XFree86 DDX Design

The XFree86 ProjectThe X.Org Foundation
Updates for X11R6.7: Jim Gettys
X Version 11, Release 7.7
X Server Version 1.12.1
2012-04-13

XFree86 DDX Design

Table of Contents

| Y = [o] - PR T PSSR 4
The XOTG.CONTE File ..iiiiiiiiiiiiiie e et e et e e e e e et e e e aan e aaanns 5
DOVICE SECLIOM ..ceniiiiiiiiiiiii ettt et ettt et e et e e e e et e e eneanes 5
SCTEEMN SECEIOTL .iiiniiiiii ittt et et et s et e et s e e e ea e eeaeeaans 5
INPUEDEVICE SECTION ...vuiiiiiiiiiiiieiii et e et e e e s et e e e e ete e e e eaeansanaans 5
ServerLayoutl SECTIONcc.iiuiiiiiiiiiiiii ettt et et e et e e e e et e et s eraenas 6
(0 o] 1 L0} s £~ PR 7
DIriver INEETTACE ...ovvniiiii ettt e e e e et e e aneaas 7
Resource Access Control Introductionccceeeiiiiiiiiiiniiiiin e, 8
Terms and Definitionsccccouiiiiiiiiiiiieiiie e e e e era e eees 8
Control Flow in the Server and Mandatory Driver Functionscc..ou... 10
Parse the Xorg.Conf filecooiiiiiiiiiiiiiii e 10
Initial processing of parsed information and command line options 10
Enable POTt I/O @CCESS iuuiiiiieiiiiieiiii it e etie e et e eeieeeri e e et e eereeeerasaesnsannes 10
General DUS PIrODE ... 10
Load initial set of MOAUIESccuuviiiiiiiiiiieiiie e 11
Register Video and INPUL DIIVELS ...c.uviiiiieiiiiieiiiiieeiiieeeiee et e e e e e eeieeens 11
Initialise ACCESS CONETOLcovuiiiiiiiiiiiiiie et eete e et e e e e e e e eaaeaees 12
Video DIiver Probecccueiiiiiiiiiiiiiiiie sttt e e e e v e eaie e 12
MatChing SCIEENS ...cvvuiiiiiiiiiiiie ittt et e e e e et e aetseeeteseeaeeaannees 15
Allocate non-conflicting reSOUTCESc..eviiviiiiiiiiiiiie e e e e erieeeees 15
Sort the Screens and pre-check Monitor Informationccc.cceveevivinnnnnen. 15
|4 CY B L PP OTR PRI 15
Cleaning up Unused DIIVETScciiiuieiiiiiiiiiiiieeiieeeeiieeeeieeeeieeereeeerneesnnneeeees 18
COonSIiSEENCY CRECKS ..ivviiiiieiiiiie ittt e et e et e e et e e eaa e e eaeeaeanns 19
Check if Resource Control is Neededccooeevveviiiiieiiiiiniiiineiiiine e eeie e 19
AddScreen (SCTEENINIL) ...ciivuiiiiiiiiiiiee e e e e e e e eaaeeeees 19
Finalising RAC InitialiSationcccoviiiiiiiiiniiiiie e 20
Finishing INItOULPUL() ..evvueiiiiiiiiiieiiiee e et et e e e e e e eaaeeees 20
Mode SWILCHINIG ivvuiiiiiiiii e e et e e et e e et e e aaa s 20
(023%=VaTo 1aTo B4 TSN 1 0o) ol VPR 21
VT SWIECHING iiviniiiiiiiiie et e e et e e eet e s e e e e eran e eeranes 21
End of server generationccccoocveeiiiiieiiiiiieeie e e e v e eri e eei e eees 22
Optional Driver FUNCLIONSooouiiiiiiiieie e e e e e 23
Mode Validationceeiiiiiiiiiiiiiie et e e e ea e e eae e eeaa e e eseaeaaaannas 23
Free SCreen datacoiivveiiiiiiiiiiiiiiie et e e e e et e e e e e e aeaeeeeees 23
Recommended driver fUNCLIONScc.uvviiiiiiiiiiiiiiie e e eee e eeieeeee 24
T 17 TSSO PP PR PPR 24
RESTOTE .ottt e e e e e e aa s 24
INItialiSE MOAE ...cvveniiiiiiiiiie et e e e et e e e e e e eea e e eaan e eaaaneaaeanns 24
Data and Data SETUCLUTESccuiiiiiiiiiiioeiciiee et eet et e et e e e e e et e enaeesaeanees 25
Command liNe datacoeiivuiiiiiiiiiiee e e e e aees 25
Data handlingcooeiiiiiiiii e e e e e e e 26
Accessing global dataeeviiiiiiiiiiiiiiii e 27
Allocating private dataccoceueeiiiiieiiiiie e 27
Keeping Track of Bus RESOUICESccivvuiiiiiiiiiiiieiiiiieeeiiieeeiineeeiieeerieeeerneeeannsanens 29
Theory of OPEerationccccvueeiiiiiiiiiii e et e et e e e e eaeeeeeees 29
RESOUICE THPES .iiuniiiniiiiiit ettt ettt et e e e et s et s e e e et s eaaeeeieaans 31
Available FUNCEIONSc..iiiiiieiiiiieiiiie e e et e e e e e e e eaens 31
Config file “OPtion” ENETIES ..c..viiiiiiiiiiiiiiiir et e et e et e e eaa e e eaeneaeaneaes 41
Modules, Drivers, Include Files and Interface ISSUESccooevvvinieiiiiniiiinnennnnnn. 46

XFree86 DDX Design

INCIUAE FILES .euniiiiiiii ettt e e e e et e eeae e eees 46
Offscreen MemoTy ManageTcc.ceiueeeiuieiieeieeieeeieeeteereetneertaerraereeseaesraesrnaeses 48
Colormap Handlingoeeeiiiiiiiiiiei et e e e e e et e e e e et e et e e e e e eeens 51
DPMS EXEEIISIONL ..einiiiiiiiieiiieii ettt ettt et e et et e et e et et eeeaeeeneeenneeneenanas 52
DGA EXEEIISION oiutiiiiiiiiiiiieiiie ettt et ettt et e et e et e et et eeaeeeneeaneeeneaenanes 53
The XFree86 X Video Extension (Xv) Device Dependent Layerc..co.eue.... 59
TRE LOAAEGT ..uueiiiiiiiiee ettt ettt e et e e et e e et s e et e e et e e aaaeeeaans 69

LOAAET OVEIVIEBW ..uuiiiiiiiiiieiiie et e et e et e et e e ete e e et e eeti e etbseettaeeeanneeesnnaes 69

Semi-private Loader Interfaceccoooveiiiiiiiiiiiiiii e 69

Module ReqUITEMENLS ...ccuuiiiiiiiiieie et e e e e e e ea e eaanas 72

Public Loader INterfacecoieiuiiiiiiiiiiiiei e 75

Special Registration FUNCLIONScocviiiiiiiiiii e, 78
Helper FUNCLIONS ...u.iiiiiiiiiecie et e et e e et e et e et e e e ean e e e eaaeaanaas 78

Functions for printing mesSSagesccouuviiiieiiieiiiieiee e 79

Functions for setting values based on command line and config file 81

Primary Mode fUnCLIONScouiiiniiiii e 85

Secondary Mode fUnCLIONSccoiiiiiiiiiiiiie e e 90

Functions for handling strings and toKensccc.ccoeiiiiiiiiiiieiie e, 92

Functions for finding which config file entries to usec..cccccevvvvvieiniann... 92

Probing discrete clocks on old hardwareccoceeeiiiiiiiiiiiiiciinee e, 92

Other helper funcCtionsSc.oiiiiiiiiii e e 93
The vgahw MOAULEco.iiieiii e e e e e e e et e eaeees 93

Data STrUCLUTES ...oeeiiiiii ettt e e e e eeas 94

General vgahw FUNCEIONSccoviiiiiiieiiecee et e s 94

VGA Colormap FUNCEIONScovniiiiiiiiiii e e 100

VGA Register Access FUNCLIONSc.oiviiiiiiiiiiiiiiie e 100
Some notes about Writing a driVerc.coeiiiiiiiiiii e 103

INCIUAE FIlES oeeiiiiiieie ettt e e e e e et e eaaees 103

Data structures and initialisationc...ccoiviiiiiiiiiiiiini e 105

FUNCEIONS eiiiiiie ettt et et e e e et e ebeeaanes 107

XFree86 DDX Design

Note

This document describes software undergoing continual evolution, and the
interfaces described here are subject to change without notice. This docu-
ment is intended to cover the interfaces as found in the xorg-server-1.12.1
release, but is probably not completely in sync with the code base.

Preface

This document was originally the design spec for the DDX layer of the XFree86 4.0 X
server. The X.Org Foundation adopted the XFree86 4.4rc2 version of that server as
the basis of the Xorg server project, and has evolved the XFree86 DDX layer greatly
since forking. This document thus covers only the current implementation of the
XFree86 DDX as found in the Xorg server 1.12.1 release, and no longer matches
the XFree86 server itself.

The XFree86 Project's broad design principles for XFree86 4.0 were:
¢ keep it reasonable

* We cannot rewrite the complete server

* We don't want to re-invent the wheel
¢ keep it modular

* As many things as possible should go into modules

* The basic loader binary should be minimal

* A clean design with well defined layering is important

DDX specific global variables are a nono
* The structure should be flexible enough to allow future extensions
* The structure should minimize duplication of common code

* keep important features in mind
* multiple screens, including multiple instances of drivers

* mixing different color depths and visuals on different and ideally even on the
same screen

* better control of the PCI device used
* better config file parser
* get rid of all VGA compatibility assumptions

While the XFree86 project had a goal of avoiding changes to the DIX layer unless
they found major deficiencies there, to avoid divergence from the X.Org sample im-
plementation they were integrating changes from, the X.Org developers now main-
tain both sides, and make changes where they are most appropriate. This document
concentrates on the XFree86 DDX layer used in the Xorg server itself (the code

XFree86 DDX Design

found in hw xf r ee86 in the source tree), and developers will also want to refer to
the Xser ver - spec documentation that covers the DIX layer routines common to all
the X servers in the sample implementation.

The xorg.conf File

The xorg.conf file format is based on the XF86Config format from XFree86 4.4,
which is in turn similar to the old XFree86 3.x XF86Config format, with the following
changes:

Device section

The Device sections are similar to what they used to be, and describe hardware-spe-
cific information for a single video card. Device Some new keywords are added:

Driver "drivername" Specifies the name of the driver to be used for the card.
This is mandatory.

BusID "busslot" Specifies uniquely the location of the card on the bus. The
purpose is to identify particular cards in a multi-headed
configuration. The format of the argument is intentionally
vague, and may be architecture dependent. For a PCI bus,
it is something like "bus:slot:func".

A Device section is considered “active” if there is a reference to it in an active Screen
section.

Screen section

The Screen sections are similar to what they used to be. They no longer have a Driver
keyword, but an Identifier keyword is added. (The Driver keyword may be accepted
in place of the Identifier keyword for compatibility purposes.) The identifier can
be used to identify which screen is to be active when multiple Screen sections are
present. It is possible to specify the active screen from the command line. A default
is chosen in the absence of one being specified. A Screen section is considered
“active” if there is a reference to it either from the command line, or from an active
ServerLayout section.

InputDevice section

The InputDevice section is a new section that describes configuration information
for input devices. It replaces the old Keyboard, Pointer and XInput sections. Like the
Device section, it has two mandatory keywords: Identifier and Driver. For compat-
ibility purposes the old Keyboard and Pointer sections are converted by the parser
into InputDevice sections as follows:

Key-

board Identifier "Implicit Core Keyboard"
Driver "kbd"

Pointer

XFree86 DDX Design

Identifier "Implicit Core Pointer"
Driver "mouse"

An InputDevice section is considered active if there is a reference to it in an active
ServerLayout section. An InputDevice section may also be referenced implicitly if
there is no ServerLayout section, if the - scr een command line options is used, or if
the ServerLayout section doesn't reference any InputDevice sections. In this case,
the first sections with drivers "kbd" and "mouse" are used as the core keyboard and
pointer respectively.

ServerLayout section

The ServerLayout section is a new section that is used to identify which Screen
sections are to be used in a multi-headed configuration, and the relative layout of
those screens. It also identifies which InputDevice sections are to be used. Each
ServerLayout section has an identifier, a list of Screen section identifiers, and a
list of InputDevice section identifiers. ServerFlags options may also be included
in a ServerLayout section, making it possible to override the global values in the
ServerFlags section.

A ServerLayout section can be made active by being referenced on the command
line. In the absence of this, a default will be chosen (the first one found). The screen
names may optionally be followed by a number specifying the preferred screen num-
ber, and optionally by information specifying the physical positioning of the screen,
either in absolute terms or relative to another screen (or screens). When no screen
number is specified, they are numbered according to the order in which they are
listed. The old (now obsolete) method of providing the positioning information is to
give the names of the four adjacent screens. The order of these is top, bottom, left,
right. Here is an example of a ServerLayout section for two screens using the old
method, with the second located to the right of the first:

Section "ServerlLayout"
Identifier "Main Layout"

Screen 0O "Screen 1" "" """ """ "Screen 2"
Screen 1 "Screen 2"
Screen "Screen 3"

EndSecti on

The preferred way of specifying the layout is to explicitly specify the screen's loca-
tion in absolute terms or relative to another screen.

In the absolute case, the upper left corner's coordinates are given after the Absolute
keyword. If the coordinates are omitted, a value of (0, 0) is assumed. An example
of absolute positioning follows:

Section "ServerlLayout"
Identifier "Main Layout"

Scr een O "Screen 1" Absolute 0 O
Scr een 1 "Screen 2" Absolute 1024 0
Scr een "Screen 3" Absolute 2048 0

XFree86 DDX Design

EndSecti on

In the relative case, the position is specified by either using one of the following
keywords followed by the name of the reference screen:

RightOf
LeftOf
Above
Below
Relative

When the Relative keyword is used, the reference screen name is followed by the
coordinates of the new screen's origin relative to reference screen. The following
example shows how to use some of the relative positioning options.

Section "ServerLayout"
Identifier "Miin Layout"

Screen 0 "Screen 1"

Screen 1 "Screen 2" RightO "Screen 1"

Screen "Screen 3" Relative "Screen 1" 2048 0
EndSecti on

Options

Options are used more extensively. They may appear in most sections now. Options
related to drivers can be present in the Screen, Device and Monitor sections and the
Display subsections. The order of precedence is Display, Screen, Monitor, Device.
Options have been extended to allow an optional value to be specified in addition to
the option name. For more details about options, see the Options section for details.

Driver Interface

The driver interface consists of a minimal set of entry points that are required based
on the external events that the driver must react to. No non-essential structure
is imposed on the way they are used beyond that. This is a significant difference
compared with the old design.

The entry points for drawing operations are already taken care of by the framebuffer
code (including, XAA). Extensions and enhancements to framebuffer code are out-
side the scope of this document.

This approach to the driver interface provides good flexibility, but does increase the
complexity of drivers. To help address this, the XFree86 common layer provides a
set of “helper” functions to take care of things that most drivers need. These helpers
help minimise the amount of code duplication between drivers. The use of helper
functions by drivers is however optional, though encouraged. The basic philosophy
behind the helper functions is that they should be useful to many drivers, that they
should balance this against the complexity of their interface. It is inevitable that
some drivers may find some helpers unsuitable and need to provide their own code.

Events that a driver needs to react to are:

XFree86 DDX Design

Screenlnit An initialisation function is called from the DIX layer
for each screen at the start of each server generation.

Enter VT The server takes control of the console.
Leave VT The server releases control of the console.
Mode Switch Change video mode.

ViewPort change Change the origin of the physical view port.

ScreenSaver state change Screen saver activation/deactivation.

CloseScreen A close screen function is called from the DIX layer
for each screen at the end of each server generation.

In addition to these events, the following functions are required by the XFree86
common layer:

Identify Print a driver identifying message.

Probe This is how a driver identifies if there is any hardware present that it
knows how to drive.

Prelnit Process information from the xorg.conf file, determine the full char-
acteristics of the hardware, and determine if a valid configuration is
present.

The VidMode extension also requires:

ValidMode Identify if a new mode is usable with the current configuration. The
Prelnit function (and/or helpers it calls) may also make use of the Valid-
Mode function or something similar.

Other extensions may require other entry points. The drivers will inform the com-
mon layer of these in such cases.

Resource Access Control Introduction

Graphics devices are accessed through ranges in I/O or memory space. While most
modern graphics devices allow relocation of such ranges many of them still require
the use of well established interfaces such as VGA memory and IO ranges or 8514/
A 10 ranges. With modern buses (like PCI) it is possible for multiple video devices
to share access to these resources. The RAC (Resource Access Control) subsystem
provides a mechanism for this.

Terms and Definitions

Bus

“Bus” is ambiguous as it is used for different things: it may refer to physical incom-
patible extension connectors in a computer system. The RAC system knows two such
systems: The ISA bus and the PCI bus. (On the software level EISA, MCA and VL
buses are currently treated like ISA buses). “Bus” may also refer to logically differ-

XFree86 DDX Design

ent entities on a single bus system which are connected via bridges. A PCI system
may have several distinct PCI buses connecting each other by PCI-PCI bridges or
to the host CPU by HOST-PCI bridges.

Systems that host more than one bus system link these together using bridges.
Bridges are a concern to RAC as they might block or pass specific resources. PCI-
PCI bridges may be set up to pass VGA resources to the secondary bus. PCI-ISA
buses pass any resources not decoded on the primary PCI bus to the ISA bus. This
way VGA resources (although exclusive on the ISA bus) can be shared by ISA and
PCI cards. Currently HOST-PCI bridges are not yet handled by RAC as they require
specific drivers.

Entity
The smallest independently addressable unit on a system bus is referred to as an

entity. So far we know ISA and PCI entities. PCI entities can be located on the PCI
bus by an unique ID consisting of the bus, card and function number.

Resource

“Resource” refers to a range of memory or I/O addresses an entity can decode.

If a device is capable of disabling this decoding the resource is called sharable.
For PCI devices a generic method is provided to control resource decoding. Other
devices will have to provide a device specific function to control decoding.

If the entity is capable of decoding this range at a different location this resource
is considered relocatable.

Resources which start at a specific address and occupy a single continuous range
are called block resources.

Alternatively resource addresses can be decoded in a way that they satisfy the con-
ditions:

address & mask == base
and
base & nask == base

Resources addressed in such a way are called sparse resources.

Server States

The resource access control system knows two server states: the SETUP and the
OPERATING state. The SETUP state is entered whenever a mode change takes place
or the server exits or does VT switching. During this state all entity resources are
under resource access control. During OPERATING state only those entities are
controlled which actually have shared resources that conflict with others.

XFree86 DDX Design

Control Flow in the Server and Mandatory Dri-
ver Functions

At the start of each server generation, mai n() (di x/ mai n. c) calls the DDX function
I ni t Qut put (). This is the first place that the DDX gets control. I ni t Qut put () is
expected to fill in the global screenInfo struct, and one scr eenl nf 0. screen[] entry
for each screen present. Here is what | ni t Qut put () does:

Parse the xorg.conf file

This is done at the start of the first server generation only.

The xorg.conf file is read in full, and the resulting information stored in data struc-
tures. None of the parsed information is processed at this point. The parser data
structures are opaque to the video drivers and to most of the common layer code.

The entire file is parsed first to remove any section ordering requirements.

Initial processing of parsed information and command
line options
This is done at the start of the first server generation only.

The initial processing is to determine paths like the ModulePath, etc, and to deter-
mine which ServerLayout, Screen and Device sections are active.

Enable port I/O access

Port I/O access is controlled from the XFree86 common layer, and is “all or noth-
ing”. It is enabled prior to calling driver probes, at the start of subsequent server
generations, and when VT switching back to the Xserver. It is disabled at the end of
server generations, and when VT switching away from the Xserver.

The implementation details of this may vary on different platforms.

General bus probe

This is done at the start of the first server generation only.

In the case of ix86 machines, this will be a general PCI probe. The full information
obtained here will be available to the drivers. This information persists for the life
of the Xserver. In the PCI case, the PCI information for all video cards found is
available by calling xf 86CGet Pci Vi deol nfo() .

pci Vi deoPtr *xf86Cet Pci Vi deol nfo(voi d);

returns a pointer to a list of pointers to pciVideoRec
entries, of which there is one for each detected PCI
video card. The list is terminated with a NULL pointer.

10

XFree86 DDX Design

If no PCI video cards were detected, the return value
is NULL.

After the bus probe, the resource broker is initialised.

Load initial set of modules

This is done at the start of the first server generation only.

The core server contains a list of mandatory modules. These are loaded first. Cur-
rently the only module on this list is the bitmap font module.

The next set of modules loaded are those specified explicitly in the Module section
of the config file.

The final set of initial modules are the driver modules referenced by the active
Device and InputDevice sections in the config file. Each of these modules is loaded
exactly once.

Register Video and Input Drivers

This is done at the start of the first server generation only.

When a driver module is loaded, the loader calls its Set up function. For video
drivers, this function calls xf 86AddDri ver () to register the driver's DriverRec,
which contains a small set of essential details and driver entry points required
during the early phase of I nit Qut put (). xf 86AddDri ver () adds it to the global
xf 86Dri verList[] array.

The DriverRec contains the driver canonical name, the I dentify(), Probe() and
Avai | abl eOpti ons() function entry points as well as a pointer to the driver's mod-
ule (as returned from the loader when the driver was loaded) and a reference count
which keeps track of how many screens are using the driver. The entry driver entry
points are those required prior to the driver allocating and filling in its ScrnInfoRec.

For a static server, the xf 86Dri ver Li st[] array is initialised at build time, and the
loading of modules is not done.

A similar procedure is used for input drivers. The input driver's Setup func-
tion calls xf 86Addl nput Dri ver () to register the driver's InputDriverRec, which
contains a small set of essential details and driver entry points required dur-
ing the early phase of I ni t 1 nput (). xf 86AddI nput Dri ver () adds it to the global
xf 861 nput Dri ver Li st[] array. For a static server, the xf 861 nput Dri ver Li st[] ar-
ray is initialised at build time.

Both the xf 86DriverList[] and xf 86l nput DriverlList[] arrays have been ini-
tialised by the end of this stage.

Once all the drivers are registered, their Chi pl denti fy() functions are called.

void Chipldentify(int flags);

This is expected to print a message indicating the dri-
ver name, a short summary of what it supports, and a

11

XFree86 DDX Design

list of the chipset names that it supports. It may use the
xf86PrintChipsets() helper to do this.

voi d xf86Pri nt Chi psets(const char *drvnane, const char *drvnsg,
SynirabPt r chi ps);

This function provides an easy way for a driver's Chipl-
dentify function to format the identification message.

Initialise Access Control

This is done at the start of the first server generation only.

The Resource Access Control (RAC) subsystem is initialised before calling any dri-
ver functions that may access hardware. All generic bus information is probed and
saved (for restoration later). All (shared resource) video devices are disabled at the
generic bus level, and a probe is done to find the “primary” video device. These
devices remain disabled for the next step.

Video Driver Probe

This is done at the start of the first server generation only. The Chi pPr obe() function
of each registered video driver is called.

Bool Chi pProbe(DriverPtr drv, int flags);

The purpose of this is to identify all instances of
hardware supported by the driver. The flags value is
currently either 0, PROBE_DEFAULT or PROBE_DETECT.
PROBE_DETECT is used if "-configure" or "-probe" com-
mand line arguments are given and indicates to the
Probe() function that it should not configure the bus
entities and that no xorg.conf information is available.

The probe must find the active device sections that
match the driver by calling xf 86Mat chDevi ce(). The
number of matches found limits the maximum number
of instances for this driver. If no matches are found, the
function should return FALSE immediately.

Devices that cannot be identified by using device-inde-
pendent methods should be probed at this stage (keep-
ing in mind that access to all resources that can be
disabled in a device-independent way are disabled dur-
ing this phase). The probe must be a minimal probe.
It should just determine if there is a card present
that the driver can drive. It should use the least in-
trusive probe methods possible. It must not do any-
thing that is not essential, like probing for other de-
tails such as the amount of memory installed, etc. It
is recommended that the xf 86Mat chPci | nst ances()

12

XFree86 DDX Design

helper function be used for identifying matching PCI
devices, and similarly the xf 86Mat chl sal nst ances()
for ISA (non-PCI) devices (see the RAC section). These
helpers also checks and claims the appropriate enti-
ty. When not using the helper, that should be done
with xf 86CheckPci Sl ot () and xf86C ai nPci Sl ot ()
for PCI devices and xf 860 ai ml saSl ot () for ISA de-
vices (see the RAC section).

The probe must register all non-relocatable resources
at this stage. If a resource conflict is found between ex-
clusive resources the driver will fail immediately. This
is usually best done with the xf 86Confi gPci Enti ty()
helper function for PCI and xf 86Confi gl saEntity()
for ISA (see the RAC section). It is possible to register
some entity specific functions with those helpers. When
not using the helpers, the xf 86AddEnt it yToScr een()
xf 860 ai nFi xedResour ces() and
xf 86Set Enti t yFuncs() should be used instead (see
the RAC section).

If a chipset is specified in an active device section
which the driver considers relevant (ie it has no dri-
ver specified, or the driver specified matches the dri-
ver doing the probe), the Probe must return FALSE if
the chipset doesn't match one supported by the driver.

If there are no active device sections that the driver
considers relevant, it must return FALSE.

Allocate a ScrnlnfoRec for each active instance of the
hardware found, and fill in the basic information, in-
cluding the other driver entry points. This is best done
with the xf 86Confi gl saEntity() helper function for
ISA instances or xf 86Confi gPci Entity() for PCI in-
stances. These functions allocate a ScrnInfoRec for ac-
tive entities. Optionally xf 86Al | ocat eScreen() func-
tion may also be used to allocate the ScrnlnfoRec. Any
of these functions take care of initialising fields to de-
fined “unused” values.

