X Toolkit Intrinsics -
C Language Interface

X Window System

Joel McCormack, Digital Equipment Corporation
Paul Asente, Digital EQuipment Corporation
Ralph R. Swick, Digital Equipment Corporation

X Toolkit Intrinsics - C Language Interface: X Window System
by Joel McCormack, Paul Asente, and Ralph R. Swick

X Version 11, Release 7.7
XWindow System is a trademark of X Consortium, Inc.
Copyright © 1985, 1986, 1987, 1988, 1991, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

Copyright © 1985, 1986, 1987, 1988, 1991, 1994 Digital Equipment Corporation, Maynard, Massachusetts.

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appears in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Digital not be used in in advertising or publicity
pertaining to distribution of the software without specific, written prior permission. Digital makes no representations
about the suitability of the software described herein for any purpose. It is provided "as is" without express or
implied warranty.

Acknowledgments

The design of the X11 Intrinsics was done primarily by Joel McCormack of Digi-
tal WSL. Major contributions to the design and implementation also were done by
Charles Haynes, Mike Chow, and Paul Asente of Digital WSL. Additional contribu-
tors to the design and/or implementation were:

Loretta Guarino-Reid (Digital WSL) Rich Hyde (Digital WSL)

Susan Angebranndt (Digital WSL) Terry Weissman (Digital WSL)
Mary Larson (Digital UEG) Mark Manasse (Digital SRC)

Jim Gettys (Digital SRC) Leo Treggiari (Digital SDT)
Ralph Swick (Project Athena and Digital Mark Ackerman (Project Athena)
ERP)

Ron Newman (Project Athena) Bob Scheifler (MIT LCS)

The contributors to the X10 toolkit also deserve mention. Although the X11 Intrin-
sics present an entirely different programming style, they borrow heavily from the
implicit and explicit concepts in the X10 toolkit.

The design and implementation of the X10 Intrinsics were done by:

Terry Weissman (Digital WSL)
Smokey Wallace (Digital WSL)
Phil Karlton (Digital WSL)
Charles Haynes (Digital WSL)
Frank Hall (HP)

The design and implementation of the X10 toolkit’s sample widgets were by the
above, as well as by:

Ram Rao (Digital UEG)

Mary Larson (Digital UEG)
Mike Gancarz (Digital UEG)
Kathleen Langone (Digital UEG)

These widgets provided a checklist of requirements that we had to address in the
X11 Intrinsics.

Thanks go to Al Mento of Digital’s UEG Documentation Group for formatting and
generally improving this document and to John Ousterhout of Berkeley for exten-
sively reviewing early drafts of it.

Finally, a special thanks to Mike Chow, whose extensive performance analysis of the
X10 toolkit provided the justification to redesign it entirely for X11.

Joel McCormack
Western Software Laboratory
Digital Equipment Corporation

Acknowledgments

March 1988

The current design of the Intrinsics has benefited greatly from the input of several
dedicated reviewers in the membership of the X Consortium. In addition to those
already mentioned, the following individuals have dedicated significant time to sug-
gesting improvements to the Intrinsics:

Steve Pitschke (Stellar) C.Doug Blewett (AT&T)

Bob Miller (HP) David Schiferl (Tektronix)

Fred Taft (HP) Michael Squires (Sequent)

Marcel Meth (AT&T) JimFulton (MIT)

Mike Collins (Digital) Kerry Kimbrough (Texas Instruments)
Scott McGregor (Digital) Phil Karlton (Digital)

Julian Payne (ESS) Jacques Davy (Bull)

Gabriel Beged-Dov (HP) GlennWidener (Tektronix)

Thanks go to each of them for the countless hours spent reviewing drafts and code.

Ralph R. Swick

External Research Group
Digital Equipment Corporation
MIT Project Athena

June 1988

From Release 3 to Release 4, several new members joined the design team. We
greatly appreciate the thoughtful comments, suggestions, lengthy discussions, and
in some cases implementation code contributed by each of the following:

Don Alecci (AT&T) EllisCohen (OSF)
Donna Converse (MIT) Clive Feather (IXI)
Nayeem Islam (Sun) Dana Laursen (HP)
Keith Packard (MIT) Chris Peterson (MIT)
Richard Probst (Sun) Larry Cable (Sun)

In Release 5, the effort to define the internationalization additions was headed by
Bill McMahon of Hewlett Packard and Frank Rojas of IBM. This has been an educa-
tional process for many of us, and Bill and Frank’s tutelage has carried us through.
Vania Joloboff of the OSF also contributed to the internationalization additions. The
implementation efforts of Bill, Gabe Beged-Dov, and especially Donna Converse for
this release are also gratefully acknowledged.

Ralph R. Swick
December 1989
and

July 1991

The Release 6 Intrinsics is a result of the collaborative efforts of participants in the
X Consortium’s intrinsics working group. A few individuals contributed substantial
design proposals, participated in lengthy discussions, reviewed final specifications,

ii

Acknowledgments

and in most cases, were also responsible for sections of the implementation. They
deserve recognition and thanks for their major contributions:

Paul Asente (Adobe) Larry Cable (SunSoft)

Ellis Cohen (OSF) Daniel Dardailler (OSF)
Vania Joloboff (OSF) KalebKeithley (X Consortium)
Courtney Loomis (HP) Douglas Rand (OSF)

Bob Scheifler (X Consortium) Ajay Vohra (SunSoft)

Many others analyzed designs, offered useful comments and suggestions, and
participated in a significant subset of the process. The following people deserve
thanks for their contributions: Andy Bovingdon, Sam Chang, Chris Craig, George
Erwin-Grotsky, Keith Edwards, Clive Feather, Stephen Gildea, Dan Heller, Steve
Humphrey, David Kaelbling, Jaime Lau, Rob Lembree, Stuart Marks, Beth Mynatt,
Tom Paquin, Chris Peterson, Kamesh Ramakrishna, Tom Rodriguez, Jim VanGilder,
Will Walker, and Mike Wexler.

I am especially grateful to two of my colleagues: Ralph Swick for expert editorial
guidance, and Kaleb Keithley for leadership in the implementation and the specifi-
cation work.

Donna Converse
X Consortium
April 1994

iii

Table of Contents

About This ManUalcoeeiiiiiiiiiii ettt e et e
1. Intrinsics and WIAGELSccuoeiiiiieiiiiiiiiiie et er e et e e eae e e eaeeeaaens
INTIINSICS .oiiiiiiiiii i ettt et e e eens
| I o Lo LU= T [TSP PPT PR
Procedures and MaCTOScccoeuuuieiiiiiiieeeeiiie ettt e e et e eeeab e e eeeeeaas
1A Lo o 1] PRSP
(070 4 I A Te [=Y o ST
Composite WIAGELS ..oivvuiiiiiiiiiieieiie et eere e eei e e e ra e e eaan e aananns
Constraint WIidgetsccuueeiiieiiiiieiiiireeiee e e et e e e eer e e e e e aaeeeaeees
Implementation-SPecific TYPES ...viiiiiriiiiiiiiiie e e e e
A o o £ A O F T3 ' T PN
Widget Naming Conventionscccceeevuieiiiiiiiiiinneeiieneeiieeeeineeeineenneneens
Widget Subclassing in Public .h Filescccccccveviiiiiiiiiniiiinicien e,
Widget Subclassing in Private .h Filesc.cccoovviiiiiiiiiiniiiiniiecie e,
Widget Subclassing in .C Filescccocveiiiiiiiiiiiiiiiiin e,
Widget Class and Superclass LOOK UD ...cooivvviiiiiniiiiiniiiiieiiieeeeieeeeiinns
Widget Subclass Verificationcccoeieveviiiiiiiiiiniiiin e
Superclass ChaiNingcevivuieriiiiiiiiiin e eei e e e eaae s
Class Initialization: class_initialize and class_part initialize Proce-
QUTES ittt ettt e ettt e e e ettt e e e e eabe e e e e eebieeeaees
Initializing @ Widget Classccccieviiiiiiiiirieiin e e e e e eeaenes
Inheritance of Superclass Operationsccccceeevvieiiieiiieiiieeiiieeieeeenee,
Invocation of Superclass Operationsc..coeevveeiiieiiiiiiiiiiiieeieeieeee,
Class Extension RECOTAScccuuuiiiiiiiiiiiiiiiiiiiiieeeiii et
2. Widget Instantiationccoeeiiiiiiiiiniiiiie e e e e e e eees
Initializing the X TOOIKItccouviiiiiiiiiii e e
Establishing the LocCalecooiiiiiiiiiiiiiieeie e e e e e
Loading the Resource Databasecccccieueviiiiiiiiiiniiiiiniciee e evi e enaen
Parsing the Command LinNeccceviiiiiiiiiiiniiiiieii e eeie e e e enans
Creating WiIdGetsiiiiiiiiieiiiii e e e e e e e e e e e e e e aaan e e eaanes
Creating and Merging Argument LiStsc.ccocevveviiiiieiiiniieiinieeieeennnn,
Creating a Widget INStancecccooevveiiiiiniiiiiniiiiie e
Creating an Application Shell INStancecccoeeveviiiiiiniiiiineiiiineeiins
Convenience Procedure to Initialize an Applicationcc..ceeeenneen.
Widget Instance Allocation: The allocate Procedurecccccccvvunennnen.
Widget Instance Initialization: The initialize Procedure
Constraint Instance Initialization: The ConstraintClassPart initialize
PIOCEAUTE ..cooeiiiiiiiie et
Nonwidget Data Initialization: The initialize_hook Procedure
Realizing WIAgetSiiiiiiiiiiieiiiie st e e e e e e e e e eae e eaaeeeees
Widget Instance Window Creation: The realize Procedure
Window Creation Convenience Routinec..ccceevivieeiiiiniiiiinieinnnnn.
Obtaining Window Information from a Widgetccccoeevviiiiiniiiiiniiiiinninins
Unrealizing WiIidgetscoooviiiiiiiiiiiin e e e e e e e eaaes
DesStroying WIAGQELSciiveeiiiiieiiiiiieiiie e e et e e et e e et e e et e e et e eeaaeaesnneaees
Adding and Removing Destroy Callbacksccoeevivvieiiiiiniiiiiniiinnnnns
Dynamic Data Deallocation: The destroy Procedurecc.c.ccvvuneennen.
Dynamic Constraint Data Deallocation: The ConstraintClassPart de-
SETOY PTOCEAUTIE ..couviiiiiiiiiiie it e e e e e e eaaa s
Widget Instance Deallocation: The deallocate Procedure
Exiting from an ApPplicationc.ccveiiiiieiiiiiiiiiir e e e

iv

X Toolkit Intrinsics -
C Language Interface

3. Composite Widgets and Their Childrenc..ccoeeuiiiiiiiiiniiiiie e, 58
Addition of Children to a Composite Widget: The insert child Procedure
... 59
Insertion Order of Children: The insert position Procedure 59
Deletion of Children: The delete child Procedureccccoeevvviiininiinnnnnenn. 60
Adding and Removing Children from the Managed Setc.cccevvnnennn.n. 60

Managing Childrenccooiiiiiiiiii e e 60
Unmanaging ChildTencoeeuiiiiiiiiiiiii e 62
Bundling Changes to the Managed Setccoevviiiiiiiiiiiiiniieeeeee, 63
Determining if a Widget Is Managedccceevuviivieiiieiiieiieeieeeieeen, 65
Controlling When Widgets Get Mappedccceueevviiiiiiiiiiiiieeeeeeeeie e, 65
Constrained Composite Widgetscceeueiiiiiiiiiiiiieiie e, 66

Y T=Y | VY4 T Fo =Y RPN 68

Shell Widget Definitionscccooiiiiiiiiiiiiii e 68
ShellClassPart Definitionscccovviiiiiiiiiiiiiiiiiie e 69
ShellPart Definitionccooiiiiiiiiiiiiii e 72
Shell RESOUTICES ...iivuiiiiiiieii ettt ettt e e e e et e e e e eees 75
ShellPart Default Valuesc.oovviiiiiiiiiiiiiiiiiiie e 77

Session PartiCipationcicvieiiiiiiiiir e e 83
JOINING 8 SESSIOT .ivuiiiiiiiiiiiiiie e e e e e e e e eans 83
Saving Application Statecccceeiiiiiiiii i 84
Responding to @ Shutdownccooeiiiiiiiiiiii e 87
Resigning from a SeSSIONc.ceiieiiiiiiiiiiiiiecie e 87

T o] o B B o VA4 T o =1 N 89
POP-UD WIdget TYPES .oeeniiiiiieiieeie ettt e et e e e et e et e e e ea e eaaeeanns 89
Creating a Pop-Up Shell ..o 90
Creating Pop-Up Childrenccoouiiiiiiii et e e 91
Mapping a Pop-Up WiIdgetcoovniiiiiiieeee e 91
Unmapping a Pop-Up WIdgetccouiiiiiiii e 94

6. Geometry Managementciiviiiiiiiiieiie et e e e et e e e e e e e eans 96
Initiating Geometry Changesccceviiiiiiieeiieeie et ee e e e eaeeaaaas 96
General Geometry Manager ReqUestscccoueviiiiiiiiiiiiiiieeeeeeeeeeee e 97
ReESIZE REQUESTES oeniieiiiiiiiiii et et e e e e e e ans 99
Potential Geometry Changescccoueiiiiiiiiiiiiiie e e e e eae e 99
Child Geometry Management: The geometry manager Procedure 100
Widget Placement and SiZiNgccoeeviiiiiiiiiiiiecee e 101
Preferred GEOMELTY ...c.uoiieiiiii e e e 103
Size Change Management: The resize Procedureccc.cceeevviivinnnnnnnenn. 105

7. Event Managementooiuiiiiiiiiiiii e e e aas 106
Adding and Deleting Additional Event Sourcesc.cccceeveevieiiineeinnnnnnnnn. 106

Adding and Removing Input SOUTICEScoevviiiiiiiiiiiieiiieeieeee e, 106
Adding and Removing Blocking Notificationsccccceeiiviiiiinninn.n 108
Adding and Removing Timeoutsc.cceevveiiiiiiiieiiiiieieceee e, 108
Adding and Removing Signal Callbackscccceviiiiiiiiiiieiiieeiieennnns 109

Constraining Events to a Cascade of Widgetscccovviiiiiiiiiiiniineenneenn.. 111
Requesting Key and Button Grabsccooeviiiiiiiiiiiiiniie e, 112

Focusing Events on a Childc.coiiiiiiiiiii e 115
Events for Drawables That Are Not a Widget's Window 116

