
1

Application Group
Extension to the X Protocol

X Consortium Standard

Kaleb S. KEITHLEY, X Consortium, Inc <kaleb@x.org>
X Version 11, Release 7.7

Version 1.0

Copyright © 1996 X Consortium, Inc.

All Rights Reserved.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X
CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILI-
TY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OF OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be
used in advertising or otherwise to promote the sale, use or other dealings in
this Software without prior written authorization from the X Consortium.

X Window System is a trademark of The OpenGroup.
27 September 1996

Abstract

The Application Group Extension to the X protocol is intended to provide a framework to al-
low more than one program to manage X applications on the desktop. The initial use of this
extension will be to insert or embed the windows of X programs into the windows of anoth-
er program, such as a web browser. This extension is not intended to address larger em-
bedding issues that, for example, OpenDoc does, such as shared menu bars, etc.

Application Group Ex-
tension to the X Protocol

2

Table of Contents
Purpose and Goals ... 3
Overview of the protocol. .. 3
Requests .. 3
Changes to Existing Requests ... 6

MapWindow .. 6
ConfigureWindow ... 6
CreateWindow .. 7
ChangeWindowAttributes ... 7

Changes to Existing Events .. 7
MapRequest ... 7
ConfigureRequest ... 7

Errors ... 8
AppGroupQueryVersion .. 8
AppGroupCreate ... 8
AppGroupDestroy ... 8
AppGroupGetAttr ... 8
AppGroupQuery .. 8
AppGroupCreateAssociation .. 8
AppGroupDestroyAssociation ... 9

Encoding .. 9
Library API .. 11
A. System Window Encodings ... 14

Application Group Ex-
tension to the X Protocol

3

Purpose and Goals
The Application Group Extension to the X protocol is intended to provide a frame-
work to allow more than one program to manage X applications on the desktop. The
initial use of this extension will be to insert or embed the windows of X programs
into the windows of another program, such as a web browser. This extension is not
intended to address larger embedding issues that, for example, OpenDoc does, such
as shared menu bars, etc. Using X programs on the World Wide Web allows for
greater control of the presentation and takes advantage of the existing body of X
programs rather than re-implement them in another language. In addition it allows
the embedding of non-X programs into web browsers by using third party products
like Wabi, MAE, and WinCenter. 1

Overview of the protocol.
This extension introduces the concept of an Application Group. An Application
Group is a set of one or more applications that are primarily managed by a special
application known as the Application Group Leader, which, for example, might be
a web browser. The primary purpose of Application Groups is to provide a means
of sharing the Substructure-Redirect attribute of the root window between the win-
dow manager and one or more Application Group Leaders.

To join an Application Group an application must present the proper authorization
during the connection setup. Authorizations are generated by the X server at the
request of an Application Group Leader, and are then stored for the application to
use to establish its connection to the X server. To generate an authorization the
Application Group Leader sends a request to the server naming the Application
Group to which the authorization will be bound, and any applications that connect
using that authorization will automatically become part of the associated Applica-
tion Group. The protocol to generate an authorization is defined in the Security Ex-
tension specification.

As a member of an Application Group, when an application creates and maps a win-
dow as a child of the root window, the MapRequest and ConfigureRequest events
are delivered to the Application Group Leader instead of the window manager. The
Application Group Leader may then reparent the window into its own window hi-
erarchy; or reissue the map request, in which case the window comes under the
control of the window manager.

Requests
AppGroupQueryVersion

client_major_version: CARD16
client_minor_version: CARD16
=>
server_major_version: CARD16
server_minor_version: CARD16

1 Wabi is a trademark of Sun Microsystems, Inc. MAE is a trademark of Apple Computer, Inc. WinCenter is a trade-
mark of Network Computing Devices, Inc.