Claim the entities for each instance of the hardware
found. This prevents other drivers from claiming the
same hardware.

Must leave hardware in the same state it found it in,
and must not do any hardware initialisation.

All detection can be overridden via the config file, and
that parsed information is available to the driver at this
stage.

Returns TRUE if one or more instances are found, and
FALSE otherwise.

13

XFree86 DDX Design

i nt xf86Mat chDevi ce(const char *drivername,
GDevPtr **driversectlist)

This function takes the name of the driver and returns
viadriversect!i st alist of device sections that match
the driver name. The function return value is the num-
ber of matches found. If a fatal error is encountered
the return value is - 1.

The caller should use xfree() tofree*dri versect!i st
when it is no longer needed.

ScrnlnfoPtr xf86All ocateScreen(DriverPtr drv, int flags)

This function allocates a new ScrnlnfoRec in the
xf 86Scr eens[] array. This function is normally called
by the video driver Chi pProbe() functions. The return
value is a pointer to the newly allocated ScrnlnfoRec.
The scrnl ndex, ori gl ndex, nodul e and drv fields are
initialised. The reference count in drv is increment-
ed. The storage for any currently allocated “privates”
pointers is also allocated and the privates field ini-
tialised (the privates data is of course not allocated or
initialised). This function never returns on failure. If
the allocation fails, the server exits with a fatal error.
The flags value is not currently used, and should be set
to zero.

At the completion of this, a list of ScrninfoRecs have been allocated in the
xf 86Screens[] array, and the associated entities and fixed resources have been
claimed. The following ScrnIlnfoRec fields must be initialised at this point:

driverVersion
driverName
scrnlndex(*)
origIndex(*)
drv(*)
module(*)
name

Probe
Prelnit
Screenlnit
EnterVT
LeaveVT
numkEntities
entityList
access

(*) These are initialised when the ScrninfoRec is allocated, and not explicitly by
the driver.

14

XFree86 DDX Design

The following ScrninfoRec fields must be initialised if the driver is going to use
them:

SwitchMode
AdjustFrame
FreeScreen
ValidMode

Matching Screens

This is done at the start of the first server generation only.

After the Probe phase is finished, there will be some number of ScrninfoRecs. These
are then matched with the active Screen sections in the xorg.conf, and those not
having an active Screen section are deleted. If the number of remaining screens is
0, I ni t Qut put () sets screenl nf o. nunScr eens to 0 and returns.

At this point the following fields of the ScrnInfoRecs must be initialised:

confScreen

Allocate non-conflicting resources

This is done at the start of the first server generation only.

Before calling the drivers again, the resource information collected from the Probe
phase is processed. This includes checking the extent of PCI resources for the
probed devices, and resolving any conflicts in the relocatable PCI resources. It al-
so reports conflicts, checks bus routing issues, and anything else that is needed to
enable the entities for the next phase.

If any drivers registered an Enti tylnit() function during the Probe phase, then
they are called here.

Sort the Screens and pre-check Monitor Information

This is done at the start of the first server generation only.
The list of screens is sorted to match the ordering requested in the config file.

The list of modes for each active monitor is checked against the monitor's parame-
ters. Invalid modes are pruned.

Prelnit

This is done at the start of the first server generation only.

For each ScrninfoRec, enable access to the screens entities and call the Chi p-
Prel nit() function.

15

XFree86 DDX Design

Bool ChipPrelnit(ScrnlnfoRec screen, int flags);

The purpose of this function is to find out all the in-
formation required to determine if the configuration is
usable, and to initialise those parts of the ScrnInfoRec
that can be set once at the beginning of the first server
generation.

The number of entities registered for the screen should
be checked against the expected number (most drivers
expect only one). The entity information for each of
them should be retrieved (with xf 86Get Entityl nfo())
and checked for the correct bus type and that none
of the sharable resources registered during the Probe
phase was rejected.

Access to resources for the entities that can be con-
trolled in a device-independent way are enabled before
this function is called. If the driver needs to access any
resources that it has disabled inan Enti tyl nit () func-
tion that it registered, then it may enable them here
providing that it disables them before this function re-
turns.

This includes probing for video memory, clocks, ram-
dac, and all other HW info that is needed. It includes
determining the depth/bpp/visual and related info. It
includes validating and determining the set of video
modes that will be used (and anything that is required
to determine that).

This information should be determined in the least in-
trusive way possible. The state of the HW must re-
main unchanged by this function. Although video mem-
ory (including MMIO) may be mapped within this func-
tion, it must be unmapped before returning. Driver
specific information should be stored in a structure
hooked into the ScrninfoRec's driverPrivate field.
Any other modules which require persistent data (ie
data that persists across server generations) should
be initialised in this function, and they should allo-
cate a “privates” index to hook their data into by call-
ing xf 86Al | ocat eScr nl nf oPri vat el ndex() . The “pri-
vates” data is persistent.

Helper functions for some of these things are provid-
ed at the XFree86 common level, and the driver can
choose to make use of them.

All additional resources that the screen needs must
be registered here. This should be done with
xf 86Regi st er Resources(). If some of the fixed re-
sources registered in the Probe phase are not needed
or not decoded by the hardware when in the OPER-

16

XFree86 DDX Design

ATING server state, their status should be updated with
xf 86Set Oper ati ngState().

Modules may be loaded at any point in this
function, and all modules that the driver will
need must be loaded before the end of this
function. Either the xf86LoadSubModul e() or the
xf 86LoadDr vSubModul e() function should be used to
load modules depending on whether a ScrnlnfoRec has
been set up. A driver may unload a module within this
function if it was only needed temporarily, and the
xf 86Unl oadSubMbdul e() function should be used to do
that. Otherwise there is no need to explicitly unload
modules because the loader takes care of module de-
pendencies and will unload submodules automatically
if/when the driver module is unloaded.

The bulk of the ScrnInfoRec fields should be filled out
in this function.

Chi pPrel nit () returns FALSE when the configuration
is unusable in some way (unsupported depth, no valid
modes, not enough video memory, etc), and TRUE if it
is usable.

It is expected that if the Chi pPrel nit() function re-
turns TRUE, then the only reasons that subsequent
stages in the driver might fail are lack or resources
(like xalloc failures). All other possible reasons for fail-
ure should be determined by the Chi pPrel ni t() func-
tion.

The ScrnInfoRecs for screens where the Chi pPrel ni t () fails are removed. If none
remain, | ni t Qut put () sets screenl nfo. nunBcr eens to 0 and returns.

At this point, further fields of the ScrnInfoRecs would normally be filled in. Most
are not strictly mandatory, but many are required by other layers and/or helper
functions that the driver may choose to use. The documentation for those layers and
helper functions indicates which they require.

The following fields of the ScrnInfoRecs should be filled in if the driver is going to
use them:

monitor

display

depth

pixmapBPP

bitsPerPixel

weight (>8bpp only)
mask (>8bpp only)
offset (>8bpp only)
rgbBits (8bpp only)
gamma

defaultVisual

17

XFree86 DDX Design

maxHValue

maxVValue

virtualX

virtualY

displayWidth

frameXO0

frameYO

frameX1

frameY1

zoomlLocked

modePool

modes

currentMode

progClock (TRUE if clock is programmable)
chipset

ramdac

clockchip

numClocks (if not programmable)
clock[] (if not programmable)
videoRam

biosBase

memDBase

memClk

driverPrivate

chipID

chipRev

poi nter xf86LoadSubMdul e(ScrnlnfoPtr pScrn, const char *nane);
and
poi nt er xf86LoadDrvSubModul e(DriverPtr drv, const char *nane);

Load a module that a driver depends on. This function
loads the module nane as a sub module of the driver.
The return value is a handle identifying the new mod-
ule. If the load fails, the return value will be NULL. If a
driver needs to explicitly unload a module it has loaded
in this way, the return value must be saved and passed
to xf 86Unl oadSubModul e() when unloading.

voi d xf86Unl oadSubMbdul e(poi nter nodul e);

Unloads the module referenced by nodul e. nod-
ul e should be a pointer returned previously by
xf 86LoadSubMdul e() or xf 86LoadDr vSubModul e() .

Cleaning up Unused Drivers

At this point it is known which screens will be in use, and which drivers are being
used. Unreferenced drivers (and modules they may have loaded) are unloaded here.

18

XFree86 DDX Design

Consistency Checks

The parameters that must be global to the server, like pixmap formats, bitmap bit
order, bitmap scanline unit and image byte order are compared for each of the
screens. If a mismatch is found, the server exits with an appropriate message.

Check if Resource Control is Needed

Determine if resource access control is needed. This is the case if more than one
screen is used. If necessary the RAC wrapper module is loaded.

AddScreen (Screenlinit)

At this point, the valid screens are known. AddScr een() is called for each of them,
passing Chi pScreenlnit() as the argument. AddScr een() is a DIX function that
allocates a new screenl nfo. screen[] entry (aka pScreen), and does some basic
initialisation of it. It then calls the Chi pScreenl ni t () function, with pScreen as
one of its arguments. If Chi pScreenl ni t () returns FALSE, AddScr een() returns - 1.
Otherwise it returns the index of the screen. AddScr een() should only fail because of
programming errors or failure to allocate resources (like memory). All configuration
problems should be detected BEFORE this point.

Bool ChipScreenlnit(int index, ScreenPtr pScreen,
int argc, char **argv);

This is called at the start of each server generation.

Fill in all of pScreen, possibly doing some of this by
calling Screenlnit functions from other layers like mi,
framebuffers (cfb, etc), and extensions.

Decide which operations need to be placed under
resource access control. The classes of operations
are the frame buffer operations (RAC FB), the point-
er operations (RAC_CURSOR), the viewport change op-
erations (RAC VI EWPORT) and the colormap operations
(RAC_COLORMAP). Any operation that requires resources
which might be disabled during OPERATING state
should be set to use RAC. This can be specified sepa-
rately for memory and IO resources (the r acMenfl ags
and r acl oFl ags fields of the ScrnInfoRec respective-

ly).
Map any video memory or other memory regions.

Save the video card state. Enough state must be saved
so that the original state can later be restored.

Initialise the initial video mode. The ScrnlnfoRec's
vt Sema field should be set to TRUE just prior to chang-
ing the video hardware's state.

19

XFree86 DDX Design

The Chi pScreenl ni t () function (or functions from other layers that it calls) should
allocate entries in the ScreenRec's devPri vat es area by calling Al | ocat eScr een-
Pri vat el ndex() if it needs per-generation storage. Since the ScreenRec's devPri -
vat es information is cleared for each server generation, this is the correct place
to initialise it.

After AddScr een() has successfully returned, the following ScrninfoRec fields are

initialised:

pScreen
racMemFlags
racloFlags

The Chi pScreenl ni t () function should initialise the O oseScr een and SaveScr een
fields of pScreen. The old value of pScreen->C oseScreen should be saved as
part of the driver's per-screen private data, allowing it to be called from Chi p-
Cl oseScreen() . This means that the existing C oseScreen() function is wrapped.

Finalising RAC Initialisation

After all the Chi pScreenl ni t() functions have been called, each screen has regis-
tered its RAC requirements. This information is used to determine which shared
resources are requested by more than one driver and set the access functions ac-
cordingly. This is done following these rules:

1. The sharable resources registered by each entity are compared. If a resource is
registered by more than one entity the entity will be marked to indicate that it
needs to share this resources type (I0 or MEM).

2. A resource marked “disabled” during OPERATING state will be ignored entirely.

3. Aresource marked “unused” will only conflict with an overlapping resource of an
other entity if the second is actually in use during OPERATING state.

4. If an “unused” resource was found to conflict but the entity does not use any other
resource of this type the entire resource type will be disabled for that entity.

Finishing InitOutput()

At this point I ni t Qut put () is finished, and all the screens have been setup in their
initial video mode.

Mode Switching

When a SwitchMode event is received, Chi pSwi t chibde() is called (when it exists):
Bool Chi pSwi tchMbde(int index, DisplayMdePtr nmode, int flags);

Initialises the new mode for the screen identified by
i ndex; . The viewport may need to be adjusted also.

20

XFree86 DDX Design

Changing Viewport

When a Change Viewport event is received, Chi pAdj ust Frane() is called (when it
exists):

voi d Chi pAdjustFrane(int index, int x, int y, int flags);

Changes the viewport for the screen identified by i n-
dex; .

It should be noted that many chipsets impose restric-
tions on where the viewport may be placed in the vir-
tual resolution, either for alignment reasons, or to pre-
vent the start of the viewport from being positioned
within a pixel (as can happen in a 24bpp mode). Af-
ter calculating the value the chipset's panning regis-
ters need to be set to for non-DGA modes, this func-
tion should recalculate the ScrnInfoRec's franmeXo,
frameY0, f rameX1 and f raneVY1 fields to correspond to
that value. If this is not done, switching to another
mode might cause the position of a hardware cursor to
change.

VT Switching

When a VT switch event is received, xf 86VTSwi t ch() is called. xf 86VTSwi t ch()
does the following:

On EN- * enable port I/O access
TER:
* save and initialise the bus/resource state
* enter the SETUP server state
* calls Chi pEnt er VT() for each screen
* enter the OPERATING server state
* validate GCs
» Restore fb from saved pixmap for each screen
* Enable all input devices
On » Save fb to pixmap for each screen
LEAVE:
* validate GCs
* enter the SETUP server state

 calls Chi pLeaveVT() for each screen

 disable all input devices

21

XFree86 DDX Design

* restore bus/resource state

 disables port I/O access
Bool ChipEnterVT(int index, int flags);

This function should initialise the current video mode
and initialise the viewport, turn on the HW cursor if
appropriate, etc.

Should it re-save the video state before initialising the
video mode?

voi d Chi pLeaveVT(int index, int flags);

This function should restore the saved video state. If
appropriate it should also turn off the HW cursor, and
invalidate any pixmap/font caches.

Optionally, Chi pLeaveVT() may also unmap memory regions. If so, Chi pEnt er VT()
will need to remap them. Additionally, if an aperture used to access video memory
is unmapped and remapped in this fashion, Chi pEnt er VT() will also need to notify
the framebuffer layers of the aperture's new location in virtual memory. This is done
with a call to the screen's Modi f yPi xmapHeader () function, as follows

(*pScreen- >Modi f yPi xmapHeader) (pScr n- >ppi X,
-1, -1, -1, -1, -1, NewApertureAddress);

where the ppi x field in a ScrnInfoRec points to the
pixmap used by the screen's SaveRestorel mage()
function to hold the screen's contents while switched
out.

Other layers may wrap the Chi pEnt er VT() and Chi pLeaveVT() functions if they
need to take some action when these events are received.

End of server generation

At the end of each server generation, the DIX layer calls Chi pd oseScreen() for
each screen:

Bool Chi pd oseScreen(int index, ScreenPtr pScreen);

This function should restore the saved video state and
unmap the memory regions.

It should also free per-screen data structures allocated
by the driver. Note that the persistent data held in the

22

XFree86 DDX Design

ScrnInfoRec's dri ver Pri vat e field should not be freed
here because it is needed by subsequent server gener-
ations.

The ScrnInfoRec's vt Sema field should be set to FALSE
once the video HW state has been restored.

Before freeing the per-screen driver data the saved
Cl oseScreen value should be restored to pScreen-
>Cl oseScr een, and that function should be called after
freeing the data.

Optional Driver Functions

The functions outlined here can be called from the XFree86 common layer, but their
presence is optional.

Mode Validation

When a mode validation helper supplied by the XFree86-common layer is being
used, it can be useful to provide a function to check for hw specific mode constraints:

ModeSt at us Chi pVal i dvbde(i nt i ndex, DisplayMdePtr node,
Bool verbose, int flags);

Check the passed mode for hw-specific constraints, and
return the appropriate status value.

This function may also modify the effective timings and clock of the passed mode.
These have been stored in the mode's Crt ¢c* and Synt hCl ock elements, and have al-
ready been adjusted for interlacing, doublescanning, multiscanning and clock mul-
tipliers and dividers. The function should not modify any other mode field, unless it
wants to modify the mode timings reported to the user by xf 86Pri nt Mbdes() .

The function is called once for every mode in the xorg.conf Monitor section assigned
to the screen, with fl ags set to MODECHECK | NI Tl AL. It is subsequently called for
every mode in the xorg.conf Display subsection assigned to the screen, with f | ags
set to MODECHECK_FI NAL. In the second case, the mode will have successfully passed
all other tests. In addition, the ScrninfoRec's virtual X, virtual Y and di spl ay-
W dt h fields will have been set as if the mode to be validated were to be the last
mode accepted.

In effect, calls with MODECHECK INITIAL are intended for checks that do
not depend on any mode other than the one being validated, while calls with
MODECHECK FINAL are intended for checks that may involve more than one
mode.

Free screen data

When a screen is deleted prior to the completion of the Screenlnit phase the
Chi pFreeScreen() function is called when defined.

23

XFree86 DDX Design

voi d Chi pFreeScreen(int scrnindex, int flags);

Free any driver-allocated data that may have been
allocated up to and including an unsuccessful
Chi pScreenl nit () call. This would predominantly be
data allocated by Chi pPrel nit() that persists across
server generations. It would include the dri verPri -
vat e, and any “privates” entries that modules may have
allocated.

Recommended driver functions

Save

The functions outlined here are for internal use by the driver only. They are entirely
optional, and are never accessed directly from higher layers. The sample function
declarations shown here are just examples. The interface (if any) used is up to the
driver.

Save the video state. This could be called from Chi pScreenl nit() and (possibly)
Chi pEnter VT() .

voi d Chi pSave(ScrnlnfoPtr pScrn);

Saves the current state. This will only be saving pre-
server states or states before returning to the server.
There is only one current saved state per screen and it
is stored in private storage in the screen.

Restore

Restore the original video state. This could be called from the Chi pLeaveVT() and
Chi pCl oseScreen() functions.

voi d Chi pRestore(ScrnlnfoPtr pScrn);

Restores the saved state from the private storage. Usu-
ally only used for restoring text modes.

Initialise Mode

Initialise a video mode. This could be called from the ChipScreenlnit(),
Chi pSwi t chMbde() and Chi pEnt er VT() functions.

Bool Chi pModel nit(ScrnlnfoPtr pScrn, D splayMdePtr node);

Programs the hardware for the given video mode.

24

XFree86 DDX Design

Data and Data Structures

Command line data

Command line options are typically global, and are stored in global variables. These
variables are read-only and are available to drivers via a function call interface.
Most of these command line values are processed via helper functions to ensure that
they are treated consistently by all drivers. The other means of access is provided
for cases where the supplied helper functions might not be appropriate.

Some of them are:

xf86Verbose verbosity level

xf86Bpp -bpp from the command line

xf86Depth -depth from the command line
xf86Weight -weight from the command line
xf86Gamma -{r,g,b,}gamma from the command line
xf86FlipPixels -flippixels from the command line
xf86ProbeOnly -probeonly from the command line

defaultColorVisualClass -cc from the command line
If we ever do allow for screen-specific command line options, we may need to rethink
this.
These can be accessed in a read-only manner by drivers with the following functions:
i nt xf86GetVerbosity();
Returns the value of xf 86Ver bose.

i nt xf86Cet Dept h();

Returns the - dept h command line setting. If not set on
the command line, - 1 is returned.

rgb xf86Get Wi ght () ;

Returns the - wei ght command line setting. If not set
on the command line, {0, 0, 0} is returned.

Ganmma xf 86Get Gamma() ;

Returns the - gamma or - r ganma, - gganms, - bgana com-
mand line settings. If not set on the command line,
{0.0, 0.0, 0.0} isreturned.

25

XFree86 DDX Design

Bool xf86CetFlipPixel s();

Returns TRUE if -fli ppi xel s is present on the com-
mand line, and FALSE otherwise.

const char *xf86Cet Server Nane();

Returns the name of the X server from the command
line.

Data handling

Config file data contains parts that are global, and parts that are Screen specific.
All of it is parsed into data structures that neither the drivers or most other parts
of the server need to know about.

The global data is typically not required by drivers, and as such, most of it is stored
in the private xf86InfoRec.

The screen-specific data collected from the config file is stored in screen, device,
display, monitor-specific data structures that are separate from the Scr nl nf oRecs,
with the appropriate elements/fields hooked into the Scr nl nf oRecs as required. The
screen config data is held in confScreenRec, device data in the GDevRec, monitor
data in the MonRec, and display data in the DispRec.

The XFree86 common layer's screen specific data (the actual data in use for each
screen) is held in the Scr nl nf oRecs. As has been outlined above, the Scr nl nf oRecs
are allocated at probe time, and it is the responsibility of the Drivers' Pr obe() and
Prel nit() functions to finish filling them in based on both data provided on the
command line and data provided from the Config file. The precedence for this is:

command line -> config file -> probed/default data

For most things in this category there are helper functions that the drivers can use
to ensure that the above precedence is consistently used.

As well as containing screen-specific data that the XFree86 common layer (includ-
ing essential parts of the server infrastructure as well as helper functions) needs
to access, it also contains some data that drivers use internally. When considering
whether to add a new field to the ScrnInfoRec, consider the balance between the
convenience of things that lots of drivers need and the size/obscurity of the Scrnln-
foRec.

Per-screen driver specific data that cannot be accommodated with the static ScrnIn-
foRec fields is held in a driver-defined data structure, a pointer to which is as-
signed to the ScrnlnfoRec's dri ver Pri vat e field. This is per-screen data that per-
sists across server generations (as does the bulk of the static ScrnInfoRec data). It
would typically also include the video card's saved state.

Per-screen data for other modules that the driver uses (for example, the XAA mod-
ule) that is reset for each server generation is hooked into the ScrnInfoRec through
it's pri vat es field.

26

XFree86 DDX Design

Once it has stabilised, the data structures and variables accessible to video dri-
vers will be documented here. In the meantime, those things defined in the xf 86. h
and xf 86str. h files are visible to video drivers. Things defined in xf 86Pri v. h and
xf 86Pri vstr. h are NOT intended to be visible to video drivers, and it is an error
for a driver to include those files.

Accessing global data

Some other global state information that the drivers may access via functions is as
follows:

Bool xf86ServerlsExiting();

Returns TRUE if the server is at the end of a generation
and is in the process of exiting, and FALSE otherwise.

Bool xf86Serverl|sResetting();

Returns TRUE if the server is at the end of a generation
and is in the process of resetting, and FALSE otherwise.

Bool xf86Serverlslnitialising();

Returns TRUE if the server is at the beginning of a gen-
eration and is in the process of initialising, and FALSE
otherwise.

Bool xf86Server!|sOnlyProbing();

Returns TRUE if the -probeonly command line flag was
specified, and FALSE otherwise.

Bool xf86Caught Si gnal ();

Returns TRUE if the server has caught a signal, and
FALSE otherwise.

Allocating private data

A driver and any module it uses may allocate per-screen private storage in either
the ScreenRec (DIX level) or ScrnlnfoRec (XFree86 common layer level). Screen-
Rec storage persists only for a single server generation, and ScrnlnfoRec storage
persists across generations for the lifetime of the server.

The ScreenRec devPri vat es data must be reallocated/initialised at the start of each
new generation. This is normally done from the Chi pScreenl nit() function, and

27

XFree86 DDX Design

Init functions for other modules that it calls. Data allocated in this way should be
freed by the driver's Chi pCl oseScreen() functions, and Close functions for other
modules that it calls. A new devPri vates entry is allocated by calling the Al | o-
cat eScreenPri vat el ndex() function.

int Al'l ocateScreenPrivatel ndex();

This function allocates a new element in the devPri -
vat es field of all currently existing ScreenRecs. The
return value is the index of this new element in the de-
vPrivat es array. The devPri vat es field is of type De-
vUnion:

t ypedef union _DevUnion {

poi nt er ptr;

| ong val ;

unsi gned | ong uval ;

poi nt er (*fptr)(void);
} DevUni on;

which allows the element to be used for any of the
above types. It is commonly used as a pointer to data
that the caller allocates after the new index has been
allocated.

This function will return - 1 when there is an error al-
locating the new index.

The ScrnlnfoRec pri vat es data persists for the life of the server, so only needs
to be allocated once. This should be done from the ChipPrelnit() function,
and Init functions for other modules that it calls. Data allocated in this way
should be freed by the driver's Chi pFreeScreen() functions, and Free functions
for other modules that it calls. A new privates entry is allocated by calling the
xf 86Al | ocat eScr nl nf oPri vat el ndex() function.

i nt xf86Al | ocateScrnlnfoPrivatel ndex();

This function allocates a new element in the pri vat es
field of all currently existing Scr nl nf oRecs. The return
value is the index of this new element in the pri vat es
array. The pri vat es field is of type DevUni on:

typedef union _DevUni on {

poi nt er ptr;

| ong val ;

unsi gned | ong uval ;

poi nt er (*fptr)(void);
} DevUni on;

28

XFree86 DDX Design

which allows the element to be used for any of the
above types. It is commonly used as a pointer to data
that the caller allocates after the new index has been
allocated.

This function will not return when there is an error al-
locating the new index. When there is an error it will
cause the server to exit with a fatal error. The similar
function for allocation privates in the ScreenRec (Al -
| ocat eScreenPri vat el ndex()) differs in this respect
by returning - 1 when the allocation fails.

Keeping Track of Bus Resources
Theory of Operation

The XFree86 common layer has knowledge of generic access control mechanisms
for devices on certain bus systems (currently the PCI bus) as well as of methods to
enable or disable access to the buses itself. Furthermore it can access information
on resources decoded by these devices and if necessary modify it.

When first starting the Xserver collects all this information, saves it for restora-
tion, checks it for consistency, and if necessary, corrects it. Finally it disables all
resources on a generic level prior to calling any driver function.

When the Probe() function of each driver is called the device sections are matched
against the devices found in the system. The driver may probe devices at this stage
that cannot be identified by using device independent methods. Access to all re-
sources that can be controlled in a device independent way is disabled. The Pr obe()
function should register all non-relocatable resources at this stage. If a resource
conflict is found between exclusive resources the driver will fail immediately. Op-
tionally the driver might specify an Entitylnit(), EntityLeave() and EntityEn-
ter () function.