Querying EVENnt SOUTCESc.iiuiiiiiiiiiiiei et ea e et e e e e ees 117

Dispatching EvVENtSccoeiiiiiiiiiii e e 118

The Application INPUt LOOP ..vuiiieiiiiiiiiiiiiee et e e e 119

Setting and Checking the Sensitivity State of a Widgetcc.cceeenniennios 120

Adding Background Work Procedurescccooueiiiiiiiiieiiieiiieeie e eeieeaenas 121

X EVENE FIlLETS ouiiiiiiiiiiie et 122

X Toolkit Intrinsics -
C Language Interface

Pointer Motion COMPIESSION ...c.ivuiiiiiiiiiiiiiieeieeie e eieee e eaeeneennens 122
Enter/Leave COMPTIESSION ...ccuviiiiniiiiiieiieieeieei e e et ete e e et eeneeaeanaens 122
EXposure COMPTIESSION ...cuiuniiniiiiiieiiiieiieeieeie et et eee e easeneeieenaaanns 122
Widget Exposure and ViSibilityccocciiiiiiiiiiiiii e 124
Redisplay of a Widget: The expose Procedurec..cceeevueevnneennnnnn.. 124
Widget VISibility ...ccoeiieeiiiiiiiii e 125

X Event Handlerso..oiiiiiiiiiiiiii ettt et 125
Event Handlers That Select Eventscccooeeviviiiiiiiiiiiiiiiniiiineecie, 126
Event Handlers That Do Not Select Eventsccceeviiiiiiiiiniiinnnnen. 128
Current Event Maskc.ooiiiiiiiiiiiiiiii e 129
Event Handlers for X11 Protocol EXtensionsccceceeevveveeinneinnnnnnnn. 130
Using the Intrinsics in a Multi-Threaded Environmentc..ccccevneeni. 134
Initializing a Multi-Threaded Intrinsics Applicationc.....c.c..... 134
Locking X Toolkit Data Structurescccoeeveeiiieiiiiiiieeiiecice e, 134
Event Management in a Multi-Threaded Environment 136

8. CAlIDACKS ..uieiiiiiiiee et e e e aaas 137
Using Callback Procedure and Callback List Definitionsccc.ccueinie. 137
Identifying Callback LiStScciiiiiiiiiiiiiiii e 138
Adding Callback ProCedUTEScceuuiiiiiiiiiiiiiieii ettt e e e e eae e 138
Removing Callback Proceduresc.ccoeeiuiiiiiiiiiiiiiieieeceeee e 139
Executing Callback ProCedUIESc.cceiiuiiiiiiiiiiiieiiieeiieeie e e e ea e eaeeaenas 139
Checking the Status of a Callback LiStccccceviviiiiiiiiiiiiiiieeeeeeen 140
9. Resource Managementcouiiiiiiiiiiiiiieee e e e e e e e e e e eans 141
ReESOUICE LISES .oeuiiiiiiiiiieiie ettt ee e e e e e ena s 141
Byte Offset Calculationscoouiiiiiiiiiiiiiiii e e 146
Superclass-to-Subclass Chaining of Resource Listscccccoeviieiiieeinnennnn.e. 146
SUDTESOUICES ..iiiiiiiiieiiie ettt e et e e e e e et e e e e 147
Obtaining Application RESOUICESccevueiiiiiiiiiiieeiie e e eaenas 148
ReSOUICe CONVETSIONS ..cuuuiiiiiieiiieiiieeiieiie ettt etie et e et eeeneeeneeeneeneeraeennnes 149
Predefined Resource CONVETLETScceuvieiiirieiineiiiieeeiieeeiieeeiieeenness 149
New Resource CONVETTETSccuuviuuiiiiiiiiiiiieei et ei et eeieeneenanes 152
Issuing Conversion WarTinNgsScc.cviviieiiiiniiieeieieeieeieeeeeieeieeeneaneeanns 155
Registering a New Resource CONVETtercccoceviveiiiiniiiniieiiinneinennns 156
Resource Converter INVOCAtiOncccvieiiiiiiiiiiiiiiiiiieiecece e 159
Reading and Writing Widget Statecoovveiiiiiiiiii e 162
Obtaining Widget Statecocouiiiiiiiiiiii e 162
Setting Widget Statecooviiiiiiiie e 164

10. Translation Managementeevuiiieiiieiii e e e e e e eaeeaaeees 170
ACTION TADIES .eniiiiiie e 170
Action Table Registrationccccoeiiiiiiiiiiiiiii e 171
Action Names to Procedure Translationscccoeeeeevviiiiiieiinieninnneen. 172
Action Hook Registrationc.ccoeiiiiiiiiiiiniiie e 172
Translation Tablesooiiiiiiiiiii et 173
EVENE SEQUENCES ..ovniiniiiiiii ittt et e e e eanas 174
ACEION SEQUETICES ..uivniiiiiiiiiiiieeii ettt et et e et eee e e e e ee e aans 174
Multi-CliCK TIMIE .eeuniiiiiiiiieiiiie ettt et e e e e e e eees 174
Translation Table Managementcccoveiiiiiiiiiiiiiiieeie e e e 175
USING ACCELETALOTS ...evuiiiiiiiiieii ettt e et e e e e et e e s e s e st e aaanas 177
KeyCode-to-KeySym CONVETSIONSc..cevuiiiiiiieieeiiieiiieeieeieeeieesreeenneesnneees 178
Obtaining a KeySym in an Action Procedurecc.ccoeiiiiiiiiiiiineinneennnnn. 181
KeySym-to-KeyCode CONVETSIONSccueviuniiiniiiieieeiieeiiieeieeieeeiesneeanaeanneees 182
Registering Button and Key Grabs for Actionsc..ccooeeveeiiieiiiiiiieiinnnnnss 182
Invoking Actions Dir€Ctlycceueiiiiiiiiiiiiii e 183
Obtaining a Widget's Action LiStcccoviiiiiiiiiiiiiiii e 184

vi

X Toolkit Intrinsics -
C Language Interface

11. Utility FUNCHIONS ouiiniiiiiii et e et e e e et e e aaeaanas 185
Determining the Number of Elements in an Arraycoocceeeeveevneeenneennnne. 185
Translating Strings to Widget InStancesc.ccoevveiiiiiiiiiiiiiniiieeeeeeeaens 185
Managing MemoOTY USAQE ...cc.ovuiiiiiniiiiiiiiiiiieeieeie e etee e e eteeee e eaeaneenns 186
Sharing Graphics CONtEXES ...c.ciiuiiiiiiiiiiiiieee e e e e 187
Managing SeleCtionsSc.c.eiiiiiiiiiiiieie e 189

Setting and Getting the Selection Timeout Valuecccccevveennneen. 189
Using Atomic Transfersccoceeiiiiiiiiiiiiiie e 190
Using Incremental Transfersccoovueeiiiiiiiiieececce e 195
Setting and Retrieving Selection Target Parameterscc......... 200
Generating MULTIPLE ReqUESTS ...c.ccviiiiiiiiiiiiiiiieieeeeeee e 202
Auxiliary Selection Propertiesccccoeiiiiiiiiiiiiiiiieiieee e, 203
Retrieving the Most Recent Timestampccccevvevveiiiiiiiiiiieiineennee, 203
Retrieving the Most Recent Eventcccccoevviiiiiiiiiiiiniieeeeeee, 204
Merging Exposure Events into @ Regioncc.coeevviiiiiiiiiiiiiiiniiiiieeieeenns 204
Translating Widget Coordinatesccceeviieiiiiiiiiiiiieiieee e e 204
Translating a Window to @ Widgetoovviiiiiiiiiii e 205
Handling ETITOTSciuniiiiiiiiiiie et e e e e et e et e e e et e e ae e st e st e eaneesanaees 205
Setting WM _COLORMAP WINDOWS ..ottt 209
Finding File NAMIESciuuiiiiiiieeiiieiieeie et et e e e e te et e et e et e ere e e e eenasaneeanns 210
Hooks for External AGentsccoouiiiiiiiiiiiii e e e e 213
Ho0K ODbjJjecCt RESOUTICES ...c.ueivniiiiieiiieiiieeie et et e e e e e e e een 214
Querying Open DiSPlayscccueeieiiiiiiiiieiiecie et ee e e e e ean e 218

12. Nonwidget ODBJECES ..ivniiiiiiiiie e e er e e e e e eaeaas 219
Data STIUCLUTES ...ceneiiiiiie et e e e et e eeaee 219
(0] o) 1=Toa A0 o [T o1 =S RURRRN 219

ObjectClassPart StTUCLUTEc.coeeiiiiiiiiiiieee e 219
ObjectPart StrUCtUTEccuiiiiiiie e 221
(0] o) 1=Toa A R =T 10 Db 4 o] =Y 221
ObjectPart Default Valuescccceoviiiiiiiiiiiiiiiie e 221
Object Arguments to Intrinsics Routinesccocovviiiiiiiiiiiiniinnnnnnns 221
L0 Lo) A @] o) = ol N 222
Rectangle ODJECESoivniiiiiii e 223
RectObjClassPart StruCturecoovveiiieiiiiiiiie e 223
RectODbjPart STTUCLUTEcovuiiiiii e 224
ReCtOD] RESOUICESuiiviiiiiiiiieiieii et et e et e e et e e a e e s e eanaeas 225
RectObjPart Default Valuesccoeviiiiiiiiiiiiiieeeeee e 225
Widget Arguments to Intrinsics Routinesccccoevviiiiiiiiiiiniiniinnnss 225
Use of Rectangle ODJECEScvvuiiiiiiiiiiiii e 225
Undeclared ClassSoeeuurieiieiiiiieeii ettt et e e e et e e e e e ei e e eeaae e 227
Widget Arguments to Intrinsics Routinescccccoeiiiiiiiiiiiniiiiie e, 227

13. Evolution of the INtrinSiCscioiuiiiiiiiiiiiiii e 229
Determining Specification Revision Levelcccooveiiiiiiiiiiiiiiinincee, 229
Release 3 to Release 4 Compatibilityccoevvviiiiiiiiiiiiiniii e 229

Additional ATGUMENESccuiiiiiiiiie e e e e 229
set values almost Proceduresc.cccoeiviiiiiiiiiiiiiiiie e, 230
QUETY GEOIMEITY euiiiiiniiiiiieii i e et ee et e e e e ea e e e e aanas 230
unrealizeCallback Callback LiStccooeiiiiiiiiiiiiiiiiiiiiiieee e, 230
Subclasses of WMShEILcoouiiiiiiiiiiiiiie e 230
Resource Type CONVETTETS ..cuuivuiiiiiiniiieiiieieeieiie e eiee e e et e e e e eeneens 231
KeySym Case Conversion Procedureccoooeeeiieiiiieiiieeineeinennnnnn. 231
Nonwidget ODJECES ..ovuiiieiiiiiieie e e e e 231
Release 4 to Release 5 Compatibilityccoevvuiiiiiiiiiiiiiiiii e 231
baseTranslations RESOUICEcviiiiiiiiiiiiiiiiiiiiiii e 231

vii

X Toolkit Intrinsics -
C Language Interface

Resource File Search Pathccccooiiiiiiiiiiiiiiiiiii e, 232
Customization RESOUTCEccuiviiiiiiiiiiiiiiiiiieie e 232
Per-Screen Resource Databasec..coccoeviiiiiiiiiiiiiiiiniiiiiniie e, 232
Internationalization of Applicationscccccevviiiiiiiiiiiiiiiiinee, 233
Permanently Allocated Stringscccccoeiiiiiiiiiiiiiiiiieee e 233
Arguments to Existing Functionscc.ccoocvviiiiiiiiinii i, 233
Release 5 to Release 6 Compatibilityccooveviiiiiiiiiiiiiniiii e 233
Widget INternalsoooviiiiiiie e 234
General Application Developmentccoeviiiiiiiiiiiiiiiiineeeee e 234
Communication with Window and Session Managersc........... 234
Geometry Managementoovvueiiiiiiiiiiiie e 235

Event Managementcoooiiiiiiiiiiiii e 235
Resource Managementc.oouiiiiiniiiiiiiiie e 236
Translation Managementcooveiiiiiiiiiiiiiiiie e e 236
SELECEIONIS ..ieiiii et 236
External Agent HOOKScoiuniiiiiiiii e 236

. Resource File FOTMALcoiiiiiiiiiiiiiiiie et 237
. Translation Table SYNtaXcccccoiiiiiiiiiiiiieeie e e e e 238
. Compatibility FUNCLIONS ...couiiiiiiiiiiii et 246
. INtrinsiCS EITOT MESSAUES ..cuuiiniiiiiiiiiiiiie ittt et e te et e e e ee et eane e eaeanne 256
. Defined SETINGS couniieiiiii e e aas 265
. Resource Configuration Managementcccoeeviiieiiiiiiiniiineieeeeeee e e 276

viii

About This Manual

X Toolkit Intrinsics — C Language Interface is intended to be read by both applica-
tion programmers who will use one or more of the many widget sets built with the
Intrinsics and by widget programmers who will use the Intrinsics to build widgets
for one of the widget sets. Not all the information in this manual, however, applies
to both audiences. That is, because the application programmer is likely to use only
a number of the Intrinsics functions in writing an application and because the wid-
get programmer is likely to use many more, if not all, of the Intrinsics functions in
building a widget, an attempt has been made to highlight those areas of informa-
tion that are deemed to be of special interest for the application programmer. (It is
assumed the widget programmer will have to be familiar with all the information.)
Therefore, all entries in the table of contents that are printed in bold indicate the
information that should be of special interest to an application programmer.

It is also assumed that, as application programmers become more familiar with the
concepts discussed in this manual, they will find it more convenient to implement
portions of their applications as special-purpose or custom widgets. It is possible,
nonetheless, to use widgets without knowing how to build them.

Conventions Used in this Manual

This document uses the following conventions:

* Global symbols are printed in t hi s speci al font. These can be either function
names, symbols defined in include files, data types, or structure names. Argu-
ments to functions, procedures, or macros are printed in italics.

¢ Each function is introduced by a general discussion that distinguishes it from oth-
er functions. The function declaration itself follows, and each argument is specif-
ically explained. General discussion of the function, if any is required, follows the
arguments.

* To eliminate any ambiguity between those arguments that you pass and those that
a function returns to you, the explanations for all arguments that you pass start
with the word specifies or, in the case of multiple arguments, the word specify.
The explanations for all arguments that are returned to you start with the word
returns or, in the case of multiple arguments, the word return.

ix

Chapter 1. Intrinsics and Widgets

The Intrinsics are a programming library tailored to the special requirements of user
interface construction within a network window system, specifically the X Window
System. The Intrinsics and a widget set make up an X Toolkit.

Intrinsics

The Intrinsics provide the base mechanism necessary to build a wide variety of in-
teroperating widget sets and application environments. The Intrinsics are a layer
on top of Xlib, the C Library X Interface. They extend the fundamental abstractions
provided by the X Window System while still remaining independent of any partic-
ular user interface policy or style.

The Intrinsics use object-oriented programming techniques to supply a consistent
architecture for constructing and composing user interface components, known as
widgets. This allows programmers to extend a widget set in new ways, either by
deriving new widgets from existing ones (subclassing) or by writing entirely new
widgets following the established conventions.

