X11 Input Extension Porting Document

George Sachs, Hewlett-Packard

X11 Input Extension Porting Document
by George Sachs

X Server Version 1.12.1
Copyright © 1989, 1990, 1991 Hewlett-Packard Company

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice and this permission notice appear in all copies. Hewlett-Packard makes
no representations about the suitability for any purpose of the information in this document. It is provided "as is"
without express or implied warranty. This document is only a draft stan- dard of the X Consortium and is therefore
subject to change.

Copyright © 1989, 1990, 1991 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

X Window System is a trademark of The Open Group.

Table of Contents

1. X11 Input Extension Porting DOCUMEDNTc.coiiiiiiiiiiiiiiiiiiiini e 1
Initializing EXteNSion DEVICEScccvviiiiiieiiiiiieiiiieeeiee et eeie e e er e eie e eeneeeenanns 1
Summary of Calling SEQUENCEcceevvuiiiiiiiiiiiinieiiee e e eeaens 1
Initialization Called From InitInputcoooiviiiiiiiiiiiiiiiiieeeee e, 3
Initialization Called From InitAndStartDevicescccoeeevveevrvinneeinnnnnnnn. 4

DIX Input Class Initialization Routinesc..ccooviiiiiiiiiiiiiiiiiinen 6
Initializing The Device Name And TYPEcoeevveeeiiiieiiiiieeiiiieeriieeeenineennns 10
Closing EXtension DEVICEScccueviiiiiriiiiieiiiiieeiiieeeiieeeeiieeeeiieeeeinnseennneesnnnaens 10
Implementation-Dependent ROULINEScoevviiiiiiiiiiiiiiiiieeec e, 11
AddOtherInPUEDEVICESiiviiiieiieei e e 11
OPenINPUEDEVICEcvniiiiiiiiiee e et e e e aaas 11
CloSEINPULDEVICE ..ovuiiieiiieii et e e e e e 12
SEtDEVICEMOUE ..cevuiiiiiieiiiieiii ettt e e et e e et e e eae e e e e s e aan e eanaans 12
SetDeVICEVAlUALOTSiiiiiiiiiiie i et e e e e e e ea e e eaaa s 12
ChangePointeIDEVICEccuuiiiiiieeiiiieeiiiie e eeeiee e eeieeeei e e eaieeereeeeenaneeees 12
ChangeKeyboardDEVICEceviiiiiiiiiniiiiieeiiie et eeie e eeie e eereeeeneeenaes 13
Input EXtension EVENS ... 13
Device Key EVENLS ..iiuiiiiiiiiiiie ettt e ea e eaas 14
Device Button EVentsccociviiiiiiiiiiiii e 15
Device Motion EVENESoiiviiiiiiiiiiiiii e 15
Device Proximity EVENTScoivviiiiiiiiiiiiiiin et 16

iii

Chapter 1. X11 Input Extension Porting
Document

This document is intended to aid the process of integrating the X11 Input Extension
into an X server.

Most of the functionality provided by the input extension is device- and implementa-
tion-independent, and should require no changes. The functionality is implemented
by routines that typically reside in the server source tree directory extensions/serv-
er/xinput. This extension includes functions to enable and disable input extension
devices, select input, grab and focus those device, query and change key and button
mappings, and others. The only input extension requirements for the device-depen-
dent part of X are that the input devices be correctly initialized and input events
from those devices be correctly generated. Device-dependent X is responsible for
reading input data from the input device hardware and if necessary, reformatting
it into X events.

The process of initializing input extension devices is similar to that used for the core
devices, and is described in the following sections. When multiple input devices
are attached to X server, the choice of which devices to initially use as the core X
pointer and keyboard is left implementation-dependent. It is also up to each imple-
mentation to decide whether all input devices will be opened by the server during
its initialization and kept open for the life of the server. The alternative is to open
only the X keyboard and X pointer during server initialization, and open other input
devices only when requested by a client to do so. Either type of implementation is
supported by the input extension.

Input extension events generated by the X server use the same 32-byte xEvent wire
event as do core input events. However, additional information must be sent for
input extension devices, requiring that multiple xEvents be generated each time
data is received from an input extension device. These xEvents are combined into a
single client XEvent by the input extension library. A later section of this document
describes the format and generation of input extension events.

