X Window System Protocol

X Consortium Standard
Robert W. Scheifler

X Window System Protocol: X Consortium Standard
Robert W. Scheifler

X Version 11, Release 7.7

Version 1.0
Copyright © 1986, 1987, 1988, 1994, 2004 The Open Group

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the Open Group shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization from the Open Group.

X Window System is a trademark of The Open Group.

Table of Contents

ACKNOWIEAGEIMENLS ...ivviiiiiiiiiiie e eere et e e et e e e et s e eeteeanaeeeeaeneeennnaes vii
I 5 o) o Yol o) B o) ' 0 < 1 1P 1
Request FOTMALconiiiiiiiii et et e e e et e e e e ean e 1
| 2VC] o1 A2 20} 00T | AN 1
ETTOr FOTIMAL ..oiniiiii et e e e e e e ae e e 1
Event FOTMAt ...couviiiiiiiiiii ittt e s e e e e e e e eaans 1
2. SyntactiC CONVENTIONSiiuiiiiiiiiiiii et e e e e e e eeans 2
3. COMINOTN TYPES teuiitniiiiiiiineiieii et ettt et e et e ete et e et eetasetieeaineatneetnsetanesnneesneesnns 3
R o 4 0 4 TP PPRTPPI 6
I =374 o ToT- 1 4o TP 8
B. POINEETS oottt ettt e e e et e et et e e e e e et e et aaaas 10
7. Predefined ALOMIS ...ccivuiiiiiiiiiee ettt e e e et e e et s e et e e et e e eaaeeenes 11
8. COoNNECLION SEEUD .ottt 12
Connection INitiationccooeiiiiiiiii e 12
SEIVET RESPOTIISE ..iuiiiiiiiiiiiiiie et et et et e e et et et et e e e ete et ean e e st ssnasnasanaen 12
Server INformationc...ciiiiiiii e 14
Screen Information ..o 15
Visual INformationcoooiiiiiiiiiii e 16
O REQUESES ittt et e e et et et a e aaaas 18
CTeatEWITIAOW ...iiiiiiiiieiiiiie e e e et e et e e et e e et e e et e e eaneassneaeraneeernnss 18
ChangeWindoWALETIDULESoiiiiiiiiiieiii e e e e 21
GetWIndOWALLTIDULES ..ivuiiiieiiii et e e e eeaens 22
DeStrOYWINAOW ..ivviiiiiiiiiiiiiei it e e e e e e e eis e e et e e eeaa e e aaaneeaaaneaaeanns 23
DestroySUDWINAOWSuuiiiiieiiiiiiii e e e e e e e e e e ra e eeeanes 23
ChangeSaveSEL ...civviiiiiiiiiie et e e e et e e et e e et e e aa e e e e aaanns 24
ReparentWIndOWooiiiiiiiiiiiiie et e e e e e e e e e eees 24
MaAPWINAOW .eniiiiiiieiiiee et e et e et e et e e e et e et e e s e e esaaesaaaeaans 24
MapPSUDWINAOWS ..euniiiiiiiiie et e e e e e et e e e e e e esanaees 25
UnNmMapWINAOW ..oouniiiiiiiiiie e e et e et e et e e e e e eeanns 25
UnmapSUDWINAOWS ...couuiiiiiiiiei et e e et e e e e et e e aaeeaanns 25
ConfiguUrEWINAOWouuiiiiiiiiiiiiiiiie et e e e e e e ra e e eaa e e eean e eees 25
CirculateWINAOWiiviiiiiiiieiiiee et e e e e e e e ea e eeaa e aaraeaernnns 28
GEEGEOIMIEETY ittt et et e e e e aaas 28
(010 T=Y oy v I ol PRt 28
INEEITIALOIIL ointiiiiii ettt ettt e et e et s et e et e eb e eaaeeaieeans 29
GEEATOIMNNAINE ..ovuiiiiiiiiiii ettt et e et e et e e e et s et e eaaneaanaees 29
(02 3F-Va T 1<) 23 o] o 1=Y ot 1 20 29
| DICY =T M=) o 0] o 1<) o 1 O PTRRN 30
(1= W o 0] 011 i TP 30
0] = L =Y o 0] o1=Y i Y NN 31
| TS o o 0] 011 i T PP 31
SetSEleCtIONOWIIET ...vuuiiiiiiiiiii ittt e e ere e e et e e et e e eaa e eeanneaennnaaees 31
GetSeleCtiONOWIIETcivviiiiiiiieiee e ettt e e e e e et e e et e e et e e aaaneaeees 32
(070} 1/=Y o T 1T o o) s PR 32
SENAEVENL .euiiiiiiiiiiiie et e et e et e e et e e et e eata e aaaaeaaaneaeanns 32
(@) 4= 0] 101111 7= OO 33
L85 aT0 5 ar=Y 0] 20} 1] 1= PPN 34
(@) 4= 0] 21 01 o) s ORI 35
UngrabButtonc..oviiiiiiiii e e et earaa s 35
ChangeActivePointerGrabccuciiiiiiiiiiiieeiie e e 36
GrabKeyboardc..cviiiiiiiiiirieiiee et e et e et e e et e aaa e eaes 36

iii

X Window System Protocol

UngrabKeyboardcoeiiiiiiiiiicie e e e 37
(€] = o] = RN 37
L0 3T0 1= 10 =Rt 38
ATIOWEVEIIES ..iiiiiiiie ettt et e et e e e e e ee s e et e eeaanes 38
GrabSEIVET ...ttt et e et e et e e et e eeaae s 40
L0 3T0 1= ¥ 0 1T =Y NN 40
QUETYPOINEET .eiiniiiiiii et e e e e e e e e e ens 40
GetMOtIONEVENTS ..coniiiiiiiei et ettt e 40
TranslateCoOTAINAtEScc.uiiiiiiiiieiei et ettt e eeae e 41
WaATDPOINEET ..eiiniieiiie ettt e e e e et e e e e eaeanes 41
SEtINPUEFOCUS ...iiiiiiiiii et e et e e e e eaaas 42
GetINPUEFOCUS ..oviiiiiiiiei et e e e e e e e e e ens 42
QUETYKEYITIAD ..iuiiniiiiiiieiie ettt e te et e e te e et e ee et et eane e esneaneeneennaeneens 42
(0] 0751 a1 200 4 | APPSRt 43
(03 [03:1=Y o] o | A OIS 43
(0 10 T=1 oy 72 200 1 | AP 43
QUETYTEXEEXEENIES ..o e e e s 46
|] 1 20 s L ST PP PP P UPPPPIN 47
LiStFONtSWItRINGOoiiviiiiiie e 47
SETFONTPATI ...oiiiiiiii e 47
GetFONtPathl ... e e 48
CrealePiXIMaAD ..ivuiiiiiiiiiiiie et e e et e e et e e e e e ans 48
| TY o b a0 F- | o RN 48
CTEatEGC ..ottt et et e e e e e et et e e e e e ea et 48
(3= 12 o [T O N 54
(070 014] O 55
SEEDASIES ..t et 55
SetClIPRECLANGLES ...cvniiieiiie e e e e e e e e et e e e eees 56
Fre@ Gl ..ottt et et e e e e e eenes 56
CLEATATEA oeuuiiiiiieiiiee ettt ettt ettt e et e et e et e e et e e eea e e et s eaeaeeaannes 57
(070] 03172 o/= Y- PP 57
(00) 0172 34 £=1 o 1= TN 58
|00 7 20) o | N 58
|00 7 15 L= S 58
POlYSEgMIENT ...oieniiiiiee e e a e 59
POIYRECLANGLEciiiiiii et aaaaas 59
0] 772N 4 oS 60
T 1) 0 7PN 62
POIYFilIRECLANGLE ..ouniiiiiiiii e e e et e et e e et e ea e aes 62
L l0] 7 a1 N o NS 63
PULIINAGE . iiniiniiiiiiii et ettt e e e e e e et e e e aaaas 63
(1= B b= Lo [P 64
POLYTEXES ..oeniiiieiee ettt e et e et e et e et e e e e e a e e e e 65
POLYTEXELG ..uieniiiiiie et e e et e e te et e et e et e et e e st e et e eaneeanaaennns 66
IMAagETEXES ..oeeieiiii et aa s 66
IMAGETEXELD ..oeniniiiii ettt et e e e et e e e e e e e e aanas 67
(034 =Y-1 (Y070 (o] o 10T | o N 67
| =Y OF0] (o) o 10T) o R 68
(070)0)7(0F0) [0 a0 T=Y oYV a Lo 2l oY= S 68
| a1y =Y O o) 110 T= 1 o T 68
UninstallCOIOTINAD ..vuiiveiiiiiiiiiieeeiee et et e e e e et et e et e et e eaa e e e et eeaneeanaaennns 69
ListInstalledColoTmapsoveuniiiniiiiiiieeie e e e e e e et e et e e e e e e e e eaneeannas 69
PV 1 Lo To{ 070] [+) RO PP PPPRR PP 69
ANlOCNAMEACOIOT .uuiiiiiiiiiieeei ettt e e e e e e e e eeaaees 70

iv

X Window System Protocol

PN 1o To{ 00] [} 4 O] 1 -3 70
PN 1o Yol 00) [} ol 2d b= 12 =TSP 70
| Y=Y 00 o) o= TR 71
1 0) 4 Y070 (o] =T 71
10y A Vs =Yo KO 0] 1o) o 72
(010 1=) 17 O] (o) RPN 72
| IoY0) 0§ 0100 Lo) N 72
CrEATECUTSOT ..iuiiiiiiiiiiiiie ittt et ee et et e ee et et e et e et et e ea et st eaneeaaeensenaannns 73
CreateGlYPRCUISOTcuuiiiiieie et et e et e et e e e e et e e e e e e e annas 73
| 1oL O U o]0) PRI 74
| Y00 (o) 4 031§ =10) o RN 74
QUETYBESESIZE ..ovniiiiiiii e 74
QUETYEXLENISION 1uuivniiiiiiiiiii ettt et e e et et e ee et et e e e et eensaneennaes 75
LiSTEXEEIISIONS 1ouiiniiiiiiiiiiie e e e e e e e et e e e e e e e e e eans 75
SetModifierMapPPiNg ..cveeeeeiiiiiiiieeee e e et e e e e et e e e e e eaanas 75
(1= M0Y KoTe hhialey o\ E=Y o) 0o o [N 76
ChangeKeyboardMappingceieeeiiieiiieeiieeie e eeieee e ere e e e e e e eaeeeaeneees 76
GetKeyboardMapPing ...occuceeieeeiee e et et e e e et e e e et e et e e ae e s e saesanaaaanas 77
ChangeKeyboardControlcooouiiiiiiiiiiiiecie e e e e aaas 77
GetKeyboardControlccouiiiiiiiiie e e e e e e e 78
272 | OO PPRT PP 79
SetPOINEETMAPDING ouiiiiiiiiiie et a e e e eas 79
(@11 20NN =Y o\ K=] o)1 a Yo PP 80
ChangePointerContIoloiiiiiiiiee e e e e e aaas 80
GetPointerCONETOLcouniiiiiie e e e e e e et e er e e e eanaeen 80
SEES CIEEIISAVET ...iuiiiiiiii et et e e et e e e e e e e e aas 80
GEESCTEENSAVET ..cuiiiiiii et e e e e e e aeanes 81
FOTCESCIEENISAVETiiiiiiiiiiii e e e e e e eans 81
(O = 1o Vo (= = (013 - 81
| RS o 5 [0 T] PPN 82
SetACCESSCONLIIOL ...ouniiiiiiii e et e e e e e e e aaaas 83
SetCloSEDOWINIMOME ...cuuiiiniiiiiiieeie et et et e e e et e e e et e et e e e e st e saaaranas 83
KAIICHENE ittt ettt et e et e e et e e ea e e eaa e eaaa e e 83
A1 @] 013 =1 o) o PPt 83
O O} 1 o T=Toa (o) o B O 1o 1-1 - 84
I = o1 SRS 85
INPUL DEVICE EVEILS ..uuiiiiiiiiiiiieii ettt et e e e e e eanas 85
Pointer WIindOW €VENLSccouuiiiiiiiii et e e e e e e e 86
INPUEL FOCUS EVENES .eiiniiiiiiiii e 88
KeymapNOLI Y ..o 91
|4 010 1S T PPN 91
GraphiCSEXPOSULE ...couiiiiiiiiiiieiiiee et e et e et et e et e et e et e eaneeaaeeaeesenesaneees 91
NOEXDOSUTIE ..iuiiiiiiiiiitie ettt ettt et et et e et et e et et et e aa et eaneanaaeneaneaneeens 92
VISTDILEYINOTIEY ..eiiiiiiiiiiee et ettt eie e 92
(0 =Y) CY A\ [o] i iy 93
| DICTS] i o)A o 7 93
UnmapNOLI Y coeniiiiiii e e e e e e e e 93
1AV =] 0 Lo Rt 94
MaAPREQUESTE ...eniiiiiii et a e e e 94
ReparentNOtIfY ...co.eiieiii e e 94
ConfigUIENOLILY ..o e e e eaa e 94
GravityINOLIEY ..oeeeiiiiii e e e e e e e e aeaes 95
ReESIZEREQUEST ..niiiiiiiiiii et aas 95
ConfigUIreREQUESTcvniiiii e e e e e e e e e eens 95

X Window System Protocol

CirculateNOtIY ..o e e 96
CirculateREQUEST ...couiiiii et e et e e e e et e e e eaaaas 96
o (0 01T a1 74N o] 7N 96
RTeY LYot n T} a L0 LY § OO PPN 96
SeleCtioNREQUEST ..ccu.iiiiii e 97
SeleCtioNINOLIEY ..ovveiiiiie e 97
ColormapNOLIfY ouniiiiiiiee e 97
V6= 0] 01N Vo 1A\ [o) 1 iy 2Rt 98
(01 T2) a1 A (T Yo £SO 98
12. Flow Control and CONCUITEICYccuueeieniieniiiieeiieeiieeieeieeeierneeanaesneesenesannees 99
FAVIN G 20 45 1\Y B 25 o Vol Yo I a Vo [N 100
S LS To = B S e) 41 100
Latin-1 KEYSYMS ..ottt ettt ettt e et e et s e et e e eaa s eeaa e 100
Unicode KEYSYMS ...ttt ettt ettt e e et e e et e e eee e e e 100
Function KEYSYMS ...ttt et e e e e 101
Vendor KEYSYMS ..uuiiiiiiiiieiiii ettt et ettt et e et e e et e e e e eeians 107
Legacy KEY SYMS ..t e et e e e e e e aas 107
| TR 5 (o) o Yoo) B 24 a Vol Yo ko Lo 1NN 129
SyntactiC CONVENTIONS ..c.uiiuiiiiiiiiiiie et e e e e eaaas 129
(070] 021 00T0] o N 174 o 1= SRR 132
|8 o 0] TP UP TP PRPIN 135
KEYDOATAS ...civiiiiiiiiie et e et e e e e a e aaaa s 138
POINEETS ettt et e et et e e 138
Predefined ATOIMSooiiiiiiiiiiiiiiee ettt 138
CONNECTION SEEUD touiiniiiiiiiiiii et e et e e e e e e e eans 139
REQUESTES ettt et e e e e e 141
BV OIS ittt e aaae 175
[1011 oy 185
|30 [c: PSPPSR 194

vi

Acknowledgements

The primary contributers to the X11 protocol are:
* Dave Carver (Digital HPW)
¢ Branko Gerovac (Digital HPW)

¢ Jim Gettys (MIT/Project Athena, Digital)

Phil Karlton (Digital WSL)

Scott McGregor (Digital SSG)
* Ram Rao (Digital UEG)

¢ David Rosenthal (Sun)

¢ Dave Winchell (Digital UEG)
The implementors of initial server who provided useful input are:
* Susan Angebranndt (Digital)

* Raymond Drewry (Digital)

¢ Todd Newman (Digital)

The invited reviewers who provided useful input are:
* Andrew Cherenson (Berkeley)
* Burns Fisher (Digital)

¢ Dan Garfinkel (HP)

¢ L.eo Hourvitz (Next)

¢ Brock Krizan (HP)

* David Laidlaw (Stellar)

* Dave Mellinger (Interleaf)

¢ Ron Newman (MIT)

¢ John Ousterhout (Berkeley)

¢ Andrew Palay (ITC CMU)

e Ralph Swick (MIT)

* Craig Taylor (Sun)

¢ Jeffery Vroom (Stellar)

Thanks go to Al Mento of Digital's UEG Documentation Group for formatting this
document.

vii

Acknowledgements

This document does not attempt to provide the rationale or pragmatics required to
fully understand the protocol or to place it in perspective within a complete system.

The protocol contains many management mechanisms that are not intended for nor-
mal applications. Not all mechanisms are needed to build a particular user inter-
face. It is important to keep in mind that the protocol is intended to provide mech-
anism, not policy.

Robert W. Scheifler

X Consortium, Inc.

viii

Chapter 1. Protocol Formats

Request Format

Every request contains an 8-bit major opcode and a 16-bit length field expressed
in units of four bytes. Every request consists of four bytes of a header (containing
the major opcode, the length field, and a data byte) followed by zero or more ad-
ditional bytes of data. The length field defines the total length of the request, in-
cluding the header. The length field in a request must equal the minimum length
required to contain the request. If the specified length is smaller or larger than the
required length, an error is generated. Unused bytes in a request are not required
to be zero. Major opcodes 128 through 255 are reserved for extensions. Extensions
are intended to contain multiple requests, so extension requests typically have an
additional minor opcode encoded in the second data byte in the request header.
However, the placement and interpretation of this minor opcode and of all other
fields in extension requests are not defined by the core protocol. Every request on a
given connection is implicitly assigned a sequence number, starting with one, that
is used in replies, errors, and events.

Reply Format

Every reply contains a 32-bit length field expressed in units of four bytes. Every
reply consists of 32 bytes followed by zero or more additional bytes of data, as
specified in the length field. Unused bytes within a reply are not guaranteed to be
zero. Every reply also contains the least significant 16 bits of the sequence number
of the corresponding request.

Error Format

Error reports are 32 bytes long. Every error includes an 8-bit error code. Error
codes 128 through 255 are reserved for extensions. Every error also includes the
major and minor opcodes of the failed request and the least significant 16 bits of the
sequence number of the request. For the following errors (see section 4), the failing
resource ID is also returned: Colormap, Cursor, Drawable, Font, GContext, ID-
Choice, Pixmap and Window. For Atom errors, the failing atom is returned. For
Value errors, the failing value is returned. Other core errors return no additional
data. Unused bytes within an error are not guaranteed to be zero.

Event Format

Events are 32 bytes long. Unused bytes within an event are not guaranteed to be
zero. Every event contains an 8-bit type code. The most significant bit in this code is
set if the event was generated from a SendEvent request. Event codes 64 through
127 are reserved for extensions, although the core protocol does not define a mech-
anism for selecting interest in such events. Every core event (with the exception of
KeymapNotify) also contains the least significant 16 bits of the sequence number
of the last request issued by the client that was (or is currently being) processed
by the server.

Chapter 2. Syntactic Conventions

The rest of this document uses the following syntactic conventions.

* The syntax {...} encloses a set of alternatives.

» The syntax [...] encloses a set of structure components.

* In general, TYPEs are in uppercase and AlternativeValues are capitalized.

* Requests in section 9 are described in the following format:

Request Namne
argl: typel
argN: typeN

#

resultl: typel
resultM typeM
Errors: kindl, ., kindK

Descri pti on.
If no p is present in the description, then the request has no reply (it is asyn-
chronous), although errors may still be reported. If p+ is used, then one or more
replies can be generated for a single request.

* Events in section 11 are described in the following format:

Event Nanme
val uel: typel

val ueN: typeN

Descri pti on.

Chapter 3. Common Types

Name

Value

LISTofFOO

BITMASK
LISTofVALUE

OR

WINDOW
PIXMAP
CURSOR
FONT
GCONTEXT
COLORMAP
DRAWABLE
FONTABLE
ATOM
VISUALID
VALUE
BYTE

INT8

A type name of the form LISTofFOO means a count-
ed list of elements of type FOO. The size of the length
field may vary (it is not necessarily the same size as a
FOO), and in some cases, it may be implicit. It is fully
specified in Appendix B. Except where explicitly not-
ed, zero-length lists are legal.

The types BITMASK and LISTofVALUE are somewhat
special. Various requests contain arguments of the
form:

value-mask: BITMASK
value-list: LISTofVALUE

These are used to allow the client to specify a sub-
set of a heterogeneous collection of optional argu-
ments. The value-mask specifies which arguments

are to be provided; each such argument is assigned

a unique bit position. The representation of the BIT-
MASK will typically contain more bits than there are
defined arguments. The unused bits in the value-mask
must be zero (or the server generates a Value error).
The value-list contains one value for each bit set to 1
in the mask, from least significant to most significant
bit in the mask. Each value is represented with four
bytes, but the actual value occupies only the least sig-
nificant bytes as required. The values of the unused
bytes do not matter.

A type of the form "T1 or ... or Tn" means the union of
the indicated types. A single-element type is given as
the element without enclosing braces.

32-bit value (top three bits guaranteed to be zero)
32-bit value (top three bits guaranteed to be zero)
32-bit value (top three bits guaranteed to be zero)
32-bit value (top three bits guaranteed to be zero)
32-bit value (top three bits guaranteed to be zero)
32-bit value (top three bits guaranteed to be zero)
WINDOW or PIXMAP

FONT or GCONTEXT

32-bit value (top three bits guaranteed to be zero)
32-bit value (top three bits guaranteed to be zero)
32-bit quantity (used only in LISTofVALUE)

8-bit value

8-bit signed integer

Common Types

Name Value

INT16 16-bit signed integer

INT32 32-bit signed integer

CARDS8 8-bit unsigned integer

CARD16 16-bit unsigned integer

CARD32 32-bit unsigned integer

TIMESTAMP CARD32

BITGRAVITY { Forget, Static, NorthWest, North, NorthEast,
West, Center, East, SouthWest, South, SouthEast
}

WINGRAVITY { Unmap, Static, NorthWest, North, NorthEast,
West, Center, East, SouthWest, South, SouthEast
}

BOOL { True, False }

EVENT { KeyPress, KeyRelease, OwnerGrabButton,
ButtonPress, ButtonRelease, EnterWindow,
LeaveWindow, PointerMotion, PointerMo-
tionHint, Button1Motion, Button2Motion,
Button3Motion, Button4Motion, Button5Motion,
ButtonMotion, Exposure, VisibilityChange,
StructureNotify, ResizeRedirect, Substruc-
tureNotify, SubstructureRedirect, FocusChange,
PropertyChange, ColormapChange, KeymapState
}

POINTEREVENT { ButtonPress, ButtonRelease, EnterWin-
dow, LeaveWindow, PointerMotion, Pointer-
MotionHint, Buttonl1Motion, Button2Motion,
Button3Motion, Button4Motion, Button3Motion,
ButtonMotion, KeymapState }

DEVICEEVENT { KeyPress, KeyRelease, ButtonPress, But-
tonRelease, PointerMotion, Button1Motion,
Button2Motion, Button3Motion, Button4Motion,
Button5Motion, ButtonMotion }

KEYSYM 32-bit value (top three bits guaranteed to be zero)

KEYCODE CARDS8

BUTTON CARDS

KEYMASK { Shift, Lock, Control, Mod1, Mod2, Mod3, Mod4,
Mod5 }

BUTMASK { Buttonl1, Button2, Button3, Button4, Button5 }

KEYBUTMASK KEYMASK or BUTMASK

STRINGS LISTofCARD8

STRING16 LISTofCHAR2B

CHAR2B [bytel, byte2: CARDS8]

POINT [x, y: INT16]

RECTANGLE [x, y: INT16,

Common Types

Name Value
width, height: CARD16]
ARC [x, y: INT16,

width, height: CARD16,

anglel, angle2: INT16]

HOST [family: { Internet, InternetV6, ServerInterpreted,
DECnet, Chaos }

address: LISTofBYTE]

The [x,y] coordinates of a RECTANGLE specify the upper-left corner.

The primary interpretation of large characters in a STRING16 is that they are
composed of two bytes used to index a two-dimensional matrix, hence, the use of
CHARZ2B rather than CARD16. This corresponds to the JIS/ISO method of indexing
2-byte characters. It is expected that most large fonts will be defined with 2-byte
matrix indexing. For large fonts constructed with linear indexing, a CHAR2B can
be interpreted as a 16-bit number by treating bytel as the most significant byte.
This means that clients should always transmit such 16-bit character values most
significant byte first, as the server will never byte-swap CHAR2B quantities.

The length, format, and interpretation of a HOST address are specific to the family
(see ChangeHosts request).

Chapter 4. Errors

In general, when a request terminates with an error, the request has no side ef-
fects (that is, there is no partial execution). The only requests for which this is not
true are ChangeWindowAttributes, ChangeGC, PolyText8, PolyText16, Free-
Colors, StoreColors and ChangeKeyboardControl.

The following error codes result from various requests as follows:

Error

Description

Access

Alloc

Atom
Colormap
Cursor
Drawable

Font

GContext

IDChoice

Implementation

An attempt is made to grab a key/button combina-
tion already grabbed by another client. An attempt

is made to free a colormap entry not allocated by the
client or to free an entry in a colormap that was cre-
ated with all entries writable. An attempt is made to
store into a read-only or an unallocated colormap en-
try. An attempt is made to modify the access control
list from other than the local host (or otherwise au-
thorized client). An attempt is made to select an event
type that only one client can select at a time when an-
other client has already selected it.

The server failed to allocate the requested resource.
Note that the explicit listing of Alloc errors in re-
quest only covers allocation errors at a very coarse
level and is not intended to cover all cases of a server
running out of allocation space in the middle of ser-
vice. The semantics when a server runs out of alloca-
tion space are left unspecified, but a server may gen-
erate an Alloc error on any request for this reason,
and clients should be prepared to receive such errors
and handle or discard them.

A value for an ATOM argument does not name a de-
fined ATOM.

A value for a COLORMAP argument does not name a
defined COLORMAP.

A value for a CURSOR argument does not name a de-
fined CURSOR.

A value for a DRAWABLE argument does not name a
defined WINDOW or PIXMAP.

A value for a FONT argument does not name a de-
fined FONT. A value for a FONTABLE argument does
not name a defined FONT or a defined GCONTEXT.

A value for a GCONTEXT argument does not name a
defined GCONTEXT.

The value chosen for a resource identifier either is
not included in the range assigned to the client or is
already in use.

The server does not implement some aspect of the re-
quest. A server that generates this error for a core re-

Errors

Error

Description

Length

Match

Name
Pixmap

Request

Value

Window

quest is deficient. As such, this error is not listed for
any of the requests, but clients should be prepared to
receive such errors and handle or discard them.

The length of a request is shorter or longer than that
required to minimally contain the arguments. The
length of a request exceeds the maximum length ac-
cepted by the server.

An InputOnly window is used as a DRAWABLE. In

a graphics request, the GCONTEXT argument does
not have the same root and depth as the destination
DRAWABLE argument. Some argument (or pair of ar-
guments) has the correct type and range, but it fails
to match in some other way required by the request.

A font or color of the specified name does not exist.

A value for a PIXMAP argument does not name a de-
fined PIXMAP.

The major or minor opcode does not specify a valid
request.

Some numeric value falls outside the range of values
accepted by the request. Unless a specific range is
specified for an argument, the full range defined by
the argument's type is accepted. Any argument de-
fined as a set of alternatives typically can generate
this error (due to the encoding).

A value for a WINDOW argument does not name a de-
fined WINDOW.

Note

The Atom, Colormap, Cursor, Drawable, Font, GContext, Pixmap and
Window errors are also used when the argument type is extended by union
with a set of fixed alternatives, for example, <WINDOW or PointerRoot or

None>.

Chapter 5. Keyboards

A KEYCODE represents a physical (or logical) key. Keycodes lie in the inclusive
range [8,255]. A keycode value carries no intrinsic information, although server
implementors may attempt to encode geometry information (for example, matrix)
to be interpreted in a server-dependent fashion. The mapping between keys and
keycodes cannot be changed using the protocol.

A KEYSYM is an encoding of a symbol on the cap of a key. The set of defined
KEYSYMs include the character sets Latin-1, Latin-2, Latin-3, Latin-4, Kana, Arabic,
Cyrillic, Greek, Tech, Special, Publish, APL, Hebrew, Thai, and Korean as well as a
set of symbols common on keyboards (Return, Help, Tab, and so on). KEYSYMs with
the most significant bit (of the 29 bits) set are reserved as vendor-specific.

A list of KEYSYMs is associated with each KEYCODE. The list is intended to convey
the set of symbols on the corresponding key. If the list (ignoring trailing NoSymbol
entries) is a single KEYSYM "K", then the list is treated as if it were the list "K
NoSymbol K NoSymbol". If the list (ignoring trailing NoSymbol entries) is a pair of
KEYSYMs "K1 K2", then the list is treated as if it were the list "K1 K2 K1 K2". If the
list (ignoring trailing NoSymbol entries) is a triple of KEYSYMs "K1 K2 K3", then
the list is treated as if it were the list " K1 K2 K3 NoSymbol". When an explicit "void"
element is desired in the list, the value VoidSymbol can be used.

The first four elements of the list are split into two groups of KEYSYMs. Group
1 contains the first and second KEYSYMs, Group 2 contains the third and fourth
KEYSYMs. Within each group, if the second element of the group is NoSymbol,
then the group should be treated as if the second element were the same as the
first element, except when the first element is an alphabetic KEYSYM "K" for which
both lowercase and uppercase forms are defined. In that case, the group should
be treated as if the first element were the lowercase form of "K" and the second
element were the uppercase form of "K".

The standard rules for obtaining a KEYSYM from a KeyPress event make use of
only the Group 1 and Group 2 KEYSYMs; no interpretation of other KEYSYMs in
the list is defined. The modifier state determines which group to use. Switching
between groups is controlled by the KEYSYM named MODE SWITCH, by attaching
that KEYSYM to some KEYCODE and attaching that KEYCODE to any one of the
modifiers Mod1 through Mod5. This modifier is called the "group modifier". For
any KEYCODE, Group 1 is used when the group modifier is off, and Group 2 is used
when the group modifier is on.

The Lock modifier is interpreted as CapsLock when the KEYSYM named CAPS
LOCK is attached to some KEYCODE and that KEYCODE is attached to the Lock
modifier. The Lock modifier is interpreted as ShiftLock when the KEYSYM named
SHIFT LOCK is attached to some KEYCODE and that KEYCODE is attached to the
Lock modifier. If the Lock modifier could be interpreted as both CapsLock and
ShiftlLock, the CapsLock interpretation is used.

The operation of "keypad" keys is controlled by the KEYSYM named NUM LOCK,
by attaching that KEYSYM to some KEYCODE and attaching that KEYCODE to any
one of the modifiers Mod1 through Mod5. This modifier is called the "numlock
modifier". The standard KEYSYMs with the prefix KEYPAD in their name are called
"keypad" KEYSYMs; these are KEYSYMS with numeric value in the hexadecimal

Keyboards

range #xFF80 to #xFFBD inclusive. In addition, vendor-specific KEYSYMS in the
hexadecimal range #x11000000 to #x1100FFFF are also keypad KEYSYMSs.

Within a group, the choice of KEYSYM is determined by applying the first rule that
is satisfied from the following list:

¢ The numlock modifier is on and the second KEYSYM is a keypad KEYSYM. In this
case, if the Shift modifier is on, or if the Lock modifier is on and is interpreted as
ShiftLock, then the first KEYSYM is used; otherwise, the second KEYSYM is used.

¢ The Shift and Lock modifiers are both off. In this case, the first KEYSYM is used.

e The Shift modifier is off, and the Lock modifier is on and is interpreted as Cap-
sLock. In this case, the first KEYSYM is used, but if that KEYSYM is lowercase
alphabetic, then the corresponding uppercase KEYSYM is used instead.

¢ The Shift modifier is on, and the Lock modifier is on and is interpreted as Cap-
sLock. In this case, the second KEYSYM is used, but if that KEYSYM is lowercase
alphabetic, then the corresponding uppercase KEYSYM is used instead.

¢ The Shift modifier is on, or the Lock modifier is on and is interpreted as ShiftLock,
or both. In this case, the second KEYSYM is used.

The mapping between KEYCODEs and KEYSYMs is not used directly by the server;
it is merely stored for reading and writing by clients.

Chapter 6. Pointers

Buttons are always numbered starting with one.

10

Chapter 7. Predefined Atoms

Predefined atoms are not strictly necessary and may not be useful in all environ-
ments, but they will eliminate many InternAtom requests in most applications.
Note that they are predefined only in the sense of having numeric values, not in
the sense of having required semantics. The core protocol imposes no semantics
on these names, but semantics are specified in other X Window System standards,
such as the Inter-Client Communication Conventions Manual and the X Logical Font
Description Conventions.

The following names have predefined atom values. Note that uppercase and lower-

case matter.

ARC

ATOM

BITMAP

CAP HEIGHT
CARDINAL
COLORMAP
COPYRIGHT
CURSOR

CUT BUFFERO
CUT BUFFER1
CUT BUFFER?2
CUT BUFFER3
CUT BUFFER4
CUT BUFFER5
CUT BUFFER6
CUT BUFFER7
DRAWABLE
END SPACE
FAMILY NAME
FONT

FONT NAME
FULL NAME
INTEGER

ITALIC_ ANGLE
MAX_SPACE

MIN SPACE

NORM SPACE
NOTICE

PIXMAP

POINT

POINT SIZE
PRIMARY

QUAD WIDTH
RECTANGLE
RESOLUTION
RESOURCE_MANAGER
RGB_BEST MAP
RGB_BLUE_MAP
RGB_COLOR_MAP
RGB_DEFAULT MAP
RGB_GRAY MAP
RGB_GREEN MAP
RGB_RED MAP
SECONDARY
STRIKEOUT ASCENT
STRIKEOUT DESCENT

STRING

SUBSCRIPT X
SUBSCRIPT Y
SUPERSCRIPT X
SUPERSCRIPT Y
UNDERLINE_POSITION
UNDERLINE_THICKNESS
VISUALID

WEIGHT

WINDOW

WM _CLASS

WM _CLIENT MACHINE
WM_COMMAND
WM_HINTS

WM _ICON_NAME
WM_ICON_SIZE
WM_NAME
WM_NORMAL HINTS
WM_SIZE_HINTS

WM _TRANSIENT FOR
WM_ZOOM _HINTS

X _HEIGHT

To avoid conflicts with possible future names for which semantics might be imposed
(either at the protocol level or in terms of higher level user interface models), names
beginning with an underscore should be used for atoms that are private to a par-
ticular vendor or organization. To guarantee no conflicts between vendors and or-
ganizations, additional prefixes need to be used. However, the protocol does not
define the mechanism for choosing such prefixes. For names private to a single ap-
plication or end user but stored in globally accessible locations, it is suggested that
two leading underscores be used to avoid conflicts with other names.

11

Chapter 8. Connection Setup

For remote clients, the X protocol can be built on top of any reliable byte stream.

Connection Initiation

The client must send an initial byte of data to identify the byte order to be employed.

The value of the byte must be octal 102 or 154. The value 102 (ASCII uppercase B)
means values are transmitted most significant byte first, and value 154 (ASCII low-
ercase 1) means values are transmitted least significant byte first. Except where ex-
plicitly noted in the protocol, all 16-bit and 32-bit quantities sent by the client must
be transmitted with this byte order, and all 16-bit and 32-bit quantities returned by
the server will be transmitted with this byte order.

Following the byte-order byte, the client sends the following information at connec-
tion setup:

protocol-major-version: CARD16
protocol-minor-version: CARD16
authorization-protocol-name: STRINGS8
authorization-protocol-data: STRINGS8

The version numbers indicate what version of the protocol the client expects the
server to implement.

The authorization name indicates what authorization (and authentication) protocol
the client expects the server to use, and the data is specific to that protocol. Speci-
fication of valid authorization mechanisms is not part of the core X protocol. A serv-
er that does not implement the protocol the client expects or that only implements
the host-based mechanism may simply ignore this information. If both name and
data strings are empty, this is to be interpreted as "no explicit authorization."

Server Response

The client receives the following information at connection setup:
¢ success: { Failed, Success, Authenticate}

The client receives the following additional data if the returned success value is
Failed, and the connection is not successfully established:

protocol-major-version: CARD16
protocol-minor-version: CARD16
reason: STRINGS

The client receives the following additional data if the returned success value is
Authenticate, and further authentication negotiation is required:

reason: STRINGS

12

Connection Setup

The contents of the reason string are specific to the authorization protocol in use.
The semantics of this authentication negotiation are not constrained, except that
the negotiation must eventually terminate with a reply from the server containing
a success value of Failed or Success.

The client receives the following additional data if the returned success value is
Success, and the connection is successfully established:

protocol-major-version: CARD16

protocol-minor-version: CARD16

vendor: STRINGS8

release-number: CARD32

resource-id-base, resource-id-mask: CARD32

image-byte-order: { LSBFirst, MSBFirst }

bitmap-scanline-unit: {8, 16, 32}

bitmap-scanline-pad: {8, 16, 32}

bitmap-bit-order: { LeastSignificant, MostSignificant }

pixmap-formats: LISTofFORMAT

roots: LISTofSCREEN

motion-buffer-size: CARD32

maximum-request-length: CARD16

min-keycode, max-keycode: KEYCODE

where:

FORMAT: [depth: CARDS,

bits-per-pixel: {1, 4, 8, 16, 24, 32}
scanline-pad: {8, 16, 32}]

SCREEN: [root: WINDOW

width-in-pixels, height-in-pixels:
CARD16

width-in-millimeters, height-in-mil-
limeters: CARD16

allowed-depths: LISTofDEPTH
root-depth: CARDS

root-visual: VISUALID
default-colormap: COLORMAP
white-pixel, black-pixel: CARD32

min-installed-maps, max-in-
stalled-maps: CARD16

13

Connection Setup

backing-stores: {Never, When-
Mapped, Always}

save-unders: BOOL

current-input-masks:
SETofEVENT]

DEPTH: [depth: CARDS8
visuals: LISTofVISUALTYPE]
VISUALTYPE: [visual-id: VISUALID

class: {StaticGray, StaticColor,
TrueColor, GrayScale, PseudoCol-
or, DirectColor}

red-mask, green-mask, blue-mask:
CARD32

bits-per-rgb-value: CARDS
colormap-entries: CARD16]

Server Information

The information that is global to the server is:

The protocol version numbers are an escape hatch in case future revisions of the
protocol are necessary. In general, the major version would increment for incom-
patible changes, and the minor version would increment for small upward compat-
ible changes. Barring changes, the major version will be 11, and the minor version
will be 0. The protocol version numbers returned indicate the protocol the server
actually supports. This might not equal the version sent by the client. The server
can (but need not) refuse connections from clients that offer a different version than
the server supports. A server can (but need not) support more than one version
simultaneously.

The vendor string gives some identification of the owner of the server implementa-
tion. The vendor controls the semantics of the release number.

The resource-id-mask contains a single contiguous set of bits (at least 18). The client
allocates resource IDs for types WINDOW, PIXMAP, CURSOR, FONT, GCONTEXT,
and COLORMAP by choosing a value with only some subset of these bits set and
ORing it with resource-id-base. Only values constructed in this way can be used to
name newly created resources over this connection. Resource IDs never have the
top three bits set. The client is not restricted to linear or contiguous allocation of
resource IDs. Once an ID has been freed, it can be reused. An ID must be unique with
respect to the IDs of all other resources, not just other resources of the same type.
However, note that the value spaces of resource identifiers, atoms, visualids, and
keysyms are distinguished by context, and as such, are not required to be disjoint;
for example, a given numeric value might be both a valid window ID, a valid atom,
and a valid keysym.

Although the server is in general responsible for byte-swapping data to match the
client, images are always transmitted and received in formats (including byte order)
specified by the server. The byte order for images is given by image-byte-order and
applies to each scanline unit in XY format (bitmap format) and to each pixel value
in Z format.

14

Connection Setup

A bitmap is represented in scanline order. Each scanline is padded to a multiple of
bits as given by bitmap-scanline-pad. The pad bits are of arbitrary value. The scan-
line is quantized in multiples of bits as given by bitmap-scanline-unit. The bitmap-
scanline-unit is always less than or equal to the bitmap-scanline-pad. Within each
unit, the leftmost bit in the bitmap is either the least significant or most significant
bit in the unit, as given by bitmap-bit-order. If a pixmap is represented in XY format,
each plane is represented as a bitmap, and the planes appear from most significant
to least significant in bit order with no padding between planes.

Pixmap-formats contains one entry for each depth value. The entry describes the
Z format used to represent images of that depth. An entry for a depth is included if
any screen supports that depth, and all screens supporting that depth must support
only that Z format for that depth. In Z format, the pixels are in scanline order, left to
right within a scanline. The number of bits used to hold each pixel is given by bits-
per-pixel. Bits-per-pixel may be larger than strictly required by the depth, in which
case the least significant bits are used to hold the pixmap data, and the values of
the unused high-order bits are undefined. When the bits-per-pixel is 4, the order of
nibbles in the byte is the same as the image byte-order. When the bits-per-pixel is
1, the format is identical for bitmap format. Each scanline is padded to a multiple
of bits as given by scanline-pad. When bits-per-pixel is 1, this will be identical to
bitmap-scanline-pad.

How a pointing device roams the screens is up to the server implementation and is
transparent to the protocol. No geometry is defined among screens.

The server may retain the recent history of pointer motion and do so to a finer gran-
ularity than is reported by MotionNotify events. The GetMotionEvents request
makes such history available. The motion-buffer-size gives the approximate maxi-
mum number of elements in the history buffer.

Maximum-request-length specifies the maximum length of a request accepted by
the server, in 4-byte units. That is, length is the maximum value that can appear in
the length field of a request. Requests larger than this maximum generate a Length
error, and the server will read and simply discard the entire request. Maximum-re-
quest-length will always be at least 4096 (that is, requests of length up to and in-
cluding 16384 bytes will be accepted by all servers).

Min-keycode and max-keycode specify the smallest and largest keycode values
transmitted by the server. Min-keycode is never less than 8, and max-keycode is
never greater than 255. Not all keycodes in this range are required to have corre-
sponding keys.

Screen Information

The information that applies per screen is:

The allowed-depths specifies what pixmap and window depths are supported.
Pixmaps are supported for each depth listed, and windows of that depth are sup-
ported if at least one visual type is listed for the depth. A pixmap depth of one is
always supported and listed, but windows of depth one might not be supported. A
depth of zero is never listed, but zero-depth InputOnly windows are always sup-
ported.

Root-depth and root-visual specify the depth and visual type of the root window.
Width-in-pixels and height-in-pixels specify the size of the root window (which can-

15

Connection Setup

not be changed). The class of the root window is always InputOutput. Width-in-
millimeters and height-in-millimeters can be used to determine the physical size
and the aspect ratio.

The default-colormap is the one initially associated with the root window. Clients
with minimal color requirements creating windows of the same depth as the root
may want to allocate from this map by default.

Black-pixel and white-pixel can be used in implementing a monochrome application.
These pixel values are for permanently allocated entries in the default-colormap.
The actual RGB values may be settable on some screens and, in any case, may not
actually be black and white. The names are intended to convey the expected relative
intensity of the colors.

The border of the root window is initially a pixmap filled with the black-pixel. The
initial background of the root window is a pixmap filled with some unspecified two-
color pattern using black-pixel and white-pixel.

Min-installed-maps specifies the number of maps that can be guaranteed to be in-
stalled simultaneously (with InstallColormap), regardless of the number of entries
allocated in each map. Max-installed-maps specifies the maximum number of maps
that might possibly be installed simultaneously, depending on their allocations. Mul-
tiple static-visual colormaps with identical contents but differing in resource ID
should be considered as a single map for the purposes of this number. For the typ-
ical case of a single hardware colormap, both values will be 1.

Backing-stores indicates when the server supports backing stores for this screen,
although it may be storage limited in the number of windows it can support at once.
If save-unders is True, the server can support the save-under mode in CreateWin-
dow and ChangeWindowAttributes, although again it may be storage limited.

The current-input-events is what GetWindowAttributes would return for the all-
event-masks for the root window.

Visual Information

The information that applies per visual-type is:

A given visual type might be listed for more than one depth or for more than one
screen.

For PseudoColor, a pixel value indexes a colormap to produce independent RGB
values; the RGB values can be changed dynamically. GrayScale is treated in the
same way as PseudoColor except which primary drives the screen is undefined;
thus, the client should always store the same value for red, green, and blue in col-
ormaps. For DirectColor, a pixel value is decomposed into separate RGB subfields,
and each subfield separately indexes the colormap for the corresponding value. The
RGB values can be changed dynamically. TrueColor is treated in the same way
as DirectColor except the colormap has predefined read-only RGB values. These
values are server-dependent but provide linear or near-linear increasing ramps in
each primary. StaticColor is treated in the same way as PseudoColor except the
colormap has predefined read-only RGB values, which are server-dependent. Stat-
icGray is treated in the same way as StaticColor except the red, green, and blue
values are equal for any single pixel value, resulting in shades of gray. StaticGray
with a two-entry colormap can be thought of as monochrome.

16

Connection Setup

The red-mask, green-mask, and blue-mask are only defined for DirectColor and
TrueColor. Each has one contiguous set of bits set to 1 with no intersections. Usu-
ally each mask has the same number of bits set to 1.

The bits-per-rgbh-value specifies the log base 2 of the number of distinct color inten-
sity values (individually) of red, green, and blue. This number need not bear any
relation to the number of colormap entries. Actual RGB values are always passed in
the protocol within a 16-bit spectrum, with 0 being minimum intensity and 65535
being the maximum intensity. On hardware that provides a linear zero-based inten-
sity ramp, the following relationship exists:

hwintensity = protocol-intensity / (65536 / total-hwintensities)

Colormap entries are indexed from 0. The colormap-entries defines the number
of available colormap entries in a newly created colormap. For DirectColor and
TrueColor, this will usually be 2 to the power of the maximum number of bits set
to 1 in red-mask, green-mask, and blue-mask.

17

Chapter 9. Requests

CreateWindow

wid, parent: WINDOW

class: { InputOutput, InputOnly, CopyFromParent}

depth: CARDS

visual: VISUALID or CopyFromParent

x, y: INT16

width, height, border-width: CARD16

value-mask: BITMASK

value-list: LISTofVALUE

Errors: Alloc, Colormap, Cursor, IDChoice, Match, Pixmap, Value, Window

This request creates an unmapped window and assigns the identifier wid to it.