When the Intrinsics were first conceived, the root of the object hierarchy was a wid-
get class named Core. In Release 4 of the Intrinsics, three nonwidget superclasses
were added above Core. These superclasses are described in Chapter 12, Nonwid-
get Objects. The name of the class now at the root of the Intrinsics class hierarchy
is Object. The remainder of this specification refers uniformly to widgets and Core
as if they were the base class for all Intrinsics operations. The argument descrip-
tions for each Intrinsics procedure and Chapter 12, Nonwidget Objects describe
which operations are defined for the nonwidget superclasses of Core. The reader
may determine by context whether a specific reference to widget actually means
““widget" or " object."

Languages

The Intrinsics are intended to be used for two programming purposes. Programmers
writing widgets will be using most of the facilities provided by the Intrinsics to con-
struct user interface components from the simple, such as buttons and scrollbars,
to the complex, such as control panels and property sheets. Application program-
mers will use a much smaller subset of the Intrinsics procedures in combination
with one or more sets of widgets to construct and present complete user interfaces
on an X display. The Intrinsics programming interfaces primarily intended for ap-
plication use are designed to be callable from most procedural programming lan-
guages. Therefore, most arguments are passed by reference rather than by value.
The interfaces primarily intended for widget programmers are expected to be used
principally from the C language. In these cases, the usual C programming conven-
tions apply. In this specification, the term client refers to any module, widget, or
application that calls an Intrinsics procedure.

Applications that use the Intrinsics mechanisms must include the header files <X11/
Intrinsic.h>and <X11/ Stri ngDefs. h>, or their equivalent, and they may also in-
clude <X11/ Xat ons. h> and <X11/ Shel | . h>. In addition, widget implementations
should include <X11/ I ntri nsi cP. h> instead of <X11/Intri nsic. h>.

Intrinsics and Widgets

The applications must also include the additional header files for each wid-
get class that they are to use (for example, <X11/ Xaw/ Label . h> or <X11/ Xaw
Scrol | bar. h>). Ona POSIX-based system, the Intrinsics object library file is named
l'i bXt.a and is usually referenced as \-1Xt when linking the application.

Procedures and Macros

All functions defined in this specification except those specified below may be im-
plemented as C macros with arguments. C applications may use " #undef" to re-
move a macro definition and ensure that the actual function is referenced. Any such
macro will expand to a single expression that has the same precedence as a func-
tion call and that evaluates each of its arguments exactly once, fully protected by
parentheses, so that arbitrary expressions may be used as arguments.

The following symbols are macros that do not have function equivalents and that
may expand their arguments in a manner other than that described above: Xt Check-
Subcl ass, Xt New, Xt Nunber, Xt Of f set OF , Xt Of f set, and Xt Set Ar g.

Widgets

The fundamental abstraction and data type of the X Toolkit is the widget, which is
a combination of an X window and its associated input and display semantics and
which is dynamically allocated and contains state information. Some widgets display
information (for example, text or graphics), and others are merely containers for
other widgets (for example, a menu box). Some widgets are output-only and do not
react to pointer or keyboard input, and others change their display in response to
input and can invoke functions that an application has attached to them.

Every widget belongs to exactly one widget class, which is statically allocated and
initialized and which contains the operations allowable on widgets of that class.
Logically, a widget class is the procedures and data associated with all widgets be-
longing to that class. These procedures and data can be inherited by subclasses.
Physically, a widget class is a pointer to a structure. The contents of this structure
are constant for all widgets of the widget class but will vary from class to class.
(Here, " constant'' means the class structure is initialized at compile time and nev-
er changed, except for a one-time class initialization and in-place compilation of
resource lists, which takes place when the first widget of the class or subclass is
created.) For further information, see the section called “Creating Widgets”

The distribution of the declarations and code for a new widget class among a pub-
lic .h file for application programmer use, a private .h file for widget programmer
use, and the implementation .c file is described in the section called “Widget Class-
ing” The predefined widget classes adhere to these conventions.

A widget instance is composed of two parts:

* A data structure which contains instance-specific values.

* A class structure which contains information that is applicable to all widgets of
that class.

Much of the input/output of a widget (for example, fonts, colors, sizes, or border
widths) is customizable by users.

Intrinsics and Widgets

This chapter discusses the base widget classes, Core, Composite, and Constraint,
and ends with a discussion of widget classing.

Core Widgets

The Core widget class contains the definitions of fields common to all widgets. All
widgets classes are subclasses of the Core class, which is defined by the Cor eCl ass-
Part and Cor ePart structures.

CoreClassPart Structure

All widget classes contain the fields defined in the Cor e assPart structure.

typedef struct {
WidgetClass superclass; See Section
String class name; See Chapter 9
Cardinal widget size; See Section
XtProc class initialize; See Section
XtWidgetClassProc class part initialize; See Section
XtEnum class_inited; See Section
XtInitProc initialize; See Section
XtArgsProc initialize hook; See Section
XtRealizeProc realize; See Section
XtActionList actions; See Chapter 10
Cardinal num_actions; See Chapter 10
XtResourcelList resources; See Chapter 9
Cardinal num resources; See Chapter 9
XrmClass xrm_class; Private to resource manager
Boolean compress motion; See Section
XtEnum compress exposure; See Section
Boolean compress enterleave; See Section
Boolean visible interest; See Section

XtWidgetProc destroy; See Section
XtWidgetProc resize; See Chapter 6
XtExposeProc expose; See Section

XtSetValuesFunc set values; See Section
XtArgsFunc set values hook; See Section
XtAlmostProc set values almost; See Section
XtArgsProc get values hook; See Section
XtAcceptFocusProc accept focus; See Section

XtVersionType version; See Section
XtPointer callback private; Private to callbacks
String tm_table; See Chapter 10

XtGeometryHandler query geometry; See Chapter 6
XtStringProc display accelerator; See Chapter 10
XtPointer extension; See Section

} CoreClassPart;

All widget classes have the Core class fields as their first component. The prototyp-
ical W dget C ass and Cor eW dget Cl ass are defined with only this set of fields.

typedef struct {

Intrinsics and Widgets

CoreClassPart core class;
} WidgetClassRec, *WidgetClass, CoreClassRec, *CoreWidgetClass;

Various routines can cast widget class pointers, as needed, to specific widget class
types.

The single occurrences of the class record and pointer for creating instances of
Core are

InlintrinsicP. h:

extern WidgetClassRec widgetClassRec;
#define coreClassRec widgetClassRec

Inintrinsic.h:

extern WidgetClass widgetClass, coreWidgetClass;

The opaque types W dget and W dget d ass and the opaque variable wi dget O ass
are defined for generic actions on widgets. In order to make these types opaque
and ensure that the compiler does not allow applications to access private data, the
Intrinsics use incomplete structure definitions in I ntri nsi c. h:

typedef struct WidgetClassRec *WidgetClass, *CoreWidgetClass;
CorePart Structure

All widget instances contain the fields defined in the Cor ePart structure.

typedef struct CorePart {
Widget self; Described below
WidgetClass widget class; See Section
Widget parent; See Section
Boolean being destroyed; See Section
XtCallbackList destroy callbacks; Section
XtPointer constraints; See Section

Position x; See Chapter 6
Position y; See Chapter 6
Dimension width; See Chapter 6
Dimension height; See Chapter 6
Dimension border width; See Chapter 6
Boolean managed; See Chapter 3
Boolean sensitive; See Section

Boolean ancestor sensitive; See Section
XtTranslations accelerators; See Chapter 10
Pixel border pixel; See Section

Pixmap border pixmap; See Section
WidgetList popup list; See Chapter 5
Cardinal num popups; See Chapter 5

String name; See Chapter 9
Screen *screen; See Section
Colormap colormap; See Section

Intrinsics and Widgets

Window window; See Section
Cardinal depth; See Section

Pixel background pixel; See Section
Pixmap background pixmap; See Section

Boolean visible; See Section
Boolean mapped when managed; See Chapter 3
} CorePart;

All widget instances have the Core fields as their first component. The prototypical
type W dget is defined with only this set of fields.

typedef struct {
CorePart core;
} WidgetRec, *Widget, CoreRec, *CoreWidget;

Various routines can cast widget pointers, as needed, to specific widget types.
In order to make these types opaque and ensure that the compiler does not allow

applications to access private data, the Intrinsics use incomplete structure defini-
tionsin Intrinsic. h.

typedef struct WidgetRec *Widget, *CoreWidget;

Core Resources

The resource names, classes, and representation types specified in the cor eC ass-
Rec resource list are

Name Class Representation
XtNaccelerators XtCAccelerators XtRAcceleratorTable
XtNbackground XtCBackground XtRPixel
XtNbackgroundPixmap XtCPixmap XtRPixmap
XtNborderColor XtCBorderColor XtRPixel
XtNborderPixmap XtCPixmap XtRPixmap
XtNcolormap XtCColormap XtRColormap
XtNdepth XtCDepth XtRInt
XtNmappedWhenMan- XtCMappedWhenMan- XtRBoolean

aged aged

XtNscreen XtCScreen XtRScreen
XtNtranslations XtCTranslations XtRTranslationTable

Additional resources are defined for all widgets via the obj ect Cl assRec and rec-
t Obj d assRec resource lists; see the section called “Object Objects” and the section
called “Rectangle Objects” for details.

CorePart Default Values

The default values for the Core fields, which are filled in by the Intrinsics, from the
resource lists, and by the initialize procedures, are

Intrinsics and Widgets

Field

Default Value

self
widget class

parent

being destroyed
destroy callbacks
constraints

X

y

width

height

border width
managed
sensitive
ancestor sensitive

accelerators
border pixel
border pixmap
popup_list
num_popups
name

screen

colormap

window

depth
background pixel

background pixmap

visible

Address of the widget structure (may not be changed).

widget class argument to Xt Cr eat eW dget (may not be
changed).

parent argument to Xt Cr eat eW dget (may not be
changed).

Parent's being destroyed value.
NULL
NULL

_ O O O O

Fal se
True

logical AND of parent's sensitive and ancestor sensitive
values.

NULL

Xt Def aul t For egr ound
Xt Unspeci fi edPi xmap
NULL

0

name argument to Xt Cr eat eW dget (may not be
changed).

Parent's screen; top-level widget gets screen from display
specifier (may not be changed).

Parent's colormap value.

NULL

Parent's depth; top-level widget gets root window depth.
Xt Def aul t Backgr ound

Xt Unspeci fi edPi xmap

True

mapped when managedr ue

Xt Unspeci fi edPi xmap is a symbolic constant guaranteed to be unequal to any valid
Pixmap id, None, and Par ent Rel ati ve.

Composite Widgets

The Composite widget class is a subclass of the Core widget class (see Chapter 3,
Composite Widgets and Their Children). Composite widgets are intended to be con-
tainers for other widgets. The additional data used by composite widgets are de-
fined by the Conposi t eCl assPart and Conposit ePart structures.

Intrinsics and Widgets

CompositeClassPart Structure

In addition to the Core class fields, widgets of the Composite class have the following
class fields.

typedef struct {
XtGeometryHandler geometry manager; See Chapter 6
XtWidgetProc change managed; See Chapter 3
XtWidgetProc insert child; See Chapter 3
XtWidgetProc delete child; See Chapter 3
XtPointer extension; See Section

} CompositeClassPart;

The extension record defined for Conposi t ed assPart with record type equal to
NULLQUARK is Conposi t ed assExt ensi onRec.

typedef struct {
XtPointer next extension; See Section

XrmQuark record type; See Section
long version; See Section
Cardinal record_size; See Section

Boolean accepts_objects; See Section
Boolean allows change managed set; See Section
} CompositeClassExtensionRec, *CompositeClassExtension;

Composite classes have the Composite class fields immediately following the Core
class fields.

typedef struct {
CoreClassPart core class;
CompositeClassPart composite class;

} CompositeClassRec, *CompositeWidgetClass;

The single occurrences of the class record and pointer for creating instances of
Composite are

InintrinsicP. h:

extern CompositeClassRec compositeClassRec;

Inintrinsic. h:

extern WidgetClass compositeWidgetClass;

The opaque types ConpositeW dget and Conposi t eW dget Cl ass and the opaque
variable comnpositeW dget C ass are defined for generic operations on widgets
whose class is Composite or a subclass of Composite. The symbolic constant for
the Conposi t ed assExt ensi on version identifier is Xt Conposi t eExt ensi onVer si on
(see the section called “Class Extension Records”). I ntri nsi c. h uses an incomplete
structure definition to ensure that the compiler catches attempts to access private
data.

Intrinsics and Widgets

typedef struct CompositeClassRec *CompositeWidgetClass;
CompositePart Structure

In addition to the Core instance fields, widgets of the Composite class have the
following instance fields defined in the Conposi t ePart structure.

typedef struct {
WidgetList children; See Chapter 3
Cardinal num children; See Chapter 3
Cardinal num slots; See Chapter 3
XtOrderProc insert position; See Section
} CompositePart;

Composite widgets have the Composite instance fields immediately following the
Core instance fields.

typedef struct {
CorePart core;
CompositePart composite;
} CompositeRec, *CompositeWidget;

Intrinsic.h uses an incomplete structure definition to ensure that the compiler
catches attempts to access private data.

typedef struct CompositeRec *CompositeWidget;
Composite Resources

The resource names, classes, and representation types that are specified in the
conposi t eCl assRec resource list are

Name Class Representation
XtNchildren XtCReadOnly XtRWidgetList
XtNinsertPosition XtClInsertPosition XtRFunction
XtNnumChildren XtCReadOnly XtRCardinal

CompositePart Default Values

The default values for the Composite fields, which are filled in from the Composite
resource list and by the Composite initialize procedure, are

Field Default Value
children NULL
num_children 0

num_slots 0

insert position Internal function to

insert at end

Intrinsics and Widgets

The children, num_children, and insert position fields are declared as resources;
XtNinsertPosition is a settable resource, XtNchildren and XtNnumChildren may be
read by any client but should only be modified by the composite widget class pro-
cedures.

Constraint Widgets

The Constraint widget class is a subclass of the Composite widget class (see the sec-
tion called “Constrained Composite Widgets”). Constraint widgets maintain addi-
tional state data for each child; for example, client-defined constraints on the child's
geometry. The additional data used by constraint widgets are defined by the Con-
straint Cl assPart and Constraint Part structures.