Application Group Ex-
tension to the X Protocol

4

If supplied, the client_major_version and client_minor_version indicate what ver-
sion of the protocol the application wants the server to implement. The server ver-
sion numbers returned indicate the version of the protocol the X server actually
supports. This may not match the versions requested by the application. An im-
plementation may (but need not) support more than one version simultaneously.
The server_major_version and server_minor_version numbers are a mechanism to
support any future revisions of the Application Group extension protocol which
may be necessary. In general, the major version would increment for incompati-
ble changes, and the minor version would increment for small, upward-compatible
changes. X servers that support the protocol defined in this document will return a
server_major_version of 1 and a server_minor_version of 0.

AppGroupCreate

app_group: APPGROUP
value_mask: BITMASK
value_list: LISTofVALUE

This request creates an Application Group using app_group as the Application
Group ID.

The value_mask and value_list specify attributes of the Application Group that are
to be explicitly initialized. The attributes, their types, and the default values are:

Attribute Type Default
app_group_leader Bool True
single_screen Bool True
default_root Window None
root_visual VisualID None
default_colormap Colormap None
black_pixel Pixel 0
white_pixel Pixel 0

If the single_screen attribute is True then the number of video screens returned
to a program in the Application Group in the connection setup message is one,
irrespective of how many video screens the server actually has. If a server sup-
ports both video and print screens, then all print screens will always be returned. If
single_screen is specified as True then the connection setup message will contain
only the information about the video screen which has default_root as its root win-
dow, plus any print screens.

Note
The intent is to allow an embedding manager to ensure that it will be able
to reparent any top-level windows that Application Group members create.
By hiding the fact that there are other screens it can be reasonably assured
that applications will only create top-level windows on the same screen that
it itself appears on. An embedding manager should take care not to supply

Application Group Ex-
tension to the X Protocol

5

an invalid display, e.g. :0.1, to a program that will be in an Application Group
where the single_screen attribute is True.

If single_screen is set to True default_root specifies which screen will be returned
as screen zero in the connection setup message for applications in the Application
Group. If set to None, then the real screen zero is used, otherwise the screen which
has default_root as its root window will be used.

If single_screen is set to True the root_visual and default_colormap attributes may
be used to over-ride the default values that are returned in the connection setup
information returned to new programs in the Application Group. If None is specified
for root_visual or default_colormap then the normal default values for the screen
(possibly spedified by default_root) are used, otherwise the specified values are
used. If root_visual and/or default_colormap are specified they must be valid, i.e.
root_visual must be a visual type available on the screen, and the colormap, if spec-
ified, must be a valid colormap for the visual that is used.

IF single_screen is set to True and default_colormap is not specified as None, the
black_pixel and white_pixel attributes must be specified, and they will over-ride the
default values that are returned in the connection setup returned to new programs
in the Application Group. If default_colormap is specified as None and black_pixel
and/or white_pixel are specified, they will be ignored.

The app_group_leader attribute is used to identify the Application Group Leader
program for the app_group. By specifying True the server will identify the program
making the request as the Application Group Leader for the application group. The
Application Group Leader receives MapRequest and ConfigureRequest events from
the server when an attempt is made to map or configure top-level windows of a
program in an Application Group, instead of being sent to a window manager that
has selected SubstructureRedirect events on the root window. The parent window
field in these events will contain the Application Group ID.

AppGroupDestroy

app_group: APPGROUP

This request destroys the app_group. If the app_group_leader attribute for the
app_group is True, then any applications in the Application Group that are still con-
nected will be killed as if a KillClient request had been received for that application.

Note
If the application that created a non-embedded Application Group exits, and
therefore any Authorizations to be cancelled, and any applications that at-
tempt to open new connections to the X server using one of those Authoriza-
tions will be unable to do so.

AppGroupGetAttr

>app_group: APPGROUP
=>
LISTofVALUE

This request returns the application group attributes for app_group.

Application Group Ex-
tension to the X Protocol

6

AppGroupQuery

resource: XID
=>
app_group: APPGROUP

This request returns the Application Group ID of the application that created re-
source or None if that application is not associated with any Application Group. The
resource value may be the resource base of the application.

