
X11R6 Sample
Implementation Frame Work

Katsuhisa Yano
TOSHIBA Corporation

Yoshio Horiuchi
IBM Japan

X11R6 Sample Implementation Frame Work
by
Katsuhisa Yano
TOSHIBA Corporation
Yoshio Horiuchi
IBM Japan
X Version 11, Release 7.7
Copyright © 1994 TOSHIBA Corporation, IBM Corporation

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice and this permission notice appear in all copies. TOSHIBA Corporation and
IBM Corporation make no representations about the suitability for any purpose of the information in this document.
This documentation is provided as is without express or implied warranty.

Copyright © 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of X Consortium shall not be used in advertising or otherwise to promote
the sale, use or other dealings in this Software without prior written authorization from X Consortium.

X Window System is a trademark of The Open Group.

iii

Table of Contents
1. Framework .. 1

Preface ... 1
Objective .. 3
Locale Object Binding Functions ... 3
Locale Method Interface .. 4
Locale Method Functions .. 4
Charset functions ... 5
Converter Functions .. 7
X Locale Database functions ... 9
Utility Functions .. 9

1

Chapter 1. Framework

Preface
This document proposes to define the structures, methods and their signatures that
are expected to be common to all locale dependent functions within the Xlib sample
implementation. The following illustration (Fig.1) is proposed to outline the sepa-
rating of the components within the sample implementation.

Preface drawing.

Framework

2

Application

<<ANSI/MSE API>>
(X Contrib)

<<XLib API>>
(X Core)

<<ANSI/MSE API>>
(X Contrib)

Input
Method

Output
Method

<Locl. Serv. API>
X Locale Object

C Library

ANSI impl

XLC_XLOCALE
- MB_CUR_MAX
codeset info
o char/charset
o conv/charset

XLC_FONTSET
- fontset info
- charset info
- font/charset
- XLFD,GL/GR

localedef DB
- MB_CUR_MAX
- codset info
o char/charset
o conv/charset

Locale Library

non-ANSI impl.

XLocale Source (X Core) System Locale SourceFrame work of Locale Service API Proposal

Generally speaking, the internationalized portion of Xlib (Locale Dependent X, LDX)
consists of three objects; locale (LC) , input method (IM) and output method (OM).
The LC provides a set of information that depends on user's language environment.
The IM manages text inputing, and the OM manages text drawing. Both IM and OM
highly depend on LC data.

In X11R5, there are two sample implementations, Ximp and Xsi, for Xlib interna-
tionalization. But in both implementations, IM and OM actually refer the private

Framework

3

extension of LC. It breaks coexistence of these two sample implementations. For
example, if a user creates a new OM for special purpose as a part of Ximp, it will
not work with Xsi.

As a solution of this problem, we propose to define the standard APIs between these
three objects, and define the structure that are common to these objects.

Objective
• Explain the current X11R6 sample implementation

• Document the common set of locale dependent interfaces

• Provide more flexible pluggable layer

Locale Object Binding Functions
This chapter describes functions related locale object binding for implementing the
pluggable layer.

A locale loader is an entry point for locale object, which instantiates XLCd object
and binds locale methods with specified locale name. The behavior of loader is im-
plementation dependent. And, what kind of loaders are available is also implemen-
tation dependent.

The loader is called in _XOpenLC, but caller of _XOpenLC does not need to care
about its inside. For example, if the loader is implemented with dynamic load func-
tions, and the dynamic module is expected to be unloaded when the corresponding
XLCd is freed, close methods of XLCdMethods should handle unloading.

Initializing a locale loader list

void _XlcInitLoader

The _XlcInitLoader function initializes the locale loader list with vendor specif-
ic manner. Each loader is registered with calling _XlcAddLoader. The number of
loaders and their order in the loader list is implementation dependent.

Add a loader

typedef XLCd (*XLCdLoadProc)(name);
 char *name;

typedef int XlcPosition;

#define XlcHead
#define XlcTail

Bool _XlcAddLoader(proc, position);

The _XlcAddLoader function registers the specified locale loader "proc" to the
internal loader list. The position specifies that the loader "proc" should be placed
in the top of the loader list(XlcHead) or last(XlcTail).

The object loader is called from the top of the loader list in order, when calling time.