Entitylnit() canbe used to disable any shared resources that are not controlled by
the generic access control functions. It is called prior to the Prelnit phase regardless
if an entity is active or not. When calling the Entitylnit(), EntityEnter () and En-
tityLeave() functions the common level will disable access to all other entities on a
generic level. Since the common level has no knowledge of device specific methods
to disable access to resources it cannot be guaranteed that certain resources are
not decoded by any other entity until the Entitylnit() or Enti tyEnter () phase is
finished. Device drivers should therefore register all those resources which they are
going to disable. If these resources are never to be used by any driver function they
may be flagged Resl nit so that they can be removed from the resource list after
processing all Enti tylnit () functions. EntityEnt er () should disable decoding of
all resources which are not registered as exclusive and which are not handled by
the generic access control in the common level. The difference to Entitylnit() is
that the latter one is only called once during lifetime of the server. It can therefore
be used to set up variables prior to disabling resources. Enti t yLeave() should re-
store the original state when exiting the server or switching to a different VT. It
also needs to disable device specific access functions if they need to be disabled on
server exit or VT switch. The default state is to enable them before giving up the VT.

29

XFree86 DDX Design

In Prel ni t() phase each driver should check if any sharable resources it has regis-
tered during Pr obe() has been denied and take appropriate action which could sim-
ply be to fail. If it needs to access resources it has disabled during Ent i t ySet up()
it can do so provided it has registered these and will disable them before returning
from Prel ni t (). This also applies to all other driver functions. Several functions
are provided to request resource ranges, register these, correct PCI config space
and add replacements for the generic access functions. Resources may be marked
“disabled” or “unused” during OPERATING stage. Although these steps could also
be performed in Screenl ni t (), this is not desirable.

Following Prel ni t () phase the common level determines if resource access con-
trol is needed. This is the case if more than one screen is used. If necessary the
RAC wrapper module is loaded. In Screenl ni t () the drivers can decide which op-
erations need to be placed under RAC. Available are the frame buffer operations,
the pointer operations and the colormap operations. Any operation that requires
resources which might be disabled during OPERATING state should be set to use
RAC. This can be specified separately for memory and IO resources.

When Screenl ni t () phase is done the common level will determine which shared
resources are requested by more than one driver and set the access functions ac-
cordingly. This is done following these rules:

1. The sharable resources registered by each entity are compared. If a resource is
registered by more than one entity the entity will be marked to need to share this
resources type (I O or MEM.

2. A resource marked “disabled” during OPERATING state will be ignored entirely.

3. A resource marked “unused” will only conflicts with an overlapping resource of
an other entity if the second is actually in use during OPERATING state.

4. If an “unused” resource was found to conflict however the entity does not use any
other resource of this type the entire resource type will be disabled for that entity.

The driver has the choice among different ways to control access to certain re-
sources:

1. It can rely on the generic access functions. This is probably the most common
case. Here the driver only needs to register any resource it is going to use.

2. It can replace the generic access functions by driver specific ones. This will most-
ly be used in cases where no generic access functions are available. In this case
the driver has to make sure these resources are disabled when entering the
Prel nit() stage. Since the replacement functions are registered in Prel ni t ()
the driver will have to enable these resources itself if it needs to access them
during this state. The driver can specify if the replacement functions can control
memory and/or I/O resources separately.

3. The driver can enable resources itself when it needs them. Each driver function
enabling them needs to disable them before it will return. This should be used if
a resource which can be controlled in a device dependent way is only required
during SETUP state. This way it can be marked “unused” during OPERATING
state.

A resource which is decoded during OPERATING state however never accessed by
the driver should be marked unused.

30

XFree86 DDX Design

Since access switching latencies are an issue during Xserver operation, the common
level attempts to minimize the number of entities that need to be placed under RAC
control. When a wrapped operation is called, the Enabl eAccess() function is called
before control is passed on. Enabl eAccess() checks if a screen is under access
control. If not it just establishes bus routing and returns. If the screen needs to
be under access control, Enabl eAccess() determines which resource types (MEM
| O) are required. Then it tests if this access is already established. If so it simply
returns. If not it disables the currently established access, fixes bus routing and
enables access to all entities registered for this screen.

Whenever a mode switch or a VI-switch is performed the common level will return
to SETUP state.

Resource Types

Resource have certain properties. When registering resources each range is accom-
panied by a flag consisting of the ORed flags of the different properties the resource
has. Each resource range may be classified according to

* its physical properties i.e., if it addresses memory (ResMem) or I/O space (Resl o),
« if it addresses a block (ResBIl ock) or sparse (ResSpar se) range,

* its access properties.

There are two known access properties:

* ResExcl usi ve for resources which may not be shared with any other device and
* ResShar ed for resources which can be disabled and therefore can be shared.

If it is necessary to test a resource against any type a generic access type ResAny
is provided. If this is set the resource will conflict with any resource of a differ-
ent entity intersecting its range. Further it can be specified that a resource is de-
coded however never used during any stage (ResUnused) or during OPERATING
state (ResUnusedOpr). A resource only visible during the init functions (ie. Enti -
tylnit(), EntityEnter() and EntitylLeave() should be registered with the flag
Resl ni t. A resource that might conflict with background resource ranges may be
flagged with ResBi os. This might be useful when registering resources ranges that
were assigned by the system Bios.

Several predefined resource lists are available for VGA and 8514/A resources in
comon/ xf 86Resour ces. h.

Available Functions

The functions provided for resource management are listed in their order of use
in the driver.

Probe Phase

In this phase each driver detects those resources it is able to drive, creates an entity
record for each of them, registers non-relocatable resources and allocates screens
and adds the resources to screens.

31

XFree86 DDX Design

Two helper functions are provided for matching device sections in the xorg.conf file
to the devices:

i nt xf86Mat chPci | nstances(const char *driverNanme, int vendorlD,
SynirabPt r chi psets, Pci Chi psets *PCl chi psets,
GevPtr *devList, int nunDevs, DriverPtr drvp,
int **foundEntities);

This function finds matches between PCI cards that
a driver supports and config file device sections. It is
intended for use in the Chi pProbe() function of dri-
vers for PCI cards. Only probed PCI devices with a
vendor ID matching vendor | Dare considered. devLi st
and numDevs are typically those found from calling
xf 86Mat chDevi ce(), and represent the active config
file device sections relevant to the driver. PCl chi pset s
is a table that provides a mapping between the PCI de-
vice IDs, the driver's internal chipset tokens and a list
of fixed resources.

When a device section doesn't have a BusID entry it can
only match the primary video device. Secondary de-
vices are only matched with device sections that have
a matching BusID entry.

Once the preliminary matches have been found, a final
match is confirmed by checking if the chipset override,
ChipID override or probed PCI chipset type match one
of those given in the chi psets and PCl chi pset s lists.
The PCI chi pset s list includes a list of the PCI device
IDs supported by the driver. The list should be termi-
nated with an entry with PCI ID - 1". The chi pset s list
is a table mapping the driver's internal chipset tokens
to names, and should be terminated with a NULL entry.
Only those entries with a corresponding entry in the
PCl chi pset s list are considered. The order of prece-
dence is: config file chipset, config file ChipID, probed
PCI device ID.

In cases where a driver handles PCI chipsets with more
than one vendor ID, it may set vendor | D to 0, and OR
each devID in the list with (the vendor ID << 16).

Entity index numbers for confirmed matches are re-
turned as an array via foundEntities. The PCI in-
formation, chipset token and device section for each
match are found in the EntityInfoRec referenced by the
indices.

The function return value is the number of confirmed
matches. A return value of - 1 indicates an internal er-
ror. The returned f oundEnt i ti es array should be freed
by the driver with xf r ee() when it is no longer needed
in cases where the return value is greater than zero.

32

XFree86 DDX Design

i nt xf86Mat chl sal nstances(const char *driver Nane,
SynirabPt r chi psets, |saChipsets *I SAchi psets,
DriverPtr drvp, FindlsaDevProc FindlsaDevice,
GDevPtr *devList, int nunDevs,
int **foundEntities);

This function finds matches between ISA cards that
a driver supports and config file device sections. It is
intended for use in the Chi pProbe() function of dri-
vers for ISA cards. devLi st and nunDevs are typically
those found from calling xf 86Mat chDevi ce(), and rep-
resent the active config file device sections relevant to
the driver. | SAchi pset s is a table that provides a map-
ping between the driver's internal chipset tokens and
the resource classes. Fi ndl saDevi ce is a driver-provid-
ed function that probes the hardware and returns the
chipset token corresponding to what was detected, and
-1 if nothing was detected.

If the config file device section contains a chipset entry,
then it is checked against the chi pset s list. When no
chipset entry is present, the Fi ndl saDevi ce function is
called instead.

Entity index numbers for confirmed matches are re-
turned as an array via f oundEntiti es. The chipset to-
ken and device section for each match are found in the
EntityInfoRec referenced by the indices.

The function return value is the number of confirmed
matches. A return value of - 1 indicates an internal er-
ror. The returned f oundEnt i ti es array should be freed
by the driver with xf r ee() when it is no longer needed
in cases where the return value is greater than zero.

These two helper functions make use of several core functions that are available
at the driver level:

Bool xf86ParsePci BusString(const char *buslD, int *bus,
int *device, int *func);

Takes a Busl D string, and if it is in the correct for-
mat, returns the PCI bus, devi ce, f unc values that it
indicates. The format of the string is expected to be
"PCI:bus:device:func" where each of “bus”, “device”
and “func” are decimal integers. The ":func" part may
be omitted, and the func value assumed to be zero,
but this isn't encouraged. The "PCI" prefix may also be
omitted. The prefix "AGP" is currently equivalent to the
"PCI" prefix. If the string isn't a valid PCI BusID, the
return value is FALSE.

33

XFree86 DDX Design

Bool xf86ComnparePci BusString(const char *busl D, int bus,
int device, int func);

Compares a Busl D string with PCI bus, devi ce, func
values. If they match TRUE is returned, and FALSE if they
don't.

Bool xf86Parsel saBusString(const char *buslD);

Compares a Busl D string with the ISA bus ID string
("ISA" or "ISA:"). If they match TRUE is returned, and
FALSE if they don't.

Bool xf86CheckPci Slot(int bus, int device, int func);

Checks if the PCI slot bus: devi ce: func has been
claimed. If so, it returns FALSE, and otherwise TRUE.

i nt xf86C ai mPci Sl ot (int bus, int device, int func, DriverPtr drvp,
int chipset, GdevPtr dev, Bool active);

This function is used to claim a PCI slot, allocate the
associated entity record and initialise their data struc-
tures. The return value is the index of the newly allo-
cated entity record, or - 1 if the claim fails. This func-
tion should always succeed if xf 86CheckPci Sl ot () re-
turned TRUE for the same PCI slot.

Bool xf 86l sPri maryPci (void);

This function returns TRUE if the primary card is a PCI
device, and FALSE otherwise.

int xf86C ai mMsaSlot(DriverPtr drvp, int chipset,
GDevPtr dev, Bool active);

This allocates an entity record entity and initialise the
data structures. The return value is the index of the
newly allocated entity record.

Bool xf 86l sPrimarylsa(void);

34

XFree86 DDX Design

This function returns TRUE if the primary card is an ISA
(non-PCI) device, and FALSE otherwise.

Two helper functions are provided to aid configuring entities:

ScrnlnfoPtr xf86ConfigPci Entity(ScrnlnfoPtr pScrn,
int scrnFlag, int entitylndex,
Pci Chi psets *p_chi p,
resList res, EntityProc init,
EntityProc enter, EntityProc |eave,
poi nter private);

ScrnlnfoPtr xf86ConfiglsaEntity(ScrnlnfoPtr pScrn,
int scrnFlag, int entitylndex,
| saChi psets *i _chip,
resList res, EntityProc init,
EntityProc enter, EntityProc |eave,
poi nter private);

These functions are used to register the non-relocat-
able resources for an entity, and the optional entity-spe-
cific I nit, Enter and Leave functions. Usually the list
of fixed resources is obtained from the Isa/PciChipsets
lists. However an additional list of resources may be
passed. Generally this is not required. For active enti-
ties a ScrnInfoRec is allocated if the pScrn argument
is NULL. The return value is TRUE when successful. The
init, enter, leave functions are defined as follows:

typedef void (*EntityProc)(int entitylndex,
poi nter private);

They are passed the entity index and a point-
er to a private scratch area. This can be set up
during Probe() and its address can be passed to
xf 86Confi gl saEntity() and xf 86Confi gPci Entity()
as the last argument.

These two helper functions make use of several core functions that are available
at the driver level:

voi d xf86C ai nFi xedResources(resList list, int entitylndex);

This function registers the non-relocatable resources
which cannot be disabled and which therefore would
cause the server to fail immediately if they were found
to conflict. It also records non-relocatable but sharable
resources for processing after the Probe() phase.

35

XFree86 DDX Design

Bool xf86SetEntityFuncs(int entitylndex, EntityProc init,
EntityProc enter, EntityProc |eave, pointer);

This function registers with an entity the i nit, enter,
| eave functions along with the pointer to their private
area.

voi d xf 86AddEntityToScreen(ScrnlnfoPtr pScrn, int entitylndex);

This function associates the entity referenced by ent i -
t yl ndex with the screen.

Prelnit Phase

During this phase the remaining resources should be registered. Prel ni t () should
call xf 86Get Enti tyl nfo() to obtain a pointer to an EntityInfoRec for each entity
it is able to drive and check if any resource are listed in its resources field. If
resources registered in the Probe phase have been rejected in the post-Probe phase
(resour ces is non-NULL), then the driver should decide if it can continue without
using these or if it should fail.

EntitylnfoPtr xf86GetEntitylnfo(int entitylndex);

This function returns a pointer to the EntityInfoRec ref-
erenced by entityl ndex. The returned EntityInfoRec
should be freed with xf ree() when no longer needed.

Several functions are provided to simplify resource registration:

Bool xf86lsEntityPrimary(int entitylndex);

This function returns TRUE if the entity referenced by
entityl ndex is the primary display device (i.e., the one
initialised at boot time and used in text mode).

Bool xf 86l sScreenPrimry(int scrnlndex);

This function returns TRUE if the primary entity is reg-
istered with the screen referenced by scr nl ndex.

pci Vi deoPtr xf86Get Pci | nfoForEntity(int entitylndex);

This function returns a pointer to the pciVideoRec for
the specified entity. If the entity is not a PCI device,
NULL is returned.

36

XFree86 DDX Design

The primary function for registration of resources is:

resPtr xf86Regi sterResources(int entitylndex, resList |ist,
i nt access);

This function tries to register the resources in |i st.
If list is NULL it tries to determine the resources au-
tomatically. This only works for entities that provide
a generic way to read out the resource ranges they
decode. So far this is only the case for PCI devices.
By default the PCI resources are registered as shared
(ResShar ed) if the driver wants to set a different ac-
cess type it can do so by specifying the access flags in
the third argument. A value of 0 means to use the de-
fault settings. If for any reason the resource broker is
not able to register some of the requested resources
the function will return a pointer to a list of the failed
ones. In this case the driver may be able to move the
resource to different locations. In case of PCI bus enti-
ties this is done by passing the list of failed resources
to xf 86Real | ocat ePci Resour ces(). When the regis-
tration succeeds, the return value is NULL.

resPtr xf86Real | ocat ePci Resources(int entitylndex, resPtr pRes);

This function takes a list of PCI resources that need to
be reallocated and returns NULL when all relocations
are successful. xf 86Regi st er Resour ces() should be
called again to register the relocated resources with
the broker. If the reallocation fails, a list of the re-
sources that could not be relocated is returned.

Two functions are provided to obtain a resource range of a given type:

resRange xf86GCet Bl ock(long type, nemlype size,
menType wi ndow start, menifype wi ndow_end,
menfType align_nask, resPtr avoid);

This function tries to find a block range of size si ze
and type type in a window bound by w ndow st art
and wi ndow_end with the alignment specified in
al i gn_mask. Optionally a list of resource ranges which
should be avoided within the window can be supplied.
On failure a zero-length range of type ResEnd will be
returned.

resRange xf86GCet Sparse(long type, nmenflType fixed_ bits,
menType decode_nask, nenType address_mask,

37

XFree86 DDX Design

resPtr avoid);

This function is like the previous one, but attempts
to find a sparse range instead of a block range. Here
three values have to be specified: the addr ess_nask
which marks all bits of the mask part of the address,
the decode_mask which masks out the bits which are
hardcoded and are therefore not available for reloca-
tion and the values of the fixed bits. The function tries
to find a base that satisfies the given condition. If the
function fails it will return a zero range of type ResEnd.
Optionally it might be passed a list of resource ranges
to avoid.

Some PCI devices are broken in the sense that they return invalid size information
for a certain resource. In this case the driver can supply the correct size and make
sure that the resource range allocated for the card is large enough to hold the
address range decoded by the card. The function xf 86Fi xPci Resource() can be
used to do this:

Bool xf86Fi xPci Resource(int entitylndex, unsigned int prt,
CARD32 alignment, |ong type);

This function fixes a PCI resource allocation. The prt
parameter contains the number of the PCI base reg-
ister that needs to be fixed (0-5, and 6 for the BIOS
base register). The size is specified by the alignment.
Since PCI resources need to span an integral range
of size 2”n, the alignm ent also specifies the number
of addresses that will be decoded. If the driver spec-
ifies a type mask it can override the default type for
PCI resources which is ResShar ed. The resource bro-
ker needs to know that to find a matching resource
range. This function should be called before calling
xf 86Regi st er Resour ces() . The return value is TRUE
when the function succeeds.

Bool xf86CheckPci MenBase(pci Vi deoPtr pPci, nenilype base);

This function checks that the memory base address
specified matches one of the PCI base address register
values for the given PCI device. This is mostly used to
check that an externally provided base address (e.g.,
from a config file) matches an actual value allocated to
a device.

The driver may replace the generic access control functions for an entity. This is
done with the xf 86Set AccessFuncs():

38

XFree86 DDX Design

voi d xf86Set AccessFuncs(EntitylnfoPtr pEnt,
xf 86Set AccessFuncPtr funcs,
xf 86Set AccessFuncPtr ol dFuncs);

with:

t ypedef struct {
xf 86AccessPtr nem
xf 86AccessPtr io;
xf 86AccessPtr io_nem
} xf86Set AccessFuncRec, *xf86Set AccessFuncPtr;

The driver can pass three functions: one for I/O access,
one for memory access and one for combined memory
and I/O access. If the memory access and combined ac-
cess functions are identical the common level assumes
that the memory access cannot be controlled indepen-
dently of I/O access, if the I/O access function and the
combined access functions are the same it is assumed
that I/O can not be controlled independently. If memory
and I/O have to be controlled together all three values
should be the same. If a non NULL value is passed as
third argument it is interpreted as an address where
to store the old access record. If the third argument is
NULL it will be assumed that the generic access should
be enabled before replacing the access functions. Oth-
erwise it will be disabled. The driver may enable them
itself using the returned values. It should do this from
its replacement access functions as the generic access
may be disabled by the common level on certain occa-
sions. If replacement functions are specified they must
control all resources of the specific type registered for
the entity.

To find out if a specific resource range conflicts with another resource the
xf 86ChkConf | i ct () function may be used:

meniType xf86ChkConflict(resRange *rgp, int entitylndex);

This function checks if the resource range r gp of for the
specified entity conflicts with with another resource. If
a conflict is found, the address of the start of the con-
flict is returned. The return value is zero when there
is no conflict.

The OPERATING state properties of previously registered fixed resources can be
set with the xf 86Set Oper ati ngSt at e() function:

resPtr xf86Set OperatingState(resList list, int entitylndex,

39

XFree86 DDX Design

i nt mask);

This function is used to set the status of a resource
during OPERATING state. | i st holds a list to which
mask is to be applied. The parameter mask may have
the value ResUnusedOpr and ResDi sabl eOpr. The first
one should be used if a resource isn't used by the driver
during OPERATING state although it is decoded by the
device, while the latter one indicates that the resource
is not decoded during OPERATING state. Note that the
resource ranges have to match those specified during
registration. If a range has been specified starting at
A and ending at B and suppose C us a value satisfying
A < C < B one may not specify the resource range
(A, B) by splitting it into two ranges (A, C) and (C, B) .

The following two functions are provided for special cases:

voi d xf 86RenoveEntityFrontcreen(Scrnl nfoPtr

This function may be used to remove an entity from a
screen. This only makes sense if a screen has more than
one entity assigned or the screen is to be deleted. No
test is made if the screen has any entities left.

pScrn,

int entitylndex);

voi d xf 86Deal | ocat eResourcesForEntity(int entitylndex, |long type);

Screenlnit Phase

This function deallocates all resources of a given type
registered for a certain entity from the resource broker
list.

All that is required in this phase is to setup the RAC flags. Note that it is also per-
missible to set these flags up in the Prelnit phase. The RAC flags are held in the
racl oFl ags and r acMentl ags fields of the ScrnInfoRec for each screen. They speci-
fy which graphics operations might require the use of shared resources. This can be
specified separately for memory and I/O resources. The available flags are defined
in rac/ xf 86RAC. h. They are:

RAC_FB

RAC_CURSCR

for framebuffer operations (including hw acceleration)

for Cursor operations (??? I'm not sure if we need this for SW cursor

it depends on which level the sw cursor is drawn)

RAC_COLORMAP for colormap operations

RAC VI EWPORT for the call to Chi pAdj ust Frane()

The flags are ORed together.

40

XFree86 DDX Design

Config file “Option” entries

Option entries are permitted in most sections and subsections of the config file.
There are two forms of option entries:

Option "option-name" A boolean option.

Option "option-name" "op- An option with an arbitrary value.

tion-value"

The option entries are handled by the parser, and a list of the parsed options is
included with each of the appropriate data structures that the drivers have access
to. The data structures used to hold the option information are opaque to the driver,
and a driver must not access the option data directly. Instead, the common layer
provides a set of functions that may be used to access, check and manipulate the
option data.

First, the low level option handling functions. In most cases drivers would not need
to use these directly.

XF860pt i onPtr xf86Fi ndOpti on(XF860pti onPtr options, const char *nane);

Takes a list of options and an option name, and returns
a handle for the first option entry in the list matching
the name. Returns NULL if no match is found.

const char *xf86Fi ndOpti onVal ue(XF860pti onPtr options, const char *nane)

Takes a list of options and an option name, and returns
the value associated with the first option entry in the
list matching the name. If the matching option has no
value, an empty string ("") is returned. Returns NULL
if no match is found.

voi d xf 86Mar kOpti onUsed(XF860pti onPtr option);

Takes a handle for an option, and marks that option as
used.

voi d xf86Mar kOpt i onUsedByNanme(XF860pt i onPtr options, const char *nane);

Takes a list of options and an option name and marks
the first option entry in the list matching the name as
used.

Next, the higher level functions that most drivers would use.

41

XFree86 DDX Design

voi d xf86Col | ect Opti ons(ScrnlnfoPtr pScrn, XF860ptionPtr extraOpts);

Collect the options from each of the config file sec-
tions used by the screen (pScr n) and return the merged
list as pScrn->options. This function requires that
pScr n->conf Scr een, pScrn->di spl ay, pScrn->noni -
tor, pScrn->nunEntities, and pScrn->entityLi st
are initialised. ext r aOpt s may optionally be set to an
additional list of options to be combined with the oth-
ers. The order of precedence for options is ext raQpt s,
display, confScreen, monitor, device.

voi d xf86ProcessOptions(int scrnlndex, XF86QptionPtr options,
OptionlnfoPtr optinfo);

Processes a list of options according to the information
in the array of OptionInfoRecs (opti nfo). The result-
ing information is stored in the val ue fields of the ap-
propriate opti nf o entries. The f ound fields are set to
TRUE when an option with a value of the correct type
if found, and FALSE otherwise. The t ype field is used
to determine the expected value type for each option.
Each option in the list of options for which there is a
name match (but not necessarily a value type match) is
marked as used. Warning messages are printed when
option values don't match the types specified in the opt-
info data.

NOTE: If this function is called before a driver's screen
number is known (e.g., from the Chi pProbe() function)
a scr nl ndex value of - 1 should be used.

NOTE 2: Given that this function stores into the Op-
ti onl nf oRecs pointed to by opt i nf o, the caller should
ensure the Opti onl nf oRecs are (re-)initialised before
the call, especially if the caller expects to use the pre-
defined option values as defaults.

The OptionInfoRec is defined as follows:

typedef struct {
doubl e freq;
int units;

} Opt Frequency;

typedef union {

unsi gned | ong num
char * str;
doubl e real num
Bool bool ;

42

XFree86 DDX Design

Opt Fr equency freq;
} Val ueUni on;

typedef enum {
OPTV_NONE = 0,
OPTV_| NTEGER,
OPTV_STRING /* a non-enpty string */
OPTV_ANYSTR, /* Any string, including an enpty one */
OPTV_REAL,
OPTV_BOOLEAN,
OPTV_PERCENT,
OPTV_FREQ
} OptionVal ueType;

typedef enum {
OPTUNI TS _HZ = 1,
OPTUNI TS_KHZ,
OPTUNI TS_MHZ

} OptFreqUnits;

typedef struct {

i nt t oken;
const char* narme;
Opt i onVal ueType type;
Val ueUni on val ue;
Bool f ound;

} OptionlnfoRec, *OptionlnfoPtr;

OPTV_FREQ can be used for options values that are
frequencies. These values are a floating point num-
ber with an optional unit name appended. The unit
name can be one of "Hz", "kHz", "k", "MHz", "M".
The multiplier associated with the unit is stored in
freq.units, and the scaled frequency is stored in
freq. freg. When no unit is specified, freq. units is
set to 0, and freq. freq is unscaled.

OPTV_PERCENT can be used for option values that are
specified in percent (e.g. "20%"). These values are a
floating point number with a percent sign appended. If
the percent sign is missing, the parser will fail to match
the value.