A class of CopyFromParent means the class is taken from the parent. A depth of
zero for class InputOutput or CopyFromParent means the depth is taken from
the parent. A visual of CopyFromParent means the visual type is taken from the
parent. For class InputOutput, the visual type and depth must be a combination
supported for the screen (or a Match error results). The depth need not be the same
as the parent, but the parent must not be of class InputOnly (or a Match error
results). For class InputOnly, the depth must be zero (or a Match error results),
and the visual must be one supported for the screen (or a Match error results).
However, the parent can have any depth and class.

The server essentially acts as if InputOnly windows do not exist for the purposes
of graphics requests, exposure processing, and VisibilityNotify events. An Inpu-
tOnly window cannot be used as a drawable (as a source or destination for graph-
ics requests). InputOnly and InputOutput windows act identically in other re-
spects-properties, grabs, input control, and so on.

The coordinate system has the X axis horizontal and the Y axis vertical with the
origin [0, O] at the upper-left corner. Coordinates are integral, in terms of pixels,
and coincide with pixel centers. Each window and pixmap has its own coordinate
system. For a window, the origin is inside the border at the inside, upper-left corner.

The x and y coordinates for the window are relative to the parent's origin and specify
the position of the upper-left outer corner of the window (not the origin). The width
and height specify the inside size (not including the border) and must be nonzero
(or a Value error results). The border-width for an InputOnly window must be zero
(or a Match error results).

The window is placed on top in the stacking order with respect to siblings.

The value-mask and value-list specify attributes of the window that are to be explic-
itly initialized. The possible values are:

Attribute Type
background-pixmap PIXMAP or None or ParentRelative

18

Requests

Attribute Type

background-pixel CARD32

border-pixmap PIXMAP or CopyFromParent
border-pixel CARD32

bit-gravity BITGRAVITY

win-gravity WINGRAVITY

backing-store
backing-planes
backing-pixel
save-under
event-mask

do-not-propagate-mask

override-redirect
colormap
cursor

{ NotUseful, WhenMapped, Always }
CARD32

CARD32

BOOL

SETofEVENT

SETofDEVICEEVENT

BOOL

COLORMAP or CopyFromParent
CURSOR or None

The default values when attributes are not explicitly initialized are:

Attribute Default
background-pixmap None
border-pixmap CopyFromParent
bit-gravity Forget
win-gravity NorthWest
backing-store NotUseful
backing-planes all ones
backing-pixel Zero

save-under False

event-mask

do-not-propagate-mask

override-redirect
colormap
cursor

{} (empty set)

{} (empty set)
False
CopyFromParent
None

Only the following attributes are defined for InputOnly windows:

* win-gravity

¢ event-mask

* do-not-propagate-mask

e override-redirect

¢ cursor

It is a Match error to specify any other attributes for InputOnly windows.

19

Requests

If background-pixmap is given, it overrides the default background-pixmap. The
background pixmap and the window must have the same root and the same depth
(or a Match error results). Any size pixmap can be used, although some sizes may
be faster than others. If background None is specified, the window has no defined
background. If background ParentRelative is specified, the parent's background
is used, but the window must have the same depth as the parent (or a Match er-
ror results). If the parent has background None, then the window will also have
background None. A copy of the parent's background is not made. The parent's
background is reexamined each time the window background is required. If back-
ground-pixel is given, it overrides the default background-pixmap and any back-
ground-pixmap given explicitly, and a pixmap of undefined size filled with back-
ground-pixel is used for the background. Range checking is not performed on the
background-pixel value; it is simply truncated to the appropriate number of bits.
For a ParentRelative background, the background tile origin always aligns with
the parent's background tile origin. Otherwise, the background tile origin is always
the window origin.

When no valid contents are available for regions of a window and the regions are ei-
ther visible or the server is maintaining backing store, the server automatically tiles
the regions with the window's background unless the window has a background of
None. If the background is None, the previous screen contents from other windows
of the same depth as the window are simply left in place if the contents come from
the parent of the window or an inferior of the parent; otherwise, the initial contents
of the exposed regions are undefined. Exposure events are then generated for the
regions, even if the background is None.

The border tile origin is always the same as the background tile origin. If bor-
der-pixmap is given, it overrides the default border-pixmap. The border pixmap and
the window must have the same root and the same depth (or a Match error re-
sults). Any size pixmap can be used, although some sizes may be faster than oth-
ers. If CopyFromParent is given, the parent's border pixmap is copied (subsequent
changes to the parent's border attribute do not affect the child), but the window
must have the same depth as the parent (or a Match error results). The pixmap
might be copied by sharing the same pixmap object between the child and parent
or by making a complete copy of the pixmap contents. If border-pixel is given, it
overrides the default border-pixmap and any border-pixmap given explicitly, and
a pixmap of undefined size filled with border-pixel is used for the border. Range
checking is not performed on the border-pixel value; it is simply truncated to the
appropriate number of bits.

Output to a window is always clipped to the inside of the window, so that the border
is never affected.

The bit-gravity defines which region of the window should be retained if the window
is resized, and win-gravity defines how the window should be repositioned if the
parent is resized (see ConfigureWindow request).

A backing-store of WhenMapped advises the server that maintaining contents of
obscured regions when the window is mapped would be beneficial. A backing-store
of Always advises the server that maintaining contents even when the window is
unmapped would be beneficial. In this case, the server may generate an exposure
event when the window is created. A value of NotUseful advises the server that
maintaining contents is unnecessary, although a server may still choose to maintain
contents while the window is mapped. Note that if the server maintains contents,
then the server should maintain complete contents not just the region within the

20

Requests

parent boundaries, even if the window is larger than its parent. While the server
maintains contents, exposure events will not normally be generated, but the server
may stop maintaining contents at any time.

If save-under is True, the server is advised that when this window is mapped, saving
the contents of windows it obscures would be beneficial.

When the contents of obscured regions of a window are being maintained, regions
obscured by noninferior windows are included in the destination (and source, when
the window is the source) of graphics requests, but regions obscured by inferior
windows are not included.

The backing-planes indicates (with bits set to 1) which bit planes of the window hold
dynamic data that must be preserved in backing-stores and during save-unders. The
backing-pixel specifies what value to use in planes not covered by backing-planes.
The server is free to save only the specified bit planes in the backing-store or save-
under and regenerate the remaining planes with the specified pixel value. Any bits
beyond the specified depth of the window in these values are simply ignored.

The event-mask defines which events the client is interested in for this window (or
for some event types, inferiors of the window). The do-not-propagate-mask defines
which events should not be propagated to ancestor windows when no client has the
event type selected in this window.

The override-redirect specifies whether map and configure requests on this window
should override a SubstructureRedirect on the parent, typically to inform a win-
dow manager not to tamper with the window.

The colormap specifies the colormap that best reflects the true colors of the win-
dow. Servers capable of supporting multiple hardware colormaps may use this in-
formation, and window managers may use it for InstallColormap requests. The
colormap must have the same visual type and root as the window (or a Match error
results). If CopyFromParent is specified, the parent's colormap is copied (subse-
quent changes to the parent's colormap attribute do not affect the child). Howev-
er, the window must have the same visual type as the parent (or a Match error re-
sults), and the parent must not have a colormap of None (or a Match error results).
For an explanation of None, see FreeColormap request. The colormap is copied
by sharing the colormap object between the child and the parent, not by making a
complete copy of the colormap contents.

If a cursor is specified, it will be used whenever the pointeris in the window. If None
is specified, the parent's cursor will be used when the pointer is in the window, and
any change in the parent's cursor will cause an immediate change in the displayed
Cursor.

This request generates a CreateNotify event.

The background and border pixmaps and the cursor may be freed immediately if no
further explicit references to them are to be made.

Subsequent drawing into the background or border pixmap has an undefined effect
on the window state. The server might or might not make a copy of the pixmap.

ChangeWindowAttributes

21

Requests

window: WINDOW

value-mask: BITMASK

value-list: LISTofVALUE

Errors: Access, Colormap, Cursor, Match, Pixmap, Value, Window

The value-mask and value-list specify which attributes are to be changed. The values
and restrictions are the same as for CreateWindow.

Setting a new background, whether by background-pixmap or background-pixel,
overrides any previous background. Setting a new border, whether by border-pixel
or border-pixmap, overrides any previous border.

Changing the background does not cause the window contents to be changed. Set-
ting the border or changing the background such that the border tile origin changes
causes the border to be repainted. Changing the background of a root window to
None or ParentRelative restores the default background pixmap. Changing the
border of a root window to CopyFromParent restores the default border pixmap.

Changing the win-gravity does not affect the current position of the window.

Changing the backing-store of an obscured window to WhenMapped or Always
or changing the backing-planes, backing-pixel, or save-under of a mapped window
may have no immediate effect.

Multiple clients can select input on the same window; their event-masks are disjoint.
When an event is generated, it will be reported to all interested clients. However,
only one client at a time can select for SubstructureRedirect, only one client at
a time can select for ResizeRedirect, and only one client at a time can select for
ButtonPress. An attempt to violate these restrictions results in an Access error.

There is only one do-not-propagate-mask for a window, not one per client.
Changing the colormap of a window (by defining a new map, not by changing the
contents of the existing map) generates a ColormapNotify event. Changing the
colormap of a visible window might have no immediate effect on the screen (see
InstallColormap request).

Changing the cursor of a root window to None restores the default cursor.

The order in which attributes are verified and altered is server-dependent. If an
error is generated, a subset of the attributes may have been altered.

GetWindowAttributes

22

Requests

window: WINDOW

|

visual: VISUALID

class: { InputOutput, InputOnly}

bit-gravity: BITGRAVITY

win-gravity: WINGRAVITY

backing-store: { NotUseful, WhenMapped, Always}
backing-planes: CARD32

backing-pixel: CARD32

save-under: BOOL

colormap: COLORMAP or None

map-is-installed: BOOL

map-state: { Unmapped, Unviewable, Viewable}
all-event-masks, your-event-mask: SETofEVENT
do-not-propagate-mask: SETofDEVICEEVENT
override-redirect: BOOL

Errors: Window

This request returns the current attributes of the window. A window is Unviewable
if it is mapped but some ancestor is unmapped. All-event-masks is the inclusive-OR
of all event masks selected on the window by clients. Your-event-mask is the event
mask selected by the querying client.

DestroyWindow

window: WINDOW
Errors: Window

If the argument window is mapped, an UnmapWindow request is performed auto-
matically. The window and all inferiors are then destroyed, and a DestroyNotify
event is generated for each window. The ordering of the DestroyNotify events is
such that for any given window, DestroyNotify is generated on all inferiors of the
window before being generated on the window itself. The ordering among siblings
and across subhierarchies is not otherwise constrained.

Normal exposure processing on formerly obscured windows is performed.

If the window is a root window, this request has no effect.

DestroySubwindows

window: WINDOW
Errors: Window

This request performs a DestroyWindow request on all children of the window, in
bottom-to-top stacking order.

23

Requests

ChangeSaveSet

window: WINDOW
mode: { Insert, Delete}
Errors: Match, Value, Window

This request adds or removes the specified window from the client's save-set. The
window must have been created by some other client (or a Match error results).
For further information about the use of the save-set, see section 10.

When windows are destroyed, the server automatically removes them from the save-
set.

ReparentWindow

window, parent: WINDOW
x, y: INT16
Errors: Match, Window

If the window is mapped, an UnmapWindow request is performed automatically
first. The window is then removed from its current position in the hierarchy and is
inserted as a child of the specified parent. The x and y coordinates are relative to
the parent's origin and specify the new position of the upper-left outer corner of the
window. The window is placed on top in the stacking order with respect to siblings.
A ReparentNotify event is then generated. The override-redirect attribute of the
window is passed on in this event; a value of True indicates that a window manager
should not tamper with this window. Finally, if the window was originally mapped,
a MapWindow request is performed automatically.

Normal exposure processing on formerly obscured windows is performed. The serv-
er might not generate exposure events for regions from the initial unmap that are
immediately obscured by the final map.

A Match error is generated if: The new parent is not on the same screen as the old
parent. The new parent is the window itself or an inferior of the window. The new
parent is InputOnly, and the window is not. The window has a ParentRelative
background, and the new parent is not the same depth as the window.

MapWindow

window: WINDOW
Errors: Window

If the window is already mapped, this request has no effect.

If the override-redirect attribute of the window is False and some other client has
selected SubstructureRedirect on the parent, then a MapRequest event is gen-
erated, but the window remains unmapped. Otherwise, the window is mapped, and
a MapNotify event is generated.

If the window is now viewable and its contents have been discarded, the window is
tiled with its background (if no background is defined, the existing screen contents

24

Requests

are not altered), and zero or more exposure events are generated. If a backing-store
has been maintained while the window was unmapped, no exposure events are gen-
erated. If a backing-store will now be maintained, a full-window exposure is always
generated. Otherwise, only visible regions may be reported. Similar tiling and ex-
posure take place for any newly viewable inferiors.

MapSubwindows

window: WINDOW
Errors: Window

This request performs a MapWindow request on all unmapped children of the win-
dow, in top-to-bottom stacking order.

UnmapWindow

window: WINDOW
Errors: Window

If the window is already unmapped, this request has no effect. Otherwise, the win-
dow is unmapped, and an UnmapNotify event is generated. Normal exposure pro-
cessing on formerly obscured windows is performed.

UnmapSubwindows

window: WINDOW
Errors: Window

This request performs an UnmapWindow request on all mapped children of the
window, in bottom-to-top stacking order.

ConfigureWindow

window: WINDOW

value-mask: BITMASK
value-list: LISTofVALUE

Errors: Match, Value, Window

This request changes the configuration of the window. The value-mask and value-list
specify which values are to be given. The possible values are:

Attribute Type

X INT16

y INT16

width CARD16

height CARDI16

border-width CARDI16

sibling WINDOW

stack-mode { Above, Below, TopIf, BottomlIf, Opposite }

25

Requests

The x and y coordinates are relative to the parent's origin and specify the position of
the upper-left outer corner of the window. The width and height specify the inside
size, not including the border, and must be nonzero (or a Value error results). Those
values not specified are taken from the existing geometry of the window. Note that
changing just the border-width leaves the outer-left corner of the window in a fixed
position but moves the absolute position of the window's origin. It is a Match error
to attempt to make the border-width of an InputOnly window nonzero.

If the override-redirect attribute of the window is False and some other client has
selected SubstructureRedirect on the parent, a ConfigureRequest event is gen-
erated, and no further processing is performed. Otherwise, the following is per-
formed:

If some other client has selected ResizeRedirect on the window and the inside
width or height of the window is being changed, a ResizeRequest event is gen-
erated, and the current inside width and height are used instead. Note that the
override-redirect attribute of the window has no effect on ResizeRedirect and that
SubstructureRedirect on the parent has precedence over ResizeRedirect on the
window.

The geometry of the window is changed as specified, the window is restacked
among siblings, and a ConfigureNotify event is generated if the state of the win-
dow actually changes. If the inside width or height of the window has actually
changed, then children of the window are affected, according to their win-gravity.
Exposure processing is performed on formerly obscured windows (including the
window itself and its inferiors if regions of them were obscured but now are not).
Exposure processing is also performed on any new regions of the window (as a re-
sult of increasing the width or height) and on any regions where window contents
are lost.

If the inside width or height of a window is not changed but the window is moved or
its border is changed, then the contents of the window are not lost but move with the
window. Changing the inside width or height of the window causes its contents to be
moved or lost, depending on the bit-gravity of the window. It also causes children to
be reconfigured, depending on their win-gravity. For a change of width and height
of W and H, we define the [x, y] pairs as:

Direction Deltas
NorthWest [0, 0]
North [W/2, 0]
NorthEast [W, 0]
West [0, H/2]
Center [W/2, H/2]
East [W, H/2]
SouthWest [0, H]
South [W/2, H]
SouthEast [W, H]

When a window with one of these bit-gravities is resized, the corresponding pair
defines the change in position of each pixel in the window. When a window with
one of these win-gravities has its parent window resized, the corresponding pair

26

Requests

defines the change in position of the window within the parent. This repositioning
generates a GravityNotify event. GravityNotify events are generated after the
ConfigureNotify event is generated.

A gravity of Static indicates that the contents or origin should not move relative to
the origin of the root window. If the change in size of the window is coupled with a
change in position of [X, Y], then for bit-gravity the change in position of each pixel
is [-X, -Y] and for win-gravity the change in position of a child when its parent is so
resized is [-X, -Y]. Note that Static gravity still only takes effect when the width or
height of the window is changed, not when the window is simply moved.

A bit-gravity of Forget indicates that the window contents are always discarded
after a size change, even if backing-store or save-under has been requested. The
window is tiled with its background (except, if no background is defined, the existing
screen contents are not altered) and zero or more exposure events are generated.

The contents and borders of inferiors are not affected by their parent's bit-gravity.
A server is permitted to ignore the specified bit-gravity and use Forget instead.

A win-gravity of Unmap is like NorthWest, but the child is also unmapped when the
parent is resized, and an UnmapNotify event is generated. UnmapNotify events
are generated after the ConfigureNotify event is generated.

If a sibling and a stack-mode are specified, the window is restacked as follows:

Above The window is placed just above the sibling.

Below The window is placed just below the sibling.

ToplIf If the sibling occludes the window, then the window is
placed at the top of the stack.

BottomlIf If the window occludes the sibling, then the window is
placed at the bottom of the stack.

Opposite If the sibling occludes the window, then the window is

placed at the top of the stack. Otherwise, if the window oc-
cludes the sibling, then the window is placed at the bottom
of the stack.

If a stack-mode is specified but no sibling is specified, the window is restacked as
follows:

Above The window is placed at the top of the stack.

Below The window is placed at the bottom of the stack.

Toplf If any sibling occludes the window, then the window is
placed at the top of the stack.

BottomlIf If the window occludes any sibling, then the window is
placed at the bottom of the stack.

Opposite If any sibling occludes the window, then the window is

placed at the top of the stack. Otherwise, if the window oc-
cludes any sibling, then the window is placed at the bottom
of the stack.

It is a Match error if a sibling is specified without a stack-mode or if the window
is not actually a sibling.

27

Requests

Note that the computations for BottomlIf, TopIf, and Opposite are performed with
respect to the window's final geometry (as controlled by the other arguments to the
request), not to its initial geometry.

Attempts to configure a root window have no effect.

CirculateWindow

window: WINDOW
direction: { RaiseLowest, LowerHighest}
Errors: Value, Window

If some other client has selected SubstructureRedirect on the window, then a Cir-
culateRequest event is generated, and no further processing is performed. Other-
wise, the following is performed, and then a CirculateNotify event is generated if
the window is actually restacked.

For RaiseLowest, CirculateWindow raises the lowest mapped child (if any) that
is occluded by another child to the top of the stack. For LowerHighest, Circu-
lateWindow lowers the highest mapped child (if any) that occludes another child
to the bottom of the stack. Exposure processing is performed on formerly obscured
windows.

GetGeometry

drawable: DRAWABLE

>

root: WINDOW

depth: CARDS8

x, y: INT16

width, height, border-width: CARD16

Errors: Drawable

This request returns the root and current geometry of the drawable. The depth is
the number of bits per pixel for the object. The x, y, and border-width will always
be zero for pixmaps. For a window, the x and y coordinates specify the upper-left

outer corner of the window relative to its parent's origin, and the width and height
specify the inside size, not including the border.

It is legal to pass an InputOnly window as a drawable to this request.

QueryTree

window: WINDOW

| 2

root: WINDOW

parent: WINDOW or None
children: LISTofWINDOW
Errors: Window

28

Requests

This request returns the root, the parent, and the children of the window. The chil-
dren are listed in bottom-to-top stacking order.

InternAtom

name: STRINGS
only-if-exists: BOOL
>

atom: ATOM or None
Errors: Alloc, Value

This request returns the atom for the given name. If only-if-exists is False, then the
atom is created if it does not exist. The string should use the ISO Latin-1 encoding.
Uppercase and lowercase matter.

The lifetime of an atom is not tied to the interning client. Atoms remain defined until
server reset (see section 10).

GetAtomName

atom: ATOM

| 2

name: STRINGS
Errors: Atom

This request returns the name for the given atom.

ChangeProperty

window: WINDOW

property, type: ATOM

format: {8, 16, 32}

mode: { Replace, Prepend, Append}

data: LISTofINT8 or LISTofINT16 or LISTofINT32
Errors: Alloc, Atom, Match, Value, Window

This request alters the property for the specified window. The type is uninterpreted
by the server. The format specifies whether the data should be viewed as a list
of 8-bit, 16-bit, or 32-bit quantities so that the server can correctly byte-swap as
necessary.

If the mode is Replace, the previous property value is discarded. If the mode is
Prepend or Append, then the type and format must match the existing property
value (or a Match error results). If the property is undefined, it is treated as defined
with the correct type and format with zero-length data. For Prepend, the data is
tacked on to the beginning of the existing data, and for Append, it is tacked on to
the end of the existing data.

29

Requests

This request generates a PropertyNotify event on the window.

The lifetime of a property is not tied to the storing client. Properties remain until
explicitly deleted, until the window is destroyed, or until server reset (see section
10).

The maximum size of a property is server-dependent and may vary dynamically.

DeleteProperty

window: WINDOW
property: ATOM
Errors: Atom, Window

This request deletes the property from the specified window if the property exists
and generates a PropertyNotify event on the window unless the property does not
exist.

GetProperty

window: WINDOW

property: ATOM

type: ATOM or AnyPropertyType
long-offset, long-length: CARD32
delete: BOOL

| 2

type: ATOM or None

format: {0, 8, 16, 32}

bytes-after: CARD32

value: LISTofINT8 or LISTofINT16 or LISTofINT32

Errors: Atom, Value, Window

If the specified property does not exist for the specified window, then the return
type is None, the format and bytes-after are zero, and the value is empty. The delete
argument is ignored in this case. If the specified property exists but its type does
not match the specified type, then the return type is the actual type of the property,
the format is the actual format of the property (never zero), the bytes-after is the
length of the property in bytes (even if the format is 16 or 32), and the value is
empty. The delete argument is ignored in this case. If the specified property exists
and either AnyPropertyType is specified or the specified type matches the actual
type of the property, then the return type is the actual type of the property, the
format is the actual format of the property (never zero), and the bytes-after and
value are as follows, given:

N = actual length of the stored property in bytes
(even if the format is 16 or 32)

I =4 * | ong-of f set

T=N- 1

30

Requests

L
A

MN MIMT, 4 * |ong-I|ength)
N- (I +1L)

The returned value starts at byte index I in the property (indexing from 0), and its
length in bytes is L. However, it is a Value error if long-offset is given such that L is
negative. The value of bytes-after is A, giving the number of trailing unread bytes in
the stored property. If delete is True and the bytes-after is zero, the property is also
deleted from the window, and a PropertyNotify event is generated on the window.

RotateProperties

window: WINDOW

delta: INT16

properties: LISTofATOM
Errors: Atom, Match, Window

If the property names in the list are viewed as being numbered starting from zero,
and there are N property names in the list, then the value associated with property
name I becomes the value associated with property name (I + delta) mod N, for all
I from zero to N - 1. The effect is to rotate the states by delta places around the
virtual ring of property names (right for positive delta, left for negative delta).

If delta mod N is nonzero, a PropertyNotify event is generated for each property
in the order listed.

If an atom occurs more than once in the list or no property with that name is defined
for the window, a Match error is generated. If an Atom or Match erroris generated,
no properties are changed.

ListProperties

window: WINDOW

>
atoms: LISTofATOM

Errors: Window

This request returns the atoms of properties currently defined on the window.

SetSelectionOwner

selection: ATOM

owner: WINDOW or None

time: TIMESTAMP or CurrentTime
Errors: Atom, Window

This request changes the owner, owner window, and last-change time of the spec-
ified selection. This request has no effect if the specified time is earlier than the
current last-change time of the specified selection or is later than the current server

31

Requests

time. Otherwise, the last-change time is set to the specified time with CurrentTime
replaced by the current server time. If the owner window is specified as None,
then the owner of the selection becomes None (that is, no owner). Otherwise, the
owner of the selection becomes the client executing the request. If the new owner
(whether a client or None) is not the same as the current owner and the current
owner is not None, then the current owner is sent a SelectionClear event.

If the client that is the owner of a selection is later terminated (that is, its connection
is closed) or if the owner window it has specified in the request is later destroyed,
then the owner of the selection automatically reverts to None, but the last-change
time is not affected.

The selection atom is uninterpreted by the server. The owner window is returned by
the GetSelectionOwner request and is reported in SelectionRequest and Selec-
tionClear events.

Selections are global to the server.

GetSelectionOwner

selection: ATOM

| 2

owner: WINDOW or None
Errors: Atom

This request returns the current owner window of the specified selection, if any. If
None is returned, then there is no owner for the selection.

ConvertSelection

selection, target: ATOM

property: ATOM or None
requestor: WINDOW

time: TIMESTAMP or CurrentTime
Errors: Atom, Window

If the specified selection has an owner, the server sends a SelectionRequest event
to that owner. If no owner for the specified selection exists, the server generates
a SelectionNotify event to the requestor with property None. The arguments are
passed on unchanged in either of the events.

SendEvent

destination: WINDOW or PointerWindow or InputFocus
propagate: BOOL

event-mask: SETofEVENT

event: <normal-event-format>

Errors: Value, Window

32

Requests

If PointerWindow is specified, destination is replaced with the window that the
pointer is in. If InputFocus is specified and the focus window contains the pointer,
destination is replaced with the window that the pointeris in. Otherwise, destination
is replaced with the focus window.

If the event-mask is the empty set, then the event is sent to the client that created
the destination window. If that client no longer exists, no event is sent.

If propagate is False, then the event is sent to every client selecting on destination
any of the event types in event-mask.

If propagate is True and no clients have selected on destination any of the event
types in event-mask, then destination is replaced with the closest ancestor of des-
tination for which some client has selected a type in event-mask and no interven-
ing window has that type in its do-not-propagate-mask. If no such window exists or
if the window is an ancestor of the focus window and InputFocus was originally
specified as the destination, then the event is not sent to any clients. Otherwise, the
event is reported to every client selecting on the final destination any of the types
specified in event-mask.

The event code must be one of the core events or one of the events defined by
an extension (or a Value error results) so that the server can correctly byte-swap
the contents as necessary. The contents of the event are otherwise unaltered and
unchecked by the server except to force on the most significant bit of the event code
and to set the sequence number in the event correctly.

Active grabs are ignored for this request.

GrabPointer

grab-window: WINDOW

owner-events: BOOL

event-mask: SETofPOINTEREVENT

pointer-mode, keyboard-mode: { Synchronous, Asynchronous}
confine-to: WINDOW or None

cursor: CURSOR or None

time: TIMESTAMP or CurrentTime

| 2

status: { Success, AlreadyGrabbed, Frozen, InvalidTime, NotViewable}
Errors: Cursor, Value, Window

This request actively grabs control of the pointer. Further pointer events are only
reported to the grabbing client. The request overrides any active pointer grab by
this client.

If owner-events is False, all generated pointer events are reported with respect to
grab-window and are only reported if selected by event-mask. If owner-events is
True and a generated pointer event would normally be reported to this client, it is
reported normally. Otherwise, the event is reported with respect to the grab-window
and is only reported if selected by event-mask. For either value of owner-events,
unreported events are simply discarded.

33

Requests

If pointer-mode is Asynchronous, pointer event processing continues normally. If
the pointer is currently frozen by this client, then processing of pointer events is re-
sumed. If pointer-mode is Synchronous, the state of the pointer (as seen by means
of the protocol) appears to freeze, and no further pointer events are generated by
the server until the grabbing client issues a releasing AllowEvents request or until
the pointer grab is released. Actual pointer changes are not lost while the pointer
is frozen. They are simply queued for later processing.

If keyboard-mode is Asynchronous, keyboard event processing is unaffected by
activation of the grab. If keyboard-mode is Synchronous, the state of the keyboard
(as seen by means of the protocol) appears to freeze, and no further keyboard events
are generated by the server until the grabbing client issues a releasing AllowEvents
request or until the pointer grab is released. Actual keyboard changes are not lost
while the keyboard is frozen. They are simply queued for later processing.

If a cursor is specified, then it is displayed regardless of what window the pointer
is in. If no cursor is specified, then when the pointer is in grab-window or one of its
subwindows, the normal cursor for that window is displayed. Otherwise, the cursor
for grab-window is displayed.

If a confine-to window is specified, then the pointer will be restricted to stay con-
tained in that window. The confine-to window need have no relationship to the grab-
window. If the pointer is not initially in the confine-to window, then it is warped au-
tomatically to the closest edge (and enter/leave events are generated normally) just
before the grab activates. If the confine-to window is subsequently reconfigured,
the pointer will be warped automatically as necessary to keep it contained in the
window.

This request generates EnterNotify and LeaveNotify events.

The request fails with status AlreadyGrabbed if the pointer is actively grabbed
by some other client. The request fails with status Frozen if the pointer is frozen
by an active grab of another client. The request fails with status NotViewable if
grab-window or confine-to window is not viewable or if the confine-to window lies
completely outside the boundaries of the root window. The request fails with status
InvalidTime if the specified time is earlier than the last-pointer-grab time or later
than the current server time. Otherwise, the last-pointer-grab time is set to the
specified time, with CurrentTime replaced by the current server time.

UngrabPointer

time: TIMESTAMP or CurrentTime

This request releases the pointer if this client has it actively grabbed (from either
GrabPointer or GrabButton or from a normal button press) and releases any
queued events. The request has no effect if the specified time is earlier than the
last-pointer-grab time or is later than the current server time.

This request generates EnterNotify and LeaveNotify events.

An UngrabPointer request is performed automatically if the event window or con-
fine-to window for an active pointer grab becomes not viewable or if window recon-
figuration causes the confine-to window to lie completely outside the boundaries of
the root window.

34

Requests

GrabButton

modifiers: SETofKEYMASK or AnyModifier

button: BUTTON or AnyButton

grab-window: WINDOW

owner-events: BOOL

event-mask: SETofPOINTEREVENT

pointer-mode, keyboard-mode: { Synchronous, Asynchronous}
confine-to: WINDOW or None

cursor: CURSOR or None

Errors: Access, Cursor, Value, Window

This request establishes a passive grab. In the future, the pointer is actively
grabbed as described in GrabPointer, the last-pointer-grab time is set to the time
at which the button was pressed (as transmitted in the ButtonPress event), and
the ButtonPress event is reported if all of the following conditions are true: The
pointer is not grabbed and the specified button is logically pressed when the spec-
ified modifier keys are logically down, and no other buttons or modifier keys are
logically down. The grab-window contains the pointer. The confine-to window (if
any) is viewable. A passive grab on the same button/key combination does not exist
on any ancestor of grab-window.

The interpretation of the remaining arguments is the same as for GrabPointer. The
active grab is terminated automatically when the logical state of the pointer has all
buttons released, independent of the logical state of modifier keys. Note that the
logical state of a device (as seen by means of the protocol) may lag the physical
state if device event processing is frozen.

This request overrides all previous passive grabs by the same client on the same
button/key combinations on the same window. A modifier of AnyModifier is equiv-
alent to issuing the request for all possible modifier combinations (including the
combination of no modifiers). It is not required that all specified modifiers have
currently assigned keycodes. A button of AnyButton is equivalent to issuing the
request for all possible buttons. Otherwise, it is not required that the button speci-
fied currently be assigned to a physical button.

An Access error is generated if some other client has already issued a GrabBut-
ton request with the same button/key combination on the same window. When us-
ing AnyModifier or AnyButton, the request fails completely (no grabs are estab-
lished), and an Access error is generated if there is a conflicting grab for any com-
bination. The request has no effect on an active grab.

UngrabButton

modifiers: SETofKEYMASK or AnyModifier
button: BUTTON or AnyButton
grab-window: WINDOW

Errors: Value, Window

35

Requests

This request releases the passive button/key combination on the specified window
if it was grabbed by this client. A modifiers argument of AnyModifier is equivalent
to issuing the request for all possible modifier combinations (including the combi-
nation of no modifiers). A button of AnyButton is equivalent to issuing the request
for all possible buttons. The request has no effect on an active grab.

ChangeActivePointerGrab

event-mask: SETofPOINTEREVENT
cursor: CURSOR or None

time: TIMESTAMP or CurrentTime
Errors: Cursor, Value

This request changes the specified dynamic parameters if the pointer is actively
grabbed by the client and the specified time is no earlier than the last-pointer-grab
time and no later than the current server time. The interpretation of event-mask
and cursor are the same as in GrabPointer. This request has no effect on the pa-
rameters of any passive grabs established with GrabButton.

GrabKeyboard

grab-window: WINDOW

owner-events: BOOL

pointer-mode, keyboard-mode: { Synchronous, Asynchronous}
time: TIMESTAMP or CurrentTime

>
status: { Success, AlreadyGrabbed, Frozen, InvalidTime, NotViewable}
Errors: Value, Window

This request actively grabs control of the keyboard. Further key events are reported
only to the grabbing client. This request overrides any active keyboard grab by this
client.

If owner-events is False, all generated key events are reported with respect to grab-
window. If owner-events is True and if a generated key event would normally be
reported to this client, it is reported normally. Otherwise, the event is reported with
respect to the grab-window. Both KeyPress and KeyRelease events are always
reported, independent of any event selection made by the client.

If keyboard-mode is Asynchronous, keyboard event processing continues normally.
If the keyboard is currently frozen by this client, then processing of keyboard events
is resumed. If keyboard-mode is Synchronous, the state of the keyboard (as seen by
means of the protocol) appears to freeze. No further keyboard events are generated
by the server until the grabbing client issues a releasing AllowEvents request or
until the keyboard grab is released. Actual keyboard changes are not lost while the
keyboard is frozen. They are simply queued for later processing.

If pointer-mode is Asynchronous, pointer event processing is unaffected by activa-
tion of the grab. If pointer-mode is Synchronous, the state of the pointer (as seen

36

Requests

by means of the protocol) appears to freeze. No further pointer events are generat-
ed by the server until the grabbing client issues a releasing AllowEvents request
or until the keyboard grab is released. Actual pointer changes are not lost while the
pointer is frozen. They are simply queued for later processing.

This request generates FocusIn and FocusOut events.

The request fails with status AlreadyGrabbed if the keyboard is actively grabbed
by some other client. The request fails with status Frozen if the keyboard is frozen
by an active grab of another client. The request fails with status NotViewable if
grab-window is not viewable. The request fails with status InvalidTime if the spec-
ified time is earlier than the last-keyboard-grab time or later than the current server
time. Otherwise, the last-keyboard-grab time is set to the specified time with Cur-
rentTime replaced by the current server time.

UngrabKeyboard

time: TIMESTAMP or CurrentTime

This request releases the keyboard if this client has it actively grabbed (as a result
of either GrabKeyboard or GrabKey) and releases any queued events. The request
has no effect if the specified time is earlier than the last-keyboard-grab time or is
later than the current server time.

This request generates FocusIn and FocusOut events.

An UngrabKeyboard is performed automatically if the event window for an active
keyboard grab becomes not viewable.

GrabKey

key: KEYCODE or AnyKey

modifiers: SETofKEYMASK or AnyModifier

grab-window: WINDOW

owner-events: BOOL

pointer-mode, keyboard-mode: { Synchronous, Asynchronous}
Errors: Access, Value, Window

This request establishes a passive grab on the keyboard. In the future, the keyboard
is actively grabbed as described in GrabKeyboard, the last-keyboard-grab time is
set to the time at which the key was pressed (as transmitted in the KeyPress event),
and the KeyPress event is reported if all of the following conditions are true: The
keyboard is not grabbed and the specified key (which can itself be a modifier key)
is logically pressed when the specified modifier keys are logically down, and no
other modifier keys are logically down. Either the grab-window is an ancestor of (or
is) the focus window, or the grab-window is a descendent of the focus window and
contains the pointer. A passive grab on the same key combination does not exist on
any ancestor of grab-window.

The interpretation of the remaining arguments is the same as for GrabKeyboard.
The active grab is terminated automatically when the logical state of the keyboard

37

Requests

has the specified key released, independent of the logical state of modifier keys.
Note that the logical state of a device (as seen by means of the protocol) may lag
the physical state if device event processing is frozen.

This request overrides all previous passive grabs by the same client on the same
key combinations on the same window. A modifier of AnyModifier is equivalent to
issuing the request for all possible modifier combinations (including the combina-
tion of no modifiers). It is not required that all modifiers specified have currently
assigned keycodes. A key of AnyKey is equivalent to issuing the request for all pos-
sible keycodes. Otherwise, the key must be in the range specified by min-keycode
and max-keycode in the connection setup (or a Value error results).

An Access error is generated if some other client has issued a GrabKey with the
same key combination on the same window. When using AnyModifier or AnyKey,
the request fails completely (no grabs are established), and an Access error is gen-
erated if there is a conflicting grab for any combination.

UngrabKey

key: KEYCODE or AnyKey

modifiers: SETofKEYMASK or AnyModifier
grab-window: WINDOW

Errors: Value, Window

This request releases the key combination on the specified window if it was grabbed
by this client. A modifiers argument of AnyModifier is equivalent to issuing the re-
quest for all possible modifier combinations (including the combination of no modi-
fiers). A key of AnyKey is equivalent to issuing the request for all possible keycodes.
This request has no effect on an active grab.

AllowEvents

mode: { AsyncPointer, SyncPointer, ReplayPointer, AsyncKeyboard,
SyncKeyboard, ReplayKeyboard, AsyncBoth, SyncBoth}

time: TIMESTAMP or CurrentTime

Errors: Value

This request releases some queued events if the client has caused a device to freeze.
The request has no effect if the specified time is earlier than the last-grab time of
the most recent active grab for the client or if the specified time is later than the
current server time.

For AsyncPointer, if the pointer is frozen by the client, pointer event processing
continues normally. If the pointer is frozen twice by the client on behalf of two sepa-
rate grabs, AsyncPointer thaws for both. AsyncPointer has no effect if the pointer
is not frozen by the client, but the pointer need not be grabbed by the client.

For SyncPointer, if the pointer is frozen and actively grabbed by the client, pointer
event processing continues normally until the next ButtonPress or ButtonRelease
event is reported to the client, at which time the pointer again appears to freeze.
However, if the reported event causes the pointer grab to be released, then the

38

Requests

pointer does not freeze. SyncPointer has no effect if the pointer is not frozen by
the client or if the pointer is not grabbed by the client.

For ReplayPointer, if the pointer is actively grabbed by the client and is frozen as
the result of an event having been sent to the client (either from the activation of
a GrabButton or from a previous AllowEvents with mode SyncPointer but not
from a GrabPointer), then the pointer grab is released and that event is completely
reprocessed, this time ignoring any passive grabs at or above (towards the root) the
grab-window of the grab just released. The request has no effect if the pointer is
not grabbed by the client or if the pointer is not frozen as the result of an event.

For AsyncKeyboard, if the keyboard is frozen by the client, keyboard event pro-
cessing continues normally. If the keyboard is frozen twice by the client on behalf of
two separate grabs, AsyncKeyboard thaws for both. AsyncKeyboard has no effect
if the keyboard is not frozen by the client, but the keyboard need not be grabbed
by the client.

For SyncKeyboard, if the keyboard is frozen and actively grabbed by the client,
keyboard event processing continues normally until the next KeyPress or KeyRe-
lease event is reported to the client, at which time the keyboard again appears to
freeze. However, if the reported event causes the keyboard grab to be released,
then the keyboard does not freeze. SyncKeyboard has no effect if the keyboard is
not frozen by the client or if the keyboard is not grabbed by the client.

For ReplayKeyboard, if the keyboard is actively grabbed by the client and is frozen
as the result of an event having been sent to the client (either from the activation of
a GrabKey or from a previous AllowEvents with mode SyncKeyboard but not from
a GrabKeyboard), then the keyboard grab is released and that event is completely
reprocessed, this time ignoring any passive grabs at or above (towards the root) the
grab-window of the grab just released. The request has no effect if the keyboard is
not grabbed by the client or if the keyboard is not frozen as the result of an event.

For SyncBoth, if both pointer and keyboard are frozen by the client, event process-
ing (for both devices) continues normally until the next ButtonPress, ButtonRe-
lease, KeyPress, or KeyRelease event is reported to the client for a grabbed de-
vice (button event for the pointer, key event for the keyboard), at which time the
devices again appear to freeze. However, if the reported event causes the grab to
be released, then the devices do not freeze (but if the other device is still grabbed,
then a subsequent event for it will still cause both devices to freeze). SyncBoth has
no effect unless both pointer and keyboard are frozen by the client. If the pointer or
keyboard is frozen twice by the client on behalf of two separate grabs, SyncBoth
thaws for both (but a subsequent freeze for SyncBoth will only freeze each device
once).

For AsyncBoth, if the pointer and the keyboard are frozen by the client, event
processing for both devices continues normally. If a device is frozen twice by the
client on behalf of two separate grabs, AsyncBoth thaws for both. AsyncBoth has
no effect unless both pointer and keyboard are frozen by the client.

AsyncPointer, SyncPointer, and ReplayPointer have no effect on processing of
keyboard events. AsyncKeyboard, SyncKeyboard, and ReplayKeyboard have no
effect on processing of pointer events.

It is possible for both a pointer grab and a keyboard grab to be active simultaneously
(by the same or different clients). When a device is frozen on behalf of either grab,

39

Requests

no event processing is performed for the device. It is possible for a single device to
be frozen because of both grabs. In this case, the freeze must be released on behalf
of both grabs before events can again be processed. If a device is frozen twice by a
single client, then a single AllowEvents releases both.

GrabServer

This request disables processing of requests and close-downs on all connections
other than the one this request arrived on.

UngrabServer

This request restarts processing of requests and close-downs on other connections.
QueryPointer

window: WINDOW

| 2

root: WINDOW

child: WINDOW or None
same-screen: BOOL

root-x, root-y, win-x, win-y: INT16
mask: SETofKEYBUTMASK
Errors: Window

The root window the pointer is logically on and the pointer coordinates relative to
the root's origin are returned. If same-screen is False, then the pointer is not on the
same screen as the argument window, child is None, and win-x and win-y are zero.
If same-screen is True, then win-x and win-y are the pointer coordinates relative to
the argument window's origin, and child is the child containing the pointer, if any.
The current logical state of the modifier keys and the buttons are also returned.
Note that the logical state of a device (as seen by means of the protocol) may lag
the physical state if device event processing is frozen.

GetMotionEvents

start, stop: TIMESTAMP or CurrentTime
window: WINDOW

| 2

events: LISTofTIMECOORD

where:

TIMECOORD: [x, y: INT16

time: TIMESTAMP]

Errors: Window

40

Requests

This request returns all events in the motion history buffer that fall between the
specified start and stop times (inclusive) and that have coordinates that lie within
(including borders) the specified window at its present placement. The x and y co-
ordinates are reported relative to the origin of the window.

If the start time is later than the stop time or if the start time is in the future, no
events are returned. If the stop time is in the future, it is equivalent to specifying
CurrentTime.

TranslateCoordinates

src-window, dst-window: WINDOW
src-x, src-y: INT16

| 2

same-screen: BOOL

child: WINDOW or None

dst-x, dst-y: INT16

Errors: Window

The src-x and src-y coordinates are taken relative to src-window's origin and are
returned as dst-x and dst-y coordinates relative to dst-window's origin. If same-
screen is False, then src-window and dst-window are on different screens, and dst-x
and dst-y are zero. If the coordinates are contained in a mapped child of dst-window,
then that child is returned.

WarpPointer

src-window: WINDOW or None
dst-window: WINDOW or None
src-x, src-y: INT16

src-width, src-height: CARD16
dst-x, dst-y: INT16

Errors: Window

If dst-window is None, this request moves the pointer by offsets [dst-x, dst-y] rela-
tive to the current position of the pointer. If dst-window is a window, this request
moves the pointer to [dst-x, dst-y] relative to dst-window's origin. However, if src-
window is not None, the move only takes place if src-window contains the pointer
and the pointer is contained in the specified rectangle of src-window.

The src-x and src-y coordinates are relative to src-window's origin. If src-height is
zero, it is replaced with the current height of src-window minus src-y. If src-width
is zero, it is replaced with the current width of src-window minus src-x.

This request cannot be used to move the pointer outside the confine-to window of
an active pointer grab. An attempt will only move the pointer as far as the closest
edge of the confine-to window.

41

Requests

This request will generate events just as if the user had instantaneously moved the
pointer.

SetinputFocus

focus: WINDOW or PointerRoot or None
revert-to: { Parent, PointerRoot, None}
time: TIMESTAMP or CurrentTime
Errors: Match, Value, Window

This request changes the input focus and the last-focus-change time. The request
has no effect if the specified time is earlier than the current last-focus-change time
or is later than the current server time. Otherwise, the last-focus-change time is set
to the specified time with CurrentTime replaced by the current server time.

If None is specified as the focus, all keyboard events are discarded until a new focus
window is set. In this case, the revert-to argument is ignored.

If a window is specified as the focus, it becomes the keyboard's focus window. If
a generated keyboard event would normally be reported to this window or one of
its inferiors, the event is reported normally. Otherwise, the event is reported with
respect to the focus window.

If PointerRoot is specified as the focus, the focus window is dynamically taken to
be the root window of whatever screen the pointer is on at each keyboard event. In
this case, the revert-to argument is ignored.

This request generates FocusIn and FocusOut events.

The specified focus window must be viewable at the time of the request (or a Match
error results). If the focus window later becomes not viewable, the new focus win-
dow depends on the revert-to argument. If revert-to is Parent, the focus reverts to
the parent (or the closest viewable ancestor) and the new revert-to value is taken
to be None. If revert-to is PointerRoot or None, the focus reverts to that value.
When the focus reverts, FocusIn and FocusOut events are generated, but the last-
focus-change time is not affected.

GetinputFocus

| 2
focus: WINDOW or PointerRoot or None
revert-to: { Parent, PointerRoot, None}

This request returns the current focus state.
QueryKeymap

| 2
keys: LISTofCARDS8

42

Requests

This request returns a bit vector for the logical state of the keyboard. Each bit
set to 1 indicates that the corresponding key is currently pressed. The vector is
represented as 32 bytes. Byte N (from 0) contains the bits for keys 8N to 8N + 7
with the least significant bit in the byte representing key 8N. Note that the logical
state of a device (as seen by means of the protocol) may lag the physical state if
device event processing is frozen.