Framework

4

Remove a loader

void _XlcRemoveLoader(proc);

The _XlcRemoveLoader function removes the locale loader specified by "proc" from
the loader list.

Current implementation provides following locale loaders;

_XlcDefaultLoader
_XlcGenericLoader
_XlcEucLoader
_XlcSjisLoader
_XlcUtfLoader
_XaixOsDynamicLoad

Locale Method Interface
This chapter describes the locale method API, which is a set of accessible functions
from both IM and OM parts. The locale method API provides the functionalities;
obtaining locale dependent information, handling charset, converting text, etc.

As a result of using these APIs instead of accessing vender private extension of the
locale object, we can keep locale, IM and OM independently each other.

Locale Method Functions
Open a Locale Method

XLCd _XOpenLC(*name);

The _XOpenLC function opens a locale method which corresponds to the specified
locale name. _XOpenLC calls a locale object loader, which is registered via _Xl-
cAddLoader into the internal loader list. If the called loader is valid
and successfully opens a locale, _XOpenLC returns the XLCd. If the loader is invalid
or failed to open a locale, _XOpenLC calls the next loader. If all registered loaders
cannot open a locale, _XOpenLC returns NULL.

XLCd _XlcCurrentLC

The _XlcCurrentLC function returns an XLCd that are bound to current locale.

Close a Locale Method

void _XCloseLC(lcd);

The _XCloseLC function close a locale method the specified lcd.

Obtain Locale Method values

char *_XGetLCValues(lcd);

The _XGetLCValues function returns NULL if no error occurred; otherwise, it re-
turns the name of the first argument that could not be obtained. The following values
are defined as standard arguments. Other values are implementation dependent.

Framework

5

Name Type Description
XlcNCodeset char* codeset part of locale name
XlcNDefaultString char* XDefaultString()
XlcNEncodingName char* encoding name
XlcNLanguage char* language part of locale name
XlcNMbCurMax int ANSI C MB_CUR_MAX
XlcNStateDependentEncoding Bool is state-dependent encoding or

not
XlcNTerritory char* territory part of locale name

Charset functions
The XlcCharSet is an identifier which represents a subset of characters (character
set) in the locale object.

typedef enum {
 XlcUnknown, XlcC0, XlcGL, XlcC1, XlcGR, XlcGLGR, XlcOther
} XlcSide;

typedef struct _XlcCharSetRec *XlcCharSet;

typedef struct {
 char *name;
 XPointer value;
} XlcArg, *XlcArgList;

typedef char* (*XlcGetCSValuesProc)(charset, args, num_args);
 XlcCharSet charset;
 XlcArgList args;
 int num_args;

typedef struct _XlcCharSetRec {
 char *name;
 XrmQuark xrm_name;
 char *encoding_name;
 XrmQuark xrm_encoding_name;
 XlcSide side;
 int char_size;
 int set_size;
 char *ct_sequence;
 XlcGetCSValuesProc get_values;
} XlcCharSetRec;

Get an XlcCharSet

XlcCharSet _XlcGetCharSet(*name);

The _XlcGetCharSet function gets an XlcCharSet which corresponds to the charset
name specified by "name". _XlcGetCharSet returns NULL, if no XlcCharSet bound
to specified "name".

Framework

6

The following character sets are pre-registered.