Typical usage is to setup an array of OptionInfoRecs
with all fields initialised. The val ue and f ound fields
get set by xf 86Pr ocessOpt i ons() . For cases where the
value parsing is more complex, the driver should speci-
fy OPTV_STRI NG and parse the string itself. An example
of using this option handling is included in the Sample
Driver section.

voi d xf 86ShowUnusedOpti ons(i nt scrnlndex, XF86CptionPtr options);

43

XFree86 DDX Design

Prints out warning messages for each option in the
list of options that isn't marked as used. This is in-
tended to show options that the driver hasn't recog-
nised. It would normally be called near the end of the
Chi pScreenl nit () function, but only when server-
Generation ==

OptionlnfoPtr xf86TokenToOpti nfo(const OptionlnfoRec *tabl e,
i nt token);

Returns a pointer to the OptionInfoRec in t abl e with a
token field matching t oken. Returns NULL if no match
is found.

Bool xf86lsOptionSet(const OptionlnfoRec *table, int token);

Returns the f ound field of the OptionInfoRec in t abl e
with a t oken field matching t oken. This can be used
for options of all types. Note that for options of type
OPTV_BOOLEAN, it isn't sufficient to check this to deter-
mine the value of the option. Returns FALSE if no match
is found.

char *xf86Get Opt Val String(const OptionlnfoRec *table, int token);

Returns the val ue. str field of the OptionInfoRec in
t abl e with a token field matching t oken. Returns NULL
if no match is found.

Bool xf86Cet Opt Val I nteger(const OptionlnfoRec *table, int token,

int *val ue);

Returns via *val ue the val ue. numfield of the OptionIn-
foRec in tabl e with a token field matching t oken.
*val ue is only changed when a match is found so it
can be safely initialised with a default prior to call-
ing this function. The function return value is as for
xf 861 sOpt i onSet ().

Bool xf86Cet Opt Val ULong(const OptionlnfoRec *table, int token,
unsi gned | ong *val ue);

Like xf86Get OptVal I nteger(), except the value is
treated as an unsigned long.

44

XFree86 DDX Design

Bool xf86Cet Opt Val Real (const Opti onl nfoRec *table, int token,
doubl e *val ue);

Like xf 86Get Opt Val | nt eger (), except that
val ue. r eal numis used.

Bool xf86GCet Opt Val Freq(const Optionl nfoRec *table, int token,
Opt FreqUni ts expectedUnits, double *val ue);

Like xf86GetOptVal Integer(), except that the
val ue. freq data is returned. The frequency value is
scaled to the units indicated by expect edUnits. The
scaling is exact when the units were specified explicit-
ly in the option's value. Otherwise, the expect edUni ts
field is used as a hint when doing the scaling. In this
case, values larger than 1000 are assumed to have
be specified in the next smallest units. For example,
if the Option value is "10000" and expectedUnits is
OPTUNI TS_MHZ, the value returned is 10.

Bool xf86Cet Opt Val Bool (const Optionl nfoRec *table, int token, Bool *valu

This function is used to check boolean options
(OPTV_BOOLEAN). If the function return value is FALSE,
it means the option wasn't set. Otherwise *val ue is set
to the boolean value indicated by the option's value.
No option val ue is interpreted as TRUE. Option values
meaning TRUE are "1", "yes", "on", "true", and option
values meaning FALSE are "0", "no", "off", "false". Op-
tion names both with the "no" prefix in their names, and
with that prefix removed are also checked and handled
in the obvious way. *val ue is not changed when the op-
tion isn't present. It should normally be set to a default
value before calling this function.

Bool xf86Ret ur nOpt Val Bool (const Optionl nfoRec *table, int token, Bool de

This function is used to check boolean options
(OPTV_BOOLEAN). If the option is set, its value is re-
turned. If the options is not set, the default value speci-
fied by def is returned. The option interpretation is the
same as for xf 86Get Opt Val Bool ().

i nt xf86NaneCnp(const char *sl1, const char *s2);

This function should be used when comparing strings
from the config file with expected values. It works like

45

XFree86 DDX Design

strcnp(), but is not case sensitive and space, tab, and
“_” characters are ignored in the comparison. The use
of this function isn't restricted to parsing option values.
It may be used anywhere where this functionality re-
quired.

Modules, Drivers, Include Files and Interface
Issues

NOTE: this section is incomplete.

Include files

The following include files are typically required by video drivers:

All drivers should include these:

"xf 86. h"

"xf 86_OSproc. h"
"xf 86_ansic. h"
"xf 86Resour ces. h"

Wherever inb/outb (and related things) are used the following should
be included:

"conpiler.h"

Note: in drivers, this must be included after " xf 86_ansi c. h".

Drivers that need to access the PCI config space need this:
"xf 86Pci . h"

Drivers that initialise a SW cursor need this:
"m poi nter.h"

All drivers implementing backing store need this:
"m bstore. h"

All drivers using the mi colourmap code need this:

46

XFree86 DDX Design

"m cmap. h"

If a driver uses the vgahw module, it needs this:

"vgaHwW h"

Drivers supporting VGA or Hercules monochrome screens need:

"xf 1bpp. h"

Drivers supporting VGA or EGC 16-colour screens need:

"xf 4bpp. h"

Drivers using cfb need:

#defi ne PSZ 8
#i ncl ude "cfb. h"
#undef PSZ

Drivers supporting bpp 16, 24 or 32 with cfb need one or more of:

“cfbl6. h"
“cfb24. h"
"cfb32. h"

If a driver uses XAA, it needs these:

"xaa. h"
"xaal ocal . h"

If a driver uses the fb manager, it needs this:

"xf 86f bman. h"

Non-driver modules should include " xf 86_ansi c. h" to get the correct wrapping of
ANSI C/libc functions.

All modules must NOT include any system include files, or the following:

"xf86Priv.h"

47

XFree86 DDX Design

"xf86Privstr.h"
"xf86_OSlib.h"
" Xos. h"

In addition, "xf86 libc.h" must not be included explicitly. It is included implicitly by
"xf86 ansic.h".

Offscreen Memory Manager

Management of offscreen video memory may be handled by the XFree86 frame-
buffer manager. Once the offscreen memory manager is running, drivers or exten-
sions may allocate, free or resize areas of offscreen video memory using the follow-
ing functions (definitions taken from xf 86f bman. h):

typedef struct _FBArea {

ScreenPtr pScr een;

BoxRec box;

i nt granul arity;

voi d (*MoveAr eaCal | back) (struct _FBArea*, struct _FBArea*)
voi d (*RemoveAr eaCal | back) (struct _FBArea*)

DevUni on devPrivate;

} FBArea, *FBAreaPtr;

typedef void (*MveAreaCal | backProcPtr) (FBAreaPtr from FBAreaPtr to)
typedef void (*RenoveAreaCal | backProcPtr) (FBAreaPtr)

FBAreaPtr xf86All ocateO fscreenArea (
ScreenPtr pScreen,
int width, int height,
int granularity,
MoveAr eaCal | backProcPtr MoveAr eaCal | back,
RenoveAr eaCal | backProcPtr RenoveAreaCal | back,
poi nter privData

)

voi d xf 86FreeC fscreenArea (FBAreaPtr area)

Bool xf86ResizeO fscreenArea (
FBAreaPtr area
int w, int h

)
The function:
Bool xf86FBManager Runni ng(ScreenPtr pScreen);

can be used by an extension to check if the driver has initialized the memory man-
ager. The manager is not available if this returns FALSE and the functions above
will all fail.

48

XFree86 DDX Design

xf 86Al | ocat eOf f screenArea() can be used to request a rectangle of dimensions
wi dt h x hei ght (in pixels) from unused offscreen memory. gr anul ari ty specifies
that the leftmost edge of the rectangle must lie on some multiple of granul ari -
ty pixels. A granularity of zero means the same thing as a granularity of one - no
alignment preference. A MoveAr eaCal | back can be provided to notify the requester
when the offscreen area is moved. If no MoveAr eaCal | back is supplied then the area
is considered to be immovable. The pri vDat a field will be stored in the manager's
internal structure for that allocated area and will be returned to the requester in
the FBAr ea passed via the MbveAr eaCal | back. An optional RenpveAr eaCal | back is
provided. If the driver provides this it indicates that the area should be allocated
with a lower priority. Such an area may be removed when a higher priority request
(one that doesn't have a RenoveAr eaCal | back) is made. When this function is called,
the driver will have an opportunity to do whatever cleanup it needs to do to deal
with the loss of the area, but it must finish its cleanup before the function exits since
the offscreen memory manager will free the area immediately after.

xf 86Al | ocat ef f screenArea() returns NULL if it was wunable to allocate
the requested area. When no longer needed, areas should be freed with
xf 86FreeC f screenArea().

xf 86Resi zeOX f scr eenAr ea() resizes an existing FBAr ea.
xf 86Resi zef f screenArea() returns TRUE if the resize was successful. If
xf 86Resi zeOf f screenArea() returns FALSE, the original FBArea is left unmodi-
fied. Resizing an area maintains the area's original granul ari ty, devPri vat e, and
MbveAr eaCal | back. xf 86Resi zeOf f scr eenAr ea() has considerably less overhead
than freeing the old area then reallocating the new size, so it should be used when-
ever possible.

The function:

Bool xf86QuerylLargest O fscreenArea(
ScreenPtr pScreen,
int *width, int *height,
int granularity,
i nt preferences,
int priority
)

is provided to query the width and height of the largest single FBArea allocatable
given a particular priority. pref erences can be one of the following to indicate
whether width, height or area should be considered when determining which is the
largest single FBArea available.

FAVOR_AREA THEN W DTH
FAVOR_AREA THEN_HEI GHT
FAVOR W DTH_THEN_AREA
FAVOR_HEl GHT_THEN_AREA

priority is one of the following:

PRI ORI TY_LOW

49

XFree86 DDX Design

Return the largest block available without stealing any-
one else's space. This corresponds to the priority of al-
locating a FBArea when a RenoveAr eaCal | back is pro-
vided.

PRI ORI TY_NORVAL

Return the largest block available if it is acceptable to
steal a lower priority area from someone. This corre-
sponds to the priority of allocating a FBArea without
providing a RenoveAr eaCal | back.

PRI ORI TY_EXTREME

Return the largest block available if all FBAreas that
aren't locked down were expunged from memory first.
This corresponds to any allocation made directly after
a call to xf 86Pur geUnl ockedOf f scr eenAr eas() .

The function:

Bool xf 86PurgeUnl ockedOf f scr eenAr eas(ScreenPtr pScreen);

is provided as an extreme method to free up offscreen memory. This will remove all
removable FBArea allocations.

Initialization of the XFree86 framebuffer manager is done via

Bool xf 86l ni t FBManager (ScreenPtr pScreen, BoxPtr Ful | Box);

Ful | Box represents the area of the framebuffer that the manager is allowed to man-
age. This is typically a box with a width of pScr n->di spl ayW dt h and a height of
as many lines as can be fit within the total video memory, however, the driver can
reserve areas at the extremities by passing a smaller area to the manager.

xf 861 ni t FBManager () must be called before XAA is initialized since XAA uses the
manager for it's pixmap cache.

An alternative function is provided to allow the driver to initialize the framebuffer
manager with a Region rather than a box.

Bool xf 86l ni t FBManager Regi on(ScreenPtr pScreen,
Regi onPtr Ful | Regi on);

xf 861 ni t FBManager Regi on(), unlike xf 861 ni t FBManager (), does not remove the
area used for the visible screen so that area should not be included in the region
passed to the function. xf 861 ni t FBManager Regi on() is useful when non-contiguous
areas are available to be managed, and is required when multiple framebuffers are
stored in video memory (as in the case where an overlay of a different depth is
stored as a second framebuffer in offscreen memory).

50

XFree86 DDX Design

Colormap Handling

A generic colormap handling layer is provided within the XFree86 common layer.
This layer takes care of most of the details, and only requires a function from the
driver that loads the hardware palette when required. To use the colormap layer, a
driver calls the xf 86Handl| eCol or maps() function.

Bool xf86Handl eCol or maps(ScreenPtr pScreen, int nmaxCol ors,
int sigRG@bits, LoadPal etteFuncPtr
Set Over scanFuncPtr set Overscan,
unsi gned int flags);

This function must be called after the default colormap
has been initialised. The pScr n- >gamma field must al-
so be initialised, preferably by calling xf 86Set Ganma() .
maxCol ors is the number of entries in the palette.
si gRGBbi t s is the size in bits of each color component
in the DAC's palette. | oadPal et t e is a driver-provided
function for loading a colormap into the hardware, and
is described below. set Over scan is an optional function
that may be provided when the overscan color is an
index from the standard LUT and when it needs to be
adjusted to keep it as close to black as possible. The
set Over scan function programs the overscan index. It
shouldn't normally be used for depths other than 8. se-
t Over scan should be set to NULL when it isn't needed.
f 1 ags may be set to the following (which may be ORed
together):

CVAP_PALETTED TRUECOLOR the TrueColor visual is
paletted and is just a
special case of Direct-
Color. This flag is only
valid for bpp > 8.

CVAP_RELOAD ON _MODE_SW TCHeload the colormap au-
tomatically after mode
switches. This is use-
ful for when the dri-
ver is resetting the
hardware during mode
switches and corrupting
or erasing the hardware
palette.

CMAP_LOAD EVEN | F_OFFSCREEMload the colormap
even if the screen is
switched out of the
server's VC. The palette
is not reloaded when
the screen is switched
back in, nor after mode

51

| oadPal et t e,

XFree86 DDX Design

switches. This is useful
when the driver needs
to keep track of palette
changes.

The colormap layer normally reloads the palette after
VT enters so it is not necessary for the driver to save
and restore the palette when switching VTs. The driver
must, however, still save the initial palette during serv-
er start up and restore it during server exit.

voi d LoadPal ette(ScrnlnfoPtr pScrn, int nunColors, int *indices,
LOCO *col ors, Visual Ptr pVisual);

LoadPal ette() is a driver-provided function for load-
ing a colormap into hardware. col or s is the array of
RGB values that represent the full colormap. i ndi ces
is a list of index values into the colors array. These in-
dices indicate the entries that need to be updated. num
Col or s is the number of the indices to be updated.

voi d Set Overscan(ScrnlnfoPtr pScrn, int overscan);

Set Over scan() is a driver-provided function for pro-
gramming the over scan index. As described above, it is
normally only appropriate for LUT modes where all col-
ormap entries are available for the display, but where
one of them is also used for the overscan (typically
8bpp for VGA compatible LUTSs). It isn't required in cas-
es where the overscan area is never visible.

DPMS Extension

Support code for the DPMS extension is included in the XFree86 common layer.
This code provides an interface between the main extension code, and a means for
drivers to initialise DPMS when they support it. One function is available to drivers
to do this initialisation, and it is always available, even when the DPMS extension
is not supported by the core server (in which case it returns a failure result).

Bool xf86DPMSInit(ScreenPtr pScreen, DPMSSetProcPtr set, int flags);

This function registers a driver's DPMS level program-
ming function set . It also checks pScr n- >opti ons for
the "dpms" option, and when present marks DPMS
as being enabled for that screen. The set function is
called whenever the DPMS level changes, and is used
to program the requested level. f | ags is currently not
used, and should be 0. If the initialisation fails for any

52

XFree86 DDX Design

reason, including when there is no DPMS support in
the core server, the function returns FALSE.

Drivers that implement DPMS support must provide the following function, that
gets called when the DPMS level is changed:

voi d Chi pDPMSSet (ScrnlnfoPtr pScrn, int level, int flags);

Program the DPMS level specified by | evel . Valid val-
ues of | evel are DPMSMbdeOn, DPMSMbdeSt andby, DPMS-
ModeSuspend, DPMSMbde O f . These values are defined
in "ext ensi ons/ dpns. h".

DGA Extension

Drivers can support the XFree86 Direct Graphics Architecture (DGA) by filling out
a structure of function pointers and a list of modes and passing them to DGAInit.

Bool DCAI nit (ScreenPtr

DGAMbdePt r

[/ ** The DGAMbdeRec **/

typedef struct {

nt

num

Di spl ayMbdePtr node;

unsi
unsi
unsi

nt
nt
nt
nt
nt
nt
nt
nt
nt

nt
nt
nt
nt
nt
nt
nt
nt

fl ags;

i mgeW dt h;

i mageHei ght ;

pi xmapW dt h;

pi xmapHei ght ;

byt esPer Scanl i ne;
byt eOr der;

dept h;

bi t sPer Pi xel ;

gned | ong red_mask;

gned | ong green_mask;

gned | ong bl ue_mask;
Vi ewport W dt h;

vi ewport Hei ght ;

xVi ewport St ep;

yVi ewport St ep;

maxVi ewport X;

maxVi ewport;

vi ewport Fl ags;

of f set;

unsi gned char *address;

nt
nt

reservedl;
reserved?;

} DGAMbdeRec, *DGAMbdePtr;

pScreen, DGAFunctionPtr funcs,
nodes, int nunj;

53

XFree86 DDX Design

num Can be ignored. The DGA DDX will as-
sign these numbers.

node A pointer to the DisplayModeRec for
this mode.

fl ags The following flags are defined and

may be OR'd together:

DGA CONCURRENT _ACCESS Indi-
cates
that the
driver
sup-
ports
concur-
rent
graph-
ics ac-
celera-
tor and
linear
frame-
buffer
access.

DGA FI LL_RECT Indi-

DGA BLI T_RECT cates

DGA BLI T_RECT TRANS that the
driver
sup-
ports
the Fill-
Rect,
BlitRect
or Blit-
Tran-
sRect
func-
tions in
this
mode.

DGA Pl XMAP_AVAI LABLE Indi-
cates
that
Xlib
may be
used on
the
frame-
buffer.
This
flag will
usually

54

XFree86 DDX Design

i mageW dt h i mageHei ght

pi xmapW dt h pi xnmapHei ght

byt esPer Scanl i ne

byt eOr der

depth

bi t sPer Pi xel

red_mask, gr een_nask,
bl ue_nask

vi ewport W dt h, vi ew
port Hei ght

xVi ewport Step yVi ew
port Step

maxVi ewpor t X maxVi ew
portY

vi ewport Fl ags

be set
unless
the dri-
ver
wishes
to pro-
hibit
this for
some
reason.

DGA | NTERLACED Indi-

DGA DOUBLESCAN cates
that
these
are in-
ter-
laced or
double
scan
modes.

These are the dimensions of the linear
framebuffer accessible by the client.

These are the dimensions of the area
of the framebuffer accessible by the
graphics accelerator.

Pitch of the framebuffer in bytes.

Usually the same as pScr n- >i nageBy-
teOrder.

The depth of the framebuffer in this
mode.

The number of bits per pixel in this
mode.

The RGB masks for this mode, if applic-
able.

Dimensions of the visible part of the
framebuffer. Usually node- >HDi spl ay
and node- >VDi spl ay.

The granularity of x and y viewport po-
sitions that the driver supports in this
mode.

The maximum viewport position sup-
ported by the driver in this mode.

The following may be OR'd together:

55

XFree86 DDX Design

DGA FLI P_I MVEDI ATE The driver sup-
ports immedi-
ate viewport
changes.

DGA FLI P_RETRACE The driver sup-
ports viewport
changes at re-

trace.
of f set The offset into the linear framebuffer
that corresponds to pixel (0,0) for this
mode.
addr ess The virtual address of the framebuffer

as mapped by the driver. This is need-
ed when DGA PIXMAP AVAILABLE is
set.

/** The DGAFuncti onRec **/

t ypedef struct {

Bool (*OpenFranebuffer)(
ScrnlnfoPtr pScrn,
char **nane,
unsi gned char **nmem
int *size,
int *offset,
int *extra

voi d (*d oseFranebuffer)(ScrnlnfoPtr pScrn);
Bool (*SetMde)(ScrnlnfoPtr pScrn, DGAMbdePtr pMbde);
void (*SetViewport)(ScrnlnfoPtr pScrn, int x, int y, int flags);
int (*CGetViewport)(ScrnlnfoPtr pScrn);
void (*Sync) (ScrnlnfoPtr);
void (*FillRect)(
ScrnlnfoPtr pScrn,
int x, int y, int w, int h,
unsi gned | ong col or

void (*BlitRect)(
ScrnlnfoPtr pScrn,
int srcx, int srcy,
int w, int h,
int dstx, int dsty

void (*BlitTransRect) (
Scrnl nfoPtr pScrn,
int srcx, int srcy,
int w, int h,
int dstx, int dsty,
unsi gned | ong col or

56

XFree86 DDX Design

} DGAFuncti onRec, *DGAFunctionPtr;

Bool OpenFranebuffer (pScrn, nane, nem size, offset, extra);

OpenFranebuffer() should pass the
client everything it needs to know to be
able to open the framebuffer. These pa-
rameters are OS specific and their mean-
ings are to be interpreted by an OS spe-
cific client library.

name The name of the device to open
or NULL if there is no spe-
cial device to open. A NULL
name tells the client that it
should open whatever device
one would usually open to ac-
cess physical memory.

mem The physical address of the
start of the framebuffer.

si ze The size of the framebuffer in
bytes.

of f set Any offset into the device, if ap-
plicable.

flags Any additional information that
the client may need. Currently,
only the DGA_NEED ROOT flag is
defined.

voi d O oseFranebuffer (pScrn);

Cl oseFranebuffer() merely informs
the driver (if it even cares) that client no
longer needs to access the framebuffer
directly. This function is optional.

Bool Set Mode (pScrn, phbde);

Set Mode() tells the driver to initialize
the mode passed to it. If pMbde is NULL,
then the driver should restore the origi-
nal pre-DGA mode.

void SetViewport (pScrn, x, y, flags);

57

XFree86 DDX Design

Set Vi ewport () tells the driver to make
the upper left-hand corner of the visible
screen correspond to coordinate (X, y)
on the framebuffer. f | ags currently de-
fined are:

DGA _FLI P_I MVEDI ATE The viewport
change should
occur immedi-
ately.

DGA FLI P_RETRACE The viewport
change should
occur at the
vertical retrace,
but this func-
tion should re-
turn sooner if
possible.

The (x, y) locations will be passed as the
client specified them, however, the dri-
ver is expected to round these locations
down to the next supported location
as specified by the xVi ewport St ep and
yVi ewpor t St ep for the current mode.

int GetViewport (pScrn);

Get Vi ewport () gets the current page
flip status. Set bits in the returned int
correspond to viewport change requests
still pending. For instance, set bit zero
if the last SetViewport request is still
pending, bit one if the one before that is
still pending, etc.

voi d Sync (pScrn);

This function should ensure that any
graphics accelerator operations have
finished. This function should not return
until the graphics accelerator is idle.

void FillRect (pScrn, x, y, w, h, color);

This optional function should fill a rec-
tangle w x hlocated at (x, y) in the giv-
en color.

58

XFree86 DDX Design

void BlitRect (pScrn, srcx, srcy, w, h, dstx, dsty);

This optional function should copy an
area w x h located at (srcx, srcy) to
location (dst x, dsty) . This function will
need to handle copy directions as appro-
priate.

void BlitTransRect (pScrn, srcx, srcy, w, h, dstx, dsty, color);

This optional function is the same as
BlitRect except that pixels in the source
corresponding to the color key col or
should be skipped.

The XFree86 X Video Extension (Xv) Device De-
pendent Layer

XFree86 offers the X Video Extension which allows clients to treat video as any an-
other primitive and “Put” video into drawables. By default, the extension reports no
video adaptors as being available since the DDX layer has not been initialized. The
driver can initialize the DDX layer by filling out one or more XF86Vi deoAdapt or Recs
as described later in this document and passing a list of XF86Vi deoAdapt or Pt r
pointers to the following function:

Bool xf86XVScreenlnit(ScreenPtr pScreen,
XF86Vi deoAdapt or Pt r *adaptPtrs,
int num;

After doing this, the extension will report video adaptors as being avail-
able, providing the data in their respective XF86Vi deoAdapt or Recs was valid.
xf 86XVScr eenl nit () copies data from the structure passed to it so the driver may
free it after the initialization. At the moment, the DDX only supports rendering into
Window drawables. Pixmap rendering will be supported after a sufficient survey of
suitable hardware is completed.

The XF86VideoAdaptorRec:

typedef struct {
unsi gned int type;
int flags;
char *nane;
i nt nEncodi ngs;
XF86Vi deoEncodi ngPtr pEncodi ngs;
int nFormats;
XF86Vi deoFor mat Pt r pFor mat s;
int nPorts;

59

XFree86 DDX Design

DevUni on *pPortPrivates;

int nAttributes;

XF86Attri butePtr pAttributes;
i nt nl mages;

XF86I1 magePtr pl mages;

Put Vi deoFuncPtr Put Vi deo;
PutStill FuncPtr PutStill;
Get Vi deoFuncPtr Get Vi deo;
GetStill FuncPtr GetStill;

St opVi deoFuncPtr St opVi deo;

Set Port Attri but eFuncPtr SetPortAttri bute;
CGet Port Attri but eFuncPtr GetPortAttri bute;

Quer yBest Si zeFuncPtr QueryBest Si ze;
Put | mageFuncPtr Put | mage;

Queryl mageAttri butesFuncPtr Queryl mageAttri butes;

} XF86Vi deoAdapt or Rec, *XF86Vi deoAdaptorPtr;

Each adaptor will have its own XF86VideoAdaptorRec. The fields are as follows:

type This can be any of the following flags OR'd together.

XvI nput Mask XvQut put Mask

XvVi deoMask XvSti | | Mask

Xvl mageMask

XvW ndowivask XvPi xmap-

Mask

These refer to the tar-
get drawable and are
similar to a Window's
class. Xvl nput Mask in-
dicates that the adap-
tor can put video
into a drawable.
XvQut put Mask indi-
cates that the adaptor
can get video from a
drawable.

These indicate that
the adaptor supports
video, still or image
primitives respective-
ly.