AppGroupCreateAssociation

window: WINDOW
window_type: CARD32
system_window: LISTofCARD8

This request associates window with system_window. The window_type indicates
the native window system of the application making the request. For non-X
window_types both the embedding manager and the server must be executing on
the same host. When system_window is Microsoft Windows or OS/2 Presentation
Manager, the system_window is an HWND; when the native window system is Mac-
intosh, the system_window is a WindowPtr and a Rect. The window may be used for
any X request that takes a Window.

AppGroupDestroyAssociation

window: WINDOW

This request destroys the association created with AppGroupCreateAssociation. The
window is destroyed. The system_window that was specified in the AppGroupCre-
ateAssociation request is not affected.

Changes to Existing Requests

MapWindow
If the override-redirect attribute of the window is False and if the window is a child
of a root window and if the window belongs to an application that is in an applica-
tion group and if some other application is the application group leader for that
group, then a MapRequest event is generated and the window remains unmapped.
Otherwise, the core protocol semantics apply.

ConfigureWindow
If the override-redirect attribute of the window is False and if the window is a child
of a root window and if the window belongs to an application that is in an application
group and if some other application is the application group leader for that group,
then a ConfigureRequest event is generated and the window remains unchanged.
Otherwise, the core protocol semantics apply.

Application Group Ex-
tension to the X Protocol

7

CreateWindow
When a program in an Application Group creates a window that is a child of a root
window and specifies CopyFromParent for the Visual, if the single_screen attribute
is True and the root_visual attribute is set to something other than None, then the
window will be created using the Application Group’s root_visual, otherwise core
protocol semantics apply.

When a program in an Application Group creates a window that is a child of a root
window and specifies CopyFromParent for the Colormap, if the single_screen at-
tribute is True, the default_colormap attribute is set to something other than None,
and the window’s Visual is the same as the Application Group’s root_visual attribute,
then the window will be created using the Application Group’s default_colormap,
otherwise core protocol semantics apply.

ChangeWindowAttributes
When a program in an Application Group changes the attributes of a window that
is a child of a root window and specifies CopyFromParent for the Colormap, if the
single_screen attribute is True, the default_colormap attribute is set to something
other than None, and the window’s Visual is the same as the Application Group’s
root_visual attribute, then the window will be created using the Application Group’s
default_colormap, otherwise core protocol semantics apply.

Changes to Existing Events
When the top-level window of an application that is a member of an Application
Group is the target of a MapWindow or ConfigureWindow request, if there is an
Application Group Leader then MapRequest and ConfigureRequest events are au-
tomatically delivered to it, otherwise the core protocol semantics apply, i.e. they are
delivered to the client, if any, that has SubstructureRedirect set in its root-window
event mask, e.g. the window manager.

Note
The Application Group Leader must not select SubstructuRedirect events on
a root window as doing so would result in a core protocol error; only one
client is permitted to do so, and that is usually the window manager.

MapRequest
When a MapWindow request is received for a window whose override-redirect at-
tribut is set to False and whose parent is the root window and the window belongs
to an application that is in an application group and there is an application group
leader for the group, then this event is delivered to the Application Group Leader
with the parent field in the event set to the AppGroup ID. Otherwise the core pro-
tocol semantics apply.

ConfigureRequest
When a ConfigureWindow request is received for a window whose override-redirect
attribut is set to False and whose parent is the root window and the window belongs

Application Group Ex-
tension to the X Protocol

8

to an application that is in an application group and there is an application group
leader for the group, then this event is delivered to the Application Group Leader
with the parent field in the event set to the AppGroup ID. Otherwise the core pro-
tocol semantics apply.

Errors

AppGroupQueryVersion
There are no errors for AppGroupQueryVersion.

AppGroupCreate
A Window error is returned if default_root is specified and is not a valid root win-
dow..

A Color error is returned default_colormap is specified but default_colormap is not
a valid colormap for the screen of default_root.

A Match error is returned if root_visual and default_colormap are both specified, but

default_colormap’s visual is not root_visual.