Name Description
ISO8859-1:GL 7-bit ASCII graphics (ANSI X3.4-1968),
 Left half of ISO 8859 sets
JISX0201.1976-0:GL Left half of JIS X0201-1976 (reaffirmed 1984),
 8-Bit Alphanumeric-Katakana Code
ISO8859-1:GR Right half of ISO 8859-1, Latin alphabet No. 1
ISO8859-2:GR Right half of ISO 8859-2, Latin alphabet No. 2
ISO8859-3:GR Right half of ISO 8859-3, Latin alphabet No. 3
ISO8859-4:GR Right half of ISO 8859-4, Latin alphabet No. 4
ISO8859-7:GR Right half of ISO 8859-7, Latin/Greek alphabet
ISO8859-6:GR Right half of ISO 8859-6, Latin/Arabic alphabet
ISO8859-8:GR Right half of ISO 8859-8, Latin/Hebrew alphabet
ISO8859-5:GR Right half of ISO 8859-5, Latin/Cyrillic alphabet
ISO8859-9:GR Right half of ISO 8859-9, Latin alphabet No. 5
JISX0201.1976-0:GR Right half of JIS X0201-1976 (reaffirmed 1984),
 8-Bit Alphanumeric-Katakana Code
GB2312.1980-0:GL GB2312-1980, China (PRC) Hanzi defined as GL
GB2312.1980-0:GR GB2312-1980, China (PRC) Hanzi defined as GR
JISX0208.1983-0:GL JIS X0208-1983, Japanese Graphic Character Set
 defined as GL
JISX0208.1983-0:GR JIS X0208-1983, Japanese Graphic Character Set
 defined as GR
KSC5601.1987-0:GL KS C5601-1987, Korean Graphic Character Set
 defined as GL
KSC5601.1987-0:GR KS C5601-1987, Korean Graphic Character Set
 defined as GR
JISX0212.1990-0:GL JIS X0212-1990, Japanese Graphic Character Set
 defined as GL
JISX0212.1990-0:GR JIS X0212-1990, Japanese Graphic Character Set
 defined as GR

Add an XlcCharSet

Bool _XlcAddCharSet(charset);

The _XlcAddCharSet function registers XlcCharSet specified by "charset".

Obtain Character Set values

char * _XlcGetCSValues(charset, ...);

The _XlcGetCSValues function returns NULL if no error occurred; otherwise, it
returns the name of the first argument that could not be obtained. The following

Framework

7

values are defined as standard arguments. Other values are implementation depen-
dent.

Name Type Description
XlcNName char* charset name
XlcNEncodingName char* XLFD CharSet Registry and Encoding
XlcNSide XlcSide charset side (GL, GR, ...)
XlcNCharSize int number of octets per character
XlcNSetSize int number of character sets
XlcNControlSequence char* control sequence of Compound Text

Converter Functions
We provide a set of the common converter APIs, that are independent from both of
source and destination text type.

typedef struct _XlcConvRec *XlcConv;

typedef void (*XlcCloseConverterProc)(conv);
 XlcConv conv;

typedef int (*XlcConvertProc)(conv, from, from_left, to, to_left, args, num_args);
 XlcConv conv;
 XPointer *from;
 int *from_left;
 XPointer *to;
 int *to_left;
 XPointer *args;
 int num_args;

typedef void (*XlcResetConverterProc)(conv);
 XlcConv conv;

typedef struct _XlcConvMethodsRec {
 XlcCloseConverterProc close;
 XlcConvertProc convert;
 XlcResetConverterProc reset;
} XlcConvMethodsRec, *XlcConvMethods;

typedef struct _XlcConvRec {
 XlcConvMethods methods;
 XPointer state;
} XlcConvRec;

Open a converter

XlcConv _XlcOpenConverter(from_lcd, *from_type, to_lcd, *to_type);

_XlcOpenConverter function opens the converter which converts a text from spec-
ified "from_type" to specified "to_type" encoding. If the function cannot find proper

Framework

8

converter or cannot open a corresponding converter, it returns NULL. Otherwise,
it returns the conversion descriptor.

The following types are pre-defined. Other types are implementation dependent.

Name Type Description Arguments
XlcNMultiByte char * multibyte -
XlcNWideChar wchar_t

*
wide character -

XlcNCompoundText char * COMPOUND_TEXT -
XlcNString char * STRING -
XlcNCharSet char * per charset XlcCharSet
XlcNChar char * per character XlcCharSet

Close a converter

void _XlcCloseConverter(conv);

The _XlcCloseConverter function closes the specified converter "conv".

Code conversion

int _XlcConvert(conv, *from, *from_left, *to, *to_left, *args,
num_args);

The _XlcConvert function converts a sequence of characters from one type, in the
array specified by "from", into a sequence of corresponding characters in another
type, in the array specified by "to". The types are those specified in the _XlcOpen-
Converter() call that returned the conversion descriptor, "conv". The arguments
"from", "from_left", "to" and "to_left" have the same specification of XPG4 iconv
function.

For state-dependent encodings, the conversion descriptor "conv" is placed into its
initial shift state by a call for which "from" is a NULL pointer, or for which "from"
points to a null pointer.

