDi spl ay iscaled if the conversion
was registered as Xt CacheByDi spl ay.

Reading and Writing Widget State

Any resource field in awidget can be read or written by a client. On awrite operation, the widget decides
what changesit will actually allow and updates all derived fields appropriately.

Obtaining Widget State

To retrieve the current values of resources associated with awidget instance, use Xt Get Val ues.

146

Resource Management

voi d Xt Get Val ues(obj ect, args, num args);

object Specifies the object whose resource values are to be returned. Must be of
class Object or any subclass thereof.

args Specifiesthe argument list of name/address pairsthat contain theresource
names and the addresses into which the resource values are to be stored.
The resource names are widget-dependent.

num args Specifies the number of entries in the argument list.

The Xt Get Val ues function starts with the resources specified for the Object class and proceeds down
the subclass chain to the class of the object. The value field of a passed argument list must contain the
address into which to copy the contents of the corresponding object instance field. If the field is a pointer
type, the lifetime of the pointed-to datais defined by the object class. For the Intrinsics-defined resources,
the following lifetimes apply:

» Not valid following any operation that modifies the resource:
< XtNchildren resource of composite widgets.
« All resources of representation type XtRCallback.
e Remainvalid at least until the widget is destroyed:
» XtNaccelerators, XtNtranslations.
e Remainvalid until the Display is closed:
e XtNscreen.

It isthe caller's responsibility to allocate and deallocate storage for the copied data according to the size
of the resource representation type used within the object.

If the class of the object's parent is a subclass of const r ai nt W dget C ass, Xt Get Val ues then
fetchesthevaluesfor any constraint resources requested. It startswith the constraint resources specified for
const r ai nt W dget C ass and proceeds down the subclass chain to the parent's constraint resources.
If the argument list contains a resource name that is not found in any of the resource lists searched, the
value at the corresponding address is not modified. If any get_values hook procedures in the object's
class or superclass records are non-NULL, they are called in superclass-to-subclass order after all the
resource values have been fetched by Xt Get Val ues. Finally, if the object's parent is a subclass of
constrai nt Wdget d ass, and if any of the parent's class or superclass records have declared
Const r ai nt Gl assExt ensi on recordsin the Constraint class part extension field with arecord type
of NULLQUARK, andif theget_values_hookfieldintheextensionrecordisnon-NULL, Xt Cet Val ues
callsthe get_values_hook procedures in superclass-to-subclass order. This permits a Constraint parent to
provide nonresource datavia Xt Get Val ues.

Get_values hook procedures may modify the data stored at the location addressed by the value field,
including (but not limited to) making a copy of data whose resource representation is a pointer. None of
the Intrinsics-defined object classes copy data in this manner. Any operation that modifies the queried
object resource may invalidate the pointed-to data.

To retrieve the current values of resources associated with a widget instance using varargs lists, use
Xt VaGet Val ues.

voi d Xt VaGet Val ues(object, ...);

object Specifies the object whose resource values are to be returned. Must be of
class Object or any subclass thereof.

Specifies the variable argument list for the resources to be returned.

147

Resource Management

Xt VaGet Val ues isidentical in function to Xt Get Val ues with the args and num_args parameters
replaced by avarargs list, as described in Section 2.5.1. All value entries in the list must specify pointers
to storage allocated by the caller to which the resource value will be copied. It isthe caller's responsibility
to ensure that sufficient storage is alocated. If Xt VaTypedAr g is specified, the type argument specifies
the representation desired by the caller and the size argument specifies the number of bytes allocated to
store the result of the conversion. If the sizeisinsufficient, awarning message is issued and the list entry
is skipped.

Widget Subpart Resource Data: The get_values_hook Procedure

Widgets that have subparts can return resource values from them through Xt Get Val ues by supplying
aget values hook procedure. The get_values _hook procedure pointer is of type (* Xt Ar gsPr oc) .

typedef void (*XtArgsProc)(w, args, num.args);
w Specifies the widget whose subpart resource values are to be retrieved.

args Specifies the argument list that was passed to Xt Get Val ues or the
transformed varargs list passed to Xt VaGet Val ues.

num args Specifies the number of entries in the argument list.

The widget with subpart resources should call Xt Get Subval ues intheget_values hook procedure and
passin its subresource list and the args and num_args parameters.

Widget Subpart State

To retrieve the current values of subpart resource data associated with a widget instance, use
Xt Get Subval ues. For adiscussion of subpart resources, see the section called “ Subresources’.

voi d Xt Get Subval ues(base, resources, numresources, args, numargs);

base Specifies the base address of the subpart data structure for which
the resources should be retrieved.

resources Specifies the subpart resource list.
num_resources Specifies the number of entriesin the resource list.
args Specifies the argument list of name/address pairs that contain the

resource names and the addresses into which the resource values
are to be stored.

num args Specifies the number of entries in the argument list.

The Xt Get Subval ues function obtainsresource valuesfrom the structureidentified by base. The value
field in each argument entry must contain the addressinto which to store the corresponding resource value.
It isthe caller's responsibility to allocate and deallocate this storage according to the size of the resource
representation type used within the subpart. If the argument list contains aresource name that is not found
in the resource list, the value at the corresponding addressis not modified.

To retrieve the current values of subpart resources associated with a widget instance using varargs lists,
use Xt VaCGet Subval ues.

voi d Xt VaCGet Subval ues(base, resources, numresources, ...);

148

Resource Management

base Specifies the base address of the subpart data structure for which
the resources should be retrieved.

resources Specifies the subpart resource list.
num_resources Specifies the number of entriesin the resource list.

Specifiesavariableargument list of name/address pairsthat contain
the resource names and the addressesinto which the resource values
are to be stored.

Xt VaGet Subval ues is identica in function to Xt Get Subval ues with the args and num args
parameters replaced by a varargs list, as described in Section 2.5.1. Xt VaTypedAr g is not supported
for Xt VaGet Subval ues. If Xt VaTypedAr g is specified in the list, awarning message isissued and
the entry is then ignored.

Setting Widget State

To modify the current values of resources associated with awidget instance, use Xt Set Val ues.
voi d Xt Set Val ues(obj ect, args, num. args);

object Specifies the object whose resources are to be modified. Must be of class
Object or any subclass thereof.

args Specifiesthe argument list of name/value pairsthat contain the resources
to be modified and their new vaues.

num args Specifies the number of entries in the argument list.

The Xt Set Val ues function starts with the resources specified for the Object class fields and proceeds
down the subclass chain to the object. At each stage, it replaces the object resource fields with any values
specified in the argument list. Xt Set Val ues then calls the set_values procedures for the object in
superclass-to-subclass order. If the object has any non-NULL set_values hook fields, these are called
immediately after the corresponding set_values procedure. This procedure permits subclassesto set subpart
datavia Xt Set Val ues.

If the class of the object's parent is a subclass of const rai nt Wdget Cl ass, Xt Set Val ues
aso updates the object's congtraints. It starts with the constraint resources specified for
const r ai nt W dget O ass and proceeds down the subclass chain to the parent's class. At each stage,
it replaces the constraint resource fields with any values specified in the argument list. It then calls the
constraint set_values procedures from const r ai nt W dget C ass down to the parent's class. The
constraint set_values proceduresare called with widget arguments, asfor all set_values procedures, not just
the constraint records, so that they can make adjustments to the desired values based on full information
about the widget. Any arguments specified that do not match aresource list entry are silently ignored.

If the object is of a subclass of RectObj, Xt Set Val ues determines if a geometry request is needed
by comparing the old object to the new object. If any geometry changes are required, Xt Set Val ues
restores the original geometry and makes the request on behalf of the widget. If the geometry manager
returns Xt Geonet r yYes, Xt Set Val ues callsthe object's resize procedure. If the geometry manager
returns Xt Geonret r yDone, Xt Set Val ues continues, asthe object'sresize procedure should have been
called by the geometry manager. If the geometry manager returns Xt Geonet r yNo, Xt Set Val ues
ignores the geometry request and continues. If the geometry manager returns Xt Geonet r yAl nost ,
Xt Set Val ues calls the set values almost procedure, which determines what should be done.
Xt Set Val ues then repeats this process, deciding once more whether the geometry manager should be
called.

149

Resource Management

Finally, if any of the set_values procedures returned Tr ue, and the widget is realized, Xt Set Val ues
causes the widget's expose procedure to be invoked by calling Xl ear Ar ea on the widget's window.

To modify the current values of resources associated with a widget instance using varargs lists, use
Xt VaSet Val ues.

voi d Xt VaSet Val ues(object, ...);

object Specifies the object whose resources are to be modified. Must be of class
Object or any subclass thereof.

Specifies the variable argument list of name/value pairs that contain the
resources to be modified and their new values.

Xt VaSet Val ues isidentical in function to Xt Set Val ues with the args and num_args parameters
replaced by avarargs list, as described in Section 2.5.1.

Widget State: The set_values Procedure

The set_values procedure pointer in awidget classis of type (* Xt Set Val uesFunc) .

typedef Bool ean (*Xt Set Val uesFunc) (current, request, new, args,

num ar gs) ;

current Specifies acopy of the widget asit was before the Xt Set Val ues call.

request Specifies a copy of the widget with all values changed as asked for by the
Xt Set Val ues call before any class set_values procedures have been
called.

new Specifies the widget with the new values that are actually allowed.

args Specifies the argument list passed to Xt Set Val ues or the transformed

argument list passed to Xt VaSet Val ues.
num args Specifies the number of entries in the argument list.

The set_values procedure should recompute any field derived from resources that are changed (for
example, many GCs depend on foreground and background pixels). If no recomputation is necessary, and
if none of the resources specific to a subclass require the window to be redisplayed when their values are
changed, you can specify NULL for the set_valuesfield in the class record.

Like the initialize procedure, set values mostly deals only with the fields defined in the subclass, but it
has to resolve conflicts with its superclass, especially conflicts over width and height.

Sometimes a subclass may want to overwrite values filled in by its superclass. In particular, size
calculations of a superclass are often incorrect for a subclass, and, in this case, the subclass must modify
or recalculate fields declared and computed by its superclass.

As an example, a subclass can visually surround its superclass display. In this case, the width and height
calculated by the superclass set_values procedure are too small and need to be incremented by the size
of the surround. The subclass needs to know if its superclass's size was calculated by the superclass or
was specified explicitly. All widgets must place themselvesinto whatever sizeis explicitly given, but they
should compute areasonable sizeif no sizeisrequested. How does a subclass know the difference between
a specified size and a size computed by a superclass?

The request and new parameters provide the necessary information. The request widget is a copy of the
widget, updated as originally requested. The new widget starts with the values in the request, but it has

150

Resource Management

additionally been updated by all superclass set values procedures called so far. A subclass set_values
procedure can compare these two to resolve any potential conflicts. The set_values procedure need not
refer to the request widget unless it must resolve conflicts between the current and new widgets. Any
changes the widget needs to make, including geometry changes, should be made in the new widget.

In the above example, the subclass with the visual surround can seeif the width and height in the request
widget are zero. If so, it adds its surround size to the width and height fields in the new widget. If not, it
must make do with the size originally specified. In this case, zero is a specia value defined by the class
to permit the application to invoke this behavior.

The new widget is the actual widget instance record. Therefore, the set_values procedure should do all its
work on the new widget; the request widget should never be modified. If the set_values procedure needs
to call any routines that operate on awidget, it should specify new as the widget instance.

Before calling the set values procedures, the Intrinsics modify the resources of the request widget
according to the contents of the arglist; if the widget names all its resources in the class resource ligt, it is
never necessary to examine the contents of args.

Finally, the set_values procedure must return a Boolean that indicates whether the widget needs to be
redisplayed. Note that a change in the geometry fields alone does not require the set_values procedure
to return Tr ue; the X server will eventually generate an Expose event, if necessary. After calling all
the set_values procedures, Xt Set Val ues forces a redisplay by calling XCl ear Ar ea if any of the
set_values procedures returned Tr ue. Therefore, a set_values procedure should not try to do its own

redisplaying.

Set_values procedures should not do any work in response to changes in geometry because
Xt Set Val ues eventually will perform a geometry request, and that request might be denied. If the
widget actually changessizeinresponsetoacall to Xt Set Val ues, itsresize procedureiscalled. Widgets
should do any geometry-related work in their resize procedure.

Note that it is permissible to call Xt Set Val ues before awidget is realized. Therefore, the set_values
procedure must not assume that the widget is realized.

Widget State: The set_values_almost Procedure
The set_values almost procedure pointer in the widget class record is of type (* Xt Al nost Proc) .

typedef void (*XtAl nostProc)(old, new, request, reply);

old Specifies acopy of the object asit was before the Xt Set Val ues cal.
new Specifies the object instance record.
request Specifies the original geometry request that was sent to the geometry

manager that caused Xt Geonet r yAl npst to be returned.

reply Specifies the compromise geometry that was returned by the geometry
manager with Xt Geonet r yAl nost .

Most classes inherit the set values amost procedure from their superclass by specifying
Xt I nherit Set Val uesAl nost in the class initialization. The set_values almost procedure in
rect Cbj A ass accepts the compromise suggested.

The set_values almost procedure is called when a client tries to set a widget's geometry by means
of acal to Xt Set Val ues and the geometry manager cannot satisfy the request but instead returns
Xt Geonret r yNo or Xt Geonet r yAl nost and a compromise geometry. The new object is the actual

151

Resource Management

instance record. The x, y, width, height, and border_width fields contain the original values as they were
beforethe Xt Set Val ues call, and all other fields contain the new values. Therequest parameter contains
the new geometry request that was made to the parent. Thereply parameter containsreply->request_mode
equal to zero if the parent returned Xt Geomnret r yNo and contains the parent's compromise geometry
otherwise. The set_values almost procedure takes the original geometry and the compromise geometry
and determines if the compromise is acceptable or whether to try a different compromise. It returns its
resultsin the request parameter, which isthen sent back to the geometry manager for another try. To accept
the compromise, the procedure must copy the contents of the reply geometry into the request geometry; to
attempt an alternative geometry, the procedure may modify any part of the request argument; to terminate
the geometry negotiation and retain the original geometry, the procedure must set request->request_mode
to zero. The geometry fields of the old and new instances must not be modified directly.

Widget State: The ConstraintClassPart set_values Procedure

The constraint set_values procedure pointer is of type (* Xt Set Val uesFunc) . The values passed to
the parent's constraint set_values procedure are the same as those passed to the child's class set_values
procedure. A class can specify NULL for the set_values field of the Const r ai nt Part if it need not
compute anything.

The constraint set_values procedure should recompute any constraint fields derived from constraint
resources that are changed. Furthermore, it may modify other widget fields as appropriate. For example,

if aconstraint for the maximum height of awidget is changed to a value smaller than the widget's current
height, the constraint set_values procedure may reset the height field in the widget.

Widget Subpart State

To set the current values of subpart resources associated with awidget instance, use Xt Set Subval ues.
For a discussion of subpart resources, see the section called “ Subresources’.

voi d Xt Set Subval ues(base, resources, numresources, args, numargs);

base Specifies the base address of the subpart data structure into which
the resources should be written.

resources Specifies the subpart resource list.
num_resources Specifies the number of entriesin the resource list.
args Specifies the argument list of name/value pairs that contain the

resources to be modified and their new values.
num_args Specifies the number of entries in the argument list.

The Xt Set Subval ues function updates the resource fields of the structure identified by base. Any
specified arguments that do not match an entry in the resource list are silently ignored.

To set the current values of subpart resources associated with a widget instance using varargs lists, use
Xt VaSet Subval ues.

voi d Xt VaSet Subval ues(base, resources, numresources,);

base Specifies the base address of the subpart data structure into which
the resources should be written.

resources Specifies the subpart resource list.

152

Resource Management

num_resources Specifies the number of entriesin the resource list.

Specifiesthe variable argument list of name/value pairsthat contain
the resources to be modified and their new values.

Xt VaSet Subval ues is identica in function to Xt Set Subval ues with the args and num_args
parameters replaced by a varargs list, as described in Section 2.5.1. Xt VaTypedAr g is not supported
for Xt VaSet Subval ues. If an entry containing Xt VaTypedAr g is specified in the list, a warning
message is issued and the entry isignored.

Widget Subpart Resource Data: The set_values_hook Procedure

Note

The set_values hook procedure is obsolete, as the same information is now available to the
set_values procedure. The procedure has been retained for those widgets that used it in versions
prior to Release 4.

Widgets that have a subpart can set the subpart resource values through Xt Set Val ues by supplying
a set_values hook procedure. The set values hook procedure pointer in a widget class is of type
(* Xt ArgsFunc) .

t ypedef Bool ean (*Xt ArgsFunc)(w, args, num . args);
w Specifies the widget whose subpart resource values are to be changed.

args Specifies the argument list that was passed to Xt Set Val ues or the
transformed varargs list passed to Xt VaSet Val ues.

num args Specifies the number of entries in the argument list.

Thewidget with subpart resourcesmay call Xt Set Val ues fromtheset_values _hook procedure and pass
in its subresource list and the args and num_args parameters.

153

Chapter 10. Translation Management

Except under unusual circumstances, widgets do not hardwire the mapping of user events into widget
behavior by using the event manager. Instead, they provide a default mapping of eventsinto behavior that
you can override.

The trandation manager provides an interface to specify and manage the mapping of X event sequences
into widget-supplied functionality, for example, calling procedure Abc when the y key is pressed.

The tranglation manager uses two kinds of tables to perform trandations:

» The action tables, which are in the widget class structure, specify the mapping of externally available
procedure name strings to the corresponding procedure implemented by the widget class.

» A trandation table, which isin the widget class structure, specifies the mapping of event sequences to
procedure name strings.

Y ou can override the tranglation table in the class structure for a specific widget instance by supplying a
different trandlation table for the widget instance. The resources XtNtrand ations and XtNbaseTranslations
are used to modify the class default trandlation table; see the section called “Trandlation Table
Management”.

Action Tables

All widget class records contain an action table, an array of Xt Act i onsRec entries. In addition, an
application can register its own action tables with the translation manager so that the tranglation tables it
providesto widget instances can access application functionality directly. Thetranslation action procedure
pointer is of type (* Xt Acti onProc).

typedef void (*XtActionProc)(w, event, parans, num parans);

w Specifies the widget that caused the action to be called.

event Specifies the event that caused the action to be called. If the action is
called after a sequence of events, then the last event in the sequence
isused.

params Specifies a pointer to the list of strings that were specified in the

tranglation table as arguments to the action, or NULL.

num_params Specifies the number of entriesin params.

typedef struct _XtActionsRec {
String string;
Xt Acti onProc pr oc;

} XtActionsRec, *XtActionList;

The string field is the name used in trandation tables to access the procedure. The proc field is a pointer
to a procedure that implements the functionality.

When the action list is specified as the Cor e assPart actions field, the string pointed to by string
must be permanently allocated prior to or during the execution of the class initialization procedure and
must not be subsequently deallocated.

Action procedures should not assume that the widget in which they are invoked is realized; an accelerator
specification can cause an action procedure to be called for a widget that does not yet have a window.

154

Trandation Management

Widget writers should also note which of awidget's callback lists are invoked from action procedures and
warn clients not to assume the widget is realized in those callbacks.

For example, a Pushbutton widget has procedures to take the following actions:

» Set the button to indicateit is activated.

 Unset the button back to its normal mode.

 Highlight the button borders.

Unhighlight the button borders.

» Notify any callbacks that the button has been activated.

The action table for the Pushbutton widget class makes these functions available to tranglation tables
written for Pushbutton or any subclass. The string entry is the name used in trandation tables. The
procedure entry (usually spelled identically to the string) is the name of the C procedure that implements
that function:

Xt Acti onsRec actionTable[] = {

{"Set", Set },
{"Unset", Unset },
{"Highlight", Hi ghlight},
{"Unhi ghlight", Unhighlight}
{"Notify", Noti fy},

b

Thelntrinsicsreserve all action names and parameters starting with the characters“ Xt” for future standard
enhancements. Users, applications, and widgets should not declare action names or pass parameters
starting with these characters except to invoke specified built-in Intrinsics functions.

Action Table Registration

The actions and num_actions fields of Cor eCl assPart specify the actions implemented by a widget
class. These are automatically registered with the Intrinsics when the class is initialized and must be
allocated in writable storage prior to Coreclass _part initialization, and never deallocated. To save memory
and optimize access, the Intrinsics may overwrite the storage in order to compile the list into an internal
representation.

To declare an action table within an application and register it with the trandation manager, use
Xt AppAddAct i ons.

voi d Xt AppAddActi ons(app_context, actions, numactions);

app_context Specifies the application context.
actions Specifies the action table to register.
num_actions Specifies the number of entriesin this action table.

If more than one action is registered with the same name, the most recently registered action is used. If
duplicate actions exist in an action table, thefirst isused. The Intrinsics register an action table containing
Xt MenuPopup and Xt MenuPopdown as part of Xt Cr eat eAppl i cati onCont ext .

Action Names to Procedure Translations

The trandlation manager uses a simple agorithm to resolve the name of a procedure specified in a
trandation table into the actual procedure specified in an action table. When the widget is realized, the
tranglation manager performs a search for the name in the following tables, in order:

155

Trandation Management

e Thewidget's class and all superclass action tables, in subclass-to-superclass order.

» Theparent'sclassand all superclassaction tables, in subclass-to-superclassorder, then on up the ancestor
tree.

e The action tables registered with Xt AppAddAct i ons and Xt AddAct i ons from the most recently
added table to the oldest table.

Assoon asit finds aname, the translation manager stopsthe search. If it cannot find aname, the translation
manager generates a warning message.

Action Hook Registration

An application can specify a procedure that will be called just before every action routine is
dispatched by the translation manager. To do so, the application supplies a procedure pointer of type
(* Xt Act i onHookPr oc) .

typedef void (*XtActionHookProc)(w, client_data, action_nane, event,
parans, num parans);

w Specifies the widget whose action is about to be dispatched.

client_data Specifies the application-specific closure that was passed to
Xt AppAddAct i onHook.

action_name Specifies the name of the action to be dispatched.

event Specifiesthe event argument that will be passed to the action routine.

params Specifies the action parameters that will be passed to the action
routine.

num_params Specifies the number of entriesin params.

Action hooks should not modify any of the data pointed to by the arguments other than the client_data
argument.

To add an action hook, use Xt AppAddAct i onHook.

Xt Act i onHookl d Xt AppAddAct i onHook(app, proc, client_data);

app Specifies the application context.
proc Specifies the action hook procedure.
client_data Specifies application-specific data to be passed to the action hook.

Xt AppAddAct i onHook addsthe specified procedure to the front of alist maintained in the application
context. In the future, when an action routine is about to be invoked for any widget in this application
context, either through the translation manager or viaXt Cal | Act i onPr oc, the action hook procedures
will be called in reverse order of registration just prior to invoking the action routine.

Action hook procedures are removed automatically and the Xt Act i onHookl d i s destroyed when the
application context in which they were added is destroyed.

To remove an action hook procedure without destroying the application context, use
Xt RenoveAct i onHook.

156

Trandation Management

voi d Xt RemoveAct i onHook(i d);
id Specifies the action hook id returned by Xt AppAddAct i onHook.

Xt RenoveAct i onHook removes the specified action hook procedure from the list in which it was
registered.

Translation Tables

All widget instance records contain a translation table, which is a resource with a default value specified
elsawhere in the class record. A trandation table specifies what action procedures are invoked for an
event or a sequence of events. A trandation table isa string containing alist of trangations from an event
seguence into one or more action procedure calls. The tranglations are separated from one another by
newline characters (ASCII LF). The complete syntax of translation tablesis specified in Appendix B.

As an example, the default behavior of Pushbutton is

 Highlight on enter window.

» Unhighlight on exit window.

* Invert on left button down.

 Call callbacks and reinvert on left button up.

The following illustrates Pushbutton's default transl ation table;

static String defaultTranslations =
" <Ent er W ndow>: Hi ghl i ght ()\n\
<LeaveW ndow>: Unhi ghl i ght ()\ n\
<Bt n1Down>: Set ()\ n\
<Bt nl1Up>: Notify() Unset()";

The tm_tablefield of the Cor eCl assPart should befilled in at classinitialization time with the string
containing the classs default trandlations. If a class wants to inherit its superclass's trandations, it can
store the special value Xt | nherit Transl ati ons into tm table. In Core's class part initialization
procedure, the Intrinsics compile this trandlation table into an efficient internal form. Then, at widget
creation time, this default translation table is combined with the XtNtranslations and XtNbaseTranslations
resources; see the section called “ Tranglation Table Management”.

The resource conversion mechanism automatically compiles string translation tables that are specified in
the resource database. If aclient uses trandation tables that are not retrieved via a resource conversion, it
must compile them itself using Xt Par seTr ansl ati onTabl e.

The Intrinsics use the compiled form of the trand ation tabl e to register the necessary events with the event
manager. Widgets need do nothing other than specify the action and translation tables for events to be
processed by the trandl ation manager.

Event Sequences

An event sequence is acomma-separated list of X event descriptions that describes a specific sequence of
X eventsto map to a set of program actions. Each X event description consists of three parts: The X event
type, aprefix consisting of the X modifier bits, and an event-specific suffix.

Various abbreviations are supported to make translation tables easier to read. The events must match
incoming eventsin left-to-right order to trigger the action sequence.

157

Trandation Management

Action Sequences

Action sequences specify what program or widget actions to take in response to incoming X events. An
action seguence consists of space-separated action procedure call specifications. Each action procedure
call consists of the name of an action procedure and a parenthesized list of zero or more comma-separated
string parameters to pass to that procedure. The actions are invoked in left-to-right order as specified in
the action sequence.

Multi-Click Time

Trandlation table entries may specify actions that are taken when two or more identical events occur
consecutively within a short timeinterval, called the multi-click time. The multi-click time value may be
specified as an application resource with name “multiClick Time” and class “MultiClick Time” and may
aso be modified dynamically by the application. The multi-click time is unique for each Display value
and is retrieved from the resource database by Xt Di spl ayl ni ti al i ze. If no value is specified, the
initial value is 200 milliseconds.

To set the multi-click time dynamically, use Xt Set Mul ti C i ckTi ne.
void XtSetMultidickTime(display, tinme);

display Specifiesthe display connection.

time Specifies the multi-click timein milliseconds.

Xt Set Mul ti i ckTi nme sets the time interval used by the trandation manager to determine when
multiple events are interpreted as a repeated event. When arepeat count is specified in atrandation entry,
the interval between the timestamps in each pair of repeated events (e.g., between two But t onPr ess
events) must be less than the multi-click time in order for the tranglation actions to be taken.

To read the multi-click time, use Xt Get Mul ti Cl i ckTi ne.
int XtGetMiltidickTime(display);
display Specifies the display connection.

Xt Get Mul ti i ckTi nme returnsthetimeinmillisecondsthat thetranslation manager usesto determine
if multiple events are to be interpreted as a repeated event for purposes of matching a translation entry
containing arepeat count.

Translation Table Management

Sometimes an application needs to merge its own translations with awidget's translations. For example, a
window manager providesfunctionsto move awindow. Thewindow manager wishesto bind this operation
to a specific pointer button in the title bar without the possibility of user override and bind it to other
buttons that may be overridden by the user.

To accomplish this, the window manager should first create the title bar and then should merge the two
trandation tables into the title bar's translations. One translation table contains the translations that the
window manager wants only if the user has not specified a trandation for a particular event or event
seguence (i.e., those that may be overridden). The other translation table contains the trand ations that the
window manager wants regardless of what the user has specified.

Three Intrinsics functions support this merging:

158

Trandation Management

XtParseTranslationTable Compiles atrandation table.

XtAugmentTranslations Merges a compiled trandation table into a widget's compiled
tranglation table, ignoring any new trandations that conflict with
existing tranglations.

XtOverrideTranglations Merges a compiled translation table into a widget's compiled
trandlation table, replacing any existing translations that conflict
with new translations.

To compile atrandation table, use Xt Par seTr ansl at i onTabl e.
Xt Transl ati ons Xt ParseTransl ati onTabl e(tabl e);
table Specifies the trand ation table to compile.

The Xt Par seTr ansl at i onTabl e function compiles the transation table, provided in the format
given in Appendix B, into an opaque internal representation of type Xt Tr ansl ati ons. Note
that if an empty trandation table is required for any purpose, one can be obtained by calling
Xt Par seTransl at i onTabl e and passing an empty string.

To merge additional trandations into an existing trandation table, use Xt Augnent Tr ansl at i ons.
voi d Xt Augnment Transl ati ons(w, translations);

w Specifies the widget into which the new trandations are to be
merged. Must be of class Core or any subclass thereof.

translations Specifies the compiled translation table to merge in.

The Xt Augnent Tr ansl at i ons function merges the new trandations into the existing widget
trandations, ignoring any #repl ace, #augnment, or #overri de directive that may have been
specified in the trandlation string. The tranglation table specified by trandations is not altered by this
process. Xt Augrent Tr ansl at i ons logically appendsthe string representation of the new translations
to the string representation of the widget's current trandlations and reparses the result with no warning
messages about duplicate left-hand sides, then stores the result back into the widget instance; i.e., if the
new translations contain an event or event sequence that already exists in the widget's trandlations, the
new trandation isignored.

To overwrite existing tranglations with new trandations, use Xt Over ri deTr ansl ati ons.
void XtCOverrideTransl ations(w, translations);

w Specifies the widget into which the new trandations are to be
merged. Must be of class Core or any subclass thereof.

tranglations Specifies the compiled tranglation table to mergein.

The Xt Overri deTransl ati ons function merges the new trandations into the existing widget
trandations, ignoring any #repl ace, #augnment, or #overri de directive that may have been
specified in the trandlation string. The translation table specified by translations is not altered by this
process. Xt Overri deTransl ati ons logically appends the string representation of the widget's
current translations to the string representation of the new translations and reparses the result with no
warning messages about duplicate |eft-hand sides, then stores the result back into the widget instance; i.e.,
if the new translations contain an event or event sequence that already exists in the widget's trandations,
the new translation overrides the widget's translation.

159

Trandation Management

To replace a widget's translations completely, use Xt Set Val ues on the XtNtrand ations resource and
specify acompiled trand ation table as the value.