These indicate the
types of drawables the
adaptor is capable of
rendering into. At the
moment, Pixmap ren-
dering is not support-
ed and the XvPi xmap-
Mask flag is ignored.

flags Currently, the following flags are defined:

VI DEO_NO_CLI PPI NG

This indicates that the
video adaptor does not
support clipping. The
driver will never receive

60

XFree86 DDX Design

nanme

nEncodi ngs pEncodi ngs

VI DEO_| NVERT_CLI PLI ST

VI DEO OVERLAI D_STI LLS

VI DEO_OVERLAI D_| MAGES

VI DEO_CLI P_TO VI EWPORT

The name of the adaptor.

“Put” requests where
less than the entire area
determined by drw x,
drw y, drw wand drw_h
is visible. This flag does
not apply to “Get” re-
quests. Hardware that
is incapable of clipping
“Gets” may punt or get
the extents of the clip-
ping region passed to it.

This indicates that the
video driver requires the
clip list to contain the
regions which are ob-
scured rather than the
regions which are are
visible.

Implementing PutStill
for hardware that does
video as an overlay
can be awkward since
it's unclear how long
to leave the video up
for. When this flag is
set, StopVideo will be
called whenever the des-
tination gets clipped or
moved so that the still
can be left up until then.

Same as
VI DEO_OVERLAI D_STI LLS
but for images.

Indicates that the clip
region passed to the dri-
ver functions should be
clipped to the visible
portion of the screen in
the case where the view-
port is smaller than the
virtual desktop.

The number of encodings the adaptor is capable of
and pointer to the XF86VideoEncodingRec array. The
XF86VideoEncodingRec is described later on. For
drivers that only support Xvimages there should be
an encoding named "XV IMAGE" and the width and
height should specify the maximum size source im-

age supported.

61

XFree86 DDX Design

nFor mat s pFor mat s

nPorts pPortPrivates

NAttri butes pAttributes

nl mages pl mages

Put Vi deo Put Still
GetVideo CetStill

St opVi deo Set Port At -
tribute GetPortAttribute
Quer yBest Si ze Put | mage
Queryl mageAttri butes

The number of formats the adaptor is capable of
and pointer to the XF86VideoFormatRec array. The
XF86VideoFormatRec is described later on.

The number of ports is the number of separate data
streams which the adaptor can handle simultaneous-
ly. If you have more than one port, the adaptor is ex-
pected to be able to render into more than one win-
dow at a time. pPort Pri vat es is an array of pointers
or ints - one for each port. A port's private data will
be passed to the driver any time the port is requested
to do something like put the video or stop the video.
In the case where there may be many ports, this en-
ables the driver to know which port the request is in-
tended for. Most commonly, this will contain a point-
er to the data structure containing information about
the port. In Xv, all ports on a particular adaptor are
expected to be identical in their functionality.

The number of attributes recognized by the adaptor
and a pointer to the array of XF86AttributeRecs. The
XF86AttributeRec is described later on.

The number of XF86ImageRecs supported by
the adaptor and a pointer to the array of
XF86ImageRecs. The XF86ImageRec is described
later on.

These functions define the DDX->driver interface. In
each case, the pointer dat a is passed to the driver.
This is the port private for that port as described
above. All fields are required except under the fol-
lowing conditions:

1. Put Vi deo, Put Sti || and the image routines Put I -
mage and Queryl mageAttri but es are not required
when the adaptor type does not contain Xvl nput -
Mask.

2.Get Videoand Get Sti |l | are not required when the
adaptor type does not contain XvQut put Mask.

3. Get Vi deo and Put Vi deo are not required when the
adaptor type does not contain XvVi deoMask.

4.CGetStill and Put Still are not required when the
adaptor type does not contain XvSti | | Mask.

5. Put | mage and Queryl mageAttri but es are not re-
quired when the adaptor type does not contain
Xvl mageMask.

With the exception of Queryl mageAttri but es, these
functions should return Success if the operation was
completed successfully. They can return XvBadAl | oc

62

XFree86 DDX Design

otherwise. Queryl nageAttri butes returns the size
of the Xvimage queried.

If the VI DEO_NO_CLI PPI NG flag is set, the cl i pBox-
es may be ignored by the driver. C i pBoxes is an X-
Y banded region identical to those used throughout
the server. The clipBoxes represent the visible por-
tions of the area determined by drw x, drw_y, drw_w
and drw_h in the Get/Put function. The boxes are in
screen coordinates, are guaranteed not to overlap
and an empty region will never be passed. If the dri-
ver has specified VI DEO | N\VERT_CLI PLI ST, cl i pBox-
es will indicate the areas of the primitive which are
obscured rather than the areas visible.

typedef int (* PutVideoFuncPtr)(ScrnlnfoPtr pScrn,
short vid_x, short vid_y, short drw x, short drw.y,
short vid w, short vid h, short drw w, short drw h,
Regi onPtr cli pBoxes, pointer data);

This indicates that the driver should take a subsection
vid_w by vid_h at location (vid_x,vid_y) from the
video stream and direct it into the rectangle dr w_w by
drw_h atlocation (drw_x, drw_y) on the screen, scaling
as necessary. Due to the large variations in capabilities
of the various hardware expected to be used with this
extension, it is not expected that all hardware will be
able to do this exactly as described. In that case the
driver should just do “the best it can,” scaling as close-
ly to the target rectangle as it can without rendering
outside of it. In the worst case, the driver can opt to
just not turn on the video.

typedef int (* PutStillFuncPtr)(ScrnlnfoPtr pScrn,
short vid_x, short vid_y, short drw x, short drw.y,
short vid_w, short vid_h, short drw w, short drw_h,
Regi onPtr cli pBoxes, pointer data);

This is same as Put Vi deo except that the driver should
place only one frame from the stream on the screen.

typedef int (* GetVideoFuncPtr)(ScrnlnfoPtr pScrn,
short vid_x, short vid_y, short drw x, short drw.y,
short vid_w, short vid_h, short drww short drw_h,
Regi onPtr cli pBoxes, pointer data);

This is same as Put Vi deo except that the driver gets
video from the screen and outputs it. The driver should
do the best it can to get the requested dimensions cor-

63

XFree86 DDX Design

rect without reading from an area larger than request-
ed.

typedef int (* GetStill FuncPtr)(ScrnlnfoPtr pScrn,
short vid_x, short vid_y, short drw x, short drw.y,
short vid_w, short vid_h, short drww short drw_h,
Regi onPtr cli pBoxes, pointer data);

This is the same as Get Vi deo except that the driver
should place only one frame from the screen into the
output stream.

typedef void (* StopVideoFuncPtr)(ScrnlnfoPtr pScrn,
poi nter data, Bool cleanup);

This indicates the driver should stop displaying the
video. This is used to stop both input and output video.
The cl eanup field indicates that the video is being
stopped because the client requested it to stop or be-
cause the server is exiting the current VT. In that case
the driver should deallocate any offscreen memory ar-
eas (if there are any) being used to put the video to the
screen. If cl eanup is not set, the video is being stopped
temporarily due to clipping or moving of the window,
etc... and video will likely be restarted soon so the dri-
ver should not deallocate any offscreen areas associat-
ed with that port.

typedef int (* SetPortAttributeFuncPtr)(ScrnlnfoPtr pScrn,
Atom attribute, | NT32 val ue, pointer data);

typedef int (* GetPortAttributeFuncPtr)(ScrnlnfoPtr pScrn,
Atom attribute, | NT32 *val ue, pointer data);

A port may have particular attributes such as hue,
saturation, brightness or contrast. Xv clients set and
get these attribute values by sending attribute strings
(Atoms) to the server. Such requests end up at these
driver functions. It is recommended that the driver pro-
vide at least the following attributes mentioned in the
Xv client library docs:

XV_ENCODI NG
XV_HUE
XV_SATURATI ON
XV_BRI GHTNESS
XV_CONTRAST

64

XFree86 DDX Design

but the driver may recognize as many atoms as it wish-
es. If a requested attribute is unknown by the driver it
should return BadMat ch. XV_ENCODI NG is the attribute
intended to let the client specify which video encoding
the particular port should be using (see the descrip-
tion of XF86VideoEncodingRec below). If the request-
ed encoding is unsupported, the driver should return
XvBadEncodi ng. If the value lies outside the advertised
range BadVal ue may be returned. Success should be
returned otherwise.

typedef void (* QueryBestSi zeFuncPtr) (ScrnlnfoPtr pScrn,
Bool notion, short vid w, short vid_h,
short drw w, short drw_h,
unsigned int *p_w, unsigned int *p_h, pointer data);

Quer yBest Si ze provides the client with a way to query
what the destination dimensions would end up being
if they were to request that an area vi d_w by vid_h
from the video stream be scaled to rectangle of drw_w
by dr w_h on the screen. Since it is not expected that all
hardware will be able to get the target dimensions ex-
actly, it is important that the driver provide this func-
tion.

typedef int (* PutlmageFuncPtr)(ScrnlnfoPtr pScrn,
short src_x, short src_y, short drw x, short drw.y,
short src_w, short src_h, short drww, short drw_h,
int image, char *buf, short wi dth, short height,
Bool sync, RegionPtr clipBoxes, pointer data);

This is similar to Put Sti | | except that the source of the
video is not a port but the data stored in a system mem-
ory buffer at buf . The data is in the format indicated
by the i mage descriptor and represents a source of size
wi dt h by hei ght . If sync is TRUE the driver should not
return from this function until it is through reading the
data from buf . Returning when sync is TRUE indicates
that it is safe for the data at buf to be replaced, freed,
or modified.

typedef int (* QuerylnmageAttributesFuncPtr)(ScrnlnfoPtr pScrn,
int inmage, short *wi dth, short *height,
int *pitches, int *offsets);

This function is called to let the driver specify how data
for a particular i rage of size wi dt h by hei ght should

65

XFree86 DDX Design

be stored. Sometimes only the size and corrected width
and height are needed. In that case pi t ches and of f -
sets are NULL. The size of the memory required for
the image is returned by this function. The wi dt h and
hei ght of the requested image can be altered by the
driver to reflect format limitations (such as component
sampling periods that are larger than one). If pi t ches
and of f set s are not NULL, these will be arrays with
as many elements in them as there are planes in the
i mage format. The driver should specify the pitch (in
bytes) of each scanline in the particular plane as well
as the offset to that plane (in bytes) from the beginning
of the image.

The XF86VideoEncodingRec:

typedef struct {

i nt

id;

char *nane;

unsi

gned short wi dth, height;

XvRat i onal Rec rat e;
} XF86Vi deoEncodi ngRec, *XF86Vi deoEncodi ngPtr ;

The XF86VideoEncodingRec specifies what encodings
the adaptor can support. Most of this data is just infor-
mational and for the client's benefit, and is what will be
reported by XvQuer yEncodi ngs. The i d field is expect-
ed to be a unique identifier to allow the client to re-
quest a certain encoding via the XV_ENCODI NGattribute
string.

The XF86VideoFormatRec:

typedef struct {

char

dept h;

short cl ass;
} XF86Vi deoFor nat Rec, *XF86Vi deoFormat Ptr;

This specifies what visuals the video is viewable in.
dept h is the depth of the visual (not bpp). cl ass is
the visual class such as TrueCol or, Direct Col or or
PseudoCol or. Initialization of an adaptor will fail if
none of the visuals on that screen are supported.

The XF86AttributeRec:

typedef struct {

i nt
i nt

fl ags;
m n_val ue;

66

XFree86 DDX Design

i nt max_val ue;
char *nane;
} XF86Attributeli stRec, *XF86AttributeListPtr;

Each adaptor may have an array of these advertising
the attributes for its ports. Currently defined flags are
XvCGet t abl e and XvSett abl e which may be OR'd to-
gether indicating that attribute is “gettable” or “set-
table” by the client. The m n and nax field specify the
valid range for the value. Nane is a text string describ-
ing the attribute by name.

The XF86ImageRec:

typedef struct {

int id;
int type;

i nt byte_order;
char guid[16];

int bits_per_pixel;
int format;
i nt num_pl anes;

/* for R&B formats */

i nt dept h;

unsi gned i nt
unsi gned int green_mask;
unsi gned i nt

red_mask;

bl ue_mask;

/* for YU formats */

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

nt
nt
nt
nt
nt
nt
nt
nt
nt

y_sample_bits;
u_sanple_bits;
v_sanmpl e_bits;
horz_y_peri od;
horz_u_peri od;
horz_v_peri od;
vert _y period;
vert _u_period;
vert _v_period;

char conponent _order[32];
i nt scanline_order;
} XF86l mageRec, *XF86I magePtr ;

XF86ImageRec describes how video source data is laid
out in memory. The fields are as follows:

id

This is a unique descriptor for the
format. It is often good to set this
value to the FOURCC for the for-
mat when applicable.

67

XFree86 DDX Design

type
byt e_order

gui d

bits_per _pi xel

f or mat

num pl anes

depth

red_nmask,
gr een_mask,
bl ue_mask

y_sanple_bits,
u_sanple_bits,
v_sample_bits

horz_y_peri od,
horz_u_peri od,
horz_v_peri od
vert _y period,
vert _u_period,
vert_v_period

conponent _order

scanl i ne_order

This is XvRGB or XvYUV.
This is LSBFi r st or MSBFi r st .

This is the Globally Unique IDen-
tifier for the format. When not ap-
plicable, all characters should be
NULL.

The number of bits taken up (but
not necessarily used) by each pixel.
Note that for some planar formats
which have fractional bits per pixel
(such as IF09) this number may be
rounded down .

This is XvPl anar or XvPacked.

The number of planes in planar for-
mats. This should be set to one for
packed formats.

The significant bits per pixel in
RGB formats (analgous to the
depth of a pixmap format).

The red, green and blue bitmasks
for packed RGB formats.

The y, u and v sample sizes (in bits).

The y, u and v sampling periods in
the horizontal direction.

The y, u and v sampling periods in
the vertical direction.

Uppercase ascii characters repre-
senting the order that samples are
stored within packed formats. For
planar formats this represents the
ordering of the planes. Unused
characters in the 32 byte string
should be set to NULL.

This is XvTopToBott om or XvBot -
tomloTop.

Since some formats (particular some planar YUV for-
mats) may not be completely defined by the parame-

68

XFree86 DDX Design

ters above, the guid, when available, should provide
the most accurate description of the format.

The Loader

This section describes the interfaces to the module loader. The loader interfaces can
be divided into two groups: those that are only available to the XFree86 common
layer, and those that are also available to modules.

Loader Overview

The loader is capable of loading modules in a range of object formats, and knowl-
edge of these formats is built in to the loader. Knowledge of new object formats
can be added to the loader in a straightforward manner. This makes it possible
to provide OS-independent modules (for a given CPU architecture type). In addi-
tion to this, the loader can load modules via the OS-provided dl open(3) service
where available. Such modules are not platform independent, and the semantics of
dl open() on most systems results in significant limitations in the use of modules of
this type. Support for dl open() modules in the loader is primarily for experimental
and development purposes.

Symbols exported by the loader (on behalf of the core X server) to modules are
determined at compile time. Only those symbols explicitly exported are available to
modules. All external symbols of loaded modules are exported to other modules, and
to the core X server. The loader can be requested to check for unresolved symbols
at any time, and the action to be taken for unresolved symbols can be controlled
by the caller of the loader. Typically the caller identifies which symbols can safely
remain unresolved and which cannot.

NOTE: Now that ISO-C allows pointers to functions and pointers to data to have
different internal representations, some of the following interfaces will need to be
revisited.

Semi-private Loader Interface

The following is the semi-private loader interface that is available to the XFree86
common layer.

voi d Loaderlnit(void);

The Loader I ni t() function initialises the loader, and
it must be called once before calling any other loader
functions. This function initialises the tables of export-
ed symbols, and anything else that might need to be
initialised.

voi d Loader Set Pat h(const char *path);

The Loader Set Pat h() function initialises a default
module search path. This must be called if calls to other

69

XFree86 DDX Design

functions are to be made without explicitly specifying
a module search path. The search path pat h must be a
string of one or more comma separated absolute paths.
Modules are expected to be located below these paths,
possibly in subdirectories of these paths.

poi nter LoadMbdul e(const char *nobdul e, const char *path,
const char **subdirlist, const char **patternlist,
poi nter options, const XF86MddReql nfo * nodreq,
int *errmaj, int *errmn);

The LoadMbdul e() function loads the module called
nodul e. The return value is a module handle, and may
be used in future calls to the loader that require a ref-
erence to a loaded module. The module name nodul e is
normally the module's canonical name, which doesn't
contain any directory path information, or any object/li-
brary file prefixes of suffixes. Currently a full pathname
and/or filename is also accepted. This might change.
The other parameters are:

pat h An optional comma-separated list of
module search paths. When NULL, the
default search path is used.

subdirlist An optional NULL terminated list of sub-
directories to search. When NULL, the
default built-in list is used (refer to
st dSubdi rs in | oadnod. ¢). The default
list is also substituted for entries in sub-
dirlist with the value DEFAULT LI ST.
This makes is possible to augment the
default list instead of replacing it. Sub-
dir elements must be relative, and must
not contain ". . ". If any violate this re-
quirement, the load fails.

patternlist An optional NULL terminated list of
POSIX regular expressions used to con-
nect module filenames with canoni-
cal module names. Each regex should
contain exactly one subexpression that
corresponds to the canonical module
name. When NULL, the default built-in
list is used (refer to stdPatterns in
| oadnod. c¢). The default list is also sub-
stituted for entries in pat t ernl i st with
the value DEFAULT_LI ST. This makes it
possible to augment the default list in-
stead of replacing it.

opti ons An optional parameter that is passed
to the newly loaded module's Set up-

70

XFree86 DDX Design

Proc function (if it has one). This ar-
gument is normally a NULL terminated
list of Options, and must be interpreted
that way by modules loaded directly by
the XFree86 common layer. However, it
may be used for application-specific pa-
rameter passing in other situations.

When loading “external” modules (mod-
ules that don't have the standard entry
point, for example a special shared li-
brary) the options parameter can be set
to EXTERN MODULE to tell the loader not
to reject the module when it doesn't find
the standard entry point.

nmodr eq An optional XF86ModReqInfo* contain-
ing version/ABI/vendor information to
requirements to check the newly loaded
module against. The main purpose of
this is to allow the loader to verify that
a module of the correct type/version be-
fore running its Set upPr oc function.

The XF86MbdReql nf o struct is defined
as follows:

typedef struct {

CARD8 maj orversion; /* MAJOR_UNSPEC */
CARD3 m norversion; /* M NOR_UNSPEC */
CARD16 pat chl evel ; [* PATCH_UNSPEC */
const char * abicl ass; /* ABI _CLASS NONE */
CARD32 abi ver si on; /* ABI _VERS_UNSPEC */

const char * nodul ecl ass; /* MOD_CLASS NONE */
} XF86MddReql nf o;

The information here is compared
against the equivalent information in
the module's XF86ModuleVersionInfo
record (which is described below). The
values in comments above indicate
“don't care” settings for each of the
fields. The comparisons made are as fol-
lows:

maj orver si on Must match the
module's majorversion
exactly.

m norversion The module's minor
version must be no
less than this wvalue.
This comparison is only

71

XFree86 DDX Design

made if maj orversi on
is specified and match-
es.

pat chl evel The module's patchlev-
el must be no less than
this value. This com-
parison is only made if
ni nor ver si on is speci-
fied and matches.

abi cl ass String must match
the module's abiclass
string.

abi ver si on Must be con-
sistent with the

module's abiversion
(major equal, minor no
older).

nmodul ecl ass String must match the
module's moduleclass
string.

errngj An optional pointer to a variable hold-
ing the major part or the error code.
When provided, *errmmj is filled in
when LoadModul e() fails.

errmn Like errmaj , but for the minor part of
the error code.

voi d Unl oadModul e(poi nter nod);

This function unloads the module referred to by the
handle mod. All child modules are also unloaded recur-
sively. This function must not be used to directly unload
modules that are child modules (i.e., those that have
been loaded with the LoadSubMbodul e() described be-
low).

Module Requirements

Modules must provide information about themselves to the loader, and may option-
ally provide entry points for "setup" and "teardown" functions (those two functions
are referred to here as Set upPr oc and Tear DownPr oc).

The module information is contained in the XF86ModuleVersionInfo struct, which
is defined as follows:

typedef struct {

72

XFree86 DDX Design

const char
const char
CARD32
CARD32
CARD32
CARD8
CARD8
CARD16
const char
CARD32
const char
CARD32

* modnane; /* nane of nodule, e.g. "foo" */

* vendor; /* vendor specific string */
nmodi nfol; /* constant MODI NFOSTRINGL/ 2 to find */
nodi nfo2; /* infoarea with a binary editor/sign too
xf 86version; [/* contains XF86_VERSI ON CURRENT */
maj orversion; /* nodul e-specific major version */
m norversion; /* nodul e-specific mnor version */
pat chl evel ; /* nodul e-specific patch |evel */

* abi cl ass; /* ABI class that the nodul e uses */
abi ver si on; /* ABI version */

* nodul ecl ass; /* nodul e class */

checksun{4]; /* contains a digital
/* version info structure */

} XF86Mbdul eVer si onl nf o;

The fields are used as follows:

nodname

vendor

nmodi nfol

nmodi nfo2

xf 86ver si on

maj or ver si on

m nor ver si on

pat chl evel

abi cl ass

The module's name. This field is currently only for informational
purposes, but the loader may be modified in future to require it to
match the module's canonical name.

The module vendor. This field is for informational purposes only.

This field holds the first part of a signature that can be used to
locate this structure in the binary. It should always be initialised to
MODI NFOSTRI NGL.

This field holds the second part of a signature that can be used to
locate this structure in the binary. It should always be initialised to
MODI NFOSTRI NG2.

The XFree86 version against which the module was compiled.
This is mostly for informational/diagnostic purposes. It should
be initialised to XF86_ VERSI ON CURRENT, which is defined in
xf 86Ver si on. h.

The module-specific major version. For modules where this version
is used for more than simply informational purposes, the major ver-
sion should only change (be incremented) when ABI incompatibili-
ties are introduced, or ABI components are removed.

The module-specific minor version. For modules where this version
is used for more than simply informational purposes, the minor ver-
sion should only change (be incremented) when ABI additions are
made in a backward compatible way. It should be reset to zero when
the major version is increased.

The module-specific patch level. The patch level should increase
with new revisions of the module where there are no ABI changes,
and it should be reset to zero when the minor version is increased.

The ABI class that the module requires. The class is specified as a
string for easy extensibility. It should indicate which (if any) of the
X server's built-in ABI classes that the module relies on, or a third-
party ABI if appropriate. Built-in ABI classes currently defined are:

73

signature of the */

*/

XFree86 DDX Design

abi ver si on

nodul ecl ass

checksum

ABI CLASS NONE no class

ABI _CLASS ANSI C only requires the ANSI C interfaces
ABI CLASS VI DEODRV requires the video driver ABI

ABI _CLASS_XI NPUT requires the XInput driver ABI

ABI _CLASS EXTENSI ON requires the extension module ABI
ABI CLASS FONT requires the font module ABI

The version of abiclass that the module requires. The version con-
sists of major and minor components. The major version must
match and the minor version must be no newer than that provided
by the server or parent module. Version identifiers for the built-in
classes currently defined are:

ABI _ANSI C_VERSI ON

ABI _VI DECDRV_VERSI ON
ABI _XI NPUT_VERSI ON
ABI _EXTENSI ON_VERS| ON
ABl _FONT_VERS| ON

This is similar to the abiclass field, except that it defines the type of
module rather than the ABI it requires. For example, although all
video drivers require the video driver ABI, not all modules that re-
quire the video driver ABI are video drivers. This distinction can be
made with the moduleclass. Currently pre-defined module classes
are:

MOD_CLASS_NONE
MOD_CLASS_VI DECDRV
MOD_CLASS_XI NPUT
MOD_CLASS_FONT
MOD_CLASS_EXTENSI ON

Not currently used.

The module version information, and the optional Set upPr oc and Tear DownPr oc en-
try points are found by the loader by locating a data object in the module called
"modnameModuleData", where "modname" is the canonical name of the module.
Modules must contain such a data object, and it must be declared with global scope,
be compile-time initialised, and is of the following type:

typedef struct {

XF86Modul eVer si onl nfo * Vers;
Modul eSet upPr oc set up;
Modul eTear DownPr oc t ear down;

} XF86Mbdul eDat a;

74

XFree86 DDX Design

The vers parameter must be initialised to a pointer to a correctly initialised
XF86ModuleVersionInfo struct. The other two parameter are optional, and should
be initialised to NULL when not required. The other parameters are defined as

t ypedef pointer (*Modul eSetupProc)(pointer, pointer, int *, int *);
typedef void (*Modul eTear DownProc) (poi nter);

poi nter SetupProc(poi nter nodul e, pointer options,
int *errmaj, int *errmn);

When defined, this function is called by the loader af-
ter successfully loading a module. module is a handle
for the newly loaded module, and maybe used by the
Set upPr oc if it calls other loader functions that require
a reference to it. The remaining arguments are those
that were passed to the LoadMbdul e() (or LoadSub-
Modul e()), and are described above. When the Set up-
Pr oc is successful it must return a non-NULL value. The
loader checks this, and if it is NULL it unloads the mod-
ule and reports the failure to the caller of LoadMod-
ul e() . If the Set upPr oc does things that need to be un-
done when the module is unloaded, it should define a
Tear DownPr oc, and return a pointer that the Tear Down-
Pr oc can use to undo what has been done.

When a module is loaded multiple times, the Set upPr oc
is called once for each time it is loaded.

voi d Tear DownPr oc(poi nter tear DownDat a) ;

When defined, this function is called when the loader
unloads a module. The t ear DownDat a parameter is the
return value of the Set upProc() that was called when
the module was loaded. The purpose of this function is
to clean up before the module is unloaded (for example,
by freeing allocated resources).