OpenFont

fid: FONT
name: STRINGS8
Errors: Alloc, IDChoice, Name

This request loads the specified font, if necessary, and associates identifier fid with
it. The font name should use the ISO Latin-1 encoding, and uppercase and lowercase
do not matter. When the characters “?” and “*” are used in a font name, a pattern
match is performed and any matching font is used. In the pattern, the “?” character
(octal value 77) will match any single character, and the “*” character (octal value
52) will match any number of characters. A structured format for font names is
specified in the X.Org standard X Logical Font Description Conventions.

Fonts are not associated with a particular screen and can be stored as a component
of any graphics context.

CloseFont

font: FONT
Errors: Font

This request deletes the association between the resource ID and the font. The font
itself will be freed when no other resource references it.

QueryFont

font: FONTABLE

>

font-info: FONTINFO

char-infos: LISTofCHARINFO

where: FONTINFO: [draw-direction: { Left-
ToRight, RightToLeft }

min-char-or-byte2, max-
char-or-byte2: CARD16

min-bytel, max-bytel:
CARDS8

all-chars-exist: BOOL
default-char: CARD16

43

Requests

min-bounds: CHARINFO
max-bounds: CHARINFO
font-ascent: INT16
font-descent: INT16
properties: LISTofFONT-

PROP]
FONTPROP: [name: ATOM

value: <32-bit-value>]
CHARINFO: [left-side-bearing: INT16

right-side-bearing: INT16

character-width: INT16

ascent: INT16

descent: INT16

attributes: CARD16]
Errors: Font

This request returns logical information about a font. If a gcontext is given for font,
the currently contained font is used.

The draw-direction is just a hint and indicates whether most char-infos have a pos-
itive, LeftToRight, or a negative, RightToLeft, character-width metric. The core
protocol defines no support for vertical text.

If min-bytel and max-bytel are both zero, then min-char-or-byte2 specifies the lin-
ear character index corresponding to the first element of char-infos, and max-char-
or-byte?2 specifies the linear character index of the last element. If either min-bytel
or max-bytel are nonzero, then both min-char-or-byte2 and max-char-or-byte2 will
be less than 256, and the 2-byte character index values corresponding to char-infos
element N (counting from 0) are:

bytel = NND + mn-bytel
byte2 = M\D + m n-char-or-byte2
where:

D = max-char-or-byte2 - mn-char-or-byte2 + 1
/ = integer division
\\ = integer nodul us

If char-infos has length zero, then min-bounds and max-bounds will be identical,
and the effective char-infos is one filled with this char-info, of length:

L =D* (max-bytel - nin-bytel + 1)
That is, all glyphs in the specified linear or matrix range have the same information,

as given by min-bounds (and max-bounds). If all-chars-exist is True, then all char-
acters in char-infos have nonzero bounding boxes.

44

Requests

The default-char specifies the character that will be used when an undefined or
nonexistent characteris used. Note that default-charis a CARD16, not CHAR2B. For
a font using 2-byte matrix format, the default-char has bytel in the most significant
byte and byte2 in the least significant byte. If the default-char itself specifies an
undefined or nonexistent character, then no printing is performed for an undefined
or nonexistent character.

The min-bounds and max-bounds contain the minimum and maximum values of each
individual CHARINFO component over all char-infos (ignoring nonexistent charac-
ters). The bounding box of the font (that is, the smallest rectangle enclosing the
shape obtained by superimposing all characters at the same origin [x,y]) has its
upper-left coordinate at:

[x + min-bounds.|eft-side-bearing, y - nax-bounds. ascent]

with a width of:

max- bounds. ri ght - si de-beari ng - m n-bounds. | eft-side-bearing

and a height of:

max- bounds. ascent + nmax- bounds. descent

The font-ascent is the logical extent of the font above the baseline and is used for
determining line spacing. Specific characters may extend beyond this. The font-de-
scent is the logical extent of the font at or below the baseline and is used for de-
termining line spacing. Specific characters may extend beyond this. If the baseline
is at Y-coordinate y, then the logical extent of the font is inclusive between the Y-
coordinate values (y - font-ascent) and (y + font-descent - 1).

A font is not guaranteed to have any properties. The interpretation of the property
value (for example, INT32, CARD32) must be derived from a priori knowledge of the
property. A basic set of font properties is specified in the X.Org standard X Logical
Font Description Conventions.

For a character origin at [x,y], the bounding box of a character (that is, the smallest
rectangle enclosing the character's shape), described in terms of CHARINFO com-
ponents, is a rectangle with its upper-left corner at:

[x + left-side-bearing, y - ascent]

with a width of:

ri ght-side-bearing - |eft-side-bearing

and a height of:

ascent + descent

and the origin for the next character is defined to be:

45

Requests

[x + character-wi dth, y]

Note that the baseline is logically viewed as being just below nondescending char-
acters (when descent is zero, only pixels with Y-coordinates less than y are drawn)
and that the origin is logically viewed as being coincident with the left edge of a
nonkerned character (when left-side-bearing is zero, no pixels with X-coordinate
less than x are drawn).

Note that CHARINFO metric values can be negative.
A nonexistent character is represented with all CHARINFO components zero.

The interpretation of the per-character attributes field is server-dependent.

QueryTextExtents

font: FONTABLE
string: STRING16

| 2

draw-direction: { LeftToRight, RightToLeft}
font-ascent: INT16
font-descent: INT16
overall-ascent: INT16
overall-descent: INT16
overall-width: INT32
overall-left: INT32
overall-right: INT32
Errors: Font

This request returns the logical extents of the specified string of characters in the
specified font. If a gcontext is given for font, the currently contained font is used. The
draw-direction, font-ascent, and font-descent are the same as described in Query-
Font. The overall-ascent is the maximum of the ascent metrics of all characters in
the string, and the overall-descent is the maximum of the descent metrics. The over-
all-width is the sum of the character-width metrics of all characters in the string.
For each character in the string, let W be the sum of the character-width metrics
of all characters preceding it in the string, let L be the left-side-bearing metric of
the character plus W, and let R be the right-side-bearing metric of the character
plus W. The overall-left is the minimum L of all characters in the string, and the
overall-right is the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, the server
will interpret each CHAR2B as a 16-bit number that has been transmitted most
significant byte first (that is, bytel of the CHAR2B is taken as the most significant
byte).

Characters with all zero metrics are ignored. If the font has no defined default-char,
then undefined characters in the string are also ignored.

46

Requests

ListFonts

pattern: STRINGS
max-names: CARD16

|
names: LISTof STRING8

This request returns a list of available font names (as controlled by the font search
path; see SetFontPath request) that match the pattern. At most, max-names names
will be returned. The pattern should use the ISO Latin-1 encoding, and uppercase
and lowercase do not matter. In the pattern, the “?” character (octal value 77) will
match any single character, and the “*” character (octal value 52) will match any
number of characters. The returned names are in lowercase.

ListFontsWithinfo

pattern: STRINGS

max-names: CARD16

| 2

name: STRINGS8

info FONTINFO

replies-hint: CARD32

where:

FONTINFO: <same type definition as in QueryFont>

This request is similar to ListFonts, but it also returns information about each font.
The information returned for each font is identical to what QueryFont would return
except that the per-character metrics are not returned. Note that this request can
generate multiple replies. With each reply, replies-hint may provide an indication
of how many more fonts will be returned. This number is a hint only and may be
larger or smaller than the number of fonts actually returned. A zero value does not
guarantee that no more fonts will be returned. After the font replies, a reply with a
zero-length name is sent to indicate the end of the reply sequence.

SetFontPath

path: LISTofSTRINGS8
Errors: Value

This request defines the search path for font lookup. There is only one search path
per server, not one per client. The interpretation of the strings is operating-sys-
tem-dependent, but the strings are intended to specify directories to be searched
in the order listed.

Setting the path to the empty list restores the default path defined for the server.

47

Requests

As a side effect of executing this request, the server is guaranteed to flush all cached
information about fonts for which there currently are no explicit resource IDs allo-
cated.

The meaning of an error from this request is system specific.

GetFontPath

>
path: LISTofSTRINGS8

This request returns the current search path for fonts.

CreatePixmap

pid: PIXMAP

drawable: DRAWABLE

depth: CARDS

width, height: CARD16

Errors: Alloc, Drawable, IDChoice, Value

This request creates a pixmap and assigns the identifier pid to it. The width and
height must be nonzero (or a Value error results). The depth must be one of the
depths supported by the root of the specified drawable (or a Value error results).
The initial contents of the pixmap are undefined.

It is legal to pass an InputOnly window as a drawable to this request.

FreePixmap

pixmap: PIXMAP
Errors: Pixmap

This request deletes the association between the resource ID and the pixmap. The
pixmap storage will be freed when no other resource references it.

CreateGC

cid: GCONTEXT

drawable: DRAWABLE

value-mask: BITMASK

value-list: LISTofVALUE

Errors: Alloc, Drawable, Font, IDChoice, Match, Pixmap, Value

48

Requests

This request creates a graphics context and assigns the identifier cid to it. The
gcontext can be used with any destination drawable having the same root and depth
as the specified drawable; use with other drawables results in a Match error.

The value-mask and value-list specify which components are to be explicitly initial-

ized. The context components are:

Component

Type

function

plane-mask
foreground
background
line-width
line-style

cap-style

join-style

fill-style

fill-rule

arc-mode

tile

stipple
tile-stipple-x-origin
tile-stipple-y-origin
font
subwindow-mode
graphics-exposures
clip-x-origin
clip-y-origin
clip-mask
dash-offset

dashes

{ Clear, And, AndReverse, Copy, AndInverted,
NoOp, Xor, Or, Nor, Equiv, Invert, OrReverse,
Copylnverted, Orinverted, Nand, Set }

CARD32

CARD32

CARD32

CARD16

{ Solid, OnOffDash, DoubleDash }

{ NotLast, Butt, Round, Projecting }
{ Miter, Round, Bevel }

{ Solid, Tiled, OpaqueStippled, Stippled }
{ EvenOdd, Winding }

{ Chord, PieSlice }

PIXMAP

PIXMAP

INT16

INT16

FONT

{ ClipByChildren, Includelnferiors }
BOOL

INT16

INT16

PIXMAP or None

CARD16

CARDS8

In graphics operations, given a source and destination pixel, the result is computed
bitwise on corresponding bits of the pixels; that is, a Boolean operation is performed
in each bit plane. The plane-mask restricts the operation to a subset of planes, so
the result is:

((src FUNC dst) AND pl ane-nask) OR (dst AND (NOT pl ane- nask))

Range checking is not performed on the values for foreground, background, or
plane-mask. They are simply truncated to the appropriate number of bits.

The meanings of the functions are:

49

Requests

Function Operation

Clear 0

And src AND dst
AndReverse src AND (NOT dst)
Copy src

AndInverted (NOT src) AND dst
NoOp dst

Xor src XOR dst

Or src OR dst

Nor (NOT src) AND (NOT dst)
Equiv (NOT src) XOR dst
Invert NOT dst

OrReverse src OR (NOT dst)
CopylInverted NOT src

OrInverted (NOT src) OR dst

Nand (NOT src) OR (NOT dst)
Set 1

The line-width is measured in pixels and can be greater than or equal to one, a wide
line, or the special value zero, a thin line.

Wide lines are drawn centered on the path described by the graphics request. Un-
less otherwise specified by the join or cap style, the bounding box of a wide line with
endpoints [x1, y1], [x2, y2] and width w is a rectangle with vertices at the following
real coordinates:

[x1-(wsn/2), yl+(wrcs/2)], [x1+(wsn/2), yl-(wcs/2)],
[x2-(wFsn/ 2), y2+(wFcs/2)], [x2+(wsn/2), y2-(wcs/2)]

The sn is the sine of the angle of the line and cs is the cosine of the angle of the
line. A pixel is part of the line (and hence drawn) if the center of the pixel is fully
inside the bounding box, which is viewed as having infinitely thin edges. If the center
of the pixel is exactly on the bounding box, it is part of the line if and only if the
interior is immediately to its right (x increasing direction). Pixels with centers on a
horizontal edge are a special case and are part of the line if and only if the interior
or the boundary is immediately below (y increasing direction) and if the interior
or the boundary is immediately to the right (x increasing direction). Note that this
description is a mathematical model describing the pixels that are drawn for a wide
line and does not imply that trigonometry is required to implement such a model.
Real or fixed point arithmetic is recommended for computing the corners of the line
endpoints for lines greater than one pixel in width.

Thin lines (zero line-width) are nominally one pixel wide lines drawn using an un-
specified, device-dependent algorithm. There are only two constraints on this al-
gorithm. First, if a line is drawn unclipped from [x1,y1] to [x2,y2] and another
line is drawn unclipped from [x1+dx,y1+dy] to [x2+dx,y2+dy], then a point [x,y]
is touched by drawing the first line if and only if the point [x+dx,y+dy] is touched
by drawing the second line. Second, the effective set of points comprising a line

50

Requests

cannot be affected by clipping. Thus, a point is touched in a clipped line if and only
if the point lies inside the clipping region and the point would be touched by the
line when drawn unclipped.

Note that a wide line drawn from [x1,y1] to [x2,y2] always draws the same pixels
as a wide line drawn from [x2,y2] to [x1,y1], not counting cap-style and join-style.
Implementors are encouraged to make this property true for thin lines, but it is not
required. A line-width of zero may differ from a line-width of one in which pixels
are drawn. In general, drawing a thin line will be faster than drawing a wide line
of width one, but thin lines may not mix well aesthetically with wide lines because
of the different drawing algorithms. If it is desirable to obtain precise and uniform
results across all displays, a client should always use a line-width of one, rather
than a line-width of zero.

The line-style defines which sections of a line are drawn:

Solid The full path of the line is drawn.

DoubleDash The full path of the line is drawn, but the even dash-
es are filled differently than the odd dashes (see fill-
style), with Butt cap-style used where even and odd
dashes meet.

OnOffDash Only the even dashes are drawn, and cap-style ap-
plies to all internal ends of the individual dashes (ex-
cept NotLast is treated as Butt).

The cap-style defines how the endpoints of a path are drawn:

NotLast The result is equivalent to Butt, except that for a
line-width of zero the final endpoint is not drawn.

Butt The result is square at the endpoint (perpendicular to
the slope of the line) with no projection beyond.

Round The result is a circular arc with its diameter equal to
the line-width, centered on the endpoint; it is equiva-
lent to Butt for line-width zero.

Projecting The result is square at the end, but the path contin-
ues beyond the endpoint for a distance equal to half
the line-width; it is equivalent to Butt for line-width
Zero.

The join-style defines how corners are drawn for wide lines:

Miter The outer edges of the two lines extend to meet at an
angle. However, if the angle is less than 11 degrees, a
Bevel join-style is used instead.

Round The result is a circular arc with a diameter equal to
the line-width, centered on the joinpoint.

Bevel The result is Butt endpoint styles, and then the trian-
gular notch is filled.

For a line with coincident endpoints (x1=x2, yl1=y2), when the cap-style is applied
to both endpoints, the semantics depends on the line-width and the cap-style:

51

Requests

NotLast thin This is device-dependent, but the desired effect is
that nothing is drawn.

Butt thin This is device-dependent, but the desired effect is
that a single pixel is drawn.

Round thin This is the same as Butt/thin.

Projecting thin This is the same as Butt/thin.

Butt wide Nothing is drawn.

Round wide The closed path is a circle, centered at the endpoint

and with a diameter equal to the line-width.

Projecting wide The closed path is a square, aligned with the coordi-
nate axes, centered at the endpoint and with sides
equal to the line-width.

For a line with coincident endpoints (x1=x2, yl1=y2), when the join-style is applied
at one or both endpoints, the effect is as if the line was removed from the overall
path. However, if the total path consists of (or is reduced to) a single point joined
with itself, the effect is the same as when the cap-style is applied at both endpoints.

The tile/stipple represents an infinite two-dimensional plane with the tile/stipple
replicated in all dimensions. When that plane is superimposed on the drawable for
use in a graphics operation, the upper-left corner of some instance of the tile/stipple
is at the coordinates within the drawable specified by the tile/stipple origin. The tile/
stipple and clip origins are interpreted relative to the origin of whatever destination
drawable is specified in a graphics request.

The tile pixmap must have the same root and depth as the gcontext (or a Match
error results). The stipple pixmap must have depth one and must have the same
root as the gcontext (or a Match error results). For fill-style Stippled (but not fill-
style OpaqueStippled), the stipple pattern is tiled in a single plane and acts as an
additional clip mask to be ANDed with the clip-mask. Any size pixmap can be used
for tiling or stippling, although some sizes may be faster to use than others.

The fill-style defines the contents of the source for line, text, and fill requests. For
all text and fill requests (for example, PolyText8, PolyText16, PolyFillRectangle,
FillPoly, and PolyFillArc) as well as for line requests with line-style Solid, (for ex-
ample, PolyLine, PolySegment, PolyRectangle, PolyArc) and for the even dash-
es for line requests with line-style OnOffDash or DoubleDash:

Solid Foreground
Tiled Tile
OpaqueStippled A tile with the same width and height as stipple but

with background everywhere stipple has a zero and
with foreground everywhere stipple has a one

Stippled Foreground masked by stipple

For the odd dashes for line requests with line-style DoubleDash:

Solid Background

Tiled Same as for even dashes
OpaqueStippled Same as for even dashes
Stippled Background masked by stipple

52

Requests

The dashes value allowed here is actually a simplified form of the more general
patterns that can be set with SetDashes. Specifying a value of N here is equivalent
to specifying the two element list [N, N] in SetDashes. The value must be nonzero
(or a Value error results). The meaning of dash-offset and dashes are explained in
the SetDashes request.

The clip-mask restricts writes to the destination drawable. Only pixels where the
clip-mask has bits set to 1 are drawn. Pixels are not drawn outside the area covered
by the clip-mask or where the clip-mask has bits set to 0. The clip-mask affects all
graphics requests, but it does not clip sources. The clip-mask origin is interpreted
relative to the origin of whatever destination drawable is specified in a graphics
request. If a pixmap is specified as the clip-mask, it must have depth 1 and have
the same root as the gcontext (or a Match error results). If clip-mask is None, then
pixels are always drawn, regardless of the clip origin. The clip-mask can also be set
with the SetClipRectangles request.

For ClipByChildren, both source and destination windows are additionally clipped
by all viewable InputOutput children. For IncludeInferiors, neither source nor
destination window is clipped by inferiors. This will result in including subwindow
contents in the source and drawing through subwindow boundaries of the destina-
tion. The use of IncludeInferiors with a source or destination window of one depth
with mapped inferiors of differing depth is not illegal, but the semantics is unde-
fined by the core protocol.

The fill-rule defines what pixels are inside (that is, are drawn) for paths given
in FillPoly requests. EvenOdd means a point is inside if an infinite ray with the
point as origin crosses the path an odd number of times. For Winding, a point
is inside if an infinite ray with the point as origin crosses an unequal number of
clockwise and counterclockwise directed path segments. A clockwise directed path
segment is one that crosses the ray from left to right as observed from the point. A
counter-clockwise segment is one that crosses the ray from right to left as observed
from the point. The case where a directed line segment is coincident with the ray is
uninteresting because one can simply choose a different ray that is not coincident
with a segment.

For both fill rules, a point is infinitely small and the path is an infinitely thin line. A
pixel is inside if the center point of the pixel is inside and the center point is not on
the boundary. If the center point is on the boundary, the pixel is inside if and only if
the polygon interior is immediately to its right (x increasing direction). Pixels with
centers along a horizontal edge are a special case and are inside if and only if the
polygon interior is immediately below (y increasing direction).

The arc-mode controls filling in the PolyFillArc request.

The graphics-exposures flag controls GraphicsExposure event generation for Cop-
yArea and CopyPlane requests (and any similar requests defined by extensions).

The default component values are:

53

Requests

Component Default

function Copy

plane-mask all ones

foreground 0

background 1

line-width 0

line-style Solid

cap-style Butt

join-style Miter

fill-style Solid

fill-rule EvenOdd

arc-mode PieSlice

tile Pixmap of unspecified size filled with foreground pix-
el
(that is, client specified pixel if any, else 0)
(subsequent changes to foreground do not affect this
pixmap)

stipple Pixmap of unspecified size filled with ones

tile-stipple-x-origin 0

tile-stipple-y-origin 0

font <server-dependent-font>

subwindow-mode ClipByChildren

graphics-exposures True

clip-x-origin 0

clip-y-origin 0

clip-mask None

dash-offset 0

dashes 4 (that is, the list [4, 4])

Storing a pixmap in a gcontext might or might not result in a copy being made. If
the pixmap is later used as the destination for a graphics request, the change might
or might not be reflected in the gcontext. If the pixmap is used simultaneously in a
graphics request as both a destination and as a tile or stipple, the results are not
defined.

It is quite likely that some amount of gcontext information will be cached in display
hardware and that such hardware can only cache a small number of gcontexts.
Given the number and complexity of components, clients should view switching
between gcontexts with nearly identical state as significantly more expensive than
making minor changes to a single gcontext.

ChangeGC

54

Requests

gc: GCONTEXT

value-mask: BITMASK

value-list: LISTofVALUE

Errors: Alloc, Font, GContext, Match, Pixmap, Value

This request changes components in gc. The value-mask and value-list specify which
components are to be changed. The values and restrictions are the same as for
CreateGC.

Changing the clip-mask also overrides any previous SetClipRectangles request
on the context. Changing dash-offset or dashes overrides any previous SetDashes
request on the context.

The order in which components are verified and altered is server-dependent. If an
error is generated, a subset of the components may have been altered.

CopyGC

src-gc, dst-gc: GCONTEXT
value-mask: BITMASK
Errors: Alloc, GContext, Match, Value

This request copies components from src-gc to dst-gc. The value-mask specifies
which components to copy, as for CreateGC. The two gcontexts must have the same
root and the same depth (or a Match error results).

SetDashes

gc: GCONTEXT

dash-offset: CARD16

dashes: LISTofCARDS8

Errors: Alloc, GContext, Value

This request sets dash-offset and dashes in gc for dashed line styles. Dashes cannot
be empty (or a Value error results). Specifying an odd-length list is equivalent to
specifying the same list concatenated with itself to produce an even-length list.
The initial and alternating elements of dashes are the even dashes; the others are
the odd dashes. Each element specifies a dash length in pixels. All of the elements
must be nonzero (or a Value error results). The dash-offset defines the phase of
the pattern, specifying how many pixels into dashes the pattern should actually
begin in any single graphics request. Dashing is continuous through path elements
combined with a join-style but is reset to the dash-offset between each sequence
of joined lines.

The unit of measure for dashes is the same as in the ordinary coordinate system.
Ideally, a dash length is measured along the slope of the line, but implementations
are only required to match this ideal for horizontal and vertical lines. Failing the
ideal semantics, it is suggested that the length be measured along the major axis
of the line. The major axis is defined as the x axis for lines drawn at an angle of

55

Requests

between -45 and +45 degrees or between 135 and 225 degrees from the x axis. For
all other lines, the major axis is the y axis.

For any graphics primitive, the computation of the endpoint of an individual dash
only depends on the geometry of the primitive, the start position of the dash, the
direction of the dash, and the dash length.

For any graphics primitive, the total set of pixels used to render the primitive (both
even and odd numbered dash elements) with DoubleDash line-style is the same as
the set of pixels used to render the primitive with Solid line-style.

For any graphics primitive, if the primitive is drawn with OnOffDash or Dou-
bleDash line-style unclipped at position [x,y] and again at position [x+dx,y+dy],
then a point [x1,y1] is included in a dash in the first instance if and only if the point
[x1+dx,y1+dy] is included in the dash in the second instance. In addition, the ef-
fective set of points comprising a dash cannot be affected by clipping. A point is
included in a clipped dash if and only if the point lies inside the clipping region and
the point would be included in the dash when drawn unclipped.

SetClipRectangles

gc: GCONTEXT

clip-x-origin, clip-y-origin: INT16

rectangles: LISTofRECTANGLE

ordering: { UnSorted, YSorted, YXSorted, YXBanded}
Errors: Alloc, GContext, Match, Value

This request changes clip-mask in gc to the specified list of rectangles and sets the
clip origin. Output will be clipped to remain contained within the rectangles. The
clip origin is interpreted relative to the origin of whatever destination drawable is
specified in a graphics request. The rectangle coordinates are interpreted relative
to the clip origin. The rectangles should be nonintersecting, or graphics results
will be undefined. Note that the list of rectangles can be empty, which effectively
disables output. This is the opposite of passing None as the clip-mask in CreateGC
and ChangeGC.

If known by the client, ordering relations on the rectangles can be specified with the
ordering argument. This may provide faster operation by the server. If an incorrect
ordering is specified, the server may generate a Match error, but it is not required to
do so. If no error is generated, the graphics results are undefined. UnSorted means
that the rectangles are in arbitrary order. YSorted means that the rectangles are
nondecreasing in their Y origin. YXSorted additionally constrains YSorted order
in that all rectangles with an equal Y origin are nondecreasing in their X origin.
YXBanded additionally constrains YXSorted by requiring that, for every possible
Y scanline, all rectangles that include that scanline have identical Y origins and Y
extents.

FreeGC

gc: GCONTEXT
Errors: GContext

56

Requests

This request deletes the association between the resource ID and the gcontext and
destroys the gcontext.

ClearArea

window: WINDOW

x, y: INT16

width, height: CARD16
exposures: BOOL

Errors: Match, Value, Window

The x and y coordinates are relative to the window's origin and specify the upper-left
corner of the rectangle. If width is zero, it is replaced with the current width of the
window minus x. If height is zero, it is replaced with the current height of the win-
dow minus y. If the window has a defined background tile, the rectangle is tiled with
a plane-mask of all ones and function of Copy and a subwindow-mode of ClipBy-
Children. If the window has background None, the contents of the window are not
changed. In either case, if exposures is True, then one or more exposure events are
generated for regions of the rectangle that are either visible or are being retained
in a backing store.

It is a Match error to use an InputOnly window in this request.

CopyArea

src-drawable, dst-drawable: DRAWABLE
gc: GCONTEXT

src-x, src-y: INT16

width, height: CARD16

dst-x, dst-y: INT16

Errors: Drawable, GContext, Match

This request combines the specified rectangle of src-drawable with the specified
rectangle of dst-drawable. The src-x and src-y coordinates are relative to src-
drawable's origin. The dst-x and dst-y are relative to dst-drawable's origin, each pair
specifying the upper-left corner of the rectangle. The src-drawable must have the
same root and the same depth as dst-drawable (or a Match error results).

If regions of the source rectangle are obscured and have not been retained in back-
ing store or if regions outside the boundaries of the source drawable are specified,
then those regions are not copied, but the following occurs on all corresponding
destination regions that are either visible or are retained in backing-store. If the
dst-drawable is a window with a background other than None, these corresponding
destination regions are tiled (with plane-mask of all ones and function Copy) with
that background. Regardless of tiling and whether the destination is a window or a
pixmap, if graphics-exposures in gc is True, then GraphicsExposure events for all
corresponding destination regions are generated.

If graphics-exposures is True but no GraphicsExposure events are generated, then
a NoExposure event is generated.

57

Requests

GC components: function, plane-mask, subwindow-mode, graphics-exposures, clip-
x-origin, clip-y-origin, clip-mask

CopyPlane

src-drawable, dst-drawable: DRAWABLE

gc: GCONTEXT

src-x, src-y: INT16

width, height: CARD16

dst-x, dst-y: INT16

bit-plane: CARD32

Errors: Drawable, GContext, Match, Value

The src-drawable must have the same root as dst-drawable (or a Match error re-
sults), but it need not have the same depth. The bit-plane must have exactly one bit
set to 1 and the value of bit-plane must be less than %2 sup n% where n is the depth
of src-drawable (or a Value error results). Effectively, a pixmap of the same depth
as dst-drawable and with size specified by the source region is formed using the
foreground/background pixels in gc (foreground everywhere the bit-plane in src-
drawable contains a bit set to 1, background everywhere the bit-plane contains a bit
set to 0), and the equivalent of a CopyArea is performed, with all the same exposure
semantics. This can also be thought of as using the specified region of the source
bit-plane as a stipple with a fill-style of OpaqueStippled for filling a rectangular
area of the destination.

GC components: function, plane-mask, foreground, background, subwindow-mode,
graphics-exposures, clip-x-origin, clip-y-origin, clip-mask

PolyPoint

drawable: DRAWABLE

gc: GCONTEXT

coordinate-mode: { Origin, Previous}
points: LISTofPOINT

Errors: Drawable, GContext, Match, Value

This request combines the foreground pixel in gc with the pixel at each point in the
drawable. The points are drawn in the order listed.

The first point is always relative to the drawable's origin. The rest are relative either
to that origin or the previous point, depending on the coordinate-mode.

GC components: function, plane-mask, foreground, subwindow-mode, clip-x-origin,
clip-y-origin, clip-mask

PolyLine

58

Requests

drawable: DRAWABLE

gc: GCONTEXT

coordinate-mode: { Origin, Previous}
points: LISTofPOINT

Errors: Drawable, GContext, Match, Value

This request draws lines between each pair of points (point[i], point[i+1]). The lines
are drawn in the order listed. The lines join correctly at all intermediate points, and
if the first and last points coincide, the first and last lines also join correctly.

For any given line, no pixel is drawn more than once. If thin (zero line-width) lines
intersect, the intersecting pixels are drawn multiple times. If wide lines intersect,
the intersecting pixels are drawn only once, as though the entire PolyLine were a
single filled shape.

The first point is always relative to the drawable's origin. The rest are relative either
to that origin or the previous point, depending on the coordinate-mode.

When either of the two lines involved in a Bevel join is neither vertical nor hori-
zontal, then the slope and position of the line segment defining the bevel join edge
is implementation dependent. However, the computation of the slope and distance
(relative to the join point) only depends on the line width and the slopes of the two
lines.

GC components: function, plane-mask, line-width, line-style, cap-style, join-style,
fill-style, subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stip-
ple-x-origin, tile-stipple-y-origin, dash-offset, dashes

PolySegment

drawable: DRAWABLE

gc: GCONTEXT

segments: LISTofSEGMENT

where:

SEGMENT: [x1, y1, x2, y2: INT16]

Errors: Drawable, GContext, Match

For each segment, this request draws a line between [x1, y1] and [x2, y2]. The lines
are drawn in the order listed. No joining is performed at coincident endpoints. For

any given line, no pixel is drawn more than once. If lines intersect, the intersecting
pixels are drawn multiple times.

GC components: function, plane-mask, line-width, line-style, cap-style, fill-style, sub-
window-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stip-
ple-x-origin, tile-stipple-y-origin, dash-offset, dashes

PolyRectangle

59

Requests

drawable: DRAWABLE

gc: GCONTEXT

rectangles: LISToOfRECTANGLE
Errors: Drawable, GContext, Match

This request draws the outlines of the specified rectangles, as if a five-point Poly-
Line were specified for each rectangle:

[x,y] [x+width,y] [x+w dth,y+height] [x,y+height] [Xx,VY]

The x and y coordinates of each rectangle are relative to the drawable's origin and
define the upper-left corner of the rectangle.

The rectangles are drawn in the order listed. For any given rectangle, no pixel is
drawn more than once. If rectangles intersect, the intersecting pixels are drawn
multiple times.

GC components: function, plane-mask, line-width, line-style, cap-style, join-style,
fill-style, subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stip-
ple-x-origin, tile-stipple-y-origin, dash-offset, dashes

PolyArc

drawable: DRAWABLE

gc: GCONTEXT

arcs: LISTofARC

Errors: Drawable, GContext, Match

This request draws circular or elliptical arcs. Each arc is specified by a rectangle
and two angles. The angles are signed integers in degrees scaled by 64, with posi-
tive indicating counterclockwise motion and negative indicating clockwise motion.
The start of the arc is specified by anglel relative to the three-o'clock position from
the center of the rectangle, and the path and extent of the arc is specified by an-
gle2 relative to the start of the arc. If the magnitude of angle2 is greater than 360
degrees, it is truncated to 360 degrees. The x and y coordinates of the rectangle
are relative to the origin of the drawable. For an arc specified as [x,y,w,h,al,a2], the
origin of the major and minor axes is at [x+(w/2),y+(h/2)], and the infinitely thin
path describing the entire circle/ellipse intersects the horizontal axis at [x,y+(h/2)]
and [x+w,y+(h/2)] and intersects the vertical axis at [x+(w/2),y] and [x+(w/2),y+h].
These coordinates are not necessarily integral; that is, they are not truncated to
discrete coordinates.

For a wide line with line-width Iw, the ideal bounding outlines for filling are given by
the two infinitely thin paths consisting of all points whose perpendicular distance
from a tangent to the path of the circle/ellipse is equal to lw/2 (which may be a
fractional value). When the width and height of the arc are not equal and both are
nonzero, then the actual bounding outlines are implementation dependent. Howev-
er, the computation of the shape and position of the bounding outlines (relative to

60

Requests

the center of the arc) only depends on the width and height of the arc and the line-
width.

The cap-style is applied the same as for a line corresponding to the tangent of the
circle/ellipse at the endpoint. When the angle of an arc face is not an integral multi-
ple of 90 degrees, and the width and height of the arc are both are nonzero, then the
shape and position of the cap at that face is implementation dependent. However,
for a Butt cap, the face is defined by a straight line, and the computation of the
position (relative to the center of the arc) and the slope of the line only depends on
the width and height of the arc and the angle of the arc face. For other cap styles,
the computation of the position (relative to the center of the arc) and the shape of
the cap only depends on the width and height of the arc, the line-width, the angle
of the arc face, and the direction (clockwise or counter clockwise) of the arc from
the endpoint.

The join-style is applied the same as for two lines corresponding to the tangents
of the circles/ellipses at the join point. When the width and height of both arcs are
nonzero, and the angle of either arc face is not an integral multiple of 90 degrees,
then the shape of the join is implementation dependent. However, the computation
of the shape only depends on the width and height of each arc, the line-width, the
angles of the two arc faces, the direction (clockwise or counter clockwise) of the
arcs from the join point, and the relative orientation of the two arc center points.

For an arc specified as [x,y,w,h,al,a2], the angles must be specified in the effectively
skewed coordinate system of the ellipse (for a circle, the angles and coordinate
systems are identical). The relationship between these angles and angles expressed
in the normal coordinate system of the screen (as measured with a protractor) is
as follows:

skewed-angl e = atan(tan(nornal -angle) * w h) + adjust
The skewed-angle and normal-angle are expressed in radians (rather than in de-

grees scaled by 64) in the range [0,2*PI). The atan returns a value in the range [-
P1/2,P1/2]. The adjust is:

0 for normal-angle in the range [0,PI/2)
PI for normal-angle in the range [PI/2,(3*PI)/2)
2*PI for normal-angle in the range [(3*PI)/2,2*PI)

The arcs are drawn in the order listed. If the last point in one arc coincides with the
first point in the following arc, the two arcs will join correctly. If the first point in the
first arc coincides with the last point in the last arc, the two arcs will join correctly.
For any given arc, no pixel is drawn more than once. If two arcs join correctly and
the line-width is greater than zero and the arcs intersect, no pixel is drawn more
than once. Otherwise, the intersecting pixels of intersecting arcs are drawn multiple
times. Specifying an arc with one endpoint and a clockwise extent draws the same
pixels as specifying the other endpoint and an equivalent counterclockwise extent,
except as it affects joins.

By specifying one axis to be zero, a horizontal or vertical line can be drawn.

Angles are computed based solely on the coordinate system, ignoring the aspect
ratio.

61

Requests

GC components: function, plane-mask, line-width, line-style, cap-style, join-style,
fill-style, subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stip-
ple-x-origin, tile-stipple-y-origin, dash-offset, dashes

FillPoly

drawable: DRAWABLE

gc: GCONTEXT

shape: { Complex, Nonconvex, Convex}
coordinate-mode: { Origin, Previous}
points: LISTofPOINT

Errors: Drawable, GContext, Match, Value

This request fills the region closed by the specified path. The path is closed auto-
matically if the last point in the list does not coincide with the first point. No pixel
of the region is drawn more than once.

The first point is always relative to the drawable's origin. The rest are relative either
to that origin or the previous point, depending on the coordinate-mode.

The shape parameter may be used by the server to improve performance. Complex
means the path may self-intersect. Contiguous coincident points in the path are not
treated as self-intersection.

Nonconvex means the path does not self-intersect, but the shape is not wholly
convex. If known by the client, specifying Nonconvex over Complex may improve
performance. If Nonconvex is specified for a self-intersecting path, the graphics
results are undefined.

Convex means that for every pair of points inside the polygon, the line segment
connecting them does not intersect the path. If known by the client, specifying Con-
vex can improve performance. If Convex is specified for a path that is not convex,
the graphics results are undefined.

GC components: function, plane-mask, fill-style, fill-rule, subwindow-mode, clip-x-
origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stip-
ple-x-origin, tile-stipple-y-origin

PolyFillRectangle

drawable: DRAWABLE

gc: GCONTEXT

rectangles: LISTofRECTANGLE
Errors: Drawable, GContext, Match

This request fills the specified rectangles, as if a four-point FillPoly were specified
for each rectangle:

62

Requests

[x,y] [x+width,y] [x+w dth,y+height] [x,y+height]

The x and y coordinates of each rectangle are relative to the drawable's origin and
define the upper-left corner of the rectangle.

The rectangles are drawn in the order listed. For any given rectangle, no pixel is
drawn more than once. If rectangles intersect, the intersecting pixels are drawn
multiple times.

GC components: function, plane-mask, fill-style, subwindow-mode, clip-x-origin,
clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stip-
ple-x-origin, tile-stipple-y-origin

PolyFillArc

drawable: DRAWABLE

gc: GCONTEXT

arcs: LISTofARC

Errors: Drawable, GContext, Match

For each arc, this request fills the region closed by the infinitely thin path described
by the specified arc and one or two line segments, depending on the arc-mode.
For Chord, the single line segment joining the endpoints of the arc is used. For
PieSlice, the two line segments joining the endpoints of the arc with the center
point are used.

For an arc specified as [x,y,w,h,al,a2], the origin of the major and minor axes is
at [x+(w/2),y+(h/2)], and the infinitely thin path describing the entire circle/ellipse
intersects the horizontal axis at [x,y+(h/2)] and [x+w,y+(h/2)] and intersects the
vertical axis at [x+(w/2),y] and [x+(w/2),y+h]. These coordinates are not necessarily
integral; that is, they are not truncated to discrete coordinates.

The arc angles are interpreted as specified in the PolyArc request. When the angle
of an arc face is not an integral multiple of 90 degrees, then the precise endpoint on
the arc is implementation dependent. However, for Chord arc-mode, the computa-
tion of the pair of endpoints (relative to the center of the arc) only depends on the
width and height of the arc and the angles of the two arc faces. For PieSlice arc-
mode, the computation of an endpoint only depends on the angle of the arc face for
that endpoint and the ratio of the arc width to arc height.

The arcs are filled in the order listed. For any given arc, no pixel is drawn more than
once. If regions intersect, the intersecting pixels are drawn multiple times.

GC components: function, plane-mask, fill-style, arc-mode, subwindow-mode, clip-
x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stip-
ple-x-origin, tile-stipple-y-origin

Putimage

63

Requests

drawable: DRAWABLE

gc: GCONTEXT

depth: CARDS

width, height: CARD16

dst-x, dst-y: INT16

left-pad: CARDS

format: { Bitmap, XYPixmap, ZPixmap}
data: LISTofBYTE

Errors: Drawable, GContext, Match, Value

This request combines an image with a rectangle of the drawable. The dst-x and
dst-y coordinates are relative to the drawable's origin.

If Bitmap format is used, then depth must be one (or a Match error results), and
the image must be in XY format. The foreground pixel in gc defines the source for
bits set to 1 in the image, and the background pixel defines the source for the bits
set to 0.

For XYPixmap and ZPixmap, the depth must match the depth of the drawable (or
a Match error results). For XYPixmap, the image must be sent in XY format. For
ZPixmap, the image must be sent in the Z format defined for the given depth.

The left-pad must be zero for ZPixmap format (or a Match error results). For
Bitmap and XYPixmap format, left-pad must be less than bitmap-scanline-pad as
given in the server connection setup information (or a Match error results). The
first left-pad bits in every scanline are to be ignored by the server. The actual image
begins that many bits into the data. The width argument defines the width of the
actual image and does not include left-pad.

GC components: function, plane-mask, subwindow-mode, clip-x-origin, clip-y-origin,
clip-mask

GC mode-dependent components: foreground, background

Getlmage

drawable: DRAWABLE

x, y: INT16

width, height: CARD16
plane-mask: CARD32

format: { XYPixmap, ZPixmap}
>

depth: CARDS8

visual: VISUALID or None

data: LISTofBYTE

Errors: Drawable, Match, Value

This request returns the contents of the given rectangle of the drawable in the
given format. The x and y coordinates are relative to the drawable's origin and

64

Requests

define the upper-left corner of the rectangle. If XYPixmap is specified, only the
bit planes specified in plane-mask are transmitted, with the planes appearing from
most significant to least significant in bit order. If ZPixmap is specified, then bits
in all planes not specified in plane-mask are transmitted as zero. Range checking
is not performed on plane-mask; extraneous bits are simply ignored. The returned
depth is as specified when the drawable was created and is the same as a depth
component in a FORMAT structure (in the connection setup), not a bits-per-pixel
component. If the drawable is a window, its visual type is returned. If the drawable
is a pixmap, the visual is None.

If the drawable is a pixmap, then the given rectangle must be wholly contained
within the pixmap (or a Match error results). If the drawable is a window, the win-
dow must be viewable, and it must be the case that, if there were no inferiors or
overlapping windows, the specified rectangle of the window would be fully visible
on the screen and wholly contained within the outside edges of the window (or a
Match error results). Note that the borders of the window can be included and
read with this request. If the window has a backing store, then the backing-store
contents are returned for regions of the window that are obscured by noninferior
windows; otherwise, the returned contents of such obscured regions are undefined.
Also undefined are the returned contents of visible regions of inferiors of different
depth than the specified window. The pointer cursor image is not included in the
contents returned.

This request is not general-purpose in the same sense as other graphics-related
requests. It is intended specifically for rudimentary hardcopy support.

PolyText8

drawable: DRAWABLE
gc: GCONTEXT

x, y: INT16

items: LISTofTEXTITEMS8

where: TEXTITEMS: TEXTELTS8 or FONT
TEXTELTS: [delta: INT8
string: STRINGS8]
Errors: Drawable, Font, GContext, Match

The x and y coordinates are relative to the drawable's origin and specify the baseline
starting position (the initial character origin). Each text item is processed in turn.
A font item causes the font to be stored in gc and to be used for subsequent text.
Switching among fonts does not affect the next character origin. A text element
delta specifies an additional change in the position along the x axis before the string
is drawn; the delta is always added to the character origin. Each character image,
as defined by the font in gc, is treated as an additional mask for a fill operation on
the drawable.

All contained FONTs are always transmitted most significant byte first.
If a Font error is generated for an item, the previous items may have been drawn.

For fonts defined with 2-byte matrix indexing, each STRINGS byte is interpreted as
a byte2 value of a CHAR2B with a bytel value of zero.

65

Requests

GC components: function, plane-mask, fill-style, font, subwindow-mode, clip-x-ori-
gin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stip-
ple-x-origin, tile-stipple-y-origin

PolyText16

drawable: DRAWABLE
gc: GCONTEXT
x, y: INT16
items: LISTofTEXTITEM16
where: TEXTITEM16: TEXTELT16 or FONT
TEXTELT16: [delta: INT8
string: STRING16]
Errors: Drawable, Font, GContext, Match

This request is similar to PolyText8, except 2-byte (or 16-bit) characters are used.
For fonts defined with linear indexing rather than 2-byte matrix indexing, the server
will interpret each CHAR2B as a 16-bit number that has been transmitted most
significant byte first (that is, bytel of the CHAR2B is taken as the most significant
byte).

ImageText8

drawable: DRAWABLE

gc: GCONTEXT

x, y: INT16

string: STRINGS

Errors: Drawable, GContext, Match

The x and y coordinates are relative to the drawable's origin and specify the baseline
starting position (the initial character origin). The effect is first to fill a destination
rectangle with the background pixel defined in gc and then to paint the text with
the foreground pixel. The upper-left corner of the filled rectangle is at:

[x, y - font-ascent]

the width is:

overal | -wi dth

and the height is:

font-ascent + font-descent

The overall-width, font-ascent, and font-descent are as they would be returned by
a QueryTextExtents call using gc and string.

66

Requests

The function and fill-style defined in gc are ignored for this request. The effective
function is Copy, and the effective fill-style Solid.

For fonts defined with 2-byte matrix indexing, each STRINGS byte is interpreted as
a byte2 value of a CHAR2B with a bytel value of zero.

GC components: plane-mask, foreground, background, font, subwindow-mode, clip-
x-origin, clip-y-origin, clip-mask

ImageTextl6

drawable: DRAWABLE

gc: GCONTEXT

x, y: INT16

string: STRING16

Errors: Drawable, GContext, Match

This request is similar to ImageText8, except 2-byte (or 16-bit) characters are used.
For fonts defined with linear indexing rather than 2-byte matrix indexing, the server
will interpret each CHAR2B as a 16-bit number that has been transmitted most
significant byte first (that is, bytel of the CHAR2B is taken as the most significant
byte).

CreateColormap

mid: COLORMAP

visual: VISUALID

window: WINDOW

alloc: { None, All}

Errors: Alloc, IDChoice, Match, Value, Window

This request creates a colormap of the specified visual type for the screen on which
the window resides and associates the identifier mid with it. The visual type must
be one supported by the screen (or a Match error results). The initial values of the
colormap entries are undefined for classes GrayScale, PseudoColor, and Direct-
Color. For StaticGray, StaticColor, and TrueColor, the entries will have defined
values, but those values are specific to the visual and are not defined by the core
protocol. For StaticGray, StaticColor, and TrueColor, alloc must be specified as
None (or a Match error results). For the other classes, if alloc is None, the col-
ormap initially has no allocated entries, and clients can allocate entries.

If alloc is All, then the entire colormap is allocated writable. The initial values of all
allocated entries are undefined. For GrayScale and PseudoColor, the effect is as
if an AllocColorCells request returned all pixel values from zero to N - 1, where
N is the colormap-entries value in the specified visual. For DirectColor, the effect
is as if an AllocColorPlanes request returned a pixel value of zero and red-mask,
green-mask, and blue-mask values containing the same bits as the corresponding
masks in the specified visual. However, in all cases, none of these entries can be
freed with FreeColors.