To make it possible for users to easily modify trandation tables in their resource files, the string-to-
trang ation-table resource type converter allows the string to specify whether the table should replace,
augment, or override any existing tranglation table in the widget. To specify this, apound sign (#) isgiven
as the first character of the table followed by one of the keywords “replace”, “augment”, or “override”
to indicate whether to replace, augment, or override the existing table. The replace or merge operation
is performed during the Core instance initialization. Each merge operation produces a new translation
resource value; if the original tables were shared by other widgets, they are unaffected. If no directive is
specified, “#replace” is assumed.

At instance initialization the XtNtranslations resource is first fetched. Then, if it was not specified or
did not contain “#replace’, the resource database is searched for the resource XtNbaseTranglations.
If XtNbaseTrandations is found, it is merged into the widget class translation table. Then the widget
translations field is merged into the result or into the class tranglation table if XtNbaseTranslations was
not found. Thisfinal table isthen stored into the widget tranglations field. If the XtNtrand ations resource
specified “#replace”, no merge is done. If neither XtNbaseTransations or XtNtranslations are specified,
the class trand ation table is copied into the widget instance.

To completely remove existing trandations, use Xt Uni nst al | Transl ati ons.
void XtUninstall Transl ati ons(w);

w Specifiesthe widget from which the trand ations are to be removed. Must be of class
Core or any subclass thereof.

The Xt Uni nst al | Transl ati ons function causes the entire translation table for the widget to be
removed.

Using Accelerators

It is often desirable to be able to bind events in one widget to actions in another. In particular, it is often
useful to be able to invoke menu actions from the keyboard. The Intrinsics provide a facility, called
accelerators, that lets you accomplish this. An accelerator table is atrandation table that is bound with its
actionsin the context of a particular widget, the source widget. The accelerator table can then be installed
on one or more destination widgets. When an event sequence in the destination widget would cause an
accelerator action to be taken, and if the source widget is sensitive, the actions are executed as though
triggered by the same event sequence in the accelerator source widget. The event is passed to the action
procedure without modification. The action procedures used within accel erators must not assume that the
source widget is realized nor that any fields of the event are in reference to the source widget's window
if the widget isrealized.

Each widget instance contains that widget's exported accel erator table as aresource. Each class of widget
exports a method that takes a displayable string representation of the accelerators so that widgets can
display their current accelerators. The representation is the accelerator table in canonical trandlation table
form (see Appendix B). The display_accelerator procedure pointer is of type (* Xt St ri ngPr oc) .

typedef void (*XtStringProc)(w, string);
w Specifies the source widget that supplied the accelerators.
string Specifies the string representation of the accelerators for this widget.

Accelerators can be specified in resource files, and the string representation isthe same asfor atranslation
table. However, the interpretation of the #augnent and #overri de directives applies to what will

160

Trandation Management

happen when the accelerator isinstalled; that is, whether or not the accelerator trandations will override
the trandations in the destination widget. The default is #augnent , which means that the accelerator
trand ations have lower priority than the destination translations. The #r epl ace directiveisignored for
accelerator tables.

To parse an accelerator table, use Xt Par seAccel er at or Tabl e.
Xt Accel erators Xt Par seAccel er at or Tabl e(source);
source Specifies the accelerator table to compile.

The Xt Par seAccel er at or Tabl e function compiles the accelerator table into an opague internal
representation. The client should set the XtNaccelerators resource of each widget that is to be activated
by these trandlations to the returned value.

Toinstall accelerators from awidget on another widget, use Xt | nst al | Accel er at or s.
void Xtlnstall Accel erators(destination, source);

destination Specifies the widget on which the accelerators are to be installed.
Must be of class Core or any subclass thereof.

source Specifies the widget from which the accelerators are to come. Must
be of class Core or any subclass thereof.

The Xt nstall Accel erators function installs the accelerators resource value from source
onto destination by merging the source accelerators into the destination translations. If the source
display_accelerator fieldisnon-NULL, Xt | nst al | Accel er at or s calsit with the sourcewidget and
astring representation of the accelerator table, which indicates that its accel erators have been installed and
that it should display them appropriately. The string representation of the accelerator tableisits canonical
trangl ation table representation.

Asaconveniencefor instaling all accelerators from awidget and all its descendants onto one destination,
useXt I nstall Al l Accel erators.

void Xtlnstall All Accel erators(destination, source);

destination Specifies the widget on which the accelerators are to be installed.
Must be of class Core or any subclass thereof.

source Specifies the root widget of the widget tree from which the
accelerators are to come. Must be of class Core or any subclass
thereof.

The Xt I nstal | Al'l Accel er at or s function recursively descends the widget tree rooted at source
and installs the accel erators resource value of each widget encountered onto destination. A common use
istocal Xt I nstal | Al | Accel er at or s and pass the application main window as the source.

KeyCode-to-KeySym Conversions

The trandation manager provides support for automatically translating KeyCodes in incoming key events
into KeySyms. KeyCode-to-KeySym translator procedure pointers are of type (* Xt KeyPr oc) .

t ypedef voi d (* Xt KeyProc) (di spl ay, keycode, nodi fi ers,
nodi fiers_return, keysymreturn);

161

Trandation Management

display Specifies the display that the KeyCode is from.

keycode Specifies the KeyCode to trandate.

modifiers Specifies the modifiers to the KeyCode.

modifiers return Specifies a location in which to store a mask that indicates the

subset of all modifiers that are examined by the key trandlator for
the specified keycode.

keysym return Specifies alocation in which to store the resulting KeySym.

This procedure takes a KeyCode and modifiers and produces a KeySym. For any given key translator
function and keyboard encoding, modifiers returnwill be aconstant per KeyCode that indicates the subset
of al modifiers that are examined by the key trandlator for that KeyCode.

The KeyCode-to-KeySym trandlator procedure must be implemented such that multiple calls with the
same display, keycode, and modifiers return the same result until either a new case converter, an
(* Xt CaseProc),isinstalled or aMappi ngNot i f y event isreceived.

The Intrinsics maintain tables internally to map KeyCodes to KeySyms for each open display. Translator
procedures and other clients may share a single copy of this table to perform the same mapping.

To return a pointer to the KeySym-to-KeyCode mapping table for a particular display, use
Xt Get Keysynirabl e.

KeySym * Xt Get Keysynirabl e(di spl ay, m n_keycode_return,
keysyns_per _keycode_return);

display Specifies the display whose table is required.
min_keycode return Returns the minimum KeyCode valid for the display.
keysyms per_keycode return Returns the number of KeySyms stored for each KeyCode.

Xt Get Keysynirabl e returnsapointer to the Intrinsics copy of the server's KeyCode-to-KeySym table.
This table must not be modified. There are keysyms per_keycode return KeySyms associated with each
KeyCode, located in the table with indices starting at index

(test _keycode - mn_keycode return) * keysyns_per_keycode return

for KeyCode test_keycode. Any entries that have no KeySyms associated with them contain the value
NoSymbol . Clients should not cache the KeySym table but should call Xt Get Keysynirabl e eachtime
the value is needed, as the table may change prior to dispatching each event.

For more information on this table, see Section 12.7 in Xlib — C Language X Interface.
Toregister akey trandator, use Xt Set KeyTr ans| at or .

voi d Xt Set KeyTr ansl at or (di spl ay, proc);

display Specifies the display from which to translate the events.
proc Specifies the procedure to perform key tranglations.

The Xt Set KeyTr ansl at or function sets the specified procedure as the current key trandator. The
default trandator is Xt Tr ansl at eKey, an (* Xt KeyPr oc) that uses the Shift, Lock, numlock, and

162

Trandation Management

group modifiers with the interpretations defined in X Window System Protocol, Section 5. It is provided
so that new trandlators can call it to get default KeyCode-to-KeySym trandations and so that the default
trandator can be reinstalled.

To invoke the currently registered KeyCode-to-KeySym trandlator, use Xt Tr ansl| at eKeycode.

voi d Xt Transl at eKeycode(di spl ay, keycode, nodifiers, nodifiers_return,
keysym return);

display Specifies the display that the KeyCode is from.

keycode Specifies the KeyCode to trand ate.

modifiers Specifies the modifiersto the KeyCode.

modifiers return Returns a mask that indicates the modifiers actually used to
generate the KeySym.

keysym return Returns the resulting KeySym.

TheXt Tr ansl at eKeycode function passesthe specified argumentsdirectly to the currently registered
KeyCode-to-KeySym trand ator.

To handle capitalization of nonstandard KeySyms, the Intrinsics allow clientsto register case conversion
routines. Case converter procedure pointers are of type (* Xt CasePr oc) .

t ypedef voi d (*Xt CaseProc) (di spl ay, keysym | ower _return,

upper _return);

display Specifies the display connection for which the conversion is
required.

keysym Specifies the KeySym to convert.

lower_return Specifiesalocation into which to store the lowercase equivalent for
the KeySym.

upper_return Specifiesalocation into which to store the uppercase equivalent for
the KeySym.

If there is no case distinction, this procedure should store the KeySym into both return values.
To register acase converter, use Xt Regi st er CaseConverter.

voi d Xt Regi st er CaseConverter(di splay, proc, start, stop);

display Specifies the display from which the key events are to come.
proc Specifiesthe (* Xt CasePr oc) to do the conversions.
start Specifies the first KeySym for which this converter isvalid.
stop Specifies the last KeySym for which this converter is valid.

TheXt Regi st er CaseConvert er registersthe specified case converter. The start and stop arguments
provide the inclusive range of KeySyms for which this converter is to be caled. The new converter
overrides any previous converters for KeySyms in that range. No interface exists to remove converters;
you need to register an identity converter. When a new converter is registered, the Intrinsics refresh the

163

Trandation Management

keyboard state if necessary. The default converter understands case conversion for all Latin KeySyms
defined in X Window System Protocol, Appendix A.

To determine uppercase and lowercase equivalents for a KeySym, use Xt Convert Case.

voi d Xt Convert Case(di splay, keysym |ower_return, upper_return);

display Specifiesthe display that the KeySym came from.
keysym Specifies the KeySym to convert.

lower_return Returns the lowercase equivalent of the KeySym.
upper_return Returns the uppercase equivalent of the KeySym.

The Xt Conver t Case function calls the appropriate converter and returns the results. A user-supplied
(* Xt KeyPr oc) may need to use this function.

Obtaining a KeySym in an Action Procedure

When an action procedure is invoked on a KeyPr ess or KeyRel ease event, it often has a need to
retrieve the KeySym and modifiers corresponding to the event that caused it to be invoked. In order to
avoid repeating the processing that was just performed by the Intrinsics to match the trandation entry,
the KeySym and modifiers are stored for the duration of the action procedure and are made available to
theclient.

To retrieve the KeySym and modifiers that matched the final event specification in the trandation table
entry, use Xt Get Act i onKeysym

KeySym Xt Get Acti onKeysyn{event, nodifiers_return);

event Specifies the event pointer passed to the action procedure by the
Intrinsics.
modifiers return Returns the modifiers that caused the match, if non-NULL.

If Xt Get Acti onKeysym is called after an action procedure has been invoked by the Intrinsics
and before that action procedure returns, and if the event pointer has the same value as the event
pointer passed to that action routine, and if the event is a KeyPr ess or KeyRel ease event, then
Xt Get Act i onKeysymreturns the KeySym that matched the final event specification in the tranglation
table and, if modifiers return is non-NULL, the modifier state actually used to generate this KeySym;
otherwise, if the event is a KeyPr ess or KeyRel ease event, then Xt Get Acti onKeysymcalls
Xt Tr ansl at eKeycode and returns the results; else it returns NoSynbol and does not examine
modifiers return.

Note that if an action procedure invoked by the Intrinsics invokes a subsequent action procedure (and so
on) via Xt Cal | Acti onPr oc, the nested action procedure may also call Xt Get Act i onKeysymto
retrieve the Intrinsics' KeySym and modifiers.

KeySym-to-KeyCode Conversions

Toreturn thelist of KeyCodes that map to a particular KeySym in the keyboard mapping table maintained
by the Intrinsics, use Xt KeysyniToKeycodelLi st .

voi d Xt KeysyniroKeycodelLi st (di spl ay, keysym keycodes_return,
keycount _return);

164

Trandation Management

display Specifies the display whose table is required.
keysym Specifies the KeySym for which to search.
keycodes return Returns alist of KeyCodes that have keysym associated with them,

or NULL if keycount_returnisO.
keycount_return Returns the number of KeyCodes in the keycode list.

The Xt KeysyniToKeycodelLi st procedure returns al the KeyCodes that have keysym in their entry
for the keyboard mapping table associated with display. For each entry in thetable, the first four KeySyms
(groups 1 and 2) are interpreted as specified by X Window System Protocol, Section 5. If no KeyCodes
map to the specified KeySym, keycount_return is zero and * keycodes returnis NULL.

The caller should free the storage pointed to by keycodes return using Xt Fr ee when it is no longer
useful. If the caller needs to examine the KeyCode-to-KeySym table for a particular KeyCode, it should
call Xt Get Keysynirabl e.

Registering Button and Key Grabs for Actions

To register button and key grabs for a widget's window according to the event bindings in the widget's
trandlation table, use Xt Regi st er Gr abAct i on.

voi d Xt Regi st er GrabActi on(acti on_proc, owner _events, event _mask,
poi nt er _node, keyboard_node);

action_proc Specifies the action procedure to search for in translation tables.
owner_events

event_mask

pointer_mode

keyboard_mode Specify argumentsto Xt Gr abBut t on or Xt Gr abKey.

Xt Regi st er Gr abAct i on adds the specified action_proc to alist known to the translation manager.
When a widget is realized, or when the trandations of a realized widget or the accelerators installed on
arealized widget are modified, its trandation table and any installed accelerators are scanned for action
procedures on thislist. If any are invoked on But t onPr ess or KeyPr ess events as the only or final
event in a sequence, the Intrinsics will call Xt Gr abBut t on or Xt G abKey for the widget with every
button or KeyCode which maps to the event detail field, passing the specified owner_events, event_mask,
pointer_mode, and keyboard mode. For But t onPr ess events, the modifiers specified in the grab are
determined directly from the translation specification and confine_to and cursor are specified as None.
For KeyPr ess events, if thetrandlation table entry specifiescolon (;) inthemodifier list, themodifiersare
determined by calling the key translator procedure registered for the display and calling Xt Gr abKey for
every combination of standard modifiers which map the KeyCode to the specified event detail KeySym,
and ORing any modifiers specified in the trandation table entry, and event_mask is ignored. If the
trangation table entry does not specify colon in the modifier list, the modifiers specified in the grab are
those specified in the trand ation table entry only. For both But t onPr ess and KeyPr ess events, don't-
care modifiers are ignored unless the translation entry explicitly specifies“Any” in the modifiersfield.

If the specified action_proc is already registered for the calling process, the new values will replace the
previously specified values for any widgets that become realized following the call, but existing grabs are
not altered on currently realized widgets.

165

Trandation Management

When translations or installed accel erators are modified for arealized widget, any previous key or button
grabs registered as aresult of the old bindings are released if they do not appear in the new bindings and
are not explicitly grabbed by the client with Xt G- abKey or Xt Gr abBut t on.

Invoking Actions Directly

Normally action procedures are invoked by the Intrinsics when an event or event sequence arrives
for a widget. To invoke an action procedure directly, without generating (or synthesizing) events, use
Xt Cal | Acti onProc.

void Xt Call Acti onProc(w dget, action, event, parans, num parans);

widget Specifies the widget in which the action is to be invoked. Must be of
class Core or any subclass thereof.

action Specifies the name of the action routine.

event Specifies the contents of the event passed to the action routine.

params Specifies the contents of the params passed to the action routine.

num_params Specifies the number of entriesin params.

Xt Cal | Act i onPr oc searchesfor the named action routine in the same manner and order astranslation
tables are bound, as described in Section 10.1.2, except that application action tables are searched, if
necessary, as of thetime of thecall to Xt Cal | Act i onPr oc. If found, the action routineisinvoked with
the specified widget, event pointer, and parameters. It is the responsibility of the caller to ensure that the
contents of the event, params, and num_params arguments are appropriate for the specified action routine
and, if necessary, that the specified widget is realized or sensitive. If the named action routine cannot be
found, Xt Cal | Acti onPr oc generates awarning message and returns.

Obtaining a Widget's Action List

Occasionally a subclass will require the pointers to one or more of its superclass's action procedures. This
would be needed, for example, in order to envelop the superclass's action. To retrieve the list of action
procedures registered in the superclasss actions field, use Xt Get Act i onLi st.

voi d Xt Get Acti onLi st (wi dget _cl ass, actions_return, numactions_return);

widget_class Specifies the widget class whose actions are to be returned.
actions_return Returnsthe action list.
num_actions return Returns the number of action procedures declared by the class.

Xt Get Acti onLi st returns the action table defined by the specified widget class. This table
does not include actions defined by the superclasses. If widget class is not initialized, or is not
cor eW dget Cl ass or asubclassthereof, or if the class does not defineany actions, *actions_returnwill
be NULL and*num _actions returnwill be zero. If *actions returnisnon-NULL theclient isresponsible
for freeing the table using Xt Fr ee when it is no longer needed.

166

Chapter 11. Utility Functions

The Intrinsics provide a number of utility functions that you can useto

Determine the number of elementsin an array.
Trand ate strings to widget instances.

Manage memory usage.

Share graphics contexts.

Manipulate selections.

Merge exposure events into aregion.

Trand ate widget coordinates.

L ocate awidget given awindow id.

Handle errors.

Set the WM_COLORMAP_WINDOWS property.
L ocate files by name with string substitutions.
Register callback functions for external agents.
Locate all the displays of an application context.

Determining the Number of Elements in an
Array

To determine the number of elementsin afixed-size array, use Xt Nunber .

Car di nal Xt Number (array);
array Specifies afixed-size array of arbitrary type.

The Xt Nunber macro returns the number of elements allocated to the array.

Translating Strings to Widget Instances

To trandlate a widget name to awidget instance, use Xt NaneToW dget .
W dget Xt NaneToW dget (ref erence, nanes);

reference Specifies the widget from which the search is to start. Must be of class
Core or any subclass thereof.

names Specifiesthe partially qualified name of the desired widget.

The Xt NaneToW dget function searchesfor adescendant of the reference widget whose name matches
the specified names. The names parameter specifies a simple object name or a series of simple object
name components separated by periods or asterisks. Xt NameToW dget returns the descendant with the
shortest name matching the specification according to the following rules, where child is either a pop-up
child or anormal child if the widget's classis a subclass of Composite :

» Enumerate the object subtree rooted at the reference widget in breadth-first order, qualifying the name
of each object with the names of all its ancestors up to, but not including, the reference widget. The
ordering between children of a common parent is not defined.

 Return the first object in the enumeration that matches the specified name, where each component of
names matches exactly the corresponding component of the qualified object name and asterisk matches
any series of components, including none.

167

Utility Functions

 |f no match isfound, return NULL.

Since breadth-first traversal is specified, the descendant with the shortest matching name (i.e., the fewest
number of components), if any, will aways be returned. However, since the order of enumeration of
childrenisundefined and sincethe Intrinsics do not require that all children of awidget have unique names,
Xt NameToW dget may return any child that matches if there are multiple objects in the subtree with
the same name. Consecutive separators (periods or asterisks) including at least one asterisk are treated as
asingle asterisk. Consecutive periods are treated as a single period.

Managing Memory Usage

The Intrinsics memory management functions provide uniform checking for null pointers and error
reporting on memory allocation errors. These functions are completely compatible with their standard
C language runtime counterparts mal | oc, cal | oc, real | oc, and f r ee with the following added
functionality:

e Xt Mal | oc, Xt Cal | oc, and Xt Real | oc givean error if there is not enough memory.
e Xt Fr ee simply returnsif passed aNULL pointer.
e Xt Real | oc simply allocates new storage if passed aNULL pointer.

See the standard C library documentation on mal | oc, cal | oc, real | oc, and free for more
information.

To alocate storage, use Xt Mal | oc.
char * Xt Ml | oc(size);
size Specifies the number of bytes desired.

The Xt Mal | oc function returns a pointer to ablock of storage of at least the specified size bytes. If there
isinsufficient memory to allocate the new block, Xt Mal | oc calls Xt Er r or Msg.

To dlocate and initialize an array, use Xt Cal | oc.

char * XtCalloc(num size);

num Specifies the number of array elementsto allocate.
size Specifiesthe size of each array element in bytes.

The Xt Cal | oc function alocates space for the specified number of array elements of the specified size
and initializes the space to zero. If there is insufficient memory to alocate the new block, Xt Cal | oc
calls Xt Error Msg. Xt Cal | oc returns the address of the allocated storage.

To change the size of an allocated block of storage, use Xt Real | oc.
char *XtReal |l oc(ptr, nunj;

ptr Specifies a pointer to the old storage allocated with Xt Mal | oc, Xt Cal | oc, or
Xt Real | oc, or NULL.

num Specifies number of bytes desired in new storage.

The Xt Real | oc function changesthe size of ablock of storage, possibly movingit. Thenit copiestheold
contents (or as much aswill fit) into the new block and frees the old block. If thereisinsufficient memory
to allocate the new block, Xt Real | oc calls Xt Er r or Msg. If ptr isNULL, Xt Real | oc simply calls
Xt Mal | oc. Xt Real | oc then returns the address of the new block.

168

Utility Functions

To free an alocated block of storage, use Xt Fr ee.
void XtFree(ptr);

ptr Specifiesapointer to ablock of storage allocated with Xt Mal | oc, Xt Cal | oc,
or Xt Real | oc, or NULL.

The Xt Fr ee function returns storage, allowing it to be reused. If ptr is NULL, Xt Fr ee returns
immediately.

To alocate storage for anew instance of atype, use Xt New.

type XtNew(t);

type Specifies apreviously declared type.

Xt Newreturns a pointer to the allocated storage. If there isinsufficient memory to allocate the new block,
Xt New calls Xt Er r or Msg. Xt New is a convenience macro that calls Xt Mal | oc with the following
arguments specified:

((type *) XtMalloc((unsigned) sizeof(type)))

The storage allocated by Xt New should be freed using Xt Fr ee.

To copy an instance of astring, use Xt NewSt r i ng.

String XtNewString(string);

string Specifies a previously declared string.

Xt NewSt ri ng returns a pointer to the allocated storage. If there is insufficient memory to alocate
the new block, Xt NewSt ri ng calls Xt Err or Msg. Xt NewSt r i ng is a convenience macro that calls
Xt Mal | oc with the following arguments specified:

(strcpy(XtMall oc((unsigned)strlen(str) + 1), str))

The storage allocated by Xt NewSt r i ng should be freed using Xt Fr ee.

Sharing Graphics Contexts

The Intrinsics provide a mechanism whereby cooperating objects can share a graphics context (GC),
thereby reducing both the number of GCs created and the total number of server calls in any given
application. The mechanism is a simple caching scheme and allows for clients to declare both modifiable
and nonmodifiable fields of the shared GCs.

To obtain a shareable GC with modifiable fields, use Xt Al | ocat eGC.

GC Xt AllocateGC(object, depth, value mask, values, dynam c_nask,
unused_nask) ;

object Specifies an object, giving the screen for which the returned GC is
valid. Must be of class Object or any subclass thereof.

depth Specifies the depth for which the returned GC isvalid, or O.

169

Utility Functions

value_mask Specifies fields of the GC that are initialized from values.
values Specifies the values for the initialized fields.

dynamic_mask Specifies fields of the GC that will be modified by the caller.
unused_mask Specifies fields of the GC that will not be needed by the caller.

TheXt Al | ocat eGCfunction returnsashareable GC that may be modified by the client. The screenfield
of the specified widget or of the nearest widget ancestor of the specified object and the specified depth
argument supply the root and drawable depths for which the GC isto bevalid. If depth is zero, the depthis
taken from the depth field of the specified widget or of the nearest widget ancestor of the specified object.

The value_mask argument specifies fields of the GC that are initialized with the respective member of
the values structure. The dynamic_mask argument specifies fields that the caller intends to modify during
program execution. The caller must ensure that the corresponding GC field is set prior to each use of
the GC. The unused_mask argument specifies fields of the GC that are of no interest to the caller. The
caller may make no assumptions about the contents of any fields specified in unused_mask. The caller
may assume that at all times all fields not specified in either dynamic_mask or unused_mask have their
default value if not specified in value mask or the value specified by values. If afield is specified in
both value_mask and dynamic_mask, the effect is as if it were specified only in dynamic_mask and then
immediately set to the value in values. If afield is set in unused_mask and also in either value_mask or
dynamic_mask, the specification in unused_mask is ignored.

Xt Al | ocat eGCtriesto minimize the number of unique GCs created by comparing the arguments with
those of previous calls and returning an existing GC when there are no conflicts. Xt Al | ocat e GC may
modify and return an existing GC if it was allocated with a nonzero unused _mask.

To obtain a shareable GC with no modifiable fields, use Xt Get GC.

GC Xt Get GC(obj ect, val ue_nask, val ues);

object Specifies an object, giving the screen and depth for which the returned
GCisvalid. Must be of class Object or any subclass thereof.

value_mask Specifies which fields of the values structure are specified.

values Specifies the actual valuesfor this GC.

The Xt Get GC function returns a shareable, read-only GC. The parameters to this function are the same
asthose for XCr eat e GC except that an Object is passed instead of a Display. Xt Get GCisequivalent to
Xt Al | ocat eGCwith depth, dynamic_mask, and unused_mask all zero.

Xt Get GC shares only GCs in which all values in the GC returned by XCr eat eGC are the same. In
particular, it does not use the value_mask provided to determine which fields of the GC awidget considers
relevant. The value_mask is used only to tell the server which fields should be filled in from values and
which it should fill in with default values.

To deallocate a shared GC when it is no longer needed, use Xt Rel easeGC.

voi d Xt Rel easeGC(obj ect, gc);

object Specifies any object on the Display for which the GC was created. Must be
of class Object or any subclass thereof.

gc Specifies the shared GC obtained with either Xt Al | ocat eGC or
Xt Get GC.

170

Utility Functions

References to shareable GCs are counted and a free request is generated to the server when the last user
of agiven GC releases it.

Managing Selections

Arbitrary widgets in multiple applications can communicate with each other by means of the Intrinsics
global selection mechanism, which conforms to the specifications in the Inter-Client Communication
Conventions Manual. The Intrinsics supply functions for providing and receiving selection data in one
logical piece (atomic transfers) or in smaller logical segments (incremental transfers).

Theincremental interfaceis provided for aselection owner or selection requestor that cannot or prefers not
to passthe selection value to and from the Intrinsicsin asingle call. For instance, either an application that
isrunning on amachine with limited memory may not be able to store the entire selection valuein memory
or a selection owner may already have the selection value available in discrete chunks, and it would be
more efficient not to have to allocate additional storage to copy the pieces contiguously. Any owner or
requestor that prefers to deal with the selection value in segments can use the incremental interfaces to
do so. The transfer between the selection owner or requestor and the Intrinsics is not required to match
the underlying transport protocol between the application and the X server; the Intrinsics will break too
large a selection into smaller pieces for transport if necessary and will coalesce a selection transmitted
incrementally if the value was requested atomically.

Setting and Getting the Selection Timeout Value

To set the Intrinsics selection timeout, use Xt AppSet Sel ect i onTi meout .

voi d Xt AppSet Sel ecti onTi neout (app_context, tineout);
app_context Specifies the application context.

timeout Specifies the selection timeout in milliseconds.
To get the current selection timeout value, use Xt AppGet Sel ect i onTi nmeout .
unsi gned | ong Xt AppCet Sel ecti onTi neout (app_context);
app_context Specifies the application context.

The Xt AppCet Sel ecti onTi neout function returns the current selection timeout value in
milliseconds. The selection timeout is the time within which the two communicating applications must
respond to one another. The initial timeout value is set by the selectionTimeout application resource as
retrieved by Xt Di spl ayl ni ti al i ze. If selectionTimeout is not specified, the default isfive seconds.

Using Atomic Transfers

When using atomic transfers, the owner will completely process one selection request at atime. The owner
may consider each request individually, since there is no possibility for overlap between evaluation of
two requests.

Atomic Transfer Procedures

The following procedures are used by the selection owner when providing selection datain a single unit.

The procedure pointer specified by the owner to supply the selection data to the Intrinsics is of type
(* Xt Convert Sel ecti onProc).

171

Utility Functions

t ypedef Bool ean (*Xt Convert Sel ecti onProc) (w, sel ection, target,
type_return, value_return, length_return, format_return);

w Specifies the widget that currently owns this selection.

selection Specifies the atom naming the selection requested (for example,
XA PRI MARY or XA SECONDARY).

target Specifies the target type of the selection that has been requested,
which indicates the desired information about the selection (for
example, File Name, Text, Window).

type return Specifies a pointer to an atom into which the property type of the
converted value of the selection is to be stored. For instance, either
File Name or Text might have property type XA _STRI NG

value return Specifies a pointer into which a pointer to the converted value of
the selection is to be stored. The selection owner is responsible
for alocating this storage. If the selection owner has provided
an (* Xt Sel ecti onDonePr oc) for the selection, this storage
is owned by the selection owner; otherwise, it is owned by the
Intrinsics selection mechanism, which freesit by calling Xt Fr ee
when it is done with it.

length return Specifies a pointer into which the number of elements in
value return, each of size indicated by format _return, is to be
stored.

format_return Specifies a pointer into which the size in bits of the data elements

of the selection value is to be stored.

This procedure is called by the Intrinsics selection mechanism to get the value of a selection as a given
type from the current selection owner. It returns Tr ue if the owner successfully converted the selection
to thetarget type or Fal se otherwise. If the procedure returns Fal se, the values of the return arguments
are undefined. Each (* Xt Convert Sel ecti onProc) should respond to target value TARGETS by
returning a value containing the list of the targets into which it is prepared to convert the selection. The
value returned in format_return must be one of 8, 16, or 32 to alow the server to byte-swap the data if
necessary.

This procedure does not need to worry about responding to the MULTIPLE or the TIMESTAMP target
values (seethe section called “ Window Creation Convenience Routing” in the Inter-Client Communication
Conventions Manual). A selection request with the MULTIPLE target type is transparently transformed
into a series of calls to this procedure, one for each target type, and a selection request with the
TIMESTAMP target value is answered automatically by the Intrinsics using the time specified in the call
to Xt OmnSel ecti on or Xt OmSel ecti onl ncrenent al .