ConstraintClassPart Structure

In addition to the Core and Composite class fields, widgets of the Constraint class
have the following class fields.

typedef struct {
XtResourcelist resources; See Chapter 9
Cardinal num resources; See Chapter 9
Cardinal constraint size; See Section
XtInitProc initialize; See Section
XtWidgetProc destroy; See Section
XtSetValuesFunc set values; See Section
XtPointer extension; See Section

} ConstraintClassPart;

The extension record defined for Constrai nt 0 assPart with record type equal to
NULLQUARK is Constrai nt d assExt ensi onRec.

typedef struct {
XtPointer next extension; See Section

XrmQuark record type; See Section
long version; See Section
Cardinal record _size; See Section

XtArgsProc get values hook; See Section
} ConstraintClassExtensionRec, *ConstraintClassExtension;

Constraint classes have the Constraint class fields immediately following the Com-
posite class fields.

typedef struct ConstraintClassRec {
CoreClassPart core class;
CompositeClassPart composite class;
ConstraintClassPart constraint class;

} ConstraintClassRec, *ConstraintWidgetClass;

The single occurrences of the class record and pointer for creating instances of
Constraint are

InlntrinsicP. h:

Intrinsics and Widgets

extern ConstraintClassRec constraintClassRec;

Inintrinsic.h:

extern WidgetClass constraintWidgetClass;

The opaque types Const r ai nt W dget and Const r ai nt W dget d ass and the opaque
variable constrai nt Wdget 0 ass are defined for generic operations on widgets
whose class is Constraint or a subclass of Constraint. The symbolic constant for the
Const rai nt Gl assExt ensi on version identifier is Xt Const r ai nt Ext ensi onVer si on
(see the section called “Class Extension Records”). I ntri nsi c. h uses an incomplete
structure definition to ensure that the compiler catches attempts to access private
data.

typedef struct ConstraintClassRec *ConstraintWidgetClass;

ConstraintPart Structure

In addition to the Core and Composite instance fields, widgets of the Constraint
class have the following unused instance fields defined in the Const r ai nt Par t struc-
ture

typedef struct {
int empty;
} ConstraintPart;

Constraint widgets have the Constraint instance fields immediately following the
Composite instance fields.

typedef struct {
CorePart core;
CompositePart composite;
ConstraintPart constraint;

} ConstraintRec, *ConstraintWidget;

Intrinsic.h uses an incomplete structure definition to ensure that the compiler
catches attempts to access private data.

typedef struct ConstraintRec *ConstraintWidget;

Constraint Resources
The constraint 0 assRec core class and constraint class resources fields are

NULL, and the num resources fields are zero; no additional resources beyond those
declared by the superclasses are defined for Constraint.

Implementation-Specific Types

To increase the portability of widget and application source code between different
system environments, the Intrinsics define several types whose precise represen-

10

Intrinsics and Widgets

tation is explicitly dependent upon, and chosen by, each individual implementation
of the Intrinsics.

These implementation-defined types are
Boolean A datum that contains a zero or nonzero value. Unless ex-

plicitly stated, clients should not assume that the nonze-
ro value is equal to the symbolic value Tr ue.

Cardinal An unsigned integer datum with a minimum range of
[0..2716-1].

Dimension An unsigned integer datum with a minimum range of
[0..2716-1].

Position A signed integer datum with a minimum range of

[-2715..2715-1].

XtPointer A datum large enough to contain the largest of a char*,
int*, function pointer, structure pointer, or long value. A
pointer to any type or function, or a long value may be
converted to an Xt Poi nt er and back again and the result
will compare equal to the original value. In ANSI C envi-
ronments it is expected that Xt Poi nt er will be defined
as void*.

XtArgVal A datum large enough to contain an Xt Poi nt er, Cardi -
nal , Di mensi on, or Posi ti on value.

XtEnum An integer datum large enough to encode at least 128
distinct values, two of which are the symbolic values
True and Fal se. The symbolic values TRUE and FALSE
are also defined to be equal to Tr ue and Fal se, respec-
tively.

In addition to these specific types, the precise order of the fields within the struc-
ture declarations for any of the instance part records Cbj ect Part, Rect Obj Part,
Cor ePart, Conposi t ePart, Shel | Part, WvBhel | Part, TopLevel Shel | Part, and Ap-
plicationShel | Part is implementation-defined. These structures may also have
additional private fields internal to the implementation. The Obj ect Part, Rect Obj -
Part, and Cor ePart structures must be defined so that any member with the same
name appears at the same offset in bj ect Rec, Rect Obj Rec, and CoreRec (W d-
get Rec). No other relations between the offsets of any two fields may be assumed.

Widget Classing

The widget class field of a widget points to its widget class structure, which contains
information that is constant across all widgets of that class. As a consequence, wid-
gets usually do not implement directly callable procedures; rather, they implement
procedures, called methods, that are available through their widget class structure.
These methods are invoked by generic procedures that envelop common actions
around the methods implemented by the widget class. Such procedures are applic-
able to all widgets of that class and also to widgets whose classes are subclasses
of that class.

11

Intrinsics and Widgets

All widget classes are a subclass of Core and can be subclassed further. Subclass-
ing reduces the amount of code and declarations necessary to make a new widget
class that is similar to an existing class. For example, you do not have to describe
every resource your widget uses in an Xt Resour celLi st . Instead, you describe on-
ly the resources your widget has that its superclass does not. Subclasses usually
inherit many of their superclasses' procedures (for example, the expose procedure
or geometry handler).

Subclassing, however, can be taken too far. If you create a subclass that inherits
none of the procedures of its superclass, you should consider whether you have
chosen the most appropriate superclass.

To make good use of subclassing, widget declarations and naming conventions are
highly stylized. A widget consists of three files:

¢ A public .h file, used by client widgets or applications.
¢ A private .h file, used by widgets whose classes are subclasses of the widget class.
* A .c file, which implements the widget.

Widget Naming Conventions

The Intrinsics provide a vehicle by which programmers can create new widgets
and organize a collection of widgets into an application. To ensure that applications
need not deal with as many styles of capitalization and spelling as the number of
widget classes it uses, the following guidelines should be followed when writing
new widgets:

* Use the X library naming conventions that are applicable. For example, a record
component name is all lowercase and uses underscores () for compound words
(for example, background pixmap). Type and procedure names start with upper-
case and use capitalization for compound words (for example, Ar gLi st or Xt Set -
Val ues).

* A resource name is spelled identically to the field name except that compound
names use capitalization rather than underscore. To let the compiler catch
spelling errors, each resource name should have a symbolic identifier prefixed
with " "XtN". For example, the background pixmap field has the corresponding
identifier XtNbackgroundPixmap, which is defined as the string " background-
Pixmap'. Many predefined names are listed in <X11/ St ri ngDef s. h>. Before you
invent a new name, you should make sure there is not already a name that you
can use.

* Aresource class string starts with a capital letter and uses capitalization for com-
pound names (for example,” " BorderWidth'). Each resource class string should
have a symbolic identifier prefixed with *"XtC" (for example, XtCBorderWidth).
Many predefined classes are listed in <X11/ St ri ngDef s. h>.

* A resource representation string is spelled identically to the type name (for ex-
ample, " TranslationTable"). Each representation string should have a symbolic
identifier prefixed with *~"XtR" (for example, XtRTranslationTable). Many prede-
fined representation types are listed in <X11/ St ri ngDef s. h>.

* New widget classes start with a capital and use uppercase for compound words.
Given a new class name AbcXyz, you should derive several names:

¢ » Additional widget instance structure part name AbcXyzPart.

* Complete widget instance structure names AbcXyzRec and AbcXyzRec.
* Widget instance structure pointer type name AbcXyzWidget.
* Additional class structure part name AbcXyzClassPart.

12

Intrinsics and Widgets

* Complete class structure names AbcXyzClassRec and AbcXyzClassRec.
* Class structure pointer type name AbcXyzWidgetClass.
* Class structure variable abcXyzClassRec.
* Class structure pointer variable abcXyzWidgetClass.

* Action procedures available to translation specifications should follow the same
naming conventions as procedures. That is, they start with a capital letter, and
compound names use uppercase (for example, " Highlight" and " NotifyClient").

The symbolic identifiers XtN..., XtC..., and XtR... may be implemented as macros,
as global symbols, or as a mixture of the two. The (implicit) type of the identifier
is Stri ng. The pointer value itself is not significant; clients must not assume that
inequality of two identifiers implies inequality of the resource name, class, or repre-
sentation string. Clients should also note that although global symbols permit sav-
ings in literal storage in some environments, they also introduce the possibility of
multiple definition conflicts when applications attempt to use independently devel-
oped widgets simultaneously.

Widget Subclassing in Public .h Files

The public .h file for a widget class is imported by clients and contains

¢ A reference to the public .h file for the superclass.

* Symbolic identifiers for the names and classes of the new resources that this wid-
get adds to its superclass. The definitions should have a single space between the
definition name and the value and no trailing space or comment in order to reduce
the possibility of compiler warnings from similar declarations in multiple classes.

* Type declarations for any new resource data types defined by the class.

* The class record pointer variable used to create widget instances.

* The C type that corresponds to widget instances of this class.

e Entry points for new class methods.

For example, the following is the public .h file for a possible implementation of a
Label widget:

#ifndef LABEL H
#define LABEL H
/* New resources */
#define XtNjustify "justify"
#define XtNforeground "foreground"
#define XtNlabel "label"
#define XtNfont "font"
#define XtNinternalWidth "internalWidth"
#define XtNinternalHeight "internalHeight"
/* Class record pointer */
extern WidgetClass labelWidgetClass;
/* C Widget type definition */
typedef struct LabelRec *LabelWidget;
/* New class method entry points */
extern void LabelSetText();
/* Widget w */
/* String text */
extern String LabelGetText();
/* Widget w */

13

Intrinsics and Widgets

#endif LABEL H

The conditional inclusion of the text allows the application to include header files
for different widgets without being concerned that they already may be included as
a superclass of another widget.

To accommodate operating systems with file name length restrictions, the name of
the public .h file is the first ten characters of the widget class. For example, the
public .h file for the Constraint widget class is Constrai nt. h.

Widget Subclassing in Private .h Files

The private .h file for a widget is imported by widget classes that are subclasses
of the widget and contains

A reference to the public .h file for the class.

A reference to the private .h file for the superclass.

Symbolic identifiers for any new resource representation types defined by the
class. The definitions should have a single space between the definition name and
the value and no trailing space or comment.

A structure part definition for the new fields that the widget instance adds to its
superclass's widget structure.

The complete widget instance structure definition for this widget.

A structure part definition for the new fields that this widget class adds to its
superclass's constraint structure if the widget class is a subclass of Constraint.
The complete constraint structure definition if the widget class is a subclass of
Constraint.

Type definitions for any new procedure types used by class methods declared in
the widget class part.

A structure part definition for the new fields that this widget class adds to its
superclass's widget class structure.

The complete widget class structure definition for this widget.

The complete widget class extension structure definition for this widget, if any.
The symbolic constant identifying the class extension version, if any.

The name of the global class structure variable containing the generic class struc-
ture for this class.

An inherit constant for each new procedure in the widget class part structure.

For example, the following is the private .h file for a possible Label widget:

#ifndef LABELP H

#define LABELP H

#include <X11/Label.h>

/* New representation types used by the Label widget */
#define XtRJustify "Justify"

/* New fields for the Label widget record */

typedef struct {

/* Settable resources */

Pixel foreground;

XFontStruct *font;

String label; /* text to display */
XtJustify justify;

14

Intrinsics and Widgets

Dimension internal width; /* # pixels horizontal border */

Dimension internal height; /* # pixels vertical border */
/* Data derived from resources */

GC normal GC;

GC gray GC;

Pixmap gray pixmap;

Position label x;

Position label y;

Dimension label width;

Dimension label height;

Cardinal label len;

Boolean display sensitive;
} LabelPart;

/* Full instance record declaration */
typedef struct LabelRec {
CorePart core;
LabelPart label;
} LabelRec;
/* Types for Label class methods */
typedef void (*LabelSetTextProc)();
/* Widget w */
/* String text */
typedef String (*LabelGetTextProc)();
/* Widget w */
/* New fields for the Label widget class record */
typedef struct {
LabelSetTextProc set text;
LabelGetTextProc get text;
XtPointer extension;
} LabelClassPart;
/* Full class record declaration */
typedef struct LabelClassRec {
CoreClassPart core class;
LabelClassPart label class;
} LabelClassRec;
/* Class record variable */
extern LabelClassRec labelClassRec;
#define LabellnheritSetText((LabelSetTextProc) XtInherit)
#define LabellnheritGetText((LabelGetTextProc) XtInherit)
#endif LABELP H

To accommodate operating systems with file name length restrictions, the name of
the private .h file is the first nine characters of the widget class followed by a capital
P. For example, the private .h file for the Constraint widget class is Constrai nP. h.

Widget Subclassing in .c Files

The .c file for a widget contains the structure initializer for the class record variable,
which contains the following parts:

* Class information (for example, superclass, class name, widget size,
class initialize, and class_inited).

15

Intrinsics and Widgets

* Data constants (for example, resources and num resources, actions and
num_actions, visible interest, compress motion, compress exposure, and ver-
sion).

* Widget operations (for example, initialize, realize, destroy, resize, expose,
set values, accept _focus, and any new operations specific to the widget).

The superclass field points to the superclass global class record, declared in the
superclass private .h file. For direct subclasses of the generic core widget, super-
class should be initialized to the address of the wi dget C assRec structure. The su-
perclass is used for class chaining operations and for inheriting or enveloping a
superclass's operations (see the section called “Superclass Chaining”, the section
called “Initializing a Widget Class”, and the section called “Inheritance of Super-
class Operations”.

The class name field contains the text name for this class, which is used by the
resource manager. For example, the Label widget has the string " Label'. More
than one widget class can share the same text class name. This string must be
permanently allocated prior to or during the execution of the class initialization
procedure and must not be subsequently deallocated.

The widget_size field is the size of the corresponding widget instance structure (not
the size of the class structure).

The version field indicates the toolkit implementation version number and is used
for runtime consistency checking of the X Toolkit and widgets in an application.
Widget writers must set it to the implementation-defined symbolic value Xt Ver si on
in the widget class structure initialization. Those widget writers who believe that
their widget binaries are compatible with other implementations of the Intrinsics
can put the special value Xt Ver si onDont Check in the version field to disable version
checking for those widgets. If a widget needs to compile alternative code for differ-
ent revisions of the Intrinsics interface definition, it may use the symbol Xt Speci -
ficationRel ease, as described in Chapter 13, Evolution of the Intrinsics. Use of
Xt Ver si on allows the Intrinsics implementation to recognize widget binaries that
were compiled with older implementations.

The extension field is for future upward compatibility. If the widget programmer
adds fields to class parts, all subclass structure layouts change, requiring complete
recompilation. To allow clients to avoid recompilation, an extension field at the end
of each class part can point to a record that contains any additional class information
required.

All other fields are described in their respective sections.

The .cfile also contains the declaration of the global class structure pointer variable
used to create instances of the class. The following is an abbreviated version of the .c
file for a Label widget. The resources table is described in Chapter 9, Resource
Management.