Initializing Extension Devices

Extension input devices are initialized in the same manner as the core X input de-
vices. Device-Independent X provides functions that can be called from DDX to ini-
tialize these devices. Which functions are called and when will vary by implemen-
tation, and will depend on whether the implementation opens all the input devices
available to X when X is initialized, or waits until a client requests that a device be
opened. In the simplest case, DDX will open all input devices as part of its initial-
ization, when the InitInput routine is called.

Summary of Calling Sequence

Devi ce- | ndependent X | Device-Dependent X

X11 Input Extension
Porting Document

- call AddlnputDevice (deviceProc, AutoStart)
AddI nput Devi ce
- creates DevicelntRec
- records deviceProc
- adds new device to
list of off_devices.
sets dev->startup=Aut oSt art
- call one of:
- Regi st erPoi nterDevice (X pointer)
- processlnput Proc = ProcessPoi nterEvents
- Regi st er Keyboar dDevi ce (X keyboar d)
- processlnput Proc = ProcessKeyboardEvents
- RegisterO herDevice (extension device)
- processlnput Proc = ProcessQ her Events

Init AndSt art Devices ----- > - calls deviceProc with paraneters
(DEVI CE_INI'T, AutoStart)
sets dev->inited = return

val ue from devi ceProc

I

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| - in deviceProc, do one of:
| - call InitPointerDeviceStruct (X pointer)
| - call 1nitKeyboardDeviceStruct (X keybd)
| - init extension device by calling sonme of:
| - I nitKeyd assDevi ceStruct

| - InitButtonC assDeviceStruct

| - I nitVal uatord assDevi ceStruct

| - I nitVal uat or Axi sStruct

| - I nitFocusC assDevi ceSt ruct

| - InitProximtyC assDevi ceStruct

| - I nit KbdFeedbackC assDevi ceStruct

| - InitPtrFeedbackd assDevi ceStruct

| - InitLedFeedbackC assDevi ceStruct

| - InitStringFeedbackC assDevi ceStruct
| - Initlnteger FeedbackC assDevi ceSt r uct
| - I nitBell FeedbackC assDevi ceStruct

| - init device nanme and type by:

| - calling MakeAtomwi th one of the

| predefi ned names

| - calling AssignTypeAndNane

|
|
|
|
|
|
|
|
|
|
|

for each devi ce added
by Addl nput Devi ce,
I ni t AndSt art Devi ces
cal | s Enabl eDevice if
dev->startup &
dev->inited

- Enabl eDevice calls deviceProc with
(DEVI CE_ON, AutoStart)

I f deviceProc returns
Success, Enabl eDevi ce
nove the device from

- core devices are now enabl ed, extension
devi ces are now avail able to be accessed
t hrough the input extension protocol

X11 Input Extension
Porting Document

i nput I nfo.off_devices | requests.
to inputlnfo. devices |

Initialization Called From Initinput

InitInput is the first DDX input entry point called during X server startup. This rou-
tine is responsible for device- and implementation- specific initialization, and for
calling AddInputDevice to create and initialize the DevicelntRec structure for each
input device. AddInputDevice is passed the address of a procedure to be called by
the DIX routine InitAndStartDevices when input devices are enabled. This proce-
dure is expected to perform X initialization for the input device.

If the device is to be used as the X pointer, DDX should then call RegisterPointer-
Device, passing the DevicelntRec pointer, to initialize the device as the X pointer.

If the device is to be used as the X keyboard, DDX should instead call RegisterKey-
boardDevice to initialize the device as the X keyboard.

If the device is to be used as an extension device, DDX should instead call Regis-
terOtherDevice, passing the DevicelntPtr returned by AddInputDevice.

A sample InitInput implementation is shown below.

I nitlnput(argc, argv)

int i, nundevs, Readl nput();

Devi cel nt Ptr dev;

Local Devi ce | ocal devs[LOCAL_MAX_DEVS] ;
Devi ceProc kbdproc, ptrproc, extproc;

/**
* (Open the appropriate input devices, determ ne which are

* avail abl e, and choose an X pointer and X keyboard device

* in some inplenmentation-dependent manner.
***/

open_i nput _devi ces (&nundevs, | ocal devs);

/**

* Regi ster a WakeupHandl er to handl e input when it is generated.