To retrieve the Sel ecti onRequest event that triggered the (* Xt Convert Sel ecti onPr oc)
procedure, use Xt Get Sel ect i onRequest.

XSel ecti onRequest Event * Xt Get Sel ecti onRequest (w, sel ecti on,
request id);

w Specifiesthewidget that currently ownsthis selection. Must be of class
Core or any subclass thereof.

selection Specifies the selection being processed.

172

Utility Functions

request_id Specifies the requestor id in the case of incremental selections, or
NULL in the case of atomic transfers.

Xt Get Sel ecti onRequest may be called only from within an (* Xt Convert Sel ect i onPr oc)
procedure and returns a pointer to the Sel ect i onRequest event that caused the conversion procedure
to be invoked. Request_id specifies a unique id for the individua request in the case that multiple
incremental transfers are outstanding. For atomic transfers, request_id must be specified as NULL. If
no Sel ect i onRequest event is being processed for the specified widget, selection, and request_id,
Xt Get Sel ecti onRequest returnsNULL.

The procedure pointer specified by the owner when it desires notification upon losing ownership is of type
(* Xt LoseSel ecti onProc).

typedef void (*XtLoseSel ectionProc)(w, selection);
w Specifies the widget that has lost selection ownership.
selection Specifies the atom naming the selection.

Thisprocedureiscalled by the Intrinsics sel ection mechanism to inform the specified widget that it haslost
the given selection. Note that this procedure does not ask the widget to relinquish the selection ownership;
it is merely informative.

The procedure pointer specified by the owner when it desires notification of receipt of the data or when it
manages the storage containing the datais of type (* Xt Sel ect i onDonePr oc) .

typedef void (*XtSel ecti onDoneProc) (w, selection, target);

w Specifies the widget that owns the converted selection.
selection Specifies the atom naming the selection that was converted.
target Specifies the target type to which the conversion was done.

This procedure is called by the Intrinsics selection mechanism to inform the selection owner that a
selection requestor has successfully retrieved a selection value. If the selection owner has registered an
(* Xt Sel ecti onDonePr oc) , it should expect it to be called once for each conversion that it performs,
after the converted value has been successfully transferred to the requestor. If the selection owner has
registered an (* Xt Sel ect i onDonePr oc) , it a'so ownsthe storage containing the converted selection
value.

Getting the Selection Value

The procedure pointer specified by the requestor to receive the selection datafrom the Intrinsicsis of type
(*Xt Sel ecti onCal | backProc) .

typedef wvoid (*XtSelectionCallbackProc)(w, client_data, selection,
type, value, length, fornmat);

w Specifies the widget that requested the selection value.

client_data Specifies a value passed in by the widget when it requested the
selection.

selection Specifies the name of the selection that was requested.

type Specifies the representation type of the selection value (for

example, XA STRING). Note that it is not the target that

173

Utility Functions

was requested (which the client must remember for itself), but
the type that is used to represent the target. The special symbolic
constant XT_CONVERT_FAI L is used to indicate that the selection
conversion failed because the selection owner did not respond within
the Intrinsics selection timeout interval.

value Specifies a pointer to the selection value. The requesting client owns
thisstorage and isresponsiblefor freeingit by calling Xt Fr ee when
itisdonewithit.

length Specifies the number of elementsin value.
format Specifies the sizein bits of the datain each element of value.

This procedure is called by the Intrinsics selection mechanism to deliver the requested selection to the
requestor.

If the Sel ecti onNot i fy event returns a property of None, meaning the conversion has been refused
because there is no owner for the specified selection or the owner cannot convert the selection to the
requested target for any reason, the procedure is called with avalue of NULL and alength of zero.

To obtain the selection value in a single logical unit, use Xt Get Sel ectionVal ue or
Xt Get Sel ecti onVal ues.

voi d Xt Get Sel ecti onVal ue(w, selection, target, callback, client_data,
tinme);

w Specifies the widget making the request. Must be of class Core or
any subclass thereof.

selection Specifies the particular selection desired; for example,
XA PRI MARY.

target Specifies the type of information needed about the selection.

callback Specifiesthe procedureto be called when the sel ection value hasbeen

obtained. Note that this is how the selection value is communicated
back to the client.

client_data Specifiesadditional datato be passed to the specified procedure when
itiscalled.
time Specifiesthetimestamp that indicates when the sel ection request was

initiated. This should bethetimestamp of the event that triggered this
reguest; the value Cur r ent Ti e is not acceptable.

The Xt Get Sel ect i onVal ue function requests the value of the selection converted to the target type.
Thespecified callback iscalled at sometimeafter Xt Get Sel ect i onVal ue iscaled, whentheselection
valueisreceived from the X server. It may be called before or after Xt Get Sel ect i onVal ue returns.
For more information about selection, target, and time, see Section 2.6 in the Inter-Client Communication
Conventions Manual.

void XtGetSel ectionValues(w, selection, targets, count, callback,
client_data, tine);

w Specifies the widget making the request. Must be of class Core or
any subclass thereof.

174

Utility Functions

selection Specifies the particular selection desired (that is, primary or
secondary).

targets Specifies the types of information needed about the selection.

count Specifies the length of the targets and client_data lists.

callback Specifies the callback procedure to be called with each selection

value obtained. Note that this is how the selection values are
communicated back to the client.

client_data Specifiesalist of additional datavalues, onefor each target type, that
are passed to the callback procedure whenit is called for that target.

time Specifiesthetimestamp that indicates when the selection request was
initiated. Thisshould bethetimestamp of the event that triggered this
reguest; the value Cur r ent Ti e is not acceptable.

The Xt Get Sel ect i onVal ues function is similar to multiple calls to Xt Get Sel ect i onVal ue
except that it guarantees that no other client can assert ownership between requests and therefore that all
the conversions will refer to the same selection value. The callback isinvoked once for each target value
with the corresponding client data. For more information about selection, target, and time, see section 2.6
in the Inter-Client Communication Conventions Manual.

Setting the Selection Owner

To set the selection owner and indicate that the selection value will be provided in one piece, use
Xt OwnSel ecti on.

Bool ean Xt OmnSel ection(w, sel ecti on, tinme, convert _proc,
| ose_sel ecti on, done_proc);

w Specifies the widget that wishes to become the owner. Must be of
class Core or any subclass thereof.

selection Specifies the name of the selection (for example,
XA PRI MARY).
time Specifies the timestamp that indicates when the ownership request

was initiated. This should be the timestamp of the event that
triggered ownership; the value Cur r ent Ti e is not acceptable.

convert_proc Specifies the procedure to be called whenever a client requests the
current value of the selection.

lose selection Specifies the procedure to be called whenever the widget has lost
selection ownership, or NULL if theowner isnot interestedin being
called back.

done _proc Specifies the procedure called after the requestor has received the
selection value, or NULL if the owner is not interested in being
called back.

The Xt OmSel ect i on functioninformsthe Intrinsics sel ection mechanism that awidget wishesto own
a selection. It returns Tr ue if the widget successfully becomes the owner and Fal se otherwise. The
widget may fail to become the owner if some other widget has asserted ownership at atime later than this

175

Utility Functions

widget. Thewidget can lose selection ownership either because some other widget asserted later ownership
of the selection or because the widget voluntarily gave up ownership of the selection. The lose_selection
procedure is not called if the widget fails to obtain selection ownership in the first place.

If adone _proc is specified, the client owns the storage alocated for passing the value to the Intrinsics.
If done proc is NULL, the convert_proc must alocate storage using Xt Mal | oc, Xt Real | oc, or
Xt Cal | oc, and the value specified is freed by the Intrinsics when the transfer is complete.

Usually, a selection owner maintains ownership indefinitely until some other widget requests ownership,
at which time the Intrinsics sel ection mechanism informs the previous owner that it has lost ownership of
the selection. However, in response to some user actions (for example, when auser deletesthe information
selected), the application may wish to explicitly inform the Intrinsics by using Xt Di sownSel ecti on
that it no longer isto be the selection owner.

voi d Xt Di sownSel ecti on(w, selection, tine);

w Specifies the widget that wishes to relinquish ownership.
selection Specifies the atom naming the selection being given up.
time Specifies the timestamp that indicates when the regquest to relinquish

selection ownership was initiated.

The Xt Di sownSel ecti on function informs the Intrinsics selection mechanism that the specified
widget is to lose ownership of the selection. If the widget does not currently own the selection, either
because it lost the selection or because it never had the selection to begin with, Xt Di sownSel ecti on
does nothing.

After awidget has called Xt Di sownSel ect i on, its convert procedure is not called even if a request
arrives later with a timestamp during the period that this widget owned the selection. However, its done
procedure is called if a conversion that started before the call to Xt Di sownSel ect i on finishes after
thecall to Xt Di sownSel ecti on.

Using Incremental Transfers

When using the incremental interface, an owner may have to process more than one selection request
for the same selection, converted to the same target, at the same time. The incremental functions take a
request_id argument, which isan identifier that is guaranteed to be unique among all incremental requests
that are active concurrently.

For example, consider the following:

» Upon receiving arequest for the selection value, the owner sends the first segment.

» While waiting to be called to provide the next segment value but before sending it, the owner receives
another request from a different requestor for the same selection value.

» To distinguish between the requests, the owner uses the request_id value. This allows the owner to
distinguish between thefirst requestor, which isasking for the second segment, and the second requestor,
which is asking for the first segment.

Incremental Transfer Procedures

The following procedures are used by selection owners who wish to provide the selection datain multiple
segments.

The procedure pointer specified by the incremental owner to supply the selection data to the Intrinsicsis
of type (* Xt Convert Sel ecti onl ncrProc).

176

Utility Functions

typedef Xt Pointer XtRequestld;

typedef Boolean (*XtConvertSelectionlncrProc)(w, selection, target,
type_return, value return, length_return, format_return, max_|ength,
client_data, request_id);

w Specifies the widget that currently owns this selection.

selection Specifies the atom that names the selection requested.

target Specifies the type of information required about the selection.

type return Specifies a pointer to an atom into which the property type of the

converted value of the selection isto be stored.

value return Specifies a pointer into which a pointer to the converted value of
the selection isto be stored. The selection owner is responsible for
alocating this storage.

length _return Specifies a pointer into which the number of elements in
value return, each of size indicated by format_return, is to be
stored.

format_return Specifies a pointer into which the size in bits of the data elements

of the selection value is to be stored so that the server may byte-
swap the dataif necessary.

max_length Specifies the maximum number of bytes which may be transferred
at any onetime.

client_data Specifiesthe value passed in by the widget when it took ownership
of the selection.
request_id Specifies an opaque identification for a specific request.

Thisprocedureiscalled repeatedly by the Intrinsi cs sel ection mechanism to get the next incremental chunk
of datafrom a selection owner who has called Xt OmSel ect i onl ncr enent al . It must return Tr ue
if the procedure has succeeded in converting the selection data or Fal se otherwise. On the first call
with a particular request id, the owner must begin a new incremental transfer for the requested selection
and target. On subsequent calls with the same request id, the owner may assume that the previously
supplied value is no longer needed by the Intrinsics; that is, a fixed transfer area may be allocated and
returned in value return for each segment to be transferred. This procedure should store a non-NULL
value in value return and zero in length_return to indicate that the entire selection has been delivered.
After returning this final segment, the request id may be reused by the Intrinsics to begin a new transfer.

To retrieve the Sel ecti onRequest event that triggered the selection conversion procedure, use
Xt Get Sel ecti onRequest , described in Section 11.5.2.1.

The procedure pointer specified by the incremental selection owner when it desires notification upon no
longer having ownership is of type (* Xt LoseSel ecti onl ncr Proc) .

typedef void (*XtLoseSel ectionlncrProc)(w, selection, client_data);
w Specifies the widget that has lost the selection ownership.

selection Specifies the atom that names the selection.

177

Utility Functions

client_data Specifies the value passed in by the widget when it took ownership
of the selection.

This procedure, which isoptional, is called by the Intrinsicsto inform the selection owner that it no longer
owns the selection.

The procedure pointer specified by the incremental selection owner when it desires notification
of receipt of the data or when it manages the storage containing the data is of type
(* Xt Sel ecti onDonel ncr Proc).

t ypedef voi d (*Xt Sel ecti onDonel ncr Proc) (w, sel ecti on, target,
request _id, client_data);

w Specifies the widget that owns the selection.

selection Specifies the atom that names the selection being transferred.

target Specifies the target type to which the conversion was done.

request_id Specifies an opaque identification for a specific request.

client_data Specified the value passed in by the widget when it took ownership
of the selection.

Thisprocedure, whichisoptional, is called by the Intrinsics after the requestor hasretrieved thefinal (zero-
length) segment of the incremental transfer to indicate that the entire transfer is complete. If this procedure
isnot specified, the Intrinsicswill free only the final value returned by the selection owner using Xt Fr ee.

The procedure pointer specified by the incremental selection owner to notify it if a transfer should be
terminated prematurely is of type (* Xt Cancel Convert Sel ecti onProc).

typedef void (*XtCancel Convert Sel ectionProc)(w, selection, target,
request _id, client_data);

w Specifies the widget that owns the selection.

selection Specifies the atom that names the selection being transferred.

target Specifies the target type to which the conversion was done.

request_id Specifies an opaque identification for a specific request.

client_data Specifies the value passed in by the widget when it took ownership
of the selection.

This procedure is called by the Intrinsics when it has been determined by means of a timeout or other
mechanism that any remaining segments of the selection no longer need to be transferred. Upon receiving
this callback, the selection request is considered complete and the owner can free the memory and any
other resources that have been allocated for the transfer.

Getting the Selection Value Incrementally

To obtain the vaue of the selection using incremental transfers, use
Xt Get Sel ecti onVal uel ncrement al or Xt Get Sel ecti onVal uesl ncrenent al .

voi d Xt Get Sel ecti onVal uel ncrenent al (w, sel ecti on, target,
sel ection_cal |l back, client_data, tine);

178

Utility Functions

w Specifies the widget making the request. Must be of class Core or
any subclass thereof.

selection Specifies the particular selection desired.

target Specifies the type of information needed about the selection.

selection_callback

Specifies the callback procedure to be called to receive each data
segment.

client_data Specifies client-specific data to be passed to the specified callback
procedure when it is invoked.
time Specifies the timestamp that indicates when the selection request

was initiated. This should be the timestamp of the event that
triggered this request; the value Cur r ent Ti ne is not acceptable.

The Xt Get Sel ecti onVal uel ncrenent al function is smilar to Xt Get Sel ecti onVal ue
except that the selection_callback procedure will be called repeatedly upon delivery of multiple segments
of the selection value. The end of the selection value is indicated when selection callback is called
with a non-NULL value of length zero, which must still be freed by the client. If the transfer of the
selection is aborted in the middle of atransfer (for example, because of atimeout), the selection_callback
procedure is called with a type value equal to the symbolic constant XT_CONVERT_FAI L so that the
requestor can dispose of the partial selection value it has collected up until that point. Upon receiving
XT_CONVERT _FAI L, therequesting client must determine for itself whether or not a partially completed
data transfer is meaningful. For more information about selection, target, and time, see Use of Selection
Atomsin the Inter-Client Communication Conventions Manual.

void Xt GetSel ectionVal ueslncrenental (w, selection, targets, count,
sel ection_cal | back, client_data, tine);

w Specifies the widget making the request. Must be of class Core or
any subclass thereof.

selection Specifies the particular selection desired.

targets Specifies the types of information needed about the selection.

count Specifies the length of the targets and client_data lists.

selection_callback

client_data

time

Specifies the callback procedure to be caled to receive each
selection value.

Specifies a list of client data (one for each target type) values that
are passed to the callback procedure when it is invoked for the
corresponding target.

Specifies the timestamp that indicates when the selection request
was initiated. This should be the timestamp of the event that
triggered this request; the value Cur r ent Ti ne is not acceptable.

The Xt Get Sel ect i onVal uesl ncr enent al function is similar to
Xt Get Sel ecti onVal uel ncr enent al except that it takes a list of targets

and client data

Xt Get Sel ectionVal uesl ncrenmental is equivdent to caling

Xt Get Sel ecti onVal uel ncrenent al successively for each target/client_data pair except that
Xt Get Sel ecti onVal uesl ncrenent al does guarantee that all the conversions will use the same

179

Utility Functions

selection value because the ownership of the selection cannot change in the middle of the list, as would
be possible when calling Xt Get Sel ect i onVal uel ncr enent al repeatedly. For more information
about selection, target, and time, see Section 2.6 in the Inter-Client Communication Conventions Manual.

Setting the Selection Owner for Incremental Transfers

To set the selection owner when using incremental transfers, use Xt OmSel ecti onl ncr enent al .

Bool ean Xt OmnSel ecti onl ncrenental (w, sel ection, tinme, convert_call back,
| ose_cal | back, done_cal |l back, cancel callback, client _data);

w Specifies the widget that wishes to become the owner. Must be of
class Core or any subclass thereof.

selection Specifies the atom that names the selection.

time Specifiesthetimestamp that i ndicateswhen the sel ection ownership
reguest wasinitiated. This should be the timestamp of the event that
triggered ownership; the value Cur r ent Ti e is not acceptable.

convert_callback Specifies the procedure to be called whenever the current value of
the selection is requested.

lose callback Specifies the procedure to be called whenever the widget has lost
selection ownership, or NULL if theowner isnot interested in being
notified.

done_callback Specifies the procedure called after the requestor has received the
entire selection, or NULL if the owner is not interested in being
notified.

cancel_callback Specifies the callback procedure to be called when a selection
request aborts because a timeout expires, or NULL if the owner is
not interested in being notified.

client_data Specifies the argument to be passed to each of the callback
procedures when they are called.

The Xt OmSel ecti onl ncrenental procedure informs the Intrinsics incremental selection
mechanism that the specified widget wishes to own the selection. It returns Tr ue if the specified widget
successfully becomes the selection owner or Fal se otherwise. For more information about selection,
target, and time, see Section 2.6 in the Inter-Client Communication Conventions Manual.

If adone _callback procedure is specified, the client owns the storage alocated for passing the value to
the Intrinsics. If done callback is NULL, the convert_callback procedure must allocate storage using
Xt Mal | oc, Xt Real | oc, or Xt Cal | oc, andthefinal value specified isfreed by the Intrinsics when the
transfer iscompl ete. After aselection transfer has started, only one of thedone_callback or cancel _callback
procedures is invoked to indicate completion of the transfer.

Thelose callback procedure does not indicate completion of any in-progresstransfers; it isinvoked at the
timeaSel ecti ond ear eventisdispatched regardless of any active transfers, which are still expected
to continue.

A widget that becomes the selection owner using Xt OwmnSel ecti onl ncrenental may use
Xt Di sownSel ect i on to relinquish selection ownership.

180

Utility Functions

Setting and Retrieving Selection Target Parameters

To gpecify target parameters for a selection request with a single target, use
Xt Set Sel ecti onPar anet ers.

void Xt Set Sel ecti onParanet ers(request or, sel ecti on, type, val ue,
[ength, format);

requestor Specifies the widget making the request. Must be of class Core or any
subclass thereof.

selection Specifies the atom that names the selection.

type Specifies the type of the property in which the parameters are passed.

value Specifies a pointer to the parameters.

length Specifiesthe number of elements containing datain value, each element

of asizeindicated by format.
format Specifies the sizein bits of the data in the elements of value.

The specified parameters are copied and stored in a new property of the specified type and format on the
requestor's window. To initiate a selection request with a target and these parameters, a subsequent call
to Xt Get Sel ecti onVal ue or to Xt Get Sel ecti onVal uel ncr ement al specifying the same
requestor widget and selection atom will generate a Convert Sel ecti on request referring to the
property containing the parameters. If Xt Set Sel ect i onPar anet er s is called more than once with
the same widget and selection without a call to specify a request, the most recently specified parameters
are used in the subsequent request.

The possible values of format are 8, 16, or 32. If the format is 8, the elements of value are assumed to be
sizeof(char); if 16, sizeof(short); if 32, sizeof(long).

To generate a MULTIPLE target regquest with parameters for any
of the multiple targets of the selection request, precede individual
cals to XtGetSelectionValue and XtGetSelectionValuelncrenmental with
corresponding individual cals to XtSetSelectionParaneters, and enclose
these al within Xt CreateSel ecti onRequest and Xt SendSel ecti onRequest .
Xt Get Sel ecti onVal ues and Xt Cet Sel ecti onVal uesl ncrenent al cannot be used to make
selection requests with parameterized targets.

To retrieve any target parameters needed to perform a selection conversion, the selection owner calls
Xt Get Sel ecti onPar anet er s.

voi d Xt Get Sel ecti onPar anet er s(owner, sel ecti on, request _id,
type_return, value_return, length_return, format_return);

owner Specifies the widget that owns the specified selection.
selection Specifies the selection being processed.
request_id Specifies the requestor id in the case of incremental selections, or

NULL in the case of atomic transfers.

type return Specifies a pointer to an atom in which the property type of the
parametersis stored.

181

Utility Functions

value return Specifies a pointer into which a pointer to the parametersis to be
stored. A NULL is stored if no parameters accompany the request.

length return Specifies a pointer into which the number of data elements in
value return of sizeindicated by format_return are stored.

format_return Specifies a pointer into which the size in bits of the parameter data
in the elements of value is stored.

Xt Get Sel ecti onParaneters may be called only from within an
(* Xt Convert Sel ecti onProc) or from within the first call to an
(* Xt Convert Sel ecti onl ncr Proc) with anew request_id.

It is the responsibility of the caller to free the returned parameters using Xt Fr ee when the parameters
are no longer needed.

Generating MULTIPLE Requests

To have the Intrinsics bundle multiple calls to make selection requests into a single request using a
MULTIPLE target, use Xt Cr eat eSel ect i onRequest and Xt SendSel ect i onRequest .

voi d Xt Creat eSel ecti onRequest (requestor, sel ection);

requestor Specifies the widget making the request. Must be of class Core or any
subclass thereof.

selection Specifies the particular selection desired.

When Xt Cr eat eSel ecti onRequest is called, subsequent calls to Xt Get Sel ecti onVal ue,
Xt Get Sel ecti onVal uel ncrenent al , Xt Get Sel ecti onVal ues, and
Xt Get Sel ecti onVal uesl ncrenental , with the requestor and selection as specified to
Xt Creat eSel ecti onRequest , are bundled into a single selection request with multiple targets. The
request is made by calling Xt SendSel ect i onRequest .

voi d Xt SendSel ecti onRequest (requestor, selection, tinme);

requestor Specifies the widget making the request. Must be of class Core or any
subclass thereof.

selection Specifies the particular selection desired.

time Specifies the timestamp that indicates when the selection request was

initiated. Thevalue Cur r ent Ti ne isnot acceptable.

When Xt SendSel ect i onRequest is called with a value of requestor and selection matching a
previouscall to Xt Cr eat eSel ect i onRequest , aselection request is sent to the selection owner. If a
single target request is queued, that request is made. If multiple targets are queued, they are bundled into
a single request with atarget of MULTIPLE using the specified timestamp. As the values are returned,
the callbacks specified in Xt Get Sel ecti onVal ue, Xt Get Sel ecti onVal uel ncrenent al ,
Xt Get Sel ecti onVal ues, and Xt Get Sel ecti onVal uel ncr enent al areinvoked.

Multi-threaded applications should lock the application context before caling
Xt Creat eSel ecti onRequest and releasethelock after calling Xt SendSel ect i onRequest to
ensure that the thread assembling the request is safe from interference by another thread assembling a
different request naming the same widget and selection.

182

Utility Functions

To relinquish the composition of a MULTIPLE request without sending it, use
Xt Cancel Sel ecti onRequest .

voi d Xt Cancel Sel ecti onRequest (requestor, selection);

requestor Specifies the widget making the request. Must be of class Core or any
subclass thereof.

selection Specifies the particular selection desired.

When Xt Cancel Sel ecti onRequest is caled, any requests queued since the last call to
Xt Cr eat eSel ecti onRequest for the same widget and selection are discarded and any resources
reserved are released. A subsequent call to Xt SendSel ecti onRequest will not result in any
request being made. Subsequent calls to Xt Get Sel ecti onVal ue, Xt Get Sel ecti onVal ues,
Xt Get Sel ecti onVal uel ncrenent al , or Xt Get Sel ecti onVal uesl ncrenent al will not
be deferred.

Auxiliary Selection Properties

Certain uses of parameterized sel ectionsrequire clientsto name other window propertieswithin aselection
parameter. To permit reuse of temporary property names in these circumstances and thereby reduce the
number of unique atomscreated inthe server, the Intrinsics providestwo interfacesfor acquiring temporary
property names.

To acquire a temporary property name atom for use in a selection request, the client may call
Xt Reser vePropertyAtom

At om Xt ReservePropertyAtomw) ;
w Specifies the widget making a selection request.

Xt Reser vePr opert yAt omreturns an atom that may be used as a property name during selection
requests involving the specified widget. Aslong as the atom remains reserved, it is unique with respect
to al other reserved atoms for the widget.

To return atemporary property name atom for reuse and to delete the property named by that atom, use
Xt Rel easePr opertyAt om

voi d Xt Rel easePropertyAtomw, atom;
w Specifies the widget used to reserve the property name atom.

atom Specifies the property name atom returned by Xt Reser vePr opert yAt om
that is to be released for reuse.

Xt Rel easePr opert yAt ommarks the specified property name atom as no longer in use and ensures
that any property having that name on the specified widget's window is deleted. If atom does not specify
avalue returned by Xt Reser vePr oper t yAt omfor the specified widget, the results are undefined.

Retrieving the Most Recent Timestamp

To retrieve the timestamp from the most recent call to Xt Di spat chEvent that contained atimestamp,
use Xt Last Ti nest anpPr ocessed.

Ti me Xt Last Ti mest anpProcessed(di spl ay);

183

Utility Functions

display Specifies an open display connection.

If no KeyPress, KeyRel ease, ButtonPress, ButtonRel ease, ModtionNotify,
EnterNotify, LeaveNotify, PropertyNotify, or Sel ecti onCl ear event has yet been
passed to Xt Di spat chEvent for the specified display, Xt Last Ti nest anpPr ocessed returns
zero.

Retrieving the Most Recent Event

To retrieve the event from the most recent call to Xt Di spat chEvent for a specific display, use
Xt Last Event Pr ocessed.

XEvent *XtLast Event Processed(di spl ay);
display Specifies the display connection from which to retrieve the event.

Returnsthe last event passed to Xt Di spat chEvent for the specified display. Returns NULL if thereis
no such event. The client must not modify the contents of the returned event.

Merging Exposure Events into a Region

The Intrinsics provide an Xt AddExposur eToRegi on utility function that merges Expose and
Graphi csExpose eventsinto aregion for clients to process at once rather than processing individual
rectangles. For further information about regions, see Manipulating Regions in Xlib — C Language X
Interface.

To merge Expose and Gr aphi csExpose eventsinto aregion, use Xt AddExposur eToRegi on.
voi d Xt AddExposur eToRegi on(event, region);

event Specifies apointer to the Expose or Gr aphi csExpose event.

region Specifies the region object (asdefined in <X11/ Xuti | . h>).

The Xt AddExposur eToRegi on function computes the union of the rectangle defined by the exposure
event and the specified region. Then it stores the results back in region. If the event argument is not
an Expose or G aphi csExpose event, Xt AddExposur eToRegi on returns without an error and
without modifying region.

This function is used by the exposure compression mechanism; see the section called “Exposure
Compression”

Translating Widget Coordinates

To trandate an x-y coordinate pair from widget coordinates to root window absolute coordinates, use
Xt Tr ansl at eCoor ds.

voi d Xt Transl at eCoords(w, X, y, rootx_return, rooty_return);

w Specifies the widget. Must be of class RectObj or any subclass
thereof.

X

y Specify the widget-relative x and y coordinates.

184

Utility Functions

rootx_return
rooty_return Return the root-relative x and y coordinates.

While Xt Tr ansl at eCoor ds issimilar tothe Xlib XTr ansl at eCoor di nat es function, it doesnot
generate a server request because all the required information already is in the widget's data structures.

Translating a Window to a Widget

To trandate a given window and display pointer into awidget instance, use Xt W ndowToW dget .
W dget Xt W ndowToW dget (di spl ay, w ndow);

display Specifies the display on which the window is defined.

window Specifies the drawable for which you want the widget.

If there is a realized widget whose window is the specified drawable on the specified display,
Xt W ndowToW dget returns that widget. If not and if the drawable has been associated with a
widget through Xt Regi st er Dr awabl e, Xt W ndowToW dget returnsthewidget associated with the
drawable. In other casesit returns NULL.

Handling Errors

The Intrinsicsallow aclient to register proceduresthat are called whenever afatal or nonfatal error occurs.
These facilities are intended for both error reporting and logging and for error correction or recovery.

Two levels of interface are provided:

* A high-level interface that takes an error name and class and retrieves the error message text from an
error resource database.
» A low-level interface that takes a simple string to display.

Thehigh-level functions construct astring to passto the lower-level interface. The strings may be specified
in application code and are overridden by the contents of an externa systemwide file, the “error database
file". The location and name of this file are implementati on-dependent.

Note

The application-context-specific error handling is not implemented on many systems, athough
the interfaces are always present. Most implementations will have just one set of error handlers
for al application contexts within a process. If they are set for different application contexts, the
ones registered last will prevail.

To obtain the error database (for example, to merge with an application- or widget-specific database), use
Xt AppCet Er r or Dat abase.

Xr nDat abase * Xt AppGet Err or Dat abase(app_cont ext);
app_context Specifies the application context.

The Xt AppCet Er r or Dat abase function returns the address of the error database. The Intrinsics
do a lazy binding of the error database and do not merge in the database file until the first call to
Xt AppGet Er r or Dat abaseText .

185

Utility Functions

For acomplete listing of al errors and warnings that can be generated by the Intrinsics, see Appendix D,
Intrinsics Error Messages

The high-level error and warning handler procedure pointers are of type (* Xt Er r or MsgHandl er) .

typedef void (*XtErrorMsgHandl er) (name, type, class, defaultp, parans,
num par ans) ;

name Specifies the name to be concatenated with the specified type to form
the resource name of the error message.

type Specifies the type to be concatenated with the name to form the
resource name of the error message.

class Specifies the resource class of the error message.

defaultp Specifiesthe default messageto useif no error database entry isfound.

params Specifies a pointer to a list of parameters to be substituted in the
message.

num_params Specifies the number of entriesin params.

