Athena Widget Set -
C Language Interface

X Consortium Standard

Chris D. Peterson, formerly MIT X Consortium

Athena Widget Set - C Language Interface: X Consortium Standard
by Chris D. Peterson

libXaw Version 1.0.13
Copyright © 1985, 1986, 1987, 1988, 1989, 1991, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

X Window System is a trademark of The OpenGroup.
Copyright © 1985, 1986, 1987, 1988, 1989, 1991 Digital Equipment Corporation, Maynard, Massachusetts.

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appears in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Digital not be used in in advertising or publicity
pertaining to distribution of the software without specific, written prior permission. Digital makes no representations
about the suitability of the software described herein for any purpose. It is provided “as is” without express or
implied warranty.

Table of Contents

1. Athena Widgets and The INtrinSiCsccccveviiiiiiiiiiiiiiiinieeiiee e eei e 1
Introduction to the X TOOLKItccouiiiiiiiiiiiiiii e e 1
A=) 300 Eh o) (oo 57 AR 2
L850 Te 1S3 o121 To ALY (o Yo =Y R PPN 3
Conventions Used in this Manualcccoeieiiiiiiiiiiiiniiiie e 3
Format of the Widget Reference Chapterscccooevviviiiiiiiiiiniiiiiniciiin e, 4
|0} 010 L o o Yo ¥ £~ PR 6

2. USING WIAGETES .uuiiiiieiiiiiiiiiie ittt e et e e et e e tieeeeet e e tatneeetanseesnneassnnsarsnasasnnees 7
USING WIAGELES .iviiiiiiieiiiiie et ettt e e et e e et e e et e e eea e e eaaneaeannsaeanneanennns 7

Setting the LoCalecouiiiiiiiiiiiii e e e e 7
Initializing the TOOLKItccouiiiiiiiiiiie e e e 7
Creating @ WIAGELt ...civueiiiiiiiiiiie e e et e e e e et e anaa s 8
COMMON RESOUTCES ...ivuiiiiiiiiiiiieiiie ettt ete et e e et s et e e eeanes 9
ReSOUIrCe CONVETSIONS ..ivuuiiiniiiniiiiiiiiieiineiie ettt et eei e et e et et earneeaneennns 10
Realizing @ WIdgetcooovuiiiiiiieiiiee e e e 11
Processing EVENTSiiuiiiiiiiiiiiiiii e 11
Standard Widget Manipulation Functionscccceeevvieeiiiiniiiiinieninnnnn. 12
Using the Client Callback Interfacec.cccoevviviiniiiiiniiiiiniiiieeecieeeenenn, 14
Programming Considerationscc.cccveeieiiiriiiinriiinieiiin e eeeeeenees 15
EXample Programsceeiiueeiiiiniiiiineeiieeeeiieeeiineeeineesinesnnnesenseessnnaens 20

3. SIMPIE WIAGELES ..iivveiiiiiieiiii ittt e e et e e tieeeeteeeaas e eeraneaasnneeesnnenees 21

Command WIAGETcoouuiiiiiiiiiiiiiiiiie e et e e e e e e e ertseeereeeaannns 21
RESOUICES .uiiiiiiiieiiiiii ettt et et e et e et e e s ea e eeaes 22
Command ACEIONS ...cuuiiiiieiiiiiieiie ettt e eeiieeeriee e et e eerie e et eeeaaneaerenaaes 23

(@) 1o I LT Te T =Y O PTRPTRR 24
RESOUICES .uiiiiiiiieiiiiii ettt et et e et e et e e s ea e eeaes 25
(€] o o A No] o) 4 - ST 26

Label WIAGet ovuniiiieiiiiiiiiiie ettt e e e e e e et e e et s e ea e e aaan e 26
RESOUICES .uiiiiiiiieiiiiii ettt et et e et e et e e s ea e eeaes 27

| £ ATV T o £ /PP 28
RESOUICES .uiiiiiiiieiiiiii ettt et et e et e et e e s ea e eeaes 29
LISE ACEIONIS tiuniiiiiiiiiiie ittt et et e et s et e e e ea s eaa e aa e 31
| A 0= 1 1 o T Vol <SPPI 32
Changing the LiStccceiiiiiriiiiieeiie e e ee e e e e e 32
Highlighting an Itemccooiiiiiiiiiiin e e e 33
Unhighlighting an IEemovviiiiiiiiiniiiee e e e e 33
Retrieving the Currently Selected Itemccoovvvviiiiiiiiiiinniiiinniiines 33
RESETICTIONS ivuiiiiiiiiii it e e e e e e e abeaaa s 33

Panner WIAQEtoiviuiiiiiiiiiiie et e e e e e e e e e e e e e eees 33
RESOUICES .uiiiiiiiieiiei ettt e et s et e e e e e s eaa e eanes 34
Panner ACHIONSiiiniiiiiiiii et 36
Panner CallbacKSccoouiiiiiiiiiiiieiiiiie e e e et e et s e e e eeaeeeees 37

Repeater WIAGetccouuiiiiiiiiiiie et e et e e et e e et e e eat s e eaaeeaaanaees 37
RESOUICES .uiiiiiiiieiiiiii ettt et e et e et e e s eaa e eaaes 38
Repeater ACLIONScouiiiiiii e e e 40

S0 AT 11 o T N VA Te [1= AP 40
RESOUICES .uiiiiiiiieiiiiii ettt et e et e et e e s eaa e eaaes 41
03 AoT 11 o7} ol Voa v (o) s 1= SN TRRPPPR 43
Scrollbar CallDACKSccvueiiiiieiiiiieeiiii e et e e e e e eri s e enieeeenaeeeees 44
Convenience ROULINEScouiiiiiiiiiiiiiiiii e 45
Setting Float RESOUICESccivvueiiiiiiiiiiiiiiiie e et eere e eve e e eae e eees 45

iii

Athena Widget Set -
C Language Interface

N0 0) 0] ST V4 T Fo [AN 46
RESOUTCES ..vniiiiiiiii et e e e e e e e e eanees 46
StripChart WIdgetooeeieiii e e e e e e e 47
RESOUTCES ..vniiiiiiiii et e e e e e e e e eanees 47
Getting the StripChart Valuec.coooiiiiiiiiiieee e 49

B Koo o] LSTAYA o Lo =] v 49
RESOUTCES ..vniiiiiiiiii ettt e e et e e e e e eanees 50
Koo o] LSRN0k n o) s 1= N 52
Koo o] LSRN0k n o) s 1= N 52
RAAIO GIOUPS ..ivuniiiiiiiiiiiei et e e e et et e e e et e et e e et e et e st e saaeaenesenassnnns 53
Convenience ROULINESooviviiiiiiiiii e 53

Y =Y L 1SR RRN 55
USING the MENUS ...civiiiiiiie ittt e e e et e et e e et e s aeeaeeeanaeanns 55
SimpleMenu WIdgetouiiiiiiiiiic e 56
RESOUTCES ..vniiiiiiiiii ettt e e et e e e e e eanees 56
SimpleMenu ACEIONSu.iiiiiieeie e 58
Positioning the SimMpleMenuc.coeviiiiiiiiiiiiiiii e 59
Convenience ROULINESooviiiiiiiiiiiii e 60
SMEBSB ODJECE ..o e aans 60
RESOUTCES ..vniiiiiiiiii et e e et e e e e e eanees 61
SMELINE ODJECE ..uuiiiniiiiiiii e e e e e e 62
RESOUTCES ..vniiiiiiiiii et e e et e e e e e eanees 63
10 TSI O] oY =T o AP 63
RESOUTCES ..vniiiiiiiiii et e e et e e e e e eanees 64
Subclassing the Sme ObjJectcoeveiiiiiiiiii e, 64
MenuButton WIdgetooeniiiiiii e e e aaaas 65
RESOUTCES ..vniiiiiiiiiei et e e et e e e e e eanees 65
MenuButton ACEIONS ...iiuiiniiiiiii e et e e e e e e aaaas 67
MenuButton ACEIONS ...iiuiiniiiiiii e et e e e e e e aaaas 67

5. TeXt WIAGEES ovniiiniiiiiii et e e e e et e et e e ae e e e saaaeaanas 69
Text Widget for USETS ...cuiiiiiiiiii ettt e et e e e e eaa e 69
Default Key Bindingsc.ceeiiiiiiiiiieiiieiie et e e e eaas 69
Search and RePlacecooeiiiiiiiiiiei e 70

L LI b 0 F1= w0) o RN 72
Text Selections for USETScoiuiiiiiiiiiiiieie e 72
Text Widget ACLIONS ..ouniieiiiiiie e e et e e e eees 73
Cursor Movement ACEIONSivuiiiiiiiiiiiie e 74
Delete ACLIONS ..uiieiiiiiii ittt e e e aaaa s 75
Selection ACLIONS ...cceuiiiiiii e e e 75

The New Line ACLIONSccviiiniiiiiii et e e 76

Kill @and ACHIONS ..oovniiiiiiie et e et e e e e e e e aanas 76
Miscellaneous ACLIONSc..iiiiiiiiiiiiieiie e e e e e e eaaa s 77
Text Selections for Application Programmersccccceeeeveeinieennennnnnn. 79
Default Translation Bindingscccoeeiiiiiiiiiiiiiiieee e e 80
TeXt FUNCEIONS ..ivniiniiiiiiii e e et e et e et e e e e e e e e e e eanaes 81
SeleCtiNg TEXE .uuiiiniiiiiiie i eaa e 82
Unhighlighting TeXtccouiiiiiii e e 82
Getting Current Text Selectioncccoceeiiiiiiiiiiiiiie e, 83

| 2Y o) F= Tod ha Yo M =)« AN 83
Searching for TeXtcociiiiiiii e e e e aaaas 84
Redisplaying TeXt ..c.uoiiuiiiiiiiiieeie e e e e e e e e e e a e e eees 84
Resources Convenience ROULINEScccccviuviiiiiiiiiiiiiiiiieieee e 85
ASCIi TeXt WIAGEL ..einiiiiiiieie e e et e e e e e et e e e e aenas 86
RESOUTCES ..vniiiiiiiiiei ettt e e et e e e e e eanees 87

iv

Athena Widget Set -
C Language Interface

Ascii Source Object and Multi Source Objectcccevviiiiiiiiiiiiiiieieen, 88
RESOUTCES ..vniiiiiiiii et e e e e e e e e eanees 89
Convenience ROULINEScoviiiiiiiiiiiii e 90

Ascii Sink Object and Multi Sink Objectcoovviiiiiiiiiiiii e, 91
RESOUTCES ..vniiiiiiiii et e e e e e e e e eanees 91

Customizing the Text WIidgetcooviiiiiiiiiiiii e, 92

B A T o [PPNt 93
RESOUTCES ..vniiiiiiiiii ettt e e et e e e e e eanees 93

L) o @] o [T o] PN 94
RESOUTCES ..vniiiiiiiiii ettt e e et e e e e e eanees 95
Subclassing the TeXtSICcccuviiiiiiiii e 95

TeXESINK ODJECE .. aens 98
RESOUTCES ..vniiiiiiiiii ettt e e et e e e e e eanees 98
Subclassing the TextSinkc.cooiiiiiiiiiiiii e 99

6. Composite and Constraint Widgetsccccooeiiiiiiiiiiiiiiiii e, 104

5705 QA% o o [A 105
RESOUTCES ..vniiiiiiii et e et e e e e e ees 105
Layout SemantiCSciiuiiiiiiiiiiiiii e 106

|- o Yo A% T o £ A 107
RESOUTCES ..eniiiiiii et e e e e e e ees 107
Constraint RESOUICEScouiiiiiiiiiiiieie ettt e v e e eaa e 108
Layout SemantiCScviuviiiiiiiiiiiei e e 109
Automatically Created Children.c.ccoovviiiiiiiiiiiii e, 111
Convenience ROULINESccooiiiiiiiiiiiiiiii e 111

o) o R LA T [1= P 111
RESOUTCES ..vniiiiiiiiii e et e e e e e ees 112
Constraint RESOUICESivuiiiiiiiiiieie ettt e e e e eaa e 113
Layout SemantiCSciiuviiiiiiiieiii e e 114
Convenience ROULINESccooiiiiiiiiiiiiiiii e 115

Paned WIdgetoovniiiiiiiiii et e et e e e e e aaaaas 115
Using the Paned Widgetc.ooeiuiiiiiiiiiiiii e 116
RESOUTCES ..vniiiiiiii et e e e e e ees 116
Constraint RESOUICEScvuiiiiiiiiiiieiieci ettt e e e e ean e 119
Layout SemantiCSciiuviiiiiiiieiii e e 120
Grip Translationsc.c.oeiiiiiiiii e e e 121
Convenience ROULINESccociiiiiiiiiiiiiiie e 121

Porthole WIAQEet ...coeniiieiiie et e e e e e e 123
RESOUTCES ..vniiiiiiii et e e e e e ees 123
Layout SemantiCScviuviiiiiiiieiiii e 124
Porthole CallbDacCKScc.eiiiniiiiiiiieie e e e 124

B TSI Ao Lo £ PR 124
RESOUTCES ..eniiiiiiiii et e e e e e ees 125
Constraint RESOUICEScvuiiiiiiiiiiieieee et e e e ean e 126
Layout SemantiCScviuviiiiiiiieiici et e e 126
Convenience ROULINEScooiiiiiiiiiiiiiii e 126

VieWport WIAQetcveniiiiii e er e 127
RESOUTCES ..vniiiiiiii et e e e e e ees 127
Layout SemantiCscviuviiiiiiiiiiiii e 129

7. Creating New Widgets (Subclassing)cccceeveeiiiiiiiiiiiiieiiieee e, 130

Public Header Filecouiiiiiiiii ettt e ea e 131

Private Header Fileccoooiiiiiiiiiii et e e e 133

Widget SoUTCE File ...couiiiiiiiiiiee et 134

8. ACKNOWIEAGIMENLESciiniiiiiiii et e e e e e e aans 138
s Lo 1= N 140

Chapter 1. Athena Widgets and The
Intrinsics

The X Toolkit is made up of two distinct pieces, the Xt Intrinsics and a widget set.
The Athena widget set is a sample implementation of a widget set built upon the
Intrinsics. In the X Toolkit, a widget is the combination of an X window or subwindow
and its associated input and output semantics.

Because the Intrinsics provide the same basic functionality to all widget sets it
may be possible to use widgets from the Athena widget set with other widget sets
based upon the Intrinsics. Since widget sets may also implement private protocols,
all functionality may not be available when mixing and matching widget sets. For
information about the Intrinsics, see the X Toolkit Intrinsics - C Language Interface.

The Athena widget set is a library package layered on top of the Intrinsics and
Xlib that provides a set of user interface tools sufficient to build a wide variety of
applications. This layer extends the basic abstractions provided by X and provides
the next layer of functionality primarily by supplying a cohesive set of sample
widgets. Although the Intrinsics are a Consortium standard, there is no standard
widget set.

To the extent possible, the Intrinsics are "policy-free". The application environment
and widget set, not the Intrinsics, define, implement, and enforce:

* Policy
* Consistency
* Style

Each individual widget implementation defines its own policy. The X Toolkit design
allows for, but does not necessarily encourage, the free mixing of radically differing
widget implementations.

Introduction to the X Toolkit

The X Toolkit provides tools that simplify the design of application user
interfaces in the X Window System programming environment. It assists application
programmers by providing a set of common underlying user-interface functions. It
also lets widget programmers modify existing widgets, by subclassing, or add new
widgets. By using the X Toolkit in their applications, programmers can present a
similar user interface across applications to all workstation users.

The X Toolkit consists of:

* A set of Intrinsics functions for building widgets
¢ An architectural model for constructing widgets
* A widget set for application programming

While the majority of the Intrinsics functions are intended for the widget
programmer, a subset of the Intrinsics functions are to be used by application

../libXt/intrinsics.pdf#intrinsics

Athena Widgets
and The Intrinsics

programmers (see X Toolkit Intrinsics - C Language Interface). The architectural
model lets the widget programmer design new widgets by using the Intrinsics and
by combining other widgets. The application interface layers built on top of the
X Toolkit include a coordinated set of widgets and composition policies. Some of
these widgets and policies are specific to a single application domain, and others
are common to a variety of applications.

The remainder of this chapter discusses the X Toolkit and Athena widget set:
* Terminology

* Model

* Conventions used in this manual

¢ Format of the Widget Reference Chapters

Terminology

In addition to the terms already defined for X programming (see Xlib - C Language
Interface), the following terms are specific to the Intrinsics and Athena widget set
and used throughout this document.

Application programmer A programmer who uses the X Toolkit to produce an
application user interface.

Child A widget that is contained within another "parent"
widget.

Class The general group to which a specific object belongs.

Client A function that uses a widget in an application or for

composing other widgets.

FullName The name of a widget instance appended to the full
name of its parent.

Instance A specific widget object as opposed to a general widget
class.

Method A function or procedure implemented by a widget class.

Name The name that is specific to an instance of a widget for

a given client. This name is specified at creation time
and cannot be modified.

Object A data abstraction consisting of private data and
private and public functions that operate on the
private data. Users of the abstraction can interact
with the object only through calls to the object's
public functions. In the X Toolkit, some of the object's
public functions are called directly by the application,
while others are called indirectly when the application
calls the common Intrinsics functions. In general, if a
function is common to all widgets, an application uses
a single Intrinsics function to invoke the function for

../libXt/intrinsics.pdf#intrinsics
../libX11/libX11/libX11.pdf#glossary
../libX11/libX11/libX11.pdf#glossary

Athena Widgets
and The Intrinsics

all types of widgets. If a function is unique to a single
widget type, the widget exports the function.

Parent A widget that contains at least one other ("child")
widget. A parent widget is also known as a composite
widget.

Resource A named piece of data in a widget that can be set by a

client, by an application, or by user defaults.

Superclass A larger class of which a specific class is a member. All
members of a class are also members of the superclass.

User A person interacting with a workstation.

Widget An object providing a user-interface abstraction (for
example, a Scrollbar widget).

Widget class The general group to which a specific widget belongs,
otherwise known as the type of the widget.

Widget programmer A programmer who adds new widgets to the X Toolkit.

Underlying Model

The underlying architectural model is based on the following premises:

Widgets are X windows
Every user-interface widget is associated with an X window. The X window ID
for a widget is readily available from the widget. Standard Xlib calls can be used
by widgets for many of their input and output operations.

Information hiding
The data for every widget is private to the widget and its subclasses. That is, the
data is neither directly accessible nor visible outside of the module implementing
the widget. All program interaction with the widget is performed by a set of
operations (methods) that are defined for the widget.

Widget semantics and widget layout geometry
Widget semantics are clearly separated from widget layout geometry. Widgets
are concerned with implementing specific user-interface semantics. They have
little control over issues such as their size or placement relative to other
widget peers. Mechanisms are provided for associating geometric managers
with widgets and for widgets to make suggestions about their own geometry.

Conventions Used in this Manual

« All resources available to the widgets are listed with each widget. Many of these
are available to more than one widget class due to the object oriented nature of
the Intrinsics. The new resources for each widget are listed in bold text, and the
inherited resources are listed in plain text.

* Global symbols are printed in bol d and can be function names, symbols defined
in include files, or structure names. Arguments are printed in italics.

Athena Widgets
and The Intrinsics

e Each function is introduced by a general discussion that distinguishes it from
other functions. The function declaration itself follows, and each argument is
specifically explained. General discussion of the function, if any is required,
follows the arguments. Where applicable, the last paragraph of the explanation
lists the return values of the function.

* To eliminate any ambiguity between those arguments that you pass and those that
a function returns to you, the explanations for all arguments that you pass start
with the word specifies or, in the case of multiple arguments, the word specify.
The explanations for all arguments that are returned to you start with the word
returns or, in the case of multiple arguments, the word return. The explanations
for all arguments that you can pass and are returned start with the words specifies
and returns.

* Any pointer to a structure that is used to return a value is designated as such by
the return suffix as part of its name. All other pointers passed to these functions
are used for reading only. A few arguments use pointers to structures that are
used for both input and output and are indicated by using the in out suffix.

Format of the Widget Reference Chapters

The majority of this document is a reference guide for the Athena widget set.
Chapters three through six give the programmer all information necessary to use
the widgets. The layout of the chapters follows a specific pattern to allow the
programmer to easily find the desired information.

The first few pages of every chapter give an overview of the widgets in that section.
Widgets are grouped into chapters by functionality.

e Chapter 3, Simple Widgets

e Chapter 4, Menus

e Chapter 5, Text Widgets

* Chapter 6, Composite and Constraint Widgets

Following the introduction will be a description of each widget in that chapter. When
no functional grouping is obvious the widgets are listed in alphabetical order, such
as in chapters three and six.

The first section of each widget's description is a table that contains general
information about this widget class. Here is the table for the Box widget, and an
explanation of all the entries.

Application Header file <X11/Xaw Box. h>
Cl ass Header file <X11/ Xaw BoxP. h>

Cl ass boxW dget d ass

Cl ass Name Box

Super cl ass Conposite

Athena Widgets
and The Intrinsics

Application Header File This file must be included when an application uses
this widget. It usually contains the class definition,
and some resource macros. This is often called the
“public” header file.

Cl ass Header File This file will only be used by widget programmers.
It will need to be included by any widget that
subclasses this widget. This is often called the
“private” header file.

d ass This is the widget class of this widget. This global
symbol is passed to Xt Creat eW dget so that the
Intrinsics will know which type of widget to create.

Cl ass Nane This is the resource name of this class. This name can
be used in a resource file to match any widget of this
class.

Supercl ass This is the superclass that this widget class

is descended from. If you understand how the
superclass works it will allow you to more quickly
understand what this widget does, since much of its
functionality may be inherited from its superclass.

After this table follows a general description of the default behavior of this widget,
as seen by the user. In many cases this functionality may be overridden by the
application programmer, or by the user.

The next section is a table showing the name, class, type and default value of each
resource that is available to this widget. There is also a column containing notes
describing special restrictions placed upon individual resources.

A This resource may be automatically adjusted when another
resource is changed.

C This resource is only settable at widget creation time, and may not
be modified with Xt Set Val ues.

D Do not modify this resource. While setting this resource will work,
it can cause unexpected behavior. When this symbol appears there
is another, preferred, interface provided by the X Toolkit.

R This resource is READ-ONLY, and may not be modified.

After the resource table is a detailed description of every resource available to that
widget. Many of these are redundant, but printing them with each widget saves
page flipping. The names of the resources that are inherited are printed in plain text,
while the names of the resources that are new to this class are printed in bol d. If
you have already read the description of the superclass you need only pay attention
to the resources printed in bold.

For each composite widget there is a section on layout semantics that follows the
resource description. This section will describe the effect of constraint resources
on the layout of the children, as well as a general description of where it prefers
to place its children.

Athena Widgets
and The Intrinsics

Descriptions of default translations and action routines come next, for widgets to
which they apply. The last item in each widget's documentation is the description
of all convenience routines provided by the widget.

Input Focus

The Intrinsics define a resource on all Shell widgets that interact with the window
manager called i nput . This resource requests the assistance of window manager
in acquiring the input focus. The resource defaults to Fal se in the Intrinsics, but
is redefined to default to Tr ue when an application is using the Athena widget set.
An application programmer may override this default and set the resource back to
Fal se if the application does not need the window manager to give it the input focus.
See the X Toolkit Intrinsics - C Language Interface for details on the input resource.

../libXt/intrinsics.pdf#Shell_Widgets

Chapter 2. Using Widgets
Using Widgets

Widgets serve as the primary tools for building a user interface or application
environment. The Athena widget set consists of primitive widgets that contain
no children (for example, a command button) and composite widgets which may
contain one or more widget children (for example, a Box widget).

The remaining chapters explain the widgets that are provided by the Athena
widget set. These user-interface components serve as an interface for application
programmers who do not want to implement their own widgets. In addition, they
serve as a starting point for those widget programmers who, using the Intrinsics
mechanisms, want to implement alternative application programming interfaces.

This chapter is a brief introduction to widget programming. The examples provided
use the Athena widgets, though most of the concepts will apply to all widget sets.
Although there are several programming interfaces to the X Toolkit, only one is
described here. A full description of the programming interface is provided in the
document X Toolkit Intrinsics - C Language Interface.

Setting the Locale

If it is desirable that the application take advantage of internationalization
(i18n), you must establish locale with Xt SetlLanguageProc prior to calling
Xt OpenAppl i cation, Xt OpenDi spl ay, Xt Di spl aylnitialize, or Xt Applnitialize.
For full details, please refer to the document X Toolkit Intrinsics - C Language
Interface, section 2.2. However, the following simplest-case call is sufficient in many
or most applications.

Xt Set LanguagePr oc(NULL, NULL, NULL);

Most notably, this will affect the Standard C locale, determine which resource files
will be loaded, and what fonts will be required of FontSet specifications. In many
cases, the addition of this line is the only source change required to internationalize
Xaw programs, and will not disturb the function of programs in the default "C"
locale.

Initializing the Toolkit

You must call a toolkit initialization function before invoking any other toolkit
routines (besides locale setting, above). Xt OQpenAppl i cati on, opens the X server
connection, parses the command line, and creates an initial widget that will serve
as the root of a tree of widgets created by this application.

W dget Xt OpenAppl i cati on(app_cont ext _return, application_cl ass,
options, numoptions, argc_in_out, argv_in_out, fallback_resources,
wi dget _cl ass, args, num args);

../libXt/intrinsics.pdf#intrinsics
../libXt/intrinsics.pdf#Establishing_the_Locale
../libXt/intrinsics.pdf#Establishing_the_Locale

Using Widgets

app_context _return

application_class

options

num_options

argc_in_out

argv_in_out

fallback_resources

widget class

args

num_args

Returns the application context of this application, if
non-NULL.

Specifies the class name of this application, which
is usually the generic name for all instances of this
application. A useful convention is to form the class
name by capitalizing the first letter of the application
name. For example, the application named “xman”
has a class name of “Xman”.

Specifies how to parse the command line for any
application-specific resources. The options argument
is passed as a parameter to Xr nPar seConmand. For
further information, see Xlib - C Language Interface.
Specifies the number of entries in the options list.

Specifies a pointer to the number of command line
parameters.

Specifies the command line parameters.

Specifies resource values to be used if the site-wide
application class defaults file cannot be opened, or
NULL.

Specifies the class of the widget to be created. Must
be shellWidgetClass or a subclass.

Specifies the argument list to use when creating the
Application shell.

Specifies the number of arguments in args.

This function will remove the command line arguments that the toolkit reads from
argc _in_out, and argv_in_out. It will then attempt to open the display. If the display
cannot be opened, an error message is issued and XtApplInitialize terminates the
application. Once the display is opened, all resources are read from the locations
specified by the Intrinsics. This function returns an ApplicationShell widget to be
used as the root of the application's widget tree.

Creating a Widget

Creating a widget is a three-step process. First, the widget instance is allocated,
and various instance-specific attributes are set by using Xt Cr eat eW dget . Second,
the widget's parent is informed of the new child by using Xt ManageChi | d. Finally, X
windows are created for the parent and all its children by using Xt Real i zeW dget
and specifying the top-most widget. The first two steps can be combined by using
Xt Cr eat eManagedW dget . In addition, Xt Real i zeW dget is automatically called
when the child becomes managed if the parent is already realized.

To allocate, initialize, and manage a widget, use Xt Cr eat eManagedW dget .

W dget Xt Creat eManagedW dget (nane, wi dget _cl ass, par ent, ar gs,

num ar gs) ;

../libX11/libX11/libX11.pdf#XrmParseCommand
../libX11/libX11/libX11.pdf#XrmParseCommand

Using Widgets

name

widget class

parent

args

num_args

Specifies the instance name for the created widget
that is used for retrieving widget resources.

Specifies the widget class pointer for the created

widget.

Specifies the parent widget ID.

Specifies the argument list. The argument list is
a variable-length list composed of name and value
pairs that contain information pertaining to the
specific widget instance being created. For further

information, see Section 2.7.2.

Specifies the number of arguments in the argument
list. If the num args is zero, the argument list is never
referenced.

When a widget instance is successfully created, the widget identifier is returned to
the application. If an error is encountered, the Xt Er r or routine is invoked to inform

the user of the error.

For further information, see X Toolkit Intrinsics - C Language Interface.

Common Resources

]

Although a widget can have unique arguments that it understands, all widgets
have common arguments that provide some regularity of operation. The common
arguments allow arbitrary widgets to be managed by higher-level components
without regard for the individual widget type. Widgets will ignore any argument
that they do not understand.

The following resources are retrieved from the argument list or from the resource
database by all of the Athena widgets:

Name Class Type Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean True
background Background Pixel XtDefaultBackgroungd
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
colormap Colormap Colormap Parent's Colormap
depth Depth int Parent's Depth
destroyCallback Callback XtCallbackList NULL
height Height Dimension widget dependent
nappedWhenManagdfappedWhenManaged Boolean True
screen Screen Screen Parent's Screen
sensitive Sensitive Boolean True

../libXt/intrinsics.pdf#Creating_Widgets

Using Widgets

Name Class Type Default Value
translations Translations TranslationTable | widget dependent
width Width Dimension widget dependent
X Position Position 0
y Position Position 0

The following additional resources are retrieved from the argument list or from the
resource database by many of the Athena widgets:

Name Class Type Default Value
callback Callback XtCallbackList NULL
cursor Cursor Cursor widget dependent
foreground Foreground Pixel XtDefaultForeground
insensitiveBorder Insensitive Pixmap GreyPixmap

Resource Conversions

Most resources in the Athena widget set have a converter registered that will
translate the string in a resource file to the correct internal representation. While
some are obvious (string to integer, for example), others need specific mention of
the allowable values. Three general converters are described here:

e Cursor
¢ Pixel
e Bitmap

Many widgets have defined special converters that apply only to that widget. When
these occur, the documentation section for that widget will describe the converter.

Cursor Conversion

The value for the cur sor Nane resource is specified in the resource database as a
string, and is of the following forms:

* Astandard X cursor name from <X11/ cur sor f ont . h>. The namesincursorfont. h
each describe a specific cursor. The resource names for these cursors are exactly
like the names in this file except the XC_ is not used. The cursor definition
XC _gunby has a resource name of gunby.

* Glyphs, as in FONT font-name glyph-index [[font-name] glyph-index]. The first
font and glyph specify the cursor source pixmap. The second font and glyph
specify the cursor mask pixmap. The mask font defaults to the source font, and
the mask glyph index defaults to the source glyph index.

* Arelative or absolute file name. If a relative or absolute file name is specified, that
file is used to create the source pixmap. Then the string "Mask" is appended to

10

Using Widgets

locate the cursor mask pixmap. If the "Mask" file does not exist, the suffix "msk"
is tried. If "msk" fails, no cursor mask will be used. If the filename does not start
with '/' or './' the the bitmap file path is used (see section 2.4.3).

Pixel Conversion

The string-to-pixel converter takes any name that is acceptable to XParseColor
(see Xlib - C Language Interface). In addition this routine understands the special
toolkit symbols “XtDefaultForeground' and " XtDefaultBackground', described in X
Toolkit Intrinsics - C Language Interface. In short the acceptable pixel names are:

* Any color name for the rgb.txt file (typically in the directory /usr/share/X11 on
POSIX systems).

* A numeric specification of the form #<red><green><blue> where these
numeric values are hexadecimal digits (both upper and lower case).

» The special strings “XtDefaultForeground' and "“XtDefaultBackground'

Bitmap Conversion

The string-to-bitmap converter attempts to locate a file containing bitmap data
whose name is specified by the input string. If the file name is relative (i.e. does not
begin with / or./), the directories to be searched are specified in the bi t mapFi | ePat h
resource--class Bi t mapFi | ePat h. This resource specifies a colon (:) separated list of
directories that will be searched for the named bitmap or cursor glyph (see section
2.4.1). The bi t mapFi | ePat h resource is global to the application, and may not be
specified differently for each widget that wishes to convert a cursor to bitmap.
In addition to the directories specified in the bi t mapFi | ePat h resource a default
directory is searched. When using POSIX the default directory is / usr/i ncl ude/
X11/ bi t maps.