Public Loader Interface

The following is the Loader interface that is available to any part of the server, and
may also be used from within modules.

poi nt er LoadSubMdul e(poi nter parent, const char *nopdul e,
const char **subdirlist, const char **patternlist,
poi nter options, const XF86MddReqgl nfo * nodreq,
int *errmaj, int *errmn);

75

XFree86 DDX Design

This function is like the LoadMbdul e() function de-
scribed above, except that the module loaded is regis-
tered as a child of the calling module. The par ent pa-
rameter is the calling module's handle. Modules loaded
with this function are automatically unloaded when the
parent module is unloaded. The other difference is that
the path parameter may not be specified. The module
search path used for modules loaded with this func-
tion is the default search path as initialised with Load-
er Set Pat h() .

voi d Unl oadSubModul e(poi nt er nodul e);

This function unloads the module with handle nodul e.
If that module itself has children, they are also un-
loaded. It is like Unl oadMbdul e(), except that it is safe
to use for unloading child modules.

poi nter Loader Synmbol (const char *synbol);

This function returns the address of the symbol with
name synbol . This may be used to locate a module en-
try point with a known name.

char **LoaderlistDirs(const char **subdirlist,
const char **patternlist);

This function returns a NULL terminated list of canon-
ical modules names for modules found in the default
module search path. The subdi rli st and patternli st
parameters are as described above, and can be used
to control the locations and names that are searched.
If no modules are found, the return value is NULL.
The returned list should be freed by calling Loader -
FreeDirLi st () when it is no longer needed.

voi d Loader FreeDirList(char **list);

This function frees a module list created by Load-
erlistDirs().

voi d Loader ReqSynii sts(const char **list0, ...);

This function allows the registration of required sym-
bols with the loader. It is normally used by a caller
of LoadSubModul e() . If any symbols registered in this

76

XFree86 DDX Design

way are found to be unresolved when Loader CheckUn-
resol ved() is called then Loader CheckUnresol ved()
will report a failure. The function takes one or more
NULL terminated lists of symbols. The end of the argu-
ment list is indicated by a NULL argument.

voi d Loader ReqSynbol s(const char *synD, ...);

This function is like Loader ReqSynlLi st s() except that
its arguments are symbols rather than lists of symbols.
This function is more convenient when single functions
are to be registered, especially when the single func-
tion might depend on runtime factors. The end of the
argument list is indicated by a NULL argument.

voi d Loader Ref Synii sts(const char **list0, ...);

This function allows the registration of possibly unre-
solved symbols with the loader. When Loader CheckUn-
resol ved() is run it won't generate warnings for sym-
bols registered in this way unless they were also reg-
istered as required symbols. The function takes one or
more NULL terminated lists of symbols. The end of the
argument list is indicated by a NULL argument.

voi d Loader Ref Synbol s(const char *synD, ...);

This function is like Loader Ref Synii st s() except that
its arguments are symbols rather than lists of symbols.
This function is more convenient when single functions
are to be registered, especially when the single func-
tion might depend on runtime factors. The end of the
argument list is indicated by a NULL argument.

i nt Loader CheckUnresol ved(int del ayfl ag);

This function checks for unresolved symbols. It gen-
erates warnings for unresolved symbols that have not
been registered with Loader Ref Synii st s(), and maps
them to a dummy function. This behaviour may change
in future. If unresolved symbols are found that have
been registered with Loader ReqSynLi st s() or Load-
er ReqSynbol s() then this function returns a non-zero
value. If none of these symbols are unresolved the re-
turn value is zero, indicating success.

The del ayf| ag parameter should normally be set to
LD RESOLV_| FDONE.

77

XFree86 DDX Design

Loader Err or Msg(const char *name, const char *nodnane,
int errmaj, int errmn);

This function prints an error message that includes the
text “Failed to load module”, the module name nod-
nanme, a message specific to the errmaj value, and the
value if errmi n. If name is non-NULL, it is printed as an
identifying prefix to the message (followed by a “:”).

Special Registration Functions

The loader contains some functions for registering some classes of modules. These
may be moved out of the loader at some point.

voi d LoadExt ensi on(Ext ensi onModul e *ext);

This registers the entry points for the extension identi-
fied by ext . The ExtensionModule struct is defined as:

typedef struct {

I ni t Ext ensi on i ni t Func;
char * name;

Bool *di sabl ePtr;
I ni t Ext ensi on set upFunc;

} Extensi onModul e;

voi d LoadFont (Font Mbdul e *font);

This registers the entry points for the font rasteriser
module identified by f ont. The FontModule struct is
defined as:

t ypedef struct {

I ni t Font i ni t Func;
char * name;
poi nt er nodul e;

} Font Mbdul e;

Helper Functions

This section describe “helper” functions that video driver might find useful. While
video drivers are not required to use any of these to be considered “compliant”,
the use of appropriate helpers is strongly encouraged to improve the consistency
of driver behaviour.

78

XFree86 DDX Design

Functions for printing messages

ErrorF(const char *format, ...);

This is the basic function for writing to the error log
(typically stderr and/or a log file). Video drivers should
usually avoid using this directly in favour of the more
specialised functions described below. This function is
useful for printing messages while debugging a driver.

Fat al Error(const char *format, ...);

This prints a message and causes the Xserver to abort.
It should rarely be used within a video driver, as most
error conditions should be flagged by the return values
of the driver functions. This allows the higher layers to
decide how to proceed. In rare cases, this can be used
within a driver if a fatal unexpected condition is found.

xf 86Error F(const char *format, ...);

This is like Error F(), except that the message is only
printed when the Xserver's verbosity level is set to the
default (1) or higher. It means that the messages are
not printed when the server is started with the - qui -
et flag. Typically this function would only be used for
continuing messages started with one of the more spe-
cialised functions described below.

xf 86Error FVerb(int verb, const char *format, ...);

Like xf 86Err or F(), except the minimum verbosity lev-
el for which the message is to be printed is given explic-
itly. Passing a ver b value of zero means the message is
always printed. A value higher than 1 can be used for
information would normally not be needed, but which
might be useful when diagnosing problems.

xf 86Msg(MessageType type, const char *format, ...);

This is like xf 86Error F(), except that the message
is prefixed with a marker determined by the value of
t ype. The marker is used to indicate the type of mes-
sage (warning, error, probed value, config value, etc).
Note the xf 86Ver bose value is ignored for messages of
type X _ERROR.

79

XFree86 DDX Design

The marker values are:

X_PROBED Value was probed.

X_CONFI G Value was given in the config
file.

X _DEFAULT Value is a default.

X_CMDLI NE Value was given on the command
line.

X_NOTI CE Notice.

X_ERROR Error message.

X_WARNI NG Warning message.

X_I NFO Informational message.

X_NONE No prefix.

X_NOT_| MPLEMENTED The message relates to function-
ality that is not yetimplemented.

xf 86MsgVer b(MessageType type, int verb, const char *format,

Like xf 86Msg(), but with the verbosity level given ex-
plicitly.

xf 86Dr vMsg(i nt scrnlndex, MessageType type, const char *format,

This is like xf 86Msg() except that the driver's name
(the name field of the ScrnInfoRec) followed by the
scrnl ndex in parentheses is printed following the pre-
fix. This should be used by video drivers in most cases
as it clearly indicates which driver/screen the message
is for. If scrnl ndex is negative, this function behaves
exactly like xf 86Msg() .

NOTE: This function can only be used after the Scrnln-
foRec and its nane field have been allocated. Normally,
this means that it can not be used before the END of
the Chi pProbe() function. Prior to that, use xf 86Msg(),
providing the driver's name explicitly. No screen num-
ber can be supplied at that point.

xf 86Dr vMsgVer b(i nt scrnl ndex, MessageType type, int verb,
const char *format, ...);

Like xf 86Dr visg(), but with the verbosity level given
explicitly.

80

XFree86 DDX Design

Functions for setting values based on command line and
config file

Bool xf86Set Dept hBpp(ScrnlnfoPtr scrp, int depth, int bpp,

int fbbpp, int depth24flags);

This function sets the dept h, pi xmapBPP and bi t sPer -
Pi xel fields of the ScrnInfoRec. It also determines the
defaults for display-wide attributes and pixmap for-
mats the screen will support, and finds the Display
subsection that matches the depth/bpp. This function
should normally be called very early from the Chi p-
Prel nit() function.

It requires that the conf Scr een field of the ScrnInfoRec
be initialised prior to calling it. This is done by the
XFree86 common layer prior to calling Chi pPrel ni t ().

The parameters passed are:

dept h driver's preferred default depth if no
other is given. If zero, use the overall
server default.

bpp Same, but for the pixmap bpp.
f bbpp Same, but for the framebuffer bpp.

dept h24f |l ags Flags that indicate the level of
24/32bpp support and whether con-
version between different framebuffer
and pixmap formats is supported. The
flags for this argument are defined
as follows, and multiple flags may be
ORed together:

NoDept h24Suppor t No depth 24
formats sup-
ported

Support 24bppFb 24bpp
framebuffer
supported

Suppor t 32bppFb 32bpp
framebuffer
supported

Suppor t Convert 24t 032 Can con-
vert 24bpp
pixmap to
32bpp fb

81

XFree86 DDX Design

Support Convert 32t 024 Can con-
vert 32bpp
pixmap to
24bpp fb

For ceConvert 24t 032 Force 24bpp
pixmap to
32bpp fb
conversion

For ceConvert 32t 024 Force 32bpp
pixmap to
24bpp fb
conversion

It uses the command line, config file, and default val-
uesin the correct order of precedence to determine the
depth and bpp values. It is up to the driver to check the
results to see that it supports them. If not the Chi p-
Prel ni t () function should return FALSE.

If only one of depth/bpp is given, the other is set to a
reasonable (and consistent) default.

If a driver finds that the initial dept h24f | ags it uses
later results in a fb format that requires more video
memory than is available it may call this function a sec-
ond time with a different dept h24f | ags setting.

On success, the return value is TRUE. On failure it prints
an error message and returns FALSE.

The following fields of the ScrninfoRec are initialised
by this function:

depth, bitsPerPixel, display, im
ageByt eOr der, bi t mapScanl i nePad,
bi t mapScanl i neUni t, bitmapBit O der,
nunfor mat s, format s, f bFor mat .

voi d xf86Pri nt Dept hBpp(scrnlnfoPtr scrp);

This function can be used to print out the depth and
bpp settings. It should be called after the final call to
xf 86Set Dept hBpp() .

Bool xf86Set Wi ght(ScrnlnfoPtr scrp, rgb weight, rgb mask);

This function sets the wei ght, mask, of f set and r gb-
Bi t s fields of the ScrninfoRec. It would normally be
called fairly early in the Chi pPrel nit () function for
depths > 8bpp.

82

XFree86 DDX Design

It requires that the depth and di spl ay fields of the
ScrnInfoRec be initialised prior to calling it.

The parameters passed are:

wei ght driver's preferred default weight if no other is
given. If zero, use the overall server default.

mask Same, but for mask.

It uses the command line, config file, and default val-
ues in the correct order of precedence to determine
the weight value. It derives the mask and offset values
from the weight and the defaults. It is up to the driver
to check the results to see that it supports them. If not
the Chi pPrel nit() function should return FALSE.

On success, this function prints a message showing the
weight values selected, and returns TRUE.

On failure it prints an error message and returns
FALSE.

The following fields of the ScrninfoRec are initialised
by this function:

wei ght , mask, of f set .

Bool xf86Set DefaultVisual (ScrnlnfoPtr scrp, int visual);

This function sets the defaul tVisual field of the
ScrnInfoRec. It would normally be called fairly early
from the Chi pPrel nit() function.

It requires that the depth and di spl ay fields of the
ScrnInfoRec be initialised prior to calling it.

The parameters passed are:

vi sual driver's preferred default visual if no other is
given. If - 1, use the overall server default.

It uses the command line, config file, and default values
in the correct order of precedence to determine the de-
fault visual value. It is up to the driver to check the re-
sult to see that it supports it. If not the Chi pPrel nit ()
function should return FALSE.

On success, this function prints a message showing the
default visual selected, and returns TRUE.

On failure it prints an error message and returns
FALSE.

83

XFree86 DDX Design

Bool xf86Set Gamma(Scrnl nfoPtr scrp, Gamma ganmg);

This function sets the ganma field of the ScrnlnfoRec.
It would normally be called fairly early from the Chi p-
Prel ni t () function in cases where the driver supports
gamma correction.

It requires that the noni t or field of the ScrnInfoRec be
initialised prior to calling it.

The parameters passed are:

gamma driver's preferred default gamma if no other is
given. If zero (< 0. 01), use the overall server
default.

It uses the command line, config file, and default val-
ues in the correct order of precedence to determine the
gamma value. It is up to the driver to check the results
to see that it supports them. If not the Chi pPrel nit ()
function should return FALSE.

On success, this function prints a message showing the
gamma value selected, and returns TRUE.

On failure it prints an error message and returns
FALSE.

voi d xf86Set Dpi (Scrnl nfoPtr pScrn, int x, int y);

This function sets the xDpi and yDpi fields of the
ScrnInfoRec. The driver can specify preferred defaults
by setting x and y to non-zero values. The - dpi com-
mand line option overrides all other settings. Other-
wise, if the DisplaySize entry is present in the screen's
Monitor config file section, it is used together with the
virtual size to calculate the dpi values. This function
should be called after all the mode resolution has been
done.

voi d xf86Set Bl ackWi t ePi xel s(Scrnl nfoPtr pScrn);

This functions sets the bl ackPi xel and whi t ePi xel
fields of the ScrnInfoRec according to whether or not
the - fl i pPi xel s command line options is present.

const char *xf86Get Vi sual Nane(int visual);

Returns a printable string with the visual name match-
ing the numerical visual class provided. If the value

84

XFree86 DDX Design

is outside the range of valid visual classes, NULL is re-
turned.

Primary Mode functions

The primary mode helper functions are those which would normally be used by a
driver, unless it has unusual requirements which cannot be catered for the by the
helpers.

i nt xf86ValidateMdes(ScrnlnfoPtr scrp, D splayMdePtr avail Modes,
char **npdeNanmes, C ockRangePtr cl ockRanges,
int *linePitches, int mnPitch, int maxPitch,
int pitchlnc, int mnHeight, int maxHei ght,
int virtual X, int virtual,
unsi gned | ong apertureSize,

LookupModeFl ags strategy);

This function basically selects the set of modes to use
based on those available and the various constraints. It
also sets some other related parameters. It is normally
called near the end of the Chi pPrel nit () function.

The parameters passed to the function are:

avai | Modes List of modes available for the monitor.
nodeNanes List of mode names that the screen is
requesting.

cl ockRanges A list of clock ranges allowed by the
driver. Each range includes whether
interlaced or multiscan modes are sup-
ported for that range. See below for
more on cl ockRanges.

l'i nePitches List of line pitches supported by the
driver. This is optional and should be
NULL when not used.

m nPitch Minimum line pitch supported by the
driver. This must be supplied when
I'i nePitches is NULL, and is ignored
otherwise.

maxPi t ch Maximum line pitch supported by the
driver. This is required when mi nPi t ch
is required.

pi t chl nc Granularity of horizontal pitch values
as supported by the chipset. This is ex-
pressed in bits. This must be supplied.

m nHei ght minimum virtual height allowed. If ze-
ro, no limit is imposed.

85

XFree86 DDX Design

maxHei ght

vi rtual X

virtual Y

apertureSi ze

strat egy

maximum virtual height allowed. If ze-
ro, no limit is imposed.

If greater than zero, this is the virtu-
al width value that will be used. Oth-
erwise, the virtual width is chosen to
be the smallest that can accommodate
the modes selected.

If greater than zero, this is the virtu-
al height value that will be used. Oth-
erwise, the virtual height is chosen to
be the smallest that can accommodate
the modes selected.

The size (in bytes) of the aperture used
to access video memory.

The strategy to use when choosing
from multiple modes with the same
name. The options are:

LOOKUP_DEFAULT ?7??

LOOKUP_BEST _REFRESH mode with
best refresh
rate

LOOKUP_CLOSEST _CLOCK mode with
closest
matching
clock

first wusable
mode in list
The following options can also be com-
bined (OR'ed) with one of the above:

LOOKUP_LI ST_ORDER

Allow
halved
clocks

LOOKUP_CLKDI V2

LOOKUP_OPTI ONAL_TOLERANCESAllow
missing
hori-
zontal
sync
and/or
vertical
refresh
ranges
in the
xorg.conf
Moni-
tor sec-
tion

86

XFree86 DDX Design

LOOKUP_COPTI ONAL_TOLERANCES should
only be specified when the driver can
ensure all modes it generates can sync
on, or at least not damage, the monitor
or digital flat panel. Horizontal sync
and/or vertical refresh ranges speci-
fied by the user will still be honoured
(and acted upon).

This function requires that the following fields of the
ScrnInfoRec are initialised prior to calling it:

cl ock[]

numC ocks

progd ock

noni t or

f dFor nat

vi deoRam
maxHval ue
maxVVal ue

xl nc

List of discrete clocks (when non-pro-
grammable)

Number of discrete clocks (when non-pro-
grammable)

Whether the clock is programmable or not

Pointer to the applicable xorg.conf moni-
tor section

Format of the screen buffer

total video memory size (in bytes)
Maximum horizontal timing value allowed
Maximum vertical timing value allowed

Horizontal timing increment in pixels (de-
faults to 8)

This function fills in the following ScrnInfoRec fields:

nodePool

nodes

vi rtual X

virtual Y

A subset of the modes available to the
monitor which are compatible with the
driver.

One mode entry for each of the re-
quested modes, with the status field of
each filled in to indicate if the mode
has been accepted or not. This list of
modes is a circular list.

The resulting virtual width.

The resulting virtual height.

di spl ayW dt h The resulting line pitch.

virtual From Where the virtual size was determined

from.

The first stage of this function checks that the vi rt u-
al Xand vi rt ual Yvalues supplied (if greater than zero)
are consistent with the line pitch and naxHei ght limi-

87

XFree86 DDX Design

tations. If not, an error message is printed, and the re-
turn value is - 1.

The second stage sets up the mode pool, eliminating
immediately any modes that exceed the driver's line
pitch limits, and also the virtual width and height lim-
its (if greater than zero). For each mode removed an
informational message is printed at verbosity level 2.
If the mode pool ends up being empty, a warning mes-
sage is printed, and the return value is 0.

The final stage is to lookup each mode name, and fill
in the remaining parameters. If an error condition is
encountered, a message is printed, and the return val-
ue is - 1. Otherwise, the return value is the number of
valid modes found (0 if none are found).

Even if the supplied mode names include duplicates,
no two names will ever match the same mode. Further-
more, if the supplied mode names do not yield a valid
mode (including the case where no names are passed
at all), the function will continue looking through the
mode pool until it finds a mode that survives all checks,
or until the mode pool is exhausted.

A message is only printed by this function when a fun-
damental problem is found. It is intended that this func-
tion may be called more than once if there is more than
one set of constraints that the driver can work within.

If this function returns - 1, the Chi pPrel ni t () function
should return FALSE.

cl ockRanges is a linked list of clock ranges allowed by
the driver. If a mode doesn't fit in any of the defined
cl ockRanges, it is rejected. The first cl ockRange that
matches all requirements is used. This structure needs
to be initialized to NULL when allocated.

cl ockRanges contains the following fields:

m nCl ock, nmax- The lower and upper mode clock

C ock bounds for which the rest of
the clockRange parameters ap-
ply. Since these are the mode
clocks, they are not scaled with
the A ockMul Fact or and Cl ock-
Di vFactor. It is up to the dri-
ver to adjust these values if they
depend on the clock scaling fac-
tors.

cl ockl ndex (not used yet) - 1 for programma-
ble clocks

interlaceAl |l owed TRUE if interlacing is allowed for
this range

88

XFree86 DDX Design

doubl eScanAl | owed TRUE if doublescan or multiscan

Cl ockMul Fact or,
Cl ockDi vFact or

Pri vFl ags

is allowed for this range

Scaling factors that are applied
to the mode clocks ONLY before
selecting a clock index (when
there is no programmable clock)
or a Synt hd ock value. This is
useful for drivers that support
pixel multiplexing or that need
to scale the clocks because of
hardware restrictions (like send-
ing 24bpp data to an 8 bit RAM-
DAC using a tripled clock).

Note that these parameters de-
scribe what must be done to the
mode clock to achieve the data
transport clock between graph-
ics controller and RAMDAC. For
example for 2: 1 pixel multiplex-
ing, two pixels are sent to the
RAMDAC on each clock. This al-
lows the RAMDAC clock to be
half of the actual pixel clock.
Hence, d ockMuil Factor=1 and
Cl ockDi vFact or =2. This means
that the clock used for clock se-
lection (ie, determining the cor-
rect clock index from the list
of discrete clocks) or for the
Synt hd ock field in case of a
programmable clock is: (nbde-
>Cl ock * d ockMil Factor) /
Cl ockDi vFactor.

This field is copied into the
node- >Pri vFl ags field when
this cl ockRange is selected by
xf 86Val i dat eMbdes() . It allows
the driver to find out what clock
range was selected, so it knows
it needs to set up pixel multiplex-
ing or any other range-depen-
dent feature. This field is pure-
ly driver-defined: it may contain
flag bits, an index or anything
else (as long as it is an | NT).

Note that the node- >Synt hd ock field is always filled
in by xf 86Val i dat eMbdes() : it will contain the “data
transport clock”, which is the clock that will have to be
programmed in the chip when it has a programmable
clock, or the clock that will be picked from the clocks
list when it is not a programmable one. Thus:

89

XFree86 DDX Design

node- >Synt hCl ock

(rmode->C ock * O ockMul Factor) / d ockDi vFact or

voi d xf 86PruneDriver Modes(Scrnl nfoPtr scrp);

This function deletes modes in the modes field of the
ScrnInfoRec that have been marked as invalid. This is
normally run after having run xf 86Val i dat eMbdes()
for the last time. For each mode that is deleted, a warn-
ing message is printed out indicating the reason for it

being deleted.

voi d xf86Set Crt cFor Modes(Scrnl nfoPtr scrp, int adjustFlags);

This function fills in the Crtc* fields for all the modes
in the nodes field of the ScrninfoRec. The adj ust Fl ags
parameter determines how the vertical CRTC values
are scaled for interlaced modes. They are halved if it
is | NTERLACE_HALVE V. The vertical CRTC values are
doubled for doublescan modes, and are further multi-

plied by the VScan value.

This function is normally called after calling

xf 86Pr uneDri ver Modes() .

voi d xf86Pri nt Modes(ScrnlnfoPtr scrp);

This function prints out the virtual size setting, and
the line pitch being used. It also prints out two lines
for each mode being used. The first line includes the
mode's pixel clock, horizontal sync rate, refresh rate,
and whether it is interlaced, doublescanned and/or
multi-scanned. The second line is the mode's Modeline.

This function is normally called after -calling
xf 86Set Crt cFor Modes() .

Secondary Mode functions

The secondary mode helper functions are functions which are normally used by
the primary mode helper functions, and which are not normally called directly by a
driver. If a driver has unusual requirements and needs to do its own mode validation,
it might be able to make use of some of these secondary mode helper functions.

i nt xf86Get Near est Cl ock(ScrnlnfoPtr scrp, int freq, Bool allowD v2,
int *divider);

90

XFree86 DDX Design

This function returns the index of the closest clock to
the frequency f r eq given (in kHz). It assumes that the
number of clocks is greater than zero. It requires that
the nunC ocks and cl ock fields of the ScrnInfoRec are
initialised. The al | owDi v2 field determines if the clocks
can be halved. The *di vi der return value indicates
whether clock division is used when determining the
clock returned.

This function is only for non-programmable clocks.

const char *xf86MddeSt at usToStri ng(MbdeSt at us status);

This function converts the st at us value to a descriptive
printable string.

ModeSt at us xf 86LookupMode(Scrnl nfoPtr scrp, Displ ayMdePtr nodep,
O ockRangePtr cl ockRanges, LookupMbdeFl ags strategy);

This function takes a pointer to a mode with the name
filled in, and looks for a mode in the nodePool list which
matches. The parameters of the matching mode are
filled in to * nodep. The cl ockRanges and st r at egy pa-
rameters are as for the xf 86Val i dat eMbdes() function
above.

This function requires the nodePool, cl ock[], num
Cl ocks and progd ock fields of the ScrnInfoRec to be
initialised before being called.

The return value is MODE_OK if a mode was found. Oth-
erwise it indicates why a matching mode could not be
found.

ModeSt at us xf 861 niti al CheckModeFor Dri ver (Scrnl nfoPtr scrp,
Di spl ayMbdePtr node, C ockRangePtr cl ockRang
LookupModeFl ags strategy, int maxPitch,
int virtual X, int virtualY);

This function checks the passed mode against some
basic driver constraints. Apart from the ones passed
explicitly, the maxHval ue and maxVVal ue fields of the
ScrnlnfoRec are also used. If the Val i dvbde field of
the ScrnlnfoRec is set, that function is also called to
check the mode. Next, the mode is checked against the
monitor's constraints.

If the mode is consistent with all constraints, the return
value is MODE_(K. Otherwise the return value indicates
which constraint wasn't met.

91

XFree86 DDX Design

voi d xf 86Del et eMode(Di spl ayModePtr *nodeli st, Di spl ayMdePtr node);

This function deletes the node given from the nod-
eLi st . It never prints any messages, so it is up to the
caller to print a message if required.

Functions for handling strings and tokens

Tables associating strings and numerical tokens combined with the following func-
tions provide a compact way of handling strings from the config file, and for con-
verting tokens into printable strings. The table data structure is:

typedef struct {
i nt t oken;
const char * nane;
} SynirabRec, *SyniTabPtr;

A table is an initialised array of SymTabRec. The tokens must be non-negative inte-
gers. Multiple names may be mapped to a single token. The table is terminated with
an element with a t oken value of - 1 and NULL for the nane.

const char *xf86TokenToStri ng(SymrabPtr table, int token);

This function returns the first string in tabl e that
matches t oken. If no match is found, NULL is returned
(NOTE, older versions of this function would return the
string "unknown" when no match is found).

int xf86Stri ngToToken(SynirabPtr table, const char *string);

This function returns the first token in tabl e that
matches string. The xf 86NameCnp() function is used
to determine the match. If no match is found, - 1 is re-
turned.