67

Requests

FreeColormap

cmap: COLORMAP
Errors: Colormap

This request deletes the association between the resource ID and the colormap and
frees the colormap storage. If the colormap is an installed map for a screen, it is
uninstalled (see UninstallColormap request). If the colormap is defined as the col-
ormap for a window (by means of CreateWindow or ChangeWindowAttributes),
the colormap for the window is changed to None, and a ColormapNotify event is
generated. The protocol does not define the colors displayed for a window with a
colormap of None.

This request has no effect on a default colormap for a screen.

CopyColormapAndFree

mid, src-cmap: COLORMAP
Errors: Alloc, Colormap, IDChoice

This request creates a colormap of the same visual type and for the same screen
as src-cmap, and it associates identifier mid with it. It also moves all of the client's
existing allocations from src-cmap to the new colormap with their color values intact
and their read-only or writable characteristics intact, and it frees those entries in
src-cmap. Color values in other entries in the new colormap are undefined. If src-
cmap was created by the client with alloc All (see CreateColormap request), then
the new colormap is also created with alloc All, all color values for all entries are
copied from src-cmap, and then all entries in src-cmap are freed. If src-cmap was
not created by the client with alloc All, then the allocations to be moved are all those
pixels and planes that have been allocated by the client using either AllocColor,
AllocNamedColor, AllocColorCells, or AllocColorPlanes and that have not been
freed since they were allocated.

InstallColormap

cmap: COLORMAP
Errors: Colormap

This request makes this colormap an installed map for its screen. All windows asso-
ciated with this colormap immediately display with true colors. As a side effect, ad-
ditional colormaps might be implicitly installed or uninstalled by the server. Which
other colormaps get installed or uninstalled is server-dependent except that the re-
quired list must remain installed.

If cmap is not already an installed map, a ColormapNotify event is generated on
every window having cmap as an attribute. In addition, for every other colormap
that is installed or uninstalled as a result of the request, a ColormapNotify event
is generated on every window having that colormap as an attribute.

At any time, there is a subset of the installed maps that are viewed as an ordered list
and are called the required list. The length of the required list is at most M, where

68

Requests

M is the min-installed-maps specified for the screen in the connection setup. The
required list is maintained as follows. When a colormap is an explicit argument to
InstallColormap, it is added to the head of the list; the list is truncated at the tail, if
necessary, to keep the length of the list to at most M. When a colormap is an explicit
argument to UninstallColormap and it is in the required list, it is removed from
the list. A colormap is not added to the required list when it is installed implicitly
by the server, and the server cannot implicitly uninstall a colormap that is in the
required list.

Initially the default colormap for a screen is installed (but is not in the required list).

UninstallColormap

cmap: COLORMAP
Errors: Colormap

If cmap is on the required list for its screen (see InstallColormap request), it is re-
moved from the list. As a side effect, cmap might be uninstalled, and additional col-
ormaps might be implicitly installed or uninstalled. Which colormaps get installed or
uninstalled is server-dependent except that the required list must remain installed.

If cmap becomes uninstalled, a ColormapNotify event is generated on every win-
dow having cmap as an attribute. In addition, for every other colormap that is in-
stalled or uninstalled as a result of the request, a ColormapNotify event is gener-
ated on every window having that colormap as an attribute.

ListinstalledColormaps

window: WINDOW

>

cmaps: LISTof COLORMAP
Errors: Window

This request returns a list of the currently installed colormaps for the screen of the
specified window. The order of colormaps is not significant, and there is no explicit
indication of the required list (see InstallColormap request).

AllocColor

cmap: COLORMAP

red, green, blue: CARD16
| 2

pixel: CARD32

red, green, blue: CARD16
Errors: Alloc, Colormap

This request allocates a read-only colormap entry corresponding to the closest RGB
values provided by the hardware. It also returns the pixel and the RGB values actu-
ally used. Multiple clients requesting the same effective RGB values can be assigned
the same read-only entry, allowing entries to be shared.

69

Requests

AllocNamedColor

cmap: COLORMAP

name: STRINGS

| 2

pixel: CARD32

exact-red, exact-green, exact-blue: CARD16
visual-red, visual-green, visual-blue: CARD16
Errors: Alloc, Colormap, Name

This request looks up the named color with respect to the screen associated with
the colormap. Then, it does an AllocColor on cmap. The name should use the ISO
Latin-1 encoding, and uppercase and lowercase do not matter. The exact RGB values
specify the true values for the color, and the visual values specify the values actually
used in the colormap.

AllocColorCells

cmap: COLORMAP

colors, planes: CARD16
contiguous: BOOL

| 2

pixels, masks: LISTofCARD32
Errors: Alloc, Colormap, Value

The number of colors must be positive, and the number of planes must be nonnega-
tive (or a Value error results). If C colors and P planes are requested, then C pixels
and P masks are returned. No mask will have any bits in common with any other
mask or with any of the pixels. By ORing together masks and pixels, C*%2 sup P%
distinct pixels can be produced; all of these are allocated writable by the request.
For GrayScale or PseudoColor, each mask will have exactly one bit set to 1; for
DirectColor, each will have exactly three bits set to 1. If contiguous is True and
if all masks are ORed together, a single contiguous set of bits will be formed for
GrayScale or PseudoColor, and three contiguous sets of bits (one within each pix-
el subfield) for DirectColor. The RGB values of the allocated entries are undefined.

AllocColorPlanes

cmap: COLORMAP

colors, reds, greens, blues: CARD16
contiguous: BOOL

| 2

pixels: LISTofCARD32

red-mask, green-mask, blue-mask: CARD32
Errors: Alloc, Colormap, Value

70

Requests

The number of colors must be positive, and the reds, greens, and blues must be
nonnegative (or a Value error results). If C colors, R reds, G greens, and B blues
are requested, then C pixels are returned, and the masks have R, G, and B bits set,
respectively. If contiguous is True, then each mask will have a contiguous set of
bits. No mask will have any bits in common with any other mask or with any of the
pixels. For DirectColor, each mask will lie within the corresponding pixel subfield.
By ORing together subsets of masks with pixels, C*%2 sup R+G+B% distinct pixels
can be produced; all of these are allocated writable by the request. The initial RGB
values of the allocated entries are undefined. In the colormap, there are only C*%?2
sup R% independent red entries, C*%2 sup G% independent green entries, and C*
%?2 sup B% independent blue entries. This is true even for PseudoColor. When the
colormap entry for a pixel value is changed using StoreColors or StoreNamed-
Color, the pixel is decomposed according to the masks and the corresponding in-
dependent entries are updated.

FreeColors

cmap: COLORMAP

pixels: LISTofCARD32
plane-mask: CARD32

Errors: Access, Colormap, Value

The plane-mask should not have any bits in common with any of the pixels. The set of
all pixels is produced by ORing together subsets of plane-mask with the pixels. The
request frees all of these pixels that were allocated by the client (using AllocColor,
AllocNamedColor, AllocColorCells, and AllocColorPlanes). Note that freeing
an individual pixel obtained from AllocColorPlanes may not actually allow it to be
reused until all of its related pixels are also freed. Similarly, a read-only entry is not
actually freed until it has been freed by all clients, and if a client allocates the same
read-only entry multiple times, it must free the entry that many times before the
entry is actually freed.

All specified pixels that are allocated by the client in cmap are freed, even if one
or more pixels produce an error. A Value error is generated if a specified pixel is
not a valid index into cmap. An Access error is generated if a specified pixel is not
allocated by the client (that is, is unallocated or is only allocated by another client)
or if the colormap was created with all entries writable (using an alloc value of All
in CreateColormap). If more than one pixel is in error; it is arbitrary as to which
pixel is reported.

StoreColors

cmap: COLORMAP

items: LISTofCOLORITEM

where:

COLORITEM: [pixel: CARD32
do-red, do-green, do-blue: BOOL
red, green, blue: CARD16]

Errors: Access, Colormap, Value

71

Requests

This request changes the colormap entries of the specified pixels. The do-red, do-
green, and do-blue fields indicate which components should actually be changed. If
the colormap is an installed map for its screen, the changes are visible immediately.

All specified pixels that are allocated writable in cmap (by any client) are changed,
even if one or more pixels produce an error. A Value error is generated if a specified
pixel is not a valid index into cmap, and an Access error is generated if a specified
pixel is unallocated or is allocated read-only. If more than one pixel is in error, it is
arbitrary as to which pixel is reported.

StoreNamedColor

cmap: COLORMAP

pixel: CARD32

name: STRINGS

do-red, do-green, do-blue: BOOL

Errors: Access, Colormap, Name, Value

This request looks up the named color with respect to the screen associated with
cmap and then does a StoreColors in cmap. The name should use the ISO Latin-1
encoding, and uppercase and lowercase do not matter. The Access and Value errors
are the same as in StoreColors.

QueryColors

cmap: COLORMAP

pixels: LISTofCARD32

| 2

colors: LISTofRGB

where:

RGB: [red, green, blue: CARD16]
Errors: Colormap, Value

This request returns the hardware-specific color values stored in cmap for the spec-
ified pixels. The values returned for an unallocated entry are undefined. A Value
error is generated if a pixel is not a valid index into cmap. If more than one pixel is
in error, it is arbitrary as to which pixel is reported.

LookupColor

cmap: COLORMAP

name: STRINGS

>

exact-red, exact-green, exact-blue: CARD16
visual-red, visual-green, visual-blue: CARD16
Errors: Colormap, Name

72

Requests

This request looks up the string name of a color with respect to the screen associated
with cmap and returns both the exact color values and the closest values provided
by the hardware with respect to the visual type of cmap. The name should use the
ISO Latin-1 encoding, and uppercase and lowercase do not matter.

CreateCursor

cid: CURSOR

source: PIXMAP

mask: PIXMAP or None

fore-red, fore-green, fore-blue: CARD16
back-red, back-green, back-blue: CARD16
x, y: CARD16

Errors: Alloc, IDChoice, Match, Pixmap

This request creates a cursor and associates identifier cid with it. The foreground
and background RGB values must be specified, even if the server only has a Stat-
icGray or GrayScale screen. The foreground is used for the bits set to 1 in the
source, and the background is used for the bits set to 0. Both source and mask (if
specified) must have depth one (or a Match error results), but they can have any
root. The mask pixmap defines the shape of the cursor. That is, the bits set to 1
in the mask define which source pixels will be displayed, and where the mask has
bits set to 0, the corresponding bits of the source pixmap are ignored. If no mask
is given, all pixels of the source are displayed. The mask, if present, must be the
same size as the source (or a Match error results). The x and y coordinates define
the hotspot relative to the source's origin and must be a point within the source (or
a Match error results).

The components of the cursor may be transformed arbitrarily to meet display lim-
itations.

The pixmaps can be freed immediately if no further explicit references to them are
to be made.

Subsequent drawing in the source or mask pixmap has an undefined effect on the
cursor. The server might or might not make a copy of the pixmap.

CreateGlyphCursor

cid: CURSOR

source-font: FONT

mask-font: FONT or None

source-char, mask-char: CARD16
fore-red, fore-green, fore-blue: CARD16
back-red, back-green, back-blue: CARD16
Errors: Alloc, Font, IDChoice, Value

This request is similar to CreateCursor, except the source and mask bitmaps are
obtained from the specified font glyphs. The source-char must be a defined glyph in

73

Requests

source-font, and if mask-font is given, mask-char must be a defined glyph in mask-
font (or a Value error results). The mask font and character are optional. The origins
of the source and mask (if it is defined) glyphs are positioned coincidently and define
the hotspot. The source and mask need not have the same bounding box metrics,
and there is no restriction on the placement of the hotspot relative to the bounding
boxes. If no mask is given, all pixels of the source are displayed. Note that source-
char and mask-char are CARD16, not CHAR2B. For 2-byte matrix fonts, the 16-bit
value should be formed with bytel in the most significant byte and byte2 in the
least significant byte.

The components of the cursor may be transformed arbitrarily to meet display lim-
itations.

The fonts can be freed immediately if no further explicit references to them are to
be made.

FreeCursor

cursor: CURSOR
Errors: Cursor

This request deletes the association between the resource ID and the cursor. The
cursor storage will be freed when no other resource references it.

RecolorCursor

cursor: CURSOR

fore-red, fore-green, fore-blue: CARD16
back-red, back-green, back-blue: CARD16
Errors: Cursor

This request changes the color of a cursor. If the cursor is being displayed on a
screen, the change is visible immediately.

QueryBestSize

class: { Cursor, Tile, Stipple}
drawable: DRAWABLE

width, height: CARD16

>

width, height: CARD16

Errors: Drawable, Match, Value

This request returns the best size that is closest to the argument size. For Cursor,

this is the largest size that can be fully displayed. For Tile, this is the size that can
be tiled fastest. For Stipple, this is the size that can be stippled fastest.

For Cursor, the drawable indicates the desired screen. For Tile and Stipple, the
drawable indicates the screen and also possibly the window class and depth. An

74

Requests

InputOnly window cannot be used as the drawable for Tile or Stipple (or a Match
error results).

QueryExtension

name: STRINGS8

| 2

present: BOOL
major-opcode: CARDS
first-event: CARDS8
first-error: CARDS

This request determines if the named extension is present. If so, the major opcode
for the extension is returned, if it has one. Otherwise, zero is returned. Any minor
opcode and the request formats are specific to the extension. If the extension in-
volves additional event types, the base event type code is returned. Otherwise, zero
is returned. The format of the events is specific to the extension. If the extension
involves additional error codes, the base error code is returned. Otherwise, zero is
returned. The format of additional data in the errors is specific to the extension.

The extension name should use the ISO Latin-1 encoding, and uppercase and low-
ercase matter.

ListExtensions

| 4
names: LISTof STRING8

This request returns a list of all extensions supported by the server.

SetModifierMapping

keycodes-per-modifier: CARD8
keycodes: LISTofKEYCODE

| 4
status: { Success, Busy, Failed}
Errors: Alloc, Value

This request specifies the keycodes (if any) of the keys to be used as modifiers.
The number of keycodes in the list must be 8*keycodes-per-modifier (or a Length
error results). The keycodes are divided into eight sets, with each set containing
keycodes-per-modifier elements. The sets are assigned to the modifiers Shift, Lock,
Control, Mod1, Mod2, Mod3, Mod4, and Mod5, in order. Only nonzero keycode
values are used within each set; zero values are ignored. All of the nonzero keycodes
must be in the range specified by min-keycode and max-keycode in the connection
setup (or a Value error results). The order of keycodes within a set does not matter.
If no nonzero values are specified in a set, the use of the corresponding modifier is

75

Requests

disabled, and the modifier bit will always be zero. Otherwise, the modifier bit will
be one whenever at least one of the keys in the corresponding set is in the down
position.

A server can impose restrictions on how modifiers can be changed (for example, if
certain keys do not generate up transitions in hardware, if auto-repeat cannot be
disabled on certain keys, or if multiple keys per modifier are not supported). The
status reply is Failed if some such restriction is violated, and none of the modifiers
is changed.

If the new nonzero keycodes specified for a modifier differ from those currently
defined and any (current or new) keys for that modifier are logically in the down
state, then the status reply is Busy, and none of the modifiers is changed.

This request generates a MappingNotify event on a Success status.

GetModifierMapping

>
keycodes-per-modifier: CARD8
keycodes: LISTofKEYCODE

This request returns the keycodes of the keys being used as modifiers. The number
of keycodes in the list is 8*keycodes-per-modifier. The keycodes are divided into
eight sets, with each set containing keycodes-per-modifier elements. The sets are
assigned to the modifiers Shift, Lock, Control, Mod1, Mod2, Mod3, Mod4, and
Mod35, in order. The keycodes-per-modifier value is chosen arbitrarily by the server;
zeroes are used to fill in unused elements within each set. If only zero values are
given in a set, the use of the corresponding modifier has been disabled. The order
of keycodes within each set is chosen arbitrarily by the server.

ChangeKeyboardMapping

first-keycode: KEYCODE
keysyms-per-keycode: CARD8
keysyms: LISTofKEYSYM
Errors: Alloc, Value

This request defines the symbols for the specified number of keycodes, starting with
the specified keycode. The symbols for keycodes outside this range remained un-
changed. The number of elements in the keysyms list must be a multiple of keysyms-
per-keycode (or a Length error results). The first-keycode must be greater than or
equal to min-keycode as returned in the connection setup (or a Value error results)
and:

first-keycode + (keysyns-length / keysyms-per-keycode) - 1

must be less than or equal to max-keycode as returned in the connection setup (or
a Value error results). KEYSYM number N (counting from zero) for keycode K has
an index (counting from zero) of:

76

Requests

(K- first-keycode) * keysyms-per-keycode + N

in keysyms. The keysyms-per-keycode can be chosen arbitrarily by the client to be
large enough to hold all desired symbols. A special KEYSYM value of NoSymbol
should be used to fill in unused elements for individual keycodes. It is legal for
NoSymbol to appear in nontrailing positions of the effective list for a keycode.

This request generates a MappingNotify event.

There is no requirement that the server interpret this mapping; it is merely stored
for reading and writing by clients (see section 5).

GetKeyboardMapping

first-keycode: KEYCODE
count: CARDS

| 2

keysyms-per-keycode: CARDS
keysyms: LISTofKEYSYM
Errors: Value

This request returns the symbols for the specified number of keycodes, starting
with the specified keycode. The first-keycode must be greater than or equal to min-
keycode as returned in the connection setup (or a Value error results), and:
first-keycode + count - 1
must be less than or equal to max-keycode as returned in the connection setup (or
a Value error results). The number of elements in the keysyms list is:
count * keysyns- per-keycode
and KEYSYM number N (counting from zero) for keycode K has an index (counting
from zero) of:
(K- first-keycode) * keysyms-per-keycode + N
in keysyms. The keysyms-per-keycode value is chosen arbitrarily by the server to be

large enough to report all requested symbols. A special KEYSYM value of NoSymbol
is used to fill in unused elements for individual keycodes.

ChangeKeyboardControl

value-mask: BITMASK
value-list: LISTofVALUE
Errors: Match, Value

77

Requests

This request controls various aspects of the keyboard. The value-mask and value-list
specify which controls are to be changed. The possible values are:

Control Type
key-click-percent INT8

bell-percent INT8

bell-pitch INT16

bell-duration INT16

led CARDS8

led-mode { On, Off }

key KEYCODE
auto-repeat-mode { On, Off, Default }

The key-click-percent sets the volume for key clicks between 0 (off) and 100 (loud)
inclusive, if possible. Setting to -1 restores the default. Other negative values gen-
erate a Value error.

The bell-percent sets the base volume for the bell between 0 (off) and 100 (loud)
inclusive, if possible. Setting to -1 restores the default. Other negative values gen-
erate a Value error.

The bell-pitch sets the pitch (specified in Hz) of the bell, if possible. Setting to -1
restores the default. Other negative values generate a Value error.

The bell-duration sets the duration of the bell (specified in milliseconds), if possible.
Setting to -1 restores the default. Other negative values generate a Value error.

If both led-mode and led are specified, then the state of that LED is changed, if pos-
sible. If only led-mode is specified, then the state of all LEDs are changed, if possible.
At most 32 LEDs, numbered from one, are supported. No standard interpretation
of LEDs is defined. It is a Match error if an led is specified without an led-mode.

If both auto-repeat-mode and key are specified, then the auto-repeat mode of that
key is changed, if possible. If only auto-repeat-mode is specified, then the global
auto-repeat mode for the entire keyboard is changed, if possible, without affecting
the per-key settings. It is a Match error if a key is specified without an auto-re-
peat-mode. Each key has an individual mode of whether or not it should auto-repeat
and a default setting for that mode. In addition, there is a global mode of whether
auto-repeat should be enabled or not and a default setting for that mode. When the
global mode is On, keys should obey their individual auto-repeat modes. When the
global mode is Off, no keys should auto-repeat. An auto-repeating key generates
alternating KeyPress and KeyRelease events. When a key is used as a modifier,
it is desirable for the key not to auto-repeat, regardless of the auto-repeat setting
for that key.

A bell generator connected with the console but not directly on the keyboard is
treated as if it were part of the keyboard.

The order in which controls are verified and altered is server-dependent. If an error
is generated, a subset of the controls may have been altered.

GetKeyboardControl

78

Requests

Bell

>

key-click-percent: CARD8
bell-percent: CARD8
bell-pitch: CARD16
bell-duration: CARD16
led-mask: CARD32
global-auto-repeat: { On, Off}
auto-repeats: LISTofCARD8

This request returns the current control values for the keyboard. For the LEDs,
the least significant bit of led-mask corresponds to LED one, and each one bit in
led-mask indicates an LED that is lit. The auto-repeats is a bit vector; each one
bit indicates that auto-repeat is enabled for the corresponding key. The vector is
represented as 32 bytes. Byte N (from 0) contains the bits for keys 8N to 8N + 7,
with the least significant bit in the byte representing key 8N.

percent: INT8
Errors: Value

This request rings the bell on the keyboard at a volume relative to the base volume
for the keyboard, if possible. Percent can range from -100 to 100 inclusive (or a
Value error results). The volume at which the bell is rung when percent is nonneg-
ative is:

base - [(base * percent) / 100] + percent

When percent is negative, it is:

base + [(base * percent) / 100]

SetPointerMapping

map: LISTofCARD8

>

status: { Success, Busy}
Errors: Value

This request sets the mapping of the pointer. Elements of the list are indexed start-
ing from one. The length of the list must be the same as GetPointerMapping would
return (or a Value error results). The index is a core button number, and the ele-
ment of the list defines the effective number.

A zero element disables a button. Elements are not restricted in value by the number
of physical buttons, but no two elements can have the same nonzero value (or a
Value error results).

79

Requests

If any of the buttons to be altered are logically in the down state, the status reply
is Busy, and the mapping is not changed.

This request generates a MappingNotify event on a Success status.

GetPointerMapping

| 2
map: LISTofCARDS8

This request returns the current mapping of the pointer. Elements of the list are
indexed starting from one. The length of the list indicates the number of physical
buttons.

The nominal mapping for a pointer is the identity mapping: mapli]=i.

ChangePointerControl

do-acceleration, do-threshold: BOOL
acceleration-numerator, acceleration-denominator: INT16
threshold: INT16

Errors: Value

This request defines how the pointer moves. The acceleration is a multiplier for
movement expressed as a fraction. For example, specifying 3/1 means the pointer
moves three times as fast as normal. The fraction can be rounded arbitrarily by
the server. Acceleration only takes effect if the pointer moves more than threshold
number of pixels at once and only applies to the amount beyond the threshold.
Setting a value to -1 restores the default. Other negative values generate a Value
error, as does a zero value for acceleration-denominator.

GetPointerControl

|
acceleration-numerator, acceleration-denominator: CARD16
threshold: CARD16

This request returns the current acceleration and threshold for the pointer.

SetScreenSaver

timeout, interval: INT16
prefer-blanking: { Yes, No, Default}
allow-exposures: { Yes, No, Default}
Errors: Value

The timeout and interval are specified in seconds; setting a value to -1 restores the
default. Other negative values generate a Value error. If the timeout value is zero,

80

Requests

screen-saver is disabled (but an activated screen-saver is not deactivated). If the
timeout value is nonzero, screen-saver is enabled. Once screen-saver is enabled,
if no input from the keyboard or pointer is generated for timeout seconds, screen-
saver is activated. For each screen, if blanking is preferred and the hardware sup-
ports video blanking, the screen will simply go blank. Otherwise, if either exposures
are allowed or the screen can be regenerated without sending exposure events to
clients, the screen is changed in a server-dependent fashion to avoid phosphor burn.
Otherwise, the state of the screens does not change, and screen-saver is not acti-
vated. At the next keyboard or pointer input or at the next ForceScreenSaver with
mode Reset, screen-saver is deactivated, and all screen states are restored.

If the server-dependent screen-saver method is amenable to periodic change, inter-
val serves as a hint about how long the change period should be, with zero hinting
that no periodic change should be made. Examples of ways to change the screen in-
clude scrambling the color map periodically, moving an icon image about the screen
periodically, or tiling the screen with the root window background tile, randomly
reorigined periodically.

GetScreenSaver

| 4

timeout, interval: CARD16
prefer-blanking: { Yes, No}
allow-exposures: { Yes, No}

This request returns the current screen-saver control values.

ForceScreenSaver

mode: { Activate, Reset}
Errors: Value

If the mode is Activate and screen-saver is currently deactivated, then screen-saver
is activated (even if screen-saver has been disabled with a timeout value of zero).
If the mode is Reset and screen-saver is currently enabled, then screen-saver is
deactivated (if it was activated), and the activation timer is reset to its initial state
as if device input had just been received.

ChangeHosts

mode: { Insert, Delete}
host: HOST
Errors: Access, Value

This request adds or removes the specified host from the access control list. When
the access control mechanism is enabled and a client attempts to establish a con-
nection to the server, the host on which the client resides must be in the access
control list, or the client must have been granted permission by a server-dependent
method, or the server will refuse the connection.

81

Requests

The client must reside on the same host as the server and/or have been granted
permission by a server-dependent method to execute this request (or an Access
error results).

An initial access control list can usually be specified, typically by naming a file that
the server reads at startup and reset.

The following address families are defined. A serveris not required to support these
families and may support families not listed here. Use of an unsupported family, an
improper address format, or an improper address length within a supported family
results in a Value error.

For the Internet family, the address must be four bytes long. The address bytes are
in standard IP order; the server performs no automatic swapping on the address
bytes. The Internet family supports IP version 4 addresses only.

For the InternetV6 family, the address must be sixteen bytes long. The address bytes
are in standard IP order; the server performs no automatic swapping on the address
bytes. The InternetV6 family supports IP version 6 addresses only.

For the DECnet family, the server performs no automatic swapping on the address
bytes. A Phase IV address is two bytes long: the first byte contains the least signif-
icant eight bits of the node number, and the second byte contains the most signifi-
cant two bits of the node number in the least significant two bits of the byte and the
area in the most significant six bits of the byte.

For the Chaos family, the address must be two bytes long. The host number is always
the first byte in the address, and the subnet number is always the second byte. The
server performs no automatic swapping on the address bytes.

For the ServerInterpreted family, the address may be of any length up to 65535
bytes. The address consists of two strings of ASCII characters, separated by a byte
with a value of 0. The first string represents the type of address, and the second
string contains the address value. Address types and the syntax for their associated
values will be registered via the X.0Org Registry. Implementors who wish to add
implementation specific types may register a unique prefix with the X.Org registry
to prevent namespace collisions.

Use of a host address in the ChangeHosts request is deprecated. It is only useful
when a host has a unique, constant address, a requirement that is increasingly un-
met as sites adopt dynamically assigned addresses, network address translation
gateways, IPv6 link local addresses, and various other technologies. It also assumes
all users of a host share equivalent access rights, and as such has never been suit-
able for many multi-user machine environments. Instead, more secure forms of au-
thentication, such as those based on shared secrets or public key encryption, are
recommended.

ListHosts

| 2
mode: { Enabled, Disabled}
hosts: LISTofHOST

This request returns the hosts on the access control list and whether use of the list
at connection setup is currently enabled or disabled.

82

Requests

Each HOST is padded to a multiple of four bytes.

SetAccessControl

mode: { Enable, Disable}
Errors: Access, Value

This request enables or disables the use of the access control list at connection
setups.

The client must reside on the same host as the server and/or have been granted
permission by a server-dependent method to execute this request (or an Access
error results).

SetCloseDownMode

mode: { Destroy, RetainPermanent, RetainTemporary}
Errors: Value

This request defines what will happen to the client's resources at connection close.
A connection starts in Destroy mode. The meaning of the close-down mode is de-
scribed in section 10.

KillClient

resource: CARD32 or AllTemporary
Errors: Value

If a valid resource is specified, KillClient forces a close-down of the client that cre-
ated the resource. If the client has already terminated in either RetainPermanent
or RetainTemporary mode, all of the client's resources are destroyed (see section
10). If AllTemporary is specified, then the resources of all clients that have termi-
nated in RetainTemporary are destroyed.

NoOperation

This request has no arguments and no results, but the request length field allows
the request to be any multiple of four bytes in length. The bytes contained in the
request are uninterpreted by the server.

This request can be used in its minimum four byte form as padding where neces-
sary by client libraries that find it convenient to force requests to begin on 64-bit
boundaries.

83

Chapter 10. Connection Close

At connection close, all event selections made by the client are discarded. If the
client has the pointer actively grabbed, an UngrabPointer is performed. If the
client has the keyboard actively grabbed, an UngrabKeyboard is performed. All
passive grabs by the client are released. If the client has the server grabbed, an Un-
grabServer is performed. All selections (see SetSelectionOwner request) owned
by the client are disowned. If close-down mode (see SetCloseDownMode request)
is RetainPermanent or RetainTemporary, then all resources (including colormap
entries) allocated by the client are marked as permanent or temporary, respectively
(but this does not prevent other clients from explicitly destroying them). If the mode
is Destroy, all of the client's resources are destroyed.

When a client's resources are destroyed, for each window in the client's save-set, if
the window is an inferior of a window created by the client, the save-set window is
reparented to the closest ancestor such that the save-set window is not an inferior of
a window created by the client. If the save-set window is unmapped, a MapWindow
request is performed on it (even if it was not an inferior of a window created by the
client). The reparenting leaves unchanged the absolute coordinates (with respect to
the root window) of the upper-left outer corner of the save-set window. After save-set
processing, all windows created by the client are destroyed. For each nonwindow
resource created by the client, the appropriate Free request is performed. All colors
and colormap entries allocated by the client are freed.

A server goes through a cycle of having no connections and having some connec-
tions. At every transition to the state of having no connections as a result of a con-
nection closing with a Destroy close-down mode, the server resets its state as if it
had just been started. This starts by destroying all lingering resources from clients
that have terminated in RetainPermanent or RetainTemporary mode. It addi-
tionally includes deleting all but the predefined atom identifiers, deleting all prop-
erties on all root windows, resetting all device maps and attributes (key click, bell
volume, acceleration), resetting the access control list, restoring the standard root
tiles and cursors, restoring the default font path, and restoring the input focus to
state PointerRoot.

Note that closing a connection with a close-down mode of RetainPermanent or
RetainTemporary will not cause the server to reset.

84

Chapter 11. Events

When a button press is processed with the pointer in some window W and no active
pointer grab is in progress, the ancestors of W are searched from the root down,
looking for a passive grab to activate. If no matching passive grab on the button
exists, then an active grab is started automatically for the client receiving the event,
and the last-pointer-grab time is set to the current server time. The effect is essen-
tially equivalent to a GrabButton with arguments:

Argument Value

event-window Event window

event-mask Client's selected pointer events on the event window

pointer-mode and key- Asynchronous

board-mode

owner-events True if the client has OwnerGrabButton selected on
the event window, otherwise False

confine-to None

cursor None

The grab is terminated automatically when the logical state of the pointer has all
buttons released. UngrabPointer and ChangeActivePointerGrab can both be
used to modify the active grab.

Input Device events

KeyPress

KeyRelease
ButtonPress
ButtonRelease
MotionNotify

root, event: WINDOW
child: WINDOW or None
same-screen: BOOL
root-x, root-y, event-x, event-y: INT16
detail: <see below>

state: SETofKEYBUTMASK
time: TIMESTAMP

These events are generated either when a key or button logically changes state or
when the pointer logically moves. The generation of these logical changes may lag
the physical changes if device event processing is frozen. Note that KeyPress and
KeyRelease are generated for all keys, even those mapped to modifier bits. The
source of the event is the window the pointer is in. The window the event is report-
ed with respect to is called the event window. The event window is found by starting
with the source window and looking up the hierarchy for the first window on which
any client has selected interest in the event (provided no intervening window pro-

85

Events

hibits event generation by including the event type in its do-not-propagate-mask).
The actual window used for reporting can be modified by active grabs and, in the
case of keyboard events, can be modified by the focus window.

The root is the root window of the source window, and root-x and root-y are the
pointer coordinates relative to root's origin at the time of the event. Event is the
event window. If the event window is on the same screen as root, then event-x and
event-y are the pointer coordinates relative to the event window's origin. Otherwise,
event-x and event-y are zero. If the source window is an inferior of the event window,
then child is set to the child of the event window that is an ancestor of (or is) the
source window. Otherwise, it is set to None. The state component gives the logical
state of the buttons and modifier keys just before the event. The detail component
type varies with the event type:

Event Component
KeyPress, KeyRelease @ KEYCODE

ButtonPress, ButtonRe- BUTTON
lease

MotionNotify { Normal Hint }

MotionNotify events are only generated when the motion begins and ends in the
window. The granularity of motion events is not guaranteed, but a client selecting
for motion events is guaranteed to get at least one event when the pointer moves and
comes to rest. Selecting PointerMotion receives events independent of the state of
the pointer buttons. By selecting some subset of Button[1-5]Motion instead, Mo-
tionNotify events will only be received when one or more of the specified buttons
are pressed. By selecting ButtonMotion, MotionNotify events will be received
only when at least one button is pressed. The events are always of type MotionNo-
tify, independent of the selection. If PointerMotionHint is selected, the server is
free to send only one MotionNotify event (with detail Hint) to the client for the
event window until either the key or button state changes, the pointer leaves the
event window, or the client issues a QueryPointer or GetMotionEvents request.

Pointer Window events

EnterNotify

LeaveNotify

root, event: WINDOW

child: WINDOW or None
same-screen: BOOL

root-x, root-y, event-x, event-y: INT16
mode: { Normal, Grab, Ungrab}
detail: { Ancestor, Virtual, Inferior, Nonlinear, NonlinearVirtual}
focus: BOOL

state: SETofKEYBUTMASK

time: TIMESTAMP

If pointer motion or window hierarchy change causes the pointer to be in a different
window than before, EnterNotify and LeaveNotify events are generated instead

86

Events

of a MotionNotify event. Only clients selecting EnterWindow on a window receive
EnterNotify events, and only clients selecting LeaveWindow receive LeaveNotify
events. The pointer position reported in the event is always the final position, not
the initial position of the pointer. The root is the root window for this position, and
root-x and root-y are the pointer coordinates relative to root's origin at the time of
the event. Event is the event window. If the event window is on the same screen
as root, then event-x and event-y are the pointer coordinates relative to the event
window's origin. Otherwise, event-x and event-y are zero. In a LeaveNotify event,
if a child of the event window contains the initial position of the pointer, then the
child component is set to that child. Otherwise, it is None. For an EnterNotify
event, if a child of the event window contains the final pointer position, then the
child component is set to that child. Otherwise, it is None. If the event window is
the focus window or an inferior of the focus window, then focus is True. Otherwise,
focus is False.

Normal pointer motion events have mode Normal. Pseudo-motion events when a
grab activates have mode Grab, and pseudo-motion events when a grab deactivates
have mode Ungrab.

All EnterNotify and LeaveNotify events caused by a hierarchy change are gener-
ated after any hierarchy event caused by that change (that is, UnmapNotify, Map-
Notify, ConfigureNotify, GravityNotify, CirculateNotify), but the ordering of
EnterNotify and LeaveNotify events with respect to FocusOut, VisibilityNotify,
and Expose events is not constrained.

Normal events are generated as follows:
When the pointer moves from window A to window B and A is an inferior of B:
* LeaveNotify with detail Ancestor is generated on A.

* LeaveNotify with detail Virtual is generated on each window between A and B
exclusive (in that order).

* EnterNotify with detail Inferior is generated on B.
When the pointer moves from window A to window B and B is an inferior of A:
* LeaveNotify with detail Inferior is generated on A.

* EnterNotify with detail Virtual is generated on each window between A and B
exclusive (in that order).

* EnterNotify with detail Ancestor is generated on B.

When the pointer moves from window A to window B and window C is their least
common ancestor:

* LeaveNotify with detail Nonlinear is generated on A.

* LeaveNotify with detail NonlinearVirtual is generated on each window between
A and C exclusive (in that order).

* EnterNotify with detail NonlinearVirtual is generated on each window between
C and B exclusive (in that order).

* EnterNotify with detail Nonlinear is generated on B.

87

Events

When the pointer moves from window A to window B on different screens:
* LeaveNotify with detail Nonlinear is generated on A.

» If Aisnot a root window, LeaveNotify with detail NonlinearVirtual is generated
on each window above A up to and including its root (in order).

* If B is not a root window, EnterNotify with detail NonlinearVirtual is generated
on each window from B's root down to but not including B (in order).

* EnterNotify with detail Nonlinear is generated on B.

When a pointer grab activates (but after any initial warp into a confine-to window
and before generating any actual ButtonPress event that activates the grab), G is
the grab-window for the grab, and P is the window the pointer is in:

* EnterNotify and LeaveNotify events with mode Grab are generated (as for Nor-
mal above) as if the pointer were to suddenly warp from its current position in P
to some position in G. However, the pointer does not warp, and the pointer posi-
tion is used as both the initial and final positions for the events.

When a pointer grab deactivates (but after generating any actual ButtonRelease
event that deactivates the grab), G is the grab-window for the grab, and P is the
window the pointer is in:

* EnterNotify and LeaveNotify events with mode Ungrab are generated (as for
Normal above) as if the pointer were to suddenly warp from some position in G
to its current position in P. However, the pointer does not warp, and the current
pointer position is used as both the initial and final positions for the events.

Input Focus events

FocusIn

FocusOut

event: WINDOW

mode: { Normal, WhileGrabbed, Grab, Ungrab}

detail: { Ancestor, Virtual, Inferior, Nonlinear, NonlinearVirtual, Pointer,
PointerRoot, None }

These events are generated when the input focus changes and are reported to
clients selecting FocusChange on the window. Events generated by SetInputFo-
cus when the keyboard is not grabbed have mode Normal. Events generated by
SetInputFocus when the keyboard is grabbed have mode WhileGrabbed. Events
generated when a keyboard grab activates have mode Grab, and events generated
when a keyboard grab deactivates have mode Ungrab.

All FocusOut events caused by a window unmap are generated after any Unmap-
Notify event, but the ordering of FocusOut with respect to generated EnterNoti-
fy, LeaveNotify, VisibilityNotify, and Expose events is not constrained.

Normal and WhileGrabbed events are generated as follows:

When the focus moves from window A to window B, A is an inferior of B, and the
pointer is in window P:

88

Events

FocusOut with detail Ancestor is generated on A.

FocusOut with detail Virtual is generated on each window between A and B
exclusive (in order).

FocusIn with detail Inferior is generated on B.

If P is an inferior of B but P is not A or an inferior of A or an ancestor of A, FocusIn
with detail Pointer is generated on each window below B down to and including
P (in order).

When the focus moves from window A to window B, B is an inferior of A, and the
pointer is in window P:

If P is an inferior of A but P is not an inferior of B or an ancestor of B, FocusOut
with detail Pointer is generated on each window from P up to but not including
A (in order).

FocusOut with detail Inferior is generated on A.

FocusIn with detail Virtual is generated on each window between A and B ex-
clusive (in order).

FocusIn with detail Ancestor is generated on B.

When the focus moves from window A to window B, window C is their least common
ancestor, and the pointer is in window P:

If P is an inferior of A, FocusOut with detail Pointer is generated on each window
from P up to but not including A (in order).

FocusOut with detail Nonlinear is generated on A.

FocusOut with detail NonlinearVirtual is generated on each window between
A and C exclusive (in order).

FocusIn with detail NonlinearVirtual is generated on each window between C
and B exclusive (in order).

FocusIn with detail Nonlinear is generated on B.

If P is an inferior of B, FocusIn with detail Pointer is generated on each window
below B down to and including P (in order).

When the focus moves from window A to window B on different screens and the
pointer is in window P:

If P is an inferior of A, FocusOut with detail Pointer is generated on each window
from P up to but not including A (in order).

FocusOut with detail Nonlinear is generated on A.

If A is not a root window, FocusOut with detail NonlinearVirtual is generated
on each window above A up to and including its root (in order).

If B is not a root window, FocusIn with detail NonlinearVirtual is generated on
each window from B's root down to but not including B (in order).

89

Events

* FocusIn with detail Nonlinear is generated on B.

e If P is an inferior of B, FocusIn with detail Pointer is generated on each window
below B down to and including P (in order).

When the focus moves from window A to PointerRoot (or None) and the pointer
is in window P:

« If Pis an inferior of A, FocusOut with detail Pointer is generated on each window
from P up to but not including A (in order).

* FocusOut with detail Nonlinear is generated on A.

e If A is not a root window, FocusOut with detail NonlinearVirtual is generated
on each window above A up to and including its root (in order).

* FocusIn with detail PointerRoot (or None) is generated on all root windows.

» If the new focus is PointerRoot, FocusIn with detail Pointer is generated on
each window from P's root down to and including P (in order).

When the focus moves from PointerRoot (or None) to window A and the pointer
is in window P:

« If the old focus is PointerRoot, FocusOut with detail Pointer is generated on
each window from P up to and including P's root (in order).

* FocusOut with detail PointerRoot (or None) is generated on all root windows.

* If A is not a root window, FocusIn with detail NonlinearVirtual is generated on
each window from A's root down to but not including A (in order).

* FocusIn with detail Nonlinear is generated on A.

e If P is an inferior of A, FocusIn with detail Pointer is generated on each window
below A down to and including P (in order).

When the focus moves from PointerRoot to None (or vice versa) and the pointer
is in window P:

« If the old focus is PointerRoot, FocusOut with detail Pointer is generated on
each window from P up to and including P's root (in order).

* FocusOut with detail PointerRoot (or None) is generated on all root windows.
* FocusIn with detail None (or PointerRoot) is generated on all root windows.

» If the new focus is PointerRoot, FocusIn with detail Pointer is generated on
each window from P's root down to and including P (in order).

When a keyboard grab activates (but before generating any actual KeyPress event
that activates the grab), G is the grab-window for the grab, and F is the current
focus:

* FocusIn and FocusOut events with mode Grab are generated (as for Normal
above) as if the focus were to change from F to G.

90

Events

When a keyboard grab deactivates (but after generating any actual KeyRelease
event that deactivates the grab), G is the grab-window for the grab, and F is the
current focus:

* FocusIn and FocusOut events with mode Ungrab are generated (as for Normal
above) as if the focus were to change from G to F.

KeymapNotify

KeymapNotify
keys: LISTofCARDS8

The value is a bit vector as described in QueryKeymap. This event is reported to
clients selecting KeymapState on a window and is generated immediately after
every EnterNotify and FocusIn.

Expose

Expose

window: WINDOW

X, y, width, height: CARD16
count: CARD16

This event is reported to clients selecting Exposure on the window. It is generat-
ed when no valid contents are available for regions of a window, and either the re-
gions are visible, the regions are viewable and the server is (perhaps newly) main-
taining backing store on the window, or the window is not viewable but the server
is (perhaps newly) honoring window's backing-store attribute of Always or When-
Mapped. The regions are decomposed into an arbitrary set of rectangles, and an
Expose event is generated for each rectangle.

For a given action causing exposure events, the set of events for a given window
are guaranteed to be reported contiguously. If count is zero, then no more Expose
events for this window follow. If count is nonzero, then at least that many more
Expose events for this window follow (and possibly more).

The x and y coordinates are relative to window's origin and specify the upper-left
corner of a rectangle. The width and height specify the extent of the rectangle.

Expose events are never generated on InputOnly windows.

All Expose events caused by a hierarchy change are generated after any hierar-
chy event caused by that change (for example, UnmapNotify, MapNotify, Con-
figureNotify, GravityNotify, CirculateNotify). All Expose events on a given win-
dow are generated after any VisibilityNotify event on that window, but it is not
required that all Expose events on all windows be generated after all Visibilitity
events on all windows. The ordering of Expose events with respect to FocusOut,
EnterNotify, and LeaveNotify events is not constrained.

GraphicsExposure

91

Events

GraphicsExposure
drawable: DRAWABLE

X, y, width, height: CARD16
count: CARD16
major-opcode: CARDS8
minor-opcode: CARD16

This event is reported to a client using a graphics context with graphics-exposures
selected and is generated when a destination region could not be computed due to
an obscured or out-of-bounds source region. All of the regions exposed by a given
graphics request are guaranteed to be reported contiguously. If count is zero then
no more GraphicsExposure events for this window follow. If count is nonzero, then
at least that many more GraphicsExposure events for this window follow (and
possibly more).

The x and y coordinates are relative to drawable's origin and specify the upper-left
corner of a rectangle. The width and height specify the extent of the rectangle.

The major and minor opcodes identify the graphics request used. For the core pro-
tocol, major-opcode is always CopyArea or CopyPlane, and minor-opcode is always
Zero.

NoExposure

NoExposure
drawable: DRAWABLE
major-opcode: CARD8
minor-opcode: CARD16

This event is reported to a client using a graphics context with graphics-exposures
selected and is generated when a graphics request that might produce Graphic-
sExposure events does not produce any. The drawable specifies the destination
used for the graphics request.

The major and minor opcodes identify the graphics request used. For the core pro-
tocol, major-opcode is always CopyArea or CopyPlane, and the minor-opcode is
always zero.

VisibilityNotify

VisibilityNotify
window: WINDOW
state: { Unobscured, PartiallyObscured, FullyObscured}

This event is reported to clients selecting VisibilityChange on the window. In the
following, the state of the window is calculated ignoring all of the window's subwin-
dows. When a window changes state from partially or fully obscured or not view-
able to viewable and completely unobscured, an event with Unobscured is gen-
erated. When a window changes state from viewable and completely unobscured,
from viewable and completely obscured, or from not viewable, to viewable and par-

92

Events

tially obscured, an event with PartiallyObscured is generated. When a window
changes state from viewable and completely unobscured, from viewable and par-
tially obscured, or from not viewable to viewable and fully obscured, an event with
FullyObscured is generated.

VisibilityNotify events are never generated on InputOnly windows.

All VisibilityNotify events caused by a hierarchy change are generated after any
hierarchy event caused by that change (for example, UnmapNotify, MapNotify,
ConfigureNotify, GravityNotify, CirculateNotify). Any VisibilityNotify event
on a given window is generated before any Expose events on that window, but it is
not required that all VisibilityNotify events on all windows be generated before all
Expose events on all windows. The ordering of VisibilityNotify events with respect
to FocusOut, EnterNotify, and LeaveNotify events is not constrained.