A Match error is returned if root_visual does not exist for the screen of the
default_root.

AppGroupDestroy
An AppGroup error is returned if app_group is not a valid Application Group.

An Access error is returned if an untrusted application attempts to destroy an Ap-
plication Group created by a trusted application.

AppGroupGetAttr
An AppGroup error is returned if app_group is not a valid Application Group.

An Access error is returned if an untrusted application attempts to get the attributes
of an Application Group created by a trusted application.

AppGroupQuery
An Access error is returned if an untrusted application attempts to query the Appli-
cation Group of a trusted application.

AppGroupCreateAssociation
A Match error is returned if the X server does not support the window_type.

An Access error may be returned if the X server only supports the window_type on
the local host and the program making the request is on a non-local host.

Application Group Ex-
tension to the X Protocol

9

A Window error may be returned for system-specific errors related to
system_window, e.g. system_window does not represent a valid native window.

AppGroupDestroyAssociation
A Window error is returned if window was not specified in a previous AppGroupCre-
ateAssociation request.

Encoding
Please refer to the X11 Protocol encoding document as this document uses conven-
tions established there.

The name of this extension is XC-APPGROUP

AppGroupQueryVersion
 1 CARD8 opcode
 1 0 XC-APPGROUP opcode
 2 3 length
 2 CARD16 client_major_version
 2 CARD16 client_minor_version
=>
 1 1 Reply
 1 unused
 2 CARD16 sequence_number
 4 0 length
 2 CARD16 server_major_version
 2 CARD16 server_minor_version
 20 unused

AppGroupCreate
 1 CARD8 opcode
 1 1 XC-APPGROUP opcode
 2 8+n length
 4 XID app_group
 4 BITMASK attrib_mask
 #x00000001 app_group_leader
 #x00000002 single_screen
 #0x0000004 default_root
 #x00000008 root_visual
 #x00000010 default_colormap
 #x00000020 black_pixel
 #x00000040 white_pixel
 n LISTofVALUE value-list
VALUEs
 4 BOOL app_group_leader
 4 BOOL single_screen
 4 WINDOW default_root
 4 VISUALID root_visual
 4 COLORMAP default_colormap
 4 CARD32 black_pixel

Application Group Ex-
tension to the X Protocol

10

 4 CARD32 white_pixel

AppGroupDestroy
 1 CARD8 opcode
 1 2 XC-APPGROUP opcode
 2 2 length
 4 XID app_group

AAppGroupGetAttr
 1 CARD8 opcode
 1 4 XC-APPGROUP opcode
 2 2 length
 4 XID app_group
=>
 1 1 Reply
 1 unused
 2 CARD16 sequence_number
 4 0 length
 4 WINDOW default_root
 4 VISUALID root_visual
 4 COLORMAP default_colormap
 4 CARD32 black_pixel
 4 CARD32 whte_pixel
 1 BOOL single_screen
 1 BOOL app_group_leader
 2 unused

AppGroupQuery
 1 CARD8 opcode
 1 5 XC-APPGROUP opcode
 2 2 length
 4 XID resource
=>
 1 1 Reply
 1 unused
 2 CARD16 sequence_number
 4 0 length
 4 XID app_group
 20 unused

AppGroupCreateAssoc
 1 CARD8 opcode
 1 6 XC-APPGROUP opcode
 2 n length
 4 WINDOW window
 2 CARD16 window_type
 #0 X11
 #1 Macintosh
 #2 Win32, OS/2 PM 2.x
 #3 Win16, OS/2 PM 1.x
 2 n system_window_len

Application Group Ex-
tension to the X Protocol

11

 n LISTofCARD8 system_window

AppGroupDestroyAssoc
 1 CARD8 opcode
 1 7 XC-APPGROUP opcode
 2 2 length
 4 WINDOW window

Library API
Status XagQueryVersion (xkb, keycode) /* macro */
Display dpy;
int * major_version_return;
int * minor_version_return;

XagQueryVersion sets major_version_return and minor_version_return to the major
and minor Application Group protocol version supported by the server. If the Xag
library is compatible with the version returned by the server it returns non-zero. If
dpy does not support the Application Group extension, or if the server and library
protocol versions are incompatible, or if there was an error during communication
with the server, it returns zero. No other Xag functions may be called before this
function. If a program violates this rule, the effects of all subsequent Xag calls that
it makes are undefined.