/* Resources specific to Label */
static XtResource resources[] = {

{XtNforeground, XtCForeground, XtRPixel, sizeof(Pixel),
XtOffset(LabelWidget, label.foreground), XtRString,
XtDefaultForeground},

{XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct *),

16

Intrinsics and Widgets

XtOffset(LabelWidget, label.font), XtRString,
XtDefaultFont},

{XtNlabel, XtCLabel, XtRString, sizeof(String),
XtOffset(LabelWidget, label.label), XtRString, NULL},

/* Forward declarations of procedures */
static void Classlnitialize();

static void Initialize();

static void Realize();

static void SetText();

static void GetText();

/* Class record constant */
LabelClassRec labelClassRec = {

/* core_class fields */

/* superclass */ (WidgetClass)&coreClassRec,
/* class name */ "Label",

/* widget size */ sizeof(LabelRec),

/* class initialize */ ClasslInitialize,

/* class part initialize */ NULL,

/* class inited */ False,

/* initialize */ Initialize,

/* initialize hook */ NULL,

[* realize */ Realize,

[* actions */ NULL,

/*num actions */ O,

[* resources */ resources,

/* num resources */ XtNumber(resources),
/*xrm class */ NULLQUARK,

/* compress motion */ True,

/* compress_exposure */ True,

/* compress_enterleave */ True,

/* visible interest */ False,

/* destroy */ NULL,

[*resize */ Resize,

/* expose */ Redisplay,

/* set values */ SetValues,

/* set_ values hook */ NULL,

/* set values almost */ XtInheritSetValuesAlmost,
/* get values hook */ NULL,

/* accept focus */ NULL,

[*version */ XtVersion,

/* callback offsets */ NULL,

/*tm table */ NULL,

/* query geometry */ XtInheritQueryGeometry,
/* display accelerator */ NULL,

17

Intrinsics and Widgets

/* extension */ NULL
}
{

/* Label class fields */

/* get text */ GetText,
/* set text */ SetText,
/* extension */ NULL

}
}¥
/* Class record pointer */
WidgetClass labelWidgetClass = (WidgetClass) &labelClassRec;
/* New method access routines */
void LabelSetText(w, text)
Widget w;
String text;

LabelWidgetClass lwc = (Label WidgetClass)XtClass(w);
XtCheckSubclass(w, labelWidgetClass, NULL);
*(lwc->label class.set text)(w, text)

}

/* Private procedures */

Widget Class and Superclass Look Up

To obtain the class of a widget, use Xt d ass.
W dget G ass Xtd ass(w);

w Specifies the widget. Must be of class Object or any subclass there-
of.

The Xt d ass function returns a pointer to the widget's class structure.
To obtain the superclass of a widget, use Xt Super cl ass.
W dget Cl ass Xt Super Cl ass(W) ;

w Specifies the widget. Must be of class Object or any subclass there-
of.

The Xt Super cl ass function returns a pointer to the widget's superclass class struc-
ture.

Widget Subclass Verification

To check the subclass to which a widget belongs, use Xt | sSubcl ass.
Bool ean XtlsSubclass(w, w dget_cl ass);

w Specifies the widget or object instance whose class
is to be checked. Must be of class Object or any sub-
class thereof.

18

Intrinsics and Widgets

widget class Specifies the widget class for which to test. Must be
objectClass or any subclass thereof.

The Xt | sSubcl ass function returns Tr ue if the class of the specified widget is equal
to or is a subclass of the specified class. The widget's class can be any number of
subclasses down the chain and need not be an immediate subclass of the specified
class. Composite widgets that need to restrict the class of the items they contain
can use Xt | sSubcl ass to find out if a widget belongs to the desired class of objects.

To test if a given widget belongs to a subclass of an Intrinsics-defined class, the In-
trinsics define macros or functions equivalent to Xt | sSubcl ass for each of the built-
in classes. These procedures are Xt | sObj ect, Xt | sRect Obj , Xt | sW dget , Xt | sCom
posite, XtlsConstraint, XtlsShell, XtlsOverrideShell, Xt|sWshel |, Xt sVen-
dor Shel |, Xt | sTransi ent Shel I, Xt | sTopLevel Shel |, Xt I sApplicati onShel |, and
Xt 1 sSessi onShel | .

All these macros and functions have the same argument description.
Bool ean Xtls(w);

w Specifies the widget or object instance whose class is to be
checked. Must be of class Object or any subclass thereof.

These procedures may be faster than calling Xt | sSubcl ass directly for the built-
in classes.

To check a widget's class and to generate a debugging error message, use Xt Check-
Subcl ass, defined in <X11/ I ntri nsi cP. h>:

voi d Xt CheckSubclass(w, wi dget _class, nessage);

w Specifies the widget or object whose class is to be
checked. Must be of class Object or any subclass
thereof.

widget class Specifies the widget class for which to test. Must be

objectClass or any subclass thereof.
message Specifies the message to be used.

The Xt CheckSubcl ass macro determines if the class of the specified widget is equal
to or is a subclass of the specified class. The widget's class can be any number of
subclasses down the chain and need not be an immediate subclass of the specified
class. If the specified widget's class is not a subclass, Xt CheckSubcl ass constructs
an error message from the supplied message, the widget's actual class, and the
expected class and calls Xt Er r or Msg. Xt CheckSubcl ass should be used at the entry
point of exported routines to ensure that the client has passed in a valid widget
class for the exported operation.

Xt CheckSubcl ass is only executed when the module has been compiled with the
compiler symbol DEBUG defined; otherwise, it is defined as the empty string and
generates no code.

Superclass Chaining

While most fields in a widget class structure are self-contained, some fields are
linked to their corresponding fields in their superclass structures. With a linked

19

Intrinsics and Widgets

field, the Intrinsics access the field's value only after accessing its corresponding su-
perclass value (called downward superclass chaining) or before accessing its corre-
sponding superclass value (called upward superclass chaining). The self-contained
fields are

In all widget classes: class name
class initialize
widget size
realize
visible interest
resize
expose
accept _focus
compress_motion
compress_exposure
compress_enterleave
set values almost
tm_table
version
allocate
deallocate

In Composite widget classes: geometry manager
change managed
insert_child
delete child
accepts_objects
allows change managed set

In Constraint widget classes: constraint _size

In Shell widget classes: root geometry manager

With downward superclass chaining, the invocation of an operation first accesses
the field from the Object, RectObj, and Core class structures, then from the subclass
structure, and so on down the class chain to that widget's class structure. These
superclass-to-subclass fields are

class_part initialize
get values hook
initialize
initialize_hook

set values

set values hook
resources

In addition, for subclasses of Constraint, the following fields of the Constrai nt -
Cl assPart and Constrai nt Cl assExt ensi onRec structures are chained from the
Constraint class down to the subclass:

resources
initialize

20

Intrinsics and Widgets

set values
get values hook

With upward superclass chaining, the invocation of an operation first accesses the
field from the widget class structure, then from the superclass structure, and so on
up the class chain to the Core, RectObj, and Object class structures. The subclass-to-
superclass fields are

destroy
actions

For subclasses of Constraint, the following field of Const r ai nt Cl assPart is chained
from the subclass up to the Constraint class: destroy

Class Initialization: class_initialize and
class_part_initialize Procedures

Many class records can be initialized completely at compile or link time. In some
cases, however, a class may need to register type converters or perform other sorts
of once-only runtime initialization.

Because the C language does not have initialization procedures that are invoked
automatically when a program starts up, a widget class can declare a class_initialize
procedure that will be automatically called exactly once by the Intrinsics. A class
initialization procedure pointer is of type Xt Proc:

typedef void (*XtProc)(void);

A widget class indicates that it has no class initialization procedure by specifying
NULL in the class initialize field.

In addition to the class initialization that is done exactly once, some classes perform
initialization for fields in their parts of the class record. These are performed not just
for the particular class, but for subclasses as well, and are done in the class's class
part initialization procedure, a pointer to which is stored in the class part initialize
field. The class part initialize procedure pointer is of type Xt W dget O assPr oc.

void (*XtWdget Cl assProc) (W dget Cl ass) (w dget _cl ass);

widget class Points to the class structure for the class being ini-
tialized.

During class initialization, the class part initialization procedures for the class and
all its superclasses are called in superclass-to-subclass order on the class record.
These procedures have the responsibility of doing any dynamic initializations nec-
essary to their class's part of the record. The most common is the resolution of any
inherited methods defined in the class. For example, if a widget class C has super-
classes Core, Composite, A, and B, the class record for C first is passed to Core 's
class part initialize procedure. This resolves any inherited Core methods and com-
piles the textual representations of the resource list and action table that are de-
fined in the class record. Next, Composite's class part initialize procedure is called
to initialize the composite part of C's class record. Finally, the class part initialize
procedures for A, B, and C, in that order, are called. For further information, see

21

Intrinsics and Widgets

the section called “Initializing a Widget Class” Classes that do not define any new
class fields or that need no extra processing for them can specify NULL in the
class_part initialize field.

All widget classes, whether they have a class initialization procedure or not, must
start with their class inited field Fal se.

The first time a widget of a class is created, Xt Cr eat eW dget ensures that the widget
class and all superclasses are initialized, in superclass-to-subclass order, by check-
ing each class inited field and, if it is Fal se, by calling the class_initialize and the
class part initialize procedures for the class and all its superclasses. The Intrinsics
then set the class inited field to a nonzero value. After the one-time initialization,
a class structure is constant.

The following example provides the class initialization procedure for a Label class.

static void Classlnitialize()

{
XtSetTypeConverter(XtRString, XtRJustify, CvtStringToJustify,
NULL, 0, XtCacheNone, NULL);

}
Initializing a Widget Class

A class is initialized when the first widget of that class or any subclass is created.
To initialize a widget class without creating any widgets, use Xt I ni ti al i zeW dget -
d ass.

void XtlnitializeWdgetd ass(object_cl ass);

object class Specifies the object class to initialize. May be ob-
j ect d ass or any subclass thereof.

If the specified widget class is already initialized, Xt I ni ti al i zeW dget d ass re-
turns immediately.

If the class initialization procedure registers type converters, these type converters
are not available until the first object of the class or subclass is created or Xt | ni -
tializeWdget d ass is called (see the section called “Resource Conversions”).

Inheritance of Superclass Operations

A widget class is free to use any of its superclass's self-contained operations rather
than implementing its own code. The most frequently inherited operations are

* expose

* realize

* insert child

* delete child

* geometry manager
* set values almost

To inherit an operation xyz, specify the constant Xt | nheri t Xyz in your class record.

22

Intrinsics and Widgets

Every class that declares a new procedure in its widget class part must provide for
inheriting the procedure in its class part initialize procedure. The chained opera-
tions declared in Core and Constraint records are never inherited. Widget classes
that do nothing beyond what their superclass does specify NULL for chained pro-
cedures in their class records.

Inheriting works by comparing the value of the field with a known, special value
and by copying in the superclass's value for that field if a match occurs. This spe-
cial value, called the inheritance constant, is usually the Intrinsics internal value
_Xtlnherit castto the appropriate type. Xt | nherit is a procedure that issues an
error message if it is actually called.

For example, Conposi t eP. h contains these definitions:

#define XtInheritGeometryManager ((XtGeometryHandler) XtInherit)
#define XtInheritChangeManaged ((XtWidgetProc) XtInherit)
#define XtInheritInsertChild ((XtArgsProc) XtInherit)

#define XtInheritDeleteChild ((XtWidgetProc) XtInherit)

Composite's class part initialize procedure begins as follows:

static void CompositeClassPartInitialize(widgetClass)
WidgetClass widgetClass;
{

CompositeWidgetClass wc = (CompositeWidgetClass)widgetClass;
CompositeWidgetClass super = (CompositeWidgetClass)wc->core class.superclass;
if (wc->composite class.geometry manager == XtInheritGeometryManager) {
wc->composite class.geometry manager = super->composite class.geometry manager;
}
if (wc->composite class.change managed == XtInheritChangeManaged) {
wc->composite class.change managed = super->composite class.change managed;

}

Nonprocedure fields may be inherited in the same manner as procedure fields. The
class may declare any reserved value it wishes for the inheritance constant for its
new fields. The following inheritance constants are defined:

For Object:

e XtlnheritAllocate
e Xtl nheritDeal | ocate

For Core:

XtlnheritRealize

Xt I nheritResize

Xt I nheri t Expose

Xt I nherit Set Val uesAl nost
Xt I nheri t Accept Focus

Xt nheritQueryGeonetry
Xt nheritTransl ations

23

Intrinsics and Widgets

e Xt nheritDi splayAccel erat or
For Composite:

e Xt I nherit Geomnet r yManager
e Xt | nherit ChangeManaged

e XtlnheritlnsertChild

e XtInheritDel eteChild

For Shell:

e Xt I nherit Root Geonet r yManager

Invocation of Superclass Operations

A widget sometimes needs to call a superclass operation that is not chained. For
example, a widget's expose procedure might call its superclass's expose and then
perform a little more work on its own. For example, a Composite class with prede-
fined managed children can implement insert child by first calling its superclass's
insert_child and then calling Xt ManageChi | d to add the child to the managed set.

Note

A class method should not use Xt Super cl ass but should instead call the
class method of its own specific superclass directly through the superclass
record. That is, it should use its own class pointers only, not the widget's
class pointers, as the widget's class may be a subclass of the class whose
implementation is being referenced.

This technique is referred to as enveloping the superclass's operation.

Class Extension Records

It may be necessary at times to add new fields to already existing widget class struc-
tures. To permit this to be done without requiring recompilation of all subclasses,
the last field in a class part structure should be an extension pointer. If no extension
fields for a class have yet been defined, subclasses should initialize the value of the
extension pointer to NULL.

If extension fields exist, as is the case with the Composite, Constraint, and Shell
classes, subclasses can provide values for these fields by setting the extension point-
er for the appropriate part in their class structure to point to a statically declared
extension record containing the additional fields. Setting the extension field is nev-
er mandatory; code that uses fields in the extension record must always check the
extension field and take some appropriate default action if it is NULL.

In order to permit multiple subclasses and libraries to chain extension records from
a single extension field, extension records should be declared as a linked list, and
each extension record definition should contain the following four fields at the be-
ginning of the structure declaration:

struct {
XtPointer next extension;

24

Intrinsics and Widgets

XrmQuark record type;
long version;
Cardinal record_size;

I3

next extension Specifies the next record in the list, or NULL.

record type Specifies the particular structure declaration to
which each extension record instance conforms.

version Specifies a version id symbolic constant supplied by
the definer of the structure.

record size Specifies the total number of bytes allocated for the

extension record.

The record type field identifies the contents of the extension record and is used
by the definer of the record to locate its particular extension record in the list.
The record type field is normally assigned the result of Xr nSt ri ngToQuar k for a
registered string constant. The Intrinsics reserve all record type strings beginning
with the two characters " "XT" for future standard uses. The value NULLQUARK
may also be used by the class part owner in extension records attached to its own
class part extension field to identify the extension record unique to that particular
class.

The version field is an owner-defined constant that may be used to identify binary
files that have been compiled with alternate definitions of the remainder of the ex-
tension record data structure. The private header file for a widget class should pro-
vide a symbolic constant for subclasses to use to initialize this field. The record size
field value includes the four common header fields and should normally be initial-
ized with si zeof ().

Any value stored in the class part extension fields of Conposited assPart, Con-
strai nt G assPart, or Shel | d assPart must point to an extension record conform-
ing to this definition.

The Intrinsics provide a utility function for widget writers to locate a particular class
extension record in a linked list, given a widget class and the offset of the extension
field in the class record.

To locate a class extension record, use Xt Get Cl assExt ensi on.