CreateNotify

CreateNotify

parent, window: WINDOW

x, y: INT16

width, height, border-width: CARD16
override-redirect: BOOL

This event is reported to clients selecting SubstructureNotify on the parent and is
generated when the window is created. The arguments are as in the CreateWindow
request.

DestroyNotify

DestroyNotify
event, window: WINDOW

This event is reported to clients selecting StructureNotify on the window and to
clients selecting SubstructureNotify on the parent. It is generated when the win-
dow is destroyed. The event is the window on which the event was generated, and
the window is the window that is destroyed.

The ordering of the DestroyNotify events is such that for any given window, De-
stroyNotify is generated on all inferiors of the window before being generated on
the window itself. The ordering among siblings and across subhierarchies is not
otherwise constrained.

UnmapNotify

UnmapNotify

event, window: WINDOW

from-configure: BOOL

This event is reported to clients selecting StructureNotify on the window and to

clients selecting SubstructureNotify on the parent. It is generated when the win-
dow changes state from mapped to unmapped. The event is the window on which

93

Events

the event was generated, and the window is the window that is unmapped. The
from-configure flag is True if the event was generated as a result of the window's
parent being resized when the window itself had a win-gravity of Unmap.

MapNotify

MapNotify
event, window: WINDOW
override-redirect: BOOL

This event is reported to clients selecting StructureNotify on the window and to
clients selecting SubstructureNotify on the parent. It is generated when the win-
dow changes state from unmapped to mapped. The event is the window on which
the event was generated, and the window is the window that is mapped. The over-
ride-redirect flag is from the window's attribute.

MapRequest

MapRequest
parent, window: WINDOW

This event is reported to the client selecting SubstructureRedirect on the parent
and is generated when a MapWindow request is issued on an unmapped window
with an override-redirect attribute of False.

ReparentNotify

ReparentNotify

event, window, parent: WINDOW
x, y: INT16

override-redirect: BOOL

This event is reported to clients selecting SubstructureNotify on either the old
or the new parent and to clients selecting StructureNotify on the window. It is
generated when the window is reparented. The event is the window on which the
event was generated. The window is the window that has been rerooted. The parent
specifies the new parent. The x and y coordinates are relative to the new parent's
origin and specify the position of the upper-left outer corner of the window. The
override-redirect flag is from the window's attribute.

ConfigureNotify

ConfigureNotify

event, window: WINDOW

x, y: INT16

width, height, border-width: CARD16
above-sibling: WINDOW or None
override-redirect: BOOL

94

Events

This event is reported to clients selecting StructureNotify on the window and to
clients selecting SubstructureNotify on the parent. It is generated when a Con-
figureWindow request actually changes the state of the window. The event is the
window on which the event was generated, and the window is the window that is
changed. The x and y coordinates are relative to the new parent's origin and spec-
ify the position of the upper-left outer corner of the window. The width and height
specify the inside size, not including the border. If above-sibling is None, then the
window is on the bottom of the stack with respect to siblings. Otherwise, the win-
dow is immediately on top of the specified sibling. The override-redirect flag is from
the window's attribute.

GravityNotify

GravityNotify
event, window: WINDOW
x, y: INT16

This event is reported to clients selecting SubstructureNotify on the parent and to
clients selecting StructureNotify on the window. It is generated when a window is
moved because of a change in size of the parent. The event is the window on which
the event was generated, and the window is the window that is moved. The x and
y coordinates are relative to the new parent's origin and specify the position of the
upper-left outer corner of the window.

ResizeRequest

ResizeRequest
window: WINDOW
width, height: CARD16

This event is reported to the client selecting ResizeRedirect on the window and is
generated when a ConfigureWindow request by some other client on the window
attempts to change the size of the window. The width and height are the requested
inside size, not including the border.

ConfigureRequest

ConfigureRequest

parent, window: WINDOW

x, y: INT16

width, height, border-width: CARD16

sibling: WINDOW or None

stack-mode: { Above, Below, TopIf, BottomlIf, Opposite}

value-mask: BITMASK

This event is reported to the client selecting SubstructureRedirect on the parent

and is generated when a ConfigureWindow request is issued on the window by
some other client. The value-mask indicates which components were specified in

95

Events

the request. The value-mask and the corresponding values are reported as given
in the request. The remaining values are filled in from the current geometry of the
window, except in the case of sibling and stack-mode, which are reported as None
and Above (respectively) if not given in the request.

CirculateNotify

CirculateNotify
event, window: WINDOW
place: { Top, Bottom}

This event is reported to clients selecting StructureNotify on the window and
to clients selecting SubstructureNotify on the parent. It is generated when the
window is actually restacked from a CirculateWindow request. The event is the
window on which the event was generated, and the window is the window that is
restacked. If place is Top, the window is now on top of all siblings. Otherwise, it
is below all siblings.

CirculateRequest

CirculateRequest
parent, window: WINDOW
place: { Top, Bottom}

This event is reported to the client selecting SubstructureRedirect on the parent
and is generated when a CirculateWindow request is issued on the parent and
a window actually needs to be restacked. The window specifies the window to be
restacked, and the place specifies what the new position in the stacking order should
be.

PropertyNotify

PropertyNotify

window: WINDOW

atom: ATOM

state: { NewValue, Deleted}
time: TIMESTAMP

This event is reported to clients selecting PropertyChange on the window and is
generated with state NewValue when a property of the window is changed using
ChangeProperty or RotateProperties, even when adding zero-length data using
ChangeProperty and when replacing all or part of a property with identical data
using ChangeProperty or RotateProperties. It is generated with state Deleted
when a property of the window is deleted using request DeleteProperty or Get-
Property. The timestamp indicates the server time when the property was changed.

SelectionClear

96

Events

SelectionClear
owner: WINDOW
selection: ATOM
time: TIMESTAMP

This event is reported to the current owner of a selection and is generated when
a new owner is being defined by means of SetSelectionOwner. The timestamp is
the last-change time recorded for the selection. The owner argument is the window
that was specified by the current owner in its SetSelectionOwner request.

SelectionRequest

SelectionRequest

owner: WINDOW

selection: ATOM

target: ATOM

property: ATOM or None
requestor: WINDOW

time: TIMESTAMP or CurrentTime

This event is reported to the owner of a selection and is generated when a client
issues a ConvertSelection request. The owner argument is the window that was
specified in the SetSelectionOwner request. The remaining arguments are as in
the ConvertSelection request.

The owner should convert the selection based on the specified target type and send
a SelectionNotify back to the requestor. A complete specification for using selec-
tions is given in the X.Org standard Inter-Client Communication Conventions Man-

ual.

SelectionNotify

SelectionNotify

requestor: WINDOW

selection, target: ATOM

property: ATOM or None

time: TIMESTAMP or CurrentTime

This event is generated by the server in response to a ConvertSelection request
when there is no owner for the selection. When there is an owner, it should be
generated by the owner using SendEvent. The owner of a selection should send
this event to a requestor either when a selection has been converted and stored as
a property or when a selection conversion could not be performed (indicated with
property None).

ColormapNotify

97

Events

ColormapNotify

window: WINDOW

colormap: COLORMAP or None
new: BOOL

state: { Installed, Uninstalled}

This event is reported to clients selecting ColormapChange on the window. It is
generated with value True for new when the colormap attribute of the window is
changed and is generated with value False for new when the colormap of a window
is installed or uninstalled. In either case, the state indicates whether the colormap

is currently installed.
MappingNotify

MappingNotify
request: { Modifier, Keyboard, Pointer}
first-keycode, count: CARDS

This event is sent to all clients. There is no mechanism to express disinterest in this
event. The detail indicates the kind of change that occurred: Modifiers for a suc-
cessful SetModifierMapping, Keyboard for a successful ChangeKeyboardMap-
ping, and Pointer for a successful SetPointerMapping. If the detail is Keyboard,
then first-keycode and count indicate the range of altered keycodes.

ClientMessage

ClientMessage

window: WINDOW

type: ATOM

format: {8, 16, 32}

data: LISTofINT8 or LISTofINT16 or LISTofINT32

This event is only generated by clients using SendEvent. The type specifies how the
data is to be interpreted by the receiving client; the server places no interpretation
on the type or the data. The format specifies whether the data should be viewed
as a list of 8-bit, 16-bit, or 32-bit quantities, so that the server can correctly byte-
swap, as necessary. The data always consists of either 20 8-bit values or 10 16-bit
values or 5 32-bit values, although particular message types might not make use

of all of these values.

98

Chapter 12. Flow Control and
Concurrency

Whenever the server is writing to a given connection, it is permissible for the server
to stop reading from that connection (but if the writing would block, it must continue
to service other connections). The server is not required to buffer more than a single
request per connection at one time. For a given connection to the server, a client
can block while reading from the connection but should undertake to read (events
and errors) when writing would block. Failure on the part of a client to obey this
rule could result in a deadlocked connection, although deadlock is probably unlikely
unless either the transport layer has very little buffering or the client attempts to
send large numbers of requests without ever reading replies or checking for errors
and events.

Whether or not a server is implemented with internal concurrency, the overall effect
must be as if individual requests are executed to completion in some serial order,
and requests from a given connection must be executed in delivery order (that is,
the total execution order is a shuffle of the individual streams). The execution of
a request includes validating all arguments, collecting all data for any reply, and
generating and queueing all required events. However, it does not include the ac-
tual transmission of the reply and the events. In addition, the effect of any other
cause that can generate multiple events (for example, activation of a grab or pointer
motion) must effectively generate and queue all required events indivisibly with re-
spect to all other causes and requests. For a request from a given client, any events
destined for that client that are caused by executing the request must be sent to
the client before any reply or error is sent.

99

Appendix A. KEYSYM Encoding

KEYSYM values are 32-bit integers that encode the symbols on the keycaps of a
keyboard. The three most significant bits are always zero, which leaves a 29-bit
number space. For convenience, KEYSYM values can be viewed as split into four
bytes:

* Byte 1 is the most significant eight bits (three zero bits and the most-significant
five bits of the 29-bit effective value)

* Byte 2 is the next most-significant eight bits
* Byte 3 is the next most-significant eight bits
* Byte 4 is the least-significant eight bits

There are six categories of KEYSYM values.

Special KEYSYMs

There are two special values: NoSymbol and VoidSymbol. They are used to indicate
the absence of symbols (see Section 5, Keyboards).

Byte 1 Byte 2 Byte 3 Byte 4 Hex. value Name
0 0 0 0 #x00000000 NoSymbol
0 255 255 255 #x00FFFFFF VoidSymbol

Latin-1 KEYSYMSs

The Latin-1 KEYSYMs occupy the range #x0020 to #x007E and #x00A0 to #00FF
and represent the ISO 10646 / Unicode characters U+0020 to U+007E and U+00A0
to U+00FF, respectively.

Unicode KEYSYMs

These occupy the range #x01000100 to #x0110FFFF and represent the ISO 10646 /
Unicode characters U+0100 to U+10FFFF, respectively. The numeric value of a
Unicode KEYSYM is the Unicode position of the corresponding character plus
#x01000000. In the interest of backwards compatibility, clients should be able to
process both the Unicode KEYSYM and the Legacy KEYSYM for those characters
where both exist.

Dead keys, which place an accent on the next character entered, shall be encod-
ed as Function KEYSYMs, and not as the Unicode KEYSYM corresponding to an
equivalent combining character. Where a keycap indicates a specific function with
a graphical symbol that is also available in Unicode (e.g., an upwards arrow for the
cursor up function), the appropriate Function KEYSYM should be used, and not the
Unicode KEYSYM corresponding to the depicted symbol.

100

KEYSYM Encoding

Function KEYSYMs

These represent keycap symbols that do not directly represent elements of a coded
character set. Instead, they typically identify a software function, mode, or opera-
tion (e.g., cursor up, caps lock, insert) that can be activated using a dedicated key.
Function KEYSYMs have zero values for bytes 1 and 2. Byte 3 distinguishes between
several 8-bit sets within which byte 4 identifies the individual function key.

Byte 3 Byte 4

255 Keyboard

254 Keyboard (XKB) Extension
253 3270

Within a national market, keyboards tend to be comparatively standard with respect
to the character keys, but they can differ significantly on the miscellaneous func-
tion keys. Some have function keys left over from early timesharing days, others
were designed for a specific application, such as text processing, web browsing,
or accessing audiovisual data. The symbols on the keycaps can differ significantly
between manufacturers and national markets, even where they denote the same
software function (e.g., Ctrl in the U.S. versus Strg in Germany)

There are two ways of thinking about how to define KEYSYMs for such a world:
* The Engraving approach
¢ The Common approach

The Engraving approach is to create a KEYSYM for every unique key engraving. This
is effectively taking the union of all key engravings on all keyboards. For example,
some keyboards label function keys across the top as F1 through Fn, and others
label them as PF1 through PFn. These would be different keys under the Engraving
approach. Likewise, Lock would differ from Shift Lock, which is different from the
up-arrow symbol that has the effect of changing lowercase to uppercase. There are
lots of other aliases such as Del, DEL, Delete, Remove, and so forth. The Engraving
approach makes it easy to decide if a new entry should be added to the KEYSYM
set: if it does not exactly match an existing one, then a new one is created.

The Common approach tries to capture all of the keys present on an interesting
number of keyboards, folding likely aliases into the same KEYSYM. For example,
Del, DEL, and Delete are all merged into a single KEYSYM. Vendors can augment
the KEYSYM set (using the vendor-specific encoding space) to include all of their
unique keys that were not included in the standard set. Each vendor decides which
of its keys map into the standard KEYSYMs, which presumably can be overridden by
a user. It is more difficult to implement this approach, because judgment is required
about when a sufficient set of keyboards implements an engraving to justify making
it a KEYSYM in the standard set and about which engravings should be merged into
a single KEYSYM.

Although neither scheme is perfect or elegant, the Common approach has been se-
lected because it makes it easier to write a portable application. Having the Delete
functionality merged into a single KEYSYM allows an application to implement a
deletion function and expect reasonable bindings on a wide set of workstations. Un-
der the Common approach, application writers are still free to look for and interpret
vendor-specific KEYSYMs, but because they are in the extended set, the application

101

KEYSYM Encoding

developer is more conscious that they are writing the application in a nonportable
fashion.

The Keyboard set is a miscellaneous collection of commonly occurring keys on key-
boards. Within this set, the numeric keypad symbols are generally duplicates of
symbols found on keys on the main part of the keyboard, but they are distinguished
here because they often have a distinguishable semantics associated with them.

KEYSYM val- Name Set

ue

#xFF08 BACKSPACE, BACK SPACE, BACK CHAR Keyboard
#xFF09 TAB Keyboard
#xFFOA LINEFEED, LF Keyboard
#xFFOB CLEAR Keyboard
#xFFOD RETURN, ENTER Keyboard
#xFF13 PAUSE, HOLD Keyboard
#xFF14 SCROLL LOCK Keyboard
#xFF15 SYS REQ, SYSTEM REQUEST Keyboard
#xFF1B ESCAPE Keyboard
#xFF20 MULTI-KEY CHARACTER PREFACE Keyboard
#xFF21 KAN]I, KANJI CONVERT Keyboard
#xFF22 MUHENKAN Keyboard
#xFF23 HENKAN MODE Keyboard
#xFF24 ROMA]JI Keyboard
#xFF25 HIRAGANA Keyboard
#xFF26 KATAKANA Keyboard
#xXFF27 HIRAGANA/KATAKANA TOGGLE Keyboard
#xFF28 ZENKAKU Keyboard
#xFF29 HANKAKU Keyboard
#XFF2A ZENKAKU/HANKAKU TOGGLE Keyboard
#xFF2B TOUROKU Keyboard
#xFF2C MASSYO Keyboard
#xFF2D KANA LOCK Keyboard
#xFF2E KANA SHIFT Keyboard
#xFF2F EISU SHIFT Keyboard
#xFF30 EISU TOGGLE Keyboard
#xFF31 HANGUL START/STOP (TOGGLE) Keyboard
#xFF32 HANGUL START Keyboard
#xFF33 HANGUL END, ENGLISH START Keyboard
#xFF34 START HANGUL/HANJA CONVERSION Keyboard
#xFF35 HANGUL JAMO MODE Keyboard
#xFF36 HANGUL ROMAJA MODE Keyboard
#xFF37 HANGUL CODE INPUT Keyboard

102

KEYSYM Encoding

KEYSYM val- Name Set

ue

#xFF38 HANGUL JEONJA MODE Keyboard
#xFF39 HANGUL BANJA MODE Keyboard
#XFF3A HANGUL PREHAN]JA CONVERSION Keyboard
#xFF3B HANGUL POSTHAN]JA CONVERSION Keyboard
#xFF3C HANGUL SINGLE CANDIDATE Keyboard
#xFF3D HANGUL MULTIPLE CANDIDATE Keyboard
#xXFF3E HANGUL PREVIOUS CANDIDATE Keyboard
#xFF3F HANGUL SPECIAL SYMBOLS Keyboard
#xFF50 HOME Keyboard
#xFF51 LEFT, MOVE LEFT, LEFT ARROW Keyboard
#xFF52 UP, MOVE UP, UP ARROW Keyboard
#xFF53 RIGHT, MOVE RIGHT, RIGHT ARROW Keyboard
#xFF54 DOWN, MOVE DOWN, DOWN ARROW Keyboard
#xFF55 PRIOR, PREVIOUS, PAGE UP Keyboard
#xFF56 NEXT, PAGE DOWN Keyboard
#xFF57 END, EOL Keyboard
#xFF58 BEGIN, BOL Keyboard
#xFF60 SELECT, MARK Keyboard
#xFF61 PRINT Keyboard
#xFF62 EXECUTE, RUN, DO Keyboard
#xFF63 INSERT, INSERT HERE Keyboard
#xFF65 UNDO, OOPS Keyboard
#xFF66 REDO, AGAIN Keyboard
#xFF67 MENU Keyboard
#xFF68 FIND, SEARCH Keyboard
#xFF69 CANCEL, STOP, ABORT, EXIT Keyboard
#xFFGA HELP Keyboard
#xFF6B BREAK Keyboard
#xFF7E MODE SWITCH, SCRIPT SWITCH, CHARACTER Keyboard

SET SWITCH

#xFF7F NUM LOCK Keyboard
#xFF80 KEYPAD SPACE Keyboard
#xFF89 KEYPAD TAB Keyboard
#xFF8D KEYPAD ENTER Keyboard
#xFF91 KEYPAD F1, PF1, A Keyboard
#xFF92 KEYPAD F2, PF2, B Keyboard
#xFF93 KEYPAD F3, PF3, C Keyboard
#xFF94 KEYPAD F4, PF4, D Keyboard

103

KEYSYM Encoding

KEYSYM val- Name Set

ue

#xXFF95 KEYPAD HOME Keyboard
#xFF96 KEYPAD LEFT Keyboard
#xXFF97 KEYPAD UP Keyboard
#xFF98 KEYPAD RIGHT Keyboard
#xFF99 KEYPAD DOWN Keyboard
#XFF9A KEYPAD PRIOR, PAGE UP Keyboard
#xFF9B KEYPAD NEXT, PAGE DOWN Keyboard
#XFFIC KEYPAD END Keyboard
#xXFF9D KEYPAD BEGIN Keyboard
#XFFI9E KEYPAD INSERT Keyboard
#xFF9F KEYPAD DELETE Keyboard
#XFFAA KEYPAD MULTIPLICATION SIGN, ASTERISK Keyboard
#xFFAB KEYPAD PLUS SIGN Keyboard
#XFFAC KEYPAD SEPARATOR, COMMA Keyboard
#xFFAD KEYPAD MINUS SIGN, HYPHEN Keyboard
#XFFAE KEYPAD DECIMAL POINT, FULL STOP Keyboard
#xFFAF KEYPAD DIVISION SIGN, SOLIDUS Keyboard
#xFFBO KEYPAD DIGIT ZERO Keyboard
#xFFB1 KEYPAD DIGIT ONE Keyboard
#xFFB2 KEYPAD DIGIT TWO Keyboard
#xXFFB3 KEYPAD DIGIT THREE Keyboard
#xFFB4 KEYPAD DIGIT FOUR Keyboard
#xFFB5 KEYPAD DIGIT FIVE Keyboard
#xFFB6 KEYPAD DIGIT SIX Keyboard
#xXFFB7 KEYPAD DIGIT SEVEN Keyboard
#xFFB8 KEYPAD DIGIT EIGHT Keyboard
#xFFB9 KEYPAD DIGIT NINE Keyboard
#XFFBD KEYPAD EQUALS SIGN Keyboard
#xFFBE F1 Keyboard
#xFFBF F2 Keyboard
#xFFCO F3 Keyboard
#xFFC1 F4 Keyboard
#xFFC2 F5 Keyboard
#xFFC3 F6 Keyboard
#xFFC4 F7 Keyboard
#xFFC5 F8 Keyboard
#xFFC6 F9 Keyboard
#xFFC7 F10 Keyboard

104

KEYSYM Encoding

KEYSYM val- Name Set

ue

#xFFC8 F11, L1 Keyboard
#xFFC9 F12, L2 Keyboard
#xFFCA F13, L3 Keyboard
#xFFCB F14,14 Keyboard
#xFFCC F15, L5 Keyboard
#xFFCD Flo, L6 Keyboard
#xFFCE F17, L7 Keyboard
#xFFCF F18, L8 Keyboard
#xFFDO F19, L9 Keyboard
#xFFD1 F20, L10 Keyboard
#xFFD2 F21, R1 Keyboard
#xFFD3 F22, R2 Keyboard
#xFFD4 F23, R3 Keyboard
#xFFD5 F24, R4 Keyboard
#xFFD6 F25, R5 Keyboard
#xFFD7 F26, R6 Keyboard
#xFFD8 F27, R7 Keyboard
#xFFD9 F28, R8 Keyboard
#xFFDA F29, R9 Keyboard
#xFFDB F30, R10 Keyboard
#xFFDC F31, R11 Keyboard
#xFFDD F32, R12 Keyboard
#xXFFDE F33, R13 Keyboard
#xFFDF F34, R14 Keyboard
#xXFFEO F35, R15 Keyboard
#xXFFE1 LEFT SHIFT Keyboard
#xFFE?2 RIGHT SHIFT Keyboard
#XFFE3 LEFT CONTROL Keyboard
#xFFE4 RIGHT CONTROL Keyboard
#xFFE5 CAPS LOCK Keyboard
#XFFEG SHIFT LOCK Keyboard
#XFFE7 LEFT META Keyboard
#xFFE8 RIGHT META Keyboard
#xFFE9 LEFT ALT Keyboard
#XFFEA RIGHT ALT Keyboard
#xFFEB LEFT SUPER Keyboard
#XFFEC RIGHT SUPER Keyboard
#XFFED LEFT HYPER Keyboard

105

KEYSYM Encoding

KEYSYM val- Name Set

ue

#xXFFEE RIGHT HYPER Keyboard
#xFFFF DELETE, RUBOUT Keyboard

The Keyboard (XKB) Extension set, which provides among other things a range of
dead keys, is defined in "The X Keyboard Extension: Protocol Specification", Appen-
dix C.

The 3270 set defines additional keys that are specific to IBM 3270 terminals.

KEYSYM val- Name Set
ue

#xFDO1 3270 DUPLICATE 3270
#xFDO02 3270 FIELDMARK 3270
#xFDO03 3270 RIGHT?2 3270
#xFDO04 3270 LEFT2 3270
#xFDO5 3270 BACKTAB 3270
#xFDO6 3270 ERASEEOF 3270
#xFDO7 3270 ERASEINPUT 3270
#xFDO08 3270 RESET 3270
#xFDO09 3270 QUIT 3270
#xFDOA 3270 PA1 3270
#xFDOB 3270 PA2 3270
#xFDOC 3270 PA3 3270
#xFDOD 3270 TEST 3270
#xFDOE 3270 ATTN 3270
#xFDOF 3270 CURSORBLINK 3270
#xFD10 3270 ALTCURSOR 3270
#xFD11 3270 KEYCLICK 3270
#xFD12 3270 JUMP 3270
#xFD13 3270 IDENT 3270
#xFD14 3270 RULE 3270
#xFD15 3270 COPY 3270
#xFD16 3270 PLAY 3270
#xFD17 3270 SETUP 3270
#xFD18 3270 RECORD 3270
#xFD19 3270 CHANGESCREEN 3270
#xFD1A 3270 DELETEWORD 3270
#xFD1B 3270 EXSELECT 3270
#xFD1C 3270 CURSORSELECT 3270
#xFD1D 3270 PRINTSCREEN 3270
#xFD1E 3270 ENTER 3270

106

KEYSYM Encoding

Vendor KEYSYMSs

The KEYSYM number range #x10000000 to #x1FFFFFFF is available for ven-
dor-specific extentions. Among these, the range #x11000000 to #x1100FFFF is
designated for keypad KEYSYMs.

Legacy KEYSYMs

These date from the time before ISO 10646 / Unicode was available. They represent
characters from a number of different older 8-bit coded character sets and have
zero values for bytes 1 and 2. Byte 3 indicates a coded character set and byte 4 is
the 8-bit value of the particular character within that set.

Byte 3 Byte 4 Byte 3 Byte 4
1 Latin-2 11 APL

2 Latin-3 12 Hebrew
3 Latin-4 13 Thai

4 Kana 14 Korean
5 Arabic 15 Latin-5
6 Cyrillic 16 Latin-6
7 Greek 17 Latin-7
8 Technical 18 Latin-8
9 Special 19 Latin-9
10 Publishing 32 Currency

Each character set contains gaps where codes have been removed that were dupli-
cates with codes in previous character sets (that is, character sets with lesser byte
3 value).

The Latin, Arabic, Cyrillic, Greek, Hebrew, and Thai sets were taken from the early
drafts of the relevant ISO 8859 parts available at the time. However, in the case
of the Cyrillic and Greek sets, these turned out differently in the final versions of
the ISO standard. The Technical, Special, and Publishing sets are based on Digital
Equipment Corporation standards, as no equivalent international standards were
available at the time.

The table below lists all standardized Legacy KEYSYMs, along with the name used
in the source document. Where there exists an unambiguous equivalent in Unicode,
as it is the case with all ISO 8859 characters, it is given in the second column as a
cross reference. Where there is no Unicode number provided, the exact semantics
of the KEYSYM may have been lost and a Unicode KEYSYM should be used instead,
if available.

As support of Unicode KEYSYMSs increases, some or all of the Legacy KEYSYMs may
be phased out and withdrawn in future versions of this standard. Most KEYSYMs
in the sets Technical, Special, Publishing, APL and Currency (with the exception
of #x20AC) were probably never used in practice, and were not supported by pre-
Unicode fonts. In particular, the Currency set, which was copied from Unicode, has
already been deprecated by the introduction of the Unicode KEYSYMs.

107

KEYSYM Encoding

KEYSYM Unicode Name Set
value value

#x01A1 U+0104 LATIN CAPITAL LETTER A WITH OGONEK Latin-2
#x01A2 U+02D8 BREVE Latin-2
#x01A3 TU+0141 LATIN CAPITAL LETTER L WITH STROKE Latin-2
#x01A5 U+013D LATIN CAPITAL LETTER L WITH CARON Latin-2
#x01A6 U+015A LATIN CAPITAL LETTER S WITH ACUTE Latin-2
#x01A9 U+0160 LATIN CAPITAL LETTER S WITH CARON Latin-2
#x01AA U+015E LATIN CAPITAL LETTER S WITH CEDILLA Latin-2
#x01AB U+0164 LATIN CAPITAL LETTER T WITH CARON Latin-2
#x01AC U+0179 LATIN CAPITAL LETTER Z WITH ACUTE Latin-2
#x01AE U+017D LATIN CAPITAL LETTER Z WITH CARON Latin-2
#x01AF U+017B LATIN CAPITAL LETTER Z WITH DOT ABOVE Latin-2
#x01B1 U+0105 LATIN SMALL LETTER A WITH OGONEK Latin-2
#x01B2 U+02DB OGONEK Latin-2
#x01B3 U+0142 LATIN SMALL LETTER L. WITH STROKE Latin-2
#x01B5 U+013E LATIN SMALL LETTER L WITH CARON Latin-2
#x01B6 U+015B LATIN SMALL LETTER S WITH ACUTE Latin-2
#x01B7 U+02C7 CARON Latin-2
#x01B9 U+0161 LATIN SMALL LETTER S WITH CARON Latin-2
#x01BA U+015F LATIN SMALL LETTER S WITH CEDILLA Latin-2
#x01BB U+0165 LATIN SMALL LETTER T WITH CARON Latin-2
#x01BC U+017A LATIN SMALL LETTER Z WITH ACUTE Latin-2
#x01BD U+02DD DOUBLE ACUTE ACCENT Latin-2
#x01BE U+017E LATIN SMALL LETTER Z WITH CARON Latin-2
#x01BF U+017C LATIN SMALL LETTER Z WITH DOT ABOVE Latin-2
#x01C0O U+0154 LATIN CAPITAL LETTER R WITH ACUTE Latin-2
#x01C3 U+0102 LATIN CAPITAL LETTER A WITH BREVE Latin-2
#x01C5 U+0139 LATIN CAPITAL LETTER L WITH ACUTE Latin-2
#x01C6 U+0106 LATIN CAPITAL LETTER C WITH ACUTE Latin-2
#x01C8 U+010C LATIN CAPITAL LETTER C WITH CARON Latin-2
#x01CA U+0118 LATIN CAPITAL LETTER E WITH OGONEK Latin-2
#x01CC U+011A LATIN CAPITAL LETTER E WITH CARON Latin-2
#x01CF U+010E LATIN CAPITAL LETTER D WITH CARON Latin-2
#x01D0O U+0110 LATIN CAPITAL LETTER D WITH STROKE Latin-2
#x01D1 U+0143 LATIN CAPITAL LETTER N WITH ACUTE Latin-2
#x01D2 U+0147 LATIN CAPITAL LETTER N WITH CARON Latin-2
#x01D5 U+0150 LATIN CAPITAL LETTER O WITH DOUBLE Latin-2

ACUTE
#x01D8 U+0158 LATIN CAPITAL LETTER R WITH CARON Latin-2

108

KEYSYM Encoding

KEYSYM Unicode Name Set
value value

#x01D9 U+016E LATIN CAPITAL LETTER U WITH RING ABOVE Latin-2
#x01DB U+0170 LATIN CAPITAL LETTER U WITH DOUBLE Latin-2

ACUTE

#x01DE U+0162 LATIN CAPITAL LETTER T WITH CEDILLA Latin-2
#x01E0 U+0155 LATIN SMALL LETTER R WITH ACUTE Latin-2
#x01E3 U+0103 LATIN SMALL LETTER A WITH BREVE Latin-2
#x01E5 U+013A LATIN SMALL LETTER L WITH ACUTE Latin-2
#x01E6 U+0107 LATIN SMALL LETTER C WITH ACUTE Latin-2
#x01E8 U+010D LATIN SMALL LETTER C WITH CARON Latin-2
#x01EA U+0119 LATIN SMALL LETTER E WITH OGONEK Latin-2
#x01EC U+011B LATIN SMALL LETTER E WITH CARON Latin-2
#x01EF U+010F LATIN SMALL LETTER D WITH CARON Latin-2
#x01FO U+0111 LATIN SMALL LETTER D WITH STROKE Latin-2
#x01F1 U+0144 LATIN SMALL LETTER N WITH ACUTE Latin-2
#x01F2 U+0148 LATIN SMALL LETTER N WITH CARON Latin-2
#x01F5 U+0151 LATIN SMALL LETTER O WITH DOUBLE ACUTE Latin-2
#x01F8 U+0159 LATIN SMALL LETTER R WITH CARON Latin-2
#x01F9 U+016F LATIN SMALL LETTER U WITH RING ABOVE Latin-2
#x01FB U+0171 LATIN SMALL LETTER U WITH DOUBLE ACUTE Latin-2
#x01FE U+0163 LATIN SMALL LETTER T WITH CEDILLA Latin-2
#x01FF U+02D9 DOT ABOVE Latin-2
#x02A1 U+0126 LATIN CAPITAL LETTER H WITH STROKE Latin-3
#x02A6 U+0124 LATIN CAPITAL LETTER H WITH CIRCUMFLEX Latin-3
#x02A9 U+0130 LATIN CAPITAL LETTER I WITH DOT ABOVE Latin-3
#x02AB U+011E LATIN CAPITAL LETTER G WITH BREVE Latin-3
#x02AC U+0134 LATIN CAPITAL LETTER J WITH CIRCUMFLEX Latin-3
#x02B1 U+0127 LATIN SMALL LETTER H WITH STROKE Latin-3
#x02B6 U+0125 LATIN SMALL LETTER H WITH CIRCUMFLEX Latin-3
#x02B9 U+0131 LATIN SMALL LETTER DOTLESS I Latin-3
#x02BB U+011F LATIN SMALL LETTER G WITH BREVE Latin-3
#x02BC U+0135 LATIN SMALL LETTER J WITH CIRCUMFLEX Latin-3
#x02C5 U+010A LATIN CAPITAL LETTER C WITH DOT ABOVE Latin-3
#x02C6 U+0108 LATIN CAPITAL LETTER C WITH CIRCUMFLEX Latin-3
#x02D5 U+0120 LATIN CAPITAL LETTER G WITH DOT ABOVE Latin-3
#x02D8 U+011C LATIN CAPITAL LETTER G WITH CIRCUMFLEX Latin-3
#x02DD U+016C LATIN CAPITAL LETTER U WITH BREVE Latin-3
#x02DE U+015C LATIN CAPITAL LETTER S WITH CIRCUMFLEX Latin-3
#x02E5 U+010B LATIN SMALL LETTER C WITH DOT ABOVE Latin-3

109

KEYSYM Encoding

KEYSYM Unicode Name Set
value value

#x02E6 U+0109 LATIN SMALL LETTER C WITH CIRCUMFLEX Latin-3
#x02F5 U+0121 LATIN SMALL LETTER G WITH DOT ABOVE Latin-3
#x02F8 U+011D LATIN SMALL LETTER G WITH CIRCUMFLEX Latin-3
#x02FD U+016D LATIN SMALL LETTER U WITH BREVE Latin-3
#x02FE U+015D LATIN SMALL LETTER S WITH CIRCUMFLEX Latin-3
#x03A2 U+0138 LATIN SMALL LETTER KRA Latin-4
#x03A3 U+0156 LATIN CAPITAL LETTER R WITH CEDILLA Latin-4
#x03A5 U+0128 LATIN CAPITAL LETTER I WITH TILDE Latin-4
#x03A6 U+013B LATIN CAPITAL LETTER L. WITH CEDILLA Latin-4
#x03AA U+0112 LATIN CAPITAL LETTER E WITH MACRON Latin-4
#x03AB U+0122 LATIN CAPITAL LETTER G WITH CEDILLA Latin-4
#x03AC U+0166 LATIN CAPITAL LETTER T WITH STROKE Latin-4
#x03B3 U+0157 LATIN SMALL LETTER R WITH CEDILLA Latin-4
#x03B5 U+0129 LATIN SMALL LETTER I WITH TILDE Latin-4
#x03B6 U+013C LATIN SMALL LETTER L WITH CEDILLA Latin-4
#x03BA U+0113 LATIN SMALL LETTER E WITH MACRON Latin-4
#x03BB U+0123 LATIN SMALL LETTER G WITH CEDILLA Latin-4
#x03BC U+0167 LATIN SMALL LETTER T WITH STROKE Latin-4
#x03BD U+014A LATIN CAPITAL LETTER ENG Latin-4
#x03BF U+014B LATIN SMALL LETTER ENG Latin-4
#x03C0 U+0100 LATIN CAPITAL LETTER A WITH MACRON Latin-4
#x03C7 U+012E LATIN CAPITAL LETTER I WITH OGONEK Latin-4
#x03CC U+0116 LATIN CAPITAL LETTER E WITH DOT ABOVE Latin-4
#x03CF U+012A LATIN CAPITAL LETTER I WITH MACRON Latin-4
#x03D1 U+0145 LATIN CAPITAL LETTER N WITH CEDILLA Latin-4
#x03D2 U+014C LATIN CAPITAL LETTER O WITH MACRON Latin-4
#x03D3 U+0136 LATIN CAPITAL LETTER K WITH CEDILLA Latin-4
#x03D9 U+0172 LATIN CAPITAL LETTER U WITH OGONEK Latin-4
#x03DD U+0168 LATIN CAPITAL LETTER U WITH TILDE Latin-4
#x03DE U+016A LATIN CAPITAL LETTER U WITH MACRON Latin-4
#x03E0 U+0101 LATIN SMALL LETTER A WITH MACRON Latin-4
#x03E7 U+012F LATIN SMALL LETTER I WITH OGONEK Latin-4
#x03EC U+0117 LATIN SMALL LETTER E WITH DOT ABOVE Latin-4
#x03EF U+012B LATIN SMALL LETTER I WITH MACRON Latin-4
#x03F1 U+0146 LATIN SMALL LETTER N WITH CEDILLA Latin-4
#x03F2 U+014D LATIN SMALL LETTER O WITH MACRON Latin-4
#x03F3 U+0137 LATIN SMALL LETTER K WITH CEDILLA Latin-4
#x03F9 U+0173 LATIN SMALL LETTER U WITH OGONEK Latin-4

110

KEYSYM Encoding

KEYSYM Unicode Name Set
value value

#x03FD U+0169 LATIN SMALL LETTER U WITH TILDE Latin-4
#x03FE U+016B LATIN SMALL LETTER U WITH MACRON Latin-4
#x047E U+203E OVERLINE Kana
#x04A1 U+3002 KANA FULL STOP Kana
#x04A2 U+300C KANA OPENING BRACKET Kana
#x04A3 TU+300D KANA CLOSING BRACKET Kana
#x04A4 TU+3001 KANA COMMA Kana
#x04A5 U+30FB KANA CONJUNCTIVE Kana
#x04A6 U+30F2 KANA LETTER WO Kana
#x04A7 U+30A1 KANA LETTER SMALL A Kana
#x04A8 U+30A3 KANA LETTER SMALL I Kana
#x04A9 U+30A5 KANA LETTER SMALL U Kana
#x04AA U+30A7 KANA LETTER SMALL E Kana
#x04AB U+30A9 KANA LETTER SMALL O Kana
#x04AC U+30E3 KANA LETTER SMALL YA Kana
#x04AD U+30E5 KANA LETTER SMALL YU Kana
#x04AE U+30E7 KANA LETTER SMALL YO Kana
#x04AF U+30C3 KANA LETTER SMALL TSU Kana
#x04B0 U+30FC PROLONGED SOUND SYMBOL Kana
#x04B1 U+30A2 KANA LETTER A Kana
#x04B2 U+30A4 KANA LETTERI Kana
#x04B3 U+30A6 KANA LETTERU Kana
#x04B4 U+30A8 KANA LETTERE Kana
#x04B5 U+30AA KANA LETTER O Kana
#x04B6 U+30AB KANA LETTER KA Kana
#x04B7 U+30AD KANA LETTER KI Kana
#x04B8 U+30AF KANA LETTER KU Kana
#x04B9 U+30B1 KANA LETTER KE Kana
#x04BA U+30B3 KANA LETTER KO Kana
#x04BB U+30B5 KANA LETTER SA Kana
#x04BC U+30B7 KANA LETTER SHI Kana
#x04BD U+30B9 KANA LETTER SU Kana
#x04BE U+30BB KANA LETTER SE Kana
#x04BF U+30BD KANA LETTER SO Kana
#x04C0 U+30BF KANA LETTER TA Kana
#x04C1 U+30C1 KANA LETTER CHI Kana
#x04C2 U+30C4 KANA LETTER TSU Kana
#x04C3 U+30C6 KANA LETTER TE Kana

111

KEYSYM Encoding

KEYSYM Unicode Name Set
value value

#x04C4 U+30C8 KANA LETTERTO Kana
#x04C5 U+30CA KANA LETTER NA Kana
#x04C6 U+30CB KANA LETTER NI Kana
#x04C7 U+30CC KANA LETTER NU Kana
#x04C8 U+30CD KANA LETTER NE Kana
#x04C9 U+30CE KANA LETTER NO Kana
#x04CA U+30CF KANA LETTER HA Kana
#x04CB U+30D2 KANA LETTER HI Kana
#x04CC U+30D5 KANA LETTER FU Kana
#x04CD U+30D8 KANA LETTER HE Kana
#x04CE U+30DB KANA LETTER HO Kana
#x04CF U+30DE KANA LETTER MA Kana
#x04D0 U+30DF KANA LETTER MI Kana
#x04D1 U+30E0 KANA LETTER MU Kana
#x04D2 U+30E1 KANA LETTER ME Kana
#x04D3 U+30E2 KANA LETTER MO Kana
#x04D4 U+30E4 KANA LETTER YA Kana
#x04D5 U+30E6 KANA LETTER YU Kana
#x04D6 U+30E8 KANA LETTER YO Kana
#x04D7 U+30E9 KANA LETTER RA Kana
#x04D8 U+30EA KANA LETTER RI Kana
#x04D9 U+30EB KANA LETTER RU Kana
#x04DA U+30EC KANA LETTER RE Kana
#x04DB U+30ED KANA LETTER RO Kana
#x04DC U+30EF KANA LETTER WA Kana
#x04DD U+30F3 KANA LETTER N Kana
#x04DE U+309B VOICED SOUND SYMBOL Kana
#x04DF U+309C SEMIVOICED SOUND SYMBOL Kana
#x05AC U+060C ARABIC COMMA Arabic
#x05BB U+061B ARABIC SEMICOLON Arabic
#x05BF U+061F ARABIC QUESTION MARK Arabic
#x05C1 U+0621 ARABIC LETTER HAMZA Arabic

#x05C2 U+0622 ARABIC LETTER ALEF WITH MADDA ABOVE Arabic
#x05C3 U+0623 ARABIC LETTER ALEF WITH HAMZA ABOVE Arabic

#x05C4 U+0624 ARABIC LETTER WAW WITH HAMZA ABOVE Arabic
#x05C5 U+0625 ARABIC LETTER ALEF WITH HAMZA BELOW Arabic
#x05C6 U+0626 ARABIC LETTER YEH WITH HAMZA ABOVE Arabic
#x05C7 U+0627 ARABIC LETTER ALEF Arabic

112

KEYSYM Encoding

KEYSYM Unicode Name Set
value value

#x05C8 U+0628 ARABIC LETTER BEH Arabic
#x05C9 U+0629 ARABIC LETTER TEH MARBUTA Arabic
#x05CA U+062A ARABIC LETTER TEH Arabic
#x05CB U+062B ARABIC LETTER THEH Arabic
#x05CC U+062C ARABIC LETTER JEEM Arabic
#x05CD U+062D ARABIC LETTER HAH Arabic
#x05CE U+062E ARABIC LETTER KHAH Arabic
#x05CF U+062F ARABIC LETTER DAL Arabic
#x05D0 U+0630 ARABIC LETTER THAL Arabic
#x05D1 U+0631 ARABIC LETTER REH Arabic
#x05D2 U+0632 ARABIC LETTER ZAIN Arabic
#x05D3 U+0633 ARABIC LETTER SEEN Arabic
#x05D4 U+0634 ARABIC LETTER SHEEN Arabic
#x05D5 U+0635 ARABIC LETTER SAD Arabic
#x05D6 U+0636 ARABIC LETTER DAD Arabic
#x05D7 U+0637 ARABIC LETTER TAH Arabic
#x05D8 U+0638 ARABIC LETTER ZAH Arabic
#x05D9 U+0639 ARABIC LETTER AIN Arabic
#x05DA U+063A ARABIC LETTER GHAIN Arabic
#x05E0 TU+0640 ARABIC TATWEEL Arabic
#x05E1 U+0641 ARABIC LETTER FEH Arabic
#x05E2 U+0642 ARABIC LETTER QAF Arabic
#x05E3 U+0643 ARABIC LETTER KAF Arabic
#x05E4 U+0644 ARABIC LETTER LAM Arabic
#x05E5 U+0645 ARABIC LETTER MEEM Arabic
#x05E6 U+0646 ARABIC LETTER NOON Arabic
#x05E7 U+0647 ARABIC LETTER HEH Arabic
#x05E8 U+0648 ARABIC LETTER WAW Arabic
#x05E9 U+0649 ARABIC LETTER ALEF MAKSURA Arabic
#x05EA U+064A ARABIC LETTER YEH Arabic
#x05EB U+064B ARABIC FATHATAN Arabic
#x05EC U+064C ARABIC DAMMATAN Arabic
#x05ED U+064D ARABIC KASRATAN Arabic
#x05EE U+064E ARABIC FATHA Arabic
#x05EF U+064F ARABIC DAMMA Arabic
#x05F0 U+0650 ARABIC KASRA Arabic
#x05F1 U+0651 ARABIC SHADDA Arabic
#x05F2 TU+0652 ARABIC SUKUN Arabic

113

KEYSYM Encoding

KEYSYM Unicode Name Set
value value

#x06A1 U+0452 CYRILLIC SMALL LETTER DJE Cyrillic
#x06A2 U+0453 CYRILLIC SMALL LETTER GJE Cyrillic
#x06A3 U+0451 CYRILLIC SMALL LETTER IO Cyrillic
#x06A4 U+0454 CYRILLIC SMALL LETTER UKRAINIAN IE Cyrillic
#x06A5 U+0455 CYRILLIC SMALL LETTER DZE Cyrillic
#x06A6 U+0456 CYRILLIC SMALL LETTER BYELORUSSIAN- Cyrillic

UKRAINIAN I
#x06A7 U+0457 CYRILLIC SMALL LETTER YI Cyrillic
#x06A8 U+0458 CYRILLIC SMALL LETTER JE Cyrillic
#x06A9 U+0459 CYRILLIC SMALL LETTER LJE Cyrillic
#x06AA U+045A CYRILLIC SMALL LETTER NJE Cyrillic
#x06AB U+045B CYRILLIC SMALL LETTER TSHE Cyrillic
#x06AC U+045C CYRILLIC SMALL LETTER KJE Cyrillic
#x06AD U+0491 CYRILLIC SMALL LETTER GHE WITH UPTURN Cyrillic
#x06AE U+045E CYRILLIC SMALL LETTER SHORT U Cyrillic
#x06AF U+045F CYRILLIC SMALL LETTER DZHE Cyrillic
#x06B0 U+2116 NUMERO SIGN Cyrillic
#x06B1 U+0402 CYRILLIC CAPITAL LETTER DJE Cyrillic
#x06B2 U+0403 CYRILLIC CAPITAL LETTER GJE Cyrillic
#x06B3 U+0401 CYRILLIC CAPITAL LETTER IO Cyrillic
#x06B4 U+0404 CYRILLIC CAPITAL LETTER UKRAINIAN IE Cyrillic
#x06B5 U+0405 CYRILLIC CAPITAL LETTER DZE Cyrillic
#x06B6 U+0406 CYRILLIC CAPITAL LETTER BYELORUSSIAN- Cyrillic
UKRAINIAN I