Realizing a Widget
The Xt RealizeW dget function performs two tasks:

¢ Calculates the geometry constraints of all managed descendants of this widget.
The actual calculation is put off until realize time for performance reasons.

* Creates an X window for the widget and, if it is a composite widget, realizes each
of its managed children.

void XtRealizeWdget(w;
* Specifies the widget.

For further information about this function, see the X Toolkit Intrinsics - C Language
Interface.

Processing Events

Now that the application has created, managed and realized its widgets, it is ready
to process the events that will be delivered by the X Server to this client. A function
call that will process the events is Xt AppMai nLoop.

11

../libX11/libX11/libX11.pdf#Color_Strings
../libXt/intrinsics.pdf#Predefined_Resource_Converters
../libXt/intrinsics.pdf#Predefined_Resource_Converters
../libXt/intrinsics.pdf#XtRealizeWidget
../libXt/intrinsics.pdf#XtRealizeWidget

Using Widgets

voi d Xt AppMai nLoop(app_cont ext);

app_context Specifies the application context of this
application. The value is normally returned by
Xt OpenAppl i cati on.

This function never returns: it is an infinite loop that processes the X events. User
input can be handled through callback procedures and application defined action
routines. More details are provided in X Toolkit Intrinsics - C Language Interface.

Standard Widget Manipulation Functions

After a widget has been created, a client can interact with that widget by calling
one of the standard widget manipulation routines provided by the Intrinsics, or a
widget class-specific manipulation routine.

The Intrinsics provide generic routines to give the application programmer access
to a set of standard widget functions. The common widget routines let an application
or composite widget perform the following operations on widgets without requiring
explicit knowledge of the widget type.

* Control the mapping of widget windows
* Destroy a widget instance
¢ Obtain an argument value

¢ Set an argument value
Mapping Widgets

By default, widget windows are mapped (made viewable) automatically
by Xt Real i zeWdget. This behavior can be disabled by using
Xt Set MappedWhenManaged, making the client responsible for calling Xt MapW dget
to make the widget viewable.

voi d Xt Set MappedWhenManaged(w, map_when_nanaged) ;
w Specifies the widget.

map when_managed Specifies the new value. If map when managed is
True, the widget is mapped automatically when it is
realized. If map when managed is Fal se, the client
must call Xt MapW dget or make a second call to
Xt Set MappedWhenManaged to cause the child window
to be mapped.

The definition for Xt MapW dget is:
voi d Xt MapW dget (w);
w Specifies the widget.

When you are creating several children in sequence for a previously realized
common parent it is generally more efficient to construct a list of children as they
are created (using Xt Cr eat eW dget) and then use Xt ManageChi | dren to request

12

../libXt/intrinsics.pdf#Event_Management

Using Widgets

that their parent managed them all at once. By managing a list of children at one
time, the parent can avoid wasteful duplication of geometry processing and the
associated “screen flash”.

voi d Xt ManageChildren(children, numchildren);
children Specifies a list of children to add.
num_children Specifies the number of children to add.

If the parent is already visible on the screen, it is especially important to
batch updates so that the minimum amount of visible window reconfiguration is
performed.

For further information about these functions, see the X Toolkit Intrinsics - C
Language Interface.

Destroying Widgets
To destroy a widget instance of any type, use Xt DestroyW dget
voi d Xt DestroyWdget(w);
w Specifies the widget.

Xt Dest royW dget destroys the widget and recursively destroys any children
that it may have, including the windows created by its children. After calling
Xt Dest royW dget, no further references should be made to the widget or any
children that the destroyed widget may have had.

Retrieving Widget Resource Values

To retrieve the current value of a resource attribute associated with a widget
instance, use Xt Get Val ues.

void Xt GetValues(w, args, numargs);
w Specifies the widget.

args Specifies a variable-length argument list of name and
addr ess pairs that contain the resource name and the
address into which the resource value is stored.

num_args Specifies the number of arguments in the argument list.

The arguments and values passed in the argument list are dependent on the widget.
Note that the caller is responsible for providing space into which the returned
resource value is copied; the Ar gLi st contains a pointer to this storage (e.g. xand y
must be allocated as Position). For further information, see the X Toolkit Intrinsics
- C Language Interface.

Modifying Widget Resource Values

To modify the current value of a resource attribute associated with a widget
instance, use Xt Set Val ues.

13

../libXt/intrinsics.pdf#intrinsics
../libXt/intrinsics.pdf#intrinsics
../libXt/intrinsics.pdf#Reading_and_Writing_Widget_State
../libXt/intrinsics.pdf#Reading_and_Writing_Widget_State

Using Widgets

voi d Xt SetVal ues(w, args, num.args);
w Specifies the widget.

args Specifies an array of name and val ue pairs that contain
the arguments to be modified and their new values.

num_args Specifies the number of arguments in the argument list.

The arguments and values that are passed will depend on the widget being modified.
Some widgets may not allow certain resources to be modified after the widget
instance has been created or realized. No notification is given if any part of a
Xt Set Val ues request is ignored.

For further information about these functions, see the X Toolkit Intrinsics - C
Language Interface. The argument list entry for Xt Get Val ues specifies the
address to which the caller wants the value copied. The argument list entry for
Xt Set Val ues, however, contains the new value itself, if the size of value is less than
sizeof(XtArgVal) (architecture dependent, but at least sizeof(long)); otherwise, it is
a pointer to the value. String resources are always passed as pointers, regardless
of the length of the string.

Using the Client Callback Interface

Widgets can communicate changes in their state to their clients by means of a
callback facility. The format for a client's callback handler is:

void Call backProc(w, client_data, «call_data);
w Specifies widget for which the callback is registered.

client data Specifies arbitrary client-supplied data that the
widget should pass back to the client when the widget
executes the client's callback procedure. This is a way
for the client registering the callback to also register
client-specific data: a pointer to additional information
about the widget, a reason for invoking the callback,
and so on. If no additional information is necessary,
NULL may be passed as this argument. This field is
also frequently known as the closure.

call data Specifies any callback-specific data the widget wants
to pass to the client. For example, when Scrollbar
executes its junpProc callback list, it passes the
current position of the thumb in call data.

Callbacks can be registered either by creating an argument containing the callback
list described below or by using the special convenience routines Xt AddCal | back
and Xt AddCal | backs. When the widget is created, a pointer to a list of callback
procedure and data pairs can be passed in the argument list to Xt Cr eat eW dget .
The list is of type Xt Cal | backLi st

typedef struct {

14

../libXt/intrinsics.pdf#Reading_and_Writing_Widget_State
../libXt/intrinsics.pdf#Reading_and_Writing_Widget_State

Using Widgets

Xt Cal | backProc cal | back;
Xt Poi nter cl osure;
} XtCall backRec, *XtCall backLi st;

The callback list must be allocated and initialized before calling Xt Cr eat eW dget .

The end of the list is identified by an entry containing NULL in callback and closure.
Once the widget is created, the client can change or de-allocate this list; the widget
itself makes no further reference to it. The closure field contains the client data
passed to the callback when the callback list is executed.

The second method for registering callbacks is to use Xt AddCal | back after the
widget has been created.

voi d Xt AddCal | back(w, call back_name, callback, client_data);

w Specifies the widget to add the callback to.

callback_name Specifies the callback list within the widget to
append to.

callback Specifies the callback procedure to add.

client data Specifies the data to be passed to the callback when

it is invoked.
Xt AddCal | back adds the specified callback to the list for the named widget.

All widgets provide a callback list named destroyCal | back where clients can
register procedures that are to be executed when the widget is destroyed. The
destroy callbacks are executed when the widget or an ancestor is destroyed. The
call data argument is unused for destroy callbacks.

Programming Considerations

This section provides some guidelines on how to set up an application program that
uses the X Toolkit.

Writing Applications

When writing an application that uses the X Toolkit, you should make sure that
your application performs the following:

1.Include <X11/Intrinsic.h> in your application programs. This header file
automatically includes <X11/ Xl i b. h>, so all Xlib functions also are defined. It
may also be necessary to include <X11/ St ri ngDef s. h>when setting up argument
lists, as many of the XtNsomething definitions are only defined in this file.

2. Include the widget-specific header files for each widget type that you need to use.
For example, <X11/ Xaw Label . h> and <X11/ Xaw Conmmand. h>.

3. Call the Xt OpenAppl i cati on function before invoking any other toolkit or Xlib
functions. For further information, see Section 2.1 and the X Toolkit Intrinsics -
C Language Interface.

4. To pass attributes to the widget creation routines that will override any site
or user customizations, set up argument lists. In this document, a list of valid

15

../libXt/intrinsics.pdf#Widget_Instantiation
../libXt/intrinsics.pdf#Widget_Instantiation

Using Widgets

argument names is provided in the discussion of each widget. The names each
have a global symbol defined that begins with Xt N to help catch spelling errors.
For example, Xt Nl abel is defined for the | abel resource of many widgets.

For further information, see Section 2.9.2.2.

5. When the argument list is set wup, create the widget with the
Xt Cr eat eManagedW dget function. For further information, see Section 2.2 and
the X Toolkit Intrinsics - C Language Interface.

6. If the widget has any callback routines, set by the Xt Ncal | back argument or the
Xt AddCal | back function, declare these routines within the application.

7. After creating the initial widget hierarchy, windows must be created for each
widget by calling Xt Real i zeW dget on the top level widget.

8. Most applications now sit in a loop processing events using Xt AppMai nLoop, for
example:

Xt Cr eat eManagedW dget (nane, cl ass, parent, args, num.args);
Xt Real i zeW dget (shel) ;
Xt AppMai nLoop(app_cont ext);

9. For information about this function, see the X Toolkit Intrinsics - C Language
Interface.

10Link your application with | i bXaw (the Athena widgets), | i bXnmu (miscellaneous
utilities), i bXt (the X Toolkit Intrinsics), | i bSM(Session Management), | i bl CE
(Inter-Client Exchange), | i bXext (the extension library needed for the shape
extension code which allows rounded Command buttons), and | i bX11 (the core
X library). The following provides a sample command line:

11.
cc -0 application application.c -1 Xaw -1 Xnu -1 Xt -1SM-11CE -1 Xext -1X11

Changing Resource Values

The Intrinsics support two methods of changing the default resource values;
the resource manager, and an argument list passed into XtCreateWidget. While
resources values will get updated no matter which method you use, the two methods
provide slightly different functionality.

Resource This method picks up resource definitions described in XIib - C

Manager Language Interface from many different locations at run time.
The locations most important to the application programmer
are the fallback resources and the app-defaults file, (see X
Toolkit Intrinsics - C Language Interface for the complete
list). Since these resource are loaded at run time, they can
be overridden by the user, allowing an application to be
customized to fit the particular needs of each individual user.
These values can also be modified without the need to rebuild
the application, allowing rapid prototyping of user interfaces.
Application programmers should use resources in preference
to hard-coded values whenever possible.

16

../libXt/intrinsics.pdf#XtCreateManagedWidget
../libXt/intrinsics.pdf#Event_Management
../libXt/intrinsics.pdf#Event_Management
../libX11/libX11/libX11.pdf#Resource_Manager_Functions
../libX11/libX11/libX11.pdf#Resource_Manager_Functions
../libXt/intrinsics.pdf#Loading_the_Resource_Database
../libXt/intrinsics.pdf#Loading_the_Resource_Database

Using Widgets

Argument Lists The values passed into the widget at creation time via an
argument list cannot be modified by the user, and allow no
opportunity for customization. It is used to set resources that
cannot be specified as strings (e.g. callback lists) or resources
that should not be overridden (e.g. window depth) by the user.

Specifying Resources

It is important for all X Toolkit application programmers to understand how to use
the X Resource Manager to specify resources for widgets in an X application. This
section will describe the most common methods used to specify these resources,
and how to use the X Resource manager.

Xr db The xrdb utility may be used to load a file containing
resources into the X server. Once the resources are
loaded, the resources will affect any new applications
started on the display that they were loaded onto.

Application Defaults The application defaults (app-defaults) file (normally in /
usr/share/X11/app-defaults/classname) for an application
is loaded whenever the application is started.

The resource specification has two colon-separated parts, a name, and a value. The
value is a string whose format is dependent on the resource specified by name.
Name is constructed by appending a resource name to a full widget name.

The full widget name is a list of the name of every ancestor of the desired widget
separated by periods (.). Each widget also has a class associated with it. A class
is a type of widget (e.g. Label or Scrollbar or Box). Notice that class names, by
convention, begin with capital letters and instance names begin with lower case
letters. The class of any widget may be used in place of its name in a resource
specification. Here are a few examples:

xman.form.buttonl This is a fully specified resource name, and will
affect only widgets called button1 that are children of
widgets called form that are children of applications
named xman. (Note that while typically two widgets
that are siblings will have different names, it is not
prohibited.)

Xman.Form.Command This will match any Command widget that is a child
of a Form widget that is itself a child of an application
of class Xman.

Xman.Form.buttonl This is a mixed resource name with both widget
names and classes specified.

This syntax allows an application programmer to specify any widget in the widget
tree. To match more than one widget (for example a user may want to make all
Command buttons blue), use an asterisk (*) instead of a period. When an asterisk
is used, any number of widgets (including zero) may exist between the two widget
names. For example:

Xman*Command This matches all Command widgets in the Xman
application.

17

Using Widgets

Foo*buttonl This matches any widget in the Foo application that
is named buttonl.

The root of all application widget trees is the widget returned by
Xt OpenAppl i cati on. Even though this is actually an ApplicationShell widget, the
toolkit replaces its widget class with the class name of the application. The name
of this widget is either the name used to invoke the application (ar gv[0]) or the
name of the application specified using the standard -name command line option
supported by the Intrinsics.

The last step in constructing the resource name is to append the name of the
resource with either a period or asterisk to the full or partial widget name already

constructed.

*foreground:Blue Specifies that all widgets in all applications will have
a foreground color of blue.

Xman*borderWidth:10 Specifies that all widgets in an application whose

class is Xman will have a border width of 10 (pixels).

xman.form.buttonl.label:Testifsgpecifies that a particular widget in the xman
application will have a label named Testing.

An exclamation point (!) in the first column of a line indicates that the rest of the
line should be treated as a comment.

Fi nal Words

The Resource manager is a powerful tool that can be used very effectively to
customize X Toolkit applications at run time by either the application programmer
or the user. Some final points to note:

* An application programmer may add new resources to their application. These
resources are associated with the global application, and not any particular
widget. The X Toolkit function used for adding the application resources is
Xt Get Appl i cat i onResour ces.

* Be careful when creating resource files. Since widgets will ignore resources that
they do not understand, any spelling errors will cause a resource to have no effect.

* Only one resource line will match any given resource. There is a set of precedence
rules, which take the following general stance.

* * More specific overrides less specific, thus period always overrides asterisk.
* Names on the left are more specific and override names on the right.

* When resource specifications are exactly the same, user defaults will override
program defaults.

For a complete explanation of the rules of precedence, and other specific topics see
X Toolkit Intrinsics - C Language Interface and Xlib - C Language Interface.

Creating Argument Lists

To set up an argument list for the inline specification of widget attributes, you may
use any of the four approaches discussed in this section. Each resource name has

18

../libXt/intrinsics.pdf#Loading_the_Resource_Database
../libX11/libX11/libX11.pdf#Resource_Manager_Functions

Using Widgets

a global symbol associated with it. This global symbol has the form XtNresource
name. For example, the symbol for “foreground” is Xt Nf or egr ound. For further
information, see the X Toolkit Intrinsics - C Language Interface.

Argument are specified by using the following structure:

typedef struct {
String nane;

Xt ArgVal val ue;
} Arg, *ArglList;

The first approach is to statically initialize the argument list. For example:

static Arg arglist[] = {
{ Xt Nwi dt h, (XtArgVal) 400},
{ Xt Nhei ght, (XtArgVval) 300},

};

This approach is convenient for lists that do not need to be computed at runtime
and makes adding or deleting new elements easy. The Xt Nunber macro is used
to compute the number of elements in the argument list, preventing simple
programming errors:

Xt Creat eW dget (nanme, class, parent, arglist, XtNunber(arglist));

The second approach is to use the Xt Set Ar g macro. For example:

Arg arglist[10];
Xt Set Arg(arglist[1], XtNw dth, 400);
Xt Set Arg(arglist[2], XtNheight, 300);

To make it easier to insert and delete entries, you also can use a variable index:

Arg arglist[10];

Cardi nal i =0;
XtSet Arg(arglist[i], XtNwi dth, 400); i ++;
Xt Set Arg(arglist[i], XtNheight, 300); i ++;

The i variable can then be used as the argument list count in the widget create
function. In this example, Xt Nurmber would return 10, not 2, and therefore is
not useful. You should not use auto-increment or auto-decrement within the first

19

../libXt/intrinsics.pdf#intrinsics

Using Widgets

argument to Xt Set Arg. As it is currently implemented, Xt Set Ar g is a macro that
dereferences the first argument twice.

The third approach is to individually set the elements of the argument list array:

Arg arglist[10];

arglist[0].name = XtNw dth;
arglist[0].value = (XtArgVval) 400;
arglist[1].name = XtNheight;

arglist[1].value (Xt ArgVval) 300;
Note that in this example, as in the previous example, Xt Nunber would return 10,
not 2, and therefore would not be useful.

The fourth approach is to use a mixture of the first and third approaches: you can
statically define the argument list but modify some entries at runtime. For example:

static Arg arglist[] = {
{Xt N\wi dt h, (XtArgVal) 400},
{ Xt Nnei ght, (XtArgVval) NULL},

}1
arglist[1].value = (XtArgVval) 300;

In this example, Xt Nunber can be used, as in the first approach, for easier code
maintenance.

Example Programs

The best way to understand how to use any programming library is by trying
some simple examples. A collection of example programs that introduces each
of the widgets in that Athena widget set, as well as many important toolkit
programming concepts, is available in the X11R5 contrib release as distributed by
the X Consortium. It can be found in the directory cont ri b/ exanpl es/ Xaw in the
archive at http://www.x.org/releases/X11R5/contrib-1.tar.Z See the READVE file from
that directory for a guide to the examples.

20

http://www.x.org/releases/X11R5/contrib-1.tar.Z

Chapter 3

Each of these
because they

. Simple Widgets

widgets performs a specific user interface function. They are simple
cannot have widget children—they may only be used as leaves of the

widget tree. These widgets display information or take user input.

Comand

Gip
Label

Li st

Panner

Repeat er

Scrol | bar

Si npl e

StripChart
Toggl e

A push button that, when selected, may cause a specific action to take
place. This widget can display a multi-line string or a bitmap or pixmap
image.

A rectangle that, when selected, will cause an action to take place.

A rectangle that can display a multi-line string or a bitmap or pixmap
image.

A list of text strings presented in row column format that may be
individually selected. When an element is selected an action may take
place.

A rectangular area containing a slider that may be moved in two
dimensions. Notification of movement may be continuous or discrete.

A push button that triggers an action at an increasing rate when
selected. This widget can display a multi-line string or a bitmap or
pixmap image.

A rectangular area containing a thumb that when slid along one
dimension may cause a specific action to take place. The Scrollbar
may be oriented horizontally or vertically.

The base class for most of the simple widgets. Provides a rectangular
area with a settable mouse cursor and special border.

A real time data graph that will automatically update and scroll.

A push button that contains state information. Toggles may also be
used as "radio buttons" to implement a "one of many" or "zero or one
of many" group of buttons. This widget can display a multi-line string
or a bitmap or pixmap image.

Command Widget

Application

Cl ass header

header file <X11/ Xaw Command. h>

file <X11/ Xaw ConmandP. h>

G ass commandW dget O ass

Cl ass Nane Command

Super cl ass Label

21

Simple Widgets

The Command widget is an area, often rectangular, that contains text or a graphical
image. Command widgets are often referred to as “push buttons.” When the
pointer is over a Command widget, the widget becomes highlighted by drawing a
rectangle around its perimeter. This highlighting indicates that the widget is ready
for selection. When mouse button 1 is pressed, the Command widget indicates that
it has been selected by reversing its foreground and background colors. When the
mouse button is released, the Command widget's noti f y action is invoked, calling
all functions on its callback list. If the pointer is moved off of the widget before
the pointer button is released, the widget reverts to its normal foreground and
background colors, and releasing the pointer button has no effect. This behavior
allows the user to cancel an action.

Resources

When creating a Command widget instance, the following resources are retrieved
from the argument list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitivAncestorSensitive =~ Boolean D True
background Background Pixel Xt DefaultBackgrou1nd
backgroundPixmap Pixmap Pixmap XtUnspeciﬁedPimeap
bitmap Bitmap Pixmap None
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
callback Callback XtCallbackList NULL
colormap Colormap Colormap Parent's
Colormap
carnerRoundPer€emrherRoundPercent Dimension 25
cursor Cursor Cursor None
cursorName Cursor String NULL
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
encoding Encoding UnsignedChar XawTextEncoding8bit
font Font XFontStruct XtDefaultFont
foreground Foreground Pixel XtDefaultForeground
height Height Dimension A graphic
height + 2 *
i nt er nal Hei ght
highlightThicknegs Thickness Dimension A 2 (0 if Shaped)
insensitiveBorder Insensitive Pixmap GreyPixmap

22

Simple Widgets

Name Class Type Notes Default Value
internalHeight Height Dimension 2
internalWidth Width Dimension 4

international | International Boolean C False
justify Justify Justify XtJustifyCenter
(center)
label Label String name of widget
leftBitmap LeftBitmap Bitmap None
mappedWhenMaMagpeddWhenManaged Boolean True
pointerColor Foreground Pixel XtDefaultForeground
pointerColorBackgraoumhackground Pixel XtDefaultBackground
resize Resize Boolean True
screen Screen Screen R Parent's
Screen
sensitive Sensitive Boolean True
shapeStyle ShapeStyle ShapeStyle Rectangle
translations Translations [IranslationTable See below
width Width Dimension A graphic
width + 2 *
i nternal Wdth
Position Position 0
Position Position 0

Command Actions

The Command widget supports the following actions:

* Switching the button's interior between the foreground and background colors
with set, unset, and reset.

* Processing application callbacks with noti fy

* Switching the internal border between highlighted and unhighlighted states with
hi ghl i ght and unhi ghl i ght

The following are the default translation bindings used by the Command widget:

<Ent er W ndow>: hi ghlight ()
<LeaveW ndow>: reset ()

<Bt n1Down>: set ()

<Bt nl1Up>: notify() unset()

The full list of actions supported by Command is:

23

Simple Widgets

hi ghl i ght (condi ti on) Displays the internal highlight border in the color
(f or egr ound or backgr ound) that contrasts with the
interior color of the Command widget. The conditions
WhenUnset and Al ways are understood by this action
procedure. If no argument is passed, WhenUnset is
assumed.

unhi ghl i ght () Displays the internal highlight border in the color
(foreground or background) that matches the
interior color of the Command widget.

set () Enters the set state, in which not i f y is possible. This
action causes the button to display its interior in the
f or egr ound color. The label or bitmap is displayed in
the backgr ound color.

unset () Cancels the set state and displays the interior of the
button in the backgr ound color. The label or bitmap
is displayed in the f or egr ound color.

reset () Cancels any set or highlight and displays the interior
of the button in the backgr ound color, with the label
or bitmap displayed in the f or egr ound color.

notify() When the button is in the set state this action calls all
functions in the callback list named by the cal | back
resource. The value of the call data argument passed
to these functions is undefined.

A very common alternative to registering callbacks is to augment a Command's
translations with an action performing the desired function. This often takes the
form of:

*Myapp*save. transl ati ons: #augnent <Bt nlDown>, <BtnlUp>: Save()

When a bitmap of depth greater that one (1) is specified the set(), unset(), and reset()
actions have no effect, since there are no foreground and background colors used
in a multi-plane pixmap.

Grip Widget

Application header file <X11/Xaw Gi p. h>
Cl ass header file <X11/ Xaw G'i pP. h>
Cl ass gri pWdget d ass

Class Name Gip

24

Simple Widgets

Supercl ass Sinmpl e

The Grip widget provides a small rectangular region in which user input events
(such as ButtonPress or ButtonRelease) may be handled. The most common use for
the Grip widget is as an attachment point for visually repositioning an object, such
as the pane border in a Paned widget.

Resources

When creating a Grip widget instance, the following resources are retrieved from
the argument list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitivAncestorSensitive ~ Boolean D True
background Background Pixel Xt DefaultBackgrou1nd
backgroundPixmap Pixmap Pixmap Xt UnspeciﬁedPimeap
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 0
callback Callback Callback NULL
colormap Colormap Colormap Parent's
Colormap
cursor Cursor Cursor None
cursorName Cursor String NULL
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
foreground Foreground Pixel XtDefaultForeground
height Height Dimension 8
insensitiveBorder Insensitive Pixmap GreyPixmap
international | International Boolean C False
mappedWhenMaMagpeddWhenManaged Boolean True
pointerColor Foreground Pixel XtDefaultForeground
pointerColorBackgraoumhackground Pixel XtDefaultBackground
screen Screen Screen R Parent's
Screen
sensitive Sensitive Boolean True
translations Translations [TranslationTable NULL
width Width Dimension 8
X Position Position 0
vy Position Position 0

25

Simple Widgets

cal | back All routines on this list are called whenever the
Gi pAction action routine is invoked. The call data
contains all information passed to the action routine. A
detailed description is given below in the Gri p Acti ons
section.

f or eground A pixel value which indexes the widget's colormap to
derive the color used to flood fill the entire Grip widget.

Grip Actions

The Grip widget does not declare any default event translation bindings, but it does
declare a single action routine named G i pAct i on. The client specifies an arbitrary
event translation table, optionally giving parameters to the Gri pActi on routine.

The Gi pActi on routine executes the callbacks on the cal | back list, passing as
cal | _dat a a pointer to a XawGr i pCal | Dat a structure, defined in the Grip widget's
application header file.

typedef struct XawGipCallData {
XEvent *event;
String *parans;
Cardi nal num par ars;
} XawG i pCal | Dat aRec, *XawG& i pCal | Dat a,
GipCal | DataRec, *GripCallData; /* supported for R4 conpatibility */

In this structure, the event is a pointer to the input event that triggered the action.
params and num_params give the string parameters specified in the translation
table for the particular event binding.

The following is an example of a translation table that uses the GripAction:

<Bt n1Down>: Gri pAction(press)
<Bt n1Moti on>: Gi pActi on(nove)
<Bt n1lUp>: Gi pAction(rel ease)

For a complete description of the format of translation tables, see the X Toolkit
Intrinsics - C Language Interface.

Label Widget

26

../libXt/intrinsics.pdf#Translation_Management
../libXt/intrinsics.pdf#Translation_Management

Simple Widgets

Application header file <X11/Xaw Label . h>

Cl ass header file <X11/ Xaw Label P. h>

Cl ass | abel Wdget d ass

Cl ass Nane Label

Supercl ass Simpl e

A Label widget holds a graphic displayed within a rectangular region of the screen.
The graphic may be a text string containing multiple lines of characters in an 8 bit
or 16 bit character set (to be displayed with a font), or in a multi-byte encoding (for
use with a fontset). The graphic may also be a bitmap or pixmap. The Label widget
will allow its graphic to be left, right, or center justified. Normally, this widget can
be neither selected nor directly edited by the user. It is intended for use as an output

device only.

Resources

q

When creating a Label widget instance, the following resources are retrieved from
the argument list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitivAncestorSensitive =~ Boolean D True
background Background Pixel Xt DefaultBackgrou1nd
ackgroundPixmap Pixmap Pixmap XtUnspeciﬁedPimeap
bitmap Bitmap Pixmap None
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth | BorderWidth Dimension 1
colormap Colormap Colormap Parent's
Colormap
cursor Cursor Cursor None
cursorName Cursor String NULL
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
encoding Encoding UnsignedChar XawTextEncoding8bit
font Font XFontStruct XtDefaultFont

27

Simple Widgets

Name Class Type Notes Default Value
fontSet FontSet XFontSet XtDefaultFontSet
foreground Foreground Pixel XtDefaultForeground
height Height Dimension A graphic
height + 2 *
i nt er nal Hei ght
insensitiveBorder Insensitive Pixmap GreyPixmap
internalHeight Height Dimension 2
internalWidth Width Dimension 4
international | International Boolean C False
justify Justify Justify XtJustifyCenter
(center)
label Label String name of widget
leftBitmap LeftBitmap Bitmap None
mappedWhenMaMagpeddWhenManaged Boolean True
pointerColor Foreground Pixel XtDefaultForeground
pointerColorBackgraoumhackground Pixel tDefaultBackground
resize Resize Boolean True
screen Screen Screen Parent's
Screen
sensitive Sensitive Boolean True
translations Translations [TranslationTable See above
width Width Dimension graphic
width + 2 *
i nternal Wdth
Position Position 0
Position Position 0

List Widget

Application header file <X11/Xaw List. h>

Cl ass header file <X11/ Xaw Li st P. h>

Cl ass |istWdgetd ass

Cl ass Nane Li st

Supercl ass Sinmpl e

28

Simple Widgets

The List widget contains a list of strings formatted into rows and columns. When
one of the strings is selected, it is highlighted, and the List widget's Not i f y action
is invoked, calling all routines on its callback list. Only one string may be selected
at a time.

Resources

When creating a List widget instance, the following resources are retrieved from
the argument list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitivAncestorSensitive =~ Boolean D True
background Background Pixel Xt DefaultBackgrou1nd
backgroundPixmap Pixmap Pixmap XtUnspeciﬁedPimeap
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderwidth BorderWidth Dimension 1
callback Callback Callback NULL
colormap Colormap Colormap Parent's
Colormap
columnSpacing Spacing Dimension 6
cursor Cursor Cursor XC left ptr
cursorName Cursor String NULL
defaultColumns Columns int 2
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
font Font FontStruct XtDefaultFont
fontSet FontSet XFontSet XtDefaultFontSef
forceColumns Columns Boolean False
foreground Foreground Pixel XtDefaultForeground
height Height Dimension A Enough
space to
contain the list
insensitiveBorder Insensitive Pixmap GreyPixmap
internalHeight Height Dimension 2
internalWidth Width Dimension 4
international | International Boolean C False
list List Pointer name of widget
longest Longest int A 0
mappedWhenMaMapmﬂadWhenMana ged Boolean True

29

Simple Widgets

Name Class Type Notes Default Value
numberStrings | NumberStrings int A computed
for NULL
terminated list
pasteBuffer Boolean Boolean False
pointerColor Foreground Pixel XtDefaultForeground
pointerColorBackgraoumhckground Pixel XtDefaultBackground
rowSpacing Spacing Dimension 2
screen Screen Screen R Parent's
Screen
sensitive Sensitive Boolean True
translations Translations [ranslationTable See below
verticalList Boolean Boolean False
width Width Dimension A Enough
space to
contain the list
Position Position 0
Position Position 0
cal | back All functions on this list are called whenever the

notify action is invoked. The call data argument
contains information about the element selected and
is described in detail in the Li st Cal | backs section.

col umSpaci ng

r owSpaci ng The amount of space, in pixels, between each of the
rows and columns in the list.

def aul t Col umms The default number of columns. This value is used
when neither the width nor the height of the List
widget is specified or when f or ceCol umms is Tr ue.

f ont The text font to use when displaying the | i st, when
the i nt er nati onal resource is f al se.

f ont Set The text font set to use when displaying the Ii st,
when the i nt er nati onal resource istrue.

f or ceCol utms Forces the default number of columns to be used
regardless of the List widget's current size.

f oreground A pixel value which indexes the widget's colormap
to derive the color used to paint the text of the list
elements.

i nt er nal Hei ght

i nternal Wdth The margin, in pixels, between the edges of the
list and the corresponding edge of the List widget's
window.