The following 2 converters prepared by locale returns appropriate charset (XlcCha-
rSet) in an area pointed by args[0].

From To Description
XlcNMultiByte XlcNCharSet Segmentation (Decomposing)
XlcNWideChar XlcNCharSet Segmentation (Decomposing)

The conversion, from XlcNMultiByte/XlcNWideChar to XlcNCharSet, extracts a seg-
ment which has same charset encoding characters. More than one segment cannot
be converted in a call.

Reset a converter

void _XlcResetConverter(conv);

The _XlcResetConverter function reset the specified converter "conv".

Register a converter

Framework

9

typedef XlcConv (*XlcOpenConverterProc)(from_lcd, from_type, to_lcd, to_type);
 XLCd from_lcd;
 char *from_type;
 XLCd to_lcd;
 char *to_type;

Bool _XlcSetConverter(from_lcd, *from, to_lcd, *to, converter);

The XlcSetConverter function registers a converter which convert from
"from_type" to "to_type" into the converter list (in the specified XLCd).

X Locale Database functions
X Locale Database contains the subset of user's environment that depends on lan-
guage. The following APIs are provided for accessing X Locale Database and other
locale relative files.

For more detail about X Locale Database, please refer X Locale Database Definition
document.

Get a resource from database

void _XlcGetResource(lcd, *category, *class, ***value, *count);

The _XlcGetResource function obtains a locale dependent data which is associated
with the locale of specified "lcd". The locale data is provided by system locale or
by X Locale Database file, and what kind of data is available is implementation
dependent.

The specified "category" and "class" are used for finding out the objective locale
data.

The returned value is returned in value argument in string list form, and the re-
turned count shows the number of strings in the value.

The returned value is owned by locale method, and should not be modified or freed
by caller.

Get a locale relative file name

char *_XlcFileName(lcd, *category);

The _XlcFileName functions returns a file name which is bound to the specified
"lcd" and "category", as a null-terminated string. If no file name can be found, or
there is no readable file for the found file name, _XlcFileName returns NULL. The
returned file name should be freed by caller.

The rule for searching a file name is implementation dependent. In current imple-
mentation, _XlcFileName uses "{category}.dir" file as mapping table, which has
pairs of strings, a full locale name and a corresponding file name.

Utility Functions
Compare Latin-1 strings

Framework

10

int _XlcCompareISOLatin1(*str2);

int _XlcNCompareISOLatin1(*str2, len);

The _XlcCompareIsoLatin1 function to compares two ISO-8859-1 strings. Bytes
representing ASCII lower case letters are converted to upper case before making
the comparison. The value returned is an integer less than, equal to, or greater than
zero, depending on whether "str1" is lexicographicly less than, equal to, or greater
than "str2".

The _XlcNCompareIsoLatin1 function is identical to _XlcCompareISOLatin1, ex-
cept that at most "len" bytes are compared.

Resource Utility

int XlcNumber(array);

Similar to XtNumber.

void _XlcCopyFromArg(*src, *dst, size);

void _XlcCopyToArg(*src, **dst, size);

Similar to _XtCopyFromArg and _XtCopyToArg.

void _XlcCountVaList(var, *count_ret);

Similar to _XtCountVaList.

void _XlcVaToArgList(var, count, *args_ret);

Similar to _XtVaToArgList.

typedef struct _XlcResource {
 char *name;
 XrmQuark xrm_name;
 int size;
 int offset;
 unsigned long mask;
} XlcResource, *XlcResourceList;

#define XlcCreateMask (1L<<0)
#define XlcDefaultMask (1L<<1)
#define XlcGetMask (1L<<2)
#define XlcSetMask (1L<<3)
#define XlcIgnoreMask (1L<<4)

void _XlcCompileResourceList(resources, num_resources);

Similar to _XtCompileResourceList.

char * _XlcGetValues(base, resources, num_resources, args, num_args,
mask);

Similar to XtGetSubvalues.

Framework

11

char * _XlcSetValues(base, resources, num_resources, args, num_args,
mask);

Similar to XtSetSubvalues.

ANSI C Compatible Functions

The following are ANSI C/MSE Compatible Functions for non-ANSI C environment.

int _Xmblen(*str, len);

The _Xmblen function returns the number of characters pointed to by "str". Only
"len" bytes in "str" are used in determining the character count returned. "Str" may
point at characters from any valid codeset in the current locale.