#x06B7 U+0407 CYRILLIC CAPITAL LETTER YI Cyrillic
#x06B8 U+0408 CYRILLIC CAPITAL LETTER JE Cyrillic
#x06B9 U+0409 CYRILLIC CAPITAL LETTER LJE Cyrillic
#x06BA U+040A CYRILLIC CAPITAL LETTER NJE Cyrillic
#x06BB U+040B CYRILLIC CAPITAL LETTER TSHE Cyrillic
#x06BC U+040C CYRILLIC CAPITAL LETTER KJE Cyrillic
#x06BD U+0490 CYRILLIC CAPITAL LETTER GHE WITH UPTURN Cyrillic
#x06BE U+040E CYRILLIC CAPITAL LETTER SHORT U Cyrillic
#x06BF U+040F CYRILLIC CAPITAL LETTER DZHE Cyrillic
#x06C0 U+044E CYRILLIC SMALL LETTER YU Cyrillic
#x06C1 U+0430 CYRILLIC SMALL LETTER A Cyrillic
#x06C2 U+0431 CYRILLIC SMALL LETTER BE Cyrillic
#x06C3 U+0446 CYRILLIC SMALL LETTER TSE Cyrillic
#x06C4 U+0434 CYRILLIC SMALL LETTER DE Cyrillic
#x06C5 U+0435 CYRILLIC SMALL LETTER IE Cyrillic

114

KEYSYM Encoding

KEYSYM Unicode Name Set
value value

#x06C6 U+0444 CYRILLIC SMALL LETTER EF Cyrillic
#x06C7 U+0433 CYRILLIC SMALL LETTER GHE Cyrillic
#x06C8 U+0445 CYRILLIC SMALL LETTER HA Cyrillic
#x06C9 U+0438 CYRILLIC SMALL LETTERI Cyrillic
#x06CA U+0439 CYRILLIC SMALL LETTER SHORT I Cyrillic
#x06CB U+043A CYRILLIC SMALL LETTER KA Cyrillic
#x06CC U+043B CYRILLIC SMALL LETTER EL Cyrillic
#x06CD U+043C CYRILLIC SMALL LETTER EM Cyrillic
#x06CE U+043D CYRILLIC SMALL LETTER EN Cyrillic
#x06CF U+043E CYRILLIC SMALL LETTER O Cyrillic
#x06D0 U+043F CYRILLIC SMALL LETTER PE Cyrillic
#x06D1 U+044F CYRILLIC SMALL LETTER YA Cyrillic
#x06D2 U+0440 CYRILLIC SMALL LETTER ER Cyrillic
#x06D3 U+0441 CYRILLIC SMALL LETTER ES Cyrillic
#x06D4 U+0442 CYRILLIC SMALL LETTER TE Cyrillic
#x06D5 U+0443 CYRILLIC SMALL LETTER U Cyrillic
#x06D6 U+0436 CYRILLIC SMALL LETTER ZHE Cyrillic
#x06D7 U+0432 CYRILLIC SMALL LETTER VE Cyrillic
#x06D8 U+044C CYRILLIC SMALL LETTER SOFT SIGN Cyrillic
#x06D9 U+044B CYRILLIC SMALL LETTER YERU Cyrillic
#x06DA U+0437 CYRILLIC SMALL LETTER ZE Cyrillic
#x06DB U+0448 CYRILLIC SMALL LETTER SHA Cyrillic
#x06DC U+044D CYRILLIC SMALL LETTER E Cyrillic
#x06DD U+0449 CYRILLIC SMALL LETTER SHCHA Cyrillic
#x06DE U+0447 CYRILLIC SMALL LETTER CHE Cyrillic
#x06DF U+044A CYRILLIC SMALL LETTER HARD SIGN Cyrillic
#x06EO U+042E CYRILLIC CAPITAL LETTER YU Cyrillic
#x06E1 U+0410 CYRILLIC CAPITAL LETTER A Cyrillic
#x06E2 U+0411 CYRILLIC CAPITAL LETTER BE Cyrillic
#x06E3 U+0426 CYRILLIC CAPITAL LETTER TSE Cyrillic
#x06E4 U+0414 CYRILLIC CAPITAL LETTER DE Cyrillic
#x06E5 U+0415 CYRILLIC CAPITAL LETTER IE Cyrillic
#x06E6 U+0424 CYRILLIC CAPITAL LETTER EF Cyrillic
#x06E7 U+0413 CYRILLIC CAPITAL LETTER GHE Cyrillic
#x06E8 U+0425 CYRILLIC CAPITAL LETTER HA Cyrillic
#x06E9 U+0418 CYRILLIC CAPITAL LETTER1 Cyrillic
#x06EA U+0419 CYRILLIC CAPITAL LETTER SHORT I Cyrillic
#x06EB U+041A CYRILLIC CAPITAL LETTER KA Cyrillic

115

KEYSYM Encoding

KEYSYM Unicode Name Set
value value
#x06EC U+041B CYRILLIC CAPITAL LETTER EL Cyrillic
#x06ED U+041C CYRILLIC CAPITAL LETTER EM Cyrillic
#x06EE U+041D CYRILLIC CAPITAL LETTER EN Cyrillic
#x06EF U+041E CYRILLIC CAPITAL LETTER O Cyrillic
#x06F0 U+041F CYRILLIC CAPITAL LETTER PE Cyrillic
#x06F1 U+042F CYRILLIC CAPITAL LETTER YA Cyrillic
#x06F2 U+0420 CYRILLIC CAPITAL LETTER ER Cyrillic
#x06F3 U+0421 CYRILLIC CAPITAL LETTER ES Cyrillic
#x06F4 U+0422 CYRILLIC CAPITAL LETTER TE Cyrillic
#x06F5 U+0423 CYRILLIC CAPITAL LETTER U Cyrillic
#x06F6 U+0416 CYRILLIC CAPITAL LETTER ZHE Cyrillic
#x06F7 U+0412 CYRILLIC CAPITAL LETTER VE Cyrillic
#x06F8 U+042C CYRILLIC CAPITAL LETTER SOFT SIGN Cyrillic
#x06F9 U+042B CYRILLIC CAPITAL LETTER YERU Cyrillic
#x06FA U+0417 CYRILLIC CAPITAL LETTER ZE Cyrillic
#x06FB U+0428 CYRILLIC CAPITAL LETTER SHA Cyrillic
#x06FC U+042D CYRILLIC CAPITAL LETTER E Cyrillic
#x06FD U+0429 CYRILLIC CAPITAL LETTER SHCHA Cyrillic
#x06FE U+0427 CYRILLIC CAPITAL LETTER CHE Cyrillic
#x06FF U+042A CYRILLIC CAPITAL LETTER HARD SIGN Cyrillic
#x07A1 U+0386 GREEK CAPITAL LETTER ALPHA WITH TONOS Greek
#x07A2 U+0388 GREEK CAPITAL LETTER EPSILON WITH TONOS Greek
#x07A3 U+0389 GREEK CAPITAL LETTER ETA WITH TONOS Greek
#x07A4 U+038A GREEK CAPITAL LETTER IOTA WITH TONOS Greek
#x07A5 U+03AA GREEK CAPITAL LETTER IOTA WITH DIALYTIKA Greek
#x07A7 U+038C GREEK CAPITAL LETTER OMICRON WITH Greek
TONOS
#x07A8 U+038E GREEK CAPITAL LETTER UPSILON WITH Greek
TONOS
#x07A9 U+03AB GREEK CAPITAL LETTER UPSILON WITH DIA- Greek
LYTIKA
#x07AB U+038F GREEK CAPITAL LETTER OMEGA WITH TONOS Greek
#x07AE U+0385 GREEK DIALYTIKA TONOS Greek
#x07AF U+2015 HORIZONTAL BAR Greek
#x07B1 U+03AC GREEK SMALL LETTER ALPHA WITH TONOS Greek
#x07B2 U+03AD GREEK SMALL LETTER EPSILON WITH TONOS Greek
#x07B3 U+03AE GREEK SMALL LETTER ETA WITH TONOS Greek
#x07B4 U+03AF GREEK SMALL LETTER IOTA WITH TONOS Greek
#x07B5 U+03CA GREEK SMALL LETTER IOTA WITH DIALYTIKA Greek

116

KEYSYM Encoding

KEYSYM Unicode Name Set
value value
#x07B6 U+0390 GREEK SMALL LETTER IOTA WITH DIALYTIKA Greek
AND TONOS
#x07B7 U+03CC GREEK SMALL LETTER OMICRON WITH TONOS Greek
#x07B8 U+03CD GREEK SMALL LETTER UPSILON WITH TONOS Greek
#x07B9 U+03CB GREEK SMALL LETTER UPSILON WITH DIALYTI- Greek
KA
#x07BA U+03B0 GREEK SMALL LETTER UPSILON WITH DIALYTI- Greek
KA AND TONOS
#x07BB U+03CE GREEK SMALL LETTER OMEGA WITH TONOS Greek
#x07C1 U+0391 GREEK CAPITAL LETTER ALPHA Greek
#x07C2 U+0392 GREEK CAPITAL LETTER BETA Greek
#x07C3 U+0393 GREEK CAPITAL LETTER GAMMA Greek
#x07C4 U+0394 GREEK CAPITAL LETTER DELTA Greek
#x07C5 U+0395 GREEK CAPITAL LETTER EPSILON Greek
#x07C6 U+0396 GREEK CAPITAL LETTER ZETA Greek
#x07C7 U+0397 GREEK CAPITAL LETTER ETA Greek
#x07C8 U+0398 GREEK CAPITAL LETTER THETA Greek
#x07C9 U+0399 GREEK CAPITAL LETTER IOTA Greek
#x07CA U+039A GREEK CAPITAL LETTER KAPPA Greek
#x07CB U+039B GREEK CAPITAL LETTER LAMDA Greek
#x07CC U+039C GREEK CAPITAL LETTER MU Greek
#x07CD U+039D GREEK CAPITAL LETTER NU Greek
#x07CE U+039E GREEK CAPITAL LETTER XI Greek
#x07CF U+039F GREEK CAPITAL LETTER OMICRON Greek
#x07D0 U+03A0 GREEK CAPITAL LETTER PI Greek
#x07D1 U+03A1 GREEK CAPITAL LETTER RHO Greek
#x07D2 U+03A3 GREEK CAPITAL LETTER SIGMA Greek
#x07D4 U+03A4 GREEK CAPITAL LETTER TAU Greek
#x07D5 U+03A5 GREEK CAPITAL LETTER UPSILON Greek
#x07D6 U+03A6 GREEK CAPITAL LETTER PHI Greek
#x07D7 U+03A7 GREEK CAPITAL LETTER CHI Greek
#x07D8 U+03A8 GREEK CAPITAL LETTER PSI Greek
#x07D9 U+03A9 GREEK CAPITAL LETTER OMEGA Greek
#x07E1 U+03B1 GREEK SMALL LETTER ALPHA Greek
#x07E2 U+03B2 GREEK SMALL LETTER BETA Greek
#x07E3 U+03B3 GREEK SMALL LETTER GAMMA Greek
#x07E4 U+03B4 GREEK SMALL LETTER DELTA Greek
#x07E5 U+03B5 GREEK SMALL LETTER EPSILON Greek
#x07E6 U+03B6 GREEK SMALL LETTER ZETA Greek

117

KEYSYM Encoding

KEYSYM Unicode Name Set
value value

#x07E7 U+03B7 GREEK SMALL LETTER ETA Greek
#x07E8 U+03B8 GREEK SMALL LETTER THETA Greek
#x07E9 U+03B9 GREEK SMALL LETTER IOTA Greek
#x07EA TU+03BA GREEK SMALL LETTER KAPPA Greek
#x07EB U+03BB GREEK SMALL LETTER LAMDA Greek
#x07EC U+03BC GREEK SMALL LETTER MU Greek
#x07ED U+03BD GREEK SMALL LETTER NU Greek
#x07EE U+03BE GREEK SMALL LETTER XI Greek
#x07EF U+03BF GREEK SMALL LETTER OMICRON Greek
#x07F0 U+03C0 GREEK SMALL LETTER PI Greek
#x07F1 U+03C1 GREEK SMALL LETTER RHO Greek
#x07F2 U+03C3 GREEK SMALL LETTER SIGMA Greek
#x07F3 U+03C2 GREEK SMALL LETTER FINAL SIGMA Greek
#x07F4 U+03C4 GREEK SMALL LETTER TAU Greek
#x07F5 U+03C5 GREEK SMALL LETTER UPSILON Greek
#x07F6 U+03C6 GREEK SMALL LETTER PHI Greek
#x07F7 U+03C7 GREEK SMALL LETTER CHI Greek
#x07F8 U+03C8 GREEK SMALL LETTER PSI Greek
#x07F9 U+03C9 GREEK SMALL LETTER OMEGA Greek
#x08A1 U+23B7 LEFT RADICAL Technical
#x08A2 - TOP LEFT RADICAL Technical
#x08A3 - HORIZONTAL CONNECTOR Technical
#x08A4 U+2320 TOP INTEGRAL Technical
#x08A5 U+2321 BOTTOM INTEGRAL Technical
#x08A6 - VERTICAL CONNECTOR Technical
#x08A7 U+23A1 TOP LEFT SQUARE BRACKET Technical
#x08A8 U+23A3 BOTTOM LEFT SQUARE BRACKET Technical
#x08A9 U+23A4 TOP RIGHT SQUARE BRACKET Technical
#x08AA U+23A6 BOTTOM RIGHT SQUARE BRACKET Technical
#x08AB U+239B TOP LEFT PARENTHESIS Technical
#x08AC U+239D BOTTOM LEFT PARENTHESIS Technical
#x08AD U+239E TOP RIGHT PARENTHESIS Technical
#x08AE U+23A0 BOTTOM RIGHT PARENTHESIS Technical
#x08AF U+23A8 LEFT MIDDLE CURLY BRACE Technical
#x08B0 U+23AC RIGHT MIDDLE CURLY BRACE Technical
#x08B1 - TOP LEFT SUMMATION Technical
#x08B2 - BOTTOM LEFT SUMMATION Technical
#x08B3 - TOP VERTICAL SUMMATION CONNECTOR Technical

118

KEYSYM Encoding

KEYSYM Unicode Name Set
value value

#x08B4 - BOTTOM VERTICAL SUMMATION CONNECTOR Technical
#x08B5 - TOP RIGHT SUMMATION Technical
#x08B6 - BOTTOM RIGHT SUMMATION Technical
#x08B7 - RIGHT MIDDLE SUMMATION Technical
#x08BC U+2264 LESS THAN OR EQUAL SIGN Technical
#x08BD U+2260 NOT EQUAL SIGN Technical
#x08BE U+2265 GREATER THAN OR EQUAL SIGN Technical
#x08BF U+222B INTEGRAL Technical
#x08C0 U+2234 THEREFORE Technical
#x08C1 U+221D VARIATION, PROPORTIONAL TO Technical
#x08C2 U+221E INFINITY Technical
#x08C5 U+2207 NABLA, DEL Technical
#x08C8 U+223C IS APPROXIMATE TO Technical
#x08C9 U+2243 SIMILAR OR EQUAL TO Technical
#x08CD U+21D4 IF AND ONLY IF Technical
#x08CE U+21D2 IMPLIES Technical
#x08CF U+2261 IDENTICAL TO Technical
#x08D6 U+221A RADICAL Technical
#x08DA U+2282 IS INCLUDED IN Technical
#x08DB U+2283 INCLUDES Technical
#x08DC U+2229 INTERSECTION Technical
#x08DD U+222A UNION Technical
#x08DE U+2227 LOGICAL AND Technical
#x08DF U+2228 LOGICAL OR Technical
#x08EF U+2202 PARTIAL DERIVATIVE Technical
#x08F6 U+0192 FUNCTION Technical
#x08FB U+2190 LEFT ARROW Technical
#x08FC U+2191 UPWARD ARROW Technical
#x08FD U+2192 RIGHT ARROW Technical
#x08FE U+2193 DOWNWARD ARROW Technical
#x09DF - BLANK Special
#x09E0 U+25C6 SOLID DIAMOND Special
#x09E1 U+2592 CHECKERBOARD Special
#x09E2 U+2409 "HT" Special
#x09E3 U+240C "FF" Special
#x09E4 U+240D "CR" Special
#x09E5 U+240A "LF" Special
#x09E8 U+2424 "NL" Special

119

KEYSYM Encoding

KEYSYM Unicode Name Set
value value

#x09E9 U+240B "VT" Special
#x09EA U+2518 LOWER-RIGHT CORNER Special
#x09EB U+2510 UPPER-RIGHT CORNER Special
#x09EC U+250C UPPER-LEFT CORNER Special
#x09ED U+2514 LOWER-LEFT CORNER Special
#x09EE U+253C CROSSING-LINES Special
#x09EF U+23BA HORIZONTAL LINE, SCAN 1 Special
#x09F0 U+23BB HORIZONTAL LINE, SCAN 3 Special
#x09F1 U+2500 HORIZONTAL LINE, SCAN 5 Special
#x09F2 U+23BC HORIZONTAL LINE, SCAN 7 Special
#x09F3 U+23BD HORIZONTAL LINE, SCAN 9 Special
#x09F4 U+251C LEFT"T" Special
#x09F5 U+2524 RIGHT"T" Special
#x09F6 U+2534 BOTTOM "T" Special
#x09F7 U+252C TOP"T" Special
#x09F8 U+2502 VERTICAL BAR Special
#x0AA1 U+2003 EM SPACE Publish
#x0AA2 TU+2002 EN SPACE Publish
#x0AA3 U+2004 3/EM SPACE Publish
#x0AA4 U+2005 4/EM SPACE Publish
#x0AA5 U+2007 DIGIT SPACE Publish
#x0AA6 TU+2008 PUNCTUATION SPACE Publish
#x0AA7 U+2009 THIN SPACE Publish
#x0AA8 U+200A HAIR SPACE Publish
#x0AA9 U+2014 EM DASH Publish
#x0AAA U+2013 EN DASH Publish
#x0AAC - SIGNIFICANT BLANK SYMBOL Publish
#X0AAE U+2026 ELLIPSIS Publish
#x0AAF U+2025 DOUBLE BASELINE DOT Publish
#x0AB0 U+2153 VULGAR FRACTION ONE THIRD Publish
#x0AB1 U+2154 VULGAR FRACTION TWO THIRDS Publish
#x0AB2 U+2155 VULGAR FRACTION ONE FIFTH Publish
#x0AB3 U+2156 VULGAR FRACTION TWO FIFTHS Publish
#x0AB4 U+2157 VULGAR FRACTION THREE FIFTHS Publish
#x0AB5 U+2158 VULGAR FRACTION FOUR FIFTHS Publish
#x0AB6 U+2159 VULGAR FRACTION ONE SIXTH Publish
#x0AB7 U+215A VULGAR FRACTION FIVE SIXTHS Publish
#x0AB8 U+2105 CARE OF Publish

120

KEYSYM Encoding

KEYSYM Unicode Name Set
value value

#x0ABB U+2012 FIGURE DASH Publish
#x0ABC - LEFT ANGLE BRACKET Publish
#x0ABD - DECIMAL POINT Publish
#x0ABE - RIGHT ANGLE BRACKET Publish
#x0ABF - MARKER Publish
#x0AC3 U+215B VULGAR FRACTION ONE EIGHTH Publish
#x0AC4 U+215C VULGAR FRACTION THREE EIGHTHS Publish
#x0AC5 U+215D VULGAR FRACTION FIVE EIGHTHS Publish
#x0AC6 U+215E VULGAR FRACTION SEVEN EIGHTHS Publish
#x0AC9 U+2122 TRADEMARK SIGN Publish
#x0ACA - SIGNATURE MARK Publish
#x0ACB - TRADEMARK SIGN IN CIRCLE Publish
#x0ACC - LEFT OPEN TRIANGLE Publish
#x0ACD - RIGHT OPEN TRIANGLE Publish
#x0ACE - EM OPEN CIRCLE Publish
#x0ACF - EM OPEN RECTANGLE Publish
#x0AD0 U+2018 LEFT SINGLE QUOTATION MARK Publish
#x0AD1 U+2019 RIGHT SINGLE QUOTATION MARK Publish
#x0AD2 U+201C LEFT DOUBLE QUOTATION MARK Publish
#x0AD3 U+201D RIGHT DOUBLE QUOTATION MARK Publish
#x0AD4 U+211E PRESCRIPTION, TAKE, RECIPE Publish
#x0AD5 U+2030 PER MILLE SIGN Publish
#x0AD6 U+2032 MINUTES Publish
#x0AD7 U+2033 SECONDS Publish
#x0AD9 U+271D LATIN CROSS Publish
#x0ADA - HEXAGRAM Publish
#x0ADB - FILLED RECTANGLE BULLET Publish
#x0ADC - FILLED LEFT TRIANGLE BULLET Publish
#x0ADD - FILLED RIGHT TRIANGLE BULLET Publish
#x0ADE - EM FILLED CIRCLE Publish
#x0ADF - EM FILLED RECTANGLE Publish
#x0AEO - EN OPEN CIRCLE BULLET Publish
#x0AE1 - EN OPEN SQUARE BULLET Publish
#x0AE2 - OPEN RECTANGULAR BULLET Publish
#x0AE3 - OPEN TRIANGULAR BULLET UP Publish
#x0AE4 - OPEN TRIANGULAR BULLET DOWN Publish
#x0AE5 - OPEN STAR Publish
#x0AE6 - EN FILLED CIRCLE BULLET Publish

121

KEYSYM Encoding

KEYSYM Unicode Name Set
value value

#x0AE7 - EN FILLED SQUARE BULLET Publish
#x0AE8 - FILLED TRIANGULAR BULLET UP Publish
#x0AE9 - FILLED TRIANGULAR BULLET DOWN Publish
#x0AEA - LEFT POINTER Publish
#x0AEB - RIGHT POINTER Publish
#x0AEC U+2663 CLUB Publish
#x0AED U+2666 DIAMOND Publish
#x0AEE U+2665 HEART Publish
#x0AF0 U+2720 MALTESE CROSS Publish
#x0AF1 U+2020 DAGGER Publish
#x0AF2 U+2021 DOUBLE DAGGER Publish
#x0AF3 U+2713 CHECK MARK, TICK Publish
#x0AF4 U+2717 BALLOT CROSS Publish
#x0AF5 U+266F MUSICAL SHARP Publish
#x0AF6 U+266D MUSICAL FLAT Publish
#x0AF7 U+2642 MALE SYMBOL Publish
#x0AF8 U+2640 FEMALE SYMBOL Publish
#x0AF9 U+260E TELEPHONE SYMBOL Publish
#x0AFA U+2315 TELEPHONE RECORDER SYMBOL Publish
#x0AFB U+2117 PHONOGRAPH COPYRIGHT SIGN Publish
#x0AFC U+2038 CARET Publish
#x0AFD U+201A SINGLE LOW QUOTATION MARK Publish
#x0AFE U+201E DOUBLE LOW QUOTATION MARK Publish
#x0AFF - CURSOR Publish
#x0BA3 - LEFT CARET APL
#x0BA6 - RIGHT CARET APL
#x0BA8 - DOWN CARET APL
#x0BA9 - UP CARET APL
#x0BCO - OVERBAR APL
#x0BC2 U+22A5 DOWN TACK APL
#x0BC3 - UP SHOE (CAP) APL
#x0BC4 U+230A DOWN STILE APL
#x0BC6 - UNDERBAR APL
#x0BCA U+2218]JOT APL
#x0BCC U+2395 QUAD APL
#x0BCE U+22A4 UP TACK APL
#x0BCF U+25CB CIRCLE APL
#x0BD3 U+2308 UP STILE APL

122

KEYSYM Encoding

KEYSYM Unicode Name Set
value value

#x0BD6 - DOWN SHOE (CUP) APL
#x0BD8 - RIGHT SHOE APL
#x0BDA - LEFT SHOE APL
#x0BDC U+22A2 LEFT TACK APL
#x0BFC U+22A3 RIGHT TACK APL
#x0CDF U+2017 DOUBLE LOW LINE Hebrew
#x0CEO U+05D0 HEBREW LETTER ALEF Hebrew
#x0CE1 U+05D1 HEBREW LETTER BET Hebrew
#x0CE2 U+05D2 HEBREW LETTER GIMEL Hebrew
#x0CE3 U+05D3 HEBREW LETTER DALET Hebrew
#x0CE4 U+05D4 HEBREW LETTER HE Hebrew
#x0CE5 U+05D5 HEBREW LETTER VAV Hebrew
#x0CE6 U+05D6 HEBREW LETTER ZAYIN Hebrew
#x0CE7 U+05D7 HEBREW LETTER HET Hebrew
#x0CE8 U+05D8 HEBREW LETTER TET Hebrew
#x0CE9 U+05D9 HEBREW LETTER YOD Hebrew
#x0CEA U+05DA HEBREW LETTER FINAL KAF Hebrew
#x0CEB U+05DB HEBREW LETTER KAF Hebrew
#x0CEC U+05DC HEBREW LETTER LAMED Hebrew
#x0CED U+05DD HEBREW LETTER FINAL MEM Hebrew
#x0CEE U+05DE HEBREW LETTER MEM Hebrew
#x0CEF U+05DF HEBREW LETTER FINAL NUN Hebrew
#x0CF0 U+05E0 HEBREW LETTER NUN Hebrew
#x0CF1 U+05E1 HEBREW LETTER SAMEKH Hebrew
#x0CF2 U+05E2 HEBREW LETTER AYIN Hebrew
#x0CF3 U+05E3 HEBREW LETTER FINAL PE Hebrew
#x0CF4 U+05E4 HEBREW LETTER PE Hebrew
#x0CF5 U+05E5 HEBREW LETTER FINAL TSADI Hebrew
#x0CF6 U+05E6 HEBREW LETTER TSADI Hebrew
#x0CF7 U+05E7 HEBREW LETTER QOF Hebrew
#x0CF8 U+05E8 HEBREW LETTER RESH Hebrew
#x0CF9 U+05E9 HEBREW LETTER SHIN Hebrew
#x0CFA U+05EA HEBREW LETTER TAV Hebrew
#x0DA1 U+0E01 THAI CHARACTER KO KAI Thai
#x0DA2 U+0E02 THAI CHARACTER KHO KHAI Thai
#x0DA3 U+0E03 THAI CHARACTER KHO KHUAT Thai
#x0DA4 U+0E04 THAI CHARACTER KHO KHWAI Thai
#x0DA5 U+0E0O5 THAI CHARACTER KHO KHON Thai

123

KEYSYM Encoding

KEYSYM Unicode Name Set
value value

#x0DA6 U+0E06 THAI CHARACTER KHO RAKHANG Thai
#x0DA7 U+0E07 THAI CHARACTER NGO NGU Thai
#x0DA8 U+0E08 THAI CHARACTER CHO CHAN Thai
#x0DA9 U+0E09 THAI CHARACTER CHO CHING Thai
#x0DAA U+0EOA THAI CHARACTER CHO CHANG Thai
#x0DAB U+0EOB THAI CHARACTER SO SO Thai
#x0DAC U+0EOC THAI CHARACTER CHO CHOE Thai
#x0DAD U+0EOD THAI CHARACTER YO YING Thai
#x0DAE U+0OEOE THAI CHARACTER DO CHADA Thai
#x0DAF U+0EOF THAI CHARACTER TO PATAK Thai
#x0DB0O U+0E10 THAI CHARACTER THO THAN Thai
#x0DB1 U+0E11 THAI CHARACTER THO NANGMONTHO Thai
#x0DB2 U+0E12 THAI CHARACTER THO PHUTHAO Thai
#x0DB3 U+0E13 THAI CHARACTER NO NEN Thai
#x0DB4 U+0E14 THAI CHARACTER DO DEK Thai
#x0DB5 U+0E15 THAI CHARACTER TO TAO Thai
#x0DB6 U+0E16 THAI CHARACTER THO THUNG Thai
#x0DB7 U+0E17 THAI CHARACTER THO THAHAN Thai
#x0DB8 U+0E18 THAI CHARACTER THO THONG Thai
#x0DB9 U+0E19 THAI CHARACTER NO NU Thai
#x0DBA U+0E1A THAI CHARACTER BO BAIMAI Thai
#x0DBB U+0E1B THAI CHARACTER PO PLA Thai
#x0DBC U+0E1C THAI CHARACTER PHO PHUNG Thai
#x0DBD U+0E1D THAI CHARACTER FO FA Thai
#x0DBE U+0E1E THAI CHARACTER PHO PHAN Thai
#x0DBF U+0E1F THAI CHARACTER FO FAN Thai
#x0DCO U+0E20 THAI CHARACTER PHO SAMPHAO Thai
#x0DC1 U+0E21 THAI CHARACTER MO MA Thai
#x0DC2 U+0E22 THAI CHARACTER YO YAK Thai
#x0DC3 U+0E23 THAI CHARACTER RO RUA Thai
#x0DC4 U+0E24 THAI CHARACTER RU Thai
#x0DC5 U+0E25 THAI CHARACTER LO LING Thai
#x0DC6 U+0E26 THAI CHARACTER LU Thai
#x0DC7 U+0E27 THAI CHARACTER WO WAEN Thai
#x0DC8 U+0E28 THAI CHARACTER SO SALA Thai
#x0DC9 U+0E29 THAI CHARACTER SO RUSI Thai
#x0DCA U+0E2A THAI CHARACTER SO SUA Thai
#x0DCB U+0E2B THAI CHARACTER HO HIP Thai

124

KEYSYM Encoding

KEYSYM Unicode Name Set
value value

#x0DCC U+0E2C THAI CHARACTER LO CHULA Thai
#x0DCD U+0E2D THAI CHARACTER O ANG Thai
#x0DCE U+0E2E THAI CHARACTER HO NOKHUK Thai
#x0DCF U+0E2F THAI CHARACTER PAIYANNOI Thai
#x0DD0O U+0E30 THAI CHARACTER SARA A Thai
#x0DD1 U+0E31 THAI CHARACTER MAI HAN-AKAT Thai
#x0DD2 U+0E32 THAI CHARACTER SARA AA Thai
#x0DD3 U+0E33 THAI CHARACTER SARA AM Thai
#x0DD4 U+0E34 THAI CHARACTER SARA I Thai
#x0DD5 U+0E35 THAI CHARACTER SARA II Thai
#x0DD6 U+0E36 THAI CHARACTER SARA UE Thai
#x0DD7 U+0E37 THAI CHARACTER SARA UEE Thai
#x0DD8 U+0E38 THAI CHARACTER SARA U Thai
#x0DD9 U+0E39 THAI CHARACTER SARA UU Thai
#x0DDA U+0E3A THAI CHARACTER PHINTHU Thai
#x0DDF U+0E3F THAI CURRENCY SYMBOL BAHT Thai
#x0DEO U+0E40 THAI CHARACTER SARA E Thai
#x0DE1 U+0E41 THAI CHARACTER SARA AE Thai
#x0DE2 U+0E42 THAI CHARACTER SARA O Thai
#x0DE3 U+0E43 THAI CHARACTER SARA AI MAIMUAN Thai
#x0DE4 U+0E44 THAI CHARACTER SARA Al MAIMALAI Thai
#x0DE5 U+0E45 THAI CHARACTER LAKKHANGYAO Thai
#x0DE6 U+0E46 THAI CHARACTER MAIYAMOK Thai
#x0DE7 U+0E47 THAI CHARACTER MAITAIKHU Thai
#x0DE8 U+0E48 THAI CHARACTER MAI EK Thai
#x0DE9 U+0E49 THAI CHARACTER MAI THO Thai
#x0DEA U+0E4A THAI CHARACTER MAI TRI Thai
#x0DEB U+0E4B THAI CHARACTER MAI CHATTAWA Thai
#x0DEC U+0E4C THAI CHARACTER THANTHAKHAT Thai
#x0DED U+0E4D THAI CHARACTER NIKHAHIT Thai
#x0DFO U+0E50 THAI DIGIT ZERO Thai
#x0DF1 U+0E51 THAI DIGIT ONE Thai
#x0DF2 U+O0E52 THAI DIGIT TWO Thai
#x0DF3 U+0E53 THAI DIGIT THREE Thai
#x0DF4 U+0E54 THAI DIGIT FOUR Thai
#x0DF5 U+O0E55 THAI DIGIT FIVE Thai
#x0DF6 U+0E56 THAI DIGIT SIX Thai
#x0DF7 U+0E57 THAI DIGIT SEVEN Thai

125

KEYSYM Encoding

KEYSYM Unicode Name Set
value value

#x0DF8 U+0E58 THAI DIGIT EIGHT Thai
#x0DF9 U+0E59 THAI DIGIT NINE Thai
#x0EA1 - HANGUL KIYEOG Korean
#x0EA2 - HANGUL SSANG KIYEOG Korean
#x0EA3 - HANGUL KIYEOG SIOS Korean
#x0EA4 - HANGUL NIEUN Korean
#x0EA5 - HANGUL NIEUN JIEU] Korean
#x0EAG - HANGUL NIEUN HIEUH Korean
#x0EA7 - HANGUL DIKEUD Korean
#x0EA8 - HANGUL SSANG DIKEUD Korean
#x0EA9 - HANGUL RIEUL Korean
#x0EAA - HANGUL RIEUL KIYEOG Korean
#x0EAB - HANGUL RIEUL MIEUM Korean
#x0EAC - HANGUL RIEUL PIEUB Korean
#x0EAD - HANGUL RIEUL SIOS Korean
#x0EAE - HANGUL RIEUL TIEUT Korean
#x0EAF - HANGUL RIEUL PHIEUF Korean
#x0EBO - HANGUL RIEUL HIEUH Korean
#x0EB1 - HANGUL MIEUM Korean
#x0EB2 - HANGUL PIEUB Korean
#x0EB3 - HANGUL SSANG PIEUB Korean
#x0EB4 - HANGUL PIEUB SIOS Korean
#x0EB5 - HANGUL SIOS Korean
#x0EB6 - HANGUL SSANG SIOS Korean
#x0EB7 - HANGUL IEUNG Korean
#x0EB8 - HANGUL JIEU]J Korean
#x0EB9 - HANGUL SSANG JIEU]J Korean
#x0EBA - HANGUL CIEUC Korean
#x0EBB - HANGUL KHIEUQ Korean
#x0EBC - HANGUL TIEUT Korean
#x0EBD - HANGUL PHIEUF Korean
#x0EBE - HANGUL HIEUH Korean
#x0EBF - HANGUL A Korean
#x0ECO - HANGUL AE Korean
#x0EC1 - HANGUL YA Korean
#X0EC2 - HANGUL YAE Korean
#x0EC3 - HANGUL EO Korean
#x0EC4 - HANGUL E Korean

126

KEYSYM Encoding

KEYSYM Unicode Name Set
value value

#xX0EC5 - HANGUL YEO Korean
#x0EC6 - HANGUL YE Korean
#x0EC7 - HANGUL O Korean
#x0EC8 - HANGUL WA Korean
#x0EC9 - HANGUL WAE Korean
#x0ECA - HANGUL OE Korean
#x0ECB - HANGUL YO Korean
#x0ECC - HANGUL U Korean
#x0ECD - HANGUL WEO Korean
#x0ECE - HANGUL WE Korean
#x0ECF - HANGUL WI Korean
#x0EDO - HANGUL YU Korean
#x0ED1 - HANGUL EU Korean
#x0ED2 - HANGUL YI Korean
#x0ED3 - HANGUL I Korean
#x0ED4 - HANGUL JONG SEONG KIYEOG Korean
#x0ED5 - HANGUL JONG SEONG SSANG KIYEOG Korean
#x0ED6 - HANGUL JONG SEONG KIYEOG SIOS Korean
#x0ED7 - HANGUL JONG SEONG NIEUN Korean
#x0ED8 - HANGUL JONG SEONG NIEUN JIEU] Korean
#x0ED9 - HANGUL JONG SEONG NIEUN HIEUH Korean
#x0EDA - HANGUL JONG SEONG DIKEUD Korean
#x0EDB - HANGUL JONG SEONG RIEUL Korean
#x0EDC - HANGUL JONG SEONG RIEUL KIYEOG Korean
#x0EDD - HANGUL JONG SEONG RIEUL MIEUM Korean
#x0EDE - HANGUL JONG SEONG RIEUL PIEUB Korean
#x0EDF - HANGUL JONG SEONG RIEUL SIOS Korean
#xX0EEO - HANGUL JONG SEONG RIEUL TIEUT Korean
#x0EE1 - HANGUL JONG SEONG RIEUL PHIEUF Korean
#x0EE2 - HANGUL JONG SEONG RIEUL HIEUH Korean
#xX0EE3 - HANGUL JONG SEONG MIEUM Korean
#x0EE4 - HANGUL JONG SEONG PIEUB Korean
#X0EEL5 - HANGUL JONG SEONG PIEUB SIOS Korean
#x0EEG - HANGUL JONG SEONG SIOS Korean
#x0EE7 - HANGUL JONG SEONG SSANG SIOS Korean
#x0EE8 - HANGUL JONG SEONG IEUNG Korean
#x0EE9 - HANGUL JONG SEONG JIEU]J Korean
#xX0EEA - HANGUL JONG SEONG CIEUC Korean

127

KEYSYM Encoding

KEYSYM Unicode Name Set
value value

#x0EEB - HANGUL JONG SEONG KHIEUQ Korean
#X0EEC - HANGUL JONG SEONG TIEUT Korean
#X0EED - HANGUL JONG SEONG PHIEUF Korean
#x0EEE - HANGUL JONG SEONG HIEUH Korean
#x0EEF - HANGUL RIEUL YEORIN HIEUH Korean
#x0EFO - HANGUL SUNKYEONGEUM MIEUM Korean
#x0EF1 - HANGUL SUNKYEONGEUM PIEUB Korean
#x0EF2 - HANGUL PAN SIOS Korean
#x0EF3 - HANGUL KKOG]JI DALRIN IEUNG Korean
#x0EF4 - HANGUL SUNKYEONGEUM PHIEUF Korean
#x0EF5 - HANGUL YEORIN HIEUH Korean
#x0EF6 - HANGUL ARAE A Korean
#x0EF7 - HANGUL ARAE AE Korean
#x0EF8 - HANGUL JONG SEONG PAN SIOS Korean
#x0EF9 - HANGUL JONG SEONG KKOG]JI DALRIN IEUNG Korean
#x0EFA - HANGUL JONG SEONG YEORIN HIEUH Korean
#x0EFF - KOREAN WON Korean
#x13BC U+0152 LATIN CAPITAL LIGATURE OE Latin-9
#x13BD U+0153 LATIN SMALL LIGATURE OE Latin-9
#x13BE U+0178 LATIN CAPITAL LETTER Y WITH DIAERESIS Latin-9
#x20A0 - CURRENCY ECU SIGN Currency
#x20A1 - CURRENCY COLON SIGN Currency
#x20A2 - CURRENCY CRUZEIRO SIGN Currency
#x20A3 - CURRENCY FRENCH FRANC SIGN Currency
#x20A4 - CURRENCY LIRA SIGN Currency
#x20A5 - CURRENCY MILL SIGN Currency
#x20A6 - CURRENCY NAIRA SIGN Currency
#x20A7 - CURRENCY PESETA SIGN Currency
#x20A8 - CURRENCY RUPEE SIGN Currency
#x20A9 - CURRENCY WON SIGN Currency
#x20AA - CURRENCY NEW SHEQEL SIGN Currency
#x20AB - CURRENCY DONG SIGN Currency
#x20AC U+20AC CURRENCY EURO SIGN Currency

128

Appendix B. Protocol Encoding

Syntactic Conventions

All numbers are in decimal, unless prefixed with #x, in which case they are in hexa-
decimal (base 16).

The general syntax used to describe requests, replies, errors, events, and compound
types is:

Naneof Thi ng

encode- form

encode- form
Each encode-form describes a single component.

For components described in the protocol as:

nane. TYPE

the encode-form is:

N TYPE name

N is the number of bytes occupied in the data stream, and TYPE is the interpretation
of those bytes. For example,

dept h: CARD8
becomes:
1 CARDS depth

For components with a static numeric value the encode-form is:

N val ue name
The value is always interpreted as an N-byte unsigned integer. For example, the

first two bytes of a Window error are always zero (indicating an error in general)
and three (indicating the Window error in particular):

1 0 Error
1 3 code

For components described in the protocol as:

129

Protocol Encoding

name: { Namel,..., Namel}
the encode-form is:
N name
val uel Nanel
val uel Nanel
The value is always interpreted as an N-byte unsigned integer. Note that the size of

N is sometimes larger than that strictly required to encode the values. For example:

class: { InputOutput, InputOnly, CopyFromParent }

becomes:

2 cl ass
0 CopyFr onPar ent
1 I nput CQut put
2 | nput Onl y

For components described in the protocol as:
NAME: TYPE or Alternativel ...or Alternativel

the encode-form is:

N TYPE NANME
val uel Al ternativel
val uel Al ternativel

The alternative values are guaranteed not to conflict with the encoding of TYPE.
For example:

destination: WINDOW or PointerWindow or InputFocus

becomes:

4 W NDOW desti nation
0 Poi nt er W ndow
1 | nput Focus

For components described in the protocol as:

val ue- mask: BI TMASK

the encode-form is:

130

Protocol Encoding

N Bl TMASK val ue- mask
maskl mask- nanel
maskl mask- nanel

The individual bits in the mask are specified and named, and N is 2 or 4. The most-
significant bit in a BITMASK is reserved for use in defining chained (multiword)
bitmasks, as extensions augment existing core requests. The precise interpretation
of this bit is not yet defined here, although a probable mechanism is that a 1-bit
indicates that another N bytes of bitmask follows, with bits within the overall mask
still interpreted from least-significant to most-significant with an N-byte unit, with
N-byte units interpreted in stream order, and with the overall mask being byte-
swapped in individual N-byte units.

For LISTofVALUE encodings, the request is followed by a section of the form:

VALUES
encode-form

encode-form

listing an encode-form for each VALUE. The NAME in each encode-form keys to the
corresponding BITMASK bit. The encoding of a VALUE always occupies four bytes,
but the number of bytes specified in the encoding-form indicates how many of the
least-significant bytes are actually used; the remaining bytes are unused and their
values do not matter.

In various cases, the number of bytes occupied by a component will be specified by a
lowercase single-letter variable name instead of a specific numeric value, and often
some other component will have its value specified as a simple numeric expression
involving these variables. Components specified with such expressions are always

interpreted as unsigned integers. The scope of such variables is always just the
enclosing request, reply, error, event, or compound type structure. For example:

2 3+n request length
4n LI STof PO NT poi nts

For unused bytes (the values of the bytes are undefined and do no matter), the
encode-form is:

N unused
If the number of unused bytes is variable, the encode-form typically is:
p unused, p=pad(E)
where E is some expression, and pad(E) is the number of bytes needed to round

E up to a multiple of four.

pad(E) = (4 - (E nmod 4)) nod 4

131

Protocol Encoding

Common Types

LISTof- In this document the LISTof notation strictly means some number of
FOO repetitions of the FOO encoding; the actual length of the list is encoded
elsewhere.

SETofFOO A set is always represented by a bitmask, with a 1-bit indicating pres-
ence in the set.