Xt Poi nter Xt Get Cl assExtension(object _class, byte offset, type, ver-
sion, record_size);

object class Specifies the object class containing the extension
list to be searched.

byte offset Specifies the offset in bytes from the base of the class
record of the extension field to be searched.

type Specifies the record type of the class extension to be
located.

version Specifies the minimum acceptable version of the

class extension required for a match.

25

Intrinsics and Widgets

record size Specifies the minimum acceptable length of the class
extension record required for a match, or 0.

The list of extension records at the specified offset in the specified object class will
be searched for a match on the specified type, a version greater than or equal to the
specified version, and a record size greater than or equal the specified record size
if it is nonzero. Xt Get C assExt ensi on returns a pointer to a matching extension
record or NULL if no match is found. The returned extension record must not be
modified or freed by the caller if the caller is not the extension owner.

26

Chapter 2. Widget Instantiation

A hierarchy of widget instances constitutes a widget tree. The shell widget returned
by Xt AppCr eat eShel | is the root of the widget tree instance. The widgets with one
or more children are the intermediate nodes of that tree, and the widgets with no
children of any kind are the leaves of the widget tree. With the exception of pop-
up children (see Chapter 5, Pop-Up Widgets), this widget tree instance defines the
associated X Window tree.

Widgets can be either composite or primitive. Both kinds of widgets can contain
children, but the Intrinsics provide a set of management mechanisms for construct-
ing and interfacing between composite widgets, their children, and other clients.

Composite widgets, that is, members of the class conposi t eW dget O ass, are con-
tainers for an arbitrary, but widget implementation-defined, collection of children,
which may be instantiated by the composite widget itself, by other clients, or by a
combination of the two. Composite widgets also contain methods for managing the
geometry (layout) of any child widget. Under unusual circumstances, a composite
widget may have zero children, but it usually has at least one. By contrast, primitive
widgets that contain children typically instantiate specific children of known class-
es themselves and do not expect external clients to do so. Primitive widgets also do
not have general geometry management methods.

In addition, the Intrinsics recursively perform many operations (for example, real-
ization and destruction) on composite widgets and all their children. Primitive wid-
gets that have children must be prepared to perform the recursive operations them-
selves on behalf of their children.

A widget tree is manipulated by several Intrinsics functions. For example, Xt Real -
i zeW dget traverses the tree downward and recursively realizes all pop-up widgets
and children of composite widgets. Xt Dest r oyW dget traverses the tree downward
and destroys all pop-up widgets and children of composite widgets. The functions
that fetch and modify resources traverse the tree upward and determine the inher-
itance of resources from a widget's ancestors. Xt MakeGeonet r yRequest traverses
the tree up one level and calls the geometry manager that is responsible for a wid-
get child's geometry.

To facilitate upward traversal of the widget tree, each widget has a pointer to its
parent widget. The Shell widget that Xt AppCr eat eShel | returns has a parent point-
er of NULL.

To facilitate downward traversal of the widget tree, the children field of each com-
posite widget is a pointer to an array of child widgets, which includes all normal
children created, not just the subset of children that are managed by the composite
widget's geometry manager. Primitive widgets that instantiate children are entirely
responsible for all operations that require downward traversal below themselves.
In addition, every widget has a pointer to an array of pop-up children.

Initializing the X Toolkit

Before an application can call any Intrinsics function other than Xt Set LanguagePr oc
and Xt Tool ki t Threadl ni ti al i ze, it must initialize the Intrinsics by using

27

Widget Instantiation

e Xt Tool kitlnitialize, which initializes the Intrinsics internals

e Xt Cr eat eAppl i cati onCont ext, which initializes the per-application state

e Xt Di spl ayl nitializeor*XtQpenDi spl ay, which initializes the per-display state
e Xt AppCr eat eShel | , which creates the root of a widget tree

Or an application can call the convenience procedure Xt OpenAppl i cati on, which
combines the functions of the preceding procedures. An application wishing to
use the ANSI C locale mechanism should call Xt Set LanguagePr oc prior to calling
XtDisplaylnitialize, *XtOpenDi spl ay, Xt OpenApplication, or XtApplnitial-
i ze.

Multiple instances of X Toolkit applications may be implemented in a single address
space. Each instance needs to be able to read input and dispatch events indepen-
dently of any other instance. Further, an application instance may need multiple
display connections to have widgets on multiple displays. From the application's
point of view, multiple display connections usually are treated together as a single
unit for purposes of event dispatching. To accommodate both requirements, the In-
trinsics define application contexts, each of which provides the information needed
to distinguish one application instance from another. The major component of an
application context is a list of one or more X Di spl ay pointers for that application.
The Intrinsics handle all display connections within a single application context si-
multaneously, handling input in a round-robin fashion. The application context type
Xt AppCont ext is opaque to clients.

To initialize the Intrinsics internals, use Xt Tool kitlniti ali ze.
void XtToolkitlnitialize();

If Xt Tool kitlnitialize was previously called, it returns immediately. When Xt -
Tool ki t Threadl ni ti al i ze is called before Xt Tool ki tl niti al i ze, the latter is pro-
tected against simultaneous activation by multiple threads.

To create an application context, use Xt Cr eat eAppl i cati onCont ext .
Xt AppCont ext Xt Creat eAppl i cati onContext();

The Xt Cr eat eAppl i cati onCont ext function returns an application context, which
is an opaque type. Every application must have at least one application context.

To destroy an application context and close any remaining display connections in
it, use Xt Dest r oyAppl i cat i onCont ext .

voi d Xt DestroyApplicati onCont ext (app_context);

app_context Specifies the application context.

The Xt DestroyApplicationContext function destroys the specified application
context. If called from within an event dispatch (for example, in a callback proce-

dure), Xt Dest r oyAppl i cati onCont ext does not destroy the application context un-
til the dispatch is complete.

To get the application context in which a given widget was created, use Xt W dget -
ToAppl i cat i onCont ext .

Xt AppCont ext Xt W dget ToAppl i cat i onCont ext (W) ;

28

Widget Instantiation

w Specifies the widget for which you want the application context.
Must be of class Object or any subclass thereof.

The Xt W dget ToAppl i cati onCont ext function returns the application context for
the specified widget.

To initialize a display and add it to an application context, use Xt Di spl ayl ni ti al -
i ze.

voi d XtDi splaylnitialize(app_context, di spl ay, appl i cati on_nane,
application_class, options, numoptions, argc, argv);
app_context Specifies the application context.

display Specifies a previously opened display connection.
Note that a single display connection can be in at
most one application context.

application name Specifies the name of the application instance.

application_class Specifies the class name of this application, which
is usually the generic name for all instances of this
application.

options Specifies how to parse the command line for any ap-

plication-specific resources. The options argument is
passed as a parameter to Xr nPar seConmand. For fur-
ther information, see Parsing Command Line Options
in Xlib — C Language X Interface and the section
called “Parsing the Command Line” of this specifica-

tion.
num_options Specifies the number of entries in the options list.
argc Specifies a pointer to the number of command line
parameters.
argv Specifies the list of command line parameters.

The Xt Di spl ayl nitialize function retrieves the language string to be used for
the specified display (see the section called “Finding File Names”), calls the lan-
guage procedure (if set) with that language string, builds the resource database
for the default screen, calls the Xlib Xr mPar seCommand function to parse the com-
mand line, and performs other per-display initialization. After Xr nPar seConmand has
been called, argc and argv contain only those parameters that were not in the stan-
dard option table or in the table specified by the options argument. If the modi-
fied argc is not zero, most applications simply print out the modified argv along
with a message listing the allowable options. On POSIX-based systems, the applica-
tion name is usually the final component of argv[0]. If the synchronous resource is
True, Xt Di spl ayl nitialize calls the Xlib XSynchr oni ze function to put Xlib into
synchronous mode for this display connection and any others currently open in the
application context. See the section called “Loading the Resource Database” and
the section called “Parsing the Command Line” for details on the application name,
application_class, options, and num_options arguments.

Xt Di splayl nitialize calls Xr nSet Dat abase to associate the resource database of
the default screen with the display before returning.

29

Widget Instantiation

To open a display, initialize it, and then add it to an application context, use
* Xt OpenDi spl ay.

Di spl ay *Xt QpenDi spl ay(app_context, display_string, application_nane,
application_class, options, numoptions, argc, argv);

app_context Specifies the application context.

display string Specifies the display string, or NULL.

application_name Specifies the name of the application instance, or
NULL.

application_class Specifies the class name of this application, which
is usually the generic name for all instances of this
application.

options Specifies how to parse the command line for any ap-

plication-specific resources. The options argument is
passed as a parameter to Xr nPar seConmmand.

num_options Specifies the number of entries in the options list.

argc Specifies a pointer to the number of command line
parameters.

argv Specifies the list of command line parameters.

The * Xt OpenDi spl ay function calls XOpenDi spl ay with the specified display string.
If display string is NULL, * Xt OpenDi spl ay uses the current value of the \-display
option specified in argv. If no display is specified in argv, the user's default display
is retrieved from the environment. On POSIX-based systems, this is the value of the
DISPLAY environment variable.

If this succeeds, * Xt OpenDi spl ay then calls Xt Di spl ayl nitialize and passes it
the opened display and the value of the \-name option specified in argv as the
application name. If no \-name option is specified and application name is non-
NULL, application name is passed to Xt Di spl ayl ni ti al i ze. If application name
is NULL and if the environment variable RESOURCE_NAME is set, the value of
RESOURCE_NAME is used. Otherwise, the application name is the name used to
invoke the program. On implementations that conform to ANSI C Hosted Environ-
ment support, the application name will be argv[0] less any directory and file type
components, that is, the final component of argvl0], if specified. If argv[0] does not
exist or is the empty string, the application name is *“main'. * Xt QpenDi spl ay re-
turns the newly opened display or NULL if it failed.

See the section called “Using the Intrinsics in a Multi-Threaded Environment” for
information regarding the use of * Xt OpenDi spl ay in multiple threads.

To close a display and remove it from an application context, use Xt Cl oseDi spl ay.
voi d Xt d oseDi spl ay(di spl ay);
display Specifies the display.

The Xt Cl oseDi spl ay function calls XO oseDi spl ay with the specified display as
soon as it is safe to do so. If called from within an event dispatch (for example, a

30

Widget Instantiation

callback procedure), Xt Cl oseDi spl ay does not close the display until the dispatch is
complete. Note that applications need only call Xt Cl oseDi spl ay if they are to con-
tinue executing after closing the display; otherwise, they should call Xt Dest r oy Ap-
pl i cati onCont ext.

See the section called “Using the Intrinsics in a Multi-Threaded Environment” for
information regarding the use of Xt C oseDi spl ay in multiple threads.

Establishing the Locale

Resource databases are specified to be created in the current process locale. Dur-
ing display initialization prior to creating the per-screen resource database, the In-
trinsics will call out to a specified application procedure to set the locale according
to options found on the command line or in the per-display resource specifications.

The callout procedure provided by the application is of type Xt LanguagePr oc.

typedef String (*XtLanguageProc) (di splay, |anguage, client_data);

display Passes the display.

language Passes the initial language value obtained from the
command line or server per-display resource specifi-
cations.

client data Passes the additional client data specified in the call

to Xt Set LanguagePr oc.

The language procedure allows an application to set the locale to the value of the
language resource determined by Xt Di spl ayl nitialize. The function returns a
new language string that will be subsequently used by Xt Di spl ayl nitialize to
establish the path for loading resource files. The returned string will be copied by
the Intrinsics into new memory.

Initially, no language procedure is set by the Intrinsics. To set the language proce-
dure for use by Xt Di spl ayl nitial i ze, use Xt Set LanguagePr oc.

Xt LanguagePr oc Xt Set LanguagePr oc(app_context, proc, client_data);

app_context Specifies the application context in which the lan-
guage procedure is to be used, or NULL.

proc Specifies the language procedure.

client data Specifies additional client data to be passed to the lan-
guage procedure when it is called.

Xt Set LanguagePr oc sets the language procedure that will be called from Xt Di s-
pl ayl ni ti al i ze for all subsequent Displays initialized in the specified application
context. If app context is NULL, the specified language procedure is registered in
all application contexts created by the calling process, including any future appli-
cation contexts that may be created. If proc is NULL, a default language procedure
is registered. Xt Set LanguagePr oc returns the previously registered language pro-
cedure. If a language procedure has not yet been registered, the return value is

31

Widget Instantiation

unspecified, but if this return value is used in a subsequent call to Xt Set Language-
Pr oc, it will cause the default language procedure to be registered.

The default language procedure does the following:

» Sets the locale according to the environment. On ANSI C-based systems this is
done by calling set | ocal e(LC_ALL, language). If an error is encountered, a warn-
ing message is issued with Xt War ni ng.

¢ Calls XSupport sLocal e to verify that the current locale is supported. If the locale
is not supported, a warning message is issued with Xt War ni ng and the locale is
setto " "C'".

» Calls XSet Local eModi fi er s specifying the empty string.

* Returns the value of the current locale. On ANSI C-based systems this is the return
value from a final call to set | ocal e(LC ALL, NULL).

A client wishing to use this mechanism to establish locale can do so by calling Xt Set -
LanguagePr oc prior to Xt Di spl ayl niti al i ze, as in the following example.

Widget top;
XtSetLanguageProc(NULL, NULL, NULL);
top = XtOpenApplication(...);

Loading the Resource Database

The Xt Di spl ayl ni ti al i ze function first determines the language string to be used
for the specified display. It then creates a resource database for the default screen
of the display by combining the following sources in order, with the entries in the
first named source having highest precedence:

* Application command line (argc, argv).

* Per-host user environment resource file on the local host.

¢ Per-screen resource specifications from the server.

* Per-display resource specifications from the server or from the user preference
file on the local host.

* Application-specific user resource file on the local host.

* Application-specific class resource file on the local host.

When the resource database for a particular screen on the display is needed (either
internally, or when Xt Scr eenDat abase is called), it is created in the following man-
ner using the sources listed above in the same order:

» Atemporary database, the " server resource database', is created from the string
returned by XResour ceManager String or, if XResour ceManager Stri ng returns
NULL, the contents of a resource file in the user's home directory. On POSIX-based
systems, the usual name for this user preference resource file is $HOME/. Xde-
faul ts.

» If a language procedure has been set, Xt Di spl ayl ni ti al i ze first searches the
command line for the option " "-xnlLanguage', or for a -xrm option that specifies
the xnlLanguage/XnlLanguage resource, as specified by Section 2.4. If such a
resource is found, the value is assumed to be entirely in XPCS, the X Portable
Character Set. If neither option is specified on the command line, Xt Di spl ayl ni -

32

Widget Instantiation

tialize queries the server resource database (which is assumed to be entirely
in XPCS) for the resource name. xnl Language, class Class. Xnl Language where
name and Class are the application name and application class specified to
Xt Di spl ayl ni tial i ze. The language procedure is then invoked with the resource
value if found, else the empty string. The string returned from the language pro-
cedure is saved for all future references in the Intrinsics that require the per-
display language string.