***/

Regi st er Bl ockAndWakeupHandl ers (NoopDDA, Readl nput, NULL);

/**

* Register the input devices with DI X

***/

for (i=0; i<nundevs; i++)

{

if (localdevs[i].use == |sXKeyboard)

{
dev = AddIl nput Devi ce (kbdproc, TRUE);

Regi st er Keyboar dDevi ce (dev);

X11 Input Extension
Porting Document

}

else if (localdevs[i].use == |sXPointer)
{
dev = AddIl nput Devi ce (ptrproc, TRUE);
Regi st er Poi nt er Devi ce (dev);
}

el se
{
dev = AddIl nput Devi ce (extproc, FALSE);
Regi st er & her Devi ce (dev);
}
if (dev == NULL)
Fatal Error ("Too many input devices.");
dev->devi cePrivate = (pointer) & ocaldevs[i];

}
Initialization Called From InitAndStartDevices

After InitInput has returned, InitAndStartDevices is the DIX routine that is called
to enable input devices. It calls the device control routine that was passed to Ad-
dInputDevice, with a mode value of DEVICE INIT. The action taken by the device
control routine depends on how the device is to be used. If the device is to be the
X pointer, the device control routine should call InitPointerDeviceStruct to initial-
ize it. If the device is to be the X keyboard, the device control routine should call
InitKeyboardDeviceStruct. Since input extension devices may support various com-
binations of keys, buttons, valuators, and feedbacks, each class of input that it sup-
ports must be initialized. Entry points are defined by DIX to initialize each of the
supported classes of input, and are described in the following sections.

A sample device control routine called from InitAndStartDevices is shown below.

Bool extproc (dev, node)
Devi cel nt Ptr dev;
i nt node;

{

Local Devi ce *l ocal dev = (Local Device *) dev->devicePrivate,;

swi tch (node)
{
case DEVICE INT:
if (strcnp(l ocal dev->nane, XI_TABLET) == 0)
{

/**

* This device reports proximty, has buttons,
* reports two axes of notion, and can be focused.
* |t al so supports the sane feedbacks as the X pointer

* (accel eration and threshold can be set).
**/

I nitButtonC assDevi ceStruct (dev, button_count, button_nap);
I ni t Val uat or Gl assDevi ceStruct (dev, |ocal dev->n_axes,);

not i onproc, MOTI ON BUF_SI ZE, Absol ute);
for (i=0; i<localdev->n_axes; i++)

X11 Input Extension
Porting Document

I nit Val uat or Axi sStruct (dev, i
resol ution);
I ni t FocusC assDevi ceStruct (dev);
I nitProximtyC assDeviceStruct (dev);
I nit PtrFeedbackC assDevi ceStruct (dev, p_control proc);

, mn_val, max_val,

}
else if (strcnp(local dev->name, Xl _BUTTONBOX) == 0)
{

/**

* This device has keys and LEDs, and can be focused.

**/

I ni t KeyCd assDevi ceStruct (dev, syms, nodmap);
I ni t FocusC assDevi ceStruct (dev);
I ni t LedFeedbackC assDevi ceStruct (dev, |edcontrol);
}
else if (strcnp(l ocal dev->nanme, Xl _KNOBBOX) == 0)
{

/**

* This device reports notion.
* |t can be focused.

**/

I ni t Val uat or Gl assDevi ceStruct (dev, |ocal dev->n_axes,);
not i onproc, MOTI ON BUF_SI ZE, Absol ute);
for (i=0; i<localdev->n_axes; i++)
I nitVal uat or Axi sStruct (dev, i, mn_val, max_val,
resol ution);
I ni t FocusC assDevi ceStruct (dev);
}
| ocal dev->at om =
MakeAt on(| ocal dev->nane, strlen(l ocal dev->nane), FALSE);
Assi gnTypeAndNane (dev, |ocal dev->atom I ocal dev->nane);
br eak;
case DEVI CE_ON:
AddEnabl edDevi ce (| ocal dev->file_ds);
dev->on = TRUE;
br eak;
case DEVI CE_OFF:
dev->on = FALSE;
RenoveEnabl edDevi ce (| ocal dev->fil e_ds);
br eak;
case DEVI CE_CLCSE:
br eak;
}
}

The device control routine is called with a mode value of DEVICE ON by the DIX
routine EnableDevice, which is called from InitAndStartDevices. When called with
this mode, it should call AddEnabledDevice to cause the server to begin checking
for available input from this device.

>From InitAndStartDevices, EnableDevice is called for all devices that have the
"inited" and "startup" fields in the DeviceIlntRec set to TRUE. The "inited" field is set

X11 Input Extension
Porting Document

by InitAndStartDevices to the value returned by the deviceproc when called with a
mode value of DEVICE INIT. The "startup" field is set by AddInputDevice to value
of the second parameter (autoStart).