30

Simple Widgets

l'ist An array of text strings displayed in the List widget.
If nunber St ri ngs is zero (the default) then the | i st
must be NULL terminated. If a value is not specified
for the | i st, then nunber Stri ngs is set to 1, and the
name of the widget is used as the | i st, and | ongest
is set to the length of the name of the widget. The
|'i st is used in place, and must be available to the
List widget for the lifetime of this widget, or until it
is changed with Xt Set Val ues or XawLi st Change.

| ongest Specifies the width, in pixels, of the longest string
in the current list. The List widget will compute this
value if zero (the default) is specified. If this resource
is set by hand, entries longer than this will be clipped
to fit.

nunmber Stri ngs The number of strings in the current list. If a value
of zero (the default) is specified, the List widget will
compute it. When computing the number of strings
the List widget assumes that the list is NULL

terminated.

past eBuf f er If this resource is set to True then the name of
the currently selected list element will be put into
CUT_BUFFER 0.

verti cal Li st If this resource is set to True then the list elements

will be presented in column major order.

List Actions

The List widget supports the following actions:

¢ Highlighting and unhighlighting the list element under the pointer with Set and
Unset

* Processing application callbacks with Noti fy

The following is the default translation table used by the List Widget:

<Bt n1Down>, <Bt n1Up>: Set () Notify()

The full list of actions supported by List widget is:

Set () Sets the list element that is currently under the pointer.
To inform the user that this element is currently set, it is
drawn with foreground and background colors reversed.
If this action is called when there is no list element under
the cursor, the currently set element will be unset.

Unset () Cancels the set state of the element under the pointer,
and redraws it with normal foreground and background
colors.

31

Simple Widgets

Noti fy() Calls all callbacks on the List widget's callback list.
Information about the currently selected list element is
passed in the call data argument (see Li st Cal | backs
below).

List Callbacks

All procedures on the List widget's callback list will have a XawLi st Ret ur nSt r uct
passed to them as call data. The structure is defined in the List widget's application
header file.

typedef struct _XawLi stReturnStruct {

String string; /* string shown in the list. */
int list_index; /* index of the itemselected. */
} XawlLi st ReturnStruct;

Note
The list_index item used to be called simply index. Unfortunately, this name

collided with a global name defined on some operating systems, and had to
be changed.

Changing the List

To change the list that is displayed, use XawLi st Change.

voi d XawLi st Change(w, list, |longest, resize);

w Specifies the List widget.

list Specifies the new list for the List widget to display.

nitems Specifies the number of items in the list. If a value less

than 1 is specified, list must be NULL terminated, and the
number of items will be calculated by the List widget.

longest Specifies the length of the longest item in the list in pixels.
If a value less than 1 is specified, the List widget will
calculate the value.

resize Specifies a Boolean value that if True indicates that the
List widget should try to resize itself after making the
change. The constraints of the List widget's parent are
always enforced, regardless of the value specified here.

XawLi st Change will unset all list elements that are currently set before the list is
actually changed. The list is used in place, and must remain usable for the lifetime
of the List widget, or until list has been changed again with this function or with
Xt Set Val ues.

32

Simple Widgets

Highlighting an Item
To highlight an item in the list, use XawLi st Hi ghl i ght .
void XawLi stHi ghlight(w, item;
w Specifies the List widget.

item Specifies an index into the current list that indicates the item
to be highlighted.

Only one item can be highlighted at a time. If an item is already highlighted when
XawLi st Hi ghl i ght is called, the highlighted item is unhighlighted before the new
item is highlighted.

Unhighlighting an Item

To unhighlight the currently highlighted item in the list, use XawLi st Unhi ghl i ght .
voi d XawLi st Unhi ghlight(w);

w Specifies the List widget.

Retrieving the Currently Selected Item

To retrieve the list element that is currently set, use XawLi st ShowCurr ent .
XawLi st Ret urnSt ruct *XawLi st ShowCurrent(w);
w Specifies the List widget.

XawLi st ShowCur rent returns a pointer to an Xawli st ReturnStruct structure,
containing the currently highlighted item. If the value of the index member is
XAW LIST NONE, the string member is undefined, and no item is currently
selected.

Restrictions

Many programmers create a “scrolled list” by putting a List widget with many
entries as a child of a Viewport widget. The List continues to create a window as
big as its contents, but that big window is only visible where it intersects the parent
Viewport's window. (I.e., it is “clipped.”)

While this is a useful technique, there is a serious drawback. X does not support
windows above 32,767 pixels in width or height, but this height limit will be
exceeded by a List's window when the List has many entries (i.e., with a 12 point
font, about 3000 entries would be too many.)

Panner Widget

33

Simple Widgets

Application header file <X11/Xaw Panner. h>

Cl ass header file <X11/ Xaw Panner P. h>

d ass

Cl ass Nane Pan

panner W dget C ass

ner

Supercl ass Sinmpl e

A Panner widget is a rectangle, called the “canvas,” on which another rectangle,
the “slider,” moves in two dimensions. It is often used with a Porthole widget to
move, or “scroll,” a third widget in two dimensions, in which case the slider's size
and position gives feedback as to what portion of the third widget is visible.

The slider may be scrolled around the canvas by pressing, dragging, and releasing
Button1; the default translation also enables scrolling via arrow keys and some other
keys. While scrolling is in progress, the application receives notification through
callback procedures. Notification may be done either continuously whenever the
slider moves or discretely whenever the slider has been given a new location.

Resources

When creating a Panner widget instance, the following resources are retrieved from
the argument list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
allowOff AllowOff Boolean False
ancestorSensitivAncestorSensitive ~ Boolean D True
background Background Pixel Xt DefaultBackgrou1nd
backgroundPixmap Pixmap Pixmap Xt UnspeciﬁedPimeap
backgroundStipfackgroundStipple String NULL
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth | BorderWidth Dimension 1
canvasHeight | CanvasHeight Dimension 0
canvasWidth | CanvasWidth Dimension 0
colormap Colormap Colormap Parent's
Colormap
cursor Cursor Cursor None
cursorName Cursor String NULL
defaultScale DefaultScale Dimension 8

34

Simple Widgets

poin

backgroundSti p

canvasHei ght
canvasW dth

def aul t Scal e

f or egr ound

edges of the canvas.

pl e

The name of a bitmap pattern to be used as the

background for the area representing the canvas.

The size of the canvas.

Name Class Type Notes Default Value
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
foreground Foreground Pixel XtDefaultForeground
height Height Dimension A depends on
orientation
internalSpace | InternalSpace Dimension 4
international | International Boolean C False
lineWidth LineWidth Dimension 0
ppedWhenMaMagpeddWhenManaged Boolean True
pointerColor Foreground Pixel XtDefaultForeground
terColorBackgrquBackground Pixel XtDefaultBackground
reportCallback | ReportCallback Callback NULL
resize Resize Boolean True
rubberBand RubberBand Boolean False
screen Screen Screen R Parent's
Screen
sensitive Sensitive Boolean True
shadowColor | ShadowColor Pixel XtDefaultForeground
shadowThicknes$hadowThickness Dimension 2
sliderX SliderX Position 0
sliderY SliderY Position 0
sliderHeight SliderHeight Dimension 0
sliderWidth SliderWidth Dimension 0
translations Translations [IranslationTable See below
width Width Dimension A depends on
orientation
X Position Position 0
vy Position Position 0
al | owOr f Whether to allow the edges of the slider to go off the

The percentage size that the Panner widget should
have relative to the size of the canvas.

A pixel value which indexes the widget's colormap to

derive the color used to draw the slider.

35

Simple Widgets

i nt er nal Space The width of internal border in pixels between a
slider representing the full size of the canvas and the
edge of the Panner widget.

i neWdth The width of the lines in the rubberbanding
rectangle when rubberbanding is in effect instead of
continuous scrolling. The default is 0.

report Cal | back All functions on this callback list are called when the
noti fy action is invoked. See the Panner Actions
section for details.

resi ze Whether or not to resize the panner whenever the
canvas size is changed so that the def aul t Scal e is
maintained.

r ubber Band Whether or not scrolling should be discrete (only

moving a rubberbanded rectangle until the scrolling
is done) or continuous (moving the slider itself). This
controls whether or not the nove action procedure
also invokes the not i f y action procedure.

shadowCol or The color of the shadow underneath the slider.

shadowThi ckness The width of the shadow underneath the slider.

sliderX

sliderY The location of the slider in the coordinates of the
canvas.

sl i der Hei ght

sliderWdth The size of the slider.

Panner Actions

The actions supported by the Panner widget are:

start () This action begins movement of the slider.

st op() This action ends movement of the slider.

abort () This action ends movement of the slider and restores
it to the position it held when the start action was
invoked.

nmove() This action moves the outline of the slider (if the

r ubber Band resource is True) or the slider itself (by
invoking the noti f y action procedure).

page(xanmount ,yanount) This action moves the slider by the specified
amounts. The format for the amounts is a signed
or unsigned floating-point number (e.g., +1.0 or
-.5) followed by either p indicating pages (slider
sizes), or c¢ indicating canvas sizes. Thus, page(+0,
+.5p) represents vertical movement down one-half

36

Simple Widgets

the height of the slider and page(0,0) represents
moving to the upper left corner of the canvas.

notify() This action informs the application of the slider's
current position by invoking the report Cal | back
functions registered by the application.

set (what ,val ue) This action changes the behavior of the Panner.
The what argument must currently be the string
r ubber band and controls the value of the r ubber Band
resource. The val ue argument may have one of the
values on, of f, or t oggl e.

The default bindings for Panner are:

<Bt n1Down>: start()

<Bt n1Moti on>: nmove()

<Bt n1Up>: notify() stop()

<Bt n2Down>: abort ()
<Key>KP_Ent er: set (rubberband, toggl e)
<Key>space: page(+1p, +1p)
<Key>Del et e: page(-1p, - 1p)
<Key>BackSpace: page(-1p, -1p)
<Key>Left: page(-.5p, +0)
<Key>Ri ght: page(+. 5p, +0)
<Key>Up: page(+0, -.5p)
<Key>Down: page(+0, +. 5p)
<Key>Hone: page(0, 0)

Panner Callbacks

The functions registered on the report Cal | back list are invoked by the notify
action as follows:

voi d ReportProc(panner, client _data, report);
panner Specifies the Panner widget.
panner Specifies the client data.

panner Specifies a pointer to an XawPanner Report structure containing the
location and size of the slider and the size of the canvas.

Repeater Widget

Application header file <X11/ Xaw Repeater. h>

Cl ass header file <X11/ Xaw RepeaterP. h>

37

Simple Widgets

Cl ass repeater Wdget Cl ass

Cl ass Name Repeater

Super cl ass Commrand

The Repeater widget is a subclass of the Command widget; see the Command
documentation for details. The difference is that the Repeater can call its registered
callbacks repeatedly, at an increasing rate. The default translation does so for the
duration the user holds down pointer button 1 while the pointer is on the Repeater.

Resources

q

When creating a Repeater widget instance, the following resources are retrieved

from the argument list or from the resource database:

CQ

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitivAncestorSensitive ~ Boolean D True
background Background Pixel Xt DefaultBackgrou1nd
ackgroundPixmap Pixmap Pixmap XtUnspeciﬁedPimeap
bitmap Bitmap Pixmap None
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth | BorderWidth Dimension 1
callback Callback XtCallbackList NULL
colormap Colormap Colormap Parent's
Colormap
rnerRoundPer€emrherRoundPercent Dimension 25
cursor Cursor Cursor None
cursorName Cursor String NULL
decay Decay Int 5
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
encoding Encoding UnsignedChar XawTextEncoding8bit
flash Boolean Boolean False
font Font XFontStruct XtDefaultFont
fontSet FontSet XFontSet XtDefaultFontSet
foreground Foreground Pixel XtDefaultForeground
height Height Dimension A graphic
height + 2 *
i nt er nal Hei ght

38

Simple Widgets

Name Class Type Notes Default Value
highlightThickness Thickness Dimension A 2 (0 if Shaped)
initialDelay Delay Int 200
insensitiveBorder Insensitive Pixmap GreyPixmap
internalHeight Height Dimension 2
internalWidth Width Dimension 4
international | International Boolean C False
justify Justify Justify XtJustifyCenter
(center)
label Label String name of widget
leftBitmap LeftBitmap Bitmap None
mappedWhenMaMapeddWhenManaged Boolean True
minimumDelay | MinimumDelay Int 10
pointerColor Foreground Pixel XtDefaultForeground
pointerColorBackgraoumhackground Pixel XtDefaultBackground
repeatDelay Delay Int 50
resize Resize Boolean True
screen Screen Pointer R Parent's
Screen
sensitive Sensitive Boolean True
shapeStyle ShapeStyle ShapeStyle Rectangle
startCallback | StartCallback Callback NULL
stopCallback | StopCallback Callback NULL
translations Translations [TranslationTable See below
width Width Dimension A graphic
width + 2 *
i nternal Wdth
X Position Position 0
vy Position Position 0

\" Resource Descriptions

decay The number of milliseconds that should be
subtracted from each succeeding interval while the
Repeater button is being held down until the interval
has reached mi ni nunDel ay milliseconds.

flash Whether or not to flash the Repeater button
whenever the timer goes off.

initial Del ay The number of milliseconds between the beginning
of the Repeater button being held down and the first
invocation of the cal | back function.

m ni muDel ay The minimum time between callbacks in
milliseconds.

39

Simple Widgets

r epeat Del ay The number of milliseconds between each callback
after the first (minus an increasing number of
decays).

start Cal | back The list of functions to invoke by the start action

(typically when the Repeater button is first pressed).
The callback data parameter is set to NULL.

st opCal | back The list of functions to invoke by the st op action
(typically when the Repeater button is released). The
callback data parameter is set to NULL.

Repeater Actions

The Repeater widget supports the following actions beyond those of the Command

button:

start () This invokes the functions on the start Call back and
cal | back lists and sets a timer to go off in i ni ti al Del ay
milliseconds. The timer will cause the cal | back functions
to be invoked with increasing frequency until the stop
action occurs.

st op() This invokes the functions on the st opCal | back list and

prevents any further timers from occuring until the next
start action.

The following are the default translation bindings used by the Repeater widget:

<Ent er W ndow>: hi ghlight ()
<LeaveW ndow>: unhi ghlight ()
<Bt n1Down>: set() start()
<Bt nl1Up>: stop() unset()

Scrollbar Widget

Application header file <X11/ Xaw/ Scr ol | bar . h>
Cl ass header file <X11/ Xaw/ Scr ol | bar P. h>
d ass scrol | bar Wdget d ass

Cl ass Name Scrol | bar

Super cl ass Si npl e

A Scrollbar widget is a rectangle, called the “canvas,” on which another rectangle,
the “thumb,” moves in one dimension, either vertically or horizontally. A Scrollbar
can be used alone, as a value generator, or it can be used within a composite widget
(for example, a Viewport). When a Scrollbar is used to move, or “scroll,” the contents
of another widget, the size and the position of the thumb usually give feedback as
to what portion of the other widget's contents are visible.

40

Simple Widgets

Each pointer button invokes a specific action. Pointer buttons 1 and 3 do not move
the thumb automatically. Instead, they return the pixel position of the cursor on
the scroll region. When pointer button 2 is clicked, the thumb moves to the current
pointer position. When pointer button 2 is held down and the pointer is moved, the
thumb follows the pointer.

The pointer cursor in the scroll region changes depending on the current action.

When no pointer button is pressed, the cursor appears as a double-headed arrow

that points in the direction that scrolling can occur. When pointer button 1 or 3

is pressed, the cursor appears as a single-headed arrow that points in the logical
direction that the thumb will move. When pointer button 2 is pressed, the cursor
appears as an arrow that points to the top or the left of the thumb.

When the user scrolls, the application receives notification through callback
procedures. For both discrete scrolling actions, the callback returns the Scrollbar
widget, the client data, and the pixel position of the pointer when the button
was released. For continuous scrolling, the callback routine returns the scroll
bar widget, the client data, and the current relative position of the thumb. When
the thumb is moved using pointer button 2, the callback procedure is invoked
continuously. When either button 1 or 3 is pressed, the callback procedure is invoked

only when the button is released and the client callback procedure is responsible

for moving the thumb.

Resources

q

i

When creating a Scrollbar widget instance, the following resources are retrieved

from the argument list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitivancestorSensitive =~ Boolean D True
background Background Pixel Xt DefaultBackgroqnd
ackgroundPixmap Pixmap Pixmap XtUnspeciﬁedPimeap
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth | BorderWidth Dimension 1
colormap Colormap Colormap parent's
Colormap
cursor Cursor Cursor None
cursorName Cursor String NULL
depth Depth int C parent's Depth
destroyCallback Callback XtCallbackList NULL
foreground Foreground Pixel XtDefaultForeground
height Height Dimension A depends on
orientation
nsensitiveBorder Insensitive Pixmap GreyPixmap
international | International Boolean C False
jumpProc Callback XtCallbackList NULL

41

Simple Widgets

Name Class Type Notes Default Value
length Length Dimension 1
mappedWhenMaMagpeddWhenManaged Boolean True
minimumThumbMinimumThumbl Dimension 7
orientation Orientation Orientation XtorientVertical
(vertical)
pointerColor Foreground Pixel XtDefaultForeground
pointerColorBackgroumidhckground Pixel XtDefaultBackground
screen Screen Screen R parent's
Screen
scrollDCursor Cursor Cursor XC _sb down_arrow
scrollHCursor Cursor Cursor XC|sb h double arrow
scrollL.Cursor Cursor Cursor XC sb left arrow
scrollProc Callback XtCallbackList NULL
scrollRCursor Cursor Cursor XC sb right arrow
scrollUCursor Cursor Cursor XC sb up arrow
scrollVCursor Cursor Cursor XC sb v arrow
sensitive Sensitive Boolean True
shown Shown Float 0.0
thickness Thickness Dimension 14
thumb Thumb Bitmap GreyPixmap
thumbProc Callback XtCallbackList NULL
topOfThumb TopOfThumb Float 0.0
translations Translations [TranslationTable See below
width Width Dimension A depends on
orientation
X Position Position 0
Position Position 0
f or egr ound A pixel value which indexes the widget's colormap to

derive the color used to draw the thumb.

j umpPr oc All functions on this callback list are called when the
Not i f yThunb action is invoked. See the section called
“Scrollbar Actions” for details.

 ength The height of a vertical scrollbar or the width of a
horizontal scrollbar.

m ni mumThunb The smallest size, in pixels, to which the thumb can
shrink.

orientation The orientation is the direction that the thumb

will be allowed to move. This value can be either
XtorientVertical or Xtori entHorizontal .

42

Simple Widgets

scrol | DCur sor
scrol | HCur sor
scrol | LCur sor

scrol | Proc

scrol | RCur sor

scrol | UCur sor

scrol | VCur sor
shown
t hi ckness

t hunmb

t opOf Thunb

Scrollbar Actions

This cursor is used when scrolling backward in a
vertical scrollbar.

This cursor is used when a horizontal scrollbar is
inactive.

This cursor is used when scrolling forward in a
horizontal scrollbar.

All functions on this callback list may be called when
the Noti fyScrol | action is invoked. See the section
called “Scrollbar Actions” for details.

This cursor is used when scrolling backward in a
horizontal scrollbar, or when thumbing a vertical
scrollbar.

This cursor is used when scrolling forward in a
vertical scrollbar, or when thumbing a horizontal
scrollbar.

This cursor is used when a vertical scrollbar is
inactive.

This is the size of the thumb, expressed as a
percentage (0.0 - 1.0) of the length of the scrollbar.

The width of a vertical scrollbar or the height of a
horizontal scrollbar.

This pixmap is used to tile (or stipple) the thumb
of the scrollbar. If no tiling is desired, then set this
resource to None. This resource will accept either a
bitmap or a pixmap that is the same depth as the
window. The resource converter for this resource
constructs bitmaps from the contents of files. (See
Converting Bitmaps for details.)

The location of the top of the thumb, as a percentage
(0.0 -1.0) of the length of the scrollbar. This resource
was called t op in previous versions of the Athena
widget set. The name collided with the a Form widget
constraint resource, and had to be changed.

The actions supported by the Scrollbar widget are:

Start Scrol | (value)

Not i f yScrol | (value)

The possible values are Forward, Backward, or
Continuous. This must be the first action to begin a
new movement.

The possible values are Proportional or FullLength.
If the argument to StartScroll was Forward or
Backward, NotifyScroll executes the scroll Proc

43

Simple Widgets

callbacks and passes either; the position of the
pointer, if value is Proportional, or the full length of
the scroll bar, if value is FullLength. If the argument
to StartScroll was Continuous, NotifyScroll returns
without executing any callbacks.

EndScrol | () This must be the last action after a movement is
complete.
MoveThunb() Repositions the Scrollbar's thumb to the current

pointer location.

Not i f yThunb()\ Calls the callbacks and passes the relative position of
the pointer as a percentage of the scroll bar length.

The default bindings for Scrollbar are:

<Bt n1Down>: Start Scrol | (Forwar d)

<Bt n2Down>: Start Scrol | (Conti nuous) MoveThunb() NotifyThumnb()
<Bt n3Down>: Start Scrol | (Backwar d)

<Bt n2Mot i on>: MoveThunb() Noti fyThunb()

<Bt nUp>: NotifyScroll (Proportional) EndScroll ()

Examples of additional bindings a user might wish to specify in a resource file are:

*Scrol | bar. Transl ati ons: \\

~Met a<Key>space: Start Scrol | (Forward) NotifyScroll (FullLength) \\n\\
Met a<Key>space: Start Scrol | (Backward) NotifyScroll (FullLength) \\n\\
EndScrol I ()

Scrollbar Callbacks

There are two callback lists provided by the Scrollbar widget. The procedural
interface for these functions is described here.

The calling interface to the scrol | Proc callback procedure is:

void ScrollProc(scrollbar, <client_data, position);

scrollbar Specifies the Scrollbar widget.
client data Specifies the client data.
position Specifies a pixel position in integer form.

The scrol | Proc callback is used for incremental scrolling and is called by the
Not i f yScrol | action. The position argument is a signed quantity and should be cast
to an int when used. Using the default button bindings, button 1 returns a positive
value, and button 3 returns a negative value. In both cases, the magnitude of the
value is the distance of the pointer in pixels from the top (or left) of the Scrollbar.
The value will never be greater than the length of the Scrollbar.

The calling interface to the j unpPr oc callback procedure is:

44

Simple Widgets

voi d JunmpProc(scrollbar, «client_data, percent_ptr);

scrollbar Specifies the ID of the scroll bar widget.

client data Specifies the client data.

percent ptr Specifies the floating point position of the thumb (0.0
-1.0).

The j unpPr oc callback is used to implement smooth scrolling and is called by the
Not i f yThunb action. Percent ptr must be cast to a pointer to float before use; i.e.

float percent = *(float*)percent_ptr;

With the default button bindings, button 2 moves the thumb interactively, and the
j unpProc is called on each new position of the pointer, while the pointer button
remains down. The value specified by percent ptr is the current location of the
thumb (from the top or left of the Scrollbar) expressed as a percentage of the length
of the Scrollbar.

Convenience Routines

To set the position and length of a Scrollbar thumb, use
voi d XawScrol | bar Set Thunb(w, top, shown);
w Specifies the Scrollbar widget.

top Specifies the position of the top of the thumb as a fraction of
the length of the Scrollbar.

shown Specifies the length of the thumb as a fraction of the total
length of the Scrollbar.

XawScr ol | bar Thunb moves the visible thumb to a new position (0.0 - 1.0) and length
(0.0 - 1.0). Either the top or shown arguments can be specified as -1.0, in which case
the current value is left unchanged. Values greater than 1.0 are truncated to 1.0.

If called from j unpProc, XawScr ol | bar Set Thunb has no effect.

Setting Float Resources

The shown and t opOf Thunb resources are of type float. These resources can be
difficult to get into an argument list. The reason is that C performs an automatic cast
of the float value to an integer value, usually truncating the important information.
The following code fragment is one portable method of getting a float into an
argument list.

top = 0.5;

if (sizeof (float) > sizeof(XtArgval)) {

/*

\ * If afloat is larger than an XtArgVal then pass this

45

Simple Widgets

\ * resource value by reference.

\ */

Xt Set Arg(args[0],

}

el se {
/*

\ * Convince C not to performan automatic conversion,

Xt Nshown, &t op);

\ * would truncate 0.5 to O.

\ */

Xt Ar gVal

* | _top

Xt Set Arg(args[0],

}

Simple Widget

= (Xt ArgVal

Xt Nshown,

Application Header file <Xaw Si npl e. h>

Cl ass Header file <Xaw Si npl eP. h>

d ass

si mpl eW dget Ol ass

Cl ass Nanme Sinple

Supercl ass Core

*) &t op;
*| _top);

whi ch

The Simple widget is not very useful by itself, as it has no semantics of its own. It
main purpose is to be used as a common superclass for the other simple Athena
widgets. This widget adds six resources to the resource list provided by the Core
widget and its superclasses.

Resources

When creating a Simple widget instance, the following resources are retrieved from
the argument list or from the resource database:

q

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitivAncestorSensitive =~ Boolean D True
background Background Pixel Xt DefaultBackgrou1nd
ackgroundPixmap Pixmap Pixmap Xt UnspeciﬁedPimeap
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderwidth BorderWidth Dimension 1

46

Simple Widgets

Name Class Type Notes Default Value
colormap Colormap Colormap Parent's
Colormap
cursor Cursor Cursor None
cursorName Cursor String NULL
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
height Height Dimension 0
insensitiveBorder Insensitive Pixmap GreyPixmap
international | International Boolean C False
mappedWhenMaMagpeddWhenManaged Boolean True
pointerColor Foreground Pixel XtDefaultForeground
pointerColorBackgroumhckground Pixel XtDefaultBackground
screen Screen Screen R Parent's
Screen
sensitive Sensitive Boolean True
translations Translations [IranslationTable NULL
width Width Dimension 0
X Position Position 0
vy Position Position 0

StripChart Widget

Application Header file <Xaw StripChart. h>
Cl ass Header file <Xaw Stri pCharP. h>

Class stripChart Wdgetd ass

Cl ass Name StripChart

Supercl ass Simpl e

The StripChart widget is used to provide a roughly real time graphical chart of
a single value. For example, it is used by the common client program x| oad to
provide a graph of processor load. The StripChart reads data from an application,
and updates the chart at the updat e interval specified.

Resources

When creating a StripChart widget instance, the following resources are retrieved
from the argument list or from the resource database:

47

Simple Widgets

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitivAncestorSensitive ~ Boolean D True
background Background Pixel Xt DefaultBackgrou1nd
backgroundPixmap Pixmap Pixmap XtUnspeciﬁedPimeap
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
colormap Colormap Colormap Parent's
Colormap
cursor Cursor Cursor None
cursorName Cursor String NULL
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
foreground Foreground Pixel XtDefaultForeground
getValue Callback XtCallbackList NULL
height Height Dimension 120
highlight Foreground Pixel XtDefaultForeground
insensitiveBorder Insensitive Pixmap GreyPixmap
international | International Boolean C False
jumpScroll JumpScroll int A half the width
of the widget
mappedWhenMaMagpeddWhenManaged Boolean True
minScale Scale int 1
pointerColor Foreground Pixel XtDefaultForeground
pointerColorBackgroum$hckground Pixel XtDefaultBackground
screen Screen Pointer R Parent's
Screen
sensitive Sensitive Boolean True
translations Translations [TranslationTable NULL
update Interval int 10
width Width Dimension 120
X Position Position 0
y Position Position 0
f or egr ound A pixel value which indexes the widget's colormap to

derive the color that will be used to draw the graph.

get Val ue A list of callback functions to call every updat e seconds.
This list should contain one function, which returns
the value to be graphed by the StripChart widget. The

48

Simple Widgets

following section describes the procedural interface.
Behavior when this list has more than one function is
undefined.

hi ghl i ght A pixel value which indexes the widget's colormap to
derive the color that will be used to draw the scale lines
on the graph.

jumpScrol | When the graph reaches the right edge of the window
it must be scrolled to the left. This resource specifies
the number of pixels it will jump. Smooth scrolling can
be achieved by setting this resource to 1.

m nScal e The minimum scale for the graph. The number of
divisions on the graph will always be greater than or
equal to this value.

updat e The number of seconds between graph updates. Each
update is represented on the graph as a 1 pixel wide
line. Every updat e seconds the get Val ue procedure will
be used to get a new graph point, and this point will be
added to the right end of the StripChart.

Getting the StripChart Value

The StripChart widget will call the application routine passed to it as the get Val ue
callback function every updat e seconds to obtain another point for the StripChart
graph.

The calling interface for the get Val ue callback is:

voi d(*get Val ueProc) (w, client_data, value);

w Specifies the StripChart widget.
client data Specifies the client data.
value Returns a pointer to a double. The application should

set the address pointed to by this argument to a double
containing the value to be graphed on the StripChart.

This function is used by the StripChart to call an application routine. The routine
will pass the value to be graphed back to the the StripChart in the val ue field of
this routine.

Toggle Widget

Application Header file <Xaw Toggl e. h>
Cl ass Header file <Xaw Toggl eP. h>

d ass t oggl eW dget Cl ass

Cl ass Nane Toggl e

Super cl ass Command

The Toggle widget is an area, often rectangular, that displays a graphic. The graphic
may be a text string containing multiple lines of characters in an 8 bit or 16 bit

49

Simple Widgets

character set (to be displayed with a font), or in a multi-byte encoding (for use with
a fontset). The graphic may also be a bitmap or pixmap.

This widget maintains a Boolean state (e.g. True/False or On/Off) and changes
state whenever it is selected. When the pointer is on the Toggle widget, the Toggle
widget may become highlighted by drawing a rectangle around its perimeter. This
highlighting indicates that the Toggle widget is ready for selection. When pointer
button 1 is pressed and released, the Toggle widget indicates that it has changed
state by reversing its foreground and background colors, and its notify action
is invoked, calling all functions on its callback list. If the pointer is moved off of
the widget before the pointer button is released, the Toggle widget reverts to its
previous foreground and background colors, and releasing the pointer button has

no effect. This behavior allows the user to cancel the operation.

Toggle widgets may also be part of a “radio group.” A radio group is a list of at least
two Toggle widgets in which no more than one Toggle may be set at any time. A radio
group is identified by the widget ID of any one of its members. The convenience
routine XawToggl eGet Current will return information about the Toggle widget in

Toggle widget state is preserved across changes in sensitivity.

the radio group.