* The screen resource database is initialized by parsing the command line in the
manner specified by Section 2.4.

» If a language procedure has not been set, the initial database is then queried for
the resource name. xnl Language, class Class. Xnl Language as specified above. If
this database query fails, the server resource database is queried; if this query
also fails, the language is determined from the environment; on POSIX-based sys-
tems, this is done by retrieving the value of the LANG environment variable. If no
language string is found, the empty string is used. This language string is saved
for all future references in the Intrinsics that require the per-display language
string.

» After determining the language string, the user's environment resource file is then
merged into the initial resource database if the file exists. This file is user-, host-,
and process-specific and is expected to contain user preferences that are to over-
ride those specifications in the per-display and per-screen resources. On POSIX-
based systems, the user's environment resource file name is specified by the value
of the XENVIRONMENT environment variable. If this environment variable does
not exist, the user's home directory is searched for a file named . Xdef aul t s- host,
where host is the host name of the machine on which the application is running.

* The per-screen resource specifications are then merged into the screen resource
database, if they exist. These specifications are the string returned by XScr een-
Resour ceStri ng for the respective screen and are owned entirely by the user.

* Next, the server resource database created earlier is merged into the screen re-
source database. The server property, and corresponding user preference file, are
owned and constructed entirely by the user.

» The application-specific user resource file from the local host is then merged into
the screen resource database. This file contains user customizations and is stored
in a directory owned by the user. Either the user or the application or both can
store resource specifications in the file. Each should be prepared to find and re-
spect entries made by the other. The file name is found by calling Xr nSet Dat a-
base with the current screen resource database, after preserving the original dis-
play-associated database, then calling Xt Resol vePat hnane with the parameters
(display, NULL, NULL, NULL, path, NULL, 0, NULL), where path is defined in an
operating-system-specific way. On POSIX-based systems, path is defined to be the
value of the environment variable XUSERFILESEARCHPATH if this is defined.
If XUSERFILESEARCHPATH is not defined, an implementation-dependent de-
fault value is used. This default value is constrained in the following manner:

e o Ifthe environment variable XAPPLRESDIR is not defined, the default XUSER-

FILESEARCHPATH must contain at least six entries. These entries must con-
tain $HOME as the directory prefix, plus the following substitutions:

. %C, %N, %L or %C, %N, %l, %t, %c
%C, %N, %l

%C, %N

%N, %L or %N, %l, %t, %c

%N, %]l

%N

Ul W=

33

Widget Instantiation

The order of these six entries within the path must be as given above. The order
and use of substitutions within a given entry are implementation-dependent.

* f XAPPLRESDIR is defined, the default XUSERFILESEARCHPATH must con-
tain at least seven entries. These entries must contain the following directory
prefixes and substitutions:

. $XAPPLRESDIR with %C, %N, %L or %C, %N, %]l, %t, %c
. $XAPPLRESDIR with %C, %N, %l

. $XAPPLRESDIR with %C, %N

. $XAPPLRESDIR with %N, %L or %N, %I, %t, %c

. $XAPPLRESDIR with %N, %l

. $XAPPLRESDIR with %N

. $HOME with %N

NO O WN -

The order of these seven entries within the path must be as given above. The or-
der and use of substitutions within a given entry are implementation-dependent.

» Last, the application-specific class resource file from the local host is merged into
the screen resource database. This file is owned by the application and is usually
installed in a system directory when the application is installed. It may contain
sitewide customizations specified by the system manager. The name of the appli-
cation class resource file is found by calling Xt Resol vePat hnane with the parame-
ters (display, * “app-defaults', NULL, NULL, NULL, NULL, 0, NULL). This file is
expected to be provided by the developer of the application and may be required
for the application to function properly. A simple application that wants to be as-
sured of having a minimal set of resources in the absence of its class resource file
can declare fallback resource specifications with Xt AppSet Fal | backResour ces.
Note that the customization substitution string is retrieved dynamically by Xt Re-
sol vePat hnanme so that the resolved file name of the application class resource
file can be affected by any of the earlier sources for the screen resource database,
even though the contents of the class resource file have lowest precedence. After
calling Xt Resol vePat hnane, the original display-associated database is restored.

To obtain the resource database for a particular screen, use Xt Scr eenDat abase.
XrnDat abase Xt Scr eenDat abase(screen);

screen Specifies the screen whose resource database is to be re-
turned.

The Xt Scr eenDat abase function returns the fully merged resource database as
specified above, associated with the specified screen. If the specified screen does
not belong to a Di spl ay initialized by Xt Di spl ayl ni ti al i ze, the results are unde-
fined.

To obtain the default resource database associated with a particular display, use
Xt Dat abase.

Xr nDat abase Xt Dat abase(di spl ay);
display Specifies the display.

The Xt Dat abase function is equivalent to Xr mGet Dat abase. It returns the database
associated with the specified display, or NULL if a database has not been set.

34

Widget Instantiation

To specify a default set of resource values that will be used to initialize the resource
database if no application-specific class resource file is found (the last of the six
sources listed above), use Xt AppSet Fal | backResour ces.

voi d Xt AppSet Fal | backResour ces(app_context, specification_list);

app_context Specifies the application context in which the fall-
back specifications will be used.

specification list Specifies a NULL-terminated list of resource specifi-
cations to preload the database, or NULL.

Each entry in specification list points to a string in the format of Xr nPut Li neRe-
sour ce. Following a call to Xt AppSet Fal | backResour ces, when a resource data-
base is being created for a particular screen and the Intrinsics are not able
to find or read an application-specific class resource file according to the rules
given above and if specification list is not NULL, the resource specifications in
specification list will be merged into the screen resource database in place of
the application-specific class resource file. Xt AppSet Fal | backResour ces is not re-
quired to copy specification list; the caller must ensure that the contents of the
list and of the strings addressed by the list remain valid until all displays are ini-
tialized or until Xt AppSet Fal | backResour ces is called again. The value NULL for
specification_list removes any previous fallback resource specification for the ap-
plication context. The intended use for fallback resources is to provide a minimal
number of resources that will make the application usable (or at least terminate
with helpful diagnostic messages) when some problem exists in finding and loading
the application defaults file.

Parsing the Command Line

The * Xt OpenDi spl ay function first parses the command line for the following op-

tions:
-display Specifies the display name for XOpenDi spl ay.
-name Sets the resource name prefix, which overrides the application

name passed to * Xt QpenDi spl ay.

-xnllanguage Specifies the initial language string for establishing locale and for
finding application class resource files.

Xt Di spl ayl nitialize has atable of standard command line options that are passed
to Xr nPar seCommand for adding resources to the resource database, and it takes as
a parameter additional application-specific resource abbreviations. The format of
this table is described in Section 15.9 in XIlib — C Language X Interface.

typedef enum {
XrmoptionNoArg, /* Value is specified in OptionDescRec.value */
XrmoptionlsArg, /* Value is the option string itself */
XrmoptionStickyArg, /* Value is characters immediately following option */
XrmoptionSepArg, /* Value is next argument in argv */
XrmoptionResArg, /* Use the next argument as input to XrmPutLineResource*/
XrmoptionSkipArg, /* Ignore this option and the next argument in argv */
XrmoptionSkipNArgs, /* Ignore this option and the next */

35

Widget Instantiation

/* OptionDescRec.value arguments in argv */
XrmoptionSkipLine /* Ignore this option and the rest of argv */
} XrmOptionKind;
typedef struct {
char *option; /* Option name in argv */
char *specifier; /* Resource name (without application name) */
XrmOptionKind argKind; /* Location of the resource value */
XPointer value; /* Value to provide if XrmoptionNoArg */
} XrmOptionDescRec, *XrmOptionDescList;

The standard table contains the following entries:

Option String Resource Name Argument Kind Resource Value
—background *background SepArg next argument
—bd *borderColor SepArg next argument
—bg *background SepArg next argument
—borderwidth .borderWidth SepArg next argument
—bordercolor *borderColor SepArg next argument
—bw .borderWidth SepArg next argument
—display .display SepArg next argument
—fg *foreground SepArg next argument
—fn *font SepArg next argument
—font *font SepArg next argument
—foreground *foreground SepArg next argument
—geometry .geometry SepArg next argument
—iconic .iconic NoArg "true"”

—name .name SepArg next argument
—reverse .reverseVideo NoArg "on"

—-rv .reverseVideo NoArg "on"

+rv .reverseVideo NoArg "off"
—selectionTimeout .selectionTimeout SepArg next argument
—synchronous .synchronous NoArg "on"
+synchronous .synchronous NoArg "off"

—title title SepArg next argument
—xnllanguage .xnlLanguage SepArg next argument
—Xrm next argument ResArg next argument
—xtsessionlD .sessionlD SepArg next argument

Note that any unique abbreviation for an option name in the standard table or in
the application table is accepted.

If reverseVideo is True, the values of Xt Def aul t For egr ound and Xt Def aul t Back-
gr ound are exchanged for all screens on the Display.

The value of the synchronous resource specifies whether or not Xlib is put into syn-
chronous mode. If a value is found in the resource database during display initial-

36

Widget Instantiation

ization, Xt Di spl ayl ni ti al i ze makes a call to XSynchr oni ze for all display connec-
tions currently open in the application context. Therefore, when multiple displays
are initialized in the same application context, the most recent value specified for
the synchronous resource is used for all displays in the application context.

The value of the selectionTimeout resource applies to all displays opened in the
same application context. When multiple displays are initialized in the same appli-
cation context, the most recent value specified is used for all displays in the appli-
cation context.

The -xrm option provides a method of setting any resource in an application. The
next argument should be a quoted string identical in format to a line in the user
resource file. For example, to give a red background to all command buttons in an
application named xmh, you can start it up as

xmh -xrm 'xmh*Command.background: red'

When it parses the command line, Xt Di spl ayl ni ti al i ze merges the application
option table with the standard option table before calling the Xlib Xr nPar seConmand
function. An entry in the application table with the same name as an entry in the
standard table overrides the standard table entry. If an option name is a prefix of an-
other option name, both names are kept in the merged table. The Intrinsics reserve
all option names beginning with the characters " "-xt' for future standard uses.

Creating Widgets

The creation of widget instances is a three-phase process:

1. The widgets are allocated and initialized with resources and are optionally added
to the managed subset of their parent.

2. All composite widgets are notified of their managed children in a bottom-up tra-
versal of the widget tree.

3. The widgets create X windows, which then are mapped.

To start the first phase, the application calls Xt Cr eat eW dget for all its widgets and
adds some (usually, most or all) of its widgets to their respective parents' managed
set by calling Xt ManageChi | d. To avoid an 0O(n?) creation process where each com-
posite widget lays itself out each time a widget is created and managed, parent
widgets are not notified of changes in their managed set during this phase.

After all widgets have been created, the application calls Xt Real i zeW dget with
the top-level widget to execute the second and third phases. Xt Real i zeW dget first
recursively traverses the widget tree in a postorder (bottom-up) traversal and then
notifies each composite widget with one or more managed children by means of its
change managed procedure.

Notifying a parent about its managed set involves geometry layout and possibly
geometry negotiation. A parent deals with constraints on its size imposed from
above (for example, when a user specifies the application window size) and sugges-
tions made from below (for example, when a primitive child computes its preferred
size). One difference between the two can cause geometry changes to ripple in both
directions through the widget tree. The parent may force some of its children to

37

Widget Instantiation

change size and position and may issue geometry requests to its own parent in or-
der to better accommodate all its children. You cannot predict where anything will
go on the screen until this process finishes.

Consequently, in the first and second phases, no X windows are actually created,
because it is likely that they will get moved around after creation. This avoids un-
necessary requests to the X server.

Finally, Xt Real i zeW dget starts the third phase by making a preorder (top-down)
traversal of the widget tree, allocates an X window to each widget by means of its
realize procedure, and finally maps the widgets that are managed.

Creating and Merging Argument Lists

Many Intrinsics functions may be passed pairs of resource names and values. These
are passed as an arglist, a pointer to an array of Ar g structures, which contains

typedef struct {
String name;

XtArgVal value;
} Arg, *ArgList;

where Xt Ar gVal is as defined in Section 1.5.

If the size of the resource is less than or equal to the size of an Xt Ar gVal , the re-
source value is stored directly in value; otherwise, a pointer to it is stored in value.

To set values in an Ar gLi st, use Xt Set Ar g.

void Xt SetArg(arg, nane, value);

arg Specifies the name/value pair to set.
name Specifies the name of the resource.
value Specifies the value of the resource if it will fit in an Xt Ar gVal ,

else the address.

The Xt Set Ar g function is usually used in a highly stylized manner to minimize the
probability of making a mistake; for example:

Arg args[20];

int n;

n=0;

XtSetArg(args[n], XtNheight, 100); n++;
XtSetArg(args[n], XtNwidth, 200); n++;
XtSetValues(widget, args, n);

Alternatively, an application can statically declare the argument list and use Xt Num
ber:

static Args args|[] = {
{XtNheight, (XtArgVal) 100},

38

Widget Instantiation

{XtNwidth, (XtArgVal) 200},
}
XtSetValues(Widget, args, XtNumber(args));

Note that you should not use expressions with side effects such as auto-increment
or auto-decrement within the first argument to Xt Set Ar g. Xt Set Ar g can be imple-
mented as a macro that evaluates the first argument twice.

To merge two arglist arrays, use Xt Mer geAr gLi st s.

ArgLi st Xt MergeArgLists(argsl, numargsl, args2, numargs?2);

argsl Specifies the first argument list.

num_argsl Specifies the number of entries in the first argument list.

args2 Specifies the second argument list.

num_args2 1Specifies the number of entries in the second argument
ist.

The Xt Mer geAr gLi st s function allocates enough storage to hold the combined ar-
glist arrays and copies them into it. Note that it does not check for duplicate entries.
The length of the returned list is the sum of the lengths of the specified lists. When
it is no longer needed, free the returned storage by using Xt Fr ee.

All Intrinsics interfaces that require Ar gLi st arguments have analogs conforming
to the ANSI C variable argument list (traditionally called " “varargs') calling con-
vention. The name of the analog is formed by prefixing *"Va'" to the name of the
corresponding Ar gLi st procedure; e.g., Xt VaCr eat eW dget . Each procedure named
Xt Vasomething takes as its last arguments, in place of the corresponding Ar gLi st/
Car di nal parameters, a variable parameter list of resource name and value pairs
where each name is of type St ri ng and each value is of type Xt ArgVal . The end of
the list is identified by a name entry containing NULL. Developers writing in the C
language wishing to pass resource name and value pairs to any of these interfaces
may use the ArgLi st and varargs forms interchangeably.

Two special names are defined for use only in varargs lists: Xt VaTypedArg and
Xt VaNest edLi st .