When the server is first initialized, it should only be checking for input from the
core X keyboard and pointer. One way to accomplish this is to call AddInputDevice
for the core X keyboard and pointer with an autoStart value equal to TRUE, while
calling AddInputDevice for input extension devices with an autoStart value equal
to FALSE. If this is done, EnableDevice will skip all input extension devices during
server initialization. In this case, the OpenInputDevice routine should set the "start-
up" field to TRUE when called for input extension devices. This will cause ProcX-
OpenlnputDevice to call EnableDevice for those devices when a client first does an
XOpenDevice request.

DIX Input Class Initialization Routines

DIX routines are defined to initialize each of the defined input classes. The defined
classes are:

» KeyClass - the device has keys.

ButtonClass - the device has buttons.

* ValuatorClass - the device reports motion data or positional data.
¢ Proximitylass - the device reports proximity information.

* FocusClass - the device can be focused.

* FeedbackClass - the device supports some kind of feedback

DIX routines are provided to initialize the X pointer and keyboard, as in previous
releases of X. During X initialization, InitPointerDeviceStruct is called to initialize
the X pointer, and InitKeyboardDeviceStruct is called to initialize the X keyboard.
There is no corresponding routine for extension input devices, since they do not all
support the same classes of input. Instead, DDX is responsible for the initialization
of the input classes supported by extension devices. A description of the routines
provided by DIX to perform that initialization follows.

InitkeyClassDeviceStruct

This function is provided to allocate and initialize a KeyClassRec, and should be
called for extension devices that have keys. It is passed a pointer to the device,
and pointers to arrays of keysyms and modifiers reported by the device. It returns
FALSE if the KeyClassRec could not be allocated, or if the maps for the keysyms
and and modifiers could not be allocated. Its parameters are:

Bool

I ni t Keyd assDevi ceStruct (dev, pKeySyms, pModifiers)
Devi cel nt Ptr dev;
KeySynmsPtr pKeySyns;
CARD8 pModifiers[];

The DIX entry point InitKeyboardDeviceStruct calls this routine for the core X key-
board. It must be called explicitly for extension devices that have keys.

X11 Input Extension
Porting Document

InitButtonClassDeviceStruct

This function is provided to allocate and initialize a ButtonClassRec, and should be
called for extension devices that have buttons. It is passed a pointer to the device,
the number of buttons supported, and a map of the reported button codes. It returns
FALSE if the ButtonClassRec could not be allocated. Its parameters are:

Bool

I ni t Buttond assDevi ceStruct (dev, nunButtons, map)
regi ster DevicelntPtr dev;
i nt nunButtons;
CARD8 * map;

The DIX entry point InitPointerDeviceStruct calls this routine for the core X pointer.
It must be called explicitly for extension devices that have buttons.

InitValuatorClassDeviceStruct

This function is provided to allocate and initialize a ValuatorClassRec, and should
be called for extension devices that have valuators. It is passed the number of axes
of motion reported by the device, the address of the motion history procedure for
the device, the size of the motion history buffer, and the mode (Absolute or Relative)
of the device. It returns FALSE if the ValuatorClassRec could not be allocated. Its
parameters are:

Bool
I nit Val uat or d assDevi ceStruct (dev, nunmAxes, notionProc, nunitionEvents, node)
Devi cel nt Ptr dev;
int (*rmotionProc)();
i nt numAxes;
i nt num\vbti onEvents;
i nt node;

The DIX entry point InitPointerDeviceStruct calls this routine for the core X pointer.
It must be called explicitly for extension devices that report motion.

InitValuatorAxisStruct

This function is provided to initialize an XAxisInfoRec, and should be called for core
and extension devices that have valuators. The space for the XAxisInfoRec is allo-
cated by the InitValuatorClassDeviceStruct function, but is not initialized.

InitValuatorAxisStruct should be called once for each axis of motion reported by
the device. Each invocation should be passed the axis number (starting with 0), the
minimum value for that axis, the maximum value for that axis, and the resolution
of the device in counts per meter. If the device reports relative motion, 0 should
be reported as the minimum and maximum values. InitValuatorAxisStruct has the
following parameters:

I nitVal uat or Axi sStruct (dev, axnum mnval, maxval, resolution)
Devi cel nt Ptr dev;
i nt axnum

X11 Input Extension
Porting Document

int mnval;
i nt maxval ;
int resol ution;

This routine is not called by InitPointerDeviceStruct for the core X pointer. It must
be called explicitly for core and extension devices that report motion.