Resources

When creating a Toggle widget instance, the following resources are retrieved from
the argument list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitivAncestorSensitive =~ Boolean D True
background Background Pixel Xt DefaultBackgrou1nd
backgroundPixmap Pixmap Pixmap Xt UnspeciﬁedPimeap
bitmap Bitmap Pixmap None
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth | BorderWidth Dimension 1
callback Callback XtCallbackList NULL
colormap Colormap Colormap Parent's
Colormap
carnerRoundPer€emrherRoundPercent Dimension 25
cursor Cursor Cursor None
cursorName Cursor String NULL
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
encoding Encoding UnsignedChar XawTextEncoding8pbit
font Font XFontStruct XtDefaultFont
fontSet FontSet XFontSet XtDefaultFontSet

50

Simple Widgets

Name Class Type Notes Default Value
foreground Foreground Pixel DefaultForeground
height Height Dimension A graphic
height + 2 *
i nt er nal Hei ght
highlightThicknegs Thickness Dimension A 2 (0 if Shaped)
insensitiveBorder Insensitive Pixmap GreyPixmap
internalHeight Height Dimension 2
internalWidth Width Dimension 4
international | International Boolean C False
justify Justify Justify XtJustifyCenter
(center)
label Label String name of widget
leftBitmap LeftBitmap Bitmap None
mappedWhenMaMagpeddWhenManaged Boolean True
pointerColor Foreground Pixel DefaultForeground
pointerColorBackgraoumhackground Pixel tDefaultBackground
radioData RadioData Pointer Name of
widget
radioGroup Widget Widget No radio group
resize Resize Boolean True
screen Screen Screen R Parent's
Screen
sensitive Sensitive Boolean True
shapeStype ShapeStyle ShapeStyle Rectangle
state State Boolean Off
translations Translations [TranslationTable See below
width Width Dimension A graphic
width + 2 *
i nternal Wdth
X Position Position 0
vy Position Position 0
r adi oDat a Specifies the data that will be returned by
XawToggl eGet Current when this is the currently set
widget in the radio group. This value is also used
to identify the Toggle that will be set by a call
to XawToggl eSet Current. The value NULL will be
returned by XawToggl eGet Current if no widget in a
radio group is currently set. Programmers must not
specify NULL (or Zero) as r adi oDat a.
radi oGroup Specifies another Toggle widget that is in the radio

group to which this Toggle widget should be added. A
radio group is a group of at least two Toggle widgets,

51

Simple Widgets

only one of which may be set at a time. If this value is
NULL (the default) then the Toggle will not be part of
any radio group and can change state without affecting
any other Toggle widgets. If the widget specified in this
resource is not already in a radio group then a new
radio group will be created containing these two Toggle
widgets. No Toggle widget can be in multiple radio
groups. The behavior of a radio group of one toggle is
undefined. A converter is registered which will convert
widget names to widgets without caching.

state Specifies whether the Toggle widget is set (True) or
unset (Fal se).

Toggle Actions

The Toggle widget supports the following actions:

* Switching the Toggle widget between the foreground and background colors with
set and unset and t oggl e

* Processing application callbacks with notify

¢ Switching the internal border between highlighted and unhighlighted states with
hi ghl i ght and unhi ghl i ght

The following are the default translation bindings used by the Toggle widget:

<Ent er W ndow>: hi ghl i ght (Al ways)
<LeaveW ndow>: unhi ghl i ght ()
<Bt n1Down>, <Bt n1Up>: toggl e() notify()

Toggle Actions

The full list of actions supported by Toggle is:

hi ghl i ght (condition) Displays the internal highlight border in the color
(f or egr ound or backgr ound) that contrasts with the
interior color of the Toggle widget. The conditions
WhenUnset and Al ways are understood by this action
procedure. If no argument is passed then WhenUnset
is assumed.

unhi ghl i ght () Displays the internal highlight border in the color
(foreground or background) that matches the
interior color of the Toggle widget.

set () Enters the set state, in which notify is possible.
This action causes the Toggle widget to display its
interior in the f or egr ound color. The label or bitmap
is displayed in the backgr ound color.

unset () Cancels the set state and displays the interior of the
Toggle widget in the backgr ound color. The label or
bitmap is displayed in the f or egr ound color.

52

Simple Widgets

toggl e() Changes the current state of the Toggle widget,
causing to be set if it was previously unset, and unset
if it was previously set. If the widget is to be set, and
is in a radio group then this procedure may unset
another Toggle widget causing all routines on its
callback list to be invoked. The callback routines for
the Toggle that is to be unset will be called before the
one that is to be set.

reset () Cancels any set or highlight and displays the
interior of the Toggle widget in the backgr ound color,
with the label displayed in the f or egr ound color.

notify() When the Toggle widget is in the set state this
action calls all functions in the callback list named
by the cal | back resource. The value of the call data
argument in these callback functions is undefined.

When a bitmap of depth greater that one (1) is specified the set(), unset(), and reset()
actions have no effect, since there are no foreground and background colors used
in a multi-plane pixmap.

Radio Groups

There are typically two types of radio groups desired by applications. The default
translations for the Toggle widget implement a "zero or one of many" radio group.
This means that there may be no more than one Toggle widget active, but there
need not be any Toggle widgets active.

The other type of radio group is "one of many" and has the more strict policy that
there will always be exactly one radio button active. Toggle widgets can be used
to provide this interface with a slight modification to the translation table of each
Toggle in the group.

<Ent er W ndow>: hi ghl'i ght (Al ways)
<LeaveW ndow>: unhi ghli ght ()
<Bt n1Down>, <Bt n1Up>: set() notify()

This translation table will not allow any Toggle to be unset except as a result of
another Toggle becoming set. It is the application programmer's responsibility to
choose an initial state for the radio group by setting the st at e resource of one of
its member widgets to Tr ue.

Convenience Routines

The following functions allow easy access to the Toggle widget's radio group
functionality.

Changing the Toggle's Radio Group.

To enable an application to change the Toggle's radio group, add the
Toggle to a radio group, or remove the Toggle from a radio group, use
XawToggl eChangeRadi oGr oup.

53

Simple Widgets

voi d XawToggl eChangeRadi oG oup(radi o_group);
w Specifies the Toggle widget.

radio_group Specifies any Toggle in the new radio group. If NULL
then the Toggle will be removed from any radio group
of which it is a member.

If a Toggle is already set in the new radio group, and the Toggle to be added is
also set then the previously set Toggle in the radio group is unset and its callback
procedures are invoked. Finding the Currently selected Toggle in a radio group of
Toggles

To find the currently selected Toggle in a radio group of Toggle widgets use
XawToggl eGet Current.

Xt Poi nt er XawToggl eGet Cur r ent (XawToggl eGet Current (radi o_group),
radi o_group);

radio_group Specifies any Toggle widget in the radio group.

The value returned by this function is the radi oDat a of the Toggle in this radio
group that is currently set. The default value for radi oDat a is the name of that
Toggle widget. If no Toggle is set in the radio group specified then NULL is returned.
Changing the Toggle that is set in a radio group.

To change the Toggle that is currently set in a radio group wuse
XawToggl eSet Current .

voi d XawToggl eSet Current (radio_data), radio_group, radio_data);
radio_group Specifies any Toggle widget in the radio group.

radio data Specifies the radi oDat a identifying the Toggle that
should be set in the radio group specified by the
radio_group argument.

XawToggl eSet Cur r ent locates the Toggle widget to be set by matching radio data
against the radi oData for each Toggle in the radio group. If none match,
XawToggl eSet Cur rent returns without making any changes. If more than one
Toggle matches, XawToggl eSet Current will choose a Toggle to set arbitrarily. If
this causes any Toggle widgets to change state, all routines in their callback lists
will be invoked. The callback routines for a Toggle that is to be unset will be called
before the one that is to be set. Unsetting all Toggles in a radio group.

To unset all Toggle widgets in a radio group use XawToggl eUnset Current.

voi d XawToggl eUnset Current (XawToggl eUnset Current (radi o_group),
radi o_group);

radio_group Specifies any Toggle widget in the radio group.

If this causes a Toggle widget to change state, all routines on its callback list will
be invoked.

54

Chapter 4. Menus

The Athena widget set provides support for single paned non-hierarchical popup
and pulldown menus. Since menus are such a common user interface tool, support
for them must be provided in even the most basic widget sets. In menuing as in
other areas, the Athena Widget Set provides only basic functionality.

Menus in the Athena widget set are implemented as a menu container (the
SimpleMenu widget) and a collection of objects that comprise the menu entries.
The SimpleMenu widget is itself a direct subclass of the OverrideShell widget class,
so no other shell is necessary when creating a menu. The managed children of a
SimpleMenu must be subclasses of the Sme (Simple Menu Entry) object.

The Athena widget set provides three classes of Sme objects that may be used to
build menus.

Sme The base class of all menu entries. It may be used as a menu entry itself
to provide blank space in a menu. "Sme" means "Simple Menu Entry."

SmeBSB This menu entry provides a selectable entry containing a text string. A
bitmap may also be placed in the left and right margins. "BSB" means
"Bitmap String Bitmap."

SmeLine This menu entry provides an unselectable entry containing a separator
line.

The SimpleMenu widget informs the window manager that it should ignore its
window by setting the Override Redirect flag. This is the correct behavior for
the press-drag-release style of menu operation. If click-move-click or "pinable"
menus are desired it is the responsibility of the application programmer, using the
SimpleMenu resources, to inform the window manager of the menu.

To allow easy creation of pulldown menus, a MenuButton widget is also provided
as part of the Athena widget set.

Using the Menus

The default configuration for the menus is press-drag-release. The menus will
typically be activated by clicking a pointer button while the pointer is over a
MenuButton, causing the menu to appear in a fixed location relative to that button;
this is a pul | down menu. Menus may also be activated when a specific pointer and/
or key sequence is used anywhere in the application; this is a popup menu (e.g.
clicking Ctrl-<pointer button 1> in the common application xt er m). In this case the
menu should be positioned under the cursor. Typically menus will be placed so the
pointer cursor is on the first menu entry, or the last entry selected by the user.

The menu remains on the screen as long as the pointer button is held down. Moving
the pointer will highlight different menu items. If the pointer leaves the menu, or
moves over an entry that cannot be selected then no menu entry will highlighted.
When the desired menu entry has been highlighted, releasing the pointer button
removes the menu, and causes any mechanism associated with this entry to be
invoked.

55

Menus

SimpleMenu Widget

Application Header file <X11/ Xaw Si npl eMenu. h>

Cl ass Header file <X11/ Xaw Si npl eMenP. h>

d ass

si npl eMenuW dget Cl ass

Cl ass Nanme Sinpl eMenu

Supercl ass Ove

rri deShel |

The SimpleMenu widget is a container for the menu entries. It is a direct
subclass of shell, and is should be created with Xt CreatePopupShell, not
Xt Cr eat eManagedW dget . This is the only part of the menu that actually is associated
with a window. The SimpleMenu serves as the glue to bind the individual menu

entries together

Resources

into a menu.

The resources associated with the SimpleMenu widget control aspects that will

affect the entire menu.
Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitivAncestorSensitive =~ Boolean D True
allowShellResizeAllowShellResize Boolean True
background Background Pixel Xt DefaultBackgrou1nd
backgroundPixmap Pixmap Pixmap XtUnspeciﬁedPimeap
backingStore | BackingStore | BackingStore see below
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth | BorderWidth Dimension 1
bottomMargin |VerticalMargins| Dimension 0
children ReadOnly WidgetList R NULL
createPopupChildPratePopupChildProc Function NULL
colormap Colormap Colormap Parent's
Colormap
cursor Cursor Cursor None
depth Depth int C Parent's Depth

56

Menus

Name Class Type Notes Default Value
destroyCallback Callback XtCallbackList NULL
geometry Geometry String NULL
height Height Dimension Enough space
to contain
all entries
label Label String NULL
labelClass LabelClass Pointer SmeBSBObjectClass
ppedWhenMaMagpeddWhenManaged Boolean True
menuOnScreen | MenuOnScreen Boolean True
numChildren ReadOnly Cardinal R 0
overrideRedirecDverrideRedirect Boolean True
popdownCallback Callback XtCallbackList NULL
popupCallback Callback XtCallbackList NULL
popupOnEntry | PopupOnEntry Widget A Label or
first entry
rowHeight RowHeight Dimension 0
saveUnder SaveUnder Boolean False
screen Screen Screen R Parent's
Screen
sensitive Sensitive Boolean True
topMargin |VerticalMargins| Dimension 0
translations Translations [IranslationTable See below
visual Visual Visual CopyFromParent
width Width Dimension Width of
widest entry
X Position Position 0
vy Position Position 0

backi ngSt or e

bot t onivar gi n

t opMar gi n

cur sor

geometry

Determines what type of backing store will be used

for the menu. Legal values for this resource are
Not Usef ul , WhenMapped, and Al ways. These values
are the backing-store integers defined in <X11/X.h>.
If default is specified (the default behavior) the
server will use whatever it thinks is appropriate.

The amount of space between the top or bottom of
the menu and the menu entry closest to that edge.

The shape of the mouse pointer whenever it is in this
widget.

If this resource is specified it will override the x, y,
width and height of this widget. The format of this

57

Menus

| abel

| abel d ass

menuOnScr een

overrideRedirect

popdownCallback
popupCallback

popupOnEntry

r owHei ght

saveUnder

SimpleMenu Actions

string is [<width>x<height>][{+ -} <xoffset> {+
-}<yoffset>].

This label will be placed at the top of the
SimpleMenu, and may not be highlighted. The name
of the label object is nenuLabel . Using this name it
is possible to modify the label's attributes through
the resource database. When the label is created,
the | abel is hard coded to the value of | abel, and
justify is hard coded as Xt JustifyCenter.

Specifies the type of Sme object created as the menu
label.

If the menu is automatically positioned under the
cursor with the XawPosi t i onSi npl eMenu action, and
this resource is True, then the menu will always be
fully visible on the screen.

Determines the value of the override redirect
attribute of the SimpleMenu's window. The
override redirect attribute of a window determines
whether or not a window manager may interpose
itself between this window and the root window of
the display. For more information see the Interclient
Communications Conventions Manual.

These callback functions are called by the Xt
Intrinsics whenever the shell is popped up or down
(See (xT for details).

The XawPosi ti onSi npl eMenu action will, by default,
popup the SimpleMenu with its label (or first entry)
directly under the pointer. To popup the menu under
another entry, set this resource to the menu entry
that should be under the pointer, when the menu is
popped up. This allows the application to offer the
user a default menu entry that can be selected with
out moving the pointer.

If this resources is zero (the default) then each menu
entry will be given its desired height. If this resource
has any other value then all menu entries will be
forced to be r owHei ght pixels high.

If this is Tr ue then save unders will be active on the
menu's window.

The SimpleMenu widget supports the following actions:

e Switching the entry under the mouse pointer between the foreground and
background colors with hi ghl i ght and unhi ghl i ght

58

../xorg-docs/icccm/icccm.pdf#icccm
../xorg-docs/icccm/icccm.pdf#icccm

Menus

* Processing menu entry callbacks with notify

The following are the default translation bindings used by the SimpleMenu widget:

<Ent er W ndow>: hi ghlight ()

<LeaveW ndow>: unhi ghlight()

<Bt nMoti on>: highlight()

<Bt nUp>: MenuPopdown() notify() unhighlight()

The user can pop down the menu without activating any of the callback functions
by releasing the pointer button when no menu item is highlighted.

The full list of actions supported by SimpleMenu is:

hi ghl i ght () Highlight the menu entry that is currently under the
pointer. Only a item that is highlighted will be notified
when the notify action is invoked. The look of a
highlighted entry is determined by the menu entry.

unhi ghl i ght () Unhighlights the currently highlighted menu item,
and returns it to its normal look.

notify() Notifies the menu entry that is currently highlighted
that is has been selected. It is the responsibility of
the menu entry to take the appropriate action.

MenuPopdown(menu) This action is defined in (xT.

Positioning the SimpleMenu

If the SimpleMenu widget is to be used as a pulldown menu then the MenuButton
widget, or some other outside means should be used to place the menu when it is

popped up.

If popup menus are desired it will be necessary to add the XawPosi t i onSi nmpl eMenu
and MenuPopup actions to the translation table of the widget that will be popping up
the menu. The MenuPopup action is described in (xT. XawPosi t i onSi npl eMenu is a
global action procedure registered by the SimpleMenu widget when the first one is
created or the convenience routine XawSi npl eMenuAddd obal Acti ons is called.

Translation writers should be aware that Xt does not register grabs on “don't care”
modifiers, and therefore the left hand side of the production should be written to
exclude unspecified modifiers. For example these are the translations needed to
popup some of xt er mi s menus:

ICtrl <Bt n1Down>: XawPositionSi nmpl eMenu(xterm MenuPopup(xtern)
ICtrl <Bt n2Down>: XawPosi ti onSi npl eMenu(nodes) MenuPopup(nodes)

XawPosi ti onSi npl eMenu(mentilhe XawPosi ti onSi npl eMenu routine will search for
the menu name passed to it using Xt NameToW dget
starting with the widget invoking the action as the

59

Menus

reference widget. If it is unsuccessful it will continue
up the widget tree using each of the invoking
widget's ancestors as the reference widget. If it is
still unsuccessful it will print a warning message and
give up. XawPosi ti onSi npl eMenu will position the
menu directly under the pointer cursor. The menu
will be placed so that the pointer cursor is centered
on the entry named by the popupOnEnt ry resource.
If the menuOnScr een resource is Tr ue then the menu
will always be fully visible on the screen.

Convenience Routines

Registering the Global Action Routines

The XawPosi t i onSi npl eMenu action routine may often be invoked before any menus
have been created. This can occur when an application uses dynamic menu creation.
In these cases an application will need to register this global action routine by
calling XawSi npl eMenuAddd obal Acti ons:

voi d XawSi npl eMenuAddd obal Acti ons(app_con);

app_con Specifies the application context in which this action
should be registered.

This function need only be called once per application and must be called before
any widget that uses XawPosi t i onSi npl eMenu action is realized.

Getting and Clearing the Current Menu Entry
To get the currently highlighted menu entry use XawSi npl eMenuGet Acti veEntry:
W dget XawSi npl eMenuGet ActiveEntry(w);
w Specifies the SimpleMenu widget.

This function returns the menu entry that is currently highlighted, or NULL if no
entry is highlighted.

To clear the SimpleMenu widget's internal information about the currently
highlighted menu entry use XawSi npl eMenud ear Acti veEntry:

W dget XawSi npl eMenuCl ear Acti veEntry(w);
w Specifies the SimpleMenu widget.

This function unsets all internal references to the currently highlighted menu entry.
It does not unhighlight or otherwise alter the appearance of the active entry. This
function is primarily for use by implementors of menu entries.

SmeBSB Object

60

Menus

Application Header file <X11/Xaw SneBSB. h>

Cl ass Header file <X11/ Xaw SmeBSBP. h>

d ass

smeBSBObj ect Cl ass

Cl ass Nane SneBSB

Supercl ass Sne

The SmeBSB object is used to create a menu entry that contains a string, and
optional bitmaps in its left and right margins. Since each menu entry is an
independent object, the application is able to change the font, color, height, and
other attributes of the menu entries, on an entry by entry basis. The format of
the string may either be the encoding of the 8 bit f ont utilized, or in a multi-byte

encoding for use with a f ont Set .

Resources

q

The resources associated with the SmeBSB object are defined in this section, and
affect only the single menu entry specified by this object.

notifies this entry that the user has selected it.

Name Class Type Notes Default Value
ancestorSensitivAncestorSensitive =~ Boolean D True
callback Callback Callback NULL
destroyCallback Callback XtCallbackList NULL
font Font FontStruct XtDefaultFont
fontSet FontSet XFontSet XtDefaultFontSet
foreground Foreground Pixel XtDefaultForeground
height Height Dimension A Font height
+ vert Space
international | International Boolean C False
justify Justify Justify XtjustifyLeft
label Label String NULL
leftBitmap LeftBitmap Pixmap XtUnspecifiedPixmap
leftMargin leftMargin Dimension 4
rightBitmap RightBitmap Pixmap XtUnspecifiedPixmap
rightMargin rightMargin Dimension 4
sensitive Sensitive Boolean True
vertSpace VertSpace int 25
width Width Dimension A TextWidth
+ margins
callback All callback functions on this list are called when the SimpleMenu

61

Menus

font

fontSet

foreground

justify

label

leftBitmap
rightBitmap

leftMargin
rightMargin

vertSpace

The text font to use when displaying the | abel, when the
i nternational resource is f al se.

The text font set to use when displaying the | abel, when the
i nt ernati onal resource istrue.

A pixel value which indexes the SimpleMenu's colormap to derive
the foreground color of the menu entry's window. This color is also
used to render all 1's in the left and right bi t maps. Keep in mind that
the SimpleMenu widget will force the width of all menu entries to be
the width of the longest entry.

How the label is to be rendered between the left and right margins
when the space is wider than the actual text. This resource may
be specified with the values Xt JustifylLeft, XtJustifyCenter, or
Xt Justi f yRi ght. When specifying the justification from a resource
file the values | ef t, cent er, orri ght may be used.

This is a the string that will be displayed in the menu entry.
The exact location of this string within the bounds of the menu
entry is controlled by the | ef t Mar gi n, ri ght Mar gi n, vert Space, and
j usti fy resources.

This is a name of a bitmap to display in the left or right margin
of the menu entry. All 1's in the bitmap will be rendered in the
foreground color, and all 0's will be drawn in the background color
of the SimpleMenu widget. It is the programmers' responsibility to
make sure that the menu entry is tall enough, and the appropriate
margin wide enough to accept the bitmap. If care is not taken the
bitmap may extend into another menu entry, or into this entry's label.

This is the amount of space (in pixels) that will be left between the
edge of the menu entry and the label string.

This is the amount of vertical padding, expressed as a percentage of
the height of the font, that is to be placed around the label of a menu
entry.. The label and bitmaps are always centered vertically within
the menu. The default value for this resource (25) causes the default
height to be 125% of the height of the font.

SmelLine Object

Application Header file <X11/Xaw SneLi ne. h>

Cl ass Header file <X11/ Xaw SmeLi neP. h>

Cl ass snelLi neCbj ect O ass

62

Men

us

Cl ass Nane SnelLi ne

Supercl ass Sne

The SmelLine object is used to add a horizontal line or menu separator to a menu.

Since each SmelLine is an independent object, the application is able to change the

color, height, and other attributes of the SmeLine objects on an entry by entry basis.
This object is not selectable, and will not highlight when the pointer cursor is over it.

Resources

The resources associated with the SmeLine object are defined in this section, and

affect only the single menu entry specified by this object.

Name Class Type Notes Default Value
destroyCallback Callback XtCallbackList NULL
foreground Foreground Pixel XtDefaultForeground
height Height Dimension i neWdth
international | International Boolean C False
lineWidth LineWidth Dimension 1
stipple Stipple Pixmap XtUnspecifiedPixmap
width Width Dimension 1
foreground A pixel value which indexes the SimpleMenu's colormap to derive the

foreground color used to draw the separator line. Keep in mind that

the SimpleMenu widget will force all menu items to be the width of the

widest entry. Thus, setting the width is generally not very important.

lineWidth

stipple

chains.

Sme Object

Application Header file <X11/Xaw Sne. h>

Cl ass Header file <X11/ Xaw SmeP. h>

d ass

Cl ass Nane Sne

snmeCbj ect Cl ass

The width of the horizontal line that is to be displayed.

If a bitmap is specified for this resource, the line will be stippled
through it. This allows the menu separator to be rendered as
something more exciting than just a line. For instance, if you define
a stipple that is a chain link, then your menu separators will look like

63

Menus

Super cl ass Rect Qbj

The Sme object is the base class for all menu entries. While this object is mainly
intended to be subclassed, it may be used in a menu to add blank space between
menu entries.

Resources

The resources associated with the SmeLine object are defined in this section,
and affect only the single menu entry specified by this object. There are no new
resources added for this class, as it picks up all its resources from the RectObj class.

Name Class Type Notes Default Value
ancestorSensitivAncestorSensitive ~ Boolean True
callback Callback XtCallbackList NULL
destroyCallback Callback XtCallbackList NULL
height Height Dimension 0
international | International Boolean C False
sensitive Sensitive Boolean True
width Width Dimension 1

Keep in mind that the SimpleMenu widget will force all menu items to be the width
of the widest entry.

Subclassing the Sme Object

To Create a new Sme object class you will need to define three class methods. These
methods allow the SimpleMenu to highlight and unhighlight the menu entry as the
pointer cursor moves over it, as well as notify the entry when the user has selected
it. All of these methods may be inherited from the Sme object, although the default
semantics are not very interesting.

Hi ghli ght () Called to put the menu entry into the highlighted
state.
Unhi ghl i ght () Called to return the widget to its normal

(unhighlighted) state.
Noti fy() Called when the user selects this menu entry.

Other then these methods, creating a new object is straight forward. Here is some
information that may help you avoid some common mistakes.

1. Objects can be zero pixels high.

2. Objects draw on their parent's window, therefore the Drawing dimensions are
different from those of widgets. For instance, y locations vary fromy toy +
hei ght, not 0 to hei ght .

3. XtSetValues calls may come from the application while the Sme is highlighted,
and if the SetValues method returns True, will result in an expose event. The
SimpleMenu may later call the menu entry's unhi ghl i ght procedure. However,
due to the asynchronous nature of X, the expose event generated by Xt Set Val ues
will come after this unhighlight.

64

Menus

4. Remember that your subclass of the Sme does not own the window. Share the
space with other menu entries, and refrain from drawing outside the subclass's
own section of the menu.

MenuButton Widget

Application Header file <X11/Xaw MenuButton. h>

Cl ass Header file <X11/ Xaw MenuButt onP. h>

C ass

nmenuBut t onW dget Cl ass

Cl ass Nane MenuButton

Super cl ass Commrand

The MenuButton widget is an area, often rectangular, that displays a graphic. The
graphic may be a text string containing multiple lines of characters in an 8 bit or 16
bit character set (to be displayed with a font), or in a multi-byte encoding (for use
with a fontset). The graphic may also be a bitmap or pixmap.

When the pointer cursor is on a MenuButton widget, the MenuButton becomes
highlighted by drawing a rectangle around its perimeter. This highlighting indicates
that the MenuButton is ready for selection. When a pointer button is pressed, the
MenuButton widget will pop up the menu named in the menuNanme resource.

Resources

When creating a MenuButton widget instance, the following resources are retrieved
from the argument list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitivAncestorSensitive ~ Boolean D True
background Background Pixel Xt DefaultBackgroqnd
backgroundPixmap Pixmap Pixmap Xt UnspeciﬁedPimeap
bitmap Bitmap Pixmap None
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderwidth BorderWidth Dimension 1
callback Callback XtCallbackList NULL
colormap Colormap Colormap Parent's
Colormap
cgrnerRoundPer€emrherRoundPercent Dimension 25
cursor Cursor Cursor None

65

Menus

Name Class Type Default Value
cursorName Cursor String None
depth Depth int Parent's Depth
destroyCallback Callback XtCallbackList NULL
encoding Encoding UnsignedChar XawTextEncoding8pbi
font Font XFontStruct XtDefaultFont
fontSet FontSet XFontSet XtDefaultFontSet
foreground Foreground Pixel XtDefaultForeground
height Height Dimension graphic
height + 2 *
i nt er nal Hei ght
highlightThickness Thickness Dimension 2 (0 if Shaped)
insensitiveBorder Insensitive Pixmap GreyPixmap
internalHeight Height Dimension 2
internalWidth Width Dimension 4
international | International Boolean False
justify Justify Justify XtJustifyCenter
(center)
label Label String name of widget
leftBitmap LeftBitmap Bitmap None
mappedWhenMaMagpeddWhenManaged Boolean True
menuName MenuName String "menu"
pointerColor Foreground Pixel DefaultForeground
pointerColorBackgraoumhckground Pixel tDefaultBackground
resize Resize Boolean True
screen Screen Screen Parent's
Screen
sensitive Sensitive Boolean True
shapeStype ShapeStyle ShapeStyle Rectangle
translations Translations [TranslationTable See below
width Width Dimension graphic
width + 2 *
i nternal Wdth
Position Position 0
Position Position 0
menuName

The name of a popup shell to popup as a menu.
The MenuButton will search for this name using

Xt NaneToW dget

starting with itself as the reference

widget. If the search is unsuccessful the widget will
continue up the widget tree using each of its ancestors
as the reference widget passed to Xt NaneToW dget . If no

66

Menus

widget of called nmenuNane is found by this algorithm, the
widget will print a warning message and give up. When
the menu is found it will be popped up exclusive and
spring loaded. The MenuButton widget does not copy the
value of this resource into newly allocated memory. The
application programmer must pass the resource value in
nonvolatile memory.

MenuButton Actions

The MenuButton widget supports the following actions:

* Switching the button between the foreground and background colors with set

and unset

* Processing application callbacks with noti fy

* Switching the internal border between highlighted and unhighlighted states with

hi ghl i ght and unhi ghl i ght

* Popping up a menu with PopupMenu

The following are the default translation bindings used by the MenuButton widget:

<Ent er W ndow>: hi ghlight ()

<LeaveW ndow>: reset ()

<Bt nDown>: reset () PopupMenu(\)

MenuButton Actions

The full list of actions supported by MenuButton is:

hi ghl i ght (condi ti on)

unhi ghli ght ()

set ()

unset ()

Displays the internal highlight border in the color
(f or egr ound or backgr ound) that contrasts with the
interior color of the Command widget. The conditions
WhenUnset and Al ways are understood by this action
procedure. If no argument is passed, WhenUnset is
assumed.

Displays the internal highlight border in the color
(Xt Nf or egr ound or background) that matches the
interior color of the MenuButton widget.

Enters the set state, in which not i fy is possible. This
action causes the button to display its interior in the
f or egr ound color. The label or bitmap is displayed in
the backgr ound color.

Cancels the set state and displays the interior of the
button in the backgr ound color. The label or bitmap
is displayed in the f or egr ound color.

67

Menus

reset ()

notify()

PopupMenu()

Cancels any set or highlight and displays the
interior of the button in the background color, with
the label displayed in the f or egr ound color.

When the button is in the set state this action calls all
functions in the callback list named by the cal | back
resource. The value of the call data argument in
these callback functions is undefined.

Pops up the menu specified by the nenuNane
resource.

The MenuButton widget does not place a server grab on itself. Instead, PopupMenu
is registered as a grab action. As a result, clients which popup menus without using
XtMenuPopup or MenuPopup or PopupMenu in translations will fail to have a grab
active. They should make a call to XtRegisterGrabAction on the appropriate action
in the application initialization routine, or use a different translation.

68

Chapter 5. Text Widgets

Text

The Text widget provides a window that will allow an application to display and edit
one or more lines of text. Options are provided to allow the user to add Scrollbars
to its window, search for a specific string, and modify the text in the buffer.

The Text widget is made up of a number of pieces; it was modularized to
ease customization. The AsciiText widget class (actually not limited to ASCII
but so named for compatibility) is be general enough to most needs. If more
flexibility, special features, or extra functionality is needed, they can be added by
implementing a new TextSource or TextSink, or by subclassing the Text Widget (See
Section 5.8 for customization details.)

The words insertion point are used in this chapter to refer to the text caret. This is
the symbol that is displayed between two characters in the file. The insertion point
marks the location where any new characters will be added to the file. To avoid
confusion the pointer cursor will always be referred to as the pointer.

The text widget supports three edit modes, controlling the types of modifications
a user is allowed to make:

e Append-only
» Editable
* Read-only

Read-only mode does not allow the user or the programmer to modify the text in the
widget. While the entire string may be reset in read-only mode with Xt Set Val ues,
it cannot be modified via with XawText Repl ace. Append-only and editable modes
allow the text at the insertion point to be modified. The only difference is that text
may only be added to or removed from the end of a buffer in append-only mode.

Widget for Users

The Text widget provides many of the common keyboard editing commands. These
commands allow users to move around and edit the buffer. If an illegal operation
is attempted, (such as deleting characters in a read-only text widget), the X server
will beep.

Default Key Bindings

The default key bindings are patterned after those in the EMACS text editor:

Crl-a Beginning O Line Meta-b Backward Wrd
Crl-b Backward Character Meta-f Forward Word
Crl-d Delete Next Character Meta-i Insert File
Crl-e End O Line Meta-k Kill To End O Paragraph

69

Text Widgets

Crl-f Forward Character Meta-q Form Paragraph

Crl-g Multiply Reset Meta-v Previous Page

Ctrl-h Delete Previous Character Meta-y Insert Current Selection
Crl-j Newine And Indent Meta-z Scroll One Line Down
Crl-k Kill To End O Line Meta-d Del ete Next Wrd

Crl-1 Redraw Display Meta-D Kill Wrd

Crl-mNew ine Meta-h Del ete Previous Wrd

Ctrl-n Next Line Meta-H Backward Kill Word

Ctrl-o Newine And Backup Meta-< Beginning O File
Crl-p Previous Line Meta-> End O File

Crl-r Search/Repl ace Backward Meta-] Forward Paragraph
Ctrl-s Search/Repl ace Forward Meta-[Backward Paragraph
Crl-t Transpose Characters

Crl-u Multiply by 4 Meta-Delete Del ete Previ ous Wrd
Crl-v Next Page Meta-Shift Delete Kill Previous Wrd
Crl-wKill Selection Mta-Backspace Del ete Previous Wrd
Crl-y Unkill Meta-Shift Backspace Kill Previous Wrd
Crl-z Scroll One Line Up

Ctrl-\\ Reconnect to input nethod

Kanji Reconnect to input nethod

In addition, the pointer may be used to cut and paste text:

Button 1 Down Start Sel ection
Button Moti on Adjust Sel ection
Button 1 Up End Sel ection (cut)

=

Button 2 Down |Insert Current Selection (paste)

Button Down Extend Current Selection
Button Moti on Adjust Sel ection
Button 3 Up End Sel ection (cut)

w w

Since all of these key and pointer bindings are set through the translations and
resource manager, the user and the application programmer can modify them by
changing the Text widget's t ransl ati ons resource.