The specified name can be ageneral kind of error, like “invalidParameters’ or “invalidWindow”, and the
specified type gives extra information such as the name of the routine in which the error was detected.
Standard pr i nt f notation is used to substitute the parameters into the message.

An error message handler can obtain the error database text for an error or a warning by calling
Xt AppCet Er r or Dat abaseText .

voi d Xt AppGet Err or Dat abaseText (app_cont ext, nane, type, class, default,
buf fer _return, nbytes, database);

app_context Specifies the application context.

name, type Specify the name and type concatenated to form the resource name
of the error message.

class Specifies the resource class of the error message.

default Specifies the default message to use if an error database entry is
not found.

buffer_return Specifies the buffer into which the error message is to be returned.

nbytes Specifies the size of the buffer in bytes.

database Specifies the name of the alternative database to be used, or NULL

if the application context's error database is to be used.

The Xt AppCet Er r or Dat abaseText returns the appropriate message from the error database or
returns the specified default message if one is not found in the error database. To form the full resource
name and class when querying the database, the name and type are concatenated with asingle“.” between

won “w o

them and the class is concatenated with itself with asingle“.” if it does not already containa*“.”.

To return the application name and classaspassed to Xt Di spl ayl ni ti al i ze for aparticular Display,
use Xt Cet Appl i cati onNaneAndCl ass.

186

Utility Functions

voi d Xt Get Appl i cati onNanmeAndd ass(di splay, name_return, class_return);

display Specifies an open display connection that has been initialized with
XtDi splaylnitialize.

name_return Returns the application name.

class return Returns the application class.

Xt Get Appl i cati onNameAndC ass returns the application name and class passed to
Xt Di splaylnitialize for the specified display. If the display was never initialized or has been
closed, the result is undefined. The returned strings are owned by the Intrinsics and must not be modified
or freed by the caller.

To register aprocedure to be called on fatal error conditions, use Xt AppSet Er r or MsgHandl er .

Xt Error MsgHandl er Xt AppSet Err or MsgHandl er (app_cont ext, msg_handl er);
app_context Specifies the application context.

msg_handler Specifies the new fatal error procedure, which should not return.

Xt AppSet Er r or MsgHandl er returns a pointer to the previoudy installed high-level fatal
error handler. The default high-level fatal error handler provided by the Intrinsics is named
_Xt Def aul t Er r or Msg and constructs a string from the error resource database and calls Xt Er r or .
Fatal error message handlers should not return. If one does, subsequent Intrinsics behavior is undefined.

To call the high-level error handler, use Xt AppEr r or Msg.

voi d Xt AppError Msg(app_context, nanme, type, class, default, parans,
num par ans) ;

app_context Specifies the application context.

name Specifies the genera kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not
found.

params Specifies apointer to alist of values to be stored in the message.

num_params Specifies the number of entriesin params.

The Intrinsicsinternal errorsal have class “ XtToolkitError”.

Toregister aprocedureto be called on nonfatal error conditions, use Xt AppSet War ni ngMsgHandl er .
Xt Err or MsgHandl er Xt AppSet War ni ngMsgHandlI er (app_cont ext, msg_handl er);
app_context Specifies the application context.

msg_handler Specifies the new nonfatal error procedure, which usually returns.

Xt AppSet War ni ngMsgHandl er returns a pointer to the previously instaled high-level
warning handler. The default high-level warning handler provided by the Intrinsics is named

187

Utility Functions

_ Xt Def aul t War ni ngMsg and constructs a string from the error resource database and calls
Xt War ni ng.

To call theinstalled high-level warning handler, use Xt AppWar ni nghVsg.

voi d Xt AppWar ni ngMsg(app_context, nane, type, class, default, parans,
num par ans) ;

app_context Specifies the application context.

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not
found.

params Specifies apointer to alist of values to be stored in the message.

num_params Specifies the number of entriesin params.

The Intrinsics internal warnings al have class “XtToolkitError”.

The low-level error and warning handler procedure pointers are of type (* Xt Er r or Handl er) .

t ypedef void (*XtErrorHandl er) (nessage);

message Specifies the error message.

The error handler should display the message string in some appropriate fashion.

To register aprocedure to be called on fatal error conditions, use Xt AppSet Er r or Handl er .

Xt Error Handl er Xt AppSet Err or Handl er (app_cont ext, handl er);

app_context Specifies the application context.

handler Specifies the new fatal error procedure, which should not return.

Xt AppSet Er r or Handl er returns a pointer to the previoudly installed low-level fatal error handler.
The default low-level error handler provided by the Intrinsicsis_ Xt Def aul t Er r or . On POSIX-based
systems, it printsthe messageto standard error and terminates the application. Fatal error message handlers
should not return. If one does, subsequent Intrinsics behavior is undefined.

To call theinstalled fatal error procedure, use Xt AppEr r or .

voi d Xt AppError (app_context, nessage);

app_context Specifies the application context.
message Specifies the message to be reported.

Most programs should use Xt AppEr r or Msg, not Xt AppEr r or, to provide for customization and
internationalization of error messages.

To register a procedure to be called on nonfatal error conditions, use Xt AppSet War ni ngHandl er .

Xt Error Handl er Xt AppSet War ni ngHandl er (app_context, handl er);

188

Utility Functions

app_context Specifies the application context.
handler Specifies the new nonfatal error procedure, which usually returns.

Xt AppSet War ni ngHandl er returns a pointer to the previously installed low-level warning handler.
The default low-level warning handler provided by the Intrinsicsis_ Xt Def aul t V\ar ni ng. On POSIX-
based systems, it prints the message to standard error and returnsto the caller.

To call theinstalled nonfatal error procedure, use Xt AppWar ni ng.

voi d Xt AppWar ni ng(app_cont ext, nmessage);

app_context Specifies the application context.

message Specifies the nonfatal error message to be reported.

Most programs should use Xt AppWar ni ngMsg, not Xt AppWar ni ng, to providefor customization and
internationalization of warning messages.

Setting WM_COLORMAP_WINDOWS

A client may set the value of the WM_COLORMAP_WINDOWS property on a widget's window by
caling Xt Set WMCol or mapW ndows.

voi d Xt Set WMCol or mapW ndows(wi dget, |ist, count);

widget Specifies the widget on whose window the
WM_COLORMAP_WINDOWS property is stored. Must be of class Core
or any subclass thereof.

list Specifies alist of widgets whose windows are potentially to be listed in the
WM_COLORMAP_WINDOWS property.

count Specifies the number of widgetsin list.

Xt Set WMCol or mapW ndows returnsimmediately if widget is not realized or if count is 0. Otherwise,
Xt Set WMCol or mapW ndows constructs an ordered list of windows by examining each widget in list
in turn and ignoring the widget if it is not realized, or adding the widget's window to the window list if
the widget isrealized and if its colormap resource is different from the colormap resources of al widgets
whose windows are already on the window list.

Finaly, Xt Set WMCol or mapW ndows stores the resulting window list in the
WM_COLORMAP_WINDOWS property on the specified widget's window. Refer to Section
4.1.8 in the Inter-Client Communication Conventions Manual for details of the semantics of the
WM_COLORMAP_WINDOWS property.

Finding File Names

The Intrinsics provide procedures to look for a file by name, allowing string substitutions in a list of
file specifications. Two routines are provided for this: Xt Fi ndFi | e and Xt Resol vePat hnane.
Xt Fi ndFi | e uses an arbitrary set of client-specified substitutions, and Xt Resol vePat hnane uses
a set of standard substitutions corresponding to the X/Open Portability Guide language localization
conventions. Most applications should use Xt Resol vePat hnane.

A string substitution is defined by alist of Subst i t uti on entries.

189

Utility Functions

typedef struct {
char mat ch;
String substitution;
} SubstitutionRec, *Substitution;

File name evauation is handled in an operating-system-dependent fashion by an
(*Xt Fi |l ePredi cat e) procedure.

t ypedef Bool ean (*XtFilePredicate)(fil enamne);
filename Specifies apotential filename.

A file predicate procedure is called with a string that is potentially afile name. It should return Tr ue if
this string specifies afile that is appropriate for the intended use and Fal se otherwise.

To search for afile using substitutions in a path list, use Xt Fi ndFi | e.

char * XtFindFile(path, substitutions, numsubstitutions, predicate);

path Specifies apath of file names, including substitution characters.

substitutions Specifies alist of substitutions to make into the path.

num_substitutions Specifies the number of substitutions passed in.

predicate Specifies a procedure called to judge each potential file name, or
NULL.

The path parameter specifies a string that consists of a series of potential file names delimited by colons.
Within each name, the percent character specifies a string substitution selected by the following character.
The character sequence “%:” specifies an embedded colon that is not adelimiter; the sequenceis replaced
by a single colon. The character sequence “%%" specifies a percent character that does not introduce
a substitution; the sequence is replaced by a single percent character. If a percent character is followed
by any other character, Xt Fi ndFi | e looks through the specified substitutions for that character in the
match field and, if found, replaces the percent and match characters with the string in the corresponding
substitution field. A substitution field entry of NULL is equivalent to a pointer to an empty string. If the
operating system does not interpret multiple embedded name separators in the path (i.e., “/” in POSIX)
the same way as a single separator, Xt Fi ndFi | e will collapse multiple separators into a single one
after performing all string substitutions. Except for collapsing embedded separators, the contents of the
string substitutions are not interpreted by Xt Fi ndFi | e and may therefore contain any operating-system-
dependent characters, including additional name separators. Each resulting string is passed to the predicate
procedure until a string is found for which the procedure returns Tr ue; this string is the return value for
Xt Fi ndFi | e. If nostringyieldsaTr ue return from the predicate, Xt Fi ndFi | e returns NULL.

If the predicate parameter is NULL, an internal procedure that checks if the file exists, is readable, and
isnot adirectory is used.

It isthe responsibility of the caller to free the returned string using Xt Fr ee when it isno longer needed.
To search for afile using standard substitutions in a path list, use Xt Resol vePat hnane.

char * XtResol vePat hnanme(di splay, type, filenane, suffix, path,
substitutions, numsubstitutions, predicate);

display Specifies the display to use to find the language for language
substitutions.

190

Utility Functions

type

filename

suffix Specify values to substitute into the path.

path Specifiesthe list of file specifications, or NULL.

substitutions Specifiesalist of additional substitutions to make into the path, or
NULL.

num_substitutions Specifies the number of entries in substitutions.

predicate Specifies a procedure called to judge each potential file name, or
NULL.

The substitutions specified by Xt Resol vePat hnane are determined from the value of the language
string retrieved by Xt Di spl ayl nitial i ze for the specified display. To set the language for all
applications specify “*xnlLanguage: lang” in the resource database. The format and content of the
language string are implementation-defined. One suggested syntax is to compose the language string of
three parts; a“language part”, a“territory part” and a“ codeset part”. The manner in which thiscomposition
is accomplished is implementation-defined, and the Intrinsics make no interpretation of the parts other
than to use them in substitutions as described below.

Xt Resol vePat hnane calls Xt Fi ndFi | e with the following substitutions in addition to any passed
by the caller and returns the value returned by Xt Fi ndFi | e:

%N The value of the filename parameter, or the application's class name if filenameis NULL.
%T The value of the type parameter.

%S The value of the suffix parameter.

%L The language string associated with the specified display.

%l The language part of the display's language string.

Yot The territory part of the display's language string.

%cC The codeset part of the display's language string.

%C The customization string retrieved from the resource database associated with display.
%D The value of the implementation-specific default path.

If apathis passed to Xt Resol vePat hnane, it is passed along to Xt Fi ndFi | e. If the path argument
isNULL, the value of the XFILESEARCHPATH environment variable is passed to Xt Fi ndFi | e. If
XFILESEARCHPATH is not defined, an implementation-specific default path is used that contains at
least six entries. These entries must contain the following substitutions:

UC, BN, U5, W, % or U, W, U5, W, %N, %, %
9uC, W, U5, W, %

uC, W, U5, o

ON, %5, %, %A or W, U5, W, %N, %, %
W, U5, W, %

agkwNE

191

Utility Functions

6. N, o5, %

The order of these six entries within the path must be as given above. The order and use of substitutions
within a given entry are implementation-dependent. If the path begins with a colon, it is preceded by %N
%S. If the path includes two adjacent colons, ¥N¥S is inserted between them.

The type parameter is intended to be a category of files, usually being trandated into a directory in the
pathname. Possible values might include “app-defaults’, “help”, and “bitmap”.

The suffix parameter is intended to be appended to the file name. Possible values might include “.txt”,
“.dat”, and “.bm”.

A suggested value for the default path on POSIX-based systemsis

fusr/1ib/ X121/ %/ %/ YNVCYS: [usr/1i bl X11/ % / %/ YNACYS: \
fusr/1ib/ X121/ % YNACYS: [usr/ i b/ X11/ %/ %/ YNYE: \
fusr/1ib/ X121/ 9% /% 9NY&: [usr/1i b/ X11/ %I/ YNYS

Using thisexample, if the user has specified alanguage, it is used as a subdirectory of /ust/lib/X11 that is
searched for other files. If the desired fileisnot found there, thelookup istried again using just the language
part of the specification. If thefileis not there, it islooked for in /usr/lib/X11. The type parameter is used
as asubdirectory of the language directory or of /ust/lib/X 11, and suffix is appended to the file name.

The %D substitution allows the addition of path elements to the implementation-specific default path,
typicaly to allow additional directories to be searched without preventing resources in the system
directoriesfrom being found. For example, auser installing resource files under adirectory called “ourdir”
might set XFILESEARCHPATH to

%D: our di r/ %/ YNUC: our di r/ %/ 9N

The customization string is obtained by querying the resource database currently associated with the
display (the database returned by Xr mGet Dat abase) for the resource application_name.customization,
class application_class.Customization, where application_name and application_class are the values
returned by Xt Get Appl i cati onNaneAndCl ass. If no valueis specified in the database, the empty
string is used.

It isthe responsibility of the caller to free the returned string using Xt Fr ee when it isno longer needed.

Hooks for External Agents

Applications may register functions that are called at a particular control points in the Intrinsics. These
functions are intended to be used to provide notification of an “X Toolkit event”, such as widget
creation, to an external agent, such as an interactive resource editor, drag-and-drop server, or an aid for
physically challenged users. The control points containing such registration hooks areidentified in a*hook
registration” object.

To retrieve the hook registration widget, use Xt HooksOf Di spl ay.
W dget Xt HooksOf Di spl ay(di spl ay);
display Specifiesthe desired display.

The class of thisobject is a private, implementation-dependent subclass of Cbj ect . The hook object has
no parent. The resources of this object are the callback lists for hooks and the read-only resources for

192

Utility Functions

getting alist of parentless shells. All of the callback lists areinitially empty. When adisplay is closed, the
hook object associated with it is destroyed.

The following procedures can be called with the hook registration object as an argument:

e Xt AddCal | back, XtAddCal | backs, XtRenoveCall back, XtRenoveCall backs,
Xt RenoveAl | Cal | backs, Xt Cal | Cal | backs, Xt HasCal | backs,
Xt Cal | Cal | backLi st

e XtC ass, XtSuperclass, XtlsSubclass, XtCheckSubclass, XtlsOject,
XtlsRect Qbj, XtlsWdget, XtlsConposite, XtlsConstraint, XtlsShell,
XtlsOverrideShell, XtlsWvshell, XtlsVendorShell, XtlsTransientShell,
Xt 1 sTopLevel Shel | , Xt 1 sApplicationShell,XtlsSessi onShel |

« Xt Wdget ToAppl i cat i onCont ext

» Xt Nane, Xt Par ent , Xt Di spl ayOf Obj ect, Xt Scr eenOf Obj ect

» Xt Set Val ues, Xt Get Val ues, Xt VaSet Val ues, Xt VaGet Val ues

Hook Object Resources

Theresource names, classes, and representation typesthat are specified in the hook object resourcelist are:

Name Class Representation
XtNcreateHook XtCCallback XtRCallback
XtNchangeHook XtCCallback XtRCallback
XtNconfigureHook XtCCallback XtRCallback
XtNgeometryHook XtCCallback XtRCallback
XtNdestroyHook XtCCallback XtRCallback
XtNshells XtCReadOnly XtRWidgetList
XtNnumShells XtCReadOnly XtRCardinal

Descriptions of each of these resources:

The XtNcreateHook callback list is called from: Xt Cr eat eW dget , Xt Cr eat eManagedW dget ,
Xt Cr eat ePopupsShel | , Xt AppCr eat eShel | , and their corresponding varargs versions.

The call_data parameter in a createHook callback may be cast to type Xt Cr eat eHookDat a.

typedef struct {
String type;
W dget wi dget ;
ArgLi st args;
Cardi nal num args;
} Xt Creat eHookDat aRec, *Xt Creat eHookDat a;

The type is set to Xt Hcr eat e, widget is the newly created widget, and args and num_args are the
arguments passed to the create function. The callbacks are called before returning from the create function.

The XtNchangeHook callback list is called from:

» Xt Set Val ues, Xt VaSet Val ues
« Xt ManageChi | d, Xt ManageChi | dr en, Xt UnmanageChi | d, Xt UnmanageChi | dr en
e Xt Real i zeW dget, Xt Unreal i zeW dget

193

Utility Functions

* Xt AddCal | back, XtRenoveCall back, XtAddCallbacks, XtRenoveCall backs,
Xt RenoveAl | Cal | backs

Xt Augnent Tr ansl at i ons, Xt Overri deTransl ati ons, Xt Uni nstal | Transl ati ons
Xt Set Keyboar dFocus, Xt Set WMCol or mapW ndows

Xt Set MappedWhenManaged, Xt MapW dget , Xt UnmapW dget

Xt Popup, Xt PopupSpri ngLoaded, Xt Popdown

The call_data parameter in a changeHook callback may be cast to type Xt ChangeHookDat a.

typedef struct {

String type;

W dget wi dget ;

Xt Poi nt er event dat a;

Car di nal num event _dat a;

} Xt ChangeHookDat aRec, * Xt ChangeHookDat a;

When the changeHook callbacks are called as aresult of acall to Xt Set Val ues or Xt VaSet Val ues,
type is set to Xt Hset Val ues, widget is the new widget passed to the set values procedure, and
event_data may be cast to type Xt ChangeHook Set Val uesDat a.

typedef struct {

W dget ol d, req;
Ar gLi st ar gs;
Car di nal num ar gs;

} Xt ChangeHookSet Val uesDat aRec, * Xt ChangeHookSet Val uesDat a;

Theold, req, args, and num_args are the parameters passed to the set_values procedure. The callbacks are
called after the set_values and constraint set values procedures have been called.

When the changeHook callbacks are called as a result of a call to Xt ManageChild or
Xt ManageChi | dr en, typeisset to Xt HranageChi | dr en, widget is the parent, event_data may be
cast to type WidgetList and isthelist of children being managed, and num_event_data isthe length of the
widget list. The callbacks are called after the children have been managed.

When the changeHook callbacks are called as a result of a call to Xt UnmanageChild or
Xt UnmanageChi | dr en, type is set to Xt HunnmanageChi | dr en, widget is the parent, event_data
may be cast to type WidgetList and isalist of the children being unmanaged, and num_event_data isthe
length of the widget list. The callbacks are called after the children have been unmanaged.

The changeHook callbacks are called twice as a result of a call to Xt ChangeManagedSet , once
after unmanaging and again after managing. When the callbacks are called the first time, type is set to
Xt HunmanageSet , widget is the parent, event_data may be cast to type WidgetList and isalist of the
children being unmanaged, and num_event_data is the length of the widget list. When the callbacks are
called the second time, the type is set to Xt HmanageSet , widget is the parent, event_data may be cast
to type WidgetList and is alist of the children being managed, and num_event_data is the length of the
widget list.

When the changeHook callbacks are called as aresult of acall to Xt Real i zeW dget , thetypeisset to
Xt Hreal i zeW dget and widget isthe widget being realized. The callbacks are called after the widget
has been realized.

When the changeHook callbacks are called asaresult of acall to Xt Unr eal i zeW dget , thetypeisset
to Xt Hunr eal i zeW dget , and widget is the widget being unrealized. The callbacks are called after
the widget has been unrealized.

194

Utility Functions

When the changeHook callbacks are called as a result of a call to Xt AddCal | back, type is set to
Xt HaddCal | back, widget is the widget to which the callback is being added, and event_data may be
cast to type String and is the name of the callback being added. The callbacks are called after the callback
has been added to the widget.

When the changeHook callbacks are called as aresult of acal to Xt AddCal | backs, thetypeis set to
Xt HaddCal | backs, widget is the widget to which the callbacks are being added, and event_data may
be cast to type String and is the name of the callbacks being added. The callbacks are called after the
callbacks have been added to the widget.

When the changeHook callbacks are called asaresult of acall to Xt RenoveCal | back, thetypeissetto
Xt Hr enoveCal | back, widget isthe widget from which the callback isbeing removed, and event_data
may be cast to type String and is the name of the callback being removed. The callbacks are called after
the callback has been removed from the widget.

When the changeHook callbacks are called as a result of a call to Xt RenoveCal | backs, the type is
set to Xt Hr enoveCal | backs, widget is the widget from which the callbacks are being removed, and
event_data may be cast to type String and is the name of the callbacks being removed. The callbacks are
called after the callbacks have been removed from the widget.

When the changeHook callbacks are called as aresult of acall to Xt RenoveAl | Cal | backs, the type
is set to Xt Hr enoveAl | Cal | backs and widget is the widget from which the callbacks are being
removed. The callbacks are called after the callbacks have been removed from the widget.

When the changeHook callbacks are called asaresult of acall to Xt Augrment Tr ansl at i ons, thetype
isset to Xt Haugnent Tr ansl at i ons and widget isthe widget whose translations are being modified.
The callbacks are called after the widget's transl ations have been modified.

When the changeHook callbacks are called as a result of acall to Xt Overri deTr ansl ati ons, the
type is set to Xt Hover ri deTr ansl ati ons and widget is the widget whose trandations are being
modified. The callbacks are called after the widget's trand ations have been modified.

When the changeHook callbacks are called as a result of a call to Xt Uni nstal | Transl ati ons,
The type is Xt Huni nst al | Transl ati ons and widget is the widget whose translations are being
uninstalled. The callbacks are called after the widget's trandlations have been uninstalled.

When the changeHook callbacks are called as a result of a call to Xt Set Keyboar dFocus, the type
isset to Xt Hset Keyboar dFocus and event_data may be cast to type Widget and is the value of the
descendant argument passed to Xt Set Keyboar dFocus. The callbacks are called before returning from
Xt Set Keyboar dFocus.

When the changeHook callbacks are called as a result of acall to Xt Set WMCol or mapW ndows, type
isset to Xt Hset WMCol or mapW ndows, event_data may be cast to type WidgetList and is the value of
the list argument passed to Xt Set WMCol or mapW ndows, and num_event_data isthe length of thelist.
The callbacks are called before returning from Xt Set WMCol or mapW ndows.

When the changeHook callbacks are called as a result of a call to Xt Set MappedWhenManaged, the
type is set to Xt Hset MappedWhenManaged and event_data may be cast to type Boolean and is the
value of the mapped when_managed argument passed to Xt Set MappedWhenManaged. The callbacks
are caled after setting the widget's mapped_when_managed field and before realizing or unrealizing the
widget.

When the changeHook callbacks are called as a result of a call to Xt MapW dget , the type is set to
Xt HmapW dget and widget is the widget being mapped. The callbacks are called after mapping the
widget.

195

Utility Functions

When the changeHook callbacks are called as a result of acall to Xt UnnapW dget , the type is set to
Xt HunmapW dget and widget isthe widget being unmapped. The callbacks are called after unmapping
the widget.

When the changeHook callbacks are called asaresult of acall to Xt Popup, thetypeisset to Xt Hpopup,
widget is the widget being popped up, and event_data may be cast to type XtGrabKind and is the value of
the grab_kind argument passed to Xt Popup. The callbacks are called before returning from Xt Popup.

When the changeHook callbacks are called as aresult of acall to Xt PopupSpr i ngLoaded, thetypeis
set to Xt HpopupSpr i nglLoaded and widget is the widget being popped up. The callbacks are called
before returning from Xt PopupSpr i ngLoaded.

When the changeHook callbacks are called as a result of a cal to Xt Popdown, the type is set to
Xt Hpopdown and widget is the widget being popped down. The callbacks are called before returning
from Xt Popdown.

A widget set that exports interfaces that change application state without employing the Intrinsics library
should invoke the change hook itself. Thisis done by:

Xt Cal | Cal | backs(Xt HooksOf Di spl ay(dpy), XtNchangeHook, call _data);

The XtNconfigureHook callback list is called any time the Intrinsics move, resize, or configure a widget
and when Xt Resi zeW ndowis called.

The call_data parameter may be cast to type Xt Conf i gur eHookDat a.

typedef struct {
String type;
W dget wi dget ;
Xt GeonetryMask changeMask;
XW ndowChanges changes;
} Xt Confi gur eHookDat aRec, * Xt Confi gur eHookDat a;

When the configureHook callbacks are called, the type is Xt Hconf i gur e, widget is the widget being
configured, and changeMask and changes reflect the changes made to the widget. The callbacks are called
after changes have been made to the widget.

The XtNgeometryHook callback list is called from Xt MakeGeonetryRequest and
Xt MakeResi zeRequest once before and once after geometry negotiation occurs.

The call_data parameter may be cast to type Xt Geonret r yHookDat a.

t ypedef struct {
String type;
W dget wi dget ;
Xt W dget Geonet ry* request;
Xt W dget Geonret ry* reply;
Xt Geonet ryResult result;
} Xt Geonet r yHookDat aRec, * Xt Geonet r yHookDat a;

When the geometryHook callbacks are caled prior to geometry negotiation, the type is
Xt Hpr eGeonet ry, widget is the widget for which the request is being made, and request is the
requested geometry. When the geometryHook callbacks are called after geometry negotiation, the type

196

Utility Functions

is Xt Hpost Geonet ry, widget is the widget for which the request was made, request is the requested
geometry, reply is the resulting geometry granted, and result is the value returned from the geometry
negotiation.

The XtNdestroyHook callback list is called when awidget is destroyed. The call_data parameter may be
cast to type Xt Dest r oyHookDat a.

typedef struct {
String type;
W dget wi dget;
} Xt DestroyHookDat aRec, *XtDestroyHookDat a;

When the destroyHook callbacks are called as a result of a call to Xt Dest r oyW dget , the type is
Xt Hdest r oy and widget is the widget being destroyed. The callbacks are called upon completion of
phase one destroy for awidget.

The XtNshells and XtNnumShells are read-only resources that report alist of all parentless shell widgets
associated with a display.

Clientswho usethese hooksmust exercise cautionin calling I ntrinsicsfunctionsin order to avoid recursion.
Querying Open Displays

To retrieve alist of the Displays associated with an application context, use Xt Get Di spl ays.

voi d Xt Get Di spl ays(app_context, dpy_return, numdpy_return);

app_context Specifies the application context.

dpy_return Returns a list of open Display connections in the specified
application context.

num_dpy_return Returns the count of open Display connectionsin dpy_return.

Xt Get Di spl ays may be used by an external agent to query the list of open displays that belong to an
application context. To freethe list of displays, use Xt Fr ee.

197

Chapter 12. Nonwidget Objects

Although widget writers are free to treat Core as the base class of the widget hierarchy, there are actually
three classes aboveit. These classes are Object, RectObj (Rectangle Object), and (unnamed), and members
of these classes are referred to generically as objects. By convention, the term widget refers only to objects
that are a subclass of Core, and the term nonwidget refers to objects that are not a subclass of Core.
In the preceding portion of this specification, the interface descriptions indicate explicitly whether the
generic widget argument is restricted to particular subclasses of Object. Sections 12.2.5, 12.3.5, and 12.5
summarize the permissible classes of the arguments to, and return values from, each of the Intrinsics
routines.

Data Structures

In order not to conflict with previous widget code, the data structures used by nonwidget objects do not
follow all the same conventions as those for widgets. In particular, the class records are not composed of
parts but instead are compl ete data structures with filler for the widget fields they do not use. This allows
the static classinitializers for existing widgets to remain unchanged.

Object Objects

The Object object contains the definitions of fields common to al objects. It encapsul ates the mechanisms
for resource management. All objects and widgets are members of subclasses of Object, which is defined
by the Obj ect Ol assPart and Cbj ect Part structures.

ObjectClassPart Structure

The common fields for all object classes are defined in the Obj ect O assPart structure. All fields
have the same purpose, function, and restrictions as the corresponding fieldsin Cor eCl assPart ; fields
whose names are objn for some integer n are not used for Object, but exist to pad the data structure so
that it matches Core's class record. The class record initialization must fill all objn fields with NULL or
zero as appropriate to the type.

typedef struct _CbjectC assPart {

W dget Cl ass super cl ass;
String cl ass_nane;

Car di nal wi dget _si ze;

Xt Proc class_initialize;
Xt Wdget Cl assProc class_part_initialize;
Xt Enum class_inited;
Xt1nitProc initialize;

Xt Ar gsProc initialize_hook;
Xt Proc obj 1;

Xt Poi nt er obj 2;

Car di nal obj 3;

Xt Resour celLi st resources;

Car di nal num r esour ces;
XrnCl ass Xrm cl ass;

Bool ean obj 4;

Xt Enum obj 5;

198

Nonwidget Objects

Bool ean obj 6;

Bool ean obj 7;

Xt W dget Proc destroy;

Xt Proc obj 8;

Xt Proc obj 9;

Xt Set Val uesFunc set _val ues;

Xt Ar gsFunc set _val ues_hook;
Xt Proc obj 10;

Xt ArgsProc get _val ues_hook;
Xt Proc obj 11;

Xt Ver si onType versi on;

Xt Poi nt er cal | back_private;
String obj 12;

Xt Proc obj 13;

Xt Proc obj 14;

Xt Poi nt er ext ensi on;

} ojectd assPart;

The extension record defined for Obj ect Cl assPart with arecord type equal to NULLQUARK is
hj ect C assExt ensi onRec.

typedef struct {

Xt Poi nt er next _extension,; See the section called “Cl ass Extension
XrmQuark record_type; See the section called “C ass Extension
| ong version; See the section called “C ass Extension
Cardi nal record_size; See the section called “Cl ass Extension
Xt Al |l ocat eProc al |l ocat e; See the section called “Wdget Instance
Xt Deal | ocat eProc deal | ocat e; See the section called “Wdget Instance

} nj ect d assExt ensi onRec, *(hj ect d assExt ensi on;
The prototypical Obj ect Cl ass consists of just the Obj ect Cl assPart .
typedef struct _ObjectC assRec {

nj ect d assPart obj ect _cl ass;
} njectd assRec, *Objectd ass;

The predefined class record and pointer for Cbj ect Ol assRec are

InlntrinsicP.h:

extern Obj ect O assRec object C assRec;

InIntrinsic.h:

extern Wdget O ass obj ect d ass;

The opaque types Obj ect and Obj ect Cl ass and the opaque variable obj ect Cl ass are defined
for generic actions on objects. The symbolic constant for the Cbj ect C assExt ensi on version
identifier is Xt Obj ect Ext ensi onVer si on (see the section caled “Class Extension Records’).
I ntrinsic.h usesanincomplete structure definition to ensure that the compiler catches attempts to
access private data:

199

O OO TIOT0

Nonwidget Objects

typedef struct _CObjectC assRec* (bjectd ass;

ObjectPart Structure

The common fields for all object instances are defined inthe Cbj ect Par t structure. All fields have the
same meaning as the corresponding fieldsin Cor ePart .

typedef struct _CbjectPart {

W dget sel f;
W dget Ol ass wi dget _cl ass;
W dget par ent ;
Bool ean bei ng_destroyed;
Xt Cal | backLi st destroy_cal |l backs;
Xt Poi nt er constraints;

} ojectPart;

All aobject instances have the Object fields as their first component. The prototypical type Cbj ect is
defined with only this set of fields. Various routines can cast object pointers, as needed, to specific object

types.