InitFocusClassDeviceStruct

This function is provided to allocate and initialize a FocusClassRec, and should be
called for extension devices that can be focused. It is passed a pointer to the device,
and returns FALSE if the allocation fails. It has the following parameter:

Bool
I ni t FocusC assDevi ceStruct (dev)
Devi cel nt Ptr dev;

The DIX entry point InitKeyboardDeviceStruct calls this routine for the core X key-
board. It must be called explicitly for extension devices that can be focused. Whether
or not a particular device can be focused is left implementation-dependent.

InitProximityClassDeviceStruct

This function is provided to allocate and initialize a ProximityClassRec, and should
be called for extension absolute pointing devices that report proximity. It is passed
a pointer to the device, and returns FALSE if the allocation fails. It has the following
parameter:

Bool
I nitProximtyCd assDevi ceStruct (dev)
Devi cel nt Ptr dev;

Initializing Feedbacks

InitKbdFeedbackClassDeviceStruct

This function is provided to allocate and initialize a KbdFeedbackClassRec, and may
be called for extension devices that support some or all of the feedbacks that the
core keyboard supports. It is passed a pointer to the device, a pointer to the proce-
dure that sounds the bell, and a pointer to the device control procedure. It returns
FALSE if the allocation fails, and has the following parameters:

Bool

I ni t KbdFeedbackC assDevi ceStruct (dev, bell Proc, control Proc)
Devi cel nt Ptr dev;
void (*bellProc)();
void (*control Proc) ();

The DIX entry point InitKeyboardDeviceStruct calls this routine for the core X key-
board. It must be called explicitly for extension devices that have the same feed-
backs as a keyboard. Some feedbacks, such as LEDs and bell, can be supported

X11 Input Extension
Porting Document

either with a KbdFeedbackClass or with BellFeedbackClass and LedFeedbackClass
feedbacks.

InitPtrFeedbackClassDeviceStruct

This function is provided to allocate and initialize a PtrFeedbackClassRec, and
should be called for extension devices that allow the setting of acceleration and
threshold. It is passed a pointer to the device, and a pointer to the device control
procedure. It returns FALSE if the allocation fails, and has the following parameters:

Bool

I nit PtrFeedbackC assDevi ceStruct (dev, control Proc)
Devi cel nt Ptr dev;
void (*control Proc) ();

The DIX entry point InitPointerDeviceStruct calls this routine for the core X pointer.
It must be called explicitly for extension devices that support the setting of accel-
eration and threshold.

InitLedFeedbackClassDeviceStruct

This function is provided to allocate and initialize a LedFeedbackClassRec, and
should be called for extension devices that have LEDs. It is passed a pointer to the
device, and a pointer to the device control procedure. It returns FALSE if the allo-
cation fails, and has the following parameters:

Bool

I ni t LedFeedbackCl assDevi ceStruct (dev, control Proc)
Devi cel nt Ptr dev;
void (*control Proc) ();

Up to 32 LEDs per feedback can be supported, and a device may have multiple
feedbacks of the same type.

InitBellFeedbackClassDeviceStruct

This function is provided to allocate and initialize a BellFeedbackClassRec, and
should be called for extension devices that have a bell. It is passed a pointer to the
device, and a pointer to the device control procedure. It returns FALSE if the allo-
cation fails, and has the following parameters:

Bool

I nit Bel | FeedbackC assDevi ceStruct (dev, bell Proc, control Proc)
Devi cel nt Ptr dev;
void (*bellProc)();
void (*control Proc) ();

InitStringFeedbackClassDeviceStruct

This function is provided to allocate and initialize a StringFeedbackClassRec, and
should be called for extension devices that have a display upon which a string can
be displayed. It is passed a pointer to the device, and a pointer to the device control
procedure. It returns FALSE if the allocation fails, and has the following parameters:

X11 Input Extension
Porting Document

Bool
I nitStringFeedbackd assDevi ceStruct (dev, control Proc, max_synbol s,
num symnmbol s_supported, synbol s)
Devi cel nt Ptr dev;
void (*control Proc) ();
i nt max_synbol s:
i nt num synbol s_supported;
KeySym *synbol s;

InitintegerFeedbackClassDeviceStruct

This function is provided to allocate and initialize an IntegerFeedbackClassRec, and
should be called for extension devices that have a display upon which an integer can
be displayed. It is passed a pointer to the device, and a pointer to the device control
procedure. It returns FALSE if the allocation fails, and has the following parameters:

Bool

I nitlnteger FeedbackC assDevi ceStruct (dev, control Proc)
Devi cel nt Ptr dev;
void (*control Proc) ();

Initializing The Device Name And Type

The device name and type can be initialized by calling AssignTypeAndName with
the following parameters:

voi d

Assi gnTypeAndNane(dev, type, name)
Devi cel nt Ptr dev;
At om t ype;
char *nane;

This will allocate space for the device name and copy the name that was passed. The
device type can be obtained by calling MakeAtom with one of the names defined for
input devices. MakeAtom has the following parameters:

At om

MakeAt on(nane, |en, makeit)
char *nane;
int |len;
Bool nmakeit;

Since the atom was already made when the input extension was initialized, the value
of makeit should be FALSE;

Closing Extension Devices

The DisableDevice entry point is provided by DIX to disable input devices. It calls the
device control routine for the specified device with a mode value of DEVICE OFF.
The device control routine should call RemoveEnabledDevice to stop the server from
checking for input from that device.

10

X11 Input Extension
Porting Document

DisableDevice is not called by any input extension routines. It can be called from the
CloselnputDevice routine, which is called by ProcXCloseDevice when a client makes
an XCloseDevice request. If DisableDevice is called, it should only be called when
the last client using the extension device has terminated or called XCloseDevice.

Implementation-Dependent Routines

Several input extension protocol requests have implementation-dependent entry
points. Default routines are defined for these entry points and contained in the
source file extensions/server/xinput/xstubs.c. Some implementations may be able
to use the default routines without change. The following sections describe each
of these routines.

AddOtherinputDevices

AddOtherInputDevice is called from ProcXListInputDevices as a result of an XListIn-
putDevices protocol request. It may be needed by implementations that do not open
extension input devices until requested to do so by some client. These implemen-
tations may not initialize all devices when the X server starts up, because some of
those devices may be in use. Since the XListInputDevices function only lists those
devices that have been initialized, AddOtherInputDevices is called to give DDX a
chance to initialize any previously unavailable input devices.

A sample AddOtherInputDevices routine might look like the following:

voi d

AddQ her | nput Devi ces ()
{
Devi cel nt Ptr dev;
int i;

for (i=0; i<MAX_DEVICES; i++)

{
if (!local _dev[i].initialized &% avail abl e(local _dev[i]))
{
dev = (DevicelntPtr) AddlnputDevice (local _dev[i].deviceProc, TRUE);
dev->public. devicePrivate = | ocal _dev[i];
Regi st er & her Devi ce (dev);
dev->inited = ((*dev->deviceProc)(dev, DEVICE INT) == Success);
}
}

}

The default AddOtherInputDevices routine in xstubs.c does nothing. If all input ex-
tension devices are initialized when the server starts up, it can be left as a null
routine.

OpenlinputDevice

Some X server implementations open all input devices when the server is initialized
and never close them. Other implementations may open only the X pointer and key-
board devices during server initialization, and open other input devices only when

11

X11 Input Extension
Porting Document

some client makes an XOpenDevice request. This entry point is for the latter type
of implementation.

If the physical device is not already open, it can be done in this routine. In this case,
the server must keep track of the fact that one or more clients have the device open,
and physically close it when the last client that has it open makes an XCloseDevice
request.

The default implementation is to do nothing (assume all input devices are opened
during X server initialization and kept open).

CloselnputDevice

Some implementations may close an input device when the last client using that
device requests that it be closed, or terminates. CloselnputDevice is called from
ProcXCloseDevice when a client makes an XCloseDevice protocol request.

The default implementation is to do nothing (assume all input devices are opened
during X server initialization and kept open).

SetDeviceMode

Some implementations support input devices that can report either absolute posi-
tional data or relative motion. The XSetDeviceMode protocol request is provided to
allow DDX to change the current mode of such a device.

The default implementation is to always return a BadMatch error. If the implemen-
tation does not support any input devices that are capable of reporting both relative
motion and absolute position information, the default implementation may be left
unchanged.

SetDeviceValuators

Some implementations support input devices that allow their valuators to be set to
an initial value. The XSetDeviceValuators protocol request is provided to allow DDX
to set the valuators of such a device.

The default implementation is to always return a BadMatch error. If the implemen-
tation does not support any input devices that are allow their valuators to be set,
the default implementation may be left unchanged.