Note
An embedding manager in, e.g. a Personal Computer Web Browser, will need
to open a connection to the Personal Computer X server by calling XOpenDis-
play() before using the Application Group extension.

An embedding manager such as a web browser that intends to embed programs in
an Application Group should create the Application Group with XagCreateEmbed-
dedApplicationGroup.

Status XagCreateEmbeddedApplicationGroup(
Display* dpy,
VisualID root_visual,
Colormap default_colormap,
unsigned long black_pixel,
unsigned long white_pixel,
XAppGroup* app_group_return);

XagCreateEmbeddedApplicationGroup creates an Application Group for an embed-
ding manager with the attributes specified. It also sets the default_root attribute to
DefaultRoot(dpy, DefaultsScreen(dpy)) and the single_screen and app_group_leader
attributes to True. It returns the Application Group ID in app_group_return.

You can create an Application Group without intending to do embedding. One reason
for doing this is to give a group of clients their own font-path.

Application Group Ex-
tension to the X Protocol

12

Note
A special font-path can be created by creating an Application Group, getting
an Authorization using XSecurityGenerateAuthorization, and then running
‘xset fp+ <new font path>’ as a member of the Application Group. Font-path
elements added in this way will be "private" to the Application Group.

Status XagCreateNonembeddedApplicationGroup(
Display* dpy,
XAppGroup* app_group_return);

An Application Group created with XagCreateNonembeddedApplicationGroup will
have the default_root, root_visual, and default_colormap attributes all set to None;
the single_screen and app_group_leader attributes are set to False, and the
black_pixel and white_pixel attributes are not used since the default_colormap at-
tribute is None.

To destroy an Application Group use XagDestroyApplicationGroup.

Status XagDestroyApplicationGroup(
Display* dpy,
XAppGroup app_group);

The Application Group specified by app_group is destroyed. If the Application Group
was created using XagCreateEmbeddingApplicationGroup, i.e. and therefore the
app_group_leader attribute is True, all programs that are members of the Applica-
tion Group are killed as if a KillClient request had been issued.

To retrieve the attributes of an Application Group use XagGetApplicationGroupAt-
tributes.

Status XagGetApplicationGroupAttributes(
Display* dpy,
XAppGroup app_group,
...);

XagGetApplicationGroupAttributes is a varargs function that retrieves the Applica-
tion Group’s attributes specified in the vararg parameter list.

The attributes that may be specified are: XagNappGroupLeader, XagNsin-
gleScreen, XagNdefaultRoot, XagNrootVisual, XagNdefaultColormap, XagNblack-
Pixel, and XagNwhitePixel; which correspond to app_group_leader, single_screen,
default_root, root_visual, default_colormap, black_pixel, and white_pixel respective-
ly. See AppGroupCreate in Section 3 for a description of each attribute.

The types for each of the parameters are pointers to the following:

 single_screen Bool
 default_root Window
 root_visual VisualID
 default_colormap Colormap
 black_pixel unsigned long

Application Group Ex-
tension to the X Protocol

13

 white_pixel unsigned long
 app_group_leader Bool

Example:
 ...
 Boolean app_group_leader, single_screen;
 Window default_root;
 VisualID root_visual;
 Colormap default_colormap;
 Pixel black_pixel, white_pixel;
 ...
 status = XagGetApplicationGroupAttributes(dpy, app_group,
 XagNappGroupLeader, &app_group_leader,
 XagNsingleScreen, &single_screen,
 XagNdefault_root, &default_root,
 XagNrootVisual, &root_visual,
 XagNdefaultColormap, &default_colormap,
 XagNblackPixel, &black_pixel,
 XagNwhitePixel, &white_pixel,
 NULL);
 ...