InlntrinsicP.h:

typedef struct _CbjectRec {
oj ect Part obj ect;
} ojectRec, *bject;

Inlntrinsic. h:

typedef struct _CbjectRec *Object;

Object Resources

The resource names, classes, and representation types specified in the obj ect O assRec resource list

are:
Name Class Representation
XtNdestroyCallback XtCCallback XtRCallback

ObjectPart Default Values

All fieldsin Qbj ect Par t have the same default values as the corresponding fieldsin Cor ePar t .

Object Arguments to Intrinsics Routines

The WidgetClass arguments to the following procedures may be obj ect G ass or any subclass:

e XtlnitializeWdgetd ass, Xt Creat eW dget, Xt VaCr eat eW dget

200

Nonwidget Objects

e Xt|sSubcl ass, Xt CheckSubcl ass
» Xt Get Resour celi st, Xt Get Constrai nt Resour celLi st

The Widget arguments to the following procedures may be of class Object or any subclass:

e Xt Creat eW dget , Xt VaCr eat eW dget

« Xt AddCal | back, XtAddCal | backs, XtRenoveCall back, XtRenopveCall backs,
Xt RenpveAl | Cal | backs, Xt Cal | Cal | backs, Xt HasCal | backs,
Xt Cal | Cal | backLi st

« Xt ass, XtSuperclass, XtlsSubclass, XtCheckSubclass, Xtlsject,
Xtl1sRect bj, XtlsWdget, XtlsConmposite, XtlsConstraint, XtlsShell,
XtlsOverrideShell, XtlsWvshell, XtlsVendorShell, XtlsTransientShell,
Xt sTopLevel Shel | , Xt 1 sApplicationShell, XtlsSessi onShel |

» Xt|sManaged, Xt | sSensi ti ve (bothwill return Fal se if argument isnot a subclass of RectObj)

* XtlsRealized (returns the state of the nearest windowed ancestor if class of argument is not a
subclass of Core)

e Xt Wdget ToAppl i cati onCont ext

» Xt DestroyW dget

e Xt Parent, Xt Di spl ayOf Obj ect, Xt Scr eenOf Obj ect , Xt W ndowOF Obj ect
» Xt Set Keyboar dFocus (descendant)

o Xt Get GC, Xt Rel easeCC

o Xt Name

» Xt Set Val ues, Xt Get Val ues, Xt VaSet Val ues, Xt VaGet Val ues

e Xt Get Subr esour ces, Xt Get Appl i cati onResour ces, Xt VaGet Subr esour ces,
Xt VaGet Appl i cati onResour ces

* Xt Convert, Xt Convert AndSt or e
The return value of the following procedures will be of class Object or a subclass:

e Xt Creat eW dget , Xt VaCr eat eW dget
o Xt Par ent
e Xt NameToW dget

The return value of the following procedures will be obj ect Cl ass or asubclass:

» Xt d ass, Xt Super cl ass

Use of Objects

The Object class exists to enable programmers to use the Intrinsics' classing and resource-handling
mechanisms for things smaller and simpler than widgets. Objects make obsolete many common uses of
subresources as described in Sections 9.4, 9.7.2.4, and 9.7.2.5.

Composite widget classes that wish to accept nonwidget children must set the accepts objects field in
the Conposi t eCl assExt ensi on structureto Tr ue. Xt Cr eat eW dget will otherwise generate an
error message on an attempt to create a nonwidget child.

Of the classes defined by the Intrinsics, ApplicationShell and SessionShell accept nonwidget children,
and the class of any nonwidget child must not be r ect Gbj Cl ass or any subclass. The intent of
allowing Object children of ApplicationShell and SessionShell is to provide clients a simple mechanism
for establishing the resource-naming root of an object hierarchy.

201

Nonwidget Objects

Rectangle Objects

The class of rectangle objects is a subclass of Object that represents rectangular areas. It encapsul ates the
mechanisms for geometry management and is called RectObj to avoid conflict with the Xlib Rect angl e
data type.

RectObjClassPart Structure

As with the bj ect O assPart structure, al fields in the Rect Obj Cl assPart structure have the
same purpose and function asthe corresponding fieldsin Cor eCl assPar t ; fieldswhose namesarerectn
for someinteger n are not used for RectObj, but exist to pad the datastructure so that it matches Core's class
record. Theclassrecord initialization must fill all rectnfieldswith NULL or zero as appropriate to thetype.

typedef struct _RectObjd assPart ({

W dget Ol ass super cl ass;
String cl ass_nane;

Car di nal wi dget _si ze;

Xt Proc class_initialize;
Xt Wdget Cl assProc class_part_initialize;
Xt Enum class_inited,
Xt1nitProc initialize;

Xt ArgsProc initialize_hook;
Xt Proc rectl;

Xt Poi nt er rect2;

Car di nal rect3;

Xt Resour celi st resources;

Car di nal num r esour ces;
XrmCl ass xrm cl ass;

Bool ean rect4,

Xt Enum rectb;

Bool ean rect6;

Bool ean rect7,

Xt W dget Pr oc destroy;
Xt W dget Pr oc resize;

Xt ExposeProc expose;

Xt Set Val uesFunc set _val ues;

Xt Ar gsFunc set _val ues_hook;
Xt Al nost Proc set _val ues_al nost;
Xt ArgsProc get val ues_hook;
Xt Proc rect9;

Xt Ver si onType ver si on;

Xt Poi nt er cal | back_private;
String rect 10;

Xt Geonet ryHandl er query_geonetry;
Xt Proc rectil,

Xt Poi nt er ext ensi on;

} Rect Qbj Cl assPart;

The RectObj class record consists of just the Rect Obj Cl assPart .

typedef struct _RectObjd assRec {

202

Nonwidget Objects

Rect Cbj C assPart rect_cl ass;
} Rect Obj Cl assRec, *Rect Obj d ass;

The predefined class record and pointer for Rect Cbj C assRec are

Inlntrinsic.h:

extern Rect Obj O assRec rect Cbj d assRec;

Inlntrinsic.h:

extern Wdget d ass rect Obj d ass;

TheopaguetypesRect Obj andRect Cbj O ass andtheopaquevariabler ect Obj C ass aredefined
for generic actions on objects whose class is RectObj or a subclass of RectObj. | ntri nsi c. h usesan
incomplete structure definition to ensure that the compiler catches attempts to access private data:

typedef struct _RectObj d assRec* Rect Obj d ass;

RectObjPart Structure

In addition to the Obj ect Part fields, RectObj objects have the following fields defined in the
Rect Obj Part structure. All fields have the same meaning as the corresponding field in Cor ePar t .

typedef struct _RectbjPart {

Posi tion X, VY;

Di nensi on wi dt h, hei ght;

Di nensi on border _wi dt h;

Bool ean managed;

Bool ean sensitive;

Bool ean ancestor_sensitive;

} Rect Obj Part;

RectObj objects have the RectObj fields immediately following the Object fields.

typedef struct _Rectj Rec {
Obj ect Part obj ect;
Rect Cbj Part rectangl e;
} Rect Obj Rec, *Rect Qbj;

Inlntrinsic. h:

typedef struct _Rectj Rec* Rect Qbj;

RectObj Resources

The resource names, classes, and representation types that are specified in the r ect Obj O assRec
resource list are:

203

Nonwidget Objects

Name Class Representation
XtNancestorSensitive XtCSensitive XtRBoolean
XtNborderWidth XtCBorderWidth XtRDimension
XtNheight XtCHeight XtRDimension
XtNsensitive XtCSensitive XtRBoolean
XtNwidth XtCWidth XtRDimension
XtNX XtCPosition XtRPosition
XtNy XtCPosition XtRPosition

RectObjPart Default Values

All fieldsin Rect Obj Part have the same default values as the corresponding fieldsin Cor ePar t .

Widget Arguments to Intrinsics Routines

The WidgetClass arguments to the following procedures may ber ect Gbj Cl ass or any subclass:
e Xt Cr eat eManagedW dget , Xt VaCr eat eManagedW dget
The Widget arguments to the following procedures may be of class RectObj or any subclass:

* Xt Confi gureW dget, Xt MoveW dget , Xt Resi zeW dget

* Xt MakeCeonet r yRequest , Xt MakeResi zeRequest

o Xt ManageChi | dren, XtManageChil d, XtUnmanageChil dren, XtUnmanageChil d,
Xt ChangeManagedSet

o Xt QueryGeonetry

* Xt SetSensitive

* Xt Transl at eCoor ds

The return value of the following procedures will be of class RectObj or a subclass:

» Xt Cr eat eManagedW dget , Xt VaCr eat eManagedW dget

Use of Rectangle Objects

RectObj can be subclassed to provide widgetlike objects (sometimes called gadgets) that do not use
windows and do not have those features that are seldom used in simple widgets. This can save memory
resources both in the server and in applications but requires additional support code in the parent. In the
following discussion, rectobj refers only to objects whose class is RectObj or a subclass of RectObyj, but
not Core or asubclass of Core.

Composite widget classes that wish to accept rectobj children must set the accepts objects
field in the Conposi t ed assExt ensi on extension structure to Tr ue. Xt Cr eat eW dget or
Xt Cr eat eManagedW dget will otherwise generate an error if called to create a nonwidget child. If
the composite widget supports only children of class RectObj or a subclass (i.e., not of the general Object
class), it must declareaninsert_child procedure and check the subclass of each new childin that procedure.
None of the classes defined by the Intrinsics accept rectobj children.

If gadgets are defined in an object set, the parent isresponsible for much more than the parent of awidget.
The parent must request and handle input events that occur for the gadget and is responsible for making
sure that when it receives an exposure event the gadget children get drawn correctly. Rectobj children

204

Nonwidget Objects

may have expose procedures specified in their class records, but the parent is free to ignore them, instead
drawing the contents of the child itself. This can potentially save graphics context switching. The precise
contents of the exposure event and region arguments to the RectObj expose procedure are not specified
by the Intrinsics; a particular rectangle object is free to define the coordinate system origin (self-relative
or parent-relative) and whether or not the rectangle or region is assumed to have been intersected with the
visible region of the object.

In general, it is expected that a composite widget that accepts nonwidget children will document those
childrenit isableto handle, since agadget cannot be viewed as acompletely self-contained entity, ascana
widget. Since a particular composite widget classisusually designed to handle nonwidget children of only
alimited set of classes, it should check the classes of newly added children in itsinsert_child procedure
to make sure that it can deal with them.

The Intrinsics will clear areas of a parent window obscured by rectobj children, causing exposure events,
under the following circumstances:

* A rectobj child is managed or unmanaged.

* Inacall to Xt Set Val ues on arectobj child, one or more of the set_values procedures returns Tr ue.

* Inacall to Xt Confi gur eW dget onarectobj child, areas will be cleared corresponding to both the
old and the new child geometries, including the border, if the geometry changes.

* Inacall to Xt MoveW dget on arectobj child, areaswill be cleared corresponding to both the old and
the new child geometries, including the border, if the geometry changes.

» Inacal to Xt Resi zeW dget on arectobj child, asingle rectangle will be cleared corresponding to
the larger of the old and the new child geometriesif they are different.

e Inacal to Xt MakeGeonet r yRequest (or Xt MakeResi zeRequest) on a rectobj child with
Xt QueryOnl y not set, if the manager returns Xt Geonet r yYes, two rectangles will be cleared
corresponding to both the old and the new child geometries.

Stacking order is not supported for rectobj children. Composite widgets with rectobj children are free to
define any semantics desired if the child geometries overlap, including making this an error.

When arectobj is playing the role of awidget, developers must be reminded to avoid making assumptions
about the object passed in the Widget argument to a callback procedure.

Undeclared Class

The Intrinsics define an unnamed class between RectObj and Core for possible future use by the X
Consortium. The only assumptions that may be made about the unnamed class are

» The core _class.superclassfield of cor eW dget O assRec contains a pointer to the unnamed class
record.

» A pointer to the unnamed class record when dereferenced as an Cbj ect C ass will contain a pointer
torect bj A assRec initsobject_class.superclassfield.

Except for the above, the contents of the class record for this class and the result of an attempt to subclass
or to create awidget of this unnamed class are undefined.

Widget Arguments to Intrinsics Routines

The WidgetClass arguments to the following procedures must be of class Shell or a subclass:

* Xt Creat ePopupShel |, Xt VaCr eat ePopupShel |, Xt AppCr eat eShel |,
Xt VaAppCr eat eShel |, Xt OpenAppl i cati on, Xt VaOpenAppl i cati on

205

Nonwidget Objects

The Widget arguments to the following procedures must be of class Core or any subclass:

Xt Cr eat ePopupsShel |, Xt VaCr eat ePopupShel |

Xt AddEvent Handl er, Xt AddRawEvent Handl er, Xt RenoveEvent Handl er,
Xt RenoveRawEvent Handl er, Xt | nsert Event Handl er, Xt | nsert RawEvent Handl er
Xt I nsert Event TypeHandl| er, Xt RenoveEvent TypeHandl er,

Xt Regi st er Drawabl e Xt Di spat chEvent ToW dget

Xt AddGrab, Xt RenobveG ab, XtG abKey, XtG abKeyboard, XtUngrabKey,
Xt Ungr abKeyboard, Xt GrabBut t on, Xt Gr abPoi nt er, Xt Ungr abBut t on,
Xt Ungr abPoi nt er

Xt Bui | dEvent Mask

Xt Cr eat eW ndow, Xt Di spl ay, Xt Scr een, Xt W ndow

Xt NaneToW dget

Xt Get Sel ecti onVal ue, Xt Get Sel ecti onVal ues, Xt OwmnSel ecti on,
Xt Di sownSel ecti on, Xt OmnSel ecti onl ncrenent al
Xt Get Sel ecti onVal uel ncrenent al , Xt Get Sel ecti onVal uesl ncrenent al

Xt Get Sel ecti onRequest

Xtlnstall Accel erators,Xtlnstall Al l Accel erat ors (both destination and source)

Xt Augnment Tr ansl ati ons, Xt Overri deTransl ati ons, Xt Uni nstal | Transl ati ons,
Xt Cal | Acti onProc

Xt MapW dget , Xt UnmapW dget

Xt Real i zeW dget , Xt Unr eal i zeW dget

Xt Set MappedWhenManaged

Xt Cal | Accept Focus, Xt Set Keyboar dFocus (subtree)

Xt Resi zeW ndow

Xt Set WMCol or mapW ndows

The Widget arguments to the following procedures must be of class Composite or any subclass:

e Xt Cr eat eManagedW dget , Xt VaCr eat eManagedW dget

The Widget arguments to the following procedures must be of a subclass of Shell:

* Xt Popdown, Xt Cal | backPopdown, Xt Popup, Xt Cal | backNone,

Xt Cal | backNonexcl usi ve, Xt Cal | backExcl usi ve, Xt PopupSpri ngLoaded

The return value of the following procedure will be of class Core or a subclass:

» Xt W ndowToW dget

The return value of the following procedures will be of a subclass of Shell:

e Xt AppCreat eShel |, Xt VaAppCr eat eShel |, Xt Applnitialize,

Xt VaAppl nitialize, Xt Creat ePopupShel | , Xt VaCr eat ePopupShel |

206

Chapter 13. Evolution of the Intrinsics

The interfaces described by this specification have undergone several sets of revisions in the course of
adoption as an X Consortium standard specification. Having now been adopted by the Consortium as a
standard part of the X Window System, it is expected that this and future revisions will retain backward
compatibility in the sense that fully conforming implementations of these specifications may be produced
that provide source compatibility with widgets and applications written to previous Consortium standard
revisions.

The Intrinsics do not place any special requirement on widget programmers to retain source or binary
compatibility for their widgetsasthey evolve, but several conventions have been established to assist those
devel opers who want to provide such compatibility.

In particular, widget programmers may wish to conform to the convention described in the section called
“Class Extension Records’ when defining class extension records.

Determining Specification Revision Level

Widget and application developers who wish to maintain a common source pool that will build
properly with implementations of the Intrinsics at different revision levels of these specifications
but that take advantage of newer features added in later revisions may use the symbolic macro
Xt Speci fi cati onRel ease.

#def i ne Xt SpecificationRel ease 7

Asthesymbol Xt Speci fi cati onRel ease wasnew to Release 4, widgetsand applicationsdesiring to
build against earlier implementations should test for the presence of this symbol and assume only Release
3interfacesif the definition is not present.

Release 3 to Release 4 Compatibility

At the data structure level, Release 4 retains binary compatibility with Release 3 (the first X
Consortium standard release) for all data structures except WMShel | Part, TopLevel Shel | Part,
and Tr ansi ent Shel | Part . Release 4 changed the argument type to most procedures that now take
arguments of type Xt Poi nt er and structure members that are now of type Xt Poi nt er in order to
avoid potential ANSI C conformance problems. It is expected that most implementations will be binary
compatible with the previous definition.

Two fields in Cor eCl assPart were changed from Bool ean to Xt Enumto alow implementations
additional freedom in specifying the representations of each. This change should require no source
modification.

Additional Arguments

Arguments were added to the procedure definitions for (* Xt I ni t Proc), (* Xt Set Val uesFunc),
and (* Xt Event Handl er) to provide more information and to allow event handlers to abort further
dispatching of the current event (caution is advised!). The added argumentsto (* Xt I ni t Proc) and
(* Xt Set Val uesFunc) maketheinitialize hook and set_values_hook methods obsolete, but the hooks
have been retained for those widgets that used them in Release 3.

207

Evolution of the Intrinsics

set_values_almost Procedures

The use of the arguments by a set values almost procedure was poorly described in Release 3 and was
inconsistent with other conventions.

The current specification for the manner in which a set_values amost procedure returns information to
the Intrinsics is not compatible with the Release 3 specification, and all widget implementations should
verify that any set values_almost procedures conform to the current interface.

No known implementation of the Intrinsics correctly implemented the Release 3 interface, soit isexpected
that the impact of this specification changeis small.

Query Geometry

A composite widget layout routine that calls Xt Quer yGeornet ry isnow expected to store the complete
new geometry in the intended structure; previously the specification said “ store the changes it intends to
make”. Only by storing the complete geometry doesthe child have any way to know what other parts of the
geometry may still be flexible. Existing widgets should not be affected by this, except to take advantage
of the new information.

unrealizeCallback Callback List

In order to provide a mechanism for widgets to be notified when they become unrealized through a call to
Xt Unr eal i zeW dget , the callback list name “unrealizeCallback” has been defined by the Intrinsics.
A widget classthat requires notification on unrealize may declare acallback list resource by thisname. No
classisrequired to declare this resource, but any classthat did so in aprior revision may find it necessary
to modify the resource nameif it does not wish to use the new semantics.

Subclasses of WMShell

Theformal adoption of the I nter-Client Communication Conventions Manual asan X Consortium standard
has meant the addition of four fields to WMShel | Part and one field to TopLevel Shel | Part. In
deference to some widget libraries that had developed their own additional conventions to provide binary
compatibility, these five new fields were added at the end of the respective data structures.

To provide more convenience for TransientShells, a field was added to the previously empty
Tr ansi ent Shel | Par t . On some architectures the size of the part structure will not have changed as
aresult of this.

Any widget implementation whose classisasubclass of TopLevel Shell or TransientShell must at minimum
be recompiled with the new data structure declarations. Because WShel | Part no longer contains a
contiguous XSi zeHi nt s datastructure, asubclassthat expected to do asingle structure assignment of an
XSi zeHi nt s structureto the size_hintsfield of WWBhel | Par t must be revised, though the old fields
remain at the same positions within WVShel | Part .

Resource Type Converters

A new interface declaration for resource type converters was defined to provide more information to
converters, to support conversion cache cleanup with resource reference counting, and to allow additional
procedures to be declared to free resources. The old interfaces remain (in the compatibility section), and
anew set of procedures was defined that work only with the new type converter interface.

208

Evolution of the Intrinsics

In the now obsolete old type converter interface, converters are reminded that they must return the
size of the converted value as well as its address. The example indicated this, but the description of
(* Xt Convert er) wasincomplete.

KeySym Case Conversion Procedure

The specification for the (* Xt CasePr oc) function type has been changed to match the Release 3
implementation, which included necessary additional information required by the function (a pointer to
the display connection), and corrects the argument type of the source KeySym parameter. No known
implementation of the Intrinsics implemented the previously documented interface.

Nonwidget Objects

Formal support for nonwidget objects is new to Release 4. A prototype implementation was latent
in a least one Release 3 implementation of the Intrinsics, but the specification has changed
somewhat. The most significant change is the requirement for a composite widget to declare the
Conposi t ed assExt ensi on record with the accepts objects field set to Tr ue in order to permit a
client to create a nonwidget child.

The addition of this extension field ensures that composite widgets written under Release 3 will not
encounter unexpected errorsif an application attemptsto create anonwidget child. In Release 4 thereisno
requirement that all composite widgets implement the extra functionality required to manage windowless
children, so the accepts_objectsfield allows a composite widget to declare that it is not prepared to do so.

Release 4 to Release 5 Compatibility

At the data structure level, Release 5 retains complete binary compatibility with Release 4. The
specification of the Cbj ect Part, Rect Obj Part, Cor ePart, ConpositePart, Shel |l Part,
WvBhel | Part,TopLevel Shel | Part ,and Appl i cati onShel | Part instancerecordswasmade
less strict to permit implementations to add internal fields to these structures. Any implementation that
chooses to do so would, of course, force a recompilation. The Xlib specification for Xr mval ue and
XrmOpt i onDescRec was updated to use a new type, XPoi nt er, for the addr and value fields,
respectively, to avoid ANSI C conformance problems. The definition of XPoi nt er isbinary compatible
with the previous implementation.

baseTranslations Resource

A new pseudo-resource, XtNbaseTranslations, was defined to permit application developers to specify
trandation tables in application defaults files while till giving end users the ability to augment or
override individual event sequences. This change will affect only those applications that wish to take
advantage of the new functionality or those widgets that may have previously defined a resource named

“baseTranglations”.
Applications wishing to take advantage of the new functionality would change their application defaults
file e.g., from
app. wi dget . transl ati ons: val ue
to
app. wi dget . baseTransl ati ons: val ue

If it isimportant to the application to preserve complete compatibility of the defaults file between different
versions of the application running under Release 4 and Release 5, the full trandlations can be replicated
in both the “trandations” and the “baseTrandations’ resource.

209

Evolution of the Intrinsics

Resource File Search Path

The current specification allowsimplementations greater flexibility in defining the directory structure used
to hold the application class and per-user application defaults files. Previous specifications required the
substitution strings to appear in the default path in a certain order, preventing sites from collecting all the
files for a specific application together in one directory. The Release 5 specification allows the default
path to specify the substitution stringsin any order within asingle path entry. Userswill need to pay close
attention to the documentation for the specific implementation to know where to find these files and how
to specify their own XFILESEARCHPATH and XUSERFILESEARCHPATH valueswhen overriding
the system defaults.

Customization Resource

Xt Resol vePat hname supports a new substitution string, %C, for specifying separate application
class resource files according to arbitrary user-specified categories. The primary motivation for this
addition was separate monochrome and color application class defaults files. The substitution value is
obtained by querying the current resource database for the application resource hame “customization”,
class “ Customization”. Any application that previously used this resource name and class will need to be
aware of the possibly conflicting semantics.

Per-Screen Resource Database

To alow a user to specify separate preferences for each screen of a display, a per-screen resource
specification string has been added and multiple resource databases are created; one for each screen.
Thiswill affect any application that modified the (formerly unique) resource database associated with the
display subsequent to the Intrinsics database initialization. Such applications will need to be aware of the
particular screen on which each shell widget is to be created.

Although the wording of the specification changed substantialy in the description of the process by
which the resource database(s) is initialized, the net effect is the same as in prior releases with the
exception of the added per-screen resource specification and the new customization substitution string in
Xt Resol vePat hnane.

Internationalization of Applications

Internationalization as defined by ANSI is a technology that allows support of an application in asingle
locale. In adding support for internationalization to the Intrinsics the restrictions of this model have been
followed. In particular, the new Intrinsicsinterfaces are designed not to preclude an application from using
other alternatives. For this reason, no Intrinsics routine makes a call to establish the locale. However, a
convenience routine to establish the locale at initialize time has been provided, in the form of a default
procedure that must be explicitly installed if the application desires ANSI C locale behavior.

Asmany objectsin X, particularly resource databases, now inherit the global |ocale when they are created,
applicationswishing to usethe ANSI Clocale model should usethe new function Xt Set LanguagePr oc
to do so.

Theinternationalization additions also define event filtersasa part of the Xlib Input M ethod specifications.
TheIntrinsics enable the use of event filters through additionsto Xt Di spat chEvent . Applicationsthat
may not be dispatching all eventsthrough Xt Di spat chEvent should be reviewed in the context of this
new input method mechanism.

In order to permit internationalization of error messages, the name and path of the error database file are
now allowed to be implementation-dependent. No adequate standard mechanism has yet been suggested
to allow the Intrinsics to locate the database from localization information supplied by the client.

210

Evolution of the Intrinsics

The previous specification for the syntax of the language string specified by xnl Language has
been dropped to avoid potential conflicts with other standards. The language string syntax is now
implementation-defined. The example syntax cited is consistent with the previous specification.

Permanently Allocated Strings

In order to permit additional memory savings, an Xlib interface was added to alow the resource
manager to avoid copying certain string constants. The Intrinsics specification was updated to explicitly
require the Object class _name, resource_name, resource_class, resource_type, default_type in resource
tables, Core actions string field, and Constraint resource_name, resource class, resource type, and
default_type resource fields to be permanently allocated. This explicit requirement is expected to affect
only applications that may create and destroy classes on the fly.

Arguments to Existing Functions

The args argument to XtApplnitialize, XtVaApplnitialize, XtOpenDi splay,
XtDi splaylnitialize,andXtlnitialize werechangedfrom Cardi nal * toint* to conform
to pre-existing convention and avoid otherwise annoying typecasting in ANSI C environments.

Release 5 to Release 6 Compatibility

At the data structure level, Release 6 retains binary compatibility with Release 5 for all data structures
except WWBhel | Par t . Threeresourceswere added to the specification. The known implementations had
unused space in the data structure, therefore on some architectures and implementations, the size of the
part structure will not have changed as aresult of this.

Widget Internals

Two new widget methods for instance allocation and deallocation were added to the Object class. These
new methods allow widgets to be treated as C++ objects in the C++ environment when an appropriate
allocation method is specified or inherited by the widget class.

The textual descriptions of the processes of widget creation and widget destruction have been edited to
provide clarification to widget writers. Widgets writers may have reason to rely on the specific order of
the stages of widget creation and destruction; with that motivation, the specification now more exactly
describes the process.

As a convenience, an interfface to locate a widget class extension record on a linked list,
Xt Get G assExt ensi on, has been added.

A new option to alow bundled changes to the managed set of a Composite widget is introduced
in the Composite class extension record. Widgets that define a change managed procedure that can
accommodate additions and deletions to the managed set of children in a single invocation should set
allows change managed setto Tr ue in the extension record.

The wording of the process followed by Xt UnmanageChi | dr en has changed slightly to better handle
changes to the managed set during phase 2 destroy processing.

A new exposure event compression flag, Xt ExposeNoRegi on, was added. Many widgets specify
exposure compression, but either ignore the actual damage region passed to the core expose procedure or
use only the cumulative bounding box data available in the event. Widgets with expose procedures that

211

Evolution of the Intrinsics

do not make use of exact exposure region information can indicate that the Intrinsics need not compute
the region.

General Application Development

Xt OpenAppl i cati on is anew convenience procedure to initialize the toolkit, create an application
context, open an X display connection, and create the root of the widget instance tree. It is identical to
theinterfaceit replaces, Xt Appl ni ti al i ze, in all respects except that it takes an additional argument
specifying the widget class of the root shell to create. This interface is now the recommended one so that
clientsmay easily become session participants. The old convenience procedures appear in the compatibility
section.

The toolkit initiaization function Xt Tool ki t1niti alize may be caled multiple times without
penalty.

In order to optimize changes in geometry to a set of geometry-managed children, a new interface,
Xt ChangeManagedSet , has been added.

Communication with Window and Session Managers

The revision of the Inter-Client Communication Conventions Manual as an X Consortium standard
has resulted in the addition of three fields to the specification of WWBhel | Par t . These are urgency,
client_leader, and window _role.

The adoption of the X Session Management Protocol as an X Consortium standard has resulted in the
addition of a new shell widget, Sessi onShel | , and an accompanying subclass verification interface,
Xt | sSessi onShel | . This widget provides support for communication between an application and
a session manager, as well as a window manager. In order to preserve compatibility with existing
subclasses of Applicati onShel |, the Appl i cati onShel | was subclassed to create the new
widget class. The session protocol requires a modal response to certain checkpointing operations by
participating applications. The Sessi onShel | structures the application's notification of and responses
to messages from the session manager by use of various callback lists and by use of the new interfaces
Xt Sessi onGet Token and Xt Sessi onRet ur nToken. Thereisalso anew command line argument,
-xtsessionl D, which facilitates the session manager in restarting applications based on the Intrinsics.