ChangePointerDevice

The XChangePointerDevice protocol request is provided to change which device is
used as the X pointer. Some implementations may maintain information specific to
the X pointer in the private data structure pointed to by the DeviceIntRec. Change-
PointerDevice is called to allow such implementations to move that information to
the new pointer device. The current location of the X cursor is an example of the
type of information that might be affected.

The DevicelntRec structure that describes the X pointer device does not contain a
FocusRec. If the device that has been made into the new X pointer was previously
a device that could be focused, ProcXChangePointerDevice will free the FocusRec
associated with that device.

12

X11 Input Extension
Porting Document

If the server implementation desires to allow clients to focus the old pointer device
(which is now accessible through the input extension), it should call InitFocusClass-
DeviceStruct for the old pointer device.

The XChangePointerDevice protocol request also allows the client to choose which
axes of the new pointer device are used to move the X cursor in the X- and Y- di-
rections. If the axes are different than the default ones, the server implementation
should record that fact.

If the server implementation supports input devices with valuators that are not al-
lowed to be used as the X pointer, they should be screened out by this routine and
a BadDevice error returned.

The default implementation is to do nothing.

ChangeKeyboardDevice

The XChangeKeyboardDevice protocol request is provided to change which device
is used as the X keyboard. Some implementations may maintain information specif-
ic to the X keyboard in the private data structure pointed to by the DevicelntRec.
ChangeKeyboardDevice is called to allow such implementations to move that infor-
mation to the new keyboard device.

The X keyboard device can be focused, and the DevicelntRec that describes that
device has a FocusRec. If the device that has been made into the new X keyboard
did not previously have a FocusRec, ProcXChangeKeyboardDevice will allocate one
for it.

If the implementation does not want clients to be able to focus the old X keyboard
(which has now become available as an input extension device) it should call Delete-
FocusClassDeviceStruct to free the FocusRec.

If the implementation supports input devices with keys that are not allowed to be
used as the X keyboard, they should be checked for here, and a BadDevice error
returned.

The default implementation is to do nothing.

Input Extension Events

Events accessed through the input extension are analogous to the core in-
put events, but have different event types. They are of types Devi ceKeyPr ess,
Devi ceKeyRel ease, Devi ceButtonPress, Devi ceButtonRel ease, Devi ceDevi ce-
Mot i onNot i fy, Devi ceProxi mtyln, Devi ceProxi mtyQut, and Devi ceVal uat or.
These event types are not constants. Instead, they are external integers defined by
the input extension. Their actual values will depend on which extensions are sup-
ported by a server, and the order in which they are initialized.

The data structures that define these events are defined in the file ext ensi ons/ i n-
cl ude/ Xl pr ot 0. h. Other input extension constants needed by DDX are defined in
the file ext ensi ons/ i ncl ude/ XI . h.

Some events defined by the input extension contain more information than can be
contained in the 32-byte xEvent data structure. To send this information to clients,

13

X11 Input Extension
Porting Document

DDX must generate two or more 32-byte wire events. The following sections de-
scribe the contents of these events.

Device Key Events

Devi ceKeyPr esss events contain all the information that is contained in a core Key-
Pr ess event, and also the following additional information:

* deviceid - the identifier of the device that generated the event.

» device state - the state of any modifiers on the device that generated the event
* num valuators - the number of valuators reported in this event.

» first valuator - the first valuator reported in this event.

» valuator0O through valuator5 - the values of the valuators.

In order to pass this information to the input extension library, two 32-byte wire
events must be generated by DDX. The first has an event type of Devi ceKeyPr ess,
and the second has an event type of \fPDeviceValuator\fP.

The following code fragment shows how the two wire events could be initialized:

extern int Devi ceKeyPress;

Devi cel nt Ptr dev;

xEvent xE[2];

CARD8 id, numval uators;

I NT16 x, y, pointerx, pointery,;

Time timestanp;

devi ceKeyBut t onPoi nter *xev = (devi ceKeyButtonPoi nter *) XE;
devi ceVal uat or *xv;

xev->type = Devi ceKeyPress; /* defined by input extension */
xev->detail = keycode; /* key pressed on this device */
xev->time = tinestanp; /* sanme as for core events */
xev->root X = poi nterx; /* x location of core pointer */
xev->rootY = pointery; /* y location of core pointer */

/**/

/* */
/* The following field does not exist for core input events. */
/* It contains the device id for the device that generated the */
/* event, and al so indicates whether nore than one 32-byte wire */
/* event is being sent. */
/* */