Search and Replace

The Text widget provides a search popup that can be used to search for a string
within the current Text widget. The popup can be activated by typing either Control-
r or Control-s. If Control-s is used the search will be forward in the file from
the current location of the insertion point; if Control-r is used the search will be
backward. The activated popup is placed under the pointer. It has a number of
buttons that allow both text searches and text replacements to be performed.

At the top of the search popup are two toggle buttons labeled backward and forward.
One of these buttons will always be highlighted; this is the direction in which the
search will be performed. The user can change the direction at any time by clicking
on the appropriate button.

70

Text Widgets

Directly under the buttons there are two text areas, one labeled Search for: and the
other labeled Replace with:. If this is a read-only Text widget the Replace with: field
will be insensitive and no replacements will be allowed. After each of these labels
will be a text field. This field will allow the user to enter a string to search for and
the string to replace it with. Only one of these text fields will have a window border
around it; this is the active text field. Any key presses that occur when the focus in
in the search popup will be directed to the active text field. There are also a few
special key sequences:

Carriage Return: Execute the action, and pop down the search wi dget.
Tab: Execute the action, then nove to the next field.

Shift Carriage Return: Execute the action, then nmove to the next field.
Control-g Tab: Enter a Tab into a text field.

Control -c: Pop down the search popup.

Using these special key sequences should allow simple searches without ever
removing one's hands from the keyboard.

Near the bottom of the search popup is a row of buttons. These buttons allow the
same actions to to be performed as the key sequences, but the buttons will leave
the popup active. This can be quite useful if many searches are being performed, as
the popup will be left on the display. Since the search popup is a transient window,
it may be picked up with the window manager and pulled off to the side for use at
a later time.

Search Search for the specified string.

Replace Replace the currently highlighted string with the string in the Replace
with text field, and move onto the next occurrence of the Search for
text field. The functionality is commonly referred to as query-replace.

ReplaceAll Replace all occurrences of the search string with the replace string
from the current insertion point position to the end (or beginning) of
the file. There is no key sequence to perform this action.

ReplaceAll Remove the search popup from the screen.

Finally, when i nt er nat i onal resource istrue, there may be a pre-edit buffer below
the button row, for composing input. Its presence is determined by the X locale in
use and the VendorShell's pr eedi t Type resource.

The widget hierarchy for the search popup is show below, all widgets are listed by
class and instance name.

Text <nane of Text w dget>
Transi ent Shel | search
Form form
Label 1abell
Label | abel 2
Toggl e backwar ds
Toggl e forwards

71

Text Widgets

Label searchLabel
Text searchText
Label repl acelLabel
Text repl aceText
Command search
Conmand repl aceOne
Command repl aceAll
Conmand cancel

File Insertion

To insert a file into a text widget, type the key sequence Meta-i, which will activate
the file insert popup. This popup will appear under the pointer, and any text typed
while the focus is in this popup will be redirected to the text field used for the
filename. When the desired filename has been entered, click on Insert File, or type
Carriage Return. The named file will then be inserted in the text widget beginning
at the insertion point position. If an error occurs when opening the file, an error
message will be printed, prompting the user to enter the filename again. The file
insert may be aborted by clicking on Cancel. If Meta-i is typed at a text widget that
is read-only, it will beep, as no file insertion is allowed.

The widget hierarchy for the file insert popup is show below; all widgets are listed
by class and instance name.

Text <nanme of Text w dget>
Transient Shell insertFile
Form form
Label | abel
Text text
Command i nsert
Command cancel

Text Selections for Users

The text widgets have a text selection mechanism that allows the user to copy
pieces of the text into the PRI MARY selection, and paste into the text widget some
text that another application (or text widget) has put in the PRI MARY selection.

One method of selecting text is to press pointer button 1 on the beginning of the
text to be selected, drag the pointer until all of the desired text is highlighted, and
then release the button to activate the selection. Another method is to click pointer
button 1 at one end of the text to be selected, then click pointer button 3 at the
other end.

To modify a currently active selection, press pointer button 3 near either the end of
the selection that you want to adjust. This end of the selection may be moved while
holding down pointer button 3. When the proper area has been highlighted release
the pointer button to activate the selection.

The selected text may now be pasted into another application, and will remain active
until some other client makes a selection. To paste text that some other application
has put into the PRI MARY selection use pointer button 2. First place the insertion

72

Text Widgets

Text

point where you would like the text to be inserted, then click and release pointer

button 2.

Rapidly clicking pointer button 1 the following number of times will adjust the

selection as described.

Two Select the word under the pointer. A word boundary is defined
by the Text widget to be a Space, Tab, or Carriage Return.

Thr ee

Four

Select the line under the pointer.

Select the paragraph under the pointer. A paragraph

boundary is defined by the text widget as two Carriage
Returns in a row with only Spaces or Tabs between them.

Fi ve

Select the entire text buffer.

To unset the text selection, click pointer button 1 without moving it.

Widget Actions

All editing functions are performed by translation manager actions that may be
specified through the t r ansl at i ons resource in the Text widget.

I nsert Point Myvenent
f orwar d- char act er
backwar d- char act er
f orwar d- wor d
backwar d- wor d
f or war d- par agr aph
backwar d- par agr aph
begi nni ng-of -1 i ne
end-of -l ne
next-1ine
previous-1line
next - page
pr evi ous- page
begi nni ng-of -file
end-of -file
scrol | -one-1line-up
scrol | -one-1ine-down

M scel | aneous
redr aw di spl ay
insert-file
i nsert-char
i nsert-string
di spl ay- car et
focus-in

Del et e

del et e- next - character

del et e- previ ous-char act er
del et e- next - wor d

del et e- previ ous-word

del et e-sel ecti on

Sel ection

sel ect -word

sel ect - al

sel ect-start

sel ect - adj ust

sel ect -end
extend-start

ext end- adj ust
ext end- end

i nsert-sel ection

New Li ne

new i ne- and- i ndent
newl i ne- and- backup
new i ne

73

Text Widgets

focus-in
search

mul tiply

f or m par agr aph

transpose-characters

no- op
XawWMWPr ot ocol s
reconnect-im

kKill-word
backwar d- ki | | -word
kill-selection
Kill-to-end-of-line

kil | -paragraph
kill -to-end-of - paragraph

Most of the actions take no arguments, and unless otherwise noted you may assume

this to be the case.

Cursor Movement Actions

forward-character()

backward-character()

forward-word()

backward-word()

forward-paragraph()

backward-paragraph()

beginning-of-line()

end-of-line()

next-line()

previous-line()

next-page()

previous-page()

These actions move the insert point forward or
backward one character in the buffer. If the insert
point is at the end or beginning of a line this action
will move the insert point to the next (or previous)
line.

These actions move the insert point to the next or
previous word boundary. A word boundary is defined
as a Space, Tab or Carriage Return.

These actions move the insert point to the next or
previous paragraph boundary. A paragraph boundary
is defined as two Carriage Returns in a row with only
Spaces or Tabs between them.

These actions move to the beginning or end of the
current line. If the insert point is already at the end
or beginning of the line then no action is taken.

These actions move the insert point up or down one
line. If the insert point is currently N characters from
the beginning of the line then it will be N characters
from the beginning of the next or previous line. If N
is past the end of the line, the insert point is placed
at the end of the line.

These actions move the insert point up or down one
page in the file. One page is defined as the current

74

Text Widgets

beginning-of-file()
end-of-file()

scroll-one-line-up()

scroll-one-line-down()

Delete Actions

delete-next-character()

delete-previous-character()

delete-next-word()

delete-previous-word()

delete-selection()

Selection Actions

select-word()

select-all()

select-start()

height of the text widget. The insert point is always
placed at the first character of the top line by this
action.

These actions place the insert point at the beginning
or end of the current text buffer. The text widget
is then scrolled the minimum amount necessary to
make the new insert point location visible.

These actions scroll the current text field up or down
by one line. They do not move the insert point. Other
than the scrollbars this is the only way that the insert
point may be moved off of the visible text area. The
widget will be scrolled so that the insert point is
back on the screen as soon as some other action is
executed.

These actions remove the character immediately
before or after the insert point. If a Carriage Return
is removed then the next line is appended to the end
of the current line.

These actions remove all characters between the
insert point location and the next word boundary. A
word boundary is defined as a Space, Tab or Carriage
Return.

This action removes all characters in the current
selection. The selection can be set with the selection
actions.

This action selects the word in which the insert point
is currently located. If the insert point is between
words then it will select the previous word.

This action selects the entire text buffer.

This action sets the insert point to the current pointer
location (if triggered by a button event) or text cursor
location (if triggered by a key event). It will then
begin a selection at this location. If many of these
selection actions occur quickly in succession then
the selection count mechanism will be invoked (see

75

Text Widgets

select-adjust()

select-end(namel,name,...])

extend-start()

extend-adjust()

extend-end(namel,name,...])

insert-
selection(namel[,name,...])

The New Line Actions

newline-and-indent()

newline-and-backup()

newline()

Kill and Actions

kill-word()
backward-kill-word()

the section called “Text Selections for Application
Programmers” for details).

This action allows a selection started with the select-
start action to be modified, as described above.

This action ends a text selection that began with
the select-start action, and asserts ownership of
the selection or selections specified. A name can
be a selection (e.g., PRI MARY) or a cut buffer (e.g.,
CUT_BUFFER0). Note that case is important. If no
names are specified, PRI MARY is asserted.

This action finds the nearest end of the current
selection, and moves it to the current pointerlocation
(if triggered by a button event) or text cursor location
(if triggered by a key event).

This action allows a selection started with an extend-
start action to be modified.

This action ends a text selection that began with
the extend-start action, and asserts ownership of
the selection or selections specified. A name can
be a selection (e.g. PRI MARY) or a cut buffer (e.g
CUT_BUFFERO). Note that case is important. If no
names are given, PRI MARY is asserted.

This action retrieves the value of the first (left-most)
named selection that exists or the cut buffer that
is not empty and inserts it into the Text widget
at the current insert point location. A name can
be a selection (e.g. PRI MARY) or a cut buffer (e.g
CUT_BUFFERO). Note that case is important.

This action inserts a newline into the text and adds
spaces to that line to indent it to match the previous
line.

This action inserts a newline into the text after the
insert point.

This action inserts a newline into the text before the
insert point.

These actions act exactly like the delete-next-
word and delete-previous-word actions, but they
stuff the word that was killed into the kill buffer
(CUT_BUFFER 1).

76

Text Widgets

kill-selection()

kill-to-end-of-line()

kill-paragraph()

kill-to-end-of-paragraph()

Miscellaneous Actions

redraw-display()

insert-file([filename])

insert-char()

insert-
string(stringl,string,...])

display-caret(state,when)

This action deletes the current selection and stuffs
the deleted text into the kill buffer (CUT_BUFFER 1).

This action deletes the entire line to the right of the
insert point position, and stuffs the deleted text into
the kill buffer (CUT_BUFFER 1).

This action deletes the current paragraph, if between
paragraphs it deletes the paragraph above the insert
point, and stuffs the deleted text into the kill buffer
(CUT_BUFFER_1).

This action deletes everything between the current
insert point location and the next paragraph
boundary, and stuffs the deleted text into the kill
buffer (CUT_BUFFER 1).

This action recomputes the location of all the text
lines on the display, scrolls the text to vertically
center the line containing the insert point on the
screen, clears the entire screen, and redisplays it.

This action activates the insert file popup. The
filename option specifies the default filename to put
in the filename buffer of the popup. If no filename is
specified the buffer is empty at startup.

This action may only be attached to a key event.
When the international resource is fal se, this
action calls XLookupString to translate the event
into a (rebindable) Latin-1 character (sequence) and
inserts it into the text at the insert point. When
the i nter nati onal resource is true, characters are
passed to the input method via XwcLookupString,
and any committed string returned is inserted into
the text at the insert point.

This action inserts each string into the text at the
insert point location. Any string beginning with the
characters "0x" followed by an even number of
hexadecimal digits is interpreted as a hexadecimal
constant and the corresponding string is inserted
instead. This hexadecimal string may represent up
to 50 8-bit characters. When thei nternati onal

resource is true, a hexadecimal string is intrepeted
as being in a multi-byte encoding, and a hexadecimal
or regular string will result in an error message if it
is not legal in the current locale.

This action allows the insert point to be turned on and
off. The state argument specifies the desired state of
the insert point. This value may be any of the string

77

Text Widgets

*Text. Transl ati ons:

<Focusl n>:
<FocusQut >:

focus-in()
focus-out()

search(direction,[string])

multiply(value)

form-paragraph()

transpose-characters()

no-op([action])

values accepted for Boolean resources (e.g. on, Tr ue,
of f, Fal se, etc.). If no arguments are specified, the
default value is Tr ue. The when argument specifies,
for Enter Noti fy or LeaveNoti fy events whether or
not the focus field in the event is to be examined.
If the second argument is not specified, or specified
as something other than al ways then if the action is
bound to an Ent er Noti fy or LeaveNot i f y event, the
action will be taken only if the focus field is Tr ue. An
augmented binding that might be useful is:

#override \\

di spl ay-caret (on) \\n\\
di spl ay-caret (off)

These actions do not currently do anything.

This action activates the search popup. The direction
must be specified as either f or war d or backwar d. The
string is optional and is used as an initial value for
the Search for: string. For further explanation of the
search widget see the section on Text Searches.

The multiply action allows the user to multiply the
effects of many of the text actions. Thus the following
action sequence multiply(10) delete-next-word() will
delete 10 words. It does not matter whether these
actions take place in one event or many events. Using
the default translations the key sequence Control-u,
Control-d will delete 4 characters. Multiply actions
can be chained, thus multiply(5) multiply(5) is the
same as multiply(25). If the string reset is passed
to the multiply action the effects of all previous
multiplies are removed and a beep is sent to the
display.

This action removes all the Carriage Returns from
the current paragraph and reinserts them so that
each line is as long as possible, while still fitting
on the current screen. Lines are broken at word
boundaries if at all possible. This action currently
works only on Text widgets that use ASCII text.

This action will swap the position of the character to
the left of the insert point with the character to the
right of the insert point. The insert point will then be
advanced one character.

The no-op action makes no change to the text widget,
and is mainly used to override translations. This

78

Text Widgets

action takes one optional argument. If this argument
is RingBell then a beep is sent to the display.

XawWMProtocols([wm_protocolThasnelgtion is written specifically for the file
insertion and the search and replace dialog boxes.
This action is attached to those shells by the Text
widget, in order to handle ClientMessage events
with the WM _PROTOCOLS atom in the detail field.
This action supports WM _DELETE WINDOW on the
Text widget popups, and may support other window
manager protocols if necessary in the future. The
popup will be dismissed if the window manager
sends a WM _DELETE WINDOW request and there
are no parameters in the action call, which is the
default. The popup will also be dismissed if the
parameters include the string “wm_delete window,”
and the event is a ClientMessage event requesting
dismissal or is not a ClientMessage event. This action
is not sensitive to the case of the strings passed as
parameters.

reconnect-im() When the i nternational resource is true, input
is usually passed to an input method, a separate
process, for composing. Sometimes the connection
to this process gets severed; this action will attempt
to reconnect it. Causes for severage include network
trouble, and the user explicitly killing one input
method and starting a new one. This action may
also establish first connection when the application
is started before the input method.

Text Selections for Application Programmers

The default behavior of the text selection array is described in the section called
Text Selections for Users. To modify the selections a programmer must
construct a XawText Sel ect Type array (called the selection array), containing the
selections desired, and pass this as the new value for the sel ecti onTypes resource.
The selection array may also be modified using the XawText Set Sel ecti onArray

function. All selection arrays must end with the value Xawsel ectNull. The
sel ecti onTypes resource has no converter registered and cannot be modified
through the resource manager.

The array contains a list of entries that will be called when the user attempts to
select text in rapid succession with the select-start action (usually by clicking a
pointer button). The first entry in the selection array will be used when the select-
start action is initially called. The next entry will be used when select-start is called
again, and so on. If a timeout value (1/10 of a second) is exceeded, the the next
select-start action will begin at the top of the selection array. When Xawsel ect Nul |

is reached the array is recycled beginning with the first element.

Xawsel ect Al | Selects the contents of the entire buffer.

Xawsel ect Char Selects text characters as
the pointer moves over them.

79

Text Widgets

Xawsel ect Li ne Selects the entire line.

Xawsel ect Nul | Indicates the end of the selection array.

Xawsel ect Par agr aph Selects the entire paragraph.

Xawsel ect Posi ti on
Xawsel ect Wr d

Selects the current pointer position.

Selects whole words as the
pointer moves onto them.

The default selectType array is:

{ Xawsel ect Posi ti on, Xawsel ect Wrd, Xawsel ectLine, Xawsel ect Paragraph, Xawsel ect Al |

The selection array is not copied by the text widgets. The application must allocate
space for the array and cannot deallocate or change it until the text widget is
destroyed or until a new selection array is set.

Default Translation Bindings

The following translations are defaults built into every Text widget. They can
be overridden, or replaced by specifying a new value for the Text widget's
transl ati ons resource.

Crl <Key>A: begi nni ng-of -1ine() \\n\\

Crl <Key>B: backwar d- character () \\n\\

Crl <Key>D: del ete-next-character () \\n\\
Crl <Key>E: end-of -line() \\n\\

Crl <Key>F: forward-character() \\n\\

Crl <Key>G mul ti pl y(Reset) \\n\\

Crl <Key>H: del et e- previ ous-character () \\n\\
Crl <Key>J: new i ne-and-i ndent () \\n\\

C rl <Key>K: kill-to-end-of-line() \\n\\

Crl <Key>L: redraw di splay() \\n\\

C r | <Key>M new i ne() \\n\\

Crl <Key>N: next-line() \\n\\

Crl <Key>O new i ne- and- backup() \\n\\

Crl <Key>P: previ ous-line() \\n\\

Crl <Key>R: sear ch(backward) \\n\\

Crl <Key>S: search(forward) \\n\\

Crl <Key>T: transpose-characters() \\n\\
Crl <Key>U: mul tiply(4) \\n\\

Crl <Key>V: next - page() \\n\\

Crl <Key>W kill-selection() \\n\\

Crl <Key>Y: i nsert-sel ecti on(CUT_BUFFERL) \\n\\
Crl <Key>Z: scrol | -one-1line-up() \\n\\

Crl <Key>\\: reconnect-in() \\n\\

Met a<Key>B: backwar d-word() \\n\\

Met a<Key>F: forward-word() \\n\\

Met a<Key>l : insert-file() \\n\\

Met a<Key>K: kill-to-end-of-paragraph() \\n\\

80

Text Widgets

Met a<Key>Q form paragraph() \\n\\

Met a<Key>V: previ ous-page() \\n\\

Met a<Key>Y: i nsert-sel ecti on(PRI MARY, CUT_BUFFERO) \\n\\
Met a<Key>Z: scrol | -one-1line-down() \\n\\

: Met a<Key>d: del et e- next -word() \\n\\

: Met a<Key>D: kill-word() \\n\\

: Met a<Key>h: del et e- previ ous-word() \\n\\

: Met a<Key>H: backwar d- kil | -word() \\n\\

: Met a<Key>\\ <: begi nni ng-of -file() \\n\\

: Met a<Key>\\ >: end-of -file() \\n\\

: Met a<Key>] : f orwar d- paragraph() \\n\\

: Met a<Key>[: backwar d- par agraph() \\n\\

~Shift Meta<Key>Del et e: del et e- previ ous-word() \\n\\
\ Shift Meta<Key>Del ete: backward- kil | -word() \\n\\
~Shift Met a<Key>Backspace: del et e- previ ous-word() \\n\\
\ Shift Meta<Key>Backspace: backward- kil | -word() \\n\\
<Key>Ri ght : forward-character() \\n\\

<Key>Left: backwar d- character () \\n\\

<Key>Down: next-line() \\n\\

<Key>Up: previous-line() \\n\\

<Key>Del et e: del et e- previ ous-character () \\n\\
<Key>BackSpace: del et e- previ ous-character () \\n\\
<Key>Li nef eed: new i ne-and-i ndent () \\n\\

<Key>Ret ur n: new ine() \\n\\

<Key>: i nsert-char() \\n\\

<Key>Kanj i : reconnect-im) \\n\\

<Focusl n>: focus-in() \\n\\

<FocusCut >: focus-out () \\n\\

<Bt n1Down>: sel ect-start() \\n\\

<Bt n1Mot i on>: ext end- adj ust () \\n\\

<Bt n1Up>: ext end- end(PRI MARY, CUT_BUFFERO) \\n\\

<Bt n2Down>: i nsert-sel ecti on(PRI MARY, CUT_BUFFERO) \\n\\
<Bt n3Down>: extend-start() \\n\\

<Bt n3Mot i on>: ext end- adj ust () \\n\\

<Bt n3Up>: ext end- end(PRI MARY, CUT_BUFFERO) \\n

Text Functions

The following functions are provided as convenience routines for use with the Text
widget. Although many of these actions can be performed by modifying resources,
these interfaces are frequently more efficient.

These data structures are defined in the Text widget's public header file, <X11/Xaw/
Text.h>.

typedef long XawTextPosition;

Character positions in the Text widget begin at 0 and end at n, where n is the number
of characters in the Text source widget.

81

Text Widgets

typedef struct {
int firstPos;
int |ength;
char *ptr;
unsi gned | ong format;
} XawText Bl ock, *XawText Bl ockPtr;

firstPos The first position, or index, to use within the ptr field. The
value is commonly zero.

length The number of characters to be used from the ptr field.
The number of characters used is commonly the number
of characters in ptr, and must not be greater than the
length of the string in ptr.

ptr Contains the string to be referenced by the Text widget.

format This flag indicates whether the data pointed to by
ptr is char or wchar t. When the associated widget
has international set to false this field must
be XawFmt8Bit. When the associated widget has
international set to true this field must be either
XawFmt8Bit or XawFmtWide.

Note
Note: Previous versions of Xaw used FMI8BI T, which has been retained

for backwards compatibility. FMI'8BI T is deprecated and will eventually be
removed from the implementation.

Selecting Text

To select a piece of text, use XawText Set Sel ecti on :

voi d XawText Set Sel ection(w, right);

w Specifies the Text widget.
left Specifies the character position at which the selection begins.
right Specifies the character position at which the selection ends.

See section 5.4 for a description of XawText Posi ti on. If redisplay is enabled, this
function highlights the text and makes it the PRI MARY selection. This function does
not have any effect on CUT_BUFFERO.

Unhighlighting Text

To unhighlight previously highlighted text in a widget, use
XawText Unset Sel ecti on:

82

Text Widgets

voi d XawText Unset Sel ection(w);

w Specifies the Text widget.

Getting Current Text Selection

To retrieve the text that has been selected by this text widget use
XawText Get Sel ect i onPos:

voi d XawText Get Sel ecti onPos(w, *end_return);

w Specifies the Text widget.
begin return Returns the beginning of the text selection.
end return Returns the end of the text selection.

See section 5.4 for a description of XawText Posi ti on. If the returned values are
equal, no text is currently selected.

Replacing Text

To modify the text in an editable Text widget use XawText Repl ace:

i nt XawText Repl ace(w, end, *text);

w Specifies the Text widget.

start Specifies the starting character position of the text
replacement.

end Specifies the ending character position of the text
replacement.

text Specifies the text to be inserted into the file.

This function will not be able to replace text in read-only text widgets. It will also
only be able to append text to an append-only text widget.

See section 5.4 for a description of XawText Posi ti on and XawText Bl ock.
This function may return the following values:
XawEdi t Done The text replacement was successful.

XawPosi t i onErr or The edit mode is Xawt ext Append and st art is not the
position of the last character of the source.

XawEdi t Err or Either the Source was read-only or the range to be
deleted is larger than the length of the Source.

The XawText Repl ace arguments st art and end represent the text source character
positions for the existing text that is to be replaced by the text in the text block. The
characters from start up to but not including end are deleted, and the characters
specified on the text block are inserted in their place. If start and end are equal, no
text is deleted and the new text is inserted after start.

83

Text Widgets

Searching for Text

To search for a string in the Text widget, use XawText Sear ch:
XawText Posi ti on XawText Search(w, dir, text);
w Specifies the Text widget.

dir Specifies the direction to search in. Legal values are
XawsdLeft and XawsdRi ght .

text Specifies a text block structure that contains the text to search
for.

See section 5.4 for a description of XawText Positi on and XawText Bl ock. The
XawText Sear ch function will begin at the insertion point and search in the direction
specified for a string that matches the one passed in text. If the string is found the
location of the first character in the string is returned. If the string could not be
found then the value XawText Sear chEr r or is returned.

Redisplaying Text

To redisplay a range of characters, use XawText | nval i dat e:

voi d XawText | nvalidate(w, to);

w Specifies the Text widget.
from Specifies the start of the text to redisplay.
to Specifies the end of the text to redisplay.

See section 5.4 for a description of XawText Posi ti on. The XawText | nval i date
function causes the specified range of characters to be redisplayed immediately if
redisplay is enabled or the next time that redisplay is enabled.

To enable redisplay, use XawText Enabl eRedi spl ay:
voi d XawText Enabl eRedi spl ay(w);
w Specifies the Text widget.

The XawText Enabl eRedi spl ay function flushes any changes due to batched
updates when XawText Di sabl eRedi spl ay was called and allows future changes to
be reflected immediately.

To disable redisplay while making several changes, use
XawText Di sabl eRedi spl ay.

voi d XawText Di sabl eRedi splay(w);
w Specifies the Text widget.

The XawText Di sabl eRedi spl ay function causes all changes to be batched until
either XawText Di spl ay or XawText Enabl eRedi spl ay is called.

To display batched updates, use XawText Di spl ay:

84

Text Widgets

voi d XawText Di spl ay(w);
w Specifies the Text widget.

The XawText Di spl ay function forces any accumulated updates to be displayed.

Resources Convenience Routines

To obtain the character position of the left-most character on the first line
displayed in the widget (the value of the displ ayPosition resource), use
XawText TopPosi ti on.

XawText Posi ti on XawText TopPosition(w);

w Specifies the Text widget.

To assign a new selection array to a text widget use XawText Set Sel ecti onArray:
voi d XawText Set Sel ecti onArray(w, sarray);

w Specifies the Text widget.

sarray Specifies a selection array as defined in the section called
“Text Selections for Application Programmers”.

Calling this function is equivalent to setting the value of the sel ecti onTypes
resource.

To move the insertion point to the specified source position, use
XawText Set | nserti onPoi nt :

voi d XawText Set | nsertionPoint(w, position);
w Specifies the Text widget.
position Specifies the new position for the insertion point.

See section 5.4 for a description of XawText Posi ti on. The text will be scrolled
vertically if necessary to make the line containing the insertion point visible. Calling
this function is equivalent to setting the i nsert Posi ti on resource.

To obtain the current ©position of the insertion point, use
XawText Get | nserti onPoi nt :

XawText Posi ti on XawText Get | nserti onPoi nt (w);
w Specifies the Text widget.

See section 5.4 for a description of XawText Posi ti on. The result is equivalent to
retrieving the value of the i nsert Posi ti on resource.

To replace the text source in the specified widget, use XawText Set Sour ce:
voi d XawText Set Source(w, source, position);
w Specifies the Text widget.

source Specifies the text source object.

85

Text Widgets

position Specifies character position that will become the upper
left hand corner of the displayed text. This is usually set
to zero.

See section 5.4 for a description of XawText Positi on. A display update will be
performed if redisplay is enabled.

To obtain the current text source for the specified widget, use XawText Get Sour ce:
W dget XawText Get Source(w);

w Specifies the Text widget.

This function returns the text source that this Text widget is currently using.

To enable and disable the insertion point, use XawText Di spl ayCar et :

voi d XawText Di spl ayCaret(w, visible);

w Specifies the Text widget.

visible Specifies whether or not the caret should be displayed.

If vi si bl e is Fal se the insertion point will be disabled. The marker is re-enabled
either by setting vi si bl e to True, by calling Xt Set Val ues, or by executing the
di spl ay- car et action routine.

Ascii Text Widget

Application Header file <X11/ Xaw Asci i Text. h>
Cl assHeader file <X11/ Xaw Asci i Text P. h>

Cl ass ascii Text Wdget d ass

Cl ass Name Text

Super cl ass Text
Si nk Nane textSink
Sour ce Nane text Source

For the ease of internationalization, the AsciiText widget class name has not been
changed, although it is actually able to support non-ASCII locales. The AsciiText
widget is really a collection of smaller parts. It includes the Text widget itself, a
“Source” (which supports memory management), and a “Sink” (which handles the
display). There are currently two supported sources, the AsciiSrc and MultiSrc,
and two supported sinks, the AsciiSink and MultiSink. Some of the resources
listed below are not actually resources of the AsciiText, but belong to the associated
source or sink. This is is noted in the explanation of each resource where it
applies. When specifying these resources in a resource file it is necessary to use

86

Text Widgets

*AsciiText*resource_name instead of *AsciiText.resource_name, since they actually
belong to the children of the AsciiText widget, and not the AsciiText widget itself.
However, these resources may be set directly on the AsciiText widget at widget
creation time, or via Xt Set Val ues.

Resources

When creating an AsciiText widget instance, the following resources are retrieved
from the argument list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitivAncestorSensitive ~ Boolean D True
autoFill AutoFill Boolean False
background Background Pixel Xt DefaultBackgrou1nd
backgroundPixmap Pixmap Pixmap XtUnspeciﬁedPimeap
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderwidth BorderWidth Dimension 1
bottomMargin Margin Position 2
callback Callback XtCallbackList NULL
colormap Colormap Colormap Parent's
Colormap
cursor Cursor Cursor XC xterm
cursorName Cursor String NULL
JataCompressioiataCompression Boolean True
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
displayCaret Output Boolean True
displayNonprinting Output Boolean True
displayPosition | TextPosition [XawTextPosition 0
echo Output Boolean True
editType EditType XawTextEditType XawtextRead
font Font XFontStruct* XtDefaultFont
fontSet FontSet XFontSet XtDefaultFontSet
foreground Foreground Pixel XtDefaultForeground
height Height Dimension A Font height
+ margins
insensitiveBorder Insensitive Pixmap GreyPixmap
insertPosition | TextPosition int 0
international | International Boolean C False

87

Text Widgets

Name Class Type Notes Default Value
leftMargin Margin Dimension 2
length Length int A length of
string
mappedWhenMaMagpeddWhenManaged Boolean True
pieceSize PieceSize [XawTextPosition BUFSIZ
pointerColor Foreground Pixel XtDefaultForeground
pointerColorBackgroumidhckground Pixel XtDefaultBackground
resize Resize XawTextResizeMode XawtextResizeNever
rightMargin Margin Position 2
screen Screen Screen R Parent's
Screen
scrollHorizontal Scroll XawTextScrollMode XawtextScrollNever
scrollVertical Scroll XawTextScrollMode XawtextScrollNever
selectTypes SelectTypes XawTextSelectTypp* See above
sensitive Sensitive Boolean True
string String String NULL
textSink TextSink Widget An AsciiSink
textSource TextSource Widget An AsciiSrc
topMargin Margin Position 2
translations Translations [IranslationTable See above
type Type XawAsciiType XawAsciiString
useStringInPlacdJseStringInPlace Boolean False
width Width Dimension 100
wrap Wrap WrapMode XawtextWrapNever
X Position Position 0
vy Position Position 0

Ascii Source Object and Multi Source Object

Application Header file <X11/Xaw Ascii Src. h> or <X11/Xaw Multi Src. h>
Cl ass Header file <X11/Xaw Ascii SrcP. h> or <X11/Xaw Multi SrcP. h>
Class asciiSrcObjectC ass or nulti SrcObjectC ass

Cl ass Nanme Ascii Src or MultiSrc

Super cl ass Text Sour ce

88

Text Widgets

The AsciiSrc or MultiSrc object is used by a text widget to read the text from a
file or string in memory. Depending on its i nt er nati onal resource, an AsciiText
widget will create one or the other of these when the AsciiText itself is created. Both
types are nearly identical; the following discussion applies to both, with MultiSrc
differences noted only as they occur.