The resource name and class strings defined by the Intrinsics shell widgetsin <X11/ Shel | . h> are now
listed in Appendix E. The addition of a new symbol for the WWBhel | wait_for_wm resource was made
to bring the external symbol and the string it represents into agreement. The actual resource name string
in WvBhel | has not changed. The resource representation type of the XtNwinGravity resource of the
WVBhel | waschanged to XtRGravity in order to register atype converter so that window gravity resource
values could be specified by name.

Geometry Management

A clarification to the specification was made to indicate that geometry requests may include current values
along with the requested changes.

Event Management

In Release 6, support is provided for registering selectors and event handlers for events generated by X
protocol extensions and for dispatching those events to the appropriate widget. The new event handler
registration interfaces are Xt | nsert Event TypeHandl er and Xt RenoveEvent TypeHandl er.
Since the mechanism to indicate selection of extension events is specific to the extension being used,

212

Evolution of the Intrinsics

the Intrinsics introduces Xt Regi st er Ext ensi onSel ect or, which allows the application to select
for the events of interest. In order to change the dispatching algorithm to accommodate extension
events as well as core X protocol events, the Intrinsics event dispatcher may now be replaced or
enveloped by the application with Xt Set Event Di spat cher. The dispatcher may wish to call
Xt Get Keyboar dFocusW dget to determine the widget with the current Intrinsics keyboard focus. A
dispatcher, after determining the destination widget, may use Xt Di spat chEvent ToW dget to cause
the event to be dispatched to the event handlers registered by a specific widget.

To permit the dispatching of eventsfor nonwidget drawables, such as pixmaps that are not associated with
awidget'swindow, Xt Regi st er Dr awabl e and Xt Unr egi st er Dr awabl e have been added to the
library. A related update was made to the description of Xt W ndowToW dget .

The library is now thread-safe, allowing one thread at a time to enter the library and protecting global
data as necessary from concurrent use. Threaded toolkit applications are supported by the new interfaces
Xt Tool ki t Threadl nitialize, XtAppLock, XtAppUnl ock, XtAppSetExitFlag, and
Xt AppCet Exi t Fl ag. Widget writers may also use Xt Pr ocessLock and Xt Pr ocessUnl ock.

Safe handling of POSIX signals and other asynchronous notifications is now provided by use of
Xt AppAddSi gnal , Xt Not i ceSi gnal , and Xt RenoveSi gnal .

The application can receive notification of an impending block in the Intrinsics event manager by
registering interest through Xt AppAddBI ockHook and Xt RenoveBl ockHook.

Xt Last Event Processed returns the most recent event passed to Xt Di spat chEvent for a
specified display.

Resource Management

Resource converters are registered by the Intrinsics for window gravity and for three new resource types
associated with session participation: RestartStyle, CommandArgArray and DirectoryString.

The file search path syntax has been extended to make it easier to include the default search path, which
controls resource database construction, by using the new substitution string, %D.

Translation Management

The default key translator now recognizes the NumLock modifier. If NumLock is on and the second
keysym is a keypad keysym (a standard keysym named with a“KP” prefix or a vendor-specific keysym
in the hexadecimal range 0x11000000 to Ox1100FFFF), then the default key trandlator will use the first
keysym if Shift and/or ShiftLock is on and will use the second keysym if neither is on. Otherwise, it will
ignore NumLock and apply the normal protocol semantics.

Selections

The targets of selection requests may be parameterized, as described by the revised Inter-Client
Communication Conventions Manual. When such requests are made, Xt Set Sel ect i onPar anet er s
is used by the requestor to specify the target parameters and Xt Get Sel ecti onPar aneters
is used by the selection owner to retrieve the parameters. When a parameterized target is
specified in the context of a bundled request for multiple targets, Xt Cr eat eSel ect i onRequest,
Xt Cancel Sel ecti onRequest, and Xt SendSel ecti onRequest are used to envelop the
assembly of the request. When the parameters themselves are the names of properties, the Intrinsics
provides support for the economical use of property atom names; see Xt Reser vePr oper t yAt omand
Xt Rel easePr opertyAt om

213

Evolution of the Intrinsics

External Agent Hooks

External agent hooks were added for the benefit of applications that instrument other applications for
purposes of accessihility, testing, and customization. The external agent and the application communicate
by a shared protocol which is transparent to the application. The hook callbacks permit the external agent
to register interest in groups or classes of toolkit activity and to be notified of the type and details of the
activity as it occurs. The new interfaces related to this effort are Xt HooksOf Di spl ay, which returns
the hook registration widget, and Xt Get Di spl ays, which returns a list of the X displays associated
with an application context.

Release 6 to Release 7 Compatibility
Changes During X11R6

The Toolkit was proposed in X10R4, released at the end of 1986. The X11R6 documentation was
completed in mid-1994. Over most of the eleven years through X11R6.9, only minor changes were made
to the specification. Some changes are documented only in the release notes:

» The X11R6.3 release notes (1997) mention one new feature (section 3.15) Xt Geometry Management
Debugger, saying

Daniel Dardailler's “GeoTattler” code has been merged into the Xt Intrinsics
library implementation. This is not a standard. If libXt is compiled with the
XT_GEO TATTLER symbol defined (currently there is no build configuration
support to do this) then a “geoTattler” resource may be specified for any widget in
an application. If the geoTat t| er resource for a widget instance is Tr ue then
libXt will generate debugging information to stdout when the widget makes geometry
change requests.

For example, if the resources specify:

myapp*dr aw. XnScal e. geoTattler: ON
*XnBScr ol | Bar. geoTattl er: ON
* XmRowCol unm. exi t _button. geoTattl er: ON

then geometry management debugging information will be generated for al the
XnScal e children of the widget named draw, all the XmScrollBars, and the widget
named exit_button in any XnRowCol umm.

* X11R6.4 (1998) added Appendix F, Resource Configuration Management. The release notes explain
that by saying

The X Toolkit Intrinsics library (libXt) now has IBM's Easy Resource Configuration
support included.
but goes on to say (section 14) that

Easy Resource Configuration is not astandard part of the X Toolkit Intrinsics (libXt).
It is neither an X Consortium standard nor an X Project Team specification.

* X11R6.5 (2000) documented a bug-fix for XtAppPeekEvent in the release notes, stating that it now
worked as described in the specification. It also modified the description of XtAppPeekEvent in the
specification. Previously the specification stated that no known implementations behaved as specified.

214

Evolution of the Intrinsics

 Subsequent releases X11R6.6 (2001) through X 11R6.9 (2005) did not document any new or improved
features.

Throughout this interval, there were undocumented fixes and improvements made to the X Toolkit
Intrinsicslibrary. The documentation was modified to fix minor errors, improve the formatting, and update
version numbers.

Changes During X11R7

X11R7 releases starting in 2005 continued this trend, converting the documentation from nroff to sgml.
X11R7.7 (2012) provides the same Intrinsics specification (aside from details of formatting and version
numbers) as X11R6 (1995).

The updates for this specification are a continuation of X11R7.7, because (as of April 2019) there are no
plansfor an X11R7.8 release.

Converting to Standard C

The Intrinsics specification was first released with X11R3 in 1989. That was too early to take Standard C
(i.e., ANSI C) into account. Because vendors generally did not provide ano-cost Standard C compiler, the
X Toolkit Intrinsics library initially supported both K&R and ANSI C. The X11RS5 rel ease notes mention
using gcc, with some caveats. As a result, the specification and implementation gave equa attention to
both K&R and ANSI C.

This example shows how afunction prototype was used in the C header files:

extern Display *XtQpenDi spl ay(

#i f NeedFuncti onPr ot ot ypes
Xt AppCont ext /* app_context */,
_Xconst _XtString /* display_string */,
_Xconst _XtString /* application_nanme */,
_Xconst _XtString /* application_class */,
Xr mOpt i onDescRec* /* options */,

Car di nal /* numoptions */,
i nt* /* argc */,
char ** /* argv */

#endi f

)

The parametersfor the ANSI C prototype were conditionally compiled. Used with aK& R compiler, those
parameters were ignored.

» TheX Toolkit Intrinsicslibrary used const in just afew cases. The specification did not mentionit at all.

Over time, that was seen as a problem, partly because of gcc's warning options such as write-strings,
introduced in early 1988 (released with gcc 1.27 in late 1988). Quoting from gcc 2.58's documentation
(late 1993):

“-Wwite-strings'
G ve string constants the type "const char[LENGTH' so that
copying the address of one into a non- const' “char *' pointer
will get a warning. These warnings will help you find at conpile
time code that can try to wite into a string constant, but only
if you have been very careful about using "const' in declarations

215

Evolution of the Intrinsics

and prototypes. Oherwise, it will just be a nuisance; this is
why we did not nmake “-Vall' request these warnings.

Others did not agree that it was a nuisance. Besides the obvious advantage of improving program
correctness, making a symbol “const” gave the compiler and linker a hint that the symbol could be put
into the text (read-only) section, eliminating some steps needed by the linker to adjust addresses and
thereby reducing the time it took to load a program into memory.

Other gcc warning options (such as such as cast-qual) are useful for improving programs. They give
similar information, because unlesstold otherwise, gcc would treat string val ues asnonwritable. Quoting
from gcc 1.27:

* GNU CC normal |y makes string constants read-only. If several
i dentical -1 ooking string constants are used, GNU CC stores only
one copy of the string.

The best solution to these problens is to change the programto
use “char'-array variables with initialization strings for these
pur poses instead of string constants. But if this is not

possi bl e, you can use the "-fwitable-strings' flag, which
directs GNU CC to handle string constants the sane way nost C
compi |l ers do.

and

“-fwitabl e-strings'
Store string constants in the witable data segnent and
don't uniquize them This is for conpatibility with old
progranms which assunme they can wite into string constants.
Witing into string constants is a very bad idea;
““constants'' should be constant.

e Several prototypes in the implementation use the private type _XtString. The specification and
implementation also used a String type without explaining when it is appropriate.

typedef char *String;

/* We do this in order to get "const" declarations to work right. W
* use XtString instead of String so that C++ applications can

* #define String to sonmething else if they choose, to avoid conflicts
* with other C++ libraries.

*/

#define _XtString char*

That is, the developerswere providing for someworkaround to allow C++ applicationsto usethe stricter
compiler checking associated with const.

e The String type is not the only type used in the prototypes for the X Toolkit Intrinsics library. Its
developers were also concerned with porting the library to platforms with different size-constraints.
They defined different types (used in the function prototypes) depending on whether a“wide” parameter
type was appropriate:

216

Evolution of the Intrinsics

[* _Xt names are private to Xt inplenmentation, do not use in client code */
#i f NeedW dePr ot ot ypes

#defi ne _XtBool ean int

#def i ne _Xt D mensi on unsi gned i nt
#def i ne _Xt KeyCode unsi gned int
#define _XtPosition int

#def i ne _Xt Xt Enum unsi gned i nt
#el se

#defi ne _Xt Bool ean Bool ean

#defi ne _XtDi mensi on Di nension
#def i ne _Xt KeyCode KeyCode
#define _XtPosition Position
#defi ne _Xt Xt Enum Xt Enum

#endi f /* NeedW dePr ot ot ypes */

and

#i f def CRAY

typedef |ong Bool ean;
typedef char* XtArgVal;
typedef long XtEnum

#el se

typedef char Bool ean;
typedef long XtArgVal;
typedef unsi gned char Xt Enum
#endi f

In practice, wide-prototypes are rarely used, not well supported. The specification did not clarify the
distinction between Bool (mentioned as aresource type) and Boolean (used in al of the data structures).
The implementation used both, predominantly the latter.

Other features of Standard C were neglected in the specification because it was accommodating K&R C:

* K&R C has no void keyword. The specification used it for return-types, but not to indicate an empty
parameter list. The specification also stated that void* would be used for the XtPointer type.

The conversion to sgml lost the void return-type.

» Standard C uses an dllipsis for variable-length argument lists, e.g., for Xt VaAppCr eat eShel | .
Again, there was a conditional-compilation symbol (NeedVar ar gsPr ot ot ypes) to handle the
different forms used. Here is an example:

#i f NeedVar ar gsPr ot ot ypes
voi d
Xt VaGet Appl i cati onResour ces(W dget wi dget, XtPointer base, XtResourcelList resour
#el se
| * VARARGS4* /
voi d Xt VaGet Appl i cati onResour ces(w dget, base, resources, numresources, va_ali st
W dget wi dget;
Xt Poi nt er base;
Xt Resour celLi st resources;
Cardi nal numresources;
va_dcl

217

Evolution of the Intrinsics

#endi f

One problem with the conditional-compilation was that it was easy to make a mistake with the order
of parameters between the two forms. Developers would frequently group together parameters which
used the same type, whether or not they were adjacent in the Standard C prototype.

A comment in the X11R4 header file said that this was temporary, until function prototypes worked
everywhere. That was finally removed in X11R6.7 (fourteen years later). However, the subsequent
conversion to sgml lost the ellipsis from the prototypes shown in the specification.

Support for K& R C wasremoved from the header filesin 2003 (released in X11R6.7), and from the library
source in 2004 (released in X11R6.9). The wide-prototype feature is still present in 2019, but generally
unused.

Removing support for K& R C did not address the issues of const. That was donein 2019:
» The String is conditionally defined, to provide compatibility with existing applications.

e If thesymbol CONST X STRING isdefined, String is read-only as shown here.

/*

* As used in its function interface, the String type of |ibXt can be readonly.
* But conmpiling libXt with this feature may require sone internal changes,

* e.g., casts and occasionally using a plain "char*".

*/

#i f def _CONST_X STRI NG

typedef const char *String;

#el se

typedef char *String;

#endi f

» Applications which use the newer const feature must define _CONST_X_STRING to enable this
feature.

» By default, the X Tooalkit Intrinsics library uses the const feature. It has been updated to make use of
the const feature for improved type-checking.

» Becausethe X Toolkit Intrinsics library uses const, some prototypes have been modified. For example:

* Most of the parameters which used String are unmodified; a few (such as the argv—parameters) are
actually read/write. They are now char* parameters.

Many of the strings passed to the library are stored in widgets without reallocating a copy. Those are
treated as read-only, and use the String type.

« Each change to the documentation was verified using scripts that extracted the function prototypes
and used the C compiler to check for compatibility.

218

Appendix A. Resource File Format

A resource file contains text representing the default resource values for an application or set of
applications.

The format of resource files is defined by Xlib — C Language X Interface. and is reproduced here for
convenience only.

The format of aresource specification is

Resourceline = Comment | IncludeFile | ResourceSpec | <empty line>
Comment =“1" {<any character except null or newline>}

IncludeFile ="“#" WhiteSpace “include” WhiteSpace FileName WhiteSpace
FileName = <valid filename for operating system>

ResourceSpec = WhiteSpace ResourceName WhiteSpace “:” WhiteSpace Value
ResourceName = [Binding] { Component Binding} ComponentName

Binding =

WhiteSpace = {<gpace> | <horizontal tab>}

Component ="“?" | ComponentName

ComponentName = NameChar { NameChar}

NameChar =g =z | AT O

Value ={ <any character except null or unescaped newline>}

Elements separated by vertical bar (]) are aternatives. Curly braces ({ ...}) indicate zero or more repetitions
of the enclosed elements. Square brackets ([...]) indicate that the enclosed element is optional. Quotes
(“...") areused around literal characters.

If the last character on alineis abackslash (V), that line is assumed to continue on the next line.

To alow aValue to begin with whitespace, the two-character sequence “\space” (backslash followed by
space) is recognized and replaced by a space character, and the two-character sequence “\tab” (backslash
followed by horizontal tab) is recognized and replaced by a horizontal tab character.

To adlow aValue to contain embedded newline characters, the two-character sequence “\n” isrecognized
and replaced by a newline character. To allow a Value to be broken across multiple lines in a text file,
the two-character sequence “\newling” (backslash followed by newline) is recognized and removed from
the value.

To alow a Value to contain arbitrary character codes, the four-character sequence “\nnn”, where each n
isadigit character in therange of “0"—*7”, is recognized and replaced with a single byte that contains the
octal value specified by the sequence. Finally, the two-character sequence “\\” is recognized and replaced
with a single backslash.

219

Appendix B. Translation Table Syntax

Notation

Syntax is specified in EBNF notation with the following conventions:
[a] Means either nothing or “a”

{a} Means zero or more occurrences of “a”

(alb) Meanseither“a” or“b”
\\n Is the newline character

All terminals are enclosed in double quotation marks (" "). Informal descriptions are enclosed in angle
brackets (< >). Syntax

The syntax of atrandation tableis

trandationTable =[directive] { production }

directive = (“#replace” | “#override’ | “#augment”) “\\n”
production =lhs“:" rhs“\\n"

lhs = (event | keyseq) { “,” (event | keyseq) }

keyseq =""" keychar {keychar} “"”

keychar =[“M|“$" |“W\'] <ISO Latin 1 character>

event = [modifier_list] “<"event_type“>" [“(” count[“+"] “)"] { detail}
modifier_list =([*"11*:"] {modifier}) | “None”

modifier =[“~"] modifier_name

count =(“1" 2" |“3"|“4" | ..)

modifier_name =“@" <keysym> | <see ModifierNames table below>
event_type = <see Event Types table bel ow>

detail = <event specific details>

rhs ={ name“ (" [paramg] “)" }

name = namechar { nhamechar }

namechar ={“ad-Z" ["A"=Z" |“O"=9" |“_"|“-" }

params =string {“,” string}

string = quoted_string | unquoted_string

quoted string ="“"" {<Latin 1 character> | escape_char} [“\""] “"”
escape_char =\

unquoted_string = {<Latin 1 character except space, tab, “,”, “\\n", “)">}

The paramsfieldisparsedinto alist of St r i ng valuesthat will be passed to the named action procedure.
A quoted string may contain an embedded quotation mark if the quotation mark is preceded by a single
backslash (\). The three-character sequence “\\"” is interpreted as “single backslash followed by end-of-
string”.

Modifier Names

220

Trandation Table Syntax

The modifier field is used to specify standard X keyboard and button modifier mask bits.
Modifiers are legal on event types KeyPr ess, KeyRel ease, But t onPr ess, Butt onRel ease,
Moti onNoti fy,EnterNotify,LeaveNoti fy,andtheir abbreviations. Anerror isgenerated when
atrandlation table that contains modifiers for any other eventsis parsed.

If the modifier list has no entries and is not “None”, it means “don't care” on al modifiers.

If an exclamation point (!) is specified at the beginning of the modifier list, it means that the listed
modifiers must be in the correct state and no other modifiers can be asserted.

If any modifiers are specified and an exclamation point (!) is not specified, it means that the listed
modifiers must be in the correct state and “don't care” about any other modifiers.

If amodifier is preceded by atilde (~), it means that that modifier must not be asserted.

If “None” is specified, it means no modifiers can be asserted.

If acolon (:) isspecified at the beginning of themodifier list, it directsthe Intrinsicsto apply any standard
modifiers in the event to map the event keycode into a KeySym. The default standard modifiers are
Shift and Lock, with theinterpretation as defined in X Window System Protocol, Section 5. Theresulting
KeySym must exactly match the specified KeySym, and the nonstandard modifiers in the event must
match the modifier list. For example, “:<Key>a’ is distinct from “:<Key>A", and “:Shift<Key>A" is
distinct from “:<Key>A".

If both an exclamation point (1) and acolon (:) are specified at the beginning of the modifier list, it means
that the listed modifiers must be in the correct state and that no other modifiers except the standard
modifiers can be asserted. Any standard modifiersin the event are applied as for colon (:) above.

If a colon () is not specified, no standard modifiers are applied. Then, for example, “<Key>A" and
“<Key>a’ are equivalent.

In key sequences, a circumflex (*) is an abbreviation for the Control modifier, a dollar sign ($) is an
abbreviation for Meta, and a backslash (\) can be used to quote any character, in particular a double quote
("), acircumflex (), adollar sign ($), and another backslash (\). Briefly:

No nodifiers: None <event > detail
Any nodifiers: <event > det ai l
Only these nodifiers: I modl nod2 <event > detail

These nodifiers and any others: npdl npd2 <event> detail

The use of “None” for amodifier list isidentical to the use of an exclamation point with no modifers.

M odifier Abbreviation Meaning

Citrl C Control modifier bit
Shift s Shift modifier bit
Lock I Lock modifier bit
Meta m Meta key modifier
Hyper h Hyper key modifier
Super su Super key modifier
Alt a Alt key modifier
Mod1 Mod1 modifier bit
Mod2 Mod2 modifier bit
Mod3 Mod3 modifier bit
Mod4 Mod4 modifier bit
Mod5 Mod5 modifier bit
Buttonl Buttonl modifier bit

221

Trandation Table Syntax

M odifier Abbreviation M eaning

Button2 Button2 modifier bit
Button3 Button3 modifier bit
Button4 Button4 modifier bit
Button5 Button5 modifier bit
None No modifiers

Any Any modifier combination

A key modifier is any modifier bit one of whose corresponding KeyCodes contains the corresponding
left or right KeySym. For example, “m” or “Meta’ means any modifier bit mapping to a KeyCode whose
KeySym list contains XK_Meta L or XK_Meta R. Note that this interpretation is for each display, not
global or even for each application context. The Control, Shift, and Lock modifier names refer explicitly
to the corresponding modifier bits; there is no additional interpretation of KeySyms for these modifiers.

Becauseit ispossible to associate arbitrary KeySymswith modifiers, the set of key modifiersisextensible.
The"@" <keysym> syntax means any modifier bit whose corresponding K eyCode contains the specified
KeySym name.

A modifier_list/KeySym combination in a translation matches a modifiers’KeyCode combination in an
event in the following ways:

1. Ifacolon () isused, thelntrinsicscall thedisplay's (* Xt KeyPr oc) with the KeyCode and modifiers.
To match, (modifiers & ~modifiers _return) must equal modifier_list, and keysym return must equal
the given KeySym.

2. If (?) isnot used, the Intrinsics mask off all don't-care bits from the modifiers. Thisvalue must be equal
to modifier_list. Then, for each possible combination of don't-care modifiers in the modifier list, the
Intrinsics call the display's (* Xt KeyPr oc) with the KeyCode and that combination ORed with the
cared-about modifier bits from the event. Keysym return must match the KeySym in the translation.

Event Types

The event-type field describes X Event types. In addition to the standard Xlib symbolic event type names,
the following event type synonyms are defined:

Type M eaning

Key KeyPr ess
KeyDown KeyPr ess
KeyUp KeyRel ease
BtnDown Butt onPress
BtnUp But t onRel ease
Motion Mot i onNotify
PtrMoved Mot i onNotify
MouseM oved Mot i onNoti fy
Enter EnterNoti fy
EnterWindow Enter Noti fy
Leave LeaveNotify
LeaveWindow LeaveNoti fy

222

Trandation Table Syntax

Type Meaning

Focusln Focusl n

FocusOut FocusQut

Keymap KeymapNoti fy
Expose Expose

GrExp Gr aphi csExpose
NoExp NoExpose

Visible VisibilityNotify
Create CreateNotify
Destroy Dest royNoti fy
Unmap UnmapNot i fy

Map MapNot i fy
MapReq MapRequest
Reparent Reparent Noti fy
Configure ConfigureNotify

ConfigureReq
Grav

Conf i gur eRequest
GravityNotify

ResReq Resi zeRequest
Circ Circul ateNotify
CircReq Ci r cul at eRequest
Prop PropertyNotify
SelClr Sel ectiond ear
SelReq Sel ecti onRequest
Select Sel ectionNotify
Clrmap Col or mapNoti fy
Message d i ent Message
Mapping Mappi ngNoti fy

The supported abbreviations are:

Abbreviation Event Type Including

Ctrl KeyPr ess with Control modifier
Meta KeyPr ess with Meta modifier
Shift KeyPr ess with Shift modifier
Btn1Down But t onPr ess with Buttonl detail
BtnlUp But t onRel ease with Buttonl detail
Btn2Down But t onPr ess with Button2 detail
Btn2Up But t onRel ease with Button2 detail
Btn3Down But t onPr ess with Button3 detail
Btn3Up But t onRel ease with Button3 detail
Btn4Down But t onPr ess with Button4 detail

223

Trandation Table Syntax

Abbreviation Event Type Including

Btn4Up Butt onRel ease with Button4 detail
Btn5Down But t onPr ess with Button5 detail
Btn5Up But t onRel ease with Button5 detail
BtnMotion Moti onNoti fy with any button modifier
Btn1Motion Moti onNoti fy with Buttonl modifier
Btn2Motion Moti onNoti fy with Button2 modifier
Btn3Motion Moti onNoti fy with Button3 modifier
Btn4Motion Moti onNoti fy with Button4 modifier
Btn5Motion Moti onNoti fy with Button5 modifier

The detall field is event-specific and normally corresponds to the detail field of the corresponding event
as described by X Window System Protocol, Section 11. The detail field is supported for the following
event types:

KeyPress KeySym from event detail (keycode)
KeyRelease KeySym from event detail (keycode)
ButtonPress button from event detail
ButtonRelease button from event detail
MotionNotify event detail

EnterNotify event mode

LeaveNotify event mode

Focusin event mode

FocusOut event mode

PropertyNotify atom

SelectionClear selection

SelectionRequest selection

SelectionNotify selection

ClientMessage type

MappingNotify request

If the event type is KeyPr ess or KeyRel ease, the detail field specifies a KeySym name in standard
format which is matched against the event as described above, for example, <Key>A.

For the PropertyNotify, Sel ecti onC ear, Sel ecti onRequest, Sel ecti onNotify,
and Client Message events the detail field is specified as an atom name; for example,
<Message>WM_PROTOCOLS. For the MdtionNotify, EnterNotify, LeaveNotify,
Focusl n, FocusQut , and Mappi ngNot i fy events, either the symbolic constants as defined by X
Window System Protocol, Section 11, or the numeric values may be specified.

If no detail field is specified, then any value in the event detail is accepted as a match.

A KeySym can be specified as any of the standard KeySym names, a hexadecimal number prefixed with
“0x” or “0X”, an octal number prefixed with “0”, or adecimal number. A KeySym expressed as asingle
digit isinterpreted as the corresponding Latin 1 KeySym, for example, “0” is the KeySym XK_0. Other
single character KeySyms are treated as literal constants from Latin 1, for example, “!” istreated as 0x21.
Standard KeySym names are as defined in <X11/ keysyndef . h> with the“XK_” prefix removed.

224

Trandation Table Syntax

Canonical Representation

Every trandation table has a unique, canonical text representation. This representation is passed to a
widget'sdi spl ay_accel er at or procedure to describe the accelerators installed on that widget. The
canonical representation of atrandation table is (see also “ Syntax™)

trandationTable ={ production }

production =lhs“:" rhs“\\n"

lhs =event{ “,” event }

event =[modifier_list] “<"event_type">" [“(" count[“+"] “)"] { detail}
modifier_list =[“1""1[*:"] {modifier}

modifier =[“~"] modifier_name

count =(“1" |“2" |“3"|“4"|..)

modifier_name

=“@" <keysym> | <see canonical modifier names below>

event_type = <see canonical event types below>

detail =<event-specific details>

rhs ={ name*“ (" [params] “)" }

name =namechar { namechar }

namechar ={“a-Z |"A"=Z" |*O"=9" |“ " |“-" }

params =string {“,” string}

string =quoted_string

quoted string ="“"" {<Latin 1 character> | escape_char} [“\""] “"”
escape_char =\

The canonical modifier names are

crl Mod1 But t onl

Shi ft Mod2 But t on2

Lock Mod3 Butt on3

Mod4 But t on4

Mod5 But t on5
The canonical event types are
KeyPress KeyRelease
ButtonPress ButtonRelease
MotionNotify EnterNotify
LeaveNotify Focusin
FocusOut KeymapNotify
Expose GraphicsExpose,
NoExpose VisihilityNotify
CreateNotify DestroyNotify
UnmapNotify MapNotify
MapRequest ReparentNotify

ConfigureNotify

ConfigureRequest

225

Trandation Table Syntax

GravityNotify ResizeRequest
CirculateNotify CirculateRequest
PropertyNotify SelectionClear
SelectionRequest SelectionNotify
ColormapNotify ClientMessage
Examples

» Always put more specific eventsin the table before more general ones:

Shift <BtnlDown> : twas()\n\
<Bt n1Down> : brillig()
For double-click on Buttonl Up with Shift, use this specification:

Shift<BtnlUp>(2) : and()
Thisis equivaent to the following line with appropriate timers set between events:

Shi f t <Bt n1Down>, Shi f t <Bt n1Up>, Shi ft <Bt n1Down>, Shi ft <Bt n1Up> : and()
For double-click on Buttonl Down with Shift, use this specification:

Shi ft <Bt n1Down>(2) : the()
Thisis equivaent to the following line with appropriate timers set between events:

Shi f t <Bt n1Down>, Shi ft <Bt n1Up>, Shi ft <Bt n1Down> : t he()
Mouse mation is aways discarded when it occurs between events in a table where no motion event is
specified:

<Bt n1Down>, <Bt n1Up> : slithy()

This is taken, even if the pointer moves a bit between the down and up events. Similarly, any motion
event specified in a trandation matches any number of motion events. If the motion event causes an
action procedure to be invoked, the procedure is invoked after each motion event.