BITMASK: CARD32

WINDOW: CARD32

PIXMAP: CARD32

CURSOR: CARD32

FONT: CARD32

GCONTEXT: CARD32
COLORMAP: CARD32
DRAWABLE: CARD32
FONTABLE: CARD32

ATOM: CARD32

VISUALID: CARD32

BYTE: 8-bit value

INT8: 8-bit signed integer
INT16: 16-bit signed integer
INT32: 32-bit signed integer
CARDS: 8-bit unsigned integer
CARDI16: 16-bit unsigned integer
CARD32: 32-bit unsigned integer
TIMESTAMP: CARD32

BI TGRAVI TY
For get
Nor t hWest
Nort h
Nor t hEast
West
Cent er
East
Sout hWest
Sout h
Sout hEast
0 Static

P OoO~NO UL, WNEO

W NGRAVI TY
0 Unmap
1 Nor t hWest
2 Nort h

132

Protocol Encoding

3 Nor t hEast
4 West
5 Cent er
6 East
7 Sout hWest
8 Sout h
9 Sout hEast
10 Static

BOOL
0 Fal se
1 True

SETof EVENT
#x00000001 KeyPr ess
#x00000002 KeyRel ease
#x00000004 But t onPr ess
#x00000008 But t onRel ease
#x00000010 Ent er W ndow
#x00000020 LeaveW ndow
#x00000040 Poi nt er Mot i on
#x00000080 Poi nt er Mot i onHi nt
#x00000100 Butt on1Moti on
#x00000200 Butt on2Mot i on
#x00000400 Butt on3Mot i on
#x00000800 But t on4Mot i on
#x00001000 But t on5Mot i on
#x00002000 Butt onMbt i on
#x00004000 KeymapSt at e
#x00008000 Exposure
#x00010000 Vi si bi I'i tyChange
#x00020000 StructureNotify
#x00040000 Resi zeRedi r ect
#x00080000 SubstructureNotify
#x00100000 Subst ruct ur eRedi r ect
#x00200000 FocusChange
#x00400000 Pr opert yChange
#x00800000 Col or mapChange
#x01000000 Omer GrabBut t on
#xFEO00000 unused but must be zero

SETof PO NTEREVENT
encodi ngs are the sane as
#xFFFF8003 unused but

for SETof EVENT, except wth
nmust be zero

SETof DEVI CEEVENT
encodi ngs are the sane as
#xFFFFCOBO unused but

for SETof EVENT, except wth
nmust be zero

KEYSYM CARD32
KEYCODE: CARDS8
BUTTON: CARDS

SETof KEYBUTIVASK

133

Protocol Encoding

#x0001 Shi ft
#x0002 Lock
#x0004 Cont r ol
#x0008 Mod1
#x0010 Mod?2
#x0020 Mod3
#x0040 Mod4
#x0080 Mod5
#x0100 But t onl
#x0200 But t on2
#x0400 But t on3
#x0800 But t on4
#x1000 But t on5
#xEO00O unused but must be zero

SETof KEYMASK
encodi ngs are the sane as for SETof KEYBUTMASK, except with
#XFFOO0 unused but nust be zero

STRI NG3: LI STof CARD8

STRI NGL6: LI STof CHAR2B

CHAR2B
1 CARDS byt el
1 CARDS byt e2
PO NT
2 I NT16 X
2 I NT16 y
RECTANGLE
2 I NT16 X
2 I NT16 y
2 CARD16 wi dt h
2 CARD16 hei ght
ARC
2 I NT16 X
2 I NT16 y
2 CARD16 wi dt h
2 CARD16 hei ght
2 | NT16 angl el
2 | NT16 angl e2
HOST
1 famly
0 I nt er net
1 DECnet
2 Chaos
5 Serverlnterpreted
6 I nt ernet V6
1 unused
2 n | ength of address
n LI STof BYTE address
p unused, p=pad(n)

134

Protocol Encoding

STR

Errors

Request

NEFEFNANREPRP

Val ue

At om

NEFEFNANREPRP

STRI NG8

CARD16

CARD16

0
2
CARD16

<32-bits>

CARD16
CARDS

CARD16
CARD32
CARD16

CARD16
CARD32
CARD16

CARD16
CARD32
CARD16

| ength of nane in bytes

nane

Error

code

sequence nunber
unused

m nor opcode
maj or opcode
unused

Error
code
sequence nunber

bad val ue

m nor opcode
maj or opcode
unused

Error

code

sequence nunber
bad resource id
m nor opcode
maj or opcode
unused

Error

code

sequence nunber
bad resource id
m nor opcode
maj or opcode
unused

Error

code

sequence nunber
bad atomid

m nor opcode
maj or opcode
unused

135

Protocol Encoding

Cur sor

CARD16
CARD32
CARD16

NFRPNANPR R

Font

CARD16
CARD32
CARD16

NEFEFNANREPRP

Mat ch

CARD16

CARD16

NEFEFNANREPRP

Dr awabl e

CARD16
CARD32
CARD16

NEFEFNANREPRP

Access

10
CARD16

CARD16

NEFEFNANREPRP

Al |l oc

11
CARD16

CARD16

NEFEFNANREPRP

Error

code

seqguence nunber
bad resource id
m nor opcode
maj or opcode
unused

Error

code

sequence nunber
bad resource id
m nor opcode
maj or opcode
unused

Error

code

seqguence nunber
unused

m nor opcode
maj or opcode
unused

Error

code

seqguence nunber
bad resource id
m nor opcode
maj or opcode
unused

Error

code

seqguence nunber
unused

m nor opcode
maj or opcode
unused

Error

code

seqguence nunber
unused

m nor opcode
maj or opcode
unused

136

Protocol Encoding

Col or map

12

CARD16
CARD32
CARD16

NEFEFNANREPRP

1
Cont ext

1

1 13

2 CARD16
4 CARD32
2 CARD16
1

2

1 14

2 CARD16
4 CARD32
2 CARD16
1

2

15
CARD16

CARD16

16
CARD16

CARD16

NEFEFNANREPRP

1

| mpl enent ati on

0

17
CARD16

CARD16
CARDS

NEFEFNANREPRP

Error

code

seqguence nunber
bad resource id
m nor opcode
maj or opcode
unused

Error

code

sequence nunber
bad resource id
m nor opcode
maj or opcode
unused

Error

code

seqguence nunber
bad resource id
m nor opcode
maj or opcode
unused

Error

code

seqguence nunber
unused

m nor opcode
maj or opcode
unused

Error

code

seqguence nunber
unused

m nor opcode
maj or opcode
unused

Error

code

seqguence nunber
unused

m nor opcode
maj or opcode
unused

137

Protocol Encoding

Keyboards

KEYCODE values are always greater than 7 (and less than 256).
KEYSYM values with the bit #x10000000 set are reserved as vendor-specific.

The names and encodings of the standard KEYSYM values are contained in Appendix
A, Keysym Encoding.

Pointers

BUTTON values are numbered starting with one.

Predefined Atoms

PRI MARY 1 W/ NORMAL_HI NTS 40
SECONDARY 2 WM _SI ZE_HI NTS 41
ARC 3 WM ZOOM HI NTS 42
ATOM 4 M N_SPACE 43
Bl TMAP 5 NORM_SPACE 44
CARDI NAL 6 MAX_SPACE 45
COLORMAP 7 END_SPACE 46
CURSOR 8 SUPERSCRI PT_X 47
CUT_BUFFERD 9 SUPERSCRI PT_Y 48
CUT_BUFFER1 10 SUBSCRI PT_X 49
CUT_BUFFER2 11 SUBSCRI PT_Y 50
CUT_BUFFER3 12 UNDERLI NE_POSI TION 51
CUT_BUFFER4 13 UNDERLI NE_THI CKNESS 52
CUT_BUFFER5 14 STRI KEOUT ASCENT 53
CUT_BUFFER6 15 STRI KEOUT DESCENT 54
CUT_BUFFERY 16 | TALI C_ANGLE 55
DRAWABLE 17 X_HEl GHT 56
FONT 18 QUAD_W DTH 57
| NTEGER 19 VEI GHT 58
Pl XMAP 20 PO NT_SI ZE 59
POl NT 21 RESOLUTI ON 60
RECTANGLE 22 COPYRI GHT 61
RESOURCE_MANAGER 23 NOTI CE 62
RGB_COLOR_MAP 24 FONT_NAME 63
RGB_BEST_MAP 25 FAM LY_NAME 64
RGB_BLUE_MAP 26 FULL_NAME 65
RGB_DEFAULT MAP 27 CAP_HEI GHT 66
RGB_GRAY_MAP 28 W _CLASS 67
RGB_GREEN_MAP 29 W/ TRANSI ENT_FOR 68
RGB_RED MAP 30

STRI NG 31

VI SUALI D 32

W NDOW 33

W COMVAND 34

W/ HI NTS 35

VWM _CLI ENT_MACHI NE 36

138

Protocol Encoding

W | CON_NAVE 37
W | CON_SI ZE 38
WW_NANE 39

Connection Setup

For TCP connections, displays on a given host are numbered starting from 0, and
the server for display N listens and accepts connections on port 6000 + N. For
DECnet connections, displays on a given host are numbered starting from 0, and the
server for display N listens and accepts connections on the object name obtained
by concatenating "X$X" with the decimal representation of N, for example, X$X0
and X$X1.

Information sent by the client at connection setup:

1 byt e- or der
#x42 VBB first
#x6C LSB first
1 unused
2 CARD16 pr ot ocol - maj or - ver si on
2 CARD16 pr ot ocol - m nor - versi on
2 n [engt h of authorization-protocol -nane
2 d [engt h of authorization-protocol -data
2 unused
n STRI NG8 aut hori zati on- pr ot ocol - nane
p unused, p=pad(n)
d STRI NG8 aut hori zati on- prot ocol - dat a
q unused, g=pad(d)

Except where explicitly noted in the protocol, all 16-bit and 32-bit quantities sent
by the client must be transmitted with the specified byte order, and all 16-bit and
32-bit quantities returned by the server will be transmitted with this byte order.

Information received by the client if the connection is refused:

1 0 Fai | ed

1 n | ength of reason in bytes

2 CARD16 pr ot ocol - maj or - ver si on

2 CARD16 pr ot ocol - m nor - versi on

2 (n+p)/4 length in 4-byte units of "additional data"
n STRI NGB reason

p unused, p=pad(n)

Information received by the client if further authentication is required:

1 2 Aut henticate

5 unused

2 (n+p)/4 length in 4-byte units of "additional data"
n STRI NG8 reason

p unused, p=pad(n)

Information received by the client if the connection is accepted:

139

Protocol Encoding

PFRPNNDMDMDMD NNN PP

[

SOT < APRPRPPRRP
S

FORMAT

[

(S =N

§
m
Z

P ADNNMNNMNNMNNNAEAAERADD

1

CARD16
CARD16
8+2n+(v+p+m /4

CARD32
CARD32
CARD32
CARD32
\%
CARD16
CARDS
n

LSBFi r st
MSBFi r st

Least Si gni fi cant
Most Si gni fi cant
CARD8
CARD8
KEYCODE
KEYCODE

STRI NG8

LI STof FORVAT
LI STof SCREEN

W NDOW
COLORMVAP
CARD32
CARD32
SETof EVENT
CARD16
CARD16
CARD16
CARD16
CARD16
CARD16
VI SUALI D

Success

unused

pr ot ocol - maj or - ver si on

pr ot ocol - m nor - versi on
ength in 4-byte units of
"additional data"

rel ease- nunber

resour ce-id- base

resour ce-id- mask

noti on- buf fer-si ze

| engt h of vendor

maxi mum r equest -1 ength
nunber of SCREENs in roots
nunber for FORMATS in

pi xmap-f or mat s

i mage- byt e- or der

bi t map-format-bit-order

bi t map-f or mat - scanl i ne-unit
bi t map-f or mat - scanl i ne- pad
m n- keycode

max- keycode

unused

vendor

unused, p=pad(vVv)

pi xmap-f or mat s

roots (mis always a nultiple of 4)

dept h

bi t s- per - pi xel
scanl i ne- pad
unused

r oot

def aul t-col or map

whi t e- pi xel

bl ack- pi xel
current-input - masks
wi dt h-i n-pi xel s

hei ght -i n- pi xel s
width-in-mllinmeters
height-in-mllineters
m n-instal | ed- maps
max-i nstal | ed- maps
root - vi sual
backi ng- st ores

140

Protocol Encoding

0 Never
1 VWhenMapped
2 Al ways
1 BOCL save-unders
1 CARDS root - dept h
1 CARDS nunber of DEPTHs in all owed-depths
n LI STof DEPTH al | owed-depths (n is always a
mul tiple of 4)
DEPTH
1 CARDS depth
1 unused
2 n nunmber of VI SUALTYPES in visuals
4 unused
24n LI STof VI SUALTYPE vi sual s
VI SUALTYPE
4 VI SUALI D visual -id
1 cl ass
0 StaticG ay
1 GrayScal e
2 St ati cCol or
3 PseudoCol or
4 Tr ueCol or
5 Di rect Col or
1 CARDS bi t s- per-rgb-val ue
2 CARD16 col ormap-entries
4 CARD32 r ed- mask
4 CARD32 gr een- mask
4 CARD32 bl ue- mask
4 unused
Requests
Cr eat eW ndow
1 1 opcode
1 CARDS dept h
2 8+n request length
4 W NDOW wi d
4 W NDOW par ent
2 | NT16 X
2 | NT16 y
2 CARD16 wi dt h
2 CARD16 hei ght
2 CARD16 border-wi dth
2 cl ass
0 CopyFr onPar ent
1 I nput Cut put
2 | nput Onl'y
4 VI SUALI D vi sual
0 CopyFr onPar ent

141

Protocol Encoding

4 Bl TMASK val ue-mask (has n bits set to 1)
#x00000001 backgr ound- pi xmap
#x00000002 backgr ound- pi xe
#x00000004 bor der - pi xmap
#x00000008 bor der - pi xe
#x00000010 bit-gravity
#x00000020 W n-gravity
#x00000040 backi ng-store
#x00000080 backi ng- pl anes
#x00000100 backi ng- pi xe
#x00000200 override-redirect
#x00000400 save- under
#x00000800 event - mask
#x00001000 do- not - pr opagat e- nask
#x00002000 col or map
#x00004000 cursor
4n LI STof VALUE val ue-11i st
VALUES
4 Pl XMAP backgr ound- pi xmap
0 None
1 Parent Rel ati ve
4 CARD32 backgr ound- pi xe
4 Pl XMAP bor der - pi xmap
0 CopyFr onPar ent
4 CARD32 bor der - pi xel
1 Bl TGRAVI TY bit-gravity
1 W NGRAVI TY W n-gravity
1 backi ng-store
0 Not Usef u
1 VWhenMapped
2 Al ways
4 CARD32 backi ng- pl anes
4 CARD32 backi ng- pi xe
1 BOCL override-redirect
1 BOCL save- under
4 SETof EVENT event - mask
4 SETof DEVI CEEVENT do- not - pr opagat e- nask
4 COLORMAP col or map
0 CopyFr onPar ent
4 CURSOR cursor
0 None

ChangeW ndowAt tri but es

1 2 opcode

1 unused

2 3+n request length

4 W NDOW wi ndow

4 Bl TMASK val ue-mask (has n bits set to 1)
encodi ngs are the sane as for CreateW ndow

4n LI STof VALUE val ue-11i st

encodi ngs are the sane as for CreateW ndow

Get W ndowAt t ri but es

142

Protocol Encoding

1 3 opcode
1 unused
2 2 request length
4 W NDOW wi ndow
#

1 1 Reply
1 backi ng-store

0 Not Usef u

1 VWhenMapped

2 Al ways
2 CARD16 sequence nunber
4 3 reply length
4 VI SUALI D vi sual
2 cl ass

1 I nput Cut put

2 | nput Onl'y
1 Bl TGRAVI TY bit-gravity
1 W NGRAVI TY W n-gravity
4 CARD32 backi ng- pl anes
4 CARD32 backi ng- pi xe
1 BOCL save- under
1 BOOL map-is-installed
1 map- st ate

0 Unnmapped

1 Unvi ewabl e

2 Vi ewabl e
1 BOCL override-redirect
4 COLORMAP col or map

0 None
4 SETof EVENT al | - event - masks
4 SETof EVENT your - event - mask
2 SETof DEVI CEEVENT do- not - pr opagat e- nask
2 unused

Dest r oyW ndow

1 4 opcode
1 unused
2 2 request length
4 W NDOW wi ndow

Dest r oySubwi ndows

1 5 opcode
1 unused
2 2 request length
4 W NDOW wi ndow
ChangeSaveSet
1 6 opcode
1 node
0 I nsert
1 Del et e
2 2 request length
4 W NDOW wi ndow

143

Protocol Encoding

Repar ent W ndow

1 7
1
2 4
4 W NDOW
4 W NDOW
2 | NT16
2 | NT16
MapW ndow
1 8
1
2 2
4 W NDOW
MapSubwi ndows
1 9
1
2 2
4 W NDOW
UnmapW ndow
1 10
1
2 2
4 W NDOW
UnmapSubwi ndows
1 11
1
2 2
4 W NDOW
Conf i gur eW ndow
1 12
1
2 3+n
4 W NDOW
2 Bl TMASK
#x0001 X
#x0002 y
#x0004 wi dt h
#x0008 hei ght
#x0010 bor der-wi dt h
#x0020 si bling
#x0040 st ack- node
2 unused
4n LI STof VALUE
VALUES
2 | NT16
2 | NT16
2 CARD16

opcode

unused

request length
wi ndow

par ent

X

y

opcode
unused
request length
wi ndow

opcode
unused
request length
wi ndow

opcode
unused
request length
wi ndow

opcode
unused
request length
wi ndow

opcode

unused

request length

wi ndow

val ue-mask (has n bits set to 1)

val ue-1|i st

wi dt h

144

Protocol Encoding

2 CARD16 hei ght
2 CARD16 bor der-wi dt h
4 W NDOW si bling
1 st ack- node
0 Above
1 Bel ow
2 Topl f
3 Bottom f
4 Opposi te
Circul at eW ndow
1 13 opcode
1 direction
0 Rai seLowest
1 Lower Hi ghest
2 2 request length
4 W NDOW wi ndow
Cet GCeonetry
1 14 opcode
1 unused
2 2 request length
4 DRAVABLE dr awabl e
#
1 1 Reply
1 CARDS dept h
2 CARD16 seqguence nunber
4 0 reply length
4 W NDOW r oot
2 I NT16 X
2 I NT16 y
2 CARD16 wi dt h
2 CARD16 hei ght
2 CARD16 bor der-wi dt h
10 unused
QueryTree
1 15 opcode
1 unused
2 2 request length
4 W NDOW wi ndow
#
1 1 Reply
1 unused
2 CARD16 seqguence nunber
4 n reply length
4 W NDOW r oot
4 W NDOW par ent
0 None
2 n nunber of WNDOA in children
14 unused
4n LI STof W NDOW children

145

Protocol Encoding

I nt er nAt om
1 16 opcode
1 BOOL only-if-exists
2 2+(n+p)/4 request length
2 n | engt h of nane
2 unused
n STRI NGB nanme
p unused, p=pad(n)
#
1 1 Reply
1 unused
2 CARD16 sequence nunber
4 0 reply length
4 ATOM atom
0 None
20 unused
Get At omNane
1 17 opcode
1 unused
2 2 request length
4 ATOM atom
#
1 1 Reply
1 unused
2 CARD16 sequence nunber
4 (n+tp)/4 reply length
2 n | ength of nane
22 unused
n STRI NG8 nanme
p unused, p=pad(n)
ChangePr operty
1 18 opcode
1 node
0 Repl ace
1 Pr epend
2 Append
2 6+(n+p)/4 request length
4 W NDOW wi ndow
4 ATOM property
4 ATOM type
1 CARDS f or mat
3 unused
4 CARD32 length of data in format units

(=n for format = 8)

(=n/2 for format = 16)

(=n/4 for format = 32)
n LI STof BYTE dat a
(nis amltiple of 2 for format
(nis amltiple of 4 for format

16)
32)

n
n

146

Protocol Encoding

Del et eProperty

unused, p=pad(n)

1 19 opcode
1 unused
2 3 request length
4 W NDOW wi ndow
4 ATOM property
Cet Property
1 20 opcode
1 BOCL del ete
2 6 request length
4 W NDOW wi ndow
4 ATOM property
4 ATOM type
0 AnyPr opertyType
4 CARD32 | ong- of f set
4 CARD32 | ong- | ength
#
1 1 Reply
1 CARDS f or mat
2 CARD16 seqguence nunber
4 (n+tp)/4 reply length
4 ATOM type
0 None
4 CARD32 bytes-after
4 CARD32 length of value in format units
(=0 for format = 0)
(=n for format = 8)
(=n/2 for format = 16)
(=n/4 for format = 32)
12 unused
n LI STof BYTE val ue
(nis zero for format = 0)
(nis amltiple of 2 for format = 16)
(nis amltiple of 4 for format = 32)
p unused, p=pad(n)
Li st Properties
1 21 opcode
1 unused
2 2 request length
4 W NDOW wi ndow
#
1 1 Reply
1 unused
2 CARD16 seqguence nunber
4 n reply length
2 n nunmber of ATOMs in atons
22 unused

147

Protocol Encoding

4n LI STof ATOM at ons

Set Sel ecti onOmner

1 22 opcode
1 unused
2 4 request length
4 W NDOW owner
0 None
4 ATOM sel ection
4 TI MESTAMP tine
0 Current Ti me

Cet Sel ecti onOmner

1 23 opcode
1 unused
2 2 request length
4 ATOM sel ection
#
1 1 Reply
1 unused
2 CARD16 seqguence nunber
4 0 reply length
4 W NDOW owner
0 None
20 unused

Convert Sel ection

1 24 opcode
1 unused
2 6 request length
4 W NDOW request or
4 ATOM sel ection
4 ATOM t ar get
4 ATOM property
0 None
4 TI MESTAMP tinme
0 Current Ti ne
SendEvent
1 25 opcode
1 BOOL pr opagat e
2 11 request! ength
4 W NDOW destination
0 Poi nt er W ndow
1 | nput Focus
4 SETof EVENT event - mask
32 event

standard event format (see the Events section)

G abPoi nt er
1 26 opcode
1 BOOL owner -event s
2 6 request length

148

Protocol Encoding

4 W NDOW
2 SETof PO NTEREVENT
1
0 Synchr onous
1 Asynchr onous
1
0 Synchr onous
1 Asynchr onous
4 W NDOW
0 None
4 CURSOR
0 None
4 TI MESTAMP
0 Current Ti ne
#
1 1
1
0 Success
1 Al readyG abbed
2 I nval i dTi me
3 Not Vi ewabl e
4 Frozen
2 CARD16
4 0
24
Ungr abPoi nt er
1 27
1
2 2
4 TI MESTAMP
0 Current Ti ne
GrabBut t on
1 28
1 BOCL
2 6
4 W NDOW
2 SETof PO NTEREVENT
1
0 Synchr onous
1 Asynchr onous
1
0 Synchr onous
1 Asynchr onous
4 W NDOW
0 None
4 CURSOR
0 None
1 BUTTON
0 AnyButt on
1
2 SETof KEYMASK

gr ab-w ndow
event - mask
poi nt er - node

keyboar d- node

confine-to
cur sor

time

Reply
st at us

seqguence nunber
reply length
unused

opcode

unused

request length
tinme

opcode
owner - event s
request length
gr ab-w ndow
event - mask

poi nt er - node

keyboar d- node

confine-to
cur sor
but t on

unused
nodi fiers

149

Protocol Encoding

#x8000

Ungr abBut t on

1 29

1 BUTTON
0 AnyButt on

2 3

4 W NDOW

2 SETof KEYMASK
#x8000

2

ChangeAct i vePoi nter Grab

1 30
1
2 4
4 CURSOR
0 None
4 TI MESTAMP
0 Current Ti ne
2 SETof PO NTEREVENT
2
G abKeyboard
1 31
1 BOOL
2 4
4 W NDOW
4 TI MESTAMP
0 Current Ti ne
1
0 Synchr onous
1 Asynchr onous
1
0 Synchr onous
1 Asynchr onous
2
#
1 1
1
0 Success
1 Al readyG abbed
2 I nval i dTi me
3 Not Vi ewabl e
4 Frozen
2 CARD16
4 0
24
Ungr abKeyboar d
1 32
1
2 2

AnyModi fi er

opcode
button

request length
gr ab-w ndow
nodi fiers
AnyModi fi er
unused

opcode
unused
request length
cursor

time

event - mask
unused

opcode
owner - event s
request length
gr ab-w ndow
tinme

poi nt er - node

keyboar d- node

unused

Reply
st at us

seqguence nunber
reply length
unused

opcode
unused
request length

150

Protocol Encoding

4 TI MESTAMP
0 CurrentTi me
G abKey
1 33
1 BOCL
2 4
4 W NDOW
2 SETof KEYMASK
#x8000 AnyModi fi er
1 KEYCODE
0 AnyKey
1
0 Synchr onous
1 Asynchr onous
1
0 Synchr onous
1 Asynchr onous
3
Ungr abKey
1 34
1 KEYCODE
0 AnyKey
2 3
4 W NDOW
2 SETof KEYMASK
#x8000 AnyModi fi er
2
Al |l owEvent s
1 35
1
0 AsyncPoi nt er
1 SyncPoi nt er
2 Repl ayPoi nt er
3 AsyncKeyboar d
4 SyncKeyboar d
5 Repl ayKeyboard
6 AsyncBot h
7 SyncBot h
2 2
4 TI MESTAMP
0 CurrentTi me
G abSer ver
1 36
1
2 1

Ungr abSer ver

1
1
2

37

1

time

opcode
owner - event s
request length
gr ab-w ndow
nodi fiers

key

poi nt er - node
keyboar d- node
unused

opcode

key

request length
gr ab-w ndow
nodi fiers
unused

opcode
node

request
time

| ength

opcode
unused

request length

opcode
unused

request length

151

Protocol Encoding

Quer yPoi nt er

1 38 opcode
1 unused
2 2 request length
4 W NDOW w ndow
#
1 1 Reply
1 BOOL same- screen
2 CARD16 sequence nunber
4 0 reply length
4 W NDOW r oot
4 W NDOW child
0 None
2 | NT16 root - x
2 I NT16 root-y
2 | NT16 W n- X
2 | NT16 W n-y
2 SETof KEYBUTMASK mask
6 unused
Cet Mbti onEvent s
1 39 opcode
1 unused
2 4 request length
4 W NDOW w ndow
4 Tl MESTAMP start
0 Current Ti me
4 Tl MESTAMP stop
0 Current Ti me
#
1 1 Reply
1 unused
2 CARD16 seqguence nunber
4 2n reply length
4 n number of TIMECOORDs in events
20 unused
8n LI STof TI MECOORD event s
TI MECOORD
4 Tl MESTAMP tine
2 | NT16 X
2 | NT16 y
Tr ansl at eCoor di nat es
1 40 opcode
1 unused
2 4 request length
4 W NDOW src-w ndow
4 W NDOW dst - wi ndow
2 | NT16 Src- X
2 I NT16 src-y

152

Protocol Encoding

#
1 1
1 BOOL
2 CARD16
4 0
4 W NDOW
0 None
2 | NT16
2 | NT16
16
War pPoi nt er
1 41
1
2 6
4 W NDOW
0 None
4 W NDOW
0 None
2 | NT16
2 | NT16
2 CARD16
2 CARD16
2 | NT16
2 | NT16
Set | nput Focus
1 42
1
0 None
1 Poi nt er Root
2 Par ent
2 3
4 W NDOW
0 None
1 Poi nt er Root
4 Tl MESTAMP
0 Current Ti me

Cet | nput Focus

1 43

1

2 1

#

1 1

1
0 None
1 Poi nt er Root
2 Par ent

2 CARD16

4 0

4 W NDOW
0 None

Reply

same- screen
seqguence nunber
reply length
child

dst-x
dst-y
unused

opcode

unused

request length
src-w ndow

dst - wi ndow

Src-x
src-y
src-wi dth
src- hei ght
dst - x
dst-y

opcode
revert-to

request length
focus

time

opcode
unused
request length

Reply
revert-to

seqguence nunber
reply length
focus

153

Protocol Encoding

1 Poi nt er Root
20 unused
Quer yKeymap
1 44 opcode
1 unused
2 1 request length
#
1 1 Reply
1 unused
2 CARD16 sequence nunber
4 2 reply length
32 LI STof CARD8 keys
OpenFont
1 45 opcode
1 unused
2 3+(n+p)/4 request length
4 FONT fid
2 n | engt h of nane
2 unused
n STRI NGB nanme
p unused, p=pad(n)
Cl oseFont
1 46 opcode
1 unused
2 2 request length
4 FONT f ont
Quer yFont
1 47 opcode
1 unused
2 2 request length
4 FONTABLE f ont
#
1 1 Reply
1 unused
2 CARD16 seqguence nunber
4 7+2n+3m reply length
12 CHARI NFO m n- bounds
4 unused
12 CHARI NFO max- bounds
4 unused
2 CARD16 m n- char - or - byt e2
2 CARD16 max- char - or - byt e2
2 CARD16 def aul t - char
2 n nunber of FONTPROPs in properties
1 draw- direction
0 Left ToR ght
1 Ri ght ToLeft
1 CARDS m n- byt el

154

Protocol Encoding

1 CARDS max- byt el

1 BOOL al | - char s- exi st

2 | NT16 font - ascent

2 | NT16 font - descent

4 m nunber of CHARINFGs in char-infos

8n LI STof FONTPROP properties

12m LI STof CHARI NFO char -i nf os

FONTPROP
4 ATOM name
4 <32-bits> val ue
CHARI NFO

2 | NT16 | eft -si de-bearing

2 I NT16 ri ght-side-bearing

2 I NT16 character-w dth

2 I NT16 ascent

2 I NT16 descent

2 CARD16 attributes
QueryText Extents

1 48 opcode

1 BOOL odd length, True if p = 2

2 2+(2n+p)/ 4 request length

4 FONTABLE f ont

2n STRI NGL6 string

p unused, p=pad(2n)
#

1 1 Reply

1 draw-direction

0 Left ToR ght
1 Ri ght ToLeft

2 CARD16 seqguence nunber

4 0 reply length

2 | NT16 font - ascent

2 | NT16 font - descent

2 | NT16 overal | - ascent

2 | NT16 overal | - descent

4 | NT32 overal | -wi dth

4 | NT32 overal |l -1l eft

4 | NT32 overal |l -right

4 unused
Li st Fonts

1 49 opcode

1 unused

2 2+(n+p)/4 request length

2 CARD16 max- names

2 n l ength of pattern

n STRI NG pattern

p unused, p=pad(n)
#

155

Protocol Encoding

1 1 Reply
1 unused
2 CARD16 seqguence nunber
4 (n+tp)/4 reply length
2 CARD16 nunber of STRs in names
22 unused
n LI STof STR names
p unused, p=pad(n)
Li st Font sWt hl nfo
1 50 opcode
1 unused
2 2+(n+p)/4 request length
2 CARD16 max- names
2 n l ength of pattern
n STRI NG pattern
p unused, p=pad(n)
(except for last in series)
1 1 Reply
1 n | ength of nane in bytes
2 CARD16 seqguence nunber
4 7+2mt(n+p)/ 4 reply length
12 CHARI NFO m n- bounds
4 unused
12 CHARI NFO max- bounds
4 unused
2 CARD16 m n- char - or - byt e2
2 CARD16 max- char - or - byt e2
2 CARD16 def aul t - char
2 m nunber of FONTPROPs in properties
1 draw- direction
0 Left ToR ght
1 Ri ght ToLeft
1 CARDS m n- byt el
1 CARDS max- byt el
1 BOCL al | - char s- exi st
2 I NT16 font - ascent
2 I NT16 font - descent
4 CARD32 replies-hint
8m LI STof FONTPROP properties
n STRI NGB nanme
p unused, p=pad(n)
FONTPROP

encodi ngs are the sane as for QueryFont

CHARI NFO
encodi ngs are the sane as for QueryFont

(last in series)

1 1 Reply
1 0 | ast-reply indicator
2 CARD16 seqguence nunber

156

Protocol Encoding

4
52

Set Font Pat
1

T S NDNNDNBR

Get Font Pat
1
1
2

T S NNAEANPRERPRE

h
51

2+(n+p)/4
CARD16

LI STof STR
h
52

1

1
CARD16
(n+tp)/4
CARD16

LI STof STR

Cr eat ePi xnap

NNPEABANRE P

FreePi xmap
1

1
2
4

Creat eGC

B

ArbAADN

53

CARDS

4

Pl XMAP
DRAWABLE
CARD16
CARD16

54

Pl XMAP

55

4+n
GCONTEXT
DRAWABLE
Bl TMASK
#x00000001
#x00000002
#x00000004
#x00000008
#x00000010

function

pl ane- mask
f or egr ound
backgr ound
[ine-width

reply length
unused

opcode

unused

request length

nunber of STRs in path
unused

pat h

unused, p=pad(n)

opcode
unused
request |ist

Reply

unused

seqguence nunber

reply length

nunber of STRs in path
unused

pat h

unused, p=pad(n)

opcode

dept h

request length
pi d

dr awabl e

wi dt h

hei ght

opcode
unused
request length
pi xmap

opcode

unused

request length
cid

dr awabl e

val ue-mask (has n bits set to 1)

157

Protocol Encoding

4n

VALUEs

PNADMD

#x00000020 line-style
#x00000040 cap-style
#x00000080 join-style
#x00000100 fill-style
#x00000200 fill-rule
#x00000400 tile
#x00000800 stipple
#x00001000 tile-stipple-x-origin
#x00002000 tile-stipple-y-origin
#x00004000 f ont
#x00008000 subw ndow node
#x00010000 gr aphi cs- exposur es
#x00020000 clip-x-origin
#x00040000 clip-y-origin
#x00080000 clip-mask
#x00100000 dash- of f set
#x00200000 dashes
#x00400000 ar c- node
LI STof VALUE val ue-11i st
function
0 d ear
1 And
2 AndRever se
3 Copy
4 Andl nverted
5 NoQp
6 Xor
7 O
8 Nor
9 Equi v
10 I nvert
11 O Rever se
12 Copyl nvert ed
13 Ol nverted
14 Nand
15 Set
CARD32 pl ane- mask
CARD32 f or egr ound
CARD32 backgr ound
CARD16 [ine-width
line-style
0 Solid
1 OnOF f Dash
2 Doubl eDash
cap-style
0 Not Last
1 But t
2 Round
3 Proj ecting
join-style
0 M ter
1 Round

158

Protocol Encoding

R ADNNAD

ADNDNPEP

=N

ChangeGC

A DANPRELPRE

Set Dashes

NNANPRP PR

2 Bevel

Sol i d

Til ed

Sti ppl ed
OpaquesSt i ppl ed

WNEFELO

o

EvenQdd
1 W ndi ng
Pl XVAP

Pl XVAP

| NT16

| NT16

FONT

0 C i pByChil dren

1 I ncl udel nferiors
BOOL

| NT16

| NT16

Pl XVAP
0 None

CARD16

CARDB

0 Chord

1 Pi eSlice
56

3+n

GCONTEXT
Bl TMASK

fill-style
fill-rule
tile
stipple

tile-stipple-x-origin
tile-stipple-y-origin

f ont
subwi ndow npde

gr aphi cs- exposur es
clip-x-origin
clip-y-origin
clip-mask

dash- of f set
dashes
ar c- node

opcode
unused
request

gc

| ength

val ue-mask (has n bits set to 1)

encodi ngs are the sane as for CreateGC

LI STof VALUE

val ue-1|i st

encodi ngs are the sane as for CreateGC

57

4
GCONTEXT
GCONTEXT
Bl TMASK

opcode
unused
request
src-gc
dst -gc
val ue- mask

| ength

encodi ngs are the sane as for CreateGC

58

3+(n+p)/4
GCONTEXT
CARD16

n

opcode
unused
request
gc
dash- of f set
| engt h of dashes

| ength

159

Protocol Encoding

n
P

LI STof CARD8

Set C i pRect angl es

1

Free

NNNNNNAADMMBRANPRPE

CopyPl ane

NABRMBNERERBRE

WNEFELO

59

UnSort ed
YSorted
YXSort ed
YXBanded
3+2n
GCONTEXT
| NT16
| NT16

LI STof RECTANGLE

60

GCONTEXT

61
BOOL

W NDOW
I NT16
I NT16
CARD16
CARD16

62

DRAWABLE
DRAWABLE
GCONTEXT
I NT16
I NT16
I NT16
I NT16
CARD16
CARD16

63

DRAWABLE
DRAWABLE
GCONTEXT
I NT16

dashes
unused, p=pad(n)

opcode
ordering

request length
gc
clip-x-origin
clip-y-origin
rect angl es

opcode
unused
request length

gc

opcode
exposures
request length
wi ndow

X

y

wi dt h

hei ght

opcode
unused
request length
src-drawabl e
dst - dr awabl e
gc

src-x

src-y

dst-x

dst-y

wi dt h

hei ght

opcode

unused

request length
src-drawabl e
dst -drawabl e
gc

Src-x

160

Protocol Encoding

2 | NT16
2 | NT16
2 | NT16
2 CARD16
2 CARD16
4 CARD32
Pol yPoi nt
1 64
1
0 Oigin
1 Pr evi ous
2 3+n
4 DRAVABLE
4 GCONTEXT
4n LI STof PO NT
Pol yLi ne
1 65
1
0 Oigin
1 Pr evi ous
2 3+n
4 DRAVABLE
4 GCONTEXT
4n LI STof PO NT
Pol ySegnent
1 66
1
2 3+2n
4 DRAVABLE
4 GCONTEXT
8n LI STof SEGVENT
SEGVENT
2 | NT16
2 | NT16
2 | NT16
2 | NT16

Pol yRect angl e

1
1
2
4
4
8

Pol yArc

ANR R

67

3+2n

DRAWABLE
GCONTEXT

LI STof RECTANGLE

68

3+3n
DRAWABLE

src-y
dst - x
dst-y
wi dt h
hei ght
bi t - pl ane

opcode
coor di nat e- node

request
dr awabl e
gc

poi nts

| ength

opcode
coor di nat e- node

request
dr awabl e
gc

poi nts

| ength

opcode
unused
request
dr awabl e
gc
segnment s

| ength

opcode
unused
request
dr awabl e
gc

rect angl es

| ength

opcode
unused
request
dr awabl e

| ength

161

Protocol Encoding

4
12n

Fill Poly

N N N N

2
4n

GCONTEXT
LI STof ARC

69

4+n
DRAWABLE
GCONTEXT

Conpl ex
Nonconvex
Convex

Oigin
Pr evi ous

LI STof PO NT

Pol yFi I | Rect angl e

[

1
2
4
4
8

n

Pol yFi Il Arc

[

1
2
4
4
12n
Put | mage

1
1

T SNEFPEPNNNNEADIADN

70

3+2n

DRAWABLE
GCONTEXT

LI STof RECTANGLE

71

3+3n
DRAWABLE
GCONTEXT

LI STof ARC

72

Bi t map
XYPi xmap
ZPi xmap
6+(n+p)/4
DRAWABLE
GCONTEXT
CARD16
CARD16
| NT16
| NT16
CARD8
CARD8

LI STof BYTE

gc
arcs

opcode

unused

request length
dr awabl e

gc

shape

coor di nat e- node

unused
poi nts

opcode

unused

request length
dr awabl e

gc

rect angl es

opcode

unused

request length
dr awabl e

gc

arcs

opcode
f or mat

request length
dr awabl e

gc

wi dt h

hei ght

dst - x

dst-y

| ef t - pad

dept h

unused

dat a

unused, p=pad(n)

162

Protocol Encoding

Cet | mage
1 73 opcode
1 f or mat
1 XYPi xmap
2 ZPi xmap
2 5 request length
4 DRAWABLE dr awabl e
2 I NT16 X
2 I NT16 y
2 CARD16 wi dt h
2 CARD16 hei ght
4 CARD32 pl ane- mask
#
1 1 Reply
1 CARDS dept h
2 CARD16 sequence nunber
4 (n+tp)/4 reply length
4 VI SUALI D vi sual
0 None
20 unused
n LI STof BYTE dat a
p unused, p=pad(n)
Pol yText 8
1 74 opcode
1 unused
2 4+(n+p)/ 4 request length
4 DRAWABLE dr awabl e
4 GCONTEXT gc
2 I NT16 X
2 I NT16 y
n LI STof TEXTI TEMB itens
p unused, p=pad(n) (p is always O
or 1)
TEXTI TEMB
1 m l ength of string (cannot be 255)
1 | NT8 delta
m STRI N3 string
or
1 255 font-shift indicator
1 font byte 3 (nost-significant)
1 font byte 2
1 font byte 1
1 font byte O (least-significant)
Pol yText 16
1 75 opcode
1 unused
2 4+(n+p)/ 4 request length
4 DRAWABLE dr awabl e
4 GCONTEXT gc
2 I NT16 X

163

Protocol Encoding

2 I NT16 y
n LI STof TEXTI TEML6 itens
p unused, p=pad(n) (p must be 0 or
1)
TEXTI TEML6
1 m nunber of CHAR2Bs in string
(cannot be 255)
1 | NT8 delta
2m STRI NGL6 string
or
1 255 font-shift indicator
1 font byte 3 (nost-significant)
1 font byte 2
1 font byte 1
1 font byte O (least-significant)
| mgeText 8
1 76 opcode
1 n l ength of string
2 4+(n+p)/ 4 request length
4 DRAWABLE dr awabl e
4 GCONTEXT gc
2 I NT16 X
2 I NT16 y
n STRI N8 string
p unused, p=pad(n)
| mgeText 16
1 77 opcode
1 n nunber of CHAR2Bs in string
2 4+(2n+p)/ 4 request length
4 DRAWABLE dr awabl e
4 GCONTEXT gc
2 I NT16 X
2 I NT16 y
2n STRI NGL6 string
p unused, p=pad(2n)
Cr eat eCol or nap
1 78 opcode
1 al | oc
0 None
1 All
2 4 request length
4 COLORVAP m d
4 W NDOW wi ndow
4 VI SUALI D vi sual
FreeCol or nap
1 79 opcode
1 unused
2 2 request length
4 COLORNVAP cmap

164

Protocol Encoding

CopyCol or mapAndFr ee

A DANPRELPRE

80

3
COLORVAP
COLORVAP

I nstal | Col or map

1

1
2
4

81

2
COLORVAP

Uni nst al | Col or map

1
1
2
4
Li stlnstall
1
1
2
4
#
1
1
2
4
2
22
4n
Al | ocCol or
1
1
2
4
2
2
2
2
#
1
1
2
4
2
2
2
2

82

2
COLORVAP

edCol or naps
83

2
W NDOW

CARD16

LI STof COLORVAP

84

COLORMVAP
CARD16
CARD16
CARD16

CARD16

CARD16
CARD16
CARD16

opcode

unused

request length
md

src-cnap

opcode

unused

request length
cmap

opcode

unused

request length
cmap

opcode
unused
request length
wi ndow

Reply

unused
seqguence nunber
reply length

nunber of COLORMAPS in cmaps

unused
crmaps

opcode

unused

request length
cmap

red

green

bl ue

unused

Reply

unused
seqguence nunber
reply length
red

green

bl ue

unused

165

Protocol Encoding

4 CARD32 pi xe
12 unused

Al | ocNanedCol or

1 85 opcode
1 unused
2 3+(n+p)/4 request length
4 COLORNVAP cmap
2 n | engt h of nane
2 unused
n STRI NGB nanme
p unused, p=pad(n)
#
1 1 Reply
1 unused
2 CARD16 sequence nunber
4 0 reply length
4 CARD32 pi xe
2 CARD16 exact -red
2 CARD16 exact - green
2 CARD16 exact - bl ue
2 CARD16 visual -red
2 CARD16 vi sual - green
2 CARD16 vi sual - bl ue
8 unused
Al'l ocCol orCel I's
1 86 opcode
1 BOOL conti guous
2 3 request length
4 COLORNVAP cmap
2 CARD16 col ors
2 CARD16 pl anes
#
1 1 Reply
1 unused
2 CARD16 seqguence nunber
4 n+m reply length
2 n nunber of CARD32s in pixels
2 m nunmber of CARD32s in masks
20 unused
4n LI STof CARD32 pi xel s
4m LI STof CARD32 masks

Al | ocCol or Pl anes

1 87 opcode

1 BOOL conti guous

2 4 request length
4 COLORNVAP cmap

2 CARD16 col ors

2 CARD16 reds

2 CARD16 greens

166

Protocol Encoding

2 CARD16 bl ues
#
1 1 Reply
1 unused
2 CARD16 seqguence nunber
4 n reply length
2 n nunber of CARD32s in pixels
2 unused
4 CARD32 red- mask
4 CARD32 gr een- mask
4 CARD32 bl ue- mask
8 unused
4n LI STof CARD32 pi xel s
FreeCol ors
1 88 opcode
1 unused
2 3+n request length
4 COLORNVAP cmap
4 CARD32 pl ane- mask
4n LI STof CARD32 pi xel s
St oreCol ors
1 89 opcode
1 unused
2 2+3n request length
4 COLORNVAP cmap
12n LI STof COLORI TEM itens
COLORI TEM
4 CARD32 pi xe
2 CARD16 red
2 CARD16 green
2 CARD16 bl ue
1 do-red, do-green, do-blue
#x01 do-red (1 is True, 0 is False)
#x02 do-green (1 is True, 0 is False)
#x04 do-blue (1 is True, 0 is False)
#XF8 unused
1 unused

St or eNanedCol or

1 90 opcode
1 do-red, do-green, do-blue
#x01 do-red (1 is True, 0 is False)
#x02 do-green (1 is True, 0 is False)
#x04 do-blue (1 is True, 0 is False)
#XF8 unused
2 4+(n+p)/ 4 request length
4 COLORNVAP cmap
4 CARD32 pi xe
2 n | ength of nane
2 unused

167

Protocol Encoding

n STRI NG name
p unused, p=pad(n)
QueryCol ors
1 91 opcode
1 unused
2 2+n request length
4 COLORNVAP cmap
4n LI STof CARD32 pi xel s
#
1 1 Reply
1 unused
2 CARD16 sequence nunber
4 2n reply length
2 n nunber of RGBs in colors
22 unused
8n LI STof RGB colors
RGB
2 CARD16 red
2 CARD16 green
2 CARD16 bl ue
2 unused
LookupCol or
1 92 opcode
1 unused
2 3+(n+p)/4 request length
4 COLORNVAP cmap
2 n | ength of nane
2 unused
n STRI NG name
p unused, p=pad(n)
#
1 1 Reply
1 unused
2 CARD16 seqguence nunber
4 0 reply length
2 CARD16 exact-red
2 CARD16 exact - green
2 CARD16 exact - bl ue
2 CARD16 vi sual -red
2 CARD16 vi sual - green
2 CARD16 vi sual - bl ue
12 unused
Cr eat eCur sor
1 93 opcode
1 unused
2 8 request length
4 CURSOR cid
4 Pl X\VAP source

168

Protocol Encoding

N

0

NNNNNNNDN

Pl XMAP

None

CARD16
CARD16
CARD16
CARD16
CARD16
CARD16
CARD16
CARD16

Creat ed yphCur sor

1 94

8

ArBAADNDPR

NNNNNNNDN

FreeCur sor
1 95

1

2 2

4
Recol or Cur sor
96

5

NNNNNNEAEANRE P

QueryBest Si ze
1 97
1
0
1
2
2 3

CURSOR
FONT
FONT

None

CARD16
CARD16
CARD16
CARD16
CARD16
CARD16
CARD16
CARD16

CURSOR

CURSOR
CARD16
CARD16
CARD16
CARD16
CARD16
CARD16

Cur sor
Tile
Stipple

4 DRAWABLE

mask

fore-red
fore-green
fore-blue
back-red
back- green
back- bl ue
X

y

opcode
unused
request
cid
sour ce-font
mask- f ont

| ength

sour ce- char
mask- char
fore-red
fore-green
fore-blue
back-red
back- green
back- bl ue

opcode
unused
request
cursor

| ength

opcode
unused
request
cursor
fore-red
fore-green
fore-blue
back-red
back- green
back- bl ue

| ength

opcode
cl ass

request
dr awabl e

| ength

169

Protocol Encoding

2 CARD16 wi dt h
2 CARD16 hei ght
#
1 1 Reply
1 unused
2 CARD16 sequence nunber
4 0 reply length
2 CARD16 wi dt h
2 CARD16 hei ght
20 unused
Quer yExt ensi on
1 98 opcode
1 unused
2 2+(n+p)/4 request length
2 n | engt h of nane
2 unused
n STRI NGB nanme
p unused, p=pad(n)
#
1 1 Reply
1 unused
2 CARD16 seqguence nunber
4 0 reply length
1 BOOL pr esent
1 CARDS maj or - opcode
1 CARDS first-event
1 CARDS first-error
20 unused
Li st Ext ensi ons
1 99 opcode
1 unused
2 1 request length
#
1 1 Reply
1 CARDS nunber of STRs in names
2 CARD16 seqguence nunber
4 (n+tp)/4 reply length
24 unused
n LI STof STR names
p unused, p=pad(n)
ChangeKeyboar dMappi ng
1 100 opcode
1 n keycode- count
2 2+nm request length
1 KEYCODE first-keycode
1 m keysyns- per - keycode
2 unused
4nm LI STof KEYSYM keysyns