The AsciiSrc understands all Latinl characters plus Tab and Carriage Return.
The MultiSrc understands any set of character sets that the underlying X
implementation's internationalization handles.

The AsciiSrc can be either of two types: XawAsci i Fi | e or XawAsci i Stri ng.

AsciiSrc objects of type XawAsci i Fi | e read the text from a file and store it into an
internal buffer. This buffer may then be modified, provided the text widget is in the
correct edit mode, just as if it were a source of type XawAsci i Stri ng. Unlike R3 and
earlier versions of the AsciiSrc, it is now possible to specify an editable disk source.
The file is not updated, however, until a call to XawAsci i Save is made. When the
source is in this mode the useSt ri ngl nPl ace resource is ignored.

AsciiSrc objects of type XawAsci i Stri ng have the text buffer implemented as a
string. MultiSrc objects of type XawAsci i Stri ng have the text buffer implemented
as a wide character string. The string owner is responsible for allocating and
managing storage for the string.

In the default case for AsciiSrc objects of type XawAscii String, the resource
useSt ri ngl nPl ace is false, and the widget owns the string. The initial value of the
string resource, and any update made by the application programmer to the string
resource with Xt Set Val ues, is copied into memory private to the widget, and
managed internally by the widget. The application writer does not need to worry
about running out of buffer space (subject to the total memory available to the
application). The performance does not decay linearly as the buffer grows large, as
is necessarily the case when the text buffer is used in place. The application writer
must use Xt Get Val ues to determine the contents of the text buffer, which will
return a copy of the widget's text buffer as it existed at the time of the Xt Get Val ues
call. This copy is not affected by subsequent updates to the text buffer, i.e., it is
not updated as the user types input into the text buffer. This copy is freed upon
the next call to XtGetValues to retrieve the string resource; however, to conserve
memory, there is a convenience routine, XawAsci i Sour ceFreeStri ng, allowing the
application programmer to direct the widget to free the copy.

When the resource useStringl nPl ace is true and the AsciiSrc object is of type
XawAsci i Stri ng, the application is the string owner. The widget will take the value
of the string resource as its own text buffer, and the | engt h resource indicates
the buffer size. In this case the buffer contents change as the user types at the
widget; it is not necessary to call Xt Get Val ues on the string resource to determine
the contents of the buffer-it will simply return the address of the application's
implementation of the text buffer.

Resources

When creating an AsciiSrc object instance, the following resources are retrieved
from the argument list or from the resource database:

89

Text Widgets

Name Class Type Notes Default Value
callback Callback XtCallbackList NULL
dataCompressiotvataCompression Boolean True
destroyCallback Callback Callback NULL
editType EditType EditMode XawtextRead
length Length Int A length of
string
pieceSize PieceSize Int BUFSIZ
string String String NULL
type Type AsciiType XawAsciiString
useStringInPlacdJseStringInPlace Boolean False

Convenience Routines

The AsciiSrc has a few convenience routines that allow the application programmer
quicker or easier access to some of the commonly used functionality of the AsciiSrc.

Conserving Memory

When the AsciiSrc widget is notin useSt ri ngl nPl ace mode space must be allocated
whenever the file is saved, or the string is requested with a call to Xt Get Val ues.
This memory is allocated on the fly, and remains valid until the next time a string
needs to be allocated. You may save memory by freeing this string as soon as you
are done with it by calling XawAsci i Sour ceFreeStri ng.

voi d XawAsci i SourceFreeString(w;

w

Specifies the AsciiSrc object.

This function will free the memory that contains the string pointer returned
by Xt Get Val ues. This will normally happen automatically when the next call to

Xt Get Val ues occurs, or when the widget is destroyed.

Saving Files

To save the changes made in the current text source into a file use XawAscii Save.

Bool ean XawAsc

w

iiSave(w;

Specifies the AsciiSrc object.

XawAsci i Save returns Tr ue if the save was successful. It will update the file named
in the st ri ng resource. If the buffer has not been changed, no action will be taken.

This function only works on an AsciiSrc of type XawAsci i Fi | e.

To save the contents of the current text buffer

XawAsci i SaveAs

File.

Bool ean XawAsci i SaveAsFil e(w,

w

Specifies the AsciiSrc object.

name) ;

into a named file use

90

Text Widgets

name The name of the file to save the current buffer into.

This function returns Tr ue if the save was successful. XawAscii SaveAsFil e will
work with a buffer of either type XawAsci i St ri ng or type XawAsci i Fil e.

Seeing if the Source has Changed

To find out if the text buffer in an AsciiSrc object has changed since the last time it
was saved with XawAsci i Save or queried use XawAsci i Sour ceChanged.

Bool ean XawAsci i Sour ceChanged(w);
w Specifies the AsciiSrc object.

This function will return Tr ue if the source has changed since the last time it was
saved or queried. The internal change flag is reset whenever the string is queried
via Xt Get Val ues or the buffer is saved via XawAsci i Save.

Ascii Sink Object and Multi Sink Object

Application Header file <X11/ Xaw Asci i Si nk. h>
Cl ass Header file <X11/ Xaw Asci i Si nkP. h>
Class ascii SinkQbjectd ass

Cl ass Nanme Ascii Sink

Super cl ass Text Si nk

The AsciiSink or MultiSink object is used by a text widget to render the text.
Depending on itsi nt er nat i onal resource, a AsciiText widget will create one or the
other of these when the AsciiText itself is created. Both types are nearly identical;
the following discussion applies to both, with MultiSink differences noted only as
they occur. The AsciiSink will display all printing characters in an 8 bit font, along
with handling Tab and Carriage Return. The name has been left as “AsciiSink” for
compatibility. The MultiSink will display all printing characters in a font set, along
with handling Tab and Carriage Return. The source object also reports the text
window metrics to the text widgets.

Resources

When creating an AsciiSink object instance, the following resources are retrieved
from the argument list or from the resource database:

Name Class Type Notes Default Value

—+

background Background Pixel X

DefaultBackgrou1nd

91

Text Widgets

This resource is retrieved by the AsciiSink instead of being copied from the Text
widget.

The text font to use when displaying the stri ng. (This resource is present in the
AsciiSink, but not the MultiSink.)

The text font set to use when displaying the st ri ng. (This resource is present in the
MultiSink, but not the AsciiSink.)

Customizing the Text Widget

The remainder of this chapter will describe customizing the Text widget. The Text
widget may be customized by subclassing, or by creating new sources and sinks.
Subclassing is described in detail in Chapter 7; this section will describe only those
things that are specific to the Text widget. Attributes of the Text widget base class
and creating new sources and sinks will be discussed.

The Text widget is made up of a number of different pieces, with the Text widget as
the base widget class. It and the AsciiText widget are the only true "widgets" in the
Text widget family. The other pieces (sources and sinks) are X Toolkit objects and
have no window associated with them. No source or sink is useful unless assigned
to a Text widget.

Each of the following pieces of the Text widget has a specific purpose, and will be,
or has been, discussed in detail in this chapter:

Text This is the glue that binds everything else together. This widget reads
the text data from the source, and displays the information in the sink.
All translations and actions are handled in the Text widget itself.

Text Si nk This object is responsible for displaying and clearing the drawing
area. It also reports the configuration of the window that contains the
drawing area. The TextSink does not have its own window; instead it
does its drawing on the Text widget's window.

Text Src This object is responsible for reading, editing and searching through
the text buffer.

Asci i Sink This object is a subclass of the TextSink and knows how to display
ASCII text. Support has been added to display any 8-bit character set,
given the font.

92

Name Class Type Notes Default Value
destroyCallback Callback XtCallbackList NULL
isplayNonprinting Output Boolean True

echo Output Boolean True
font Font XFontStruct* XtDefaultFont
fontSet FontSet XFontSet XtDefaultFontSet
foreground Foreground Pixel XtDefaultForeground

Text Widgets

Ascii Src

Asci i Text

Text

Mul ti Si nk
sets

and files.

Mul ti Src

This object is a subclass of the TextSink and knows how to display font

This object is a subclass of the TextSrc and knows how to read strings

This object is a subclass of the TextSrc and knows how to read

strings and multibyte files, converting them to wide characters based
on locale.

This widget is a subclass of the Text widget. When created, the

AsciiText automatically creates and attaches either an AsciiSrc and
AsciiSink, or a MultiSrc and MultiSink, to itself. The AsciiText provides

the simplest interface to the Athena Text widgets.

Widget

Application Header file
Cl ass Header file

d ass
Cl ass Nane
Super cl ass

<X11/ Xaw/ Text . h>
<X11/ Xaw/ Text P. h>

t ext Wdget d ass
Text

Si npl e

The Text widget is the glue that binds all the other pieces together, it maintains
the internal state of the displayed text, and acts as a mediator between the source

and sink.

This section lists the resources that are actually part of the Text widget, and explains
the functionality provided by each.

Resources

q

When creating a Text widget instance, the following resources are retrieved from

the argument list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitivancestorSensitive =~ Boolean D True
autoFill AutoFill Boolean False
background Background Pixel Xt DefaultBackgrou1nd
ackgroundPixmap Pixmap Pixmap Xt UnspeciﬁedPimeap
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderwidth BorderWidth Dimension 1
bottomMargin Margin Position 2
colormap Colormap Colormap Parent's
Colormap
cursor Cursor Cursor XC xterm
cursorName Cursor String NULL

93

Text Widgets

Name Class Type Notes Default Value
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
displayCaret Output Boolean True
displayPosition | TextPosition [XawTextPosition| 0
height Height Dimension A Font height
+ margins
insensitiveBorder Insensitive Pixmap GreyPixmap
insertPosition | TextPosition int 0
leftMargin Margin Position 2
mappedWhenMaMagpeddWhenManaged Boolean True
pointerColor Foreground Pixel XtDefaultForeground
pointerColorBackgroumhckground Pixel XtDefaultBackground
resize Resize XawTextResizeMode XawtextResizeNever
rightMargin Margin Position 4
screen Screen Pointer R Parent's
Screen
scrollHorizontal Scroll ScrollMode XawtextScrollNever
scrollVertical Scroll XawTextScrollMode XawtextScrollNever
selectTypes SelectTypes XawTextSelectType* See above
sensitive Sensitive Boolean True
textSink TextSink Widget NULL
textSource TextSource Widget NULL
topMargin Margin Position 2
translations Translations [IranslationTable See above
unrealizeCallback Callback XtCallbackList NULL
width Width Dimension 100
wrap Wrap WrapMode XawtextWrapNever
X Position Position 0
y Position Position 0

TextSrc Object

Application Header file <X11/ Xaw Text Src. h>

Cl ass Header file <X11/ Xaw/ Text SrcP. h>
d ass t ext Srcoj ect d ass

Cl ass Nane Text Src

Super cl ass oj ect

The TextSrc object is the root object for all text sources. Any new text source objects
should be subclasses of the TextSrc Object. The TextSrc Class contains all methods
the Text widget expects a text source to export.

94

Text Widgets

Since all text sources will have some resources in common the TextSrc defines a
few new resources.

Resources

When creating an TextSrc object instance, the following resources are retrieved
from the argument list or from the resource database:

Name Class Type Notes Default Value
destroyCallback Callback XtCallbackList NULL
editType EditType EditMode NULL

Subclassing the TextSrc

The only purpose of the TextSrc Object is to be subclassed. It contains the minimum
set of class methods that all text sources must have. All class methods of the TextSrc
must be defined, as the Text widget uses them all. While all may be inherited, the
direct descendant of TextSrc must specify some of them as TextSrc does not contain
enough information to be a valid text source by itself. Do not try to use the TextSrc
as a valid source for the Text widget; it is not intended to be used as a source by
itself and bad things will probably happen.

Function Inherit with Public Interface must specify
Read XtInheritRead [XawTextSourceRead yes
Replace XtInheritReplace XawTextSourceReplage no
Scan XtInheritScan |XawTextSourceScan yes
Search XtInheritSearch XawTextSourceSearch no
SetSelection XtInheritSetSelecXimwTextSourceSetSelection no
ConvertSelectioKt]nheritConvertS@daﬂIfFabSourceConvertSelection no

Reading Text.

To read the text in a text source use the Read function:

XawText Position Read(w, pos, *text_return, |ength);
w Specifies the TextSrc object.
pos Specifies the position of the first character to be read from

the text buffer.
text Returns the text read from the source.

length Specifies the maximum number of characters the TextSrc
should return to the application in text return.

This function returns the text position immediately after the characters read from
the text buffer. The function is not required to read length characters if that many
characters are in the file, it may break at any point that is convenient to the internal
structure of the source. It may take several calls to Read before the desired portion
of the text buffer is fully retrieved.

95

Text Widgets

Replacing Text.
To replace or edit the text in a text buffer use the Repl ace function:
XawText Posi tion Replace(w, end, *text);
w Specifies the TextSrc object.

start Specifies the position of the first character to be removed from the text
buffer. This is also the location to begin inserting the new text.

end Specifies the position immediately after the last character to be removed
from the text buffer.

text Specifies the text to be added to the text source.
This function can return any of the following values:
XawEdi t Done The text replacement was successful.

XawPosi ti onError The edit mode is Xaw ext Append and st art is not the last
character of the source.

XawEdi t Er r or Either the Source was read-only or the range to be deleted is
larger than the length of the Source.

The Replace arguments start and end represent the text source character
positions for the existing text that is to be replaced by the text in the text block.
The characters from start up to but not including end are deleted, and the buffer
specified by the text block is inserted in their place. If start and end are equal, no
text is deleted and the new text is inserted after start.

Scanning the TextSrc

To search the text source for one of the predefined boundary types use the Scan

function:
XawText Position Scan(w, position, type, dir, count, include);
w Specifies the TextSrc object.

position Specifies the position to begin scanning the source.

type Specifies the type of boundary to scan for, may be one
of: Xawst Position, XawstWiteSpace, Xawst EQL, Xawst Paragraph,
Xawst Al | . The exact meaning of these boundaries is left up to the
individual text source.

dir Specifies the direction to scan, may be either XawsdLeft to search
backward, or XawsdRi ght to search forward.

count Specifies the number of boundaries to scan for.
include Specifies whether the boundary itself should be included in the scan.

The Scan function returns the position in the text source of the desired boundary.
It is expected to return a valid address for all calls made to it, thus if a particular

96

Text Widgets

request is made that would take the text widget beyond the end of the source it
must return the position of that end.

Searching through a TextSrc

To search for a particular string use the Sear ch function.
XawText Posi tion Search(w, position, dir, *text);
w Specifies the TextSrc object.

position Specifies the position to begin the search.

dir Specifies the direction to search, may be either XawsdLeft to search
backward, or XawsdRi ght to search forward.

text Specifies a text block containing the text to search for.

This function will search through the text buffer attempting to find a match for
the string in the text block. If a match is found in the direction specified, then the
character location of the first character in the string is returned. If no text was found
then XawText Sear chEr r or is returned.

Text Selections

While many selection types are handled by the Text widget, text sources may
have selection types unknown to the Text widget. When a selection conversion is
requested by the X server the Text widget will first call the Convert Sel ecti on
function, to attempt the selection conversion.

Bool ean ConvertSel ections(w, *type, *value_return, *length_return,
*format _return);

w Specifies the TextSrc object.

selection Specifies the type of selection that was requested
(e.g. PRI MARY).

target Specifies the type of the selection that has been

requested, which indicates the desired information
about the selection (e.g. Filename, Text, Window).

type Specifies a pointer to the atom into which the
property type of the converted value of the selection
is to be stored. For instance, either file name or text
might have property type XA STRI NG.

value return Returns a pointer into which a pointer to the
converted value of the selection is to be stored.
The selection owner is responsible for allocating this
storage. The memory is considered owned by the
toolkit, and is freed by XtFree when the Intrinsics
selection mechanism is done with it.

length return Returns a pointer into which the number of elements
in value is to be stored. The size of each element is
determined by format.

97

Text Widgets

format return Returns a pointer into which the size in bits of the
data elements of the selection value is to be stored.

If this function returns Tr ue then the Text widget will assume that the source has
taken care of converting the selection, Otherwise the Text widget will attempt to
convert the selection itself.

If the source needs to know when the text selection is modified it should define a
Set Sel ect i on procedure:

void SetSelection(w, end, selection);

w Specifies the TextSrc object.

start Specifies the character position of the beginning of the new text
selection.

end Specifies the character position of the end of the new text selection.

selection Specifies the type of selection that was requested (e.g. PRI MARY).

TextSink Object

Application Header file <X11/ Xaw Text Si nk. h>
Class Header file <X11/ Xaw Text Si nkP. h>

Cl ass textSinkObjectd ass

Cl ass Nanme Text Si nk

Super cl ass Obj ect

The TextSink object is the root object for all text sinks. Any new text sink objects
should be subclasses of the TextSink Object. The TextSink Class contains all
methods that the Text widget expects a text sink to export.

Since all text sinks will have some resources in common, the TextSink defines a few
new resources.

Resources

When creating an TextSink object instance, the following resources are retrieved
from the argument list or from the resource database:

Name Class Type Notes Default Value

—+

background Background Pixel X DefaultBackgrou1nd

98

Text Widgets

Name Class Type Notes Default Value
destroyCallback Callback XtCallbackList NULL
foreground Foreground Pixel XtDefaultForegrou

Subclassing the TextSink

The only purpose of the TextSink Object is to be subclassed. It contains the minimum
set of class methods that all text sinks must have. While all may be inherited, the
direct descendant of TextSink must speci f y some of them as TextSink does contain
enough information to be a valid text sink by itself. Do not try to use the TextSink
as a valid sink for the Text widget; it is not intended to be used as a sink by itself.

Function Inherit with Public Interface must specify
DisplayText XtInheritDisplayTeX@wTextSinkDisplayTeXt yes
InsertCursor XtInheritInsertCur&a#wTextSinkInsertCurs or yes
ClearToBackgroKmH]heritCIearToBéGksgﬁ"éulﬂinkClearToBackground no
FindPosition XtInheritFindPositidawTextSinkFindPosition yes
FindDistance XtInheritFindDistaKasevTextSinkFindDistance yes
Resolve XtInheritResolve [XawTextSinkResolve yes
MaxLines XtInheritMaxLinesXawTextSinkMaxLines no
MaxHeight XtInheritMaxHeightawTextSinkMaxHeight no
SetTabs XtInheritSetTabs XawTextSinkSetTabs no
GetCursorBoundétinheritGetCursodanitedst SinkGetCursorBgqunds yes

Displaying Text

To display a section of the text buffer contained in the text source use the function
Di spl ayText :

void DisplayText(w, vy, pos2, highlight);

w Specifies the TextSink object.

X Specifies the x location to start drawing the text.

vy Specifies the y location to start drawing text.

posli Specifies the location within the text source of the first
character to be printed.

pos2 Specifies the location within the text source of the last
character to be printed.

highlight Specifies whether or not to paint the text region

highlighted.

The Text widget will only pass one line at a time to the text sink, so this function
does not need to know how to line feed the text. It is acceptable for this function

99

Text Widgets

to just ignore Carriage Returns. x and y denote the upper left hand corner of the
first character to be displayed.

Displaying the Insert Point

The function that controls the display of the text cursor is | nsert Cursor. This
function will be called whenever the text widget desires to change the state of, or
move the insert point.

void InsertCursor(w, Yy, state);

w Specifies the TextSink object.

X Specifies the x location of the cursor in Pixels.

Y Specifies the y location of the cursor in Pixels.

State Specifies the state of the cursor, may be one of Xawi sOn or
Xawi sOf f .

X and y denote the upper left hand corner of the insert point.

Clearing Portions of the Text window

To clear a portion of the Text window to its background color, the Text widget
will call C ear ToBackgr ound. The TextSink object already defines this function as
calling XC ear Ar ea on the region passed. This behavior will be used if you specify
Xt I nherit d ear ToBackgr ound for this method.

voi d O ear ToBackground(w, vy, height);

w Specifies the TextSink object.

X Specifies the x location, in pixels, of the Region to clear.
Y Specifies the y location, in pixels, of the Region to clear.
width Specifies the width, in pixels, of the Region to clear.
height Specifies the height, in pixels, of the Region to clear.

X and y denote the upper left hand corner of region to clear.

Finding a Text Position Given Pixel Values

To find the text character position that will be rendered at a given x location the
Text widget uses the function Fi ndPositi on:

void FindPosition(w, fromPos, wdth, stopAtWrdBreak, *pos_return,
*hei ght _return);

w Specifies the TextSink object.

fromPos Specifies a reference position, usually the first
character in this line. This character is always to the
left of the desired character location.

100

../libX11/libX11/libX11.pdf#XClearArea

Text Widgets

fromX Specifies the distance that the left edge of fromPos is
from the left edge of the window. This is the reference
x location for the reference position.

width Specifies the distance, in pixels, from the reference
position to the desired character position.

stopAtWordBreak Specifies whether or not the position that is returned
should be forced to be on a word boundary.

pos_return Returns the character position that corresponds to
the location that has been specified, or the work
break immediately to the left of the position if
stopAtWordBreak is Tr ue.

width return Returns the actual distance between fromPos and
pos_return.
height return Returns the maximum height of the text between

fromPos and pos_return.

This function need make no attempt to deal with line feeds. The text widget will
only call it one line at a time.

Another means of finding a text position is provided by the Resol ve function:
void Resolve(w, fronPos, wdth, *pos_return);
w Specifies the TextSink object.

fromPos Specifies a reference position, usually the first
character in this line. This character is always to the
left of the desired character location.

fromX Specifies the distance that the left edge of fromPos is
from the left edge of the window. This is the reference
x location for the reference position.

width Specifies the distance, in pixels, from the reference
position to the desired character position.

pos return Returns the character position that corresponds to the
location that has been specified, or the word break
immediately to the left if stopAtWordBreak is Tr ue.

This function need make no attempt to deal with line feeds. The text widget will only
call it one line at a time. This is a more convenient interface to the Fi ndPositi on
function, and provides a subset of its functionality.

Finding the Distance Between two Text Positions

To find the distance in pixels between two text positions on the same line use the
function FindDi st ance.

voi d FindDi stance(w, toPos, fromX, *pos_return, *height_return);

w Specifies the TextSink object.

101

Text Widgets

fromPos Specifies the text buffer position, in characters, of the
first position.

fromX Specifies the distance that the left edge of fromPos is
from the left edge of the window. This is the reference
x location for the reference position.

toPos Specifies the text buffer position, in characters, of the
second position.

resWidth Return the actual distance between fromPos and
pos_return.
resPos Returns the character position that corresponds to

the actual character position used for toPos in the
calculations. This may be different than toPos, for
example if fromPos and toPos are on different lines
in the file.

height return Returns the maximum height of the text between
fromPos and pos_return.

This function need make no attempt to deal with line feeds. The Text widget will
only call it one line at a time.

Finding the Size of the Drawing area

To find the maximum number of lines that will fit into the current Text widget, use
the function MaxLi nes. The TextSink already defines this function to compute the
maximum number of lines by using the height of f ont .

i nt MaxLines(w, height);

w Specifies the TextSink object.

height Specifies the height of the current drawing area.
Returns the maximum number of lines that will fit in height.

To find the height required for a given number of text lines, use the function
MaxHei ght . The TextSink already defines this function to compute the maximum
height of the window by using the height of f ont .

int MaxHeight(w, lines);
w Specifies the TextSink object.
height Specifies the height of the current drawing area.

Returns the height that will be taken up by the number of lines passed.

Setting the Tab Stops

To set the tab stops for a text sink use the Set Tabs function. The TextSink already
defines this function to set the tab x location in pixels to be the number of characters
times the figure width of f ont .

102

Text Widgets

void Set Tabs(w, *tabs);

w Specifies the TextSink object.
tab_count Specifies the number of tabs passed in tabs.
tabs Specifies the position, in characters, of the tab stops.

This function is responsible for the converting character positions passed to it into
whatever internal positions the TextSink uses for tab placement.

Getting the Insert Point's Size and Location
To get the size and location of the insert point use the Get Cur sor Bounds function.
voi d Get CursorBounds(w, *rect_return);
w Specifies the TextSinkObject.
rect return Returns the location and size of the insert point.

Rect will be filled with the current size and location of the insert point.

103

Chapter 6. Composite and Constraint

Widgets

These widgets may contain arbitrary widget children. They implement a policy for
the size and location of their children.

Box

Dialog

Form

Paned

Porthole

Tree

Viewport

This widget will pack its children as tightly as possible in non-
overlapping rows.

An implementation of a commonly used interaction semantic to prompt
for auxiliary input from the user, such as a filename.

A more sophisticated layout widget that allows the children to specify
their positions relative to the other children, or to the edges of the Form.

Allows children to be tiled vertically or horizontally. Controls are also
provided to allow the user to dynamically resize the individual panes.

Allows viewing of a managed child which is as large as, or larger than
its parent, typically under control of a Panner widget.

Provides geometry management of widgets arranged in a directed,
acyclic graph.

Consists of a frame, one or two scrollbars, and an inner window. The
inner window can contain all the data that is to be displayed. This inner
window will be clipped by the frame with the scrollbars controlling

which section of the inner window is currently visible.

Note

The geometry management semantics provided by the X Toolkit give full
control of the size and position of a widget to the parent of that widget. While
the children are allowed to request a certain size or location, it is the parent
who makes the final decision. Many of the composite widgets here will deny
any geometry request from their children by default. If a child widget is not
getting the expected size or location, it is most likely the parent disallowing
a request, or implementing semantics slightly different than those expected
by the application programmer.

If the application wishes to change the size or location of any widget it
should make a call to Xt Set Val ues. This will allow the widget to ask its
parent for the new size or location. As noted above the parent is allowed to
refuse this request, and the child must live with the result. If the application
is unable to achieve the desired semantics, then perhaps it should use a
different composite widget. Under no circumstances should an application
programmer resort to Xt MoveW dget or Xt Resi zeW dget; these functions
are exclusively for the use of Composite widget implementors.

For more information on geometry management consult the X Toolkit
Intrinsics - C Language Interface.

104

../libXt/intrinsics.pdf#Geometry_Management
../libXt/intrinsics.pdf#Geometry_Management

Composite and
Constraint Widgets

Box Widget

Application Header file <X11/ Xaw Box. h>

Cl ass Header file <X11/ Xaw BoxP. h>

Cl ass

Cl ass Nane Box

boxW dget d ass

Super cl ass Conposite

The Box widget provides geometry management of arbitrary widgets in a box of
a specified dimension. The children are rearranged when resizing events occur
either on the Box or its children, or when children are managed or unmanaged. The
Box widget always attempts to pack its children as tightly as possible within the

geometry allowed by its parent.

Box widgets are commonly used to manage a related set of buttons and are often
called ButtonBox widgets, but the children are not limited to buttons. The Box's
children are arranged on a background that has its own specified dimensions and

color.

Resources

q

When creating a Box widget instance, the following resources are retrieved from
the argument list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitivAncestorSensitive =~ Boolean D True
background Background Pixel Xt DefaultBackgrou1nd
ackgroundPixmap Pixmap Pixmap XtUnspeciﬁedPimeap
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderwidth BorderWidth Dimension 1
children ReadOnly WidgetList R NULL
colormap Colormap Colormap Parent's
Colormap
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL

105

Composite and

Constraint Widgets
Name Class Type Notes Default Value
height Height Dimension A see Layout
Semanti cs
hSpace HSpace Dimension 4
mappedWhenMaMagpeddWhenManaged Boolean True
numChildren ReadOnly Cardinal R 0
orientation Orientation Orientation XtorientVertical
screen Screen Screen R Parent's
Screen
sensitive Sensitive Boolean True
vSpace VSpace Dimension 4
translations Translations [IranslationTable NULL
width Width Dimension A see Layout
Semanti cs
X Position Position 0
Position Position 0
hSpace
vSpace The amount of space, in pixels, to leave between the

children. This resource specifies the amount of space
left between the outermost children and the edge of
the box.

orientation Specifies whether the preferred shape of the box
(i.e. the result returned by the query geometry class
method) is tall and narrow Xt ori ent Verti cal or short
and wide XtorientHorizontal . When the Box is
a child of a parent which enforces width constraints,
it is usually better to specify Xt ori ent Verti cal (the
default). When the parent enforces height constraints,

it is usually better to specify Xt ori ent Hori zont al .

Layout Semantics

Each time a child is managed or unmanaged, the Box widget will attempt to
reposition the remaining children to compact the box. Children are positioned in
order left to right, top to bottom. The packing algorithm used depends on the
ori ent ati on of the Box.

XtorientVertical When the next child does not fit on the current row, a
new row is started. If a child is wider than the width
of the box, the box will request a larger width from
its parent and will begin the layout process from the

beginning if a new width is granted.

XtorientHorizontal When the next child does not fit on the current row,
the Box widens if possible (so as to keep children on

a single row); otherwise a new row is started.

106

Composite and

Constraint Widgets

After positioning all children, the Box widget attempts to shrink its own size to the
minimum dimensions required for the layout.

Dialog Widget

Application Header file <X11/ Xaw Di al og. h>

Cl ass Header file <X11/ Xaw Di al ogP. h>

d ass

Cl ass Nanme Di al og

Super cl ass Form

di al ogW dget Cl ass

The Dialog widget implements a commonly used interaction semantic to prompt
for auxiliary input from a user. For example, you can use a Dialog widget when
an application requires a small piece of information, such as a filename, from the
user. A Dialog widget, which is simply a special case of the Form widget, provides
a convenient way to create a preconfigured form.

The typical Dialog widget contains three areas. The first line contains a description
of the function of the Dialog widget, for example, the string Filename:. The second
line contains an area into which the user types input. The third line can contain
buttons that let the user confirm or cancel the Dialog input. Any of these areas may

be omitted by the application.

Resources

When creating a Dialog widget instance, the following resources are retrieved from
the argument list or the resource database:

Name Class Type Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitivAncestorSensitive ~ Boolean True

background Background Pixel t DefaultBaCkgroqnd

backgroundPixma Pixmap Pixmap tUnspeciﬁedPimeap

borderColor BorderColor Pixel DefaultForeground

borderPixmap Pixmap Pixmap tUnspecifiedPixmlap

borderWidth | BorderWidth Dimension 1
children ReadOnly WidgetList NULL
colormap Colormap Colormap Parent's
Colormap

107

Composite and

Constraint Widgets
Name Class Type Notes Default Value
defaultDistance| Thickness int 4
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
height Height Dimension A Enough space
to contain
all children
icon Icon Bitmap None
label Label String "label"
mappedWhenMaMagpeddWhenManaged Boolean True
numChildren ReadOnly Cardinal R 0
screen Screen Screen R Parent's
Screen
sensitive Sensitive Boolean True
translations Translations [IranslationTable NULL
value Value String no value
widget
width Width Dimension A Enough space
to contain
all children
X Position Position 0
Position Position 0
i con A pixmap image to be displayed immediately to the left of the
Dialog widget's label.
| abel A string to be displayed at the top of the Dialog widget.
val ue An initial value for the string field that the user will enter text

into. By default, no text entry field is available to the user.
Specifying an initial value for val ue activates the text entry
field. If string input is desired, but no initial value is to be
specified then set this resource to "" (empty string).