If an event sequence consists of a sequence of events that is also a noninitial subsequence of another
tranglation, it is not taken if it occurs in the context of the longer sequence. This occurs mostly in
sequences like the following:

<Bt n1Down>, <Bt n1Up> : toves()\n\
<BtnlUp> : did()

The second tranglation is taken only if the button release is not preceded by a button press or if there
are intervening events between the press and the release. Be particularly aware of this when using the
repeat notation, above, with buttons and keys, because their expansion includes additional events; and
when specifying motion events, because they are implicitly included between any two other events. In
particular, pointer motion and double-click translations cannot coexist in the same translation table.
For single click on Buttonl Up with Shift and Meta, use this specification:

Shift Meta <BtnlDown>, Shift Meta<BtnlUp>: gyre()

226

Trandation Table Syntax

For multiple clicks greater or equal to a minimum number, a plus sign (+) may be appended to the
final (rightmost) count in an event sequence. The actionswill beinvoked on the count-th click and each
subsequent one arriving within the multi-click time interval. For example:

Shift <BtnlUp>(2+) : and()
Toindicate Ent er Not i f y with any modifiers, use this specification:

<Enter> : ginble()
Toindicate Ent er Not i f y with no modifiers, use this specification:

None <Enter> : in()
To indicate Ent er Not i f y with Buttonl Down and Button2 Up and “don't care” about the other
maodifiers, use this specification:

Buttonl ~Button2 <Enter> : the()
Toindicate Ent er Not i f y with Buttonl down and Button2 down exclusively, use this specification:

! Buttonl Button2 <Enter> : wabe()

Y ou do not need to use atilde (~) with an exclamation point (!).

227

Appendix C. Compatibility Functions !

In prototype versions of the X Toolkit each widget classimplemented an Xt<Widget>Create (for example,
Xt Label Creat e) function, in which most of the code was identical from widget to widget. In the
Intrinsics, a single generic Xt Cr eat eW dget performs most of the common work and then calls the
initialize procedure implemented for the particular widget class.

Each Composite class aso implemented the procedures Xt<Widget>Add and an Xt<Widget>Delete
(for example, Xt But t onBoxAddBut t on and Xt But t onBoxDel et eBut t on). In the Intrinsics,
the Composite generic procedures Xt ManageChi | dren and Xt UnmanageChi | dren perform
error checking and screening out of certain children. Then they call the change managed procedure
implemented for the widget's Composite class. If the widget's parent has not yet been realized, the call to
the change_managed procedure is delayed until realization time.

Old-style calls can beimplemented in the X Toolkit by defining one-line procedures or macros that invoke
ageneric routine. For example, you could define the macro Xt Label Cr eat e as:

#def i ne Xt Label Creat e(nane, parent, args, numargs) \
((Label Wdget) Xt CreateW dget (nane, |abel WdgetC ass, parent, args, numargs))

Pop-up shells in some of the prototypes automatically performed an Xt ManageChi |l d on their
child within their insert_child procedure. Creators of pop-up children need to call Xt ManageChi | d
themselves.

Xt Appl nitializeandXtVaAppl nitiali ze havebeenreplacedby Xt QpenAppl i cati onand
Xt VaOpenAppl i cati on.

To initidize the Intrinsics internals, create an application context, open and initialize a display,
and create the initial application shell instance, an application may use Xt Applnitialize or
Xt VaAppl nitialize.

W dget XtApplnitialize(app_context_return, application_class, options,

num opti ons, argc_i n_out, argv_i n_out, fal |l back_resources, args,
num ar gs) ;

app_context_return Returns the application context, if non-NULL.

application_class Specifies the class name of the application.

options Specifies the command line options table.

num_options Specifies the number of entriesin options.

argc_in_out Specifies a pointer to the number of command line arguments.
argv_in_out Specifies a pointer to the command line arguments.
fallback_resources Specifiesresourcevaluesto be used if the application classresource

file cannot be opened or read, or NULL.

args Specifies the argument list to override any other resource
specifications for the created shell widget.

1 This appendix is part of the formal Intrinsics Specification.

228

Compatibility Functions

num args Specifies the number of entries in the argument list.

The XtApplnitialize function cdls XtToolkitlnitialize followed by
Xt Cr eat eAppl i cati onCont ext, then calls Xt OpenDi spl ay with display_string NULL and
application_name NULL, and finaly cals Xt AppCr eat eShel | with application_name NULL,
widget_classappl i cati onShel | W dget O ass, and the specified args and num_args and returns
the created shell. The modified argc and argv returned by Xt Di spl ayl niti al i ze are returned
in argc_in_out and argv_in_out. If app_context_return is not NULL, the created application context
is aso returned. If the display specified by the command line cannot be opened, an error message
is issued and Xt Appl niti al i ze terminates the application. If fallback resources is non-NULL,
Xt AppSet Fal | backResour ces iscalled with the value prior to calling Xt OpenDi spl ay.

W dget Xt VaAppl nitialize(app_context_return, application_cl ass,
options, numoptions, argc_in_out, argv_in_out, fallback resources,);

app_context_return Returns the application context, if non-NULL.

application_class Specifies the class name of the application.

options Specifies the command line options table.

num_options Specifies the number of entriesin options.

argc_in_out Specifies a pointer to the number of command line arguments.
argv_in_out Specifies the command line arguments array.

fallback_resources Specifiesresourcevaluesto be used if the application classresource

file cannot be opened, or NULL.

Specifies the variable argument list to override any other resource
specifications for the created shell.

The Xt VaAppl ni ti al i ze procedure isidentical in function to Xt Appl ni ti al i ze with the args
and num_args parameters replaced by avarargs list, as described in Section 2.5.1.

As a convenience to people converting from ealier versions of the
toolkit without application contexts, the following routines exist: Xtlnitialize,
Xt Mai nLoop, Xt Next Event , Xt Pr ocessEvent , Xt PeekEvent , Xt Pendi ng, Xt Addl nput ,
Xt AddTi neQut, Xt AddWor kProc, Xt CreateApplicationShell, XtAddActions,
Xt Set Sel ecti onTi nmeout , and Xt Get Sel ecti onTi neout .

W dget Xtlnitialize(shell _narne, application_cl ass, options,
num opti ons, argc, argv);

shell_name This parameter is ignored; therefore, you can specify NULL.
application_class Specifies the class name of this application.
options Specifies how to parse the command line for any application-

specific resources. The options argument is passed as a parameter
to Xr mPar seComand.

num_options Specifies the number of entriesin the options list.
argc Specifies a pointer to the number of command line parameters.
argv Specifies the command line parameters.

229

Compatibility Functions

Xtinitialize calsXtTool kitlnitialize toinitidize the toolkit internals, creates a default
application context for use by the other convenienceroutines, calls Xt OpenDi spl ay withdisplay_string
NULL and application_name NULL, and finally calls Xt AppCr eat eShel | with application_name
NULL and returns the created shell. The semantics of calling Xt I ni ti al i ze more than once are
undefined. This routine has been replaced by Xt OpenAppl i cati on.

voi d Xt Mai nLoop(voi d);

Xt Mai nLoop first reads the next alternate input, timer, or X event by calling Xt Next Event . Then it
dispatches this to the appropriate registered procedure by calling Xt Di spat chEvent . Thisroutine has
been replaced by Xt AppMai nLoop.

voi d Xt Next Event (event _return);
event_return Returns the event information to the specified event structure.

If no input is on the X input queue for the default application context, Xt Next Event flushes the X
output buffer and waits for an event while looking at the alternate input sources and timeout values and
calling any callback procedurestriggered by them. Thisroutine hasbeen replaced by Xt AppNext Event .
Xt1nitialize mustbe called before using this routine.

voi d Xt ProcessEvent (mask) ;
mask Specifies the type of input to process.

Xt ProcessEvent processesone X event, timeout, or alternate input source (depending on the value of
mask), blocking if necessary. It has been replaced by Xt AppPr ocessEvent . Xt nitiali ze must
be called before using this function.

Bool ean Xt PeekEvent (event _return);
event_return Returns the event information to the specified event structure.

If thereis an event in the queue for the default application context, Xt PeekEvent fillsin the event and
returnsanonzero value. If no X input ison the queue, Xt PeekEvent flushesthe output buffer and blocks
until input is available, possibly calling some timeout callbacks in the process. If the input is an event,
Xt PeekEvent fillsin the event and returns a nonzero value. Otherwise, the input is for an alternate
input source, and Xt PeekEvent returns zero. This routine has been replaced by Xt AppPeekEvent .
Xt1nitialize mustbecalled before using this routine.

Bool ean Xt Pendi ng(voi d);

Xt Pendi ng returns a nonzero value if there are events pending from the X server or aternate input
sources in the default application context. If there are no events pending, it flushes the output buffer and
returns a zero value. It has been replaced by Xt AppPendi ng. Xt I ni ti al i ze must be called before
using thisroutine.

Xt I nputld Xt Addl nput (source, condition, proc, client_data);

source Specifiesthe sourcefile descriptor on aPOSI X -based system or other
operating-system-dependent device specification.

condition Specifies the mask that indicates either a read, write, or exception
condition or some operating-system-dependent condition.

proc Specifies the procedure called when input is available.

230

Compatibility Functions

client_data Specifies the parameter to be passed to proc when input is available.

The Xt AddI nput function registersin the default application context a new source of events, which is
usualy file input but can also be file output. (The word file should be loosely interpreted to mean any
sink or source of data.) Xt AddI nput also specifies the conditions under which the source can generate
events. When input is pending on this source in the default application context, the callback procedure
is called. This routine has been replaced by Xt AppAddIl nput . Xt I ni ti al i ze must be called before
using thisroutine.

Xtlntervalld XtAddTi meQut (interval, proc, client_data);

interval Specifiesthe time interval in milliseconds.
proc Specifies the procedure to be called when time expires.
client_data Specifies the parameter to be passed to proc when it is called.

TheXt AddTi neCut function createsatimeout inthe default application context and returnsan identifier
for it. The timeout value is set to interval. The callback procedure will be called after the time interval
elapses, after which the timeout is removed. This routine has been replaced by Xt AppAddTi neQut .
Xt 1 nitialize mustbecaled beforeusing thisroutine.

Xt Wor kProcl d Xt AddWor kProc(proc, client_data);
proc Procedure to call to do the work.
client_data Client data to passto proc when it is called.

This routine registers a work procedure in the default application context. It has been replaced by
Xt AppAddWor kProc. Xt I ni ti al i ze must be called before using this routine.

W dget Xt CreateApplicationShell (nane, w dget_class, args, numargs);
name This parameter is ignored; therefore, you can specify NULL.

widget_class Specifies the widget class pointer for the created application shell
widget. Thiswill usually bet opLevel Shel | W dget C ass or
a subclass thereof.

args Specifies the argument list to override any other resource
specifications.
num_args Specifies the number of entriesin args.

The procedure Xt Cr eat eAppl i cati onShel | calls Xt AppCr eat eShel | with application_name
NULL, the application class passed to Xt | ni ti al i ze, and the default application context created by
Xt I nitialize. Thisroutine hasbeen replaced by Xt AppCr eat eShel | .

An old-format resource type converter procedure pointer is of type (* Xt Converter).
typedef void (*XtConverter)(args, numargs, from to);

args Specifies a list of additional Xr mvVal ue arguments to the converter if
additional context is needed to perform the conversion, or NULL.

num args Specifies the number of entriesin args.

from Specifies the value to convert.

231

Compatibility Functions

to Specifies the descriptor to use to return the converted value.
Type converters should perform the following actions:

e Check to see that the number of arguments passed is correct.

 Attempt the type conversion.

* If successful, return the size and pointer to the datain the to argument; otherwise, call Xt \ar ni nghvsg
and return without modifying the to argument.

Most type convertersjust take the data described by the specified from argument and return data by writing
into the specified to argument. A few need other information, which isavailablein the specified argument
list. A type converter can invoke another type converter, which allows differing sources that may convert
into a common intermediate result to make maximum use of the type converter cache.

Note that the address returned in to->addr cannot be that of alocal variable of the converter because this
isnot valid after the converter returns. It should be a pointer to a static variable.

The procedure type (* Xt Convert er) hasbeenreplaced by (* Xt TypeConverter).

The Xt Stri ngConver si onWar ni ng function is a convenience routine for old-format resource
converters that convert from strings.

voi d Xt StringConversi onWarni ng(src, dst_type);
src Specifies the string that could not be converted.
dst_type Specifies the name of the type to which the string could not be converted.

The Xt StringConversi onWarning function issues a warning message with name
“conversionError”, type “string”, class “XtToolkitError’, and the default message string
“Cannot convert "src" to type dst type’. This routine has been superseded by
Xt Di spl ayStri ngConver si onWar ni ng.

To register an old-format converter, use Xt AddConvert er or Xt AppAddConverter.

void XtAddConverter(fromtype, to_type, converter, convert _args,

num ar gs) ;

from_type Specifies the source type.

to_type Specifies the destination type.

converter Specifies the type converter procedure.

convert_args Specifieshow to compute the additional argumentsto the converter,
or NULL.

num_args Specifies the number of entriesin convert_args.

Xt AddConvert er isequivaent in function to Xt Set TypeConvert er with cache type egqual to
Xt CacheAl | for old-format type converters. It has been superseded by Xt Set TypeConverter.

void Xt AppAddConverter(app_context, fromtype, to_type, converter,
convert_args, num. args);

app_context Specifies the application context.

from_type Specifies the source type.

232

Compatibility Functions

to_type Specifies the destination type.

converter Specifies the type converter procedure.

convert_args Specifieshow to compute the additional argumentsto the converter,
or NULL.

num args Specifies the number of entriesin convert_args.

Xt AppAddConverter is equivdent in function to Xt AppSet TypeConverter with
cache type egual to Xt CacheAll for old-format type converters. It has been superseded by
Xt AppSet TypeConverter.

To invoke resource conversions, a client may use Xt Convert or, for old-format converters only,
Xt Di r ect Convert.

voi d Xt Convert(w, fromtype, from to_type, to_return);

w Specifies the widget to use for additional arguments, if any are needed.
from_type Specifies the source type.

from Specifies the value to be converted.

to_type Specifies the destination type.

to_return Returns the converted value.

void XtDirectConvert(converter, args, numargs, from to_return);
converter Specifies the conversion procedure to be called.

args Specifies the argument list that contains the additional arguments
needed to perform the conversion (often NULL).

num args Specifies the number of entriesin args.
from Specifies the value to be converted.
to_return Returns the converted value.

The Xt Convert function looks up the type converter registered to convert from type to
to_type, computes any additional arguments needed, and then calls Xt Di rect Convert or
Xt Cal | Converter. The Xt Di rect Convert function looks in the converter cache to see if this
conversion procedure has been called with the specified arguments. If so, it returns a descriptor for
information stored in the cache; otherwise, it calls the converter and enters the result in the cache.

Before calling the specified converter, Xt Di r ect Convert sets the return value size to zero and the
return value address to NULL. To determine if the conversion was successful, the client should check
to_return.addr for non-NULL. The data returned by Xt Convert must be copied immediately by the
caller, asit may point to static datain the type converter.

Xt Convert has been replaced by Xt Convert AndStore, and Xt Di rect Convert has been
superseded by Xt Cal | Converter.

To deallocate a shared GC when it is no longer needed, use Xt Dest r oy GC.

voi d XtDestroyGC(w, gc);

233

Compatibility Functions

w Specifies any object on the display for which the shared GC was created. Must be
of class Object or any subclass thereof.

gc Specifies the shared GC to be deall ocated.

References to sharable GCs are counted and a free request is generated to the server when the last user
of a given GC destroys it. Note that some earlier versions of Xt Dest r oy GC had only a gc argument.
Therefore, this function is not very portable, and you are encouraged to use Xt Rel easeGC instead.

To declare an action table in the default application context and register it with the transation manager,
use Xt AddAct i ons.

voi d Xt AddActi ons(actions, numactions);
actions Specifies the action table to register.
num_actions Specifies the number of entriesin actions.

If more than one action is registered with the same name, the most recently registered action is used.
If duplicate actions exist in an action table, the first is used. The Intrinsics register an action table for
Xt MenuPopup and Xt MenuPopdown as part of X Toolkit initialization. This routine has been replaced
by Xt AppAddActi ons. Xt I nitial i ze must be called before using this routine.

To set the Intrinsics selection timeout in the default application context, use
Xt Set Sel ecti onTi neout .

voi d Xt Set Sel ecti onTi neout (ti neout);

timeout Specifies the selection timeout in milliseconds. This routine has been
replaced by Xt AppSet Sel ectionTi nmeout. Xtlnitialize must
be called before using this routine.

To get the current selection timeout value in the default application context, use
Xt Get Sel ecti onTi nmeout .

unsi gned | ong Xt Get Sel ecti onTi meout (voi d);

The selection timeout is the time within which the two communicating applications must respond to one
another. If one of them does not respond within thisinterval, the Intrinsics abort the selection request.

This routine has been replaced by Xt AppCet Sel ecti onTi meout . Xt I niti al i ze must be called
before using this routine.

To obtain the globa error database (for example, to merge with an application- or widget-specific
database), use Xt Get Er r or Dat abase.

Xr nDat abase * Xt Get Err or Dat abase(voi d);

The Xt Get Er r or Dat abase function returns the address of the error database. The Intrinsics do
a lazy binding of the error database and do not merge in the database file until the first cal to
Xt Get Er r or Dat abaseText . Thisroutine has been replaced by Xt AppGet Er r or Dat abase.

An error message handler can obtain the error database text for an error or a warning by calling
Xt Get Er r or Dat abaseText .

voi d Xt Get Err or Dat abaseText (name, type, class, default, buffer_return,
nbyt es);

234

Compatibility Functions

name

type Specify the name and type that are concatenated to form the
resource name of the error message.

class Specifies the resource class of the error message.

default Specifies the default message to use if an error database entry is
not found.

buffer_return Specifies the buffer into which the error message is to be returned.

nbytes Specifiesthe size of the buffer in bytes.

The Xt Get Er r or Dat abaseText returns the appropriate message from the error database associated
with the default application context or returns the specified default message if oneis not found in the error
database. To form the full resource name and class when querying the database, the name and type are
concatenated with asingle“.” between them and the classis concatenated with itself with asingle“.” if it
does not already containa“.”. Thisroutine has been superseded by Xt AppGet Er r or Dat abaseText .

To register a procedure to be called on fatal error conditions, use Xt Set Er r or MsgHandl er .
voi d Xt Set Err or MsgHandl er (nsg_handl er) ;
msg_handler Specifies the new fatal error procedure, which should not return.

The default error handler provided by the Intrinsics constructs a string from the error resource database
and calls Xt Er r or . Fatal error message handlers should not return. If one does, subsequent Intrinsics
behavior is undefined. This routine has been superseded by Xt AppSet Er r or MsgHandl er .

To call the high-level error handler, use Xt Er r or Msg.

void XtErrorMg(nane, type, class, default, parans, num parans);

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not
found.

params Specifies apointer to alist of values to be stored in the message.

num_params Specifies the number of entriesin params.

This routine has been superseded by Xt AppEr r or Msg.

To register a procedure to be called on nonfatal error conditions, use Xt Set War ni ngMsgHandl er .
voi d Xt Set War ni ngMsgHandlI er (nmsg_handl er) ;

msg_handler Specifies the new nonfatal error procedure, which usually returns.

The default warning handler provided by the Intrinsics constructs astring from the error resource database
and calls Xt Var ni ng. Thisroutine has been superseded by Xt AppSet War ni ngMsgHandl er .

235

Compatibility Functions

To call theinstalled high-level warning handler, use Xt War ni ngMsg.

voi d Xt War ni ngMsg(nane, type, class, default, parans, num parans);

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not
found.

params Specifies apointer to alist of values to be stored in the message.

num_params Specifies the number of entriesin params.

This routine has been superseded by Xt AppWar ni ngMsg.

To register aprocedure to be called on fatal error conditions, use Xt Set Er r or Handl er .
voi d Xt Set Er r or Handl er (handl er);

handler Specifies the new fatal error procedure, which should not return.

The default error handler provided by the Intrinsicsis _ Xt Er r or . On POSIX-based systems, it prints
the message to standard error and terminates the application. Fatal error message handlers should not
return. If one does, subsequent X Toolkit behavior is undefined. This routine has been superseded by
Xt AppSet Err or Handl er .

To call theinstalled fatal error procedure, use Xt Er r or .
voi d Xt Error(nessage);
message Specifies the message to be reported.

Most programs should use Xt AppError Msg, not Xt Error, to provide for customization and
internationalization of error messages. This routine has been superseded by Xt AppEr r or .

To register a procedure to be called on nonfatal error conditions, use Xt Set War ni ngHandl er .
voi d Xt Set War ni ngHandl er (handl er);
handler Specifies the new nonfatal error procedure, which usually returns.

The default warning handler provided by the Intrinsics is _ Xt ar ni ng. On POSIX-based systems,
it prints the message to standard error and returns to the caller. This routine has been superseded by
Xt AppSet War ni ngHandl er .

To call theinstalled nonfatal error procedure, use Xt \\ar ni ng.
voi d Xt War ni ng(message) ;
message Specifies the nonfatal error message to be reported.

Most programs should use Xt AppWar ni ngMsg, not Xt Var ni ng, to provide for customization and
internationalization of warning messages. This routine has been superseded by Xt AppWar ni ng.

236

Appendix D. Intrinsics Error Messages

All Intrinsics errors and warnings have class “ XtToolkitError”. The following two tables summarize the
common errors and warningsthat can be generated by the Intrinsics. Additional implementati on-dependent

messages are permitted. Error Messages

Name Type Default M essage
allocError calloc Cannot perform calloc
alocError malloc Cannot perform malloc
allocError realloc Cannot perform realloc
internal Error xtM akeGeometryRequest internal error;
ShellClassExtension isNULL
invalidArgCount xtGetValues Argument count > 0 on NULL
argument list in XtGetValues
invalidArgCount xtSetValues Argument count > 0 on NULL

argument list in XtSetValues

invalidClass applicationShelllnsertChild ApplicationShell does not accept
RectObj children; ignored
invalidClass constraintSetVaue Subclass of Constraint required
in CallConstraintSetValues
invalidClass xtAppCreateShell XtAppCreateShell requires non-
NULL widget class
invalidClass xtCreatePopupShell XtCreatePopupShell requires
non-NULL widget class
invalidClass xtCreateWidget XtCreateWidget requires non-
NULL widget class
invalidClass xtPopdown XtPopdown requires a subclass
of shellWidgetClass
invalidClass xtPopup XtPopup requires a subclass of

invalidDimension

xtCreateWindow

shellWidgetClass

Widget %s has zero width and/or
height

invalidDimension shellRealize Shell widget %s has zero width
and/or height

invalidDisplay xtlnitialize Can't open display: %s

invalidGetValues xtGetValues NULL ArgVal in XtGetValues

invalidExtension

shellClassPartInitialize

widget class %s hasinvalid
Shell ClassExtension record

invalidExtension xtM akeGeometryRequest widget class %s hasinvalid
ShellClassExtension record

invalidGeometryM anager xtM akeGeometryRequest XtMakeGeometryRequest -
parent has no geometry manager

invalidParameter xtAddlnput invalid condition passed to

XtAddlnput

237

Intrinsics Error Messages

Name Type Default M essage

invalidParameter xtAddlnput invalid condition passed to
XtAppAddinput

invalidParent xtChangeM anagedSet Attempt to manage a child when
parent is not Composite

invalidParent xtChangeM anagedSet Attempt to unmanage a child
when parent is not Composite

invalidParent xtCreatePopupShell XtCreatePopupShell requires
non-NULL parent

invalidParent xtCreateWidget XtCreateWidget requires non-
NULL parent

invalidParent xtM akeGeometryRequest non-shell has no parent in
XtMakeGeometryRequest

invalidParent xtM akeGeometryRequest XtMakeGeometryRequest -
parent not composite

invalidParent xtManageChildren Attempt to manage a child when
parent is not Composite

invalidParent xtUnmanageChildren Attempt to unmanage a child

invalidProcedure
invalidProcedure

invalidWindow
missingWidget

nonWidget

noPerDisplay
noPerDisplay

noSel ectionProperties
noWidgetAncestor
nullDisplay

nullProc
r2versionMismatch

R3versionMismatch

inheritanceProc
realizeProc

eventHandler
fetchDisplayArg

xtCreateWidget

closeDisplay

getPerDisplay

freeSel ectionProperty
windowedAncestor

xtRegi sterExtensionSel ector
insertChild

widget

widget

when parent is not Composite
Unresolved inheritance operation

No realize class procedure
defined

Event with wrong window

FetchDisplayArg called without a
widget to reference

attempt to add non-widget child
"%s" to parent "%s" which
supports only widgets

Couldn't find per display
information

Couldn't find per display
information

internal error: no selection
property context for display

Object "%s" does not have
windowed ancestor

XtRegisterExtensionSel ector
requiresanon-NULL display

"%s" parent has NULL
insert_child method

Widget class %s must be re-
compiled.

Widget class %s must be re-
compiled.

238

Intrinsics Error Messages

Name Type Default M essage

R4orR5versionMismatch widget Widget class %s must be re-
compiled.

rangeError xtRegisterExtensionSel ector Attempt to register multiple
selectors for one extension event
type

sessionM anagement SmcOpenConnection Tried to connect to session

manager, %s

subclassMismatch xtCheckSubclass Widget class %s found when
subclass of %s expected: %s
Warning M essages
Name Type Default M essage
ambiguousParent xtChangeM anagedSet Not all children have same parent
ambiguousParent xtManageChildren Not all children have same parent
in XtManageChildren
ambiguousParent xtUnmanageChildren Not all children have same parent
in XtUnmanageChildren
badFormat xtGetSelectionValue Selection owner returned type
INCR property with format = 32
badGeometry shellRedlize Shell widget "%s" has an invalid
geometry specification: "%s"
badValue cvtStringToPixel Color name "%s" is not defined
communicationError select Select failed; error code %s
conversionError string Cannot convert string "%s'" to
type %s
conversionError stringToVisual Cannot find Visua of class %s

conversionFailed
conversionFailed

displayError
grabError

grabError

initializationError
insufficientSpace

interna Error

invalidAddressMode

xtConvertVarToArgList

xtGetTypedArg

invalidDisplay
xtAddGrab

xtRemoveGrab

xtInitialize
xtGetTypedArg

shell

computeArgs

for display %s
Type conversion failed

Type conversion (%s to %s)
failed for widget '%s

Can't find display structure

XtAddGrab requires exclusive
grab if spring_loaded is TRUE
XtRemoveGrab asked to remove
awidget not on the list
Initializing Resource Lists twice
Insufficient space for converted
type '%s in widget '%s

Shell's window manager
interaction is broken

Conversion arguments for widget
'%s' contain an unsupported
address mode

239

Intrinsics Error Messages

Name

Type

Default M essage

invalidArgCount
invalidCallbackList
invalidCallbackList
invalidCallbackList
invalidCallbackList
invalidCallbackList
invalidChild
invalidChild
invalidChild
invalidChild
invalidChild

invalidDepth
invalidExtension

invalidExtension
invalidGrab
invalidGrabKind
invalidParameters
invalidParameters
invalidParameters
invalidParameters
invalidParent

invalidPopup

getResources
xtAddCallback
xtAddCallback
xtCallCallback
xtRemoveAllCallback
xtRemoveCallback
xtChangeM anagedSet
xtManageChildren
xtManageChildren
xtUnmanageChildren
xtUnmanageChildren

setValues
xtCreateWidget

xtCreateWidget
ungrabK eyOrButton
xtPopup
freeTrandations
mergeTranslations
xtM enuPopdown
xtMenuPopupAction
xtCopyFromParent

xtMenuPopup

argument count > 0 on NULL
argument list

Cannot find callback list in
XtAddCallback

Cannot find callback list in
XtAddCallbacks

Cannot find callback list in
XtCallCalbacks

Cannot find callback list in
XtRemoveAllCallbacks

Cannot find callback list in
XtRemoveCallbacks

Null child passed to
UnmanageChildren

null child passed to
ManageChildren

null child passed to
XtManageChildren

Null child passed to
XtUnmanageChildren

Null child found in argument list
to unmanage

Can't change widget depth
widget "%s" class %s hasinvalid
CompositeClassExtension record

widget class %s hasinvalid
ConstraintClassExtension record

Attempt to remove nonexistent
passive grab

grab kind argument hasinvalid
value; XtGrabNone assumed

Freeing XtTrandations requires
no extra arguments

MergeTM to TranslationTable
needs no extra arguments

XtMenuPopdown called with
num_params!=0or 1

M enuPopup wants exactly one
argument

CopyFromParent must have non-
NULL parent

Can't find popup widget "%s" in
XtMenuPopup

240

Intrinsics Error Messages

Name Type Default M essage

invalidPopup xtMenuPopdown Can't find popup in widget "%s"
in XtMenuPopdown

invalidPopup unsupportedOperation Pop-up menu creation is only
supported on ButtonPress,
KeyPress or EnterNotify events.

invalidPopup unsupportedOperation Pop-up menu creation is only
supported on Button, Key or
EnterNotify events.

invalidProcedure deleteChild null delete _child procedure for
class %sin XtDestroy

invalidProcedure inputHandler XtRemovel nput: Input handler

invalidProcedure
invalidResourceCount
invalidResourceName

invalidShell
invalidSizeOverride

missingCharsetList
noActionProc
noColormap
noFont

noFont
noFont

notlnConvertSelection

notRectObj
notRectObj
nullWidget

r3versionMismatch

set_values_amost
getResources
computeArgs

xtTrandateCoords
xtDependencies

cvtStringToFontSet
xtCallActionProc
cvtStringToPixel
cvtStringToFont

cvtStringToFontSet
cvtStringToFontStruct

xtGetSel ectionRequest

xtChangeM anagedSet

xtManageChildren

xtConvertVarToArgList

widget

not found

set_values_almost procedure
shouldn't be NULL

resource count > 0 on NULL
resource list

Cannot find resource name %s as
argument to conversion

Widget has no shell ancestor

Representation size %d must
match superclasssto override %s
Missing charsetsin String to
FontSet conversion

No action proc named "%s" is
registered for widget "%s"
Cannot allocate colormap entry
for "%s"

Unable to load any usable
1SO8859-1 font

Unable to load any usable fontset

Unable to load any usable
1SO8859-1 font

XtGetSelectionRequest or
XtGetSel ectionParameters called
for widget "%s" outside of
ConvertSelection proc

child "%s", class %sisnot a
RectObj

child "%s", class %sis not a
RectObj

XtVaTypedArg conversion needs
non-NULL widget handle

Shell Widget class %s binary
compiled for R3

241

Intrinsics Error Messages

Name Type Default M essage

trandationError null Table Can't remove accelerators from
NULL table

trandlationError null Table Tried to remove nonexistent

tranglationError

trandationError
trandlationError

tranglationError

trandationError
trandlationError
tranglationError

trandlationParseError
trandl ationParseError

translationParseError
tranglationParseError
trandationParseError
typeConversionError

unknownType
unknownType

versionMismatch

wrongParameters
wrongParameters
wrongParameters
wrongParameters
wrongParameters

wrongParameters

ambiguousActions

newActions
null Table

null Table

oldActions
unboundActions
xtTrandatelnitialize

missingComma
nonL atinl

parseError
parseString
showLine
noConverter

xtConvertVarToArgList

xtGetTypedArg

widget

cvtIntOrPixel ToX Color

cvtintToBool

cvtIntToBoolean

cvtIntToFl oat

cvtintToFont

cvtIntToPixel

accelerators

Overriding earlier trandation
manager actions.