Functions for finding which config file entries to use

These functions can be used to select the appropriate config file entries that match
the detected hardware. They are described above in the Probe and Available Func-
tions sections.

Probing discrete clocks on old hardware

The xf 86Get d ocks() function may be used to assist in finding the discrete pixel
clock values on older hardware.

92

XFree86 DDX Design

voi d xf86Get O ocks(ScrnlnfoPtr pScrn, int num
Bool (*d ockFunc)(ScrnlnfoPtr, int),
void (*ProtectRegs)(ScrnlnfoPtr, Bool),
voi d (*Bl ankScreen) (ScrnlnfoPtr, Bool),
int vertsyncreg, int maskval, int knowncl ki ndex,
i nt knowncl kval ue) ;

This function uses a comparative sampling method to
measure the discrete pixel clock values. The number
of discrete clocks to measure is given by num cl ock-
Func is a function that selects the n'th clock. It should
also save or restore any state affected by programming
the clocks when the index passed is CLK_REG SAVE or
CLK_REG RESTORE. Pr ot ect Regs is a function that does
whatever is required to protect the hardware state
while selecting a new clock. Bl ankScr een is a function
that blanks the screen. vertsyncreg and naskval are
the register and bitmask to check for the presence of
vertical sync pulses. knowncl ki ndex and knowncl kval -
ue are the index and value of a known clock. These are
the known references on which the comparative mea-
surements are based. The number of clocks probed is
setin pScr n- >nunCl ocks, and the probed clocks are set
in the pScr n- >cl ock[] array. All of the clock values are
in units of kHz.

voi d xf86Showd ocks(ScrnlnfoPtr scrp, MessageType fronj;

Print out the pixel clocks scrp->cl ock[]. from indi-
cates whether the clocks were probed or from the con-
fig file.

Other helper functions

Bool xf 86l sUnbl ank(i nt node);

Returns TRUE when the screen saver mode specified by
node requires the screen be unblanked, and FALSE oth-
erwise. The screen saver modes that require blanking
are SCREEN SAVER ON and SCREEN SAVER CYCLE, and
the screen saver modes that require unblanking are
SCREEN_SAVER OFF and SCREEN_SAVER FORCER. Drivers
may call this helper from their SaveScr een() function
to interpret the screen saver modes.

The vgahw module

The vgahw modules provides an interface for saving, restoring and programming
the standard VGA registers, and for handling VGA colourmaps.

93

XFree86 DDX Design

Data Structures

The public data structures used by the vgahw module are vgaRegRec and vgaH-
WRec. They are defined in vgaHW h.

General vgahw Functions

Bool vgaHWGet HWRec(Scrnl nfoPtr pScrn);

This function allocates a vgaHWRec structure, and
hooks it into the ScrnInfoRec's pri vat es. Like all infor-
mation hooked into the pri vat es, it is persistent, and
only needs to be allocated once per screen. This func-
tion should normally be called from the driver's Chi p-
Prel nit () function. The vgaHWRec is zero-allocated,
and the following fields are explicitly initialised:

ModeReg. DAC] initialised with a default
colourmap

ModeReg. Attri but e[Ox11] initialised with the de-
fault overscan index

ShowQver scan initialised according to
the "ShowOverscan" op-
tion

pal et t eEnabl ed initialised to FALSE

cmapSaved initialised to FALSE

pScrn initialised to pScrn

In addition to the above, vgaHW5et St dFuncs() is called
to initialise the register access function fields with the
standard VGA set of functions.

Once allocated, a pointer to the vgaHWRec can
be obtained from the ScrninfoPtr with the
VGAHWPTR(pScr n) macro.

voi d vgaHWFr eeHWRec(Scrnl nfoPtr pScrn);

This function frees a vgaHWRec structure. It should be
called from a driver's Chi pFreeScreen() function.

Bool vgaHWBet RegCount s(Scrnl nfoPtr pScrn, int nunCRTC,
i nt nunSequencer, int num&aphics, int numAttri but

This function allows the number of CRTC, Sequencer,
Graphics and Attribute registers to be changed. This

94

XFree86 DDX Design

makes it possible for extended registers to be saved
and restored with vgaHWBsave() and vgaHWRestore().
This function should be called after a vgaHWRec has
been allocated with vgaHWGet HWRec () . The default val-
ues are defined in vgaHW h as follows:

#def i ne VGA_NUM CRTC 25
#defi ne VGA NUM SEQ 5
#defi ne VGA NUM GFX 9
#defi ne VGA_NUM ATTR 21

Bool vgaHWCopyReg(vgaRegPtr dst, vgaRegPtr src);

This function copies the contents of the VGA saved reg-
isters in src to dst. Note that it isn't possible to sim-
ply do this with mencpy() (or similar). This function re-
turns TRUE unless there is a problem allocating space
for the CRTC and related fields in dst .

voi d vgaHWBet St dFuncs(vgaHWPtr hwp) ;

This function initialises the register access function
fields of hwp with the standard VGA set of functions.
This is called by vgaHWGet HWRec(), so there is usual-
ly no need to call this explicitly. The register access
functions are described below. If the registers are shad-
owed in some other port I/O space (for example a
PCI I/O region), these functions can be used to access
the shadowed registers if hwp- >Pl O f set is initialised
with of f set, calculated in such a way that when the
standard VGA 1/O port value is added to it the correct
offset into the PIO area results. This value is initialised
to zero in vgaHWGet HWRec () . (Note: the PIOOffset func-
tionality is present in XFree86 4.1.0 and later.)

voi d vgaHWset Mri oFuncs(vgaHWpt r hwp, CARD8 *base, int offset);

This function initialised the register access function
fields of hwp with a generic MMIO set of functions.
hwp- >MM OBase is initialised with base, which must be
the virtual address that the start of MMIO area is
mapped to. hwp- >MM O f set is initialised with of f -
set, which must be calculated in such a way that when
the standard VGA I/O port value is added to it the cor-
rect offset into the MMIO area results. That means
that these functions are only suitable when the VGA I/
O ports are made available in a direct mapping to the
MMIO space. If that is not the case, the driver will need

95

XFree86 DDX Design

to provide its own register access functions. The regis-
ter access functions are described below.

Bool vgaHWapMen(Scrnl nfoPtr pScrn);

This function maps the VGA memory window. It re-
quires that the vgaHWRec be allocated. If a driver re-
quires non-default MapPhys or MapSi ze settings (the
physical location and size of the VGA memory window)
then those fields of the vgaHWRec must be initialised
before calling this function. Otherwise, this function
initialiases the default values of 0xA0000 for MapPhys
and (64 * 1024) for MapSi ze. This function must be
called before attempting to save or restore the VGA
state. If the driver doesn't call it explicitly, the vgaH
Wsave() and vgaHWRest or e() functions may call it if
they need to access the VGA memory (in which case
they will also call vgaHWnmapMen{) to unmap the VGA
memory before exiting).

voi d vgaHWnmapMem(Scr nl nf oPtr pScrn) ;

This function unmaps the VGA memory window. It must
only be called after the memory has been mapped. The
Base field of the vgaHWRec field is set to NULL to indi-
cate that the memory is no longer mapped.

voi d vgaHWGet | OBase(vgaHWPt r hwp) ;

This function initialises the | OBase field of the vgaH-
WRec. This function must be called before using any
other functions that access the video hardware.

A macro VGAHW CET_| OBASE() is also available in
vgaHW h that returns the I/O base, and this may be used
when the vgahw module is not loaded (for example, in
the Chi pProbe() function).

voi d vgaHWUnl ock(vgaHWPt r hwp) ;

This function unlocks the VGA CRTC 0- 7] registers,
and must be called before attempting to write to those
registers.

voi d vgaHW.ock(vgaHWPt r hwp) ;

This function locks the VGA CRT(0- 7] registers.

96

XFree86 DDX Design

voi d vgaHVWEnabl e(vgaHWPt r hwp) ;

This function enables the VGA subsystem. (Note, this
function is present in XFree86 4.1.0 and later.).

voi d vgaHWDi sabl e(vgaHWPt r hwp) ;

This function disables the VGA subsystem. (Note, this
function is present in XFree86 4.1.0 and later.).

voi d vgaHWBave(Scrnl nfoPtr pScrn, vgaRegPtr save, int flags);

This function saves the VGA state. The state is written
to the vgaRegRec pointed to by save. fl ags is set to
one or more of the following flags ORed together:

VGA SR MODE the mode setting registers are saved
VGA SR FONTS the text mode font/text data is saved
VGA SR CMAP the colourmap (LUT) is saved

VGA SR ALL all of the above are saved

The vgaHWRec and its | OBase fields must be initialised
before this function is called. If VGA SR FONTS is set
in fl ags, the VGA memory window must be mapped.
If it isn't then vgaHWapMen() will be called to map
it, and vgaHWUnmapMen{() will be called to unmap it af-
terwards. vgaHWBave() uses the three functions below
in the order vgaHWsaveCol or nap(), vgaHWsaveMode(),
vgaHWsaveFont s() to carry out the different save phas-
es. It is undecided at this stage whether they will re-
main part of the vgahw module's public interface or
not.

voi d vgaHWsaveMode(Scrnl nfoPtr pScrn, vgaRegPtr save);

This function saves the VGA mode registers. They are
saved to the vgaRegRec pointed to by save. The regis-
ters saved are:

MiscOut
CRTC[0-0x18]
Attribute[0-0x14]
Graphics[0-8]
Sequencer[0-4]

97

XFree86 DDX Design

The number of registers actually saved may be modi-
fied by a prior call to vgaHWSet RegCount s() .

voi d vgaHWsaveFont s(Scrnl nfoPtr pScrn, vgaRegPtr save);

This function saves the text mode font and text data
held in the video memory. If called while in a graphics
mode, no save is done. The VGA memory window must
be mapped with vgaHWapMen() before to calling this
function.

On some platforms, one or more of the font/text
plane saves may be no-ops. This is the case when the
platform's VC driver already takes care of this.

voi d vgaHWsaveCol or map(Scrnl nfoPtr pScrn, vgaRegPtr save);

This function saves the VGA colourmap (LUT). Before
saving it, it attempts to verify that the colourmap is
readable. In rare cases where it isn't readable, a de-
fault colourmap is saved instead.

voi d vgaHWRest ore(Scrnl nfoPtr pScrn, vgaRegPtr restore, int flags);

This function programs the VGA state. The state pro-
grammed is that contained in the vgaRegRec pointed
to by restore. fl ags is the same as described above
for the vgaHWBave() function.

The vgaHWRec and its | OBase fields must be initialised
before this function is called. If VGA SR FONTS is set
in fl ags, the VGA memory window must be mapped.
If it isn't then vgaHWapMen() will be called to map
it, and vgaHWnmapMen() will be called to unmap it
afterwards. vgaHWRest or e() uses the three functions
below in the order vgaHWRest or eFont s(), vgaHWRe-
st oreMbde(), vgaHWRest or eCol or map() to carry out
the different restore phases. It is undecided at this
stage whether they will remain part of the vgahw
module's public interface or not.

voi d vgaHWRest or eMode(Scrnl nfoPtr pScrn, vgaRegPtr restore);

This function restores the VGA mode registers. They
are restored from the data in the vgaRegRec pointed
to by rest or e. The registers restored are:

MiscOut

98

XFree86 DDX Design

CRTC[0-0x18]
Attribute[0-0x14]
Graphics[0-8]
Sequencer[0-4]

The number of registers actually restored may be mod-
ified by a prior call to vgaHWSet RegCount s() .

voi d vgaHWRest or eFont s(Scrnl nfoPtr pScrn, vgaRegPtr restore);

This function restores the text mode font and text data
to the video memory. The VGA memory window must
be mapped with vgaHWWapMen() before to calling this
function.

On some platforms, one or more of the font/text plane
restores may be no-ops. This is the case when the
platform's VC driver already takes care of this.

voi d vgaHWRest or eCol or map(Scrnl nfoPtr pScrn, vgaRegPtr restore);
This function restores the VGA colourmap (LUT).
voi d vgaHWnit (ScrnlnfoPtr pScrn, D splayMdePtr node);

This function fills in the vgaHWRec's ModeReg field
with the values appropriate for programming the given
video mode. It requires that the ScrnInfoRec's dept h
field is initialised, which determines how the registers
are programmed.

voi d vgaHWsegReset (vgaHWPtr hwp, Bool start);

Do a VGA sequencer reset. If start is TRUE, the reset is
started. If start is FALSE, the reset is ended.

voi d vgaHWpPr ot ect (Scrnl nfoPtr pScrn, Bool on);

This function protects VGA registers and memory from
corruption during loads. It is typically called with on set
to TRUE before programming, and with on set to FALSE
after programming.

Bool vgaHWSsaveScreen(ScreenPtr pScreen, int node);

99

XFree86 DDX Design

This function blanks and unblanks the screen.
It is blanked when nopde is SCREEN SAVER ON or
SCREEN SAVER CYCLE, and unblanked when node is
SCREEN _SAVER OFF or SCREEN SAVER FORCER.

voi d vgaHWBI ankScreen(Scrnl nfoPtr pScrn, Bool on);

This function blanks and unblanks the screen. It is
blanked when on is FALSE, and unblanked when on is
TRUE. This function is provided for use in cases where
the ScrnlnfoRec can't be derived from the ScreenRec
(while probing for clocks, for example).

VGA Colormap Functions

The vgahw module uses the standard colormap support (see the Colormap Handling
section. This is initialised with the following function:

Bool vgaHWHandl eCol or maps(ScreenPtr pScreen);

VGA Register Access Functions

The vgahw module abstracts access to the standard VGA registers by using a set
of functions held in the vgaHWRec. When the vgaHWRec is created these function
pointers are initialised with the set of standard VGA I/O register access functions.
In addition to these, the vgahw module includes a basic set of MMIO register access
functions, and the vgaHWRec function pointers can be initialised to these by calling
the vgaHWSet Mm oFuncs() function described above. Some drivers/platforms may
require a different set of functions for VGA access. The access functions are de-
scribed here.

void witeCrtc(vgaHWtr hwp, CARD8 index, CARD8 val ue);
Write val ue to CRTC register i ndex.

CARD8 readCrtc(vgaHwWtr hwp, CARD8 index);
Return the value read from CRTC register i ndex.

void witeG (vgaHWrPtr hwp, CARD8 index, CARD8 val ue);
Write val ue to Graphics Controller register i ndex.

CARD8 readGR(vgaHWPtr hwp, CARD8 i ndex);

100

XFree86 DDX Design

Return the value read from Graphics Controller regis-
teri ndex.

void witeSeq(vgaHWtr hwp, CARD8 index, CARD8, val ue);

Write val ue to Sequencer register i ndex.

CARD8 readSeq(vgaHWpt r hwp, CARD8 i ndex);

Return the value read from Sequencer register i ndex.

void witeAttr(vgaHWtr hwp, CARD8 index, CARD8, val ue);

Write val ue to Attribute Controller register i ndex.
When writing out the index value this function should
set bit 5 (0x20) according to the setting of hwp- >pal et -
t eEnabl ed in order to preserve the palette access
state. It should be cleared when hwp- >pal et t eEnabl ed
is TRUE and set when it is FALSE.

CARD8 readAttr(vgaHWtr hwp, CARD8 index);

Return the value read from Attribute Controller regis-
ter i ndex. When writing out the index value this func-
tion should set bit 5 (0x20) according to the setting of
hwp- >pal et t eEnabl ed in order to preserve the palette
access state. It should be cleared when hwp- >pal et -
t eEnabl ed is TRUE and set when it is FALSE.

void witeM scQut (vgaHWPt r hwp, CARD8 val ue);

Write “val ue” to the Miscellaneous Output register.

CARD8 readM scCQut (vgwHWPt r hwp) ;

Return the value read from the Miscellaneous Output
register.

voi d enabl ePal ett e(vgaHWPtr hwp);

Clear the palette address source bit in the Attribute
Controller index register and set hwp->pal ett eEn-
abl ed to TRUE.

101

XFree86 DDX Design

voi d di sabl ePal ette(vgaHWPtr hwp);

Set the palette address source bit in the Attribute Con-
troller index register and set hwp- >pal et t eEnabl ed to
FALSE.

void witeDacMask(vgaHWPt r hwp, CARD8 val ue);

Write val ue to the DAC Mask register.

CARD8 readDacMask(vgaHwptr hwp);

Return the value read from the DAC Mask register.

voi d witeDacReadAddr ess(vgaHWrtr hwp, CARD8 val ue);

Write val ue to the DAC Read Address register.

void witeDacWiteAddress(vgaHWtr hwp, CARD8 val ue);

Write val ue to the DAC Write Address register.

void witeDacDat a(vgaHWPt r hwp, CARD8 val ue);

Write val ue to the DAC Data register.

CARD8 readDacDat a(vgaHWtr hwp);

Return the value read from the DAC Data register.

CARD8 readEnabl e(vgaHWt r hwp) ;

Return the value read from the VGA Enable register.
(Note: This function is present in XFree86 4.1.0 and
later.)

void witeEnabl e(vgaHWPtr hwp, CARD8 val ue);

Write val ue to the VGA Enable register. (Note: This
function is present in XFree86 4.1.0 and later.)

102

XFree86 DDX Design

Some notes about writing a driver
Note

NOTE: some parts of this are not up to date

The following is an outline for writing a basic unaccelerated driver for a PCI video
card with a linear mapped framebuffer, and which has a VGA core. It is includes
some general information that is relevant to most drivers (even those which don't
fit that basic description).

The information here is based on the initial conversion of the Matrox Millennium
driver to the “new design”. For a fleshing out and sample implementation of some
of the bits outlined here, refer to that driver. Note that this is an example only. The
approach used here will not be appropriate for all drivers.

Each driver must reserve a unique driver name, and a string that is used to prefix all
of its externally visible symbols. This is to avoid name space clashes when loading
multiple drivers. The examples here are for the “ZZZ” driver, which uses the “ZZZ”
or “zzz” prefix for its externally visible symbols.

Include files

All drivers normally include the following headers:

"xf 86. h"
"xf86_OSproc. h"
"xf86_ansic. h"
"xf 86Resour ces. h"

Wherever inb/outb (and related things) are used the following should be included:
"conpiler.h"

Note: in drivers, this must be included after " xf 86_ansi c. h".

Drivers that need to access PCI vendor/device definitions need this:
"xf 86Pci | nfo. h"

Drivers that need to access the PCI config space need this:
"xf 86Pci . h"

Drivers using the mi banking wrapper need:

"m bank. h"

103

XFree86 DDX Design

Drivers that initialise a SW cursor need this:

"m poi nter.h"

All drivers implementing backing store need this:

"m bstore. h"

All drivers using the mi colourmap code need this:

“m cmap. h"

If a driver uses the vgahw module, it needs this:

"vgaHW h"

Drivers supporting VGA or Hercules monochrome screens need:

"xf 1bpp. h"

Drivers supporting VGA or EGC 16-colour screens need:

"xf 4bpp. h"

Drivers using cfb need:

#defi ne PSZ 8
#i ncl ude "cfb. h"
#undef PSZ

Drivers supporting bpp 16, 24 or 32 with cfb need one or more of:

"cfbl6. h"
"cfb24. h"
"cfb32. h"

The driver's own header file:

"zzz.h"

Drivers must NOT include the following:

104

XFree86 DDX Design

"xf 86Priv.h"
"xf86Privstr.h"
"xf86_libc. h"
"xf86_0Slib.h"
" Xos. h"

any OS header

Data structures and initialisation

¢ The following macros should be defined:

#defi ne VERSI ON <version-as-an-int>

#def i ne ZZZ NAVE "ZZZ" /* the name used to prefix nessages */

#defi ne ZZZ DRI VER NAME "zzz" [* the driver nane as used in config file */
#defi ne ZZZ_MAJOR_VERSI ON <i nt >

#defi ne ZZZ_M NOR_VERSI ON <i nt >

#def i ne ZZZ_ PATCHLEVEL <int>

NOTE: ZZZ DRI VER_NAME should match the name of the driver module without
things like the "lib" prefix, the " drv" suffix or filename extensions.

* A DriverRec must be defined, which includes the functions required at the pre-
probe phase. The name of this DriverRec must be an upper-case version of
777 DRIVER NAME (for the purposes of static linking).

DriverRec 7277 = {
VERSI ON,
ZZZ DRI VER _NAME,
Z7Z7Zl dentify,
Z7Z7Pr obe,
ZZZAvai | abl eOpti ons,
NULL,
0

H
* Define list of supported chips and their matching ID:

static SymrabRec ZZZChi psets[] = {
{ PCl _CH P_Zz71234, "zzz1234a" },
{ PCl _CH P_Zz75678, "zzz5678a" },
{ -1, NULL }

s

The token field may be any integer value that the driver may use to uniquely
identify the supported chipsets. For drivers that support only PCI devices using
the PCI device IDs might be a natural choice, but this isn't mandatory. For drivers
that support both PCI and other devices (like ISA), some other ID should probably

105

XFree86 DDX Design

used. When other IDs are used as the tokens it is recommended that the names
be defined as an enum type.

e Ifthe driver uses the xf 86Mat chPci | nst ances() helper (recommended for drivers
that support PCI cards) a list that maps PCI IDs to chip IDs and fixed resources
must be defined:

static Pci Chi psets ZZZPci Chi psets[] = {
{ PCl_CHIP_Z771234, PCl _CHI P_ZZ71234, RES SHARED VGA },
{ PCl_CHIP_7775678, PCl _CHI P_7775678, RES SHARED VGA },
{ -1, -1, RES_UNDEFI NED }

¢ Define the XF86ModuleVersionInfo struct for the driver. This is required for the
dynamically loaded version:

static XF86Modul eVersionlnfo zzzVersRec =
{
“zzz",
MODUL EVENDORSTRI NG,
MODI NFOSTRI NGL,
MODI NFOSTRI N&2,
XF86_VERSI ON_CURRENT,
ZZZ MAJOR VERSI ON, ZZZ M NOR_VERSI ON, ZZZ PATCHLEVEL,
ABI _CLASS VI DECDRV,
ABI _ VI DEODRV_VERSI ON,
MOD_CLASS VI DECDRV,
{0, 0,0, 0}
b

e Define a data structure to hold the driver's screen-specific data. This must be used
instead of global variables. This would be defined in the "zzz. h" file, something
like:

typedef struct {
typel fieldi;
type2 field2;
i nt f ooHack;
Bool pci Retry;
Bool noAccel ;
Bool hwCur sor ;
Cl oseScreenProcPtr C oseScreen;
Optionl nfoPtr Opti ons;

} ZZZRec, *ZzZZPtr;
* Define the list of config file Options that the driver accepts. For consistency be-

tween drivers those in the list of “standard” options should be used where appro-
priate before inventing new options.

106

XFree86 DDX Design

typedef enum {
OPTI ON_FOO_HACK,
OPTI ON_PCl _RETRY,
OPTI ON_HW CURSCR,
OPTI ON_NOACCEL

} 2270t s;

static const OptionlnfoRec ZZZOptions[] = {
{ OPTION_FOO HACK, "FooHack", OPTV_I NTEGER, {0}, FALSE },

{ OPTION_PCl _RETRY, "PciRetry", OPTV_BOOLEAN, {0}, FALSE },
{ OPTI ON_HW CURSOR, "HWursor", OPTV_BOOLEAN, {0}, FALSE },
{ OPTI ON_NQOACCEL, "NoAccel ", OPTV_BOOLEAN, {0}, FALSE },
{ -1, NULL, OPTV_NONE, {0}, FALSE }
3
Functions
SetupProc

For dynamically loaded modules, a Modul eDat a variable is required. It is should
be the name of the driver prepended to "ModuleData". A Set up() function is also
required, which calls xf 86AddDri ver () to add the driver to the main list of drivers.

stati c MODULESETUPPROTQ(zzzSet up) ;
XF86Modul eData zzzModul eData = { &zzzVersRec, zzzSetup, NULL };

static pointer
zzzSetup(poi nter nodul e, pointer opts, int *errmgj, int *errmn)

static Bool setupDone = FALSE;
/* This nodul e should be | oaded only once, but check to be sure. */

if (!setupbDone) {
/*
* Modul es that this driver always requires may be | oaded
* here by calling LoadSubModul e().
*/

setupDone = TRUE;
xf 86AddDr i ver (&MGA, nodul e, 0);

/*
* The return value nust be non-NULL on success even though
* there is no Tear DownProc.
*/
return (pointer)1;
} else {
if (errmaj) *errmaj = LDR_ONCEONLY;

107

XFree86 DDX Design

return NULL;

GetRec, FreeRec

A function is usually required to allocate the driver's screen-specific data structure
and hook it into the ScrnInfoRec's dri ver Pri vat e field. The ScrnInfoRec's dri ver -
Pri vat e is initialised to NULL, so it is easy to check if the initialisation has already
been done. After allocating it, initialise the fields. By using xnf cal | oc() to do the
allocation it is zeroed, and if the allocation fails the server exits.

NOTE: When allocating structures from inside the driver which are defined on the
common level it is important to initialize the structure to zero. Only this guaran-
tees that the server remains source compatible to future changes in common level
structures.

static Bool
ZZ7Get Rec(ScrnlnfoPtr pScrn)

{
if (pScrn->driverPrivate != NULL)
return TRUE;
pScrn->driverPrivate = xnfcall oc(sizeof (ZZZRec), 1);
/* Initialise as required */
return TRUE;
}

Define a macro in "zzz. h" which gets a pointer to the ZZZRec when given pScr n:

#define ZZZPTR(p) ((ZZzZPtr)((p)->driverPrivate))

Define a function to free the above, setting it to NULL once it has been freed:

static void
ZZZFreeRec(Scrnl nfoPtr pScrn)

{
if (pScrn->driverPrivate == NULL)
return;
xfree(pScrn->driverPrivate);
pScrn->driverPrivate = NULL;
}
Identify

Define the I denti f y() function. It is run before the Probe, and typically prints out
an identifying message, which might include the chipsets it supports. This function
is mandatory:

108

XFree86 DDX Design

Probe

static void
ZzZl dentify(int flags)

{

Define the Pr obe() function. The purpose of this is to find all instances of the hard-
ware that the driver supports, and for the ones not already claimed by another dri-
ver, claim the slot, and allocate a ScrnInfoRec. This should be a minimal probe, and
it should under no circumstances leave the state of the hardware changed. Because
a device is found, don't assume that it will be used. Don't do any initialisations oth-
er than the required ScrnlnfoRec initialisations. Don't allocate any new data struc-

xf 86Pri nt Chi pset s(ZZZ NAME, "driver for ZZZ Tech chipsets”,
Z77Chi pset s) ;

tures.