Constraint Resources

Each child of the Dialog widget may request special layout resources be applied
to it. These constraint resources allow the Dialog widget's children to specify
individual layout requirements.

Name Class Type Notes Default Value
bottom Edge XawEdgeType XawRubber
fromHoriz Widget Widget NULL (left
edge of Dialog)
fromVert Widget Widget NULL (top
edge of Dialog)

108

Composite and

Constraint Widgets
Name Class Type Notes Default Value
horizDistance Thickness int def aul t Di st ance
resource
left Edge XawEdgeType XawRubber
resizable Boolean Boolean FALSE
right Edge XawEdgeType XawRubber
top Edge XawEdgeType XawRubber
vertDistance Thickness int def aul t Di st ance
resource
bott om
| eft
right
top VWhat to do with this edge of the child when
the parent is resized. This resource may be
any edgeType. See Layout Senantics for
details.
fromHori z
fronvert Wi ch widget this child should be placed
underneath (or to the right of). If a value

of NULL is specified then this widget will be
positioned relative to the edge of the par-
ent.

hori zDi st ance
vert Di st ance The anmount of space, in pixels, between this
child and its left or upper neighbor.

resi zabl e If this resource is False then the parent
wi dget will ignore all geonetry request nmde
by this child. The parent may still resize

this child itself, however.

Layout Semantics

The Dialog widget uses two different sets of layout seman- tics. One is used when
initially laying out the children. The other is used when the Dialog is resized.

The first layout method uses the fronVert mand f r onHor i z resources to place the
children of the Dialog. A single pass is made through the Dialog widget's children
in the order that they were created. Each child is then placed in the Dialog widget
below or to the right of the widget speci- fied by the fronVert mand frontHori z
mresources. The distance the new child is placed from its left or upper neighbor
is determined by the hori zDi st ance mand vert Di st ance mresources. This implies
some things about how the order of creation affects the possible placement of the
children. The Form widget registers a string to widget converter which does not
postpone conversion and does not cache conversion results.

The second layout method is used when the Dialog is resized. It does not matter
what causes this resize, and it is possi- ble for a resize to happen before the widget

109

Composite and
Constraint Widgets

becomes visible (due to constraints imposed by the parent of the Dialog). This layout
method uses the bottom,top, | eft ,andri ght resources. These resources are used
to determine what will happen to each edge of the child when the Dialog is resized. If
a value of XawChai n <something> is specified, the the edge of the child will remain
a fixed distance from the chain edge of the Dialog. For example if XawChai nLef t
mis specified for the ri ght mresource of a child then the right edge of that child
will remain a fixed distance from the left edge of the Dialog widget. If a value of
XawRubber mis spec- ified, that edge will grow by the same percentage that the
Dialog grew. For instance if the Dialog grows by 50% the left edge of the child (if
specified as XawRubber mwill be 50% farther from the left edge of the Dialog). One
must be very careful when specifying these resources, for when they are specified
incorrectly children may overlap or completely occlude other children when the
Dialog widget is resized.

Edge Type Resource Name Description

XawChainBottom ChainBottom Edge remains a
fixed distance from
bottom of Dialog

XawChainLeft ChainLeft Edge remains a
fixed distance
from left of Dialog

XawChainRight ChainRight Edge remains a
fixed distance from
right of Dialog

XawChainTop ChainTop Edge remains a
fixed distance
from top of Dialog

XawRubber Rubber Edges will move a
proportional distance

Example

If you wish to force the Dialog to never resize one or more of its children then set
| eft and right to XawChai nLeft and top and bottomto XawChai nTop. This will
cause the child to remain a fixed distance from the top and left edges of the Dialog,
and to never resize.

Special Considerations

The Dialog widget automatically sets the t op and bot t omresources for all Children
that are subclasses of the Command widget, as well as the widget children that are
used to contain the | abel , val ue, and i con. This policy allows the buttons at the
bottom of the Dialog to interact correctly with the predefined children, and makes
it possible for a client to simply create and manage a new Command button without
having to specify its constraints.

The Dialog will also set fronmieft to the last button in the Dialog for each new
button added to the Dialog widget.

The automatically added constraints cannot be overridden, as they are policy
decisions of the Dialog widget. If a more flexible Dialog is desired, the application
is free to use the Form widget to create its own Dialog policy.

110

Composite and
Constraint Widgets

Automatically Created Children.

The Dialog uses Label widgets to contain the | abel and i con. These widgets are
named label and icon respectively. The Dialog val ue is contained in an AsciiText
widget whose name is val ue. Using Xt NaneToW dget the application can change
those resources associated with each of these widgets that are not available through
the Dialog widget itself.

Convenience Routines

To return the character string in the text field, use

String XawDi al ogGet Val ueString(w;

w Specifies the Dialog widget.

This function returns a copy of the value string of the Dialog widget. This string is
allocated by the AsciiText widget and will remain valid and unchanged until another
call to XawDi al ogGet Val ueString or an Xt Get Val ues call on the val ue widget,
when the string will be automatically freed, and a new string is returned. This string
may be freed earlier by calling the function XawAsci i Sour ceFreeStri ng.

To add a new button to the Dialog widget use XawbDi al ogAddBut t on.

voi d XawDi al ogAddButton(w, nanme, func, client_data);

w Specifies the Dialog widget.

name Specifies the name of the new Command button to be
added to the Dialog.

func Specifies a callback function to be called when this
button is activated. If NULL is specified then no
callback is added.

client data Specifies the client data to be passed to the func.

This function is merely a shorthand for the code sequence:

{
W dget button = Xt Creat eManagedW dget (nanme, comandW dget d ass, w, NULL, ZERO);

Xt AddCal | back(button, XtNcall back, func, client_data);
}

Form Widget

111

Composite and
Constraint Widgets

Application Header file <X11/Xaw Form h>

Cl ass Header file <X11/ Xaw For nP. h>

d ass

Cl ass Nane Form

f or MmN dget O ass

Super cl ass Constrai nt

The Form widget can contain an arbitrary number of children or subwidgets. The
Form provides geometry management for its children, which allows individual
control of the position of each child. Any combination of children can be added to a
Form. The initial positions of the children may be computed relative to the positions
of previously created children. When the Form is resized, it computes new positions
and sizes for its children. This computation is based upon information provided
when a child is added to the Form.

The default width of the Form is the minimum width needed to enclose the children
after computing their initial layout, with a margin of def aul t Di st ance at the right
and bottom edges. If a width and height is assigned to the Form that is too small for
the layout, the children will be clipped by the right and bottom edges of the Form.

Resources

When creating a Form widget instance, the following resources are retrieved from
the argument list or from the resource database:

q

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitivancestorSensitive =~ Boolean D True
background Background Pixel Xt DefaultBackgrou1nd
ackgroundPixmap Pixmap Pixmap XtUnspeciﬁedPimeap
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth Borderwidth Dimension 1
children ReadOnly WidgetList R NULL
colormap Colormap Colormap Parent's
Colormap
defaultDistance| Thickness int 4
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL

112

Composite and

Constraint Widgets
Name Class Type Notes Default Value
height Height Dimension A Enough space
to contain
all children
mappedWhenMaMagpeddWhenManaged Boolean True
numChildren ReadOnly Cardinal R 0
screen Screen Screen R Parent's
Screen
sensitive Sensitive Boolean True
translations Translations [IranslationTable NULL
width Width Dimension A Enough space
to contain
all children
Position Position 0
Position Position 0

Constraint Resources

Each child of the Form widget may request special layout resources be applied to
it. These constraint resources allow the Form widget's children to specify individual
layout requirements.

Name Class Type Notes Default Value
bottom Edge XawEdgeType XawRubber
fromHoriz Widget Widget NULL (left
edge of Form)
fromVert Widget Widget NULL (top
edge of Form)
horizDistance Thickness int def aul t Di st ance
resource
left Edge XawEdgeType XawRubber
resizable Boolean Boolean FALSE
right Edge XawEdgeType XawRubber
top Edge XawEdgeType XawRubber
vertDistance Thickness int def aul t Di st ance
resource
bottom
left
right

top

VWhat to do with this edge of the child when

t he parent

any edgeType.

is resized.

This resource may be
See Layout Semantics for

113

Composite and

Constraint Widgets
details.
fromHori z
fronVert VWi ch widget this child should be placed
underneath (or to the right of). If a value

of NULL is specified then this widget will be
positioned relative to the edge of the par-
ent.

hori zDi st ance
vert Di st ance The anmount of space, in pixels, between this
child and its left or upper neighbor.

resi zabl e If this resource is False then the parent
wi dget will ignore all geonetry request made
by this child. The parent may still resize

this child itself, however.

Layout Semantics

The Form widget uses two different sets of layout semantics. One is used when
initially laying out the children. The other is used when the Form is resized.

The first layout method uses the fromvert and frontHori z resources to place the
children of the Form. A single pass is made through the Form widget's children in
the order that they were created. Each child is then placed in the Form widget below
or to the right of the widget specified by the fronVert and fronHori z resources.
The distance the new child is placed from its left or upper neighbor is deter- mined
by the hori zDi st ance and ver t D st ance resources. This implies some things about
how the order of creation affects the possible placement of the children. The Form
widget registers a string to widget converter which does not post- pone conversion
and does not cache conversion results.

The second layout method is used when the Form is resized. It does not matter
what causes this resize, and it is possi- ble for a resize to happen before the widget
becomes visible (due to constraints imposed by the parent of the Form). This layout
method uses the bottom top, | ef t, and ri ght resources. These resources are used
to determine what will happen to each edge of the child when the Form is resized. If
a value of XawChai n <something> is specified, the the edge of the child will remain
a fixed distance from the chain edge of the Form. For example if XawChai nLeft
is specified for the ri ght resource of a child then the right edge of that child
will remain a fixed distance from the left edge of the Form widget. If a value of
XawRubber is specified, that edge will grow by the same percentage that the Form
grew. For instance if the Form grows by 50% the left edge of the child (if specified
as XawRubber will be 50% farther from the left edge of the Form). One must be very
careful when specifying these resources, for when they are specified incorrectly
children may overlap or completely occlude other children when the Form widget

is resized.
Edge Type Resource Name Description
XawChainBottom ChainBottom Edge remains a

fixed distance from
bottom of Form

114

Composite and

Constraint Widgets
Edge Type Resource Name Description
XawChainLeft ChainLeft Edge remains a fixed
distance from left of Form
XawChainRight ChainRight Edge remains a
fixed distance
from right of Form
XawChainTop ChainTop Edge remains a fixed
distance from top of Form
XawRubber Rubber Edges will move a
proportional distance

Example
If you wish to force the Form to never resize one or more of its children, then set
| eft and ri ght to XawChai nLeft and t op and bottomto XawChai nTop. This will

cause the child to remain a fixed distance from the top and left edges of the Form,
and never to resize.

Convenience Routines

To force or defer a re-layout of the Form, use
voi d XawFor nDoLayout (w, do_|ayout);
w Specifies the Form widget.

do_layout Specifies whether the layout of the Form widget is
enabled (Tr ue) or disabled (Fal se).

When making several changes to the children of a Form widget after the Form has

been realized, it is a good idea to disable relayout until after all changes have been
made.

Paned Widget

Application Header file <X11/Xaw Paned. h>
Cl ass Header file <X11/ Xaw PanedP. h>

Cl ass panedW dget O ass

Cl ass Nanme Paned

Super cl ass Constrai nt

115

Composite and
Constraint Widgets

The Paned widget manages children in a vertically or horizontally tiled fashion. The
panes may be dynamically resized by the user by using the grips that appear near
the right or bottom edge of the border between two panes.

The Paned widget may accept any widget class as a pane except Grip. Grip widgets
have a special meaning for the Paned widget, and adding a Grip as its own pane
will confuse the Paned widget.

Using the Paned Widget

The grips allow the panes to be resized by the user. The semantics of how these
panes resize is somewhat complicated, and warrants further explanation here.
When the mouse pointer is positioned on a grip and pressed, an arrow is displayed
that indicates the pane that is to be to be resized. While keeping the mouse button
down, the user can move the grip up and down (or left and right). This, in turn,
changes the size of the pane. The size of the Paned widget will not change. Instead,
it chooses another pane (or panes) to resize. For more details on which pane it
chooses to resize, see Layout Senmnti cs.

One pointer binding allows the border between two panes to be moved, without
affecting any of the other panes. When this occurs the pointer will change to an
arrow that points along the pane border.

The default bindings for the Paned widget's grips are:

Mouse button

Pane to Resize

Pane to Resize

- Vertical - Horizontal

1 (left) above the grip left of the grip

2 (middle) adjust border adjust border
3 (right) below the grip right of the grip

Resources

When creating a Paned widget instance, the following resources are retrieved from
the argument list or the resource database:

q

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitivancestorSensitive =~ Boolean D True
background Background Pixel Xt DefaultBackgroqnd
ackgroundPixmap Pixmap Pixmap XtUnspeciﬁedPimeap
betweenCursor Cursor Cursor A Depends on
orientation
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderwidth BorderWidth Dimension 1

116

Composite and

The cursor to use when the mouse pointer is over the
Paned widget, but not in any of its children (children
may also inherit this cursor). It should be noted that
the internal borders are actually part of the Paned

widget, not the children.

117

Constraint Widgets
Name Class Type Notes Default Value
children ReadOnly WidgetList R NULL
colormap Colormap Colormap Parent's
Colormap
cursor Cursor Cursor None
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
gripCursor Cursor Cursor A Depends on
orientation
gripIndent GripIndent Position 10
gripTranslations| Translations [ranslationTable see below
height Height Dimension A Depends on
orientation
horizontalBetweenCursor Cursor Cursor sb up arrow
horizontalGripCursor Cursor Cursor sb h double arrow
internalBorderColprBorderColor Pixel XtDefaultForeground
internalBorderWidthBorderWidth Dimension 1
leftCursor Cursor Cursor sb_left arrow
lowerCursor Cursor Cursor sb_down_arrow
mappedWhenMaMagpeddWhenManaged Boolean True
numChildren ReadOnly Cardinal R 0
orientation Orientation Orientation XtorientVertical
refigureMode Boolean Boolean True
rightCursor Cursor Cursor sb_right arrow
screen Screen Screen R Parent's
Screen
sensitive Sensitive Boolean True
translations Translations [IranslationTable NULL
upperCursor Cursor Cursor sb up arrow
verticalBetweenCursor Cursor Cursor sb_left arrow
verticalGripCursar ~ Cursor Cursor sb v double arrow
width Width Dimension A Depends on
orientation
X Paned Position 0
Paned Position 0
cur sor

Composite and
Constraint Widgets

gri pCur sor The cursor to use when the grips are not
active. The default value is vertical Gi pCursor
or horizontal GipCursor depending on the
orientation of the Paned widget.

gri pl ndent The amount of space left between the right (or
bottom) edge of the Paned widget and all the grips.

gripTransl ati on Translation table that will be applied to all grips.
hori zont al Bet weenCur sor

verti cal Bet weenCur sor The cursor to be used for the grip when changing
the boundary between two panes. These resources
allow the cursors to be different depending on the
orientation of the Paned widget.

hori zont al Gri pCur sor

vertical Gi pCursor The cursor to be used for the grips when they are
not active. These resources allow the cursors to be
different depending on the orientation of the Paned
widget.

i nt er nal Bor der Col or A pixel value which indexes the widget's colormap
to derive the internal border color of the widget's
window. The class name of this resource allows
Paned*BorderColor: blue to set the internal border
color for the Paned widget. An optimization is
invoked if i nt er nal Bor der Col or and background
are the same, and the internal borders are not drawn.
i nt er nal Bor der W dt h is still left between the panes,
however.

i nt er nal Border Wdth The width of the internal borders. This is the amount
of space left between the panes. The class name of
this resource allows Paned*BorderWidth: 3 to set the
internal border width for the Paned widget.

| ef t Cursor

ri ght Cur sor The cursor used to indicate which is the important
pane to resize when the Paned widget is oriented
horizontally.

| ower Cur sor

upper Cur sor The cursor used to indicate which is the important
pane to resize when the Paned widget is oriented
vertically. This is not the same as the number of
panes, since this also contains a grip for some of
the panes, use XawPanedGet NunSub to retrieve the
number of panes.

orientation The orientation to stack the panes. This value can be

either Xtori ent Vertical or XtorientHori zontal .

118

Composite and
Constraint Widgets

refi gureMode

Constraint Resour

ces

This resource allows pane layout to be suspended.
If this value is Fal se, then no layout actions will be
taken. This may improve efficiency when adding or
removing more than one pane from the Paned widget.

Each child of the Paned widget may request special layout resources be applied to
it. These constraint resources allow the Paned widget's children to specify individual
layout requirements.

Name Class Type Notes Default Value
allowResize Boolean Boolean False
max Max Dimension Infinity
min Min Dimension Height of Grips
preferredPaneSiBreferredPaneSize Dimension ask child
resizeToPreferred Boolean Boolean False
showGrip ShowGrip Boolean True
skipAdjust Boolean Boolean False

al | owResi ze

pref erredPaneSi ze

resi zeToPreferred

showGri p

ski pAdj ust

If this value is Fal se the the Paned widget will
disallow all geometry requests from this child.

The absolute maximum or minimum size for this
pane. These values will never be overridden by the
Paned widget. This may cause some panes to be
pushed off the bottom (or right) edge of the paned
widget.

Normally the paned widget makes a QueryGeometry
call on a child to determine the preferred size of the
child's pane. There are times when the application
programmer or the user has a better idea of the
preferred size of a pane. Setting this resource causes
the value passed to be interpreted as the preferred
size, in pixels, of this pane.

Determines whether or not to resize each pane to its
preferred size when the Paned widget is resized. See
Layout Semanti cs for details.

If True then a grip will be shown for this pane. The
grip associated with a pane is either below or to the
right of the pane. No grip is ever shown for the last
pane.

This resource is used to determine which pane is
forced to be resized. Setting this value to Tr ue makes

119

Composite and
Constraint Widgets

this pane less likely to be forced to be resized. See
Layout Semanti cs for details.

Layout Semantics

In order to make effective use of the Paned widget it is helpful to know the rules
it uses to determine which child will be resized in any given situation. There are
three rules used to determine which child is resized. While these rules are always
the same, the panes that are searched can change depending upon what caused
the relayout.

Layout Rul es

1 Do not let a pane grow larger than its max or smaller than its m n.
2 Do not adjust panes with ski pAdj ust set.
3 Do not adjust panes away from their preferred size, although

moving one closer to its preferred size is fine.

When searching the children the Paned widget looks for panes that satisfy all the
rules, and if unsuccessful then it eliminates rule 3 and then 2. Rule 1 is always
enforced.

If the relayout is due to a resize or change in management then the panes are
searched from bottom to top. If the relayout is due to grip movement then they are
searched from the grip selected in the direction opposite the pane selected.

Resizing Panes from a Grip Action

The pane above the grip is resized by invoking the GripAction with UpLeft Pane
specified. The panes below the grip are each checked against all rules, then rules
2 and 1 and finally against rule 1 only. No pane above the chosen pane will ever
be resized.

The pane below the grip is resized by invoking the GripAction with LowRi ght Pane
specified. The panes above the grip are each checked in this case. No pane below
the chosen pane will ever be resized.

Invoking GripAction with Thi sBor der Onl y specified just moves the border between
the panes. No other panes are ever resized.

Resizing Panes after the Paned widget is resized.

When the Pane widget is resized it must determine a new size for each pane. There
are two methods of doing this. The Paned widget can either give each pane its
preferred size and then resize the panes to fit, or it can use the current sizes and
then resize the panes to fit. The r esi zeToPr ef er r ed resource allows the application
to tell the Paned widget whether to query the child about its preferred size (subject
to the the pref erredPaneSi ze) or to use the current size when refiguring the pane
locations after the pane has been resized.

There is one special case. All panes assume they should resize to their preferred
size until the Paned widget becomes visible to the user.

120

Composite and
Constraint Widgets

Managing Children and Geometry Management

The Paned widget always resizes its children to their preferred sizes when a new
child is managed, or a geometry management request is honored. The Paned widget
will first attempt to resize itself to contain its panes exactly. If this is not possible
then it will hunt through the children, from bottom to top (right to left), for a pane
to resize.

Special Considerations

When a user resizes a pane with the grips, the Paned widget assumes that this new
size is the preferred size of the pane.

Grip Translations

The Paned widget has no action routines of its own, as all actions are handled
through the grips. The grips are each assigned a default Translation table.

<Bt n1Down>: Gri pAction(Start, UpLeftPane)

<Bt n2Down>: Gri pAction(Start, Thi sBorderOnly)
<Bt n3Down>: Gi pAction(Start, LowRi ghtPane)
<Bt n1Motion>: Gi pAction(Mve, UpLeftPane)

<Bt n2Moti on>: Gi pActi on(Move, Thi sBorderOnly)
<Bt n3Moti on>: Gi pAction(Mve, LowR ghtPane)
Any<Bt nUp>: Gi pAction(Conmm t)

The Paned widget interprets the Gri pActi on as taking two arguments. The first
argument may be any of the following:

Start Sets up the Paned widget for resizing and changes the
cursor of the grip. The second argument determines which
pane will be resized, and can take on any of the three values
shown above.

Move The internal borders are drawn over the current pane
locations to animate where the borders would actually be
placed if you were to move this border as shown. The
second argument must match the second argument that was
passed to the St art action, that began this process. If these
arguments are not passed, the behavior is undefined.

Conmi t This argument causes the Paned widget to commit the
changes selected by the previously started action. The
cursor is changed back to the grip's inactive cursor. No
second argument is needed in this case.

Convenience Routines

To enable or disable a child's request for pane resizing, use
XawPanedAl | owResi ze

121

Composite and
Constraint Widgets

voi d XawPanedAl | onResi ze(w, allow resize);
w Specifies the child pane.

allow resize Specifies whether or not resizing requests for this
child will be granted by the Paned widget.

If allow resize is True, the Paned widget allows geometry requests from the child
to change the pane's height. If allow resize is Fal se, the Paned widget ignores
geometry requests from the child to change the pane's height. The default state is
True before the Pane is realized and Fal se after it is realized. This procedure is
equivalent to changing the al | owResi ze constraint resource for the child.

To change the minimum and maximum height settings for a pane, use
XawPanedSet M nMax :

voi d XawPanedSet M nMax(w, max);

w Specifies the child pane.

min Specifies the new minimum height of the child, expressed in
pixels.

max Specifies new maximum height of the child, expressed in pixels.

This procedure is equivalent to setting the m n and max constraint resources for the
child.

To retrieve the minimum and maximum height settings for a pane, use
XawPanedGet M nivax :

voi d XawPanedGet M nMax(w, *max_return);

w Specifies the child pane.

min_return Returns the minimum height of the child, expressed in
pixels.

max_return Returns the maximum height of the child, expressed in
pixels.

This procedure is equivalent to getting the m n and nax resources for this child child.

To enable or disable automatic recalculation of pane sizes and positions, use
XawPanedSet Ref i gur eMbde :

voi d XawPanedSet Ref i gureMbde(w, node);
w Specifies the Paned widget.

mode Specifies whether the layout of the Paned widget is enabled
(True) or disabled (Fal se).

When making several changes to the children of a Paned widget after the Paned
has been realized, it is a good idea to disable relayout until after all changes have
been made.

To retrieve the number of panes in a paned widget use XawPanedGet NunfSub:

i nt XawPanedGet NunSub(w);

122

Composite and
Constraint Widgets

w

Specifies the Paned widget.

This function returns the number of panes in the Paned widget. This is not the same
as the number of children, since the grips are also children of the Paned widget.

Porthole Widget

Application Header file <X11/ Xaw Port hol e. h>

Cl ass Header file <X11/ Xaw Port hol eP. h>

d ass

port hol eW dget d ass

Cl ass Nane Port hol e

Super cl ass Conposite

The Porthole widget provides geometry management of a list of arbitrary widgets,
only one of which may be managed at any particular time. The managed child widget
is reparented within the porthole and is moved around by the application (typically
under the control of a Panner widget).

Resources

When creating a Porthole widget instance, the following resources are retrieved

from the argument list or from the resource database:

q

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitivAncestorSensitive =~ Boolean D True
background Background Pixel Xt DefaultBackgrou1nd
ackgroundPixmap Pixmap Pixmap XtUnspeciﬁedPimeap
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderwidth BorderWidth Dimension 1
children ReadOnly WidgetList R NULL
colormap Colormap Colormap Parent's
Colormap
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL

123

Composite and

Constraint Widgets
Name Class Type Notes Default Value
height Height Dimension A see Layout
Semanti cs
mappedWhenMaMagpeddWhenManaged Boolean True
numChildren ReadOnly Cardinal R 0
reportCallback | ReportCallback Callback NULL
screen Screen Screen R Parent's
Screen
sensitive Sensitive Boolean True
translations Translations [TranslationTable NULL
width Width Dimension A see Layout
Senmantics
Position Position 0
Position Position 0

report Cal | back

Layout Semant

A list of functions to invoke whenever the managed

child widget changes size or position.

iCS

The Porthole widget allows its managed child to request any size that is as large or
larger than the Porthole itself and any location so long as the child still obscures all

of the Porthole. This widget typically is used with a Panner widget.

Porthole Callbacks

The functions registered on the report Cal | back list are invoked whenever the
managed child changes size or position:

voi d ReportPr
porthole
client data

report

Tree Widget

oc(porthol e,

client data,

Specifies the Porthole widget.

Specifies the client data.

report);

Specifies a pointer to an XawPanner Report structure containing the
location and size of the slider and the size of the canvas.

Application Header file <X11/ Xaw Tree. h>
Cl ass Header file <X11/ Xaw Tr eeP. h>

Class treeW
Cl ass Nane Tr

dget d ass
ee

Super cl ass Constrai nt

The Tree widget provides geometry management of arbitrary widgets arranged in
a directed, acyclic graph (i.e., a tree). The hierarchy is constructed by attaching a

124

Composite and
Constraint Widgets

constraint resource called t r eePar ent to each widget indicating which other node
in the tree should be treated as the widget's superior. The structure of the tree is
shown by laying out the nodes in the standard format for tree diagrams with lines
drawn connecting each node with its children.

The Tree sizes itself according to the needs of its children and is not intended to be
resized by its parent. Instead, it should be placed inside another composite widget
(such as the Port hol e or Vi ewpor t) that can be used to scroll around in the tree.

Resources

When creating a Tree widget instance, the following resources are retrieved from
the argument list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitivAncestorSensitive ~ Boolean D True
autoReconfigureAutoReconfigure Boolean False
background Background Pixel Xt DefaultBackgrou1nd
backgroundPixmap Pixmap Pixmap XtUnspeciﬁedPimeap
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderwidth BorderWidth Dimension 1
children ReadOnly WidgetList R NULL
colormap Colormap Colormap Parent's
Colormap
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
foreground Foreground Pixel XtDefaultForeground
gravity Gravity XtGravity WestGravity
height Height Dimension A see the section
called “Layout
Semantics”
hSpace HSpace Dimension 4
lineWidth LineWidth Dimension 0
mappedWhenMaMagpeddWhenManaged Boolean True
numChildren ReadOnly Cardinal R 0
screen Screen Screen R Parent's
Screen
sensitive Sensitive Boolean True
vSpace VSpace Dimension 4
translations Translations [IranslationTable NULL
width Width Dimension A see the section

called “Layout
Semantics”

125

Composite and

Constraint Widgets
Name Class Type Notes Default Value
X Position Position 0
vy Position Position 0

aut oReconfi gure Whether or not to layout the tree every time a node is added

or removed.

gravity Specifies the side of the widget from which the tree should grow.
Valid values include West Gravity, Nort hGravity, East Gravity,
and Sout hGravity.

hSpace

vSpace The amount of space, in pixels, to leave between the children.
This resource specifies the amount of space left between the
outermost children and the edge of the box.

lineWdth The width of the lines from nodes that do not have a treeGC

constraint resource to their children.

Constraint Resources

Each child of the Tree widget must specify its superior node in the tree. In addition,
it may specify a GC to use when drawing a line between it and its inferior nodes.

Name Class Type Notes Default Value
treeGC TreeGC GC NULL
treeParent TreeParent Widget NULL
treeGC This specifies the GC to use when drawing lines between this widget

and its inferiors in the tree. If this resource is not specified, the Tree's
foreground and | i neW dt h will be used.

treeParent This specifies the superior node in the tree for this widget. The default
is for the node to have no superior (and to therefore be at the top of

the tree).

Layout Semantics

Each time a child is managed or unmanaged, the Tree widget will attempt to
reposition the remaining children to fix the shape of the tree if the resource is set.
Children at the top (most superior) of the tree are drawn at the side specified by
the resource.

After positioning all children, the Tree widget attempts to shrink its own size to the
minimum dimensions required for the layout.

Convenience Routines

The most efficient way to layout a tree is to set aut oReconfi gur e to False and then
use the XawTr eeFor ceLayout routine to arrange the children.

voi d XawTr eeFor ceLayout (w);

126

Composite and
Constraint Widgets

w Specifies the Tree widget.

Viewport Widget

Application Header file <X11/ Xaw Vi ewport. h>

Cl ass Header file <X11/ Xaw Vi ewport P. h>

d ass

vi ewport W dget Cl ass

Cl ass Name Vi ewport

Supercl ass Form

The Viewport widget consists of a frame window, one or two Scrollbars, and an inner
window. The size of the frame window is determined by the viewing size of the data
that is to be displayed and the dimensions to which the Viewport is created. The
inner window is the full size of the data that is to be displayed and is clipped by the
frame window. The Viewport widget controls the scrolling of the data directly. No
application callbacks are required for scrolling.

When the geometry of the frame window is equal in size to the inner window,
or when the data does not require scrolling, the Viewport widget automatically
removes any scrollbars. The f or ceBar s option causes the Viewport widget to display
all scrollbars permanently.

Resources

When creating a Viewport widget instance, the following resources are retrieved
from the argument list or the resource database:

q

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
allowHoriz Boolean Boolean False
allowVert Boolean Boolean False
ancestorSensitivAncestorSensitive =~ Boolean D True
background Background Pixel Xt DefaultBackgrou1nd
ackgroundPixmap Pixmap Pixmap Xt UnspeciﬁedPimeap
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderwidth BorderWidth Dimension 1

127

Composite and

Constraint Widgets
Name Class Type Notes Default Value
children ReadOnly WidgetList R NULL
colormap Colormap Colormap Parent's
Colormap
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
forceBars Boolean Boolean False
height Height Dimension height of
the child
mappedWhenMaMagpeddWhenManaged Boolean True
numChildren ReadOnly Cardinal R 0
reportCallback | ReportCallback | XtCallbackList NULL
screen Screen Screen R Parent's
Screen
sensitive Sensitive Boolean True
translations Translations [IranslationTable NULL
useBottom Boolean Boolean False
useRight Boolean Boolean False
width Width Dimension width of
the child
Position Position 0
Position Position 0
al | owHori z
al | owVert If these resources are Fal se then the Viewport will
never create a scrollbar in this direction. If it is Tr ue
then the scrollbar will only appear when it is needed,
unless f or ceBar s is Tr ue.
forceBars When True the scrollbars that have been allowed

report Cal | back

useBottom

useRi ght

will always be visible on the screen. If Fal se the
scrollbars will be visible only when the inner window
is larger than the frame.

These callbacks will be executed whenever the
Viewport adjusts the viewed area of the child.
The call data parameter is a pointer to an
XawPannerReport structure.