New actions are:%s

table to (un)merge must not be
null

Can't trandlate event through
NULL table

Previous entry was. %s %s
Actions not found: %s
Initializing Translation manager
twice.

... possibly dueto missing',' in
event sequence.

... probably due to non-Latinl
character in quoted string

trandlation table syntax error: %s

Missing ™.
... found while parsing '%s

No type converter registered for
'%s to '%s conversion.

Unable to find type of resource
for conversion

Unable to find type of resource
for conversion

Widget class %s version
mismatch (recompilation
needed):\\n widget %d vs.
intrinsics %d.

Pixel to color conversion needs
screen and colormap arguments

Integer to Bool conversion needs
no extra arguments

Integer to Boolean conversion
needs no extra arguments

Integer to Float conversion needs
no extra arguments

Integer to Font conversion needs
no extra arguments

Integer to Pixel conversion needs
no extraarguments

242

Intrinsics Error Messages

Name Type Default M essage
wrongParameters cvtIntToPixmap Integer to Pixmap conversion
needs no extra arguments
wrongParameters cvtIntToShort Integer to Short conversion needs
no extra arguments
wrongParameters cvtIntToUnsignedChar Integer to UnsignedChar
conversion needs no extra
arguments
wrongParameters cvtStringToAcceleratorTable String to AcceleratorTable
conversion needs no extra
arguments
wrongParameters cvtStringToAtom String to Atom conversion needs
Display argument
wrongParameters cvtStringToBool String to Bool conversion needs
no extra arguments
wrongParameters cvtStringToBoolean String to Boolean conversion
needs no extra arguments
wrongParameters cvtStringToCommandArgArray String to CommandArgArray
conversion needs no extra
arguments
wrongParameters cvtStringToCursor String to cursor conversion needs
display argument
wrongParameters cvtStringToDimension String to Dimension conversion
needs no extra arguments
wrongParameters cvtStringToDirectoryString String to DirectoryString
conversion needs no extra
arguments
wrongParameters cvtStringToDisplay String to Display conversion
needs no extra arguments
wrongParameters cvtStringToFile String to File conversion needs
no extra arguments
wrongParameters cvtStringToFl oat String to Float conversion needs
no extra arguments
wrongParameters cvtStringToFont String to font conversion needs
display argument
wrongParameters cvtStringToFontSet String to FontSet conversion
needs display and locale
arguments
wrongParameters cvtStringToFontStruct String to font conversion needs
display argument
wrongParameters cvtStringToGravity String to Gravity conversion
needs no extra arguments
wrongParameters cvtStringTolnitia State String to Initial State conversion
needs no extra arguments
wrongParameters cvtStringTolnt String to Integer conversion

needs no extra arguments

243

Intrinsics Error Messages

Name Type Default M essage

wrongParameters cvtStringToPixel String to pixel conversion needs
screen and colormap arguments

wrongParameters cvtStringToRestartStyle String to RestartStyle conversion
needs no extra arguments

wrongParameters cvtStringToShort String to Integer conversion
needs no extra arguments

wrongParameters cvtStringToTranglationTable String to TrandationTable
conversion needs no extra
arguments

wrongParameters cvtStringToUnsignedChar String to Integer conversion
needs no extra arguments

wrongParameters cvtStringToVisual String to Visual conversion needs
screen and depth arguments

wrongParameters cvtXColorToPixel Color to Pixel conversion needs
no extra arguments

wrongParameters freeCursor Free Cursor requires display
argument

wrongParameters freeDirectoryString Free Directory String requires no
extra arguments

wrongParameters freeFile Free File requires no extra
arguments

wrongParameters freeFont Free Font needs display argument

wrongParameters freeFontSet FreeFontSet needs display and
locale arguments

wrongParameters freeFontStruct Free FontStruct requires display
argument

wrongParameters freePixel Freeing a pixel requires screen

and colormap arguments

244

Appendix E. Defined Strings

The StringDefs. h header file contains definitions for the following resource name, class, and
representation type symbolic constants.

Resour ce names:

Symbol Definition
XtNaccelerators "accelerators'
XtNallowHoriz "alowHoriz"
XtNallowVert "dlowVert"
XtNancestorSensitive "ancestorSensitive"
XtNbackground "background”
XtNbackgroundPixmap "backgroundPixmap"
XtNbitmap "bitmap"
XtNborder "borderColor"
XtNborderColor "borderColor"
XtNborderPixmap "borderPixmap"
XtNborderWidth "borderWidth"
XtNcallback "callback"
XtNchangeHook "changeHook"
XtNchildren “children”
XtNcolormap "colormap"
XtNconfigureHook "configureHook"
XtNcreateHook "createHook"
XtNdepth "depth”
XtNdestroyCallback "destroyCallback"
XtNdestroyHook "destroyHook"
XtNeditType "editType"
XtNfile "file"

XtNfont "font"
XtNfontSet "fontSet"
XtNforceBars "forceBars'
XtNforeground "foreground”
XtNfunction "function"
XtNgeometryHook "geometryHook"
XtNheight "height"
XtNhighlight "highlight"
XtNhSpace "hSpace”
XtNindex "index"
XtNinitial ResourcesPersistent "initial ResourcesPersistent"
XtNinnerHeight "innerHeight"

245

Defined Strings

Symbol Definition
XtNinnerWidth "innerWidth"
XtNinnerWindow "innerWindow"
XtNinsertPosition "insertPosition"
XtNinternal Height "internal Height"
XtNinterna Width "internal Width"
XtNjumpProc "jumpProc"
XtNjustify "justify"
XtNknobHeight "knobHeight"
XtNknoblndent "knobl ndent"
XtNknobPixel "knobPixel"
XtNknobWidth "knobWidth"
XtNlabel "label"
XtNlength "length”
XtNlowerRight "lowerRight"
XtNmappedWhenManaged "mappedWhenManaged"
XtNmenuEntry "menuEntry"
XtNname "name"
XtNnotify "notify"
XtNnumChildren "numcChildren”
XtNnumShells "numshells’
XtNorientation "orientation”
XtNparameter "parameter”
XtNpixmap "pixmap"

XtNpopupCallback
XtNpopdownCallback
XtNresize
XtNreverseVideo
XtNscreen
XtNscrollProc
XtNscrollDCursor
XtNscrolIHCursor
XtNscrollL Cursor
XtNscrollRCursor
XtNscrollUCursor
XtNscrollV Cursor
XtNselection
XtNselectionArray
XtNsensitive
XtNshells

"popupCallback"
"popdownCallback"
"resize"
"reverseVideo"
"screen”
"scrollProc”
"scrol|DCursor"
"scrolIHCursor"
"scrol L Cursor"
"scrolIRCursor"
"scrollUCursor”
"scrollV Cursor”
"selection”
"selectionArray"
"sensitive"
"shells'

Defined Strings

Symbol Definition
XtNshown "shown"
XtNspace "gpace”
XtNstring "string"
XtNtextOptions "textOptions’
XtNtextSink "textSink"
XtNtextSource "textSource"
XtNthickness "thickness"
XtNthumb "thumb"
XtNthumbProc "thumbProc"
XtNtop "top"
XtNtrandlations "trandations’
XtNunrealizeCallback "unrealizeCallback"
XtNupdate "update”
XtNuseBottom "useBottom"
XtNuseRight "useRight"
XtNvalue "value"
XtNvSpace "vSpace'
XtNwidth "width"
XtNwindow "window"
XtNX "x"

XtNy "y"

Resour ce classes:

Symbol Definition
XtCAccelerators "Accelerators’
XtCBackground "Background"
XtCBitmap "Bitmap"
XtCBoolean "Boolean"
XtCBorderColor "BorderColor"
XtCBorderWidth "BorderWidth"
XtCCallback "Callback"
XtCColormap "Colormap"
XtCColor "Color"
XtCCursor "Cursor"
XtCDepth "Depth"
XtCEditType "EditType"

XtCEventBindings
XtCFile
XtCFont

"EventBindings'
"File"
"Font"

247

Defined Strings

Symbol Definition
XtCFontSet "FontSet"
XtCForeground "Foreground"
XtCFraction "Fraction"
XtCFunction "Function”
XtCHeight "Height"
XtCHSpace "HSpace"
XtClndex "Index"

XtClnitialResourcesPersi stent

XtClnsertPosition
XtClnterval
XtClustify
XtCKnoblndent
XtCKnobPixel
XtCLabel
XtCLength

XtCM appedWhenM anaged

XtCMargin
XtCMenuEntry
XtCNotify
XtCOrientation
XtCParameter
XtCPixmap
XtCPosition
XtCReadOnly
XtCResize
XtCReverseVideo
XtCScreen
XtCScrollProc
XtCScrol| DCursor
XtCScrollHCursor
XtCScrollL Cursor
XtCScrolIRCursor
XtCScrollUCursor
XtCScrollV Cursor
XtCSelection
XtCSelectionArray
XtCSensitive
XtCSpace
XtCString

"Initial ResourcesPersi stent"

"InsertPosition”
"Interval”
"Justify"
"Knoblndent"
"KnobPixel"
"Label"
"Length"

"MappedWhenManaged"”

"Margin"
"MenuEntry"
"Notify"
"Orientation"
"Parameter”
"Pixmap"
"Position"
"ReadOnly"
"Resize"
"ReverseVideo"
"Screen”
"ScrollProc”
"Scrol|IDCursor"
"ScrollHCursor"
"ScrollLCursor”
"ScrollRCursor"
"ScrollUCursor"
"ScrollV Cursor”
"Selection"
"SelectionArray”
"Sensitive"
"Space”

" String"

248

Defined Strings

Symbol Definition
XtCTextOptions "TextOptions"
XtCTextPosition "TextPosition"
XtCTextSink "TextSink"
XtCTextSource "TextSource"
XtCThickness "Thickness'
XtCThumb "Thumb"
XtCTrand ations "Trandations”
XtCValue "Vaue'

XtCV Space "V Space"
XtCWidth "Width"
XtCWindow "Window"
XtCX "X

XtCY "y

Resour ce representation types:

Symbol Definition
XtRAcceleratorTable "AcceleratorTable"
XtRAtom "Atom"
XtRBitmap "Bitmap"
XtRBool "Bool"
XtRBoolean "Boolean"
XtRCallback "Callback"
XtRCadlProc "CallProc"
XtRCardinal "Cardina"
XtRColor "Color"
XtRColormap "Colormap"
XtRCommandArgArray "CommandArgArray"
XtRCursor "Cursor"
XtRDimension "Dimension”
XtRDirectoryString "DirectoryString"
XtRDisplay "Display”
XtREditMode "EditMode"
XtREnum "Enum"

XtREnvironmentArray
XtRFile

XtRFloat

XtRFont

XtRFontSet
XtRFontStruct

"EnvironmentArray"
"File"

"Float"

"Font"

"FontSet"
"FontStruct”

249

Defined Strings

Symbol Definition
XtRFunction "Function”
XtRGeometry "Geometry"
XtRGravity "Gravity"
XtRImmediate "Immediate”
XtRInitial State "Initial State"
XtRint "Int"
XtRJustify "Justify"
XtRLongBoolean XtRBool
XtRObject "Object"
XtROrientation "Orientation”
XtRPixel "Pixel"
XtRPixmap "Pixmap"
XtRPointer "Pointer"
XtRPosition "Position"
XtRRestartStyle "RestartStyle"
XtRScreen "Screen”
XtRShort "Short"
XtRSmcConn "SmcConn"
XtRString "String”
XtRStringArray "StringArray"
XtRStringTable "StringTable"
XtRUnsignedChar "UnsignedChar"
XtRTranglationTable "TranglationTable"
XtRVisual "Visual"
XtRWidget "Widget"
XtRWidgetClass "WidgetClass'
XtRWidgetList "WidgetList"
XtRWindow "Window"
Boolean enumer ation constants:

Symbol Definition
XtEoff "off"
XtEfase "false"

XtEno "no"

XtEon "on"

XtEtrue "true”

XtEyes "yes'

Orientation enumer ation constants:

Defined Strings

Symbol Definition
XtEverticd "vertical"
XtEhorizontal "horizontal"

Text edit enumer ation constants:

Symbol Definition
XtEtextRead "read"
XtEtextAppend "append"

XtEtextEdit "edit"

Color enumer ation constants;

Symbol Definition
XtExtdefaultbackground "xtdefaultbackground”
XtExtdefaultforeground "xtdefaultforeground”
Font constant:

Symbol Definition
XtExtdefaultfont "xtdefaultfont"
Hooksfor External Agentsconstants:

Symbol Definition
XtHcreate "Xtcreate"
XtHsetValues "XtsetValues"

XtHmanageChildren
XtHunmanageChildren
XtHmanageSet
XtHunmanageSet
XtHrealizeWidget
XtHunrealizeWidget
XtHaddCallback
XtHaddCallbacks
XtHremoveCallback
XtHremoveCallbacks
XtHremoveAllCallbacks
XtHaugmentTranglations
XtHoverrideTrangl ations
XtHuninstall Trand ations
XtHsetK eyboardFocus
XtHsetWM Col ormapWindows
XtHmapWidget
XtHunmapWidget

"XtmanageChildren"
"XtunmanageChildren"
"XtmanageSet"
"XtunmanageSet"
"XtrealizeWidget"
"XtunrealizeWidget"
"XtaddCallback"
"XtaddCallbacks"
"XtremoveCallback"
"XtremoveCallbacks"
"XtremoveAllCallbacks"
"XtaugmentTranglations'
"XtoverrideTranglations'
"Xtuninstall Trandations'
"XtsetK eyboardFocus'
"XtsetWM ColormapWindows"
"XtmapWidget"
"XtunmapWidget"

251

Defined Strings

Symbol Definition

XtHpopup "Xtpopup"
XtHpopupSpringlL oaded "XtpopupSpringL ocaded"
XtHpopdown "Xtpopdown"
XtHconfigure "Xtconfigure"
XtHpreGeometry "XtpreGeometry"
XtHpostGeometry "XtpostGeometry"
XtHdestroy "Xtdestroy”

The Shel | . h header file contains definitions for the following resource name, class, and representation
type symbolic constants.

Resour ce names:

Symbol Definition
XtNallowShelIResize "allowShellResize"
XtNargc "argc"

XtNargv "argv"
XtNbaseHeight "baseHeight"
XtNbaseWidth "baseWidth"
XtNcancel Callback "cancel Callback"
XtNclientL eader "clientLeader"
XtNcloneCommand "cloneCommand"
XtNconnection "connection”
XtNcreatePopupChildProc "createPopupChildProc”
XtNcurrentDirectory "currentDirectory”
XtNdieCallback "dieCallback"
XtNdiscardCommand "discardCommand"
XtNenvironment "environment"
XtNerrorCallback "errorCallback"
XtNgeometry "geometry"
XtNheightlnc "heightlnc"
XtNiconMask "iconMask"
XtNiconName "iconName"
XtNiconNameEncoding "iconNameEncoding"
XtNiconPixmap "iconPixmap"
XtNiconWindow "iconWindow"
XtNiconX "iconX"

XtNiconY "iconY"

XtNiconic "iconic"

XtNinitial State "initial State"
XtNinput "input"

252

Defined Strings

Symbol Definition
XtNinteractCallback "interactCallback”
XtNjoinSession "joinSession”
XtNmaxAspectX "maxAspectX"
XtNmaxAspectY "maxAspectY"
XtNmaxHeight "maxHeight"
XtNmaxWidth "maxWidth"
XtNminAspectX "minAspectX"
XtNminAspectY "minAspectY"
XtNminHeight "minHeight"
XtNminWidth "minWidth"
XtNoverrideRedirect "overrideRedirect”
XtNprogramPath "programPath"
XtNresignCommand "resignCommand"
XtNrestartCommand "restartCommand"
XtNrestartStyle "restartStyle"
XtNsaveCallback "saveCallback"

XtNsaveCompl eteCallback

"saveCompl eteCallback”

XtNsaveUnder "saveUnder"
XtNsessionlD "sessionlD"
XtNshutdownCommand "shutdownCommand"
XtNtitle "title"
XtNtitleEncoding "titleEncoding"
XtNtransient "transient”
XtNtransientFor "transientFor"
XtNurgency "urgency"
XtNvisual "visua"
XtNwaitForwwm "waitforwm"
XtNwaitforwm "waitforwm"
XtNwidthinc "widthlnc"
XtNwindowGroup "windowGroup"
XtNwindowRole "windowRole"
XtNwinGravity "winGravity"
XtNwmTimeout "wmTimeout"
Resour ce classes:

Symbol Definition
XtCAllowShelIResize "allowShellResize"
XtCArgc "Argc"
XtCArgv "Argv"

Defined Strings

Symbol Definition
XtCBaseHeight "BaseHeight"
XtCBaseWidth "BaseWidth"
XtCClientL eader "ClientLeader"
XtCCloneCommand "CloneCommand"

XtCConnection

XtCCreatePopupChildProc

XtCCurrentDirectory
XtCDiscardCommand
XtCEnvironment
XtCGeometry
XtCHeightinc
XtClconMask
XtClconName
XtClconNameEncoding
XtClconPixmap
XtClconWindow
XtClconX

XtClconY

XtClconic

XtClnitial State
XtClnput
XtCJoinSession
XtCMaxAspectX
XtCMaxAspectY
XtCMaxHeight
XtCMaxWidth
XtCMinAspectX
XtCMinAspectY
XtCMinHeight
XtCMinWidth
XtCOverrideRedirect
XtCProgramPath
XtCResignCommand
XtCRestartCommand
XtCRestartStyle
XtCSaveUnder
XtCSessionlD
XtCShutdownCommand
XtCTitle

"Connection"”
"CreatePopupChildProc”
"CurrentDirectory”
"DiscardCommand"
"Environment"
"Geometry"
"HeightInc"
"lconMask"
"lconName"
"IconNameEncoding”
"lconPixmap"
"lconWindow"
"lconX"

"lconY™

"Iconic”

"Initial State"
"Input"
"JoinSession”
"MaxAspectX"
"MaxAspectY"
"MaxHeight"
"MaxWidth"
"MinAspectX"
"MinAspectY"
"MinHeight"
"MinWidth"
"OverrideRedirect”
"ProgramPath"
"ResignCommand"”
"RestartCommand"
"RestartStyle"
"SaveUnder"
"SessionlD"

" ShutdownCommand"
"Title"

254

Defined Strings

Symbol Definition
XtCTitleEncoding "TitleEncoding”
XtCTransient "Transient"
XtCTransientFor "TransientFor"
XtCUrgency "Urgency"
XtCVisual "Visual"
XtCWaitForwm "Waitforwm"
XtCWaitforwm "Waitforwm"
XtCWidthinc "Widthinc"
XtCWindowGroup "WindowGroup"
XtCWindowRole "WindowRole"
XtCWinGravity "WinGravity"
XtCWmTimeout "WmTimeout"
Resour ce representation types:

Symbol Definition
XtRAtom "Atom"

255

Appendix F. Resource Configuration
Management

Setting and changing resources in X applications can be difficult for both the application programmer
and the end user. Resour ce Configuration M anagement (RCM) addressesthis problem by changing the
X Intrinsics toimmediately modify aresource for a specified widget and each child widget in the
hierarchy. In this context, immediate means. no sourcing of aresourcefileis required; the application does
not need to be restarted for the new resource values to take effect; and the change occurs immediately.

The main difference between RCMand the Edi t r es protocol isthat the RCMcustomizing hooksresidein
thel ntri nsi cs andthusarelinked with other toolkits such asMotif and the Athenawidgets. However,
the Edi t Res protocol requires the application to link with the Edi t Res routines in the Xmu library
and Xmu is not used by all applicationsthat use Motif. Also, the Edi t Res protocol uses ClientM essage,
whereasthe RCMI nt r i nsi cs hooksuse Pr opert yNot i f y events.

X Properties and the PropertyNoti fy events are used to implement RCM and alow on-the-fly
resource customization. When the X Toolkit is initialized, two atoms are interned with the strings
Custom Init and Custom Data. Both _ Xt Cr eat ePopupShel | and _Xt AppCr eat eShel | register a
PropertyNot i fy event handler to handle these properties.

A customization tool uses the Custom Init property to ping an application to get the application's toplevel
window. When the application's property notify event handler isinvoked, the handler deletesthe property.
No dataistransferred in this property.

A customization tool usesthe Custom Data property to tell an application that it should change aresource's
value. Thedatain the property containsthelength of the resource name (the number of bytesin theresource
name), the resource name and the new value for the resource. This property's type is XA _STRI NG and
the format of the string is:

1. Thelength of the resource name (the number of bytes in the resource name)
2. One space character

3. Theresource name

4. One space character

5. Theresource value

When setting the application's resource, the event handler calls functions to walk the application's widget
tree, determining which widgets are affected by the resource string, and then applying the value with
Xt Set Val ues. Asthe widget tree is recursively descended, at each level in the widget tree a resource
part is tested for a match. When the entire resource string has been matched, the value is applied to the
widget or widgets.

Before avalue is set on awidget, it is first determined if the last part of the resource is a valid resource
for that widget. It must also add the resource to the application's resource database and then query it using
specific resource strings that is builds from the widget information.

256

	X Toolkit Intrinsics – C Language Interface
	Table of Contents
	About This Manual
	Chapter 1. Intrinsics and Widgets
	Intrinsics
	Languages
	Procedures and Macros
	Widgets
	Core Widgets
	CoreClassPart Structure
	CorePart Structure
	Core Resources
	CorePart Default Values

	Composite Widgets
	CompositeClassPart Structure
	CompositePart Structure
	Composite Resources
	CompositePart Default Values

	Constraint Widgets
	ConstraintClassPart Structure
	ConstraintPart Structure
	Constraint Resources

	Implementation-Specific Types
	Widget Classing
	Widget Naming Conventions
	Widget Subclassing in Public .h Files
	Widget Subclassing in Private .h Files
	Widget Subclassing in .c Files
	Widget Class and Superclass Look Up
	Widget Subclass Verification
	Superclass Chaining
	Class Initialization: class_initialize and class_part_initialize Procedures
	Initializing a Widget Class
	Inheritance of Superclass Operations
	Invocation of Superclass Operations
	Class Extension Records

	Chapter 2. Widget Instantiation
	Initializing the X Toolkit
	Establishing the Locale
	Loading the Resource Database
	Parsing the Command Line
	Creating Widgets
	Creating and Merging Argument Lists
	Creating a Widget Instance
	Creating an Application Shell Instance
	Convenience Procedure to Initialize an Application
	Widget Instance Allocation: The allocate Procedure
	Widget Instance Initialization: The initialize Procedure
	Constraint Instance Initialization: The ConstraintClassPart initialize Procedure
	Nonwidget Data Initialization: The initialize_hook Procedure

	Realizing Widgets
	Widget Instance Window Creation: The realize Procedure
	Window Creation Convenience Routine

	Obtaining Window Information from a Widget
	Unrealizing Widgets

	Destroying Widgets
	Adding and Removing Destroy Callbacks
	Dynamic Data Deallocation: The destroy Procedure
	Dynamic Constraint Data Deallocation: The ConstraintClassPart destroy Procedure
	Widget Instance Deallocation: The deallocate Procedure

	Exiting from an Application

	Chapter 3. Composite Widgets and Their Children
	Addition of Children to a Composite Widget: The insert_child Procedure
	Insertion Order of Children: The insert_position Procedure
	Deletion of Children: The delete_child Procedure
	Adding and Removing Children from the Managed Set
	Managing Children
	Unmanaging Children
	Bundling Changes to the Managed Set
	Determining if a Widget Is Managed

	Controlling When Widgets Get Mapped
	Constrained Composite Widgets

	Chapter 4. Shell Widgets
	Shell Widget Definitions
	ShellClassPart Definitions
	ShellPart Definition
	Shell Resources
	ShellPart Default Values

	Session Participation
	Joining a Session
	Saving Application State
	Requesting Interaction
	Interacting with the User during a Checkpoint
	Responding to a Shutdown Cancellation
	Completing a Save

	Responding to a Shutdown
	Resigning from a Session

	Chapter 5. Pop-Up Widgets
	Pop-Up Widget Types
	Creating a Pop-Up Shell
	Creating Pop-Up Children
	Mapping a Pop-Up Widget
	Unmapping a Pop-Up Widget

	Chapter 6. Geometry Management
	Initiating Geometry Changes
	General Geometry Manager Requests
	Resize Requests
	Potential Geometry Changes
	Child Geometry Management: The geometry_manager Procedure
	Widget Placement and Sizing
	Preferred Geometry
	Size Change Management: The resize Procedure

	Chapter 7. Event Management
	Adding and Deleting Additional Event Sources
	Adding and Removing Input Sources
	Adding and Removing Blocking Notifications
	Adding and Removing Timeouts
	Adding and Removing Signal Callbacks

	Constraining Events to a Cascade of Widgets
	Requesting Key and Button Grabs

	Focusing Events on a Child
	Events for Drawables That Are Not a Widget's Window

	Querying Event Sources
	Dispatching Events
	The Application Input Loop
	Setting and Checking the Sensitivity State of a Widget
	Adding Background Work Procedures
	X Event Filters
	Pointer Motion Compression
	Enter/Leave Compression
	Exposure Compression

	Widget Exposure and Visibility
	Redisplay of a Widget: The expose Procedure
	Widget Visibility

	X Event Handlers
	Event Handlers That Select Events
	Event Handlers That Do Not Select Events
	Current Event Mask
	Event Handlers for X11 Protocol Extensions

	Using the Intrinsics in a Multi-Threaded Environment
	Initializing a Multi-Threaded Intrinsics Application
	Locking X Toolkit Data Structures
	Locking the Application Context
	Locking the Process

	Event Management in a Multi-Threaded Environment

	Chapter 8. Callbacks
	Using Callback Procedure and Callback List Definitions
	Identifying Callback Lists
	Adding Callback Procedures
	Removing Callback Procedures
	Executing Callback Procedures
	Checking the Status of a Callback List

	Chapter 9. Resource Management
	Resource Lists
	Byte Offset Calculations
	Superclass-to-Subclass Chaining of Resource Lists
	Subresources
	Obtaining Application Resources
	Resource Conversions
	Predefined Resource Converters
	New Resource Converters
	Issuing Conversion Warnings
	Registering a New Resource Converter
	Resource Converter Invocation

	Reading and Writing Widget State
	Obtaining Widget State
	Widget Subpart Resource Data: The get_values_hook Procedure
	Widget Subpart State

	Setting Widget State
	Widget State: The set_values Procedure
	Widget State: The set_values_almost Procedure
	Widget State: The ConstraintClassPart set_values Procedure
	Widget Subpart State
	Widget Subpart Resource Data: The set_values_hook Procedure

	Chapter 10. Translation Management
	Action Tables
	Action Table Registration
	Action Names to Procedure Translations
	Action Hook Registration

	Translation Tables
	Event Sequences
	Action Sequences
	Multi-Click Time

	Translation Table Management
	Using Accelerators
	KeyCode-to-KeySym Conversions
	Obtaining a KeySym in an Action Procedure
	KeySym-to-KeyCode Conversions
	Registering Button and Key Grabs for Actions
	Invoking Actions Directly
	Obtaining a Widget's Action List

	Chapter 11. Utility Functions
	Determining the Number of Elements in an Array
	Translating Strings to Widget Instances
	Managing Memory Usage
	Sharing Graphics Contexts
	Managing Selections
	Setting and Getting the Selection Timeout Value
	Using Atomic Transfers
	Atomic Transfer Procedures
	Getting the Selection Value
	Setting the Selection Owner

	Using Incremental Transfers
	Incremental Transfer Procedures
	Getting the Selection Value Incrementally
	Setting the Selection Owner for Incremental Transfers

	Setting and Retrieving Selection Target Parameters
	Generating MULTIPLE Requests
	Auxiliary Selection Properties
	Retrieving the Most Recent Timestamp
	Retrieving the Most Recent Event

	Merging Exposure Events into a Region
	Translating Widget Coordinates
	Translating a Window to a Widget
	Handling Errors
	Setting WM_COLORMAP_WINDOWS
	Finding File Names
	Hooks for External Agents
	Hook Object Resources
	Querying Open Displays

	Chapter 12. Nonwidget Objects
	Data Structures
	Object Objects
	ObjectClassPart Structure
	ObjectPart Structure
	Object Resources
	ObjectPart Default Values
	Object Arguments to Intrinsics Routines
	Use of Objects

	Rectangle Objects
	RectObjClassPart Structure
	RectObjPart Structure
	RectObj Resources
	RectObjPart Default Values
	Widget Arguments to Intrinsics Routines
	Use of Rectangle Objects

	Undeclared Class
	Widget Arguments to Intrinsics Routines

	Chapter 13. Evolution of the Intrinsics
	Determining Specification Revision Level
	Release 3 to Release 4 Compatibility
	Additional Arguments
	set_values_almost Procedures
	Query Geometry
	unrealizeCallback Callback List
	Subclasses of WMShell
	Resource Type Converters
	KeySym Case Conversion Procedure
	Nonwidget Objects

	Release 4 to Release 5 Compatibility
	baseTranslations Resource
	Resource File Search Path
	Customization Resource
	Per-Screen Resource Database
	Internationalization of Applications
	Permanently Allocated Strings
	Arguments to Existing Functions

	Release 5 to Release 6 Compatibility
	Widget Internals
	General Application Development
	Communication with Window and Session Managers
	Geometry Management
	Event Management
	Resource Management
	Translation Management
	Selections
	External Agent Hooks

	Release 6 to Release 7 Compatibility
	Changes During X11R6
	Changes During X11R7
	Converting to Standard C

	Appendix A. Resource File Format
	Appendix B. Translation Table Syntax
	Appendix C. Compatibility Functions
	Appendix D. Intrinsics Error Messages
	Appendix E. Defined Strings
	Appendix F. Resource Configuration Management