170

Protocol Encoding

Cet Keyboar dMappi ng

Cet Keyboar dContr o

1
1
2

103

1

1 101 opcode
1 unused
2 2 request length
1 KEYCODE first-keycode
1 m count
2 unused
#
1 1 Reply
1 n keysyns- per - keycode
2 CARD16 sequence nunber
4 nm reply length (m= count field
fromthe request)
24 unused
4nm LI STof KEYSYM keysyns
ChangeKeyboar dContro
1 102 opcode
1 unused
2 2+n request length
4 Bl TMASK val ue-mask (has n bits set to 1)
#x0001 key-cl i ck- percent
#x0002 bel | - per cent
#x0004 bel | -pitch
#x0008 bel | - duration
#x0010 | ed
#x0020 | ed- node
#x0040 key
#x0080 aut o- r epeat - node
4n LI STof VALUE val ue-11i st
VALUES
1 | NT8 key-cl i ck- percent
1 | NT8 bel | - per cent
2 | NT16 bel | -pitch
2 I NT16 bel | - duration
1 CARDS | ed
1 | ed- node
0 Of
1 On
1 KEYCODE key
1 aut o- r epeat - node
0 Of
1 On
2 Def aul t

opcode
unused
request length

171

Protocol Encoding

B

WNDNNRPRPERPRAADMDN

Bel

B

O f

CARD16
5
CARD32
CARDS
CARDS
CARD16
CARD16

LI STof CARD8

104

| NT8
1

ChangePoi nter Contr o

1

P EPDNNNDNPREP

105

3

I NT16
I NT16
I NT16
BOOL
BOOL

Cet Poi nt er Cont r ol

1
1
2

ENNMNNBEANPRERPR

106

1

CARD16

CARD16
CARD16
CARD16

Set Scr eenSaver

1

P NNDNPRP

107

3
I NT16
I NT16

Yes
Def aul t

Reply
gl obal - aut o-r epeat

seqguence nunber
reply length

| ed- mask
key-cl i ck- percent
bel | - per cent

bel | -pitch
bel | -duration
unused

aut o-repeats

opcode
per cent
request length

opcode

unused

request length

accel erati on- numer at or
accel erati on-denom nat or
t hreshol d

do- accel eration
do-threshol d

opcode
unused
request length

Reply

unused

seqguence nunber

reply length

accel erati on- numer at or
accel erati on-denom nat or
t hreshol d

unused

opcode

unused

request length
ti meout

i nterval

pr ef er - bl anki ng

172

Protocol Encoding

2

[

Get Scr eenSaver

1
1
2
#
1
1
2
4
2
2
1
0
1
1
0
1
18
ChangeHost s
1
1
0
1
2
1
0
1
2
1
2
n
p
Li st Host s
1
1
2
#
1
1
0
1
2
4
2

No
Yes
Def aul t
108
1
1
CARD16
0
CARD16
CARD16
No
Yes
No
Yes
109
I nsert
Del et e
2+(n+p)/4
I nt er net
DECnet
Chaos
n
LI STof CARD8
110
1
1
Di sabl ed
Enabl ed
CARD16
n/ 4
CARD16

al | ow exposures

unused

opcode
unused
request

Repl'y

unused
sequenc
reply |
ti neout

| ength

e nunber
engt h

i nt erval

prefer-

bl anki ng

al | ow exposures

unused

opcode
node

r equest
family

unused
| ength
addr ess
unused,

opcode
unused
request

Repl'y
node

sequenc

reply |
numrber

| ength

of address

p=pad(n)

| ength

e nunber
engt h
of HOSTs in hosts

173

Protocol Encoding

22
n LI STof HOST

Set AccessContro

1 111
1
0 Di sabl e
1 Enabl e
2 1

Set Cl oseDownMbde

1 112
1
0 Destr oy
1 Ret ai nPer manent
2 Ret ai nTenpor ary
2 1
Killdient
1 113
1
2 2
4 CARD32
0 Al | Tenporary
Rot at eProperties
1 114
1
2 3+n
4 W NDOW
2 n
2 | NT16
4n LI STof ATOM

For ceScreenSaver

1 115
1

0 Reset

1 Activate
2 1

Set Poi nt er Mappi ng

1 116

1 n

2 1+(n+p)/ 4

n LI STof CARDS

p

#

1 1

1
0 Success
1 Busy

2 CARD16

unused
hosts (n always a nultiple of 4)

opcode
node

request length

opcode
node

request length

opcode

unused

request length
resource

opcode

unused

request length

wi ndow

nunber of properties
delta

properties

opcode
node

request length

opcode

l ength of map
request length
map

unused, p=pad(n)

Reply
st at us

seqguence nunber

174

Protocol Encoding

4 0 reply length
24 unused

Cet Poi nt er Mappi ng

1 117 opcode
1 unused
2 1 request length
#
1 1 Reply
1 n l ength of map
2 CARD16 sequence nunber
4 (n+tp)/4 reply length
24 unused
n LI STof CARDS map
p unused, p=pad(n)
Set Modi f i er Mappi ng
1 118 opcode
1 n keycodes- per-nodi fier
2 1+2n request length
8n LI STof KEYCODE keycodes
#
1 1 Reply
1 status
0 Success
1 Busy
2 Fai | ed
2 CARD16 seqguence nunber
4 0 reply length
24 unused

Cet Modi fi er Mappi ng

1 119 opcode

1 unused

2 1 request length
#

1 1 Reply

1 n keycodes- per-nodi fier

2 CARD16 seqguence nunber

4 2n reply length

24 unused

8n LI STof KEYCODE keycodes
NoQper at i on

1 127 opcode

1 unused

2 1+n request length

4n unused

Events

175

Protocol Encoding

KeyPr ess
1

ArBAMADNPRE

P EPDNNNDNDN

KeyRel ease

N N N L S

P EPDNNNDNDN

But t onPr ess

B

ArBASADDN

P EPDNNNDNDN

2

KEYCODE

CARD16

TI MESTAMP

W NDOW

W NDOW

W NDOW
None

| NT16

| NT16

| NT16

| NT16

SETof KEYBUTMASK

BOOL

3

KEYCODE

CARD16

Tl MESTAMP

W NDOW

W NDOW

W NDOW
None

| NT16

| NT16

| NT16

| NT16

SETof KEYBUTNMASK

BOOL

4
BUTTON
CARD16
Tl MESTAMP
W NDOW
W NDOW
W NDOW
None
| NT16
| NT16
| NT16
| NT16
SETof KEYBUTMASK
BOOL

But t onRel ease

1

5

code

det ai |

seqguence nunber
tinme

r oot

event

child

r oot - x
root-y
event - X
event -y
state

same- screen
unused

code

det ai |

seqguence nunber
tinme

r oot

event

child

r oot - x
root-y
event - X
event -y
state

sanme- screen
unused

code

det ai |

seqguence nunber
tinme

r oot

event

child

r oot - x
root-y
event - X
event -y
state

same- screen
unused

code

176

Protocol Encoding

ArBAMADNPRE

P EPDNNNDNDN

BUTTON

CARD16

TI MESTAMP

W NDOW

W NDOW

W NDOW
None

| NT16

| NT16

| NT16

| NT16

SETof KEYBUTMASK

BOOL

Mot i onNoti fy

1
1

0

1
2
4
4
4
4
2
2
2
2
2
1
1

Enter Notify
1
1

0

1

2

3

4
2
4
4
4
4

0
2
2
2
2
2
1

6

Nor mal
Hi nt
CARD16
Tl MESTAMP
W NDOW
W NDOW
W NDOW
0 None
| NT16
| NT16
| NT16
| NT16
SETof KEYBUTNMASK
BOOL

7

Ancest or
Vi rtual

I nferior
Nonl i near

Nonl i near Vi r t ual

CARD16

Tl MESTAMP

W NDOW

W NDOW

W NDOW
None

| NT16

| NT16

| NT16

| NT16

SETof KEYBUTMASK

det ai |

seqguence nunber
tinme

r oot

event

child

r oot - x
root-y
event - X
event -y
state

same- screen
unused

code
det ai |

seqguence nunber
tinme

r oot

event

child

r oot - x
root-y
event - X
event -y
state

sanme- screen
unused

code
det ai |

seqguence nunber
tinme

r oot

event

child

r oot - x
root-y
event - X
event -y
state
node

177

Protocol Encoding

0 Nor mal
1 G ab
2 Ungr ab
1
#x01 focus (1 is True,
#x02 same-screen (1 is True,
#xFC unused
LeaveNoti fy
1 8
1
0 Ancest or
1 Vi rtual
2 I nferior
3 Nonl i near
4 Nonl i near Vi rt ual
2 CARD16
4 Tl MESTAMP
4 W NDOW
4 W NDOW
4 W NDOW
0 None
2 | NT16
2 | NT16
2 | NT16
2 | NT16
2 SETof KEYBUTMASK
1
0 Nor mal
1 G ab
2 Ungr ab
1
#x01 focus (1 is True,
#x02 same-screen (1 is True,
#xFC unused
Focusln
1 9
1
0 Ancest or
1 Vi rtual
2 I nferior
3 Nonl i near
4 Nonl i near Vi rt ual
5 Poi nt er
6 Poi nt er Root
7 None
2 CARD16
4 W NDOW
1
0 Nor mal
1 G ab
2 Ungr ab
3 Whi | eGr abbed

same-screen, focus

0 is Fal se)

0 is Fal se)

code
det ai |

sequence nunber
tinme

r oot

event

child

r oot - x
root-y
event - X
event -y
state
node

same-screen, focus

0 is Fal se)

0 is Fal se)

code
det ai |

seqguence nunber
event
node

178

Protocol Encoding

23

FocusCut
1
1

RN

23

KeymapNot
1
31

@
o
o
wn
@

EPNNNNNANREPRP

4

G aphi csEx

P EPNNNNMNNNANPRPRE

1

NoExposur e

10

Ancest or
Vi rtual

I nferior
Nonl i near

Poi nt er
Poi nt er Root
None
CARD16
W NDOW

No o h~ WNEO

Nor mal

G ab

Ungr ab

Wi | eGr abbed

WNEFELO

fy
11
LI STof CARDS

12

CARD16
W NDOW
CARD16
CARD16
CARD16
CARD16
CARD16

posure
13

CARD16
DRAWABLE
CARD16
CARD16
CARD16
CARD16
CARD16
CARD16
CARDS

Nonl i near Vi r t ual

unused

code
det ai |

sequence nunber
event
node

unused

code
keys (byte for
om tted)

code

unused
seqguence nunber
wi ndow

X

y

wi dt h

hei ght

count

unused

code

unused
seqguence nunber
dr awabl e

X

y

wi dt h

hei ght

m nor - opcode
count

maj or - opcode
unused

keycodes 0-7 is

179

Protocol Encoding

NEFEFNANREPRP

1

14

CARD16
DRAWABLE
CARD16

VisibilityNotify

P ANRE R

0
1
2

23

15

CARD16
W NDOW

Unobscur ed
Partial | yObscured
Ful | yObscur ed

CreateNotify

OFRPNNNNNEAABANPRPE

Dest r oyNot
1

1
2
4
4
2

0

UnmapNot i fy

PR ARMNRERE

9

MapNot i fy
1
1
2

16

CARD16
W NDOW
W NDOW
I NT16
I NT16
CARD16
CARD16
CARD16
BOOL

fy
17
CARDL6

W NDOW
W NDOW

18
CARD16
W NDOW

W NDOW
BOOL

19

CARD16

code

unused
seqguence nunber
dr awabl e

m nor - opcode
maj or - opcode
unused

code

unused
sequence nunber
wi ndow

state

unused

code

unused
seqguence nunber
par ent

w ndow

X

y

wi dt h

hei ght
border-wi dth
override-redirect
unused

code

unused
seqguence nunber
event

w ndow

unused

code

unused
seqguence nunber
event

wi ndow
fromconfigure
unused

code
unused
seqguence nunber

180

Protocol Encoding

W NDOW
W NDOW
BOOL

(R N

9

MapRequest
20

CARD16
W NDOW
W NDOW

NDBRANREPR

0

Reparent Noti fy
1 21

CARD16
W NDOW
W NDOW
W NDOW
I NT16
I NT16
BOOL

P RPNNDMAABRABRANPRE

1

ConfigureNotify
22

CARD16
W NDOW
W NDOW
W NDOW

A BRABANREFPR

0 None

I NT16
I NT16
CARD16
CARD16
CARD16
BOOL

GOFRLNNNDNDN

Conf i gur eRequest
1 23
1

ArbAADN

A WNEFLO

0

Above
Bel ow
Topl f

Bot t o f
Opposi te

CARD16

W NDOW

W NDOW

W NDOW
None

event

w ndow
override-redirect
unused

code

unused
sequence nunber
par ent

w ndow

unused

code

unused

sequence nunber
event

w ndow

par ent

X

y
override-redirect
unused

code

unused
sequence nunber
event

wi ndow
above-si bl ing

X
y

wi dt h

hei ght
border-w dth
override-redirect
unused

code
st ack- node

seqguence nunber
par ent

wi ndow

si bling

181

Protocol Encoding

2 | NT16 X
2 | NT16 y
2 CARD16 wi dt h
2 CARD16 hei ght
2 CARD16 border-w dth
2 BI TMASK val ue- nask
#x0001 X
#x0002 y
#x0004 wi dt h
#x0008 hei ght
#x0010 border-w dth
#x0020 si bling
#x0040 st ack- node
4 unused

GravityNotify

1 24 code
1 unused
2 CARD16 sequence nunber
4 W NDOW event
4 W NDOW w ndow
2 I NT16 X
2 I NT16 y
16 unused
Resi zeRequest
1 25 code
1 unused
2 CARD16 sequence nunber
4 W NDOW w ndow
2 CARD16 wi dt h
2 CARD16 hei ght
20 unused
Circul ateNotify
1 26 code
1 unused
2 CARD16 seqguence nunber
4 W NDOW event
4 W NDOW w ndow
4 W NDOW unused
1 pl ace
0 Top
1 Bottom
15 unused

Ci rcul at eRequest

1 27 code

1 unused

2 CARD16 seqguence nunber
4 W NDOW par ent

4 W NDOW wi ndow

4 unused

1 pl ace

182

Protocol Encoding

0 Top
1 Bott om
15
PropertyNotify
1 28
1
2 CARD16
4 W NDOW
4 ATOM
4 TI MESTAMP
1
0 Newval ue
1 Del et ed
15
Sel ecti ond ear
1 29
1
2 CARD16
4 Tl MESTAMP
4 W NDOW
4 ATOM
16
Sel ect i onRequest
1 30
1
2 CARD16
4 Tl MESTAMP
0 Current Ti me
4 W NDOW
4 W NDOW
4 ATOM
4 ATOM
4 ATOM
0 None
4
Sel ectionNotify
1 31
1
2 CARD16
4 Tl MESTAMP
0 Current Ti me
4 W NDOW
4 ATOM
4 ATOM
4 ATOM
0 None
8

Col or mapNot i fy
1 32

unused

code

unused
sequence nunber
wi ndow

atom

time

state

unused

code

unused
sequence nunber
tine

owner

sel ection
unused

code

unused
sequence nunber
time

owner
request or
sel ection
t ar get

property

unused

code

unused
seqguence nunber
time

request or

sel ection
t ar get

property

unused

code

183

Protocol Encoding

1 unused
2 CARD16 seqguence nunber
4 W NDOW wi ndow
4 COLORMAP col or map
0 None
1 BOOL new
1 state
0 Uninstall ed
1 Installed
18 unused
Cl i ent Message
1 33 code
1 CARDS f or mat
2 CARD16 sequence nunber
4 W NDOW wi ndow
4 ATOM type
20 dat a
Mappi ngNot i fy
1 34 code
1 unused
2 CARD16 seqguence nunber
1 r equest
0 Modi fi er
1 Keyboar d
2 Poi nt er
1 KEYCODE first-keycode
1 CARD3 count
25 unused

184

Glossary

Access control list

Active grab

Ancestors

Atom

Background

Backing store

Bit gravity

Bit plane

Bitmap

Border

Button grabbing

Byte order

Children

X maintains a list of hosts from which client programs can be run.
By default, only programs on the local host and hosts specified in
an initial list read by the server can use the display. Clients on the
local host can change this access control list. Some server imple-
mentations can also implement other authorization mechanisms
in addition to or in place of this mechanism. The action of this
mechanism can be conditional based on the authorization proto-
col name and data received by the server at connection setup.

A grab is active when the pointer or keyboard is actually owned
by the single grabbing client.

If W is an inferior of A, then A is an ancestor of W.

An atom is a unique ID corresponding to a string name. Atoms
are used to identify properties, types, and selections.

An InputOutput window can have a background, which is de-
fined as a pixmap. When regions of the window have their con-
tents lost or invalidated, the server will automatically tile those
regions with the background.

When a server maintains the contents of a window, the pixels
saved off screen are known as a backing store.

When a window is resized, the contents of the window are not
necessarily discarded. It is possible to request that the server
relocate the previous contents to some region of the window
(though no guarantees are made). This attraction of window con-
tents for some location of a window is known as bit gravity.

When a pixmap or window is thought of as a stack of bitmaps,
each bitmap is called a bit plane or plane.

A bitmap is a pixmap of depth one.

An InputOutput window can have a border of equal thickness
on all four sides of the window. A pixmap defines the contents of
the border, and the server automatically maintains the contents
of the border. Exposure events are never generated for border
regions.

Buttons on the pointer may be passively grabbed by a client.
When the button is pressed, the pointer is then actively grabbed
by the client.

For image (pixmap/bitmap) data, the server defines the byte or-
der, and clients with different native byte ordering must swap
bytes as necessary. For all other parts of the protocol, the client
defines the byte order, and the server swaps bytes as necessary.

The children of a window are its first-level subwindows.

185

Glossary

Client

Clipping region

Colormap

Connection

Containment

Coordinate system

Cursor

Depth

Device

DirectColor

An application program connects to the window system server by
some interprocess communication path, such as a TCP connec-
tion or a shared memory buffer. This program is referred to as
a client of the window system server. More precisely, the client
is the communication path itself; a program with multiple paths
open to the server is viewed as multiple clients by the protocol.
Resource lifetimes are controlled by connection lifetimes, not by
program lifetimes.

In a graphics context, a bitmap or list of rectangles can be spec-
ified to restrict output to a particular region of the window. The
image defined by the bitmap or rectangles is called a clipping
region.

A colormap consists of a set of entries defining color values. The
colormap associated with a window is used to display the con-
tents of the window; each pixel value indexes the colormap to
produce RGB values that drive the guns of a monitor. Depending
on hardware limitations, one or more colormaps may be installed
at one time, so that windows associated with those maps display
with correct colors.

The interprocess communication path between the server and
client program is known as a connection. A client program typi-
cally (but not necessarily) has one connection to the server over
which requests and events are sent.

A window “contains” the pointer if the window is viewable and
the hotspot of the cursor is within a visible region of the win-
dow or a visible region of one of its inferiors. The border of the
window is included as part of the window for containment. The
pointer is “in” a window if the window contains the pointer but
no inferior contains the pointer.

The coordinate system has the X axis horizontal and the Y axis
vertical, with the origin [0, O] at the upper left. Coordinates are
integral, in terms of pixels, and coincide with pixel centers. Each
window and pixmap has its own coordinate system. For a win-
dow, the origin is inside the border at the inside upper left.

A cursor is the visible shape of the pointer on a screen. It con-
sists of a hotspot, a source bitmap, a shape bitmap, and a pair
of colors. The cursor defined for a window controls the visible
appearance when the pointer is in that window.

The depth of a window or pixmap is the number of bits per pixel
that it has. The depth of a graphics context is the depth of the
drawables it can be used in conjunction with for graphics output.

Keyboards, mice, tablets, track-balls, button boxes, and so on are
all collectively known as input devices. The core protocol only
deals with two devices, “the keyboard” and “the pointer.”

DirectColor is a class of colormap in which a pixel value is de-
composed into three separate subfields for indexing. The first
subfield indexes an array to produce red intensity values. The

186

Glossary

Display

Drawable

Event

Event mask

Event synchronization

Event propagation

Event source

Exposure event

Extension

Focus window

Font

GC, GContext

second subfield indexes a second array to produce blue intensity
values. The third subfield indexes a third array to produce green
intensity values. The RGB values can be changed dynamically.

A server, together with its screens and input devices, is called
a display.

Both windows and pixmaps can be used as sources and destina-
tions in graphics operations. These windows and pixmaps are
collectively known as drawables. However, an InputOnly win-
dow cannot be used as a source or destination in a graphics op-
eration.

Clients are informed of information asynchronously by means
of events. These events can be generated either asynchronous-
ly from devices or as side effects of client requests. Events are
grouped into types. The server never sends events to a client un-
less the client has specificially asked to be informed of that type
of event. However, other clients can force events to be sent to
other clients. Events are typically reported relative to a window.

Events are requested relative to a window. The set of event types
that a client requests relative to a window is described by using
an event mask.

There are certain race conditions possible when demultiplexing
device events to clients (in particular deciding where pointer and
keyboard events should be sent when in the middle of window
management operations). The event synchronization mechanism
allows synchronous processing of device events.

Device-related events propagate from the source window to an-
cestor windows until some client has expressed interest in han-
dling that type of event or until the event is discarded explicitly.

The window the pointer is in is the source of a device-related
event.

Servers do not guarantee to preserve the contents of windows
when windows are obscured or reconfigured. Exposure events
are sent to clients to inform them when contents of regions of
windows have been lost.

Named extensions to the core protocol can be defined to extend
the system. Extension to output requests, resources, and event
types are all possible and are expected.

The focus window is another term for the input focus.

A font is a matrix of glyphs (typically characters). The protocol
does no translation or interpretation of character sets. The client
simply indicates values used to index the glyph array. A font con-
tains additional metric information to determine interglyph and
interline spacing.

GC and gcontext are abbreviations for graphics context.

187

Glossary

Glyph
Grab

Graphics context

Gravity

GrayScale

Hotspot

Identifier

Inferiors

Input focus

Input manager

InputOnly window

InputOutput window

Key grabbing

A glyph is an image, typically of a character, in a font.

Keyboard keys, the keyboard, pointer buttons, the pointer, and
the server can be grabbed for exclusive use by a client. In gen-
eral, these facilities are not intended to be used by normal appli-
cations but are intended for various input and window managers
to implement various styles of user interfaces.

Various information for graphics output is stored in a graphics
context such as foreground pixel, background pixel, line width,
clipping region, and so on. A graphics context can only be used
with drawables that have the same root and the same depth as
the graphics context.

See bit gravity and window gravity.

GrayScale can be viewed as a degenerate case of PseudoColor,
in which the red, green, and blue values in any given colormap
entry are equal, thus producing shades of gray. The gray values
can be changed dynamically.

A cursor has an associated hotspot that defines the point in the
cursor corresponding to the coordinates reported for the pointer.

An identifier is a unique value associated with a resource that
clients use to name that resource. The identifier can be used over
any connection.

The inferiors of a window are all of the subwindows nested below
it: the children, the children's children, and so on.

The input focus is normally a window defining the scope for pro-
cessing of keyboard input. If a generated keyboard event would
normally be reported to this window or one of its inferiors, the
event is reported normally. Otherwise, the event is reported with
respect to the focus window. The input focus also can be set such
that all keyboard events are discarded and such that the focus
window is dynamically taken to be the root window of whatever
screen the pointer is on at each keyboard event.

Control over keyboard input is typically provided by an input
manager client.

An InputOnly window is a window that cannot be used for
graphics requests. InputOnly windows are invisible and can be
used to control such things as cursors, input event generation,
and grabbing. InputOnly windows cannot have InputOutput
windows as inferiors.

An InputOutput window is the normal kind of opaque window,
used for both input and output. InputOutput windows can have
both InputOutput and InputOnly windows as inferiors.

Keys on the keyboard can be passively grabbed by a client. When
the key is pressed, the keyboard is then actively grabbed by the
client.

188

Glossary

Keyboard grabbing

Keysym

Mapped

Modifier keys

Monochrome

Obscure

Occlude

Padding

Parent window

Passive grab

Pixel value

Pixmap

Plane

Plane mask

A client can actively grab control of the keyboard, and key events
will be sent to that client rather than the client the events would
normally have been sent to.

An encoding of a symbol on a keycap on a keyboard.

A window is said to be mapped if a map call has been performed
on it. Unmapped windows and their inferiors are never viewable
or visible.

Shift, Control, Meta, Super, Hyper, Alt, Compose, Apple, Cap-
sLock, ShiftLock, and similar keys are called modifier keys.

Monochrome is a special case of StaticGray in which there are
only two colormap entries.

A window is obscured if some other window obscures it. Win-
dow A obscures window B if both are viewable InputOutput
windows, A is higher in the global stacking order, and the rec-
tangle defined by the outside edges of A intersects the rectangle
defined by the outside edges of B. Note the distinction between
obscure and occludes. Also note that window borders are includ-
ed in the calculation and that a window can be obscured and yet
still have visible regions.

A window is occluded if some other window occludes it. Window
A occludes window B if both are mapped, A is higher in the global
stacking order, and the rectangle defined by the outside edges
of A intersects the rectangle defined by the outside edges of B.
Note the distinction between occludes and obscures. Also note
that window borders are included in the calculation.

Some padding bytes are inserted in the data stream to maintain
alignment of the protocol requests on natural boundaries. This
increases ease of portability to some machine architectures.

If C is a child of P, then P is the parent of C.

Grabbing a key or button is a passive grab. The grab activates
when the key or button is actually pressed.

A pixel is an N-bit value, where N is the number of bit planes
used in a particular window or pixmap (that is, N is the depth
of the window or pixmap). For a window, a pixel value indexes a
colormap to derive an actual color to be displayed.

A pixmap is a three-dimensional array of bits. A pixmap is nor-
mally thought of as a two-dimensional array of pixels, where each
pixel can be a value from 0 to (2" N)-1 and where N is the depth
(z axis) of the pixmap. A pixmap can also be thought of as a stack
of N bitmaps.

When a pixmap or window is thought of as a stack of bitmaps,
each bitmap is called a plane or bit plane.

Graphics operations can be restricted to only affect a subset of
bit planes of a destination. A plane mask is a bit mask describing

189

Glossary

Pointer

Pointer grabbing

Pointing device

Property

Property list

PseudoColor

Redirecting control

Reply

Request

Resource

RGB values

which planes are to be modified. The plane mask is stored in a
graphics context.

The pointer is the pointing device attached to the cursor and
tracked on the screens.

A client can actively grab control of the pointer. Then button and
motion events will be sent to that client rather than the client
the events would normally have been sent to.

A pointing device is typically a mouse, tablet, or some other de-
vice with effective dimensional motion. There is only one visible
cursor defined by the core protocol, and it tracks whatever point-
ing device is attached as the pointer.

Windows may have associated properties, which consist of a
name, a type, a data format, and some data. The protocol places
no interpretation on properties. They are intended as a gener-
al-purpose naming mechanism for clients. For example, clients
might use properties to share information such as resize hints,
program names, and icon formats with a window manager.

The property list of a window is the list of properties that have
been defined for the window.

PseudoColor is a class of colormap in which a pixel value in-
dexes the colormap to produce independent red, green, and blue
values; that is, the colormap is viewed as an array of triples (RGB
values). The RGB values can be changed dynamically.

Window managers (or client programs) may want to enforce win-
dow layout policy in various ways. When a client attempts to
change the size or position of a window, the operation may be
redirected to a specified client rather than the operation actually
being performed.

Information requested by a client program is sent back to the
client with a reply. Both events and replies are multiplexed on
the same connection. Most requests do not generate replies, al-
though some requests generate multiple replies.

A command to the server is called a request. It is a single block
of data sent over a connection.

Windows, pixmaps, cursors, fonts, graphics contexts, and col-
ormaps are known as resources. They all have unique identifiers
associated with them for naming purposes. The lifetime of a re-
source usually is bounded by the lifetime of the connection over
which the resource was created.

Red, green, and blue (RGB) intensity values are used to define
color. These values are always represented as 16-bit unsigned
numbers, with 0 being the minimum intensity and 65535 being
the maximum intensity. The server scales the values to match
the display hardware.

190

Glossary

Root

Root window

Save set

Scanline

Scanline order

Screen

Selection

Server

Server grabbing

The root of a pixmap, colormap, or graphics context is the same
as the root of whatever drawable was used when the pixmap,
colormap, or graphics context was created. The root of a window
is the root window under which the window was created.

Each screen has a root window covering it. It cannot be recon-
figured or unmapped, but it otherwise acts as a full-fledged win-
dow. A root window has no parent.

The save set of a client is a list of other clients' windows that,
if they are inferiors of one of the client's windows at connec-
tion close, should not be destroyed and that should be remapped
if currently unmapped. Save sets are typically used by window
managers to avoid lost windows if the manager terminates ab-
normally.

A scanline is a list of pixel or bit values viewed as a horizontal
row (all values having the same y coordinate) of an image, with
the values ordered by increasing x coordinate.

An image represented in scanline order contains scanlines or-
dered by increasing y coordinate.

A server can provide several independent screens, which typi-
cally have physically independent monitors. This would be the
expected configuration when there is only a single keyboard and
pointer shared among the screens.

A selection can be thought of as an indirect property with dy-
namic type; that is, rather than having the property stored in the
server, it is maintained by some client (the “owner”). A selection
is global in nature and is thought of as belonging to the user (al-
though maintained by clients), rather than as being private to
a particular window subhierarchy or a particular set of clients.
When a client asks for the contents of a selection, it specifies a
selection “target type”. This target type can be used to control
the transmitted representation of the contents. For example, if
the selection is “the last thing the user clicked on” and that is
currently an image, then the target type might specify whether
the contents of the image should be sent in XY format or Z format.
The target type can also be used to control the class of contents
transmitted; for example, asking for the “looks” (fonts, line spac-
ing, indentation, and so on) of a paragraph selection rather than
the text of the paragraph. The target type can also be used for
other purposes. The protocol does not constrain the semantics.

The server provides the basic windowing mechanism. It handles
connections from clients, multiplexes graphics requests onto the
screens, and demultiplexes input back to the appropriate clients.

The server can be grabbed by a single client for exclusive use.
This prevents processing of any requests from other client con-
nections until the grab is completed. This is typically only a tran-
sient state for such things as rubber-banding, pop-up menus, or
to execute requests indivisibly.

191

Glossary

Sibling

Stacking order

StaticColor

StaticGray

Stipple

String Equivalence

Tile

Timestamp

TrueColor

Type

Viewable

Children of the same parent window are known as sibling win-
dows.

Sibling windows may stack on top of each other. Windows above
other windows both obscure and occlude those lower windows.
This is similar to paper on a desk. The relationship between sib-
ling windows is known as the stacking order.

StaticColor can be viewed as a degenerate case of PseudoCol-
or in which the RGB values are predefined and read-only.

StaticGray can be viewed as a degenerate case of GrayScale in
which the gray values are predefined and read-only. The values
are typically linear or near-linear increasing ramps.

A stipple pattern is a bitmap that is used to tile a region that
will serve as an additional clip mask for a fill operation with the
foreground color.

Two ISO Latin-1 STRINGS8 values are considered equal if they
are the same length and if corresponding bytes are either equal
or are equivalent as follows: decimal values 65 to 90 inclusive
(characters “A” to “Z”) are pairwise equivalent to decimal values
97 to 122 inclusive (characters “a” to “z”), decimal values 192 to
214 inclusive (characters “A grave” to “O diaeresis”) are pairwise
equivalent to decimal values 224 to 246 inclusive (characters “a
grave” to “o diaeresis”), and decimal values 216 to 222 inclusive
(characters “O oblique” to “THORN”) are pairwise equivalent to
decimal values 246 to 254 inclusive (characters “o oblique” to
“thorn”).

A pixmap can be replicated in two dimensions to tile a region.
The pixmap itself is also known as a tile.

A timestamp is a time value, expressed in milliseconds. It typi-
cally is the time since the last server reset. Timestamp values
wrap around (after about 49.7 days). The server, given its cur-
rent time is represented by timestamp T, always interprets time-
stamps from clients by treating half of the timestamp space as
being earlier in time than T and half of the timestamp space as
being later in time than T. One timestamp value (named Cur-
rentTime) is never generated by the server. This value is re-
served for use in requests to represent the current server time.

TrueColor can be viewed as a degenerate case of DirectCol-
or in which the subfields in the pixel value directly encode the
corresponding RGB values; that is, the colormap has predefined
read-only RGB values. The values are typically linear or near-
linear increasing ramps.

A type is an arbitrary atom used to identify the interpretation of
property data. Types are completely uninterpreted by the server
and are solely for the benefit of clients.

A window is viewable if it and all of its ancestors are mapped.
This does not imply that any portion of the window is actually

192

Glossary

Visible

Window gravity

Window manager

XYFormat

ZFormat

visible. Graphics requests can be performed on a window when it
is not viewable, but output will not be retained unless the server
is maintaining backing store.

A region of a window is visible if someone looking at the screen
can actually see it; that is, the window is viewable and the region
is not occluded by any other window.

When windows are resized, subwindows may be repositioned au-
tomatically relative to some position in the window. This attrac-
tion of a subwindow to some part of its parent is known as win-
dow gravity.

Manipulation of windows on the screen and much of the user in-
terface (policy) is typically provided by a window manager client.

The data for a pixmap is said to be in XY format if it is organized
as a set of bitmaps representing individual bit planes, with the
planes appearing from most-significant to least-significant in bit
order.

The data for a pixmap is said to be in Z format if it is organized
as a set of pixel values in scanline order.

193

CloseFont, 43
I n d eX Colormap, 67, 186
types, 16
A ColormapNotify, 97

' ConfigureNotify, 94
Access control list, 81, 185 ConfigureRequest, 95
Active grab, 185 ConfigureWindow, 25
keyboard, 36 Connection, 12, 186
pointer, 33, 36 closing, 84
AllocColor, 69 opening, 12
AllocColorCells, 70 Containment, 186
AllocColorPlanes, 70 ConvertSelection, 32
AllocNamedColor, 70 Coordinate system, 186
AllowEvents, 38 translating, 186

Ancestors, 185 CopyArea, 57

Atom, 29, 185 CopyColormapAndFree, 68
predefined, 11, 138 CopyGC, 55

Authorization, 12 CopyPlane, 58

CreateColormap, 67
B CreateCursor, 73
Background, 20, 57, 185 CreateGC, 48
Backing store, 16, 185 CreateGlyphCursor, 73
Bell, 79 CreateNotify, 93
Bit CreatePixmap, 48
gravity, 26, 185 CreateWindow, 18
plane, 185 CurrentTime, 192
Bitmap, 185 Cursor, 73, 186
format, 15
Border, 185 D
Button
grabbing, 35, 185 DeleteProperty, 30
number, 10 Depth, 186
ButtonPre’ss, 85 DestroyNotify, 93
ButtonRelease, 85 ggzggﬁgﬁgf@d%& 23
Byte order, 12, 185 Device, 186
C DirectColor, 186

Display, 187

ChangeActivePointerGrab, 36 Drawable, 187

ChangeGC, 54
ChangeHosts, 81

ChangeKeyboardControl, 77 E
ChangeKeyboardMapping, 76 EnterNotify, 86
ChangePointerControl, 80 Error Codes
ChangeProperty, 29 Access, 6
ChangeSaveSet, 24 Alloc, 6
ChangeWindowAttributes, 21 Atom, 6
Children, 28, 185 Colormap, 6
CirculateNotify, 96 Cursor, 6
CirculateRequest, 96 Drawable, 6
CirculateWindow, 28 extensions, 1
ClearArea, 57 Font, 6
Client, 186 GContext, 6
ClientMessage, 98 IDChoice, 6
Clipping region, 53, 186 Implementation, 6

194

Index

Length, 7
Match, 7
Name, 7
Pixmap, 7
Request, 7
Value, 7
Window, 7
Error report
encoding, 135
format, 1
Event, 85, 187
encoding, 175
Exposure, 91, 187
extension, 1
format, 1
mask, 21, 187
propagation, 21, 187
sending, 32
source, 85, 187
synchronization, 187
Expose, 91
Extension, 1, 187
error codes, 1
event, 1
listing, 75
querying, 75

F

Fill rule, 53
FillPoly, 62

Focus window, 187
FocuslIn, 88
FocusOut, 88
Font, 43, 187
ForceScreenSaver, 81
FreeColormap, 68
FreeColors, 71
FreeCursor, 74
FreeGC, 56
FreePixmap, 48

G

GC, 187

(see also Graphics context)
GContext, 187

(see also Graphics context)
GetAtomName, 29
GetFontPath, 48
GetGeometry, 28
Getlmage, 64
GetInputFocus, 42
GetKeyboardControl, 78
GetKeyboardMapping, 77

GetModifierMapping, 76
GetMotionEvents, 40
GetPointerControl, 80
GetPointerMapping, 80
GetProperty, 30
GetScreenSaver, 81
GetSelectionOwner, 32
GetWindowAttributes, 22
Glyph, 188
Grab, 188

(see also Active grab)

(see also Passive grab)
GrabButton, 35
GrabKey, 37
GrabKeyboard, 36
GrabPointer, 33
GrabServer, 40
Graphics context, 48, 188
GraphicsExposure, 91
Gravity, 26, 188
GravityNotify, 95
GrayScale, 188

H
Hotspot, 188

Identifier, 188

ImageTextl16, 67

ImageText8, 66

Inferiors, 188

Input device
events, 85

Input focus, 42, 188
events, 88

Input manager, 188

InstallColormap, 68

InternAtom, 29

K
Key
grabbing, 37, 188

modifier (see Modifier keys)

Keyboard, 8
grabbing, 36, 189
Keycode, 8, 15
KeymapNotify, 91
KeyPress, 8, 85
KeyRelease, 85
Keysym, 8, 76, 77, 100, 189
Unicode, 100
KillClient, 83

195

Index

L

LeaveNotify, 86
Line

drawing, 50, 58
ListExtensions, 75
ListFonts, 47
ListFontsWithInfo, 47
ListHosts, 82
ListInstalledColormaps, 69
ListProperties, 31
LookupColor, 72

M
MapNotify, 94
Mapped window, 24, 94, 189
MappingNotify, 98
MapRequest, 94
MapSubwindows, 25
MapWindow, 24
modifier

group, 8

Lock, 8

NumLock, 8
Modifier keys, 75, 76, 189
Monochrome, 189
MotionNotify, 85

N

NoExposure, 92
NoOperation, 83

O

Obscure, 189
Occlude, 189
Opcode
major, 1
minor, 1
OpenFont, 43

P

Padding, 131, 189
Passive grab, 189
keyboard, 37
pointer, 35
Pixel value, 16, 189
Pixmap, 189
format, 15
Plane, 189
mask, 49, 189
Pointer, 190
grabbing, 33, 190
Pointing device, 190
PolyArc, 60

PolyFillArc, 63
PolyFillRectangle, 62
PolyLine, 58
PolyPoint, 58
PolyRectangle, 59
PolySegment, 59
PolyText16, 66
PolyText8, 65
Property, 29, 190
Property list, 190
PropertyNotify, 96
PseudoColor, 190
Putlmage, 63

Q

QueryBestSize, 74
QueryColors, 72
QueryExtension, 75
QueryFont, 43
QueryKeymap, 42
QueryPointer, 40
QueryTextExtents, 46
QueryTree, 28

R

RecolorCursor, 74
Redirecting control, 190
ReparentNotify, 94
ReparentWindow, 24
Reply, 190

format, 1
Request, 190

encoding, 141

format, 1

length, 1, 15
ResizeRequest, 95
Resource, 190

ID, 14
RGB values, 190
Root, 191
RotateProperties, 31

S

Save set, 191
Scanline, 191
Scanline order, 191
Screen, 15, 191
Selection, 31, 191
SelectionClear, 96
SelectionNotify, 97
SelectionRequest, 97
SendEvent, 32
Sequence number, 1

196

Index

Server, 191

grabbing, 40, 191
SetAccessControl, 83
SetClipRectangles, 56
SetCloseDownMode, 83
SetDashes, 55
SetFontPath, 47
SetInputFocus, 42
SetModifierMapping, 75
SetPointerMapping, 79
SetScreenSaver, 80
SetSelectionOwner, 31
Sibling, 192
Stacking order, 192
StaticColor, 192
StaticGray, 192
Stipple, 192
StoreColors, 71
StoreNamedColor, 72
String Equivalence, 192

T

Tile, 192

Timestamp, 192

TranslateCoordinates, 41

TrueColor, 192

Type, 192

Types
ARC, 5
ATOM, 3
BITGRAVITY, 4
BITMASK, 3
BOOL, 4
BUTMASK, 4
BUTTON, 4
BYTE, 3
CARDI1G6, 4
CARD32, 4
CARDS, 4
CHARZ2B, 4
COLORMAP 3
CURSOR, 3
DEVICEEVENT, 4
DRAWABLE, 3
encoding, 132
EVENT, 4
FONT, 3
FONTABLE, 3
GCONTEXT, 3
HOST, 5, 82
INT16, 4
INT32, 4
INTS, 3

KEYBUTMASK, 4
KEYCODE, 4, 8, 15
KEYMASK, 4
KEYSYM, 4, 8, 100
LISTofFOO, 3
LISTofVALUE, 3
OR, 3

PIXMAP, 3

POINT, 4
POINTEREVENT, 4
RECTANGLE, 4
STRING16, 4
STRINGS, 4
TIMESTAMP, 4
VALUE, 3
VISUALID, 3
WINDOW, 3
WINGRAVITY, 4

U

UngrabButton, 35
UngrabKey, 38
UngrabKeyboard, 37
UngrabPointer, 34
UngrabServer, 40
UninstallColormap, 69
UnmapNotify, 93
UnmapSubwindows, 25
UnmapWindow, 25

\%

Viewable, 192
VisibilityNotify, 92
Visible, 193
Visual
information, 16

W

WarpPointer, 41
Winding rule, 53
Window
children, 185
gravity, 26, 193
InputOnly, 188
InputOutput, 188
manager, 193
parent, 189
root, 191

X
XYFormat, 15, 193

197

Index

Z
ZFormat, 15, 193

198

	X Window System Protocol
	Table of Contents
	Acknowledgements
	Chapter 1. Protocol Formats
	Request Format
	Reply Format
	Error Format
	Event Format

	Chapter 2. Syntactic Conventions
	Chapter 3. Common Types
	Chapter 4. Errors
	Chapter 5. Keyboards
	Chapter 6. Pointers
	Chapter 7. Predefined Atoms
	Chapter 8. Connection Setup
	Connection Initiation
	Server Response
	Server Information
	Screen Information
	Visual Information

	Chapter 9. Requests
	CreateWindow
	ChangeWindowAttributes
	GetWindowAttributes
	DestroyWindow
	DestroySubwindows
	ChangeSaveSet
	ReparentWindow
	MapWindow
	MapSubwindows
	UnmapWindow
	UnmapSubwindows
	ConfigureWindow
	CirculateWindow
	GetGeometry
	QueryTree
	InternAtom
	GetAtomName
	ChangeProperty
	DeleteProperty
	GetProperty
	RotateProperties
	ListProperties
	SetSelectionOwner
	GetSelectionOwner
	ConvertSelection
	SendEvent
	GrabPointer
	UngrabPointer
	GrabButton
	UngrabButton
	ChangeActivePointerGrab
	GrabKeyboard
	UngrabKeyboard
	GrabKey
	UngrabKey
	AllowEvents
	GrabServer
	UngrabServer
	QueryPointer
	GetMotionEvents
	TranslateCoordinates
	WarpPointer
	SetInputFocus
	GetInputFocus
	QueryKeymap
	OpenFont
	CloseFont
	QueryFont
	QueryTextExtents
	ListFonts
	ListFontsWithInfo
	SetFontPath
	GetFontPath
	CreatePixmap
	FreePixmap
	CreateGC
	ChangeGC
	CopyGC
	SetDashes
	SetClipRectangles
	FreeGC
	ClearArea
	CopyArea
	CopyPlane
	PolyPoint
	PolyLine
	PolySegment
	PolyRectangle
	PolyArc
	FillPoly
	PolyFillRectangle
	PolyFillArc
	PutImage
	GetImage
	PolyText8
	PolyText16
	ImageText8
	ImageText16
	CreateColormap
	FreeColormap
	CopyColormapAndFree
	InstallColormap
	UninstallColormap
	ListInstalledColormaps
	AllocColor
	AllocNamedColor
	AllocColorCells
	AllocColorPlanes
	FreeColors
	StoreColors
	StoreNamedColor
	QueryColors
	LookupColor
	CreateCursor
	CreateGlyphCursor
	FreeCursor
	RecolorCursor
	QueryBestSize
	QueryExtension
	ListExtensions
	SetModifierMapping
	GetModifierMapping
	ChangeKeyboardMapping
	GetKeyboardMapping
	ChangeKeyboardControl
	GetKeyboardControl
	Bell
	SetPointerMapping
	GetPointerMapping
	ChangePointerControl
	GetPointerControl
	SetScreenSaver
	GetScreenSaver
	ForceScreenSaver
	ChangeHosts
	ListHosts
	SetAccessControl
	SetCloseDownMode
	KillClient
	NoOperation

	Chapter 10. Connection Close
	Chapter 11. Events
	Input Device events
	Pointer Window events
	Input Focus events
	KeymapNotify
	Expose
	GraphicsExposure
	NoExposure
	VisibilityNotify
	CreateNotify
	DestroyNotify
	UnmapNotify
	MapNotify
	MapRequest
	ReparentNotify
	ConfigureNotify
	GravityNotify
	ResizeRequest
	ConfigureRequest
	CirculateNotify
	CirculateRequest
	PropertyNotify
	SelectionClear
	SelectionRequest
	SelectionNotify
	ColormapNotify
	MappingNotify
	ClientMessage

	Chapter 12. Flow Control and Concurrency
	Appendix A. KEYSYM Encoding
	Special KEYSYMs
	Latin-1 KEYSYMs
	Unicode KEYSYMs
	Function KEYSYMs
	Vendor KEYSYMs
	Legacy KEYSYMs

	Appendix B. Protocol Encoding
	Syntactic Conventions
	Common Types
	Errors
	Keyboards
	Pointers
	Predefined Atoms
	Connection Setup
	Requests
	Events

	Glossary
	Index