By default the scrollbars appear on the left and top
of the screen. These resources allow the vertical
scrollbar to be placed on the right edge of the
Viewport, and the horizontal scrollbar on the bottom
edge of the Viewport.

128

Composite and
Constraint Widgets

Layout Semantics

The Viewport widget manages a single child widget. When the size of the child is
larger than the size of the Viewport, the user can interactively move the child within
the Viewport by repositioning the scrollbars.

The default size of the Viewport before it is realized is the width and/or height of
the child. After it is realized, the Viewport will allow its child to grow vertically or
horizontally if al | owMert or al | owHor i z are set, respectively. If the corresponding
vertical or horizontal scrollbar is not enabled, the Viewport will propagate the
geometry request to its own parent and the child will be allowed to change size
only if the Viewport's parent allows it. Regardless of whether or not scrollbars are
enabled in the corresponding direction, if the child requests a new size smaller than
the Viewport size, the change will be allowed only if the parent of the Viewport
allows the Viewport to shrink to the appropriate dimension.

The scrollbar children of the Viewport are named horizontal and vertical.
By using these names the programmer can specify resources for the individual
scrollbars. Xt Set Val ues can be used to modify the resources dynamically once the
widget ID has been obtained with Xt NanmeToW dget .

Note

Although the Viewport is a Subclass of the Form, no resources for the Form
may be supplied for any of the children of the Viewport. These constraints
are managed internally and are not meant for public consumption.

129

Chapter 7. Creating New Widgets
(Subclassing)

Although the task of creating a new widget may at first appear a little daunting,
there is a basic simple pattern that all widgets follow. The Athena Widget library
contains a special widget called the Template widget that is intended to assist the
novice widget programmer in writing a custom widget.

Reasons for wishing to write a custom widget include:
¢ Providing a graphical interface not currently supported by any existing widget set.

* Convenient access to resource management procedures to obtain fonts, colors,
etc., even if user customization is not desired.

e Convenient access to user input dispatch and translation management
procedures.

* Access to callback mechanism for building higher-level application libraries.

* Customizing the interface or behavior of an existing widget to suit a special
application need.

¢ Desire to allow user customization of resources such as fonts, colors, etc., or to
allow convenient re-binding of keys and buttons to internal functions.

¢ Converting a non-Toolkit application to use the Toolkit.

In each of these cases, the operation needed to create a new widget is to "subclass"
an existing one. If the desired semantics of the new widget are similar to an existing
one, then the implementation of the existing widget should be examined to see how
much work would be required to create a subclass that will then be able to share
the existing class methods. Much time will be saved in writing the new widget if
an existing widget class Expose, Resize and/or GeometryManager method can be
used by the subclass.

Note that some trivial uses of a “bare-bones” widget may be achieved by simply
creating an instance of the Core widget. The class variable to use when creating a
Core widget iswi dget d ass. The geometry of the Core widget is determined entirely
by the parent widget.

It is very often the case than an application will have a special need for a certain set
of functions and that many copies of these functions will be needed. For example,
when converting an older application to use the Toolkit, it may be desirable to have
a "Window Widget" class that might have the following semantics:

» Allocate 2 drawing colors in addition to a background color.

 Allocate a text font.

¢ Execute an application-supplied function to handle exposure events.

¢ Execute an application-supplied function to handle user input events.

130

Creating New
Widgets (Subclassing)

It is obvious that a completely general-purpose WindowWidgetClass could be
constructed that would export all class methods as callbacks lists, but such a widget
would be very large and would have to choose some arbitrary number of resources
such as colors to allocate. An application that used many instances of the general-
purpose widget would therefore un-necessarily waste many resources.

In this section, an outline will be given of the procedure to follow to construct a
special-purpose widget to address the items listed above. The reader should refer
to the appropriate sections of the X Toolkit Intrinsics - C Language Interface for
complete details of the material outlined here. Section 1.4 of the Intrinsics should
be read in conjunction with this section.

All Athena widgets have three separate files associated with them:

* A '"public" header file containing declarations needed by applications
programmers

« A "private" header file containing additional declarations needed by the widget
and any subclasses

* A source code file containing the implementation of the widget

This separation of functions into three files is suggested for all widgets, but nothing
in the Toolkit actually requires this format. In particular, a private widget created for
a single application may easily combine the "public" and "private" header files into
a single file, or merge the contents into another application header file. Similarly,
the widget implementation can be merged into other application code.

In the following example, the public header file <X11/ Xaw Tenpl at e. h>, the
private header file <X11/ Xaw Tenpl at eP. h> and the source code file <X11/ Xaw/
Tenpl at e. ¢c> will be modified to produce the "WindowWidget" described above.
In each case, the files have been designed so that a global string replacement of
"Template" and "template" with the name of your new widget, using the appropriate
case, can be done.

Public Header File

The public header file contains declarations that will be required by any application
module that needs to refer to the widget; whether to create an instance of the class,
to perform an Xt Set Val ues operation, or to call a public routine implemented by
the widget class.

The contents of the Template public header file, <X11/ Xaw Tenpl at e. h>, are:

/* Copyright (c) X Consortium 1987, 1988 */

#i fndef _Tenplate_h
#define _Tenplate_h

/**

*

131

../libXt/intrinsics.pdf#intrinsics
../libXt/intrinsics.pdf#Widgets

Creating New
Widgets (Subclassing)

* Tenpl at e wi dget

*

**/

/| * Resources:

Nane Class RepType Default Val ue

background Background Pixel XtDefault Background
border BorderCol or Pixel XtDefaultForeground
borderWdth BorderWdth Dinension 1

destroyCal | back Cal |l back Pointer NULL

hei ght Height Dinension 0

mappedWenManaged MappedWenManaged Bool ean True
sensitive Sensitive Boolean True

width Wdth Dinmension 0

x Position Position O

y Position Position O

*/

/* define any special resource nanes here that are not in <X11/StringDefs.h> */
#def i ne Xt Nt enpl at eResource "t enpl at eResour ce”

#def i ne Xt CTenpl at eResour ce "Tenpl at eResour ce"

/* declare specific Tenpl ateW dget cl ass and instance datatypes */

typedef struct _Tenpl ated assRec* Tenpl at eW dget C ass;
typedef struct _Tenpl at eRec* Tenpl at eW dget ;

/* declare the class constant */

extern Wdget C ass tenpl at eW dget C ass;

#endif /* _Tenplate_h */

You will notice that most of this file is documentation. The crucial parts are the last
8 lines where macros for any private resource names and classes are defined and
where the widget class datatypes and class record pointer are declared.

For the "WindowWidget", we want 2 drawing colors, a callback list for user input and

an exposeCal | back callback list, and we will declare three convenience procedures,
so we need to add

/* Resources:

cal | back Cal |l back Cal | back NULL

132

Creating New
Widgets (Subclassing)

draw ngCol or1 Col or Pi xel Xt Default Foreground
drawi ngCol or2 Col or Pi xel Xt Def aul t For egr ound
exposeCal | back Cal | back Cal | back NULL
font Font XFont Struct* Xt Defaul t Font

-

#def i ne Xt Ndrawi ngCol or1 "draw ngCol or 1"
#def i ne Xt Ndr awi ngCol or 2 "dr awi ngCol or 2"
#def i ne Xt NexposeCal | back "exposeCal | back"

extern Pixel WndowCol orl(/* Wdget */);
extern Pixel WndowCol or2(/* Wdget */);
extern Font\ \ W ndowFont(/* Wdget */);

Note that we have chosen to call the input callback list by the generic name,
cal | back, rather than a specific name. If widgets that define a single user-input
action all choose the same resource name then there is greater possibility for an
application to switch between widgets of different types.

Private Header File

The private header file contains the complete declaration of the class and instance
structures for the widget and any additional private data that will be required
by anticipated subclasses of the widget. Information in the private header file is
normally hidden from the application and is designed to be accessed only through
other public procedures; e.g. Xt Set Val ues.

The contents of the Template private header file, <X11/ Xaw Tenpl at eP. h>, are:

/* Copyright (c) X Consortium 1987, 1988
*/

#i fndef _Tenpl ateP_h
#defi ne _Tenpl ateP_h

#i ncl ude <X11/ Xaw/ Tenpl at e. h>
/* include superclass private header file */
#i ncl ude <X11/ Cor eP. h>

/* define unique representation types not found in <X11/StringDefs. h> */
#def i ne Xt RTenpl at eResour ce "Tenpl at eResour ce"

typedef struct {

int enpty;
} Tenpl ated assPart ;

typedef struct _Tenpl ated assRec {
CoreC assPart core_cl ass;
Templ at e assPart tenpl ate_cl ass;
} Tenpl at ed assRec;

133

Creating New
Widgets (Subclassing)

extern Tenpl at eCl assRec tenpl at ed assRec;

typedef struct {
/* resources */
char* resource;
/* private state */
} Tenpl atePart;

typedef struct _Tenpl ateRec {
CorePart core,

Tenpl atePart tenpl at e;

} Tenpl at eRec;

#endif /* _TenplateP_h */

The private header file includes the private header file of its superclass, thereby
exposing the entire internal structure of the widget. It may not always be
advantageous to do this; your own project development style will dictate the
appropriate level of detail to expose in each module.

The "WindowWidget" needs to declare two fields in its instance structure to hold
the drawing colors, a resource field for the font and a field for the expose and user
input callback lists:

typedef struct {
/* resources */
Pi xel color_1;
Pi xel col or_2;
XFont Struct* font;
Xt Cal | backLi st expose_cal | back;
Xt Cal | backLi st i nput _cal | back;
/* private state */
/[* (none) */
} WndowPart;

Widget Source File

The source code file implements the widget class itself. The unique part of this file
is the declaration and initialization of the widget class record structure and the
declaration of all resources and action routines added by the widget class.

The contents of the Template implementation file, <X11/ Xaw/ Tenpl at e. c>, are:
/* Copyright (c) X Consortium 1987, 1988
*/

#i ncl ude <X11/IntrinsicP. h>
#i ncl ude <X11/ Stri ngDefs. h>
#i ncl ude "Tenpl at eP. h"

134

Creating New
Widgets (Subclassing)

static XtResource resources[] = {
#define offset(field) XtOfsetO(Tenpl ateRec, tenplate.field)
/* {name, class, type, size, offset, default_type, default_addr}, */
{ Xt Nt enmpl at eResour ce, Xt CTenpl at eResour ce, Xt RTenpl at eResour ce,
si zeof (char*), offset(resource), XtRString, (XtPointer) "default" },
#undef of f set

b
static void Tenpl ateAction(/* Wdget, XEvent*, String*, Cardinal* */);

static XtActionsRec actions[] =
{

/* {name, procedure}, */
{"templ ate", Tenpl at eActi on},
b

static char translations[] =
" <Key>: tenplate() \\n\\

Tenpl at e assRec tenpl ateC assRec = {
{ /* core fields */
/* superclass */ (WdgetC ass) &w dget d assRec,
/* class_nane */ "Tenpl ate”,
/* widget_size */ sizeof (Tenpl at eRec),
/* class_initialize */ NULL,
/* class_part_initialize */ NULL,
/* class_inited */ FALSE,
[* initialize */ NULL,
/* initialize_hook */ NULL,
/* realize */ XtlnheritRealize,
/* actions */ actions,
/* num.actions */ XtNunber (actions),
/* resources */ resources,
/* numresources */ XtNunber(resources),
/* xrmclass */ NULLQUARK,
/* conpress_notion */ TRUE,
/* conpress_exposure */ TRUE,
/* conpress_enterl eave */ TRUE,
/* visible_ interest */ FALSE,
/* destroy */ NULL,
/* resize */ NULL,
/* expose */ NULL,
/* set_values */ NULL,
/* set _val ues_hook */ NULL,
/* set_values_al nost */ Xtlnherit SetVal uesAl nost,
/* get_val ues_hook */ NULL,
/* accept _focus */ NULL,
/* version */ XtVersion,
/* cal |l back_private */ NULL,
/* tmtable */ translations,
/* query_geonetry */ XtlnheritQueryGeonetry,
/* display_accelerator */ XtlnheritD splayAccel erator,
/* extension */ NULL

135

Creating New
Widgets (Subclassing)

}
{ /* template fields */
/[* enpty */ O

}
b

W dget Cl ass tenpl at eW dget G ass = (W dget C ass) & enpl at eCl assRec;

The resource list for the "WindowWidget" might look like the following:

static XtResource resources[] = {
#define offset(field) XtOffsetOf (WndowW dget Rec, w ndow. fi el d)
/* {name, class, type, size, offset, default_type, default_addr}, */
{ Xt Ndraw ngCol or1, XtCColor, XtRPixel, sizeof(Pixel),
of fset(color_1), XtRString, XtDefaultForeground },
{ Xt Ndraw ngCol or2, XtCCol or, XtRPixel, sizeof(Pixel),
of fset(color_2), XtRString, XtDefaultForeground },
{ XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct*),
of fset(font), XtRString, XtDefaultFont },
{ Xt NexposeCal | back, XtCCall back, XtRCallback, sizeof(XtCallbackList),
of f set (expose_cal | back), XtRCall back, NULL },
{ XtNcal | back, XtCCall back, XtRCallback, sizeof(XtCallbackList),
of fset (i nput _cal | back), XtRCall back, NULL },
#undef of f set

b

The user input callback will be implemented by an action procedure which passes
the event pointer as call data. The action procedure is declared as:

/* ARGSUSED */

static void InputAction(w, event, parans, hum parans)
W dget w;

XEvent *event;

String *parans; [/* unused */

Cardi nal *num parans; /* unused */

{
Xt Cal | Cal | backs(w, XtNcall back, (XtPointer)event);
}
static XtActionsRec actions[] =
{
/* {name, procedure}, */
{"input", I|nputAction},
1

and the default input binding will be to execute the input callbacks on KeyPr ess
and ButtonPress :

static char translations[] =
<Key>: input() \\n\\
<Bt nDown>: input () \\

136

Creating New
Widgets (Subclassing)

In the class record declaration and initialization, the only field that is different from
the Template is the expose procedure:

/* ARGSUSED */
static void Redisplay(w, event, region)
W dget w;
XEvent *event; /* unused */
Regi on region;
{
Xt Cal | Cal | backs(w, Xt NexposeCall back, (XtPointer)region);

}

W ndowCl assRec wi ndowCl assRec = {

/* expose */ Redi spl ay,

The "WindowWidget" will also declare three public procedures to return the
drawing colors and the font id, saving the application the effort of constructing an
argument list for a call to Xt Get Val ues :

Pi xel W ndowCol or 1(w)

W dget w;
{

return ((WndowWw dget)w)->w ndow. col or _1;
}
Pi xel W ndowCol or 2(w)

W dget w;
{

return ((WndowWw dget)w)->w ndow. col or_2;
}
Font W ndowFont (w)

W dget w;
{

return ((WndowWw dget)w)->w ndow. font->fid;
}

The "WindowWidget" is now complete. The application can retrieve the two drawing
colors from the widget instance by calling either Xt Get Val ues, or the W ndowCol or
functions. The actual window created for the "WindowWidget" is available by calling
the Xt W ndow function.

137

Chapter 8. Acknowledgments

Many thanks go to Ralph Swick (Project Athena / Digital) who has contributed much
time and effort to this widget set. Previous versions of the widget set are largely
due to his time and effort. Many of the improvements that I have been able to make
are because he provided a solid foundation to build upon. While much of the effort
has been Ralph's, many other people have contributed to the code.

Mark Ackernman (fornerly Project Athena)
Donna Converse (M T X Consortiun)
JimFulton (fornmerly MT X Consortium
Loretta Guarino-Reid (Digital WSL)
Charl es Haynes (Digital WSL)

Rich Hyde (Digital WSL)

Mary Larson (Digital UEG

Joel McCornmack (Digital WSL)

Ron Newman (fornerly Project Athena)
Jeanne Rich (Digital WSL)

Terry Weissman (fornerly Digital WSL)

While not much remains of the X10 toolkit, many of the ideas for this widget set
come from that original version. The design and implementation of the X10 toolkit
were done by:

M ke Gancarz (formerly Digital UEG
Charl es Haynes (Digital WSL)

Phil Karlton (formerly Digital W5L)
Kat hl een Langone (Digital UEG

Mary Larson (Digital UEG

Ram Rao (Digital UEQ

Smokey Wl lace (formerly Digital WSL)
Terry Weissman (fornerly Digital WSL)

I have used the formatting ideas, and some of the words from previous versions of
this document. The X11R3 Athena widget document was written by:

Ral ph R Swick (Project Athena/ Digital)
Terry Weissman (formerly Digital WSL)
Al Mento (Digital UEGQ

Putting this manual together was a major task in and of itself. I would like to thank
Ralph Swick, Donna Converse, and Jim Fulton for taking the time to help convert
my technical knowledge into legible text. A special thanks to Jean Diaz (O'Reilly
and Associates) for spending nearly a month with me working out all the annoying
little details.

Chris D. Peterson
M T X Consortium 1989

The R5 edition of this document has been edited by the research staff of the MIT X
Consortium, with significant contributions by Jim Fulton (NCD).

138

Acknowledgments

Donna Conver se
MT X Consortium 1991

The R6 edition of this document has been edited to reflect changes brought about by
research staff of the Omron Corporation, with special recognition to Li Yuhong, Seiji
Kuwari, and Hiroshi Kuribayashi for the X11R5/contrib/lib/Xaw internationalization
that inspired this version.

Frank Sheeran
Omron Corporation 1994

This document is made available to you in modern formats such as HTML and
PDF thanks to the efforts of Matt Dew, who converted the original troff sources
to DocBook/XML and edited them into shape; along with Gaetan Nadon and Alan
Coopersmith, who set up the formatting machinery in the libXaw builds and
performed further editing of the DocBook markup.

139

callbacks, 14

I n d eX chapter format, 4

child, 2
class, 2, 5
Sym bols class header file, 5
/usr/include/X1 l/bitmaps, 11 class name, 5
fusr/share/X11/app-defaults, 17 client, 2
_in_out, 4 Command widget, 21
_return, 4 actions, 23
class name, 21
A resources, 22
A, note, 5 translation bindings, 23
app-defaults, 17 Command.h, 21
application defaults, 17 CommandPh, 21
application header file, 5 commandWidgetClass, 21
application programmer, 2 compﬂmg applications, 16
Arg, 19 conventions
ArgList, 19 chapter format, 4
argument lists, 18 used in manual, 3
AsciiSink object, 86, 91, 92 conversions, 10
class name, 91 BackingStore, 57
resources, 91, 98 Bitmap, 11
AsciiSink.h, 91 ColorCursor, 10
asciiSinkObjectClass, 91 Cursor, 10
AsciiSinkPh, 91 Orientation, 106, 118
AsciiSrc object, 86, 88, 93 Pixel, 11
class name, 88 creating widgets, 8
resources, 89 cursor, 10
AsciiSrc.h, 88
asciiSrcObjectClass, 88 D
AsciiSrcPh, 88 D, note, 5
AsciiText widget, 86, 93 destroyCallback, 15
class name, 86 Dialog widget, 107
resources, 87 automatically created children, 111
AsciiText.h, 86 class name, 107
AsciiTextPh, 86 constraint resources, 108
asciiTextWidgetClass, 86 layout semantics, 109
resources, 107
B special considerations, 110
bitmap conversions, 11 Dialog.h, 107
bitmapFilePath, 11 DialogPh, 107
BitmapFilePath, 11 dialogWidgetClass, 107
Box widget, 105
class name, 105 E
layout semantics, 106 events, 11
resources, 105 examples, 20
Box.h, 105
BoxPh, 105 F

boxWidgetClass, 105 fallback resources, 7

FindPosition, 101

C float resources
C, note, 5 setting, 45
CallbackProc, 14 Form widget, 111

140

Index

class name, 112
constraint resources, 113
re-layout, 115
resources, 112
Form.h, 112
FormPh, 112
formWidgetClass, 112
fromLeft, 110
FullName, 2

G
Grip widget, 24
actions, 26
class name, 24
GripAction routine, 26
GripAction table, 26
resources, 25
Grip.h, 24
GripAction, 121, 121
GripCallData, 26
GripPh, 24
gripWidgetClass, 24

I

initialization, 7

input, 6

input focus, 6

Input Method, 79
instance, 2
internationalization, 7
Intrinsic.h, 15
introduction, 1

J
jumpProc, 45

L

Label widget, 26
class name, 27
resources, 27

Label.h, 27

LabelPh, 27

labelWidgetClass, 27

libICE, 16

libSM, 16

libX11, 16

libXaw, 16

libXext, 16

libXmu, 16

libXt, 16

linking applications, 16

List widget, 28
actions, 31

callbacks, 32
class name, 28
default translation table, 31
resources, 29
List.h, 28
ListPh, 28
listWidgetClass, 28
locale, 7

M

MenuButton widget, 65
actions, 67
class name, 65
resources, 65
MenuButton.h, 65
MenuButtonP.h, 65
menuButtonWidgetClass, 65
Menus
popup, 55
pulldown, 55
using, 55
method, 2
MultiSink object, 86, 93
MultiSrc object, 86, 93

N

name
widget, 2
notes, 5

O
object, 2

P

Paned widget, 115
change height settings, 122
class name, 115
constraint resources, 119
disable auto-reconfiguring, 122
disable pane resizing, 121
enable auto-reconfiguring, 122
enable pane resizing, 121
get height settings, 122
getting the number of children, 122
layout semantics, 120
resources, 116
using, 116

Paned.h, 115

PanedPh, 115

panedWidgetClass, 115

Panner widget, 33
actions, 36
callbacks, 37

141

Index

class name, 34 simpleMenuWidgetClass, 56

default translation table, 37 SimpleP.h, 46

resources, 34 simpleWidgetClass, 46
Panner.h, 34 Sme object, 63
PannerPh, 34 class name, 63
pannerWidgetClass, 34 Highlight method, 64
parent, 3 Notify method, 64
pixel, 11 subclassing, 64
Porthole widget, 123 Unhighlight method, 64

callbacks, 124 Sme.h, 63

class name, 123 SmeBSB object, 60

layout semantics, 124 class name, 61

resources, 123 resources, 61
Porthole.h, 123 SmeBSB.h, 61
PortholeP.h, 123 smeBSBObjectClass, 61
portholeWidgetClass, 123 SmeBSBPh, 61

SmelLine object, 62

R class name, 63
R, note, 5 resources, 63, 64

SmelLine.h, 62
smeLineObjectClass, 63
SmeLinePh, 62
smeObjectClass, 63
SmePh, 63
string conversions, 10
StringDefs.h, 15

. L StripCharPh, 47
Regggts éizog;) indings, 40 StripChart widget, 47
RepeaterPh, 38 clas; name, 47
repeaterWidgetClass, 38 getting the value, 49
ReportProc, 37, 124 getValue callback, 49

resources, 48
resource, 3, 9, 16 StripChart.h, 47

Radio groups
zero or one of many, 53
realizing widgets, 11
Repeater widget, 37
actions, 40
class name, 38
resources, 38

rgb.txt, 11 stripChartWidgetClass, 47
superclass, 3, 5

S b

Scrollbar widget T

callbacks, 44 .
default translation table, 44 Text widget, 92

setting thumb values, 45 zﬁ?& I:El 2711:)1)g 782
ScrollProc, 44 default key bindings, 69

default translations, 80
file insertion, 72

Simple widget, 46
class name, 46
resources, 46

Simple.h, 46 query replace, 70
SimpleMenP.h, 56 search, 70 ’ o
SimpleMenu widget, 56 Text Selections for Application

Programmers, 79

Text Selections for Users, 72

User's Guide to the Text widget, 69
TextSink object, 92, 98

class name, 98

ClearToBackground, 100

DisplayText, 99

actions, 58
class name, 56
default translations, 59
MenuPopdown routine, 59, 59
positioning, 59
resources, 56

SimpleMenu.h, 56

142

Index

FindDistance, 101
FindPosition, 100
GetCursorBounds, 103
MaxHeight, 102
MaxLines, 102
Resolve, 101
SetTabs, 102
subclassing, 99

TextSink.h, 98

textSinkObjectClass, 98

TextSinkPh, 98

TextSrc object, 92
Read, 95

toolkit initialization, 7

type conversions, 10

U

underlying model, 3
user, 3

\
Viewport widget, 127
class name, 127
layout semantics, 129
resources, 127
Viewport.h, 127
ViewportPh, 127
viewportWidgetClass, 127

w

widget, 3

widget class, 3

widget creation, 8
widget programmer, 3
writing applications, 15

X

XawAsciiSave, 91
XawAsciiSourceFreeString, 111
XawDialogAddButton, 111
XawDialogGetValueString, 111
XawEditDone, 83
XawEditError, 83, 96
XawFormDoLayout, 115
XawGripCallData, 26, 26
XawGripCallDataRec, 26, 26
XawListChange, 32
XawListHighlight, 33
XawListReturnStruct, 32, 32
XawListShowCurrent, 33
XawListUnhighlight, 33
XawPanedAllowResize, 121
XawPanedGetMinMax, 122

XawPanedGetNumSub, 122
XawPanedSetMinMax, 122
XawPanedSetRefigureMode, 122
XawPositionError, 83, 96
XawPositionSimpleMenu, 59, 60
XawScrollbarSetThumb, 45
XawsdLeft, 96, 97

XawsdRight, 96, 97
XawSimpleMenuAddGlobalActions, 60
XawSimpleMenuClearActiveEntry, 60
XawSimpleMenuGetActiveEntry, 60
XawTextBlock, 81
XawTextBlockPtr, 82
XawTextDisableRedisplay, 84
XawTextDisplay, 84
XawTextDisplayCaret, 86
XawTextEnableRedisplay, 84
XawTextGetlnsertionPoint, 85
XawTextGetSelectionPos, 83
XawTextGetSource, 86
XawTextInvalidate, 84
XawTextPosition, 81
XawTextReplace, 83
XawTextSearch, 84
XawTextSetInsertionPoint, 85
XawTextSetSelection, 82
XawTextSetSelectionArray, 79, 85
XawTextSetSource, 85
XawTextTopPosition, 85
XawTextUnsetSelection, 82
XawWMProtocols, 79

XAW LIST NONE, 33

xrdb, 17

XtAddCallback, 14, 15, 16
XtAddCallbacks, 14
XtApplnitialize, 11
XtAppMainLoop, 11, 16
XtCallbackList, 14
XtCallbackProc, 14
XtCallbackRec, 14
XtCreateManagedWidget, 8, 16
XtCreateWidget, 13, 15
XtDefaultBackground, 10, 11
XtDefaultForeground, 10, 10, 11
XtDestroyWidget, 13

XtError, 9
XtGetApplicationResources, 18
XtGetValues, 13, 14
XtInheritClearToBackground, 100
XtManageChildren, 13
XtMapWidget, 12, 12
XtMoveWidget, 104

XtN, 16

XtNameToWidget, 111, 129

143

Index

XtNinput, 6

XtNumber, 19, 19, 20, 20
XtOpenApplication, 7, 15
XtorientHorizontal, 106, 106, 118
XtorientVertical, 106, 106, 118
XtRealizeWidget, 8, 11, 12, 16
XtResizeWidget, 104

XtSetArg, 19
XtSetLanguageProc, 7
XtSetMappedWhenManaged, 12
XtSetValues, 13, 14, 104

144

	Athena Widget Set - C Language Interface
	Table of Contents
	Chapter 1. Athena Widgets and The Intrinsics
	Introduction to the X Toolkit
	Terminology
	Underlying Model
	Conventions Used in this Manual
	Format of the Widget Reference Chapters
	Input Focus

	Chapter 2. Using Widgets
	Using Widgets
	Setting the Locale
	Initializing the Toolkit
	Creating a Widget
	Common Resources
	Resource Conversions
	Cursor Conversion
	Pixel Conversion
	Bitmap Conversion

	Realizing a Widget
	Processing Events
	Standard Widget Manipulation Functions
	Mapping Widgets
	Destroying Widgets
	Retrieving Widget Resource Values
	Modifying Widget Resource Values

	Using the Client Callback Interface
	Programming Considerations
	Writing Applications
	Changing Resource Values
	Specifying Resources
	Creating Argument Lists

	Example Programs

	Chapter 3. Simple Widgets
	Command Widget
	Resources
	Command Actions

	Grip Widget
	Resources
	Grip Actions

	Label Widget
	Resources

	List Widget
	Resources
	List Actions
	List Callbacks
	Changing the List
	Highlighting an Item
	Unhighlighting an Item
	Retrieving the Currently Selected Item
	Restrictions

	Panner Widget
	Resources
	Panner Actions
	Panner Callbacks

	Repeater Widget
	Resources
	Repeater Actions

	Scrollbar Widget
	Resources
	Scrollbar Actions
	Scrollbar Callbacks
	Convenience Routines
	Setting Float Resources

	Simple Widget
	Resources

	StripChart Widget
	Resources
	Getting the StripChart Value

	Toggle Widget
	Resources
	Toggle Actions
	Toggle Actions
	Radio Groups
	Convenience Routines
	Changing the Toggle's Radio Group.

	Chapter 4. Menus
	Using the Menus
	SimpleMenu Widget
	Resources
	SimpleMenu Actions
	Positioning the SimpleMenu
	Convenience Routines
	Registering the Global Action Routines
	Getting and Clearing the Current Menu Entry

	SmeBSB Object
	Resources

	SmeLine Object
	Resources

	Sme Object
	Resources
	Subclassing the Sme Object

	MenuButton Widget
	Resources
	MenuButton Actions
	MenuButton Actions

	Chapter 5. Text Widgets
	Text Widget for Users
	Default Key Bindings
	Search and Replace
	File Insertion
	Text Selections for Users

	Text Widget Actions
	Cursor Movement Actions
	Delete Actions
	Selection Actions
	The New Line Actions
	Kill and Actions
	Miscellaneous Actions
	Text Selections for Application Programmers

	Default Translation Bindings
	Text Functions
	Selecting Text
	Unhighlighting Text
	Getting Current Text Selection
	Replacing Text
	Searching for Text
	Redisplaying Text
	Resources Convenience Routines

	Ascii Text Widget
	Resources

	Ascii Source Object and Multi Source Object
	Resources
	Convenience Routines
	Conserving Memory
	Saving Files
	Seeing if the Source has Changed

	Ascii Sink Object and Multi Sink Object
	Resources

	Customizing the Text Widget
	Text Widget
	Resources

	TextSrc Object
	Resources
	Subclassing the TextSrc
	Reading Text.
	Replacing Text.
	Scanning the TextSrc
	Searching through a TextSrc
	Text Selections

	TextSink Object
	Resources
	Subclassing the TextSink
	Displaying Text
	Displaying the Insert Point
	Clearing Portions of the Text window
	Finding a Text Position Given Pixel Values
	Finding the Distance Between two Text Positions
	Finding the Size of the Drawing area
	Setting the Tab Stops
	Getting the Insert Point's Size and Location

	Chapter 6. Composite and Constraint Widgets
	Box Widget
	Resources
	Layout Semantics

	Dialog Widget
	Resources
	Constraint Resources
	Layout Semantics
	Example
	Special Considerations

	Automatically Created Children.
	Convenience Routines

	Form Widget
	Resources
	Constraint Resources
	Layout Semantics
	Example

	Convenience Routines

	Paned Widget
	Using the Paned Widget
	Resources
	Constraint Resources
	Layout Semantics
	Resizing Panes from a Grip Action
	Resizing Panes after the Paned widget is resized.
	Managing Children and Geometry Management
	Special Considerations

	Grip Translations
	Convenience Routines

	Porthole Widget
	Resources
	Layout Semantics
	Porthole Callbacks

	Tree Widget
	Resources
	Constraint Resources
	Layout Semantics
	Convenience Routines

	Viewport Widget
	Resources
	Layout Semantics

	Chapter 7. Creating New Widgets (Subclassing)
	Public Header File
	Private Header File
	Widget Source File

	Chapter 8. Acknowledgments
	Index