To determine which Application Group a resource (such as a window) belongs to,
use XagQueryApplicationGroup.

Status XagQueryApplicationGroup(
Display* dpy,
XID resource,
XAppGroup* app_group_return);

The Application Group is returned in app_group_return, if the resource is not in any
Application Group then app_group_return will be set to None.

To associate an X Window ID with a system-specific window ID, such as a HWND
or a WindowPtr, use XagCreateAssociation.

Status XagCreateAssociation(
Display* dpy,
Window* window_return,
void* system_window);

The window_ret may be used as the target for a ReparentWindow request.

Note
Because XReparentWindow is not constrained in the same way that Win32’s
SetParent and the Macintosh are, there is no reason to call XagCreateAsso-
ciation in an X-based embedding manager. As such if XagCreateAssociation
is called in a native X program, the window_return will be the same as the
system_window, and the implementation may even elect to not generate any
protocol.

Application Group Ex-
tension to the X Protocol

14

To create an association on the Macintosh:

 struct {
 WindowPtr win;
 Rect rect;
 } system_window;
 system_window.win = win_ptr;
 system_window.rect.top = system_window.rect.left = 20;
 system_window.rect.bottom = 180;
 system_window.rect.right = 380;

 status = XagCreateAssociation (dpy, &window, (void*)&system_window);

To create an association using a Win16, Win32, or OS/2 PM:

 HWND system_window;
 status = XagCreateAssociation (dpy, &window, (void*)&system_window);

To destroy the association created with XagCreateAssociation use XagDestroyAsso-
ciation.

Status XagDestroyAssociation(
Display* dpy,
Window window);

After calling XagDestroyAssociation the window may no longer be used to reparent
windows with XReparentWindow.

Note
Like XagCreateAssociation, if the native window system is X11 the imple-
mentation may elect to not generate any protocol as a result of this function
call in order to avoid unintentionally destroying the the system_window that
was specified in the prior XagCreateAssociation call.

A. System Window Encodings
The AppGroupCreateAssoc request has the following possible variations:

AppGroupCreateAssoc (X11)
 1 CARD8 opcode
 1 6 XC-APPGROUP opcode
 2 n length
 4 WINDOW window
 2 0 window_type
 2 4 system_window_len
 4 WINDOW Window

Application Group Ex-
tension to the X Protocol

15

AppGroupCreateAssoc (Macintosh)
 1 CARD8 opcode
 1 6 XC-APPGROUP opcode
 2 n length
 4 WINDOW window
 2 1 window_type
 2 12 system_window_len
 4 CARD32 WindowPtr
 2 INT16 Rect.top
 2 INT16 Rect.left
 2 INT16 Rect.bottom
 2 INT16 Rect.right

AppGroupCreateAssoc (Win32)
 1 CARD8 opcode
 1 6 XC-APPGROUP opcode
 2 n length
 4 WINDOW window
 2 2 window_type
 2 4 system_window_len
 4 CARD32 HWND

AppGroupCreateAssoc (Win16)
 1 CARD8 opcode
 1 6 XC-APPGROUP opcode
 2 n length
 4 WINDOW window
 2 3 window_type
 2 4 system_window_len
 2 CARD16 HWND offset
 2 CARD16 HWND segment

	Application Group Extension to the X Protocol
	Table of Contents
	Purpose and Goals
	Overview of the protocol.
	Requests
	Changes to Existing Requests
	MapWindow
	ConfigureWindow
	CreateWindow
	ChangeWindowAttributes

	Changes to Existing Events
	MapRequest
	ConfigureRequest

	Errors
	AppGroupQueryVersion
	AppGroupCreate
	AppGroupDestroy
	AppGroupGetAttr
	AppGroupQuery
	AppGroupCreateAssociation
	AppGroupDestroyAssociation

	Encoding
	Library API
	A. System Window Encodings