This function is mandatory.

NOTE: The xf 86Dr visg() functions cannot be used from the Probe.

static Bool
ZZ7Probe(DriverPtr drv, int flags)

{

Bool foundScreen = FALSE;

i nt nunDevSections, nunlJsed;
GDevPtr *devSections;

i nt *usedChi ps;

int i;

/*
* Find the config file Device sections that match this
* driver, and return if there are none.
*/
if ((nunDevSections = xf86Mat chDevi ce(ZZZ_DRI VER_NAME,
&devSections)) <= 0) {
return FALSE;

}
/*
* Since this is a PCl card, "probing" just anmounts to checking
* the PCl data that the server has already collected. |If there
* is none, return
*
* Although the config file is allowed to override things, it
* is reasonable to not allowit to override the detection
* of no PCl video cards.
*
* The provi ded xf86MatchPcil nstances() hel per takes care of
* the details.
*

/

109

XFree86 DDX Design

/* test if PCl bus present */
i f (xf86GetPciVideolnfo()) {

nunJsed = xf86Mat chPci | nst ances(ZZZ_NAME, PCI _VENDOR ZZ7Z,

ZZZChi p

sets, ZZZPci Chi psets, devSections,

nunDevSections, drv, &usedChi ps);

for (i = 0; i < nunmsed; i+
ScrnlnfoPtr pScrn = NUL
if ((pScrn = xf86Config

/* Allocate a Scrnln
pScrn->dri ver Ver si on
pScrn->driver Nane
pScr n- >namne

pScr n- >Pr obe
pScrn->Prel nit

pScr n->Scr eenl ni t
pScrn->Swi t chivbde
pScr n- >Adj ust Fr ane

+) {

L;

Pci Entity(pScrn, flags, usedChips[i],
ZZ7Pci Chi psets, NULL, NULL,
NULL, NULL, NULL))) {

foRec */

VERSI ON;

ZZZ_DRI VER_NAME;

ZZZ_NAMNE;

ZZ7Pr obe;

ZZZPrelnit;

ZZ7ZScreenlnit;

2775w t chiMbde;

ZZ7ZAdj ust Fr ame;

pScrn->Ent er VT ZZZEnt er VT,
pScrn->LeaveVT 277l eaveVT,
pScr n- >Fr eeScr een ZZZ7Fr eeScr een,
pScrn->Val i dMbde ZZZVal i dMode;

foundScreen = TRUE;
/* add screen to entity */

}
}
xf ree(usedChi ps);
}
#i f def HAS_| SA DEVS
/*

* |f the driver supports |ISA hardware, the foll ow ng bl ock
* can be included too.
*/
nunmJsed = xf86Mat chl sal nst ances(ZZZ_NAME, ZZZChi psets,
7771 saChi psets, drv, ZZZFi ndl saDevi ce,
devSections, nunDevSections, &usedChips);
for (i = 0; i < numsed; i++) {
ScrnlnfoPtr pScrn = NULL;
if ((pScrn = xf86ConfiglsaEntity(pScrn, flags, usedChips[i],
ZZZl saChi psets, NULL, NULL, NULL,
NULL, NULL))) {

pScrn->dri ver Ver si on VERSI ON,
pScrn->driver Nane Z7Z7 DRI VER_NAME;
pScr n- >namne 277 _NANE;

pScr n- >Pr obe ZZZPr obe,;
pScrn->Prel nit ZZZPrelnit;

pScr n->Scr eenl ni t
pScrn->Swi t chibde
pScr n- >Adj ust Fr ane
pScrn->Ent er VT

ZZZScreenlni t;
Z7Z7ZSwi t chiMbde;
ZZ7ZAdj ust Fr ame;
ZZZEnt er VT,

110

XFree86 DDX Design

pScrn->LeaveVT = ZZZl eaveVT,
pScr n- >Fr eeScr een = ZZZFreeScr een,;
pScrn->Val i dMbde = ZZZVal i dMbde;

f oundScr een = TRUE;
}

xf ree(usedChi ps);
#endi f /* HAS_| SA DEVS */

xfree(devSections);
return foundScreen;

AvailableOptions

Define the Avai | abl eOpt i ons() function. The purpose of this is to return the avail-
able driver options back to the -configure option, so that an xorg.conf file can be
built and the user can see which options are available for them to use.

Prelnit

Define the Prel nit() function. The purpose of this is to find all the information
required to determine if the configuration is usable, and to initialise those parts of
the ScrnInfoRec that can be set once at the beginning of the first server generation.
The information should be found in the least intrusive way possible.

This function is mandatory.
NOTES:

1. The Prel nit () function is only called once during the life of the X server (at the
start of the first generation).

2. Data allocated here must be of the type that persists for the life of the X server.
This means that data that hooks into the ScrnInfoRec's pri vat es field should be
allocated here, but data that hooks into the ScreenRec's devPri vat es field should
not be allocated here. The dri ver Pri vat e field should also be allocated here.

3. Although the ScrnInfoRec has been allocated before this function is called, the
ScreenRec has not been allocated. That means that things requiring it cannot be
used in this function.

4. Very little of the ScrnInfoRec has been initialised when this function is called. It
is important to get the order of doing things right in this function.

static Bool
ZZ7ZPrelnit(ScrnlnfoPtr pScrn, int flags)

{

[* Fill in the monitor field */
pScrn->nmoni tor = pScrn->conf Screen->nonitor;

/*
* |f using the vgahw module, it will typically be | oaded
* here by calling xf86LoadSubMdul e(pScrn, "vgahw');

111

XFree86 DDX Design

*/
/*
* Set the depth/bpp. Use the globally preferred depth/bpp. |If the
* driver has special default depth/bpp requirements, the defaults should
* be specified here explicitly.
*

We support both 24bpp and 32bpp framebuffer |ayouts.
* This sets pScrn->display also.
*/
i f (!xf86SetDepthBpp(pScrn, 0, 0, O,
Support 24bppFb | Support 32bppFb)) {
return FALSE;
} else {
if (depth/bpp isn't one we support) {
print error nessage;
return FALSE;
}
}
/[* Print out the depth/bpp that was set */
xf 86Pr i nt Dept hBpp(pScrn);

/* Set bits per RGB for 8bpp */

if (pScrn->depth <= 8) {
/* Take into account a dac_6_bit option here */
pScrn->rghBits = 6 or 8

}

/*

* xf86Set Wi ght () and xf 86Set Def aul t Vi sual () nust be call ed
* after pScrn->display is initialised.

*/

/* Set weight/mask/offset for depth > 8 */
if (pScrn->depth > 8) {
if (!xf86SetWeight(pScrn, defaultWight, defaultMsk)) ({
return FALSE;
} else {
if (weight isn't one we support) {
print error nessage;
return FALSE;

}

/[* Set the default visual. */
if (!xf86SetDefaultVisual (pScrn, -1)) {
return FALSE;
} else {
if (visual isn't one we support) {
print error nessage;
return FALSE;

112

XFree86 DDX Design

/[* 1If the driver supports gamma correction, set the gamma. */
if (!xf86Set Gamma(pScrn, default_gamm)) {
return FALSE;

}

/* This driver uses a programmabl e clock */
pScrn->progC ock = TRUE;

/* Allocate the ZZZRec driverPrivate */
if (!ZzZZGet Rec(pScrn)) {
return FALSE;

}

pZzz = ZZZPTR(pScrn);

/* Collect all of the option flags (fill in pScrn->options) */
xf 86Col | ect Opti ons(pScrn, NULL);

/
Process the options based on the information in ZZZOpti ons.
The results are witten to pZzz->Options. |f all of the options
processing is done within this function a local variable "options”
* can be used instead of pZzz->Options.
*/
if (!(pZzz->Options = xall oc(sizeof (ZZZOptions))))
return FALSE;
(voi d) mencpy(pZzz->Options, ZZZOptions, sizeof (ZZZOptions));
xf 86Pr ocessOpti ons(pScrn->scrnl ndex, pScrn->options, pZzz->QOptions);

* % F X

/*
* Set various fields of ScrnlnfoRec and/or ZZZRec based on
* the options found.
*/
from = X DEFAULT,
pZzz->hwCur sor = FALSE;
if (xf86lsOptionSet(pZzz->0Options, OPTION_HW CURSOR)) {
from= X CONFI G
pZzz->hwCur sor = TRUE;
}
xf 86Dr vMsg(pScr n- >scrnl ndex, from "Using % cursor\n",
pZzz->hwCursor ? "HW : "SW);
if (xf86lsOptionSet(pZzz->0ptions, OPTI ON_NOACCEL)) {
pZzz->noAccel = TRUE;
xf 86Dr vMsg(pScr n->scr nl ndex, X_CONFI G
"Accel eration disabled\n");
} else {
pZzz->noAccel = FALSE;

}
if (xf86lsOptionSet(pZzz->0Options, OPTION _PCl _RETRY)) {
pZzz->UsePCl Retry = TRUE;
xf 86Dr vMsg(pScrn->scrnl ndex, X CONFIG "PCl retry enabled\n");
}
pZzz->f ooHack = O;
i f (xf86Get OptVal I nt eger (pZzz->COptions, OPTI ON_FOO HACK,

113

XFree86 DDX Design

&pZzz- >f ooHack)) {
xf 86Dr vMsg(pScr n- >scrnl ndex, X CONFI G "Foo Hack set to %\ n",
pZzz- >f ooHack) ;

}
/*
* Find the PCl slot(s) that this screen claimed in the probe.
* In this case, exactly one is expected, so conplain otherw se.
* Note in this case we're not interested in the card types so
* that paraneter is set to NULL
*/
if ((i = xf86CetPcilnfoForScreen(pScrn->scrnlndex, &pcilList, NULL))
I=1) {
print error nessage;
ZZ7Fr eeRec(pScrn);
if (i >0
xfree(pcilList);
return FALSE;
}
/* Note that pcilList should be freed bel ow when no | onger needed */
/*
* Determne the chipset, allowing config file chipset and
* chipid values to override the probed information. The config
* chi pset val ue has precedence over its chipid value if both
* are present.
*
* It isn't necessary to fill in pScrn->chipset if the driver
* keeps track of the chipset in its ZZZRec.
*/
/*
* Determ ne video nenory, fb base address, 1/0O addresses, etc,
* allowing the config file to override probed val ues.
*
* Set the appropriate pScrn fields (videoRamis probably the
* most inportant one that other code m ght require), and
* print out the settings.
*

/* Initialise a clockRanges list. */

/* Set any other chipset specific things in the ZZZRec */

/* Select valid nodes fromthose avail able */

114

XFree86 DDX Design

i = xf86Val i dat eModes(pScrn, pScrn->nonitor->Nodes,
pScrn->di spl ay- >nbdes, cl ockRanges,
NULL, m nPitch, maxPitch, rounding,
m nHei ght, maxHei ght,
pScrn->di spl ay->vi rtual X,
pScrn->di spl ay->virtual Y,
pScrn->vi deoRam * 1024,
LOCKUP_BEST_REFRESH) ;
if (i == -1) {
ZZ7Fr eeRec(pScrn);
return FALSE;

}

/* Prune the nodes nmarked as invalid */
xf 86Pr uneDri ver Modes(pScrn) ;
/* If no valid nodes, return */

if (i == 0 || pScrn->npdes == NULL) {
print error nessage;
ZZ7Fr eeRec(pScrn);
return FALSE;

}

/*
* Initialise the CRTC fields for the nodes. This driver expects
* vertical values to be halved for interlaced nodes.
*/

xf 86Set Crt cFor Mobdes(pScrn, | NTERLACE HALVE V) ;

/* Set the current nbde to the first in the list. */
pScrn->current Mode = pScrn->nodes;

/* Print the list of nobdes being used. */
xf 86Pr i nt Modes(pScrn) ;

/* Set the DPI */
xf 86Set Dpi (pScrn, 0, 0);

/* Load bpp-specific nodul es */
swi tch (pScrn->bitsPerPixel) {
case 1:

nmod = "xf 1lbpp";

br eak;
case 4:

mod = "xf4bpp",;

br eak;
case 8:

mod = "cfb";

br eak;
case 16:

nod = "cfbl6";

br eak;

115

XFree86 DDX Design

case 24
mod = "cf b24";
br eak;

case 32:
mod = "cfb32";
br eak;

}

if (mod && ! xf86LoadSubMdul e(pScrn, nod))
ZZ7Fr eeRec(pScrn);
return FALSE;

/* Load XAA if needed */
if (!pZzz->noAccel || pZzz->hwCursor)
i f (!xf86LoadSubModul e(pScrn, "xaa")) {
ZZ7Fr eeRec(pScrn);
return FALSE;

}

/* Done */
return TRUE;

MapMem, UnmapMem

Define functions to map and unmap the video memory and any other memory aper-
tures required. These functions are not mandatory, but it is often useful to have
such functions.

static Bool
ZZZNMapMem(Scrnl nf oPtr pScr n)

{
/[* Call xf86MapPci Menm() to map each PCI nenory area */

return TRUE or FALSE;
}

static Bool
ZZZUnmapMem(Scr nl nf oPtr pScr n)
{
[* Call xf86UnMapVidMem() to unmap each nenory area */

return TRUE or FALSE;

Save, Restore

Define functions to save and restore the original video state. These functions are
not mandatory, but are often useful.

static void

116

XFree86 DDX Design

ZZZSave(Scrnl nfoPtr pScrn)

{
/*
* Save state into per-screen data structures.
* |f using the vgahw nodul e, vgaHWsave will typically be
* called here.
*/
}

static void
ZZZRest ore(Scrnl nfoPtr pScrn)

{
/*
* Restore state from per-screen data structures.
* |f using the vgahw nodul e, vgaHWRestore will typically be
* called here.
*/

}

Modelnit

Define a function to initialise a new video mode. This function isn't mandatory, but
is often useful.

static Bool
ZZZNbdel nit (Scrnl nfoPtr pScrn, D splayMdePtr node)

{
/*
* Program a video node. |If using the vgahw nodul e,
* vgaHW it and vgaRestore will typically be called here.
* Once up to the point where there can't be a failure
* set pScrn->vtSema to TRUE.
*/

}

Screenlnit

Define the Screenl ni t () function. This is called at the start of each server gener-
ation, and should fill in as much of the ScreenRec as possible as well as any other
data that is initialised once per generation. It should initialise the framebuffer lay-
ers it is using, and initialise the initial video mode.

This function is mandatory.

NOTE: The ScreenRec (pScreen) is passed to this driver, but it and the Scrnl n-
f oRecs are not yet hooked into each other. This means that in this function, and
functions it calls, one cannot be found from the other.

117

XFree86 DDX Design

static Bool
ZzZZScreenlnit(int scrnlndex, ScreenPtr pScreen, int argc, char **argv)

{
/* Get the ScrnlnfoRec */

pScrn = xf86Screens[pScreen->nmyNum ;

/*
* |f using the vgahw nodule, its data structures and rel ated
* things are typically initialised/ mapped here.
*/

/* Save the current video state */
ZZ7Save(pScrn);

/[* Initialise the first node */
ZZZNobdel ni t (pScrn, pScrn->current Mbde);

/* Set the viewport if supported */

ZZ7ZAdj ust Frame(scrnl ndex, pScrn->frameX0, pScrn->frameY0, O0);

/*

* Setup the screen's visuals, and initialise the franmebuffer
* code.

*/

/* Reset the visual list */

m Cl ear Vi sual Types();

/
Setup the visuals supported. This driver only supports
TrueCol or for bpp > 8, so the default set of visuals isn't
acceptable. To deal with this, call m SetVisual Types with
t he appropriate visual mask.

/

E I I

if (pScrn->bitsPerPixel > 8) {
if (!'m SetVisual Types(pScrn->depth, TrueCol or Mask,
pScrn->rgbBits, pScrn->defaultVisual))
return FALSE;
} else {
if (!'m SetVisual Types(pScrn->dept h,
m Get Def aul t Vi sual Mask(pScr n->dept h),
pScrn->rgbBits, pScrn->defaultVisual))
return FALSE;

}

/*
* Initialise the franebuffer.
*/

swi tch (pScrn->bitsPerPixel) {
case 1:
ret = xflbppScreenlnit(pScreen, FbBase,

118

XFree86 DDX Design

br eak;
case 4.
ret

br eak;
case 8:
ret

br eak;
case 16:
ret

br eak;
case 24
ret

br eak;
case 32:
ret

br eak;
defaul t:
print
ret
br eak;

}

if ('ret)

pScrn->virtual X, pScrn->virtual,

pScrn->xDpi, pScrn->yDpi,
pScrn->di spl ayW dt h) ;

xf 4bppScreenl nit (pScreen, FbBase
pScrn->virtual X, pScrn->virtual,
pScrn->xDpi, pScrn->yDpi,
pScrn->di spl ayW dt h) ;

cfbScreenlnit(pScreen, FbBase
pScrn->virtual X, pScrn->virtual,
pScrn->xDpi, pScrn->yDpi,
pScrn->di spl ayW dt h) ;

cf b16Screenl ni t (pScreen, FbBase
pScrn->virtual X, pScrn->virtual,
pScrn->xDpi, pScrn->yDpi,
pScrn->di spl ayW dt h) ;

cf b24Screenl ni t (pScreen, FbBase
pScrn->virtual X, pScrn->virtual,
pScrn->xDpi, pScrn->yDpi,
pScrn->di spl ayW dt h) ;

cf b32Screenl ni t (pScreen, FbBase
pScrn->virtual X, pScrn->virtual,
pScrn->xDpi, pScrn->yDpi,
pScrn->di spl ayW dt h) ;

a nmessage about an interna
FALSE;

error;

return FALSE;

/*

for

(

i f ((visual->class

Override the default
if (pScrn-

mask/ of f set settings */

>bi t sPer Pi xel > 8) {

= 0, visual = pScreen->visuals;

< pScreen->nunVi sual s; i++, visual ++) {
Dynami cd ass) DirectCol or) {
vi sual - >of f set Red = pScrn->of fset.red
vi sual - >of f set Gr een pScrn->of f set. green
vi sual - >of f set Bl ue pScrn->of f set . bl ue;
vi sual - >r edMVask pScrn->mask. red
vi sual - >gr eenMask pScr n- >mask. gr een
vi sual - >bl ueMask pScr n- >mask. bl ue;

119

XFree86 DDX Design

}

/*
* |f banking is needed, initialise an m BanklnfoRec (defined in
* "m bank.h"), and call mlnitializeBanking().
*/
if (!mInitializeBanking(pScreen, pScrn->virtual X, pScrn->virtual,
pScrn->di spl ayW dt h, pBankl nf o))
return FALSE;

/*

* |f backing store is to be supported (as is usually the case),
*initialise it.

*/

mInitializeBacki ngStore(pScreen);

/*
* Set initial black & white col ourmap indices.
*/

xf 86Set Bl ackWhi t ePi xel s(pScr een) ;

/*
* |Install colourmap functions. |If using the vgahw nodul e,
* vgaHandl eCol or maps woul d usual |y be call ed here.
*/

/*
* Initialise cursor functions. This exanple is for the m
* software cursor.
*/

m DClnitialize(pScreen, xf86GCetPointerScreenFuncs());

/* Initialise the default col ourmap */
switch (pScrn->depth) {
case 1:
i f (!xflbppCreateDef Col or map(pScreen))
return FALSE;
br eak;
case 4:
i f (!xf4bppCreat eDef Col or map(pScreen))
return FALSE;
br eak;
defaul t:
if (!cfbCreateDef Col or map(pScreen))
return FALSE;
br eak;

}

/*
* Wap the C oseScreen vector and set SaveScreen.

120

XFree86 DDX Design

*/
ZZZPTR(pScrn) - >Cl oseScreen = pScreen->Cl oseScr een;
pScreen->Cl oseScreen = ZZZ(C oseScr een;
pScreen- >SaveScreen = ZZZSaveScr een,;

/* Report any unused options (only for the first generation) */
if (serverGeneration == 1) {
xf 86ShowUnusedOpt i ons(pScrn- >scrnl ndex, pScrn->options);

}
/* Done */
return TRUE;
}
SwitchMode

Define the Swi t chMbde() function if mode switching is supported by the driver.

static Bool
7775w t chMode(i nt scrnl ndex, DisplayMdePtr node, int flags)

{
return ZZZModel ni t (xf 86Scr eens[scrnl ndex], node);
}
AdjustFrame

Define the Adj ust Frame() function if the driver supports this.

static void
ZZ7ZAdj ust Frame(i nt scrnlndex, int x, int y, int flags)

{
}

/* Adjust the viewport */

EnterVT, LeaveVT

Define the Ent er VT() and LeaveVT() functions.

These functions are mandatory.

static Bool
ZZZEnter VT(int scrnlndex, int flags)

{

ScrnlnfoPtr pScrn = xf86Screens[scrnlndex];
return ZZZkodel ni t (pScrn, pScrn->current Mode);

}

static void

121

XFree86 DDX Design

ZZZlL eaveVT(int scrnlndex, int flags)

{
ScrnlnfoPtr pScrn = xf86Screens[scrnlndex];
ZZ7ZRest ore(pScrn);

CloseScreen

Define the O oseScreen() function:

This function is mandatory. Note that it unwraps the previously wrapped pScr een-
>Cl oseScr een, and finishes by calling it.

static Bool
ZZZd oseScreen(int scrnlndex, ScreenPtr pScreen)
{
ScrnlnfoPtr pScrn = xf86Screens[scrnlndex];
if (pScrn->vtSena) {
ZZZRest ore(pScrn);
ZZZUnmapMen(pScrn) ;
}
pScrn->vt Sema = FALSE;
pScr een->Cl oseScreen = ZZZPTR(pScrn) - >Cl oseScr een;
return (*pScreen->C oseScreen) (scrnlndex, pScreen);

SaveScreen

Define the SaveScreen() function (the screen blanking function). When using the
vgahw module, this will typically be:

static Bool
Z77SaveScreen(ScreenPtr pScreen, int node)

{
}

return vgaHWsaveScr een(pScreen, node);

This function is mandatory. Before modifying any hardware register directly this
function needs to make sure that the Xserver is active by checking if pScr n is non-
NULL and for pScr n- >vt Senra == TRUE.

FreeScreen

Define the FreeScreen() function. This function is optional. It should be defined if
the ScrnInfoRec dri ver Pri vat e field is used so that it can be freed when a screen
is deleted by the common layer for reasons possibly beyond the driver's control.
This function is not used in during normal (error free) operation. The per-generation
data is freed by the d oseScreen() function.

122

XFree86 DDX Design

static void
ZZZFreeScreen(int scrnlndex, int flags)

{
/*
* |f the vgahw nodul e is used vgaHWreeHWRec() would be called
* here.
*/
ZZ7Fr eeRec(xf 86Scr eens|[scrnl ndex]) ;
}

123

	XFree86 DDX Design
	Table of Contents
	Preface
	The xorg.conf File
	Device section
	Screen section
	InputDevice section
	ServerLayout section
	Options

	Driver Interface
	Resource Access Control Introduction
	Terms and Definitions
	Bus
	Entity
	Resource
	Server States

	Control Flow in the Server and Mandatory Driver Functions
	Parse the xorg.conf file
	Initial processing of parsed information and command line options
	Enable port I/O access
	General bus probe
	Load initial set of modules
	Register Video and Input Drivers
	Initialise Access Control
	Video Driver Probe
	Matching Screens
	Allocate non-conflicting resources
	Sort the Screens and pre-check Monitor Information
	PreInit
	Cleaning up Unused Drivers
	Consistency Checks
	Check if Resource Control is Needed
	AddScreen (ScreenInit)
	Finalising RAC Initialisation
	Finishing InitOutput()
	Mode Switching
	Changing Viewport
	VT Switching
	End of server generation

	Optional Driver Functions
	Mode Validation
	Free screen data

	Recommended driver functions
	Save
	Restore
	Initialise Mode

	Data and Data Structures
	Command line data
	Data handling
	Accessing global data
	Allocating private data

	Keeping Track of Bus Resources
	Theory of Operation
	Resource Types
	Available Functions
	Probe Phase
	PreInit Phase
	ScreenInit Phase

	Config file “Option” entries
	Modules, Drivers, Include Files and Interface Issues
	Include files

	Offscreen Memory Manager
	Colormap Handling
	DPMS Extension
	DGA Extension
	The XFree86 X Video Extension (Xv) Device Dependent Layer
	The Loader
	Loader Overview
	Semi-private Loader Interface
	Module Requirements
	Public Loader Interface
	Special Registration Functions

	Helper Functions
	Functions for printing messages
	Functions for setting values based on command line and config file
	Primary Mode functions
	Secondary Mode functions
	Functions for handling strings and tokens
	Functions for finding which config file entries to use
	Probing discrete clocks on old hardware
	Other helper functions

	The vgahw module
	Data Structures
	General vgahw Functions
	VGA Colormap Functions
	VGA Register Access Functions

	Some notes about writing a driver
	Include files
	Data structures and initialisation
	Functions
	SetupProc
	GetRec, FreeRec
	Identify
	Probe
	AvailableOptions
	PreInit
	MapMem, UnmapMem
	Save, Restore
	ModeInit
	ScreenInit
	SwitchMode
	AdjustFrame
	EnterVT, LeaveVT
	CloseScreen
	SaveScreen
	FreeScreen