/**/

xev->devi ceid = dev->id | MORE_EVENTS; /* sending nore than 1*/

/**/

/* Fields in the second 32-byte wire event: */
/**/

14

X11 Input Extension
Porting Document

xv = (deviceVal uator *) ++xev;

xv->type = Devi ceVal uator; /* event type of second event */
Xxv->devi ceid = dev->id; /* 1d of this device */
Xv->num val uators = 0; /* no val uators being sent */
xv->devi ce_state = 0; [* will be filled in by DX */

Device Button Events

Devi ceBut t on events contain all the information that is contained in a core button
event, and also the same additional information that a Devi ceKey event contains.

Device Motion Events

Devi ceMot i on events contain all the information that is contained in a core mo-
tion event, and also additional valuator information. At least two wire events are
required to contain this information. The following code fragment shows how the
two wire events could be initialized:

extern int DeviceMtionNotify;

Devi cel nt Ptr dev;

xEvent xE[2];

CARD8 id, numval uators;

I NT16 x, y, pointerx, pointery;

Time timestanp;

devi ceKeyBut t onPoi nter *xev = (devi ceKeyButtonPointer *) XE;
devi ceVal uat or *xv;

xev->type = Devi ceMdtionNotify; [* defined by input extension */
xev->detail = keycode; /* key pressed on this device */
xev->time = tinestanp; /* sanme as for core events */
xev->root X = poi nterx; /* x location of core pointer */
xev->rootY = pointery; /* y location of core pointer */

/**/

/* */
/* The following field does not exist for core input events. */
/* 1t contains the device id for the device that generated the */
/* event, and al so indicates whether nore than one 32-byte wire */
/* event is being sent. */
/* */

/**/

xev->deviceid = dev->id | MORE_EVENTS; /* sending nore than 1*/

/**/

/* Fields in the second 32-byte wire event: */
/**/

xv = (deviceVal uator *) ++xev;
Xv->type = Devi ceVal uator; /* event type of second event */
Xv->devi ceid = dev->id; /* id of this device */

15

X11 Input Extension
Porting Document

Xv->num val uators = 2; [* 2 valuators being sent */
xv->first_valuator = O; [* first valuator being sent */
xv->devi ce_state = 0; [* will be filled in by DX */
xv->val uator0 = x; [* first axis of this device */
xv->val uatorl = vy; /* second axis of this device */

Up to six axes can be reported in the deviceValuator event. If the device is reporting
more than 6 axes, additional pairs of DeviceMotionNotify and DeviceValuator events
should be sent, with the first valuator field set correctly.

Device Proximity Events

Some input devices that report absolute positional information, such as graphics
tablets and touchscreens, may report proximity events. Proxi nityl n events are
generated when a pointing device like a stylus, or in the case of a touchscreen,
the user's finger, comes into close proximity with the surface of the input device.
Proxi m t yQut events are generated when the stylus or finger leaves the proximity
of the input devices surface.

Pr oxi m ty events contain almost the same information as button events. The event
type is Proxi mi tyl n or Proxi m t yQut, and there is no detail information.

16

	X11 Input Extension Porting Document
	Table of Contents
	Chapter 1. X11 Input Extension Porting Document
	Initializing Extension Devices
	Summary of Calling Sequence
	Initialization Called From InitInput
	Initialization Called From InitAndStartDevices
	DIX Input Class Initialization Routines
	InitKeyClassDeviceStruct
	InitButtonClassDeviceStruct
	InitValuatorClassDeviceStruct
	InitValuatorAxisStruct
	InitFocusClassDeviceStruct
	InitProximityClassDeviceStruct
	Initializing Feedbacks
	InitKbdFeedbackClassDeviceStruct
	InitPtrFeedbackClassDeviceStruct
	InitLedFeedbackClassDeviceStruct
	InitBellFeedbackClassDeviceStruct
	InitStringFeedbackClassDeviceStruct
	InitIntegerFeedbackClassDeviceStruct

	Initializing The Device Name And Type

	Closing Extension Devices
	Implementation-Dependent Routines
	AddOtherInputDevices
	OpenInputDevice
	CloseInputDevice
	SetDeviceMode
	SetDeviceValuators
	ChangePointerDevice
	ChangeKeyboardDevice

	Input Extension Events
	Device Key Events
	Device Button Events
	Device Motion Events
	Device Proximity Events