The call _Xmblen is equivalent to _Xmbtowc(_Xmbtowc((wchar_t*)NULL, str, len))

int _Xmbtowc(*wstr, *str, len);

The _Xmbtowc function converts the character(s) pointed to by "str" to their wide
character representation(s) pointed to by "wstr". "Len" is the number of bytes in
"str" to be converted. The return value is the number of characters converted.

The call _Xmbtowc is equivalent to _Xlcmbtowc((XLCd)NULL, wstr, str, len)

int _Xlcmbtowc(lcd, *wstr, *str, len);

The _Xlcmbtowc function is identical to _Xmbtowc, except that it requires the
"lcd" argument. If "lcd" is (XLCd) NULL, _Xlcmbtowc, calls _XlcCurrentLC to
determine the current locale.

int _Xwctomb(*str, wc);

The _Xwctomb function converts a single wide character pointed to by "wc" to its
multibyte representation pointed to by "str". On success, the return value is 1.

The call _Xwctomb is equivalent to _Xlcwctomb((XLCd)NULL, str, wstr)

int _Xlcwctomb(lcd, *str, wc);

The _Xlcwctomb function is identical to _Xwctomb, except that it requires the "lcd"
argument. If "lcd" is (XLCd) NULL, _Xlcwctomb, calls _XlcCurrentLC to deter-
mine the current locale.

int _Xmbstowcs(*wstr, *str, len);

The _Xmbstowcs function converts the NULL-terminated string pointed to by "str"
to its wide character string representation pointed to by "wstr". "Len" is the number
of characters in "str" to be converted.

The call _Xmbstowcs is equivalent to _Xlcmbstowcs((XLCd)NULL, wstr, str, len)

int _Xlcmbstowcs(lcd, *wstr, *str, len);

The _Xlcmbstowcs function is identical to _Xmbstowcs, except that it requires the
"lcd" argument. If "lcd" is (XLCd) NULL, _Xlcmbstowcs, calls _XlcCurrentLC to
determine the current locale.

Framework

12

int _Xwcstombs(*str, *wstr, len);

The _Xwcstombs function converts the (wchar_t) NULL terminated wide character
string pointed to by "wstr" to the NULL terminated multibyte string pointed to by
"str".

The call _Xwcstombs is equivalent to _Xlcwcstombs((XLCd)NULL, str, wstr, len)

int _Xlcwcstombs(lcd, *str, *wstr, len);

The _Xlcwcstombs function is identical to _Xwcstombs, except that it requires the
"lcd" argument. If "lcd" is (XLCd) NULL, _Xlcwcstombs, calls _XlcCurrentLC to
determine the current locale.

int _Xwcslen(*wstr);

The _Xwcslen function returns the count of wide characters in the (wchar_t) NULL
terminated wide character string pointed to by "wstr".

wchar_t * _Xwcscpy(*wstr1, *wstr2);

wchar_t * _Xwcsncpy(*wstr1, *wstr2, len);

The _Xwcscpy function copies the (wchar_t) NULL terminated wide character
string pointed to by "wstr2" to the object pointed at by "wstr1". "Wstr1" is (wchar_t)
NULL terminated. The return value is a pointer to "wstr1".

The _Xwcsncpy function is identical to _Xwcscpy, except that it copies "len" wide
characters from the object pointed to by "wstr2" to the object pointed to "wstr1".

int _Xwcscmp(*wstr2);

int _Xwcsncmp(*wstr2, len);

The _Xwcscmp function compares two (wchar_t) NULL terminated wide character
strings. The value returned is an integer less than, equal to, or greater than zero,
depending on whether "wstr1" is lexicographicly less then, equal to, or greater than
"str2".

The _Xwcsncmp function is identical to _XlcCompareISOLatin1, except that at
most "len" wide characters are compared.

	X11R6 Sample Implementation Frame Work
	Table of Contents
	Chapter 1. Framework
	Preface
	Objective
	Locale Object Binding Functions
	Locale Method Interface
	Locale Method Functions
	Charset functions
	Converter Functions
	X Locale Database functions
	Utility Functions