#define XtVaTypedArg "XtVaTypedArg"

If the name Xt VaTypedAr g is specified in place of a resource name, then the follow-
ing four arguments are interpreted as a name/type/value/size tuple where name is
of type Stri ng, type is of type St ri ng, value is of type Xt Ar gVal , and size is of type
int. When a varargs list containing Xt VaTypedAr g is processed, a resource type con-
version (see the section called “Resource Conversions”) is performed if necessary
to convert the value into the format required by the associated resource. If type is
XtRString, then value contains a pointer to the string and size contains the number
of bytes allocated, including the trailing null byte. If type is not XtRString, then if
size is less than or equal to si zeof (Xt ArgVal), the value should be the data cast to
the type Xt ArgVal , otherwise value is a pointer to the data. If the type conversion
fails for any reason, a warning message is issued and the list entry is skipped.

#define XtVaNestedList "XtVaNestedList"

39

Widget Instantiation

If the name Xt VaNest edLi st is specified in place of a resource name, then the fol-
lowing argument is interpreted as an Xt Var Ar gsLi st value, which specifies another
varargs list that is logically inserted into the original list at the point of declaration.
The end of the nested list is identified with a name entry containing NULL. Varargs
lists may nest to any depth.

To dynamically allocate a varargs list for use with Xt VaNest edLi st in multiple calls,
use Xt VaCr eat eAr gslLi st.

typedef XtPointer XtVarArgsList;

Xt Var Ar gsLi st Xt VaCr eat eAr gsLi st (unused, ...);
unused This argument is not currently used and must be specified
as NULL.

Specifies a variable parameter list of resource name and val-
ue pairs.

The Xt VaCr eat eAr gsLi st function allocates memory and copies its arguments into
a single list pointer, which may be used with Xt VaNest edLi st . The end of both lists
is identified by a name entry containing NULL. Any entries of type Xt VaTypedAr g
are copied as specified without applying conversions. Data passed by reference (in-
cluding Strings) are not copied, only the pointers themselves; the caller must ensure
that the data remain valid for the lifetime of the created varargs list. The list should
be freed using Xt Fr ee when no longer needed.

Use of resource files and of the resource database is generally encouraged over
lengthy arglist or varargs lists whenever possible in order to permit modification
without recompilation.

Creating a Widget Instance

To create an instance of a widget, use Xt Cr eat eW dget .
W dget Xt Creat eW dget (nane, object_cl ass, parent, args, num.args);

name Specifies the resource instance name for the created
widget, which is used for retrieving resources and,
for that reason, should not be the same as any other
widget that is a child of the same parent.

object class Specifies the widget class pointer for the created ob-
ject. Must be objectClass or any subclass thereof.

parent Specifies the parent widget. Must be of class Object
or any subclass thereof.

args Specifies the argument list to override any other re-
source specifications.

num_args Specifies the number of entries in the argument list.

The Xt Cr eat eW dget function performs all the boilerplate operations of widget cre-
ation, doing the following in order:

40

Widget Instantiation

* Checks to see if the class_initialize procedure has been called for this class and
for all superclasses and, if not, calls those necessary in a superclass-to-subclass
order.

e If the specified class is not coreW dget O ass or a subclass thereof, and the
parent's class is a subclass of conpositeW dget Cl ass and either no exten-
sion record in the parent's composite class part extension field exists with the
record type NULLQUARK or the accepts objects field in the extension record
is Fal se, Xt Creat eW dget issues a fatal error; see the section called “Addition
of Children to a Composite Widget: The insert child Procedure” and Chapter 12,
Nonwidget Objects.

« If the specified class contains an extension record in the object class part exten-
sion field with record type NULLQUARK and the allocate field is not NULL, the
procedure is invoked to allocate memory for the widget instance. If the parent
is a member of the class const r ai nt W dget Cl ass, the procedure also allocates
memory for the parent's constraints and stores the address of this memory in-
to the constraints field. If no allocate procedure is found, the Intrinsics allocate
memory for the widget and, when applicable, the constraints, and initializes the
constraints field.

 Initializes the Core nonresource data fields self, parent, widget class,
being destroyed, name, managed, window, visible, popup list, and num_popups.

* Initializes the resource fields (for example, background pixel) by using the Cor e-
Cl assPart resource lists specified for this class and all superclasses.

» If the parent is a member of the class constrai nt Wdget Cl ass, initializes the
resource fields of the constraints record by using the Constrai nt d assPart re-
source lists specified for the parent's class and all superclasses up to constr ai n-
t Wdget d ass.

» Calls the initialize procedures for the widget starting at the Object initialize pro-
cedure on down to the widget's initialize procedure.

 If the parent is a member of the class constrai nt W dget Cl ass, calls the Con-
straint Cl assPart initialize procedures, starting at const r ai nt W dget Cl ass on
down to the parent's Constrai nt 0 assPart initialize procedure.

« If the parent is a member of the class conposit eW dget C ass, puts the widget
into its parent's children list by calling its parent's insert child procedure. For
further information, see the section called “Addition of Children to a Composite
Widget: The insert child Procedure”.

To create an instance of a widget using varargs lists, use Xt VaCr eat eW dget .

W dget Xt VaCreat eW dget (nane, object_class, parent, ...);
name Specifies the resource name for the created widget.
object class Specifies the widget class pointer for the created ob-

ject. Must be objectClass or any subclass thereof.

parent Specifies the parent widget. Must be of class Object
or any subclass thereof.

Specifies the variable argument list to override any
other resource specifications.

The Xt VaCr eat eW dget procedure is identical in function to Xt Cr eat eW dget with
the args and num_args parameters replaced by a varargs list, as described in Sec-
tion 2.5.1.

41

Widget Instantiation

Creating an Application Shell Instance

An application can have multiple top-level widgets, each of which specifies a unique
widget tree that can potentially be on different screens or displays. An application
uses Xt AppCr eat eShel | to create independent widget trees.

W dget Xt AppCr eat eShel | (name, application_class, w dget cl ass, displ ay,
args, nhum args);

name Specifies the instance name of the shell widget.
If name is NULL, the application name passed to
Xt Di splaylnitializeisused.

application_class Specifies the resource class string to be used in place
of the widget class name string when widget class is
appl i cati onShel | W dget d ass or a subclass there-
of.

widget class Specifies the widget class for the top-level widget
(e.g., appl i cationShel | Wdgetd ass).

display Specifies the display for the default screen and for
the resource database used to retrieve the shell wid-
get resources.

args Specifies the argument list to override any other re-
source specifications.

num_args Specifies the number of entries in the argument list.

The Xt AppCr eat eShel | function creates a new shell widget instance as the root
of a widget tree. The screen resource for this widget is determined by first scan-
ning args for the XtNscreen argument. If no XtNscreen argument is found, the
resource database associated with the default screen of the specified display is
queried for the resource name.screen, class Class.Screen where Class is the spec-
ified application class if widget class is appl i cati onShel | W dget O ass or a sub-
class thereof. If widget class is not applicati on\ %hel | \ % dget\ %l ass or a
subclass, Class is the class name field from the CoreC assPart of the specified
widget class. If this query fails, the default screen of the specified display is used.
Once the screen is determined, the resource database associated with that screen
is used to retrieve all remaining resources for the shell widget not specified in args.
The widget name and Class as determined above are used as the leftmost (i.e., root)
components in all fully qualified resource names for objects within this widget tree.

If the specified widget class is a subclass of WMShell, the name and Class as deter-
mined above will be stored into the WM_CLASS property on the widget's window
when it becomes realized. If the specified widget class is appl i cati onShel | W d-
get d ass or a subclass thereof, the WM_COMMAND property will also be set from
the values of the XtNargv and XtNargc resources.

To create multiple top-level shells within a single (logical) application, you can use
one of two methods:

* Designate one shell as the real top-level shell and create the others as pop-up
children of it by using Xt Cr eat ePopupShel | .
* Have all shells as pop-up children of an unrealized top-level shell.

42

Widget Instantiation

The first method, which is best used when there is a clear choice for what is the
main window, leads to resource specifications like the following:

xmail.geometry:... (the main window)
xmail.read.geometry:... (the read window)
xmail.compose.geometry:... (the compose window)

The second method, which is best if there is no main window, leads to resource

specifications like the following:

xmail.headers.geometry:... (the headers window)
xmail.read.geometry:... (the read window)
xmail.compose.geometry:... (the compose window)

To create a top-level widget that is the root of a widget tree using varargs lists, use
Xt VaAppCr eat eShel | .

W dget Xt VaAppCreat eShel | (name, application_class, w dget_class, dis-

pl ay);

name Specifies the instance name of the shell widget.
If name is NULL, the application name passed to
Xt Di spl aylnitialize is used.

application_class Specifies the resource class string to be used in place
of the widget class name string when widget class is
appl i cati onShel | W dget d ass or a subclass there-
of.

widget class Specifies the widget class for the top-level widget.

display Specifies the display for the default screen and for

the resource database used to retrieve the shell wid-
get resources.

Specifies the variable argument list to override any
other resource specifications.

The Xt VaAppCr eat eShel | procedure is identical in function to Xt AppCr eat eShel |
with the args and num_args parameters replaced by a varargs list, as described in
Section 2.5.1.

Convenience Procedure to Initialize an Application

To initialize the Intrinsics internals, create an application context, open and initialize
a display, and create the initial root shell instance, an application may use Xt Ope-
nAppl i cat i on or Xt VaQpenAppl i cati on.

W dget Xt OpenApplication(app_context _return, application_class, op-
tions, numoptions, argc_in_out, argv_in_out, fallback resources,
wi dget _cl ass, args, num. args);

app_context return Returns the application context, if non-NULL.

43

Widget Instantiation

application_class
options
num_options

argc in_out

argv_in_out

fallback_resources

Specifies the class name of the application.
Specifies the command line options table.
Specifies the number of entries in options.

Specifies a pointer to the number of command line
arguments.

Specifies a pointer to the command line arguments.

Specifies resource values to be used if the applica-

tion class resource file cannot be opened or read, or
NULL.

widget class Specifies the class of the widget to be created. Must

be shellWidgetClass or a subclass.

args Specifies the argument list to override any other re-
source specifications for the created shell widget.

num_args Specifies the number of entries in the argument list.

The Xt OpenAppl i cati on function calls Xt Tool ki tlnitiali ze followed by Xt Cre-
at eAppl i cat i onCont ext, then calls * Xt OpenDi spl ay with display string NULL and
application name NULL, and finally calls Xt AppCr eat eShel | with name NULL, the
specified widget class, an argument list and count, and returns the created shell.
The recommended widget class is sessi onShel | W dget Cl ass. The argument list
and count are created by merging the specified args and num_args with a list con-
taining the specified argc and argv. The modified argc and argv returned by Xt Di s-
pl ayl nitial i ze are returned in argc _in_out and argv_in_out. If app context return
is not NULL, the created application context is also returned. If the display speci-
fied by the command line cannot be opened, an error message is issued and Xt Ope-
nAppl i cati on terminates the application. If fallback resources is non-NULL, Xt Ap-
pSet Fal | backResour ces is called with the value prior to calling * Xt OpenDi spl ay.

W dget Xt VaQpenApplication(app_context return, application_class, op-

tions, numoptions,

wi dget _cl ass);
app_context return
application class
options
num_options

argc in_out

argv_in_out

fallback_resources

widget class

argc_in out, argv_in out, fallback resources,

Returns the application context, if non-NULL.
Specifies the class name of the application.
Specifies the command line options table.
Specifies the number of entries in options.

Specifies a pointer to the number of command line
arguments.

Specifies the command line arguments array.

Specifies resource values to be used if the application
class resource file cannot be opened, or NULL.

Specifies the class of the widget to be created. Must
be shellWidgetClass or a subclass.

44

Widget Instantiation

Specifies the variable argument list to override any
other resource specifications for the created shell.

The Xt VaOpenAppl i cat i on procedure is identical in function to Xt OQpenAppl i cati on
with the args and num_args parameters replaced by a varargs list, as described in
Section 2.5.1.

Widget Instance Allocation: The allocate Procedure

A widget class may optionally provide an instance allocation procedure in the Ob-
j ect O assExt ensi on record.

When the call to create a widget includes a varargs list containing Xt VaTypedAr g,
these arguments will be passed to the allocation procedure in an Xt TypedAr gLi st .

typedef struct {

String name;

String type;

XtArgVal value;

int size;

} XtTypedArg, *XtTypedArgList;

The allocate procedure pointer in the Obj ect O assExt ensi on record is of type
(*Al I ocat eProc).

t ypedef voi d (*Al' |l ocat eProc) (w dget _cl ass, constraint_si ze,
nore_bytes, args, numargs, typed_args, numtyped_args, new_return,
nore_bytes return);

widget class Specifies the widget class of the instance to allocate.

constraint _size Specifies the size of the constraint record to allocate,
or 0.

more bytes Specifies the number of auxiliary bytes of memory to
allocate.

args Specifies the argument list as given in the call to cre-

ate the widget.

num_args Specifies the number of arguments.

typed args Specifies the list of typed arguments given in the call
to create the widget.

num_typed args Specifies the number of typed arguments.

new return Returns a pointer to the newly allocated instance, or

NULL in case of error.

more bytes return Returns the auxiliary memory if it was requested, or
NULL if requested and an error occurred; otherwise,
unchanged.

At widget allocation time, if an extension record with record type equal to NUL-
LQUARK is located through the object class part extension field and the allocate

45

Widget Instantiation

field is not NULL, the (*Al | ocat eProc) will be invoked to allocate memory for the
widget. If no ObjectClassPart extension record is declared with record type equal to
NULLQUARK, then Xt I nherit Al | ocate and Xt | nherit Deal | ocat e are assumed.
If no (*Al |l ocat eProc) is found, the Intrinsics will allocate memory for the widget.

An (*Al | ocat eProc) must perform the following:

* Allocate memory for the widget instance and return it in new return. The memory
must be at least we->core_class.widget _size bytes in length, double-word aligned.

* Initialize the core.constraints field in the instance record to NULL or to point to a
constraint record. If constraint_size is not 0, the procedure must allocate memory
for the constraint record. The memory must be double-word aligned.

» If more bytesisnot 0, then the address of a block of memory at least more bytesin
size, double-word aligned, must be returned in the more bytes return parameter,
or NULL to indicate an error.

A class allocation procedure that envelops the allocation procedure of a superclass
must rely on the enveloped procedure to perform the instance and constraint allo-
cation. Allocation procedures should refrain from initializing fields in the widget
record except to store pointers to newly allocated additional memory. Under no cir-
cumstances should an allocation procedure that envelopes its superclass allocation
procedure modify fields in the instance part of any superclass.

Widget Instance Initialization: The initialize Procedure

The initialize procedure pointer in a widget class is of type (* Xt I ni t Proc).
typedef void (*XtlnitProc)(request, new, args, numargs);

request Specifies a copy of the widget with resource values as re-
quested by the argument list, the resource database, and
the widget defaults.

new Specifies the widget with the new values, both resource
and nonresource, that are actually allowed.

args Specifies the argument list passed by the client, for com-
puting derived resource values. If the client created the
widget using a varargs form, any resources specified via
Xt VaTypedAr g are converted to the widget representation
and the list is transformed into the Ar gLi st format.

num_args Specifies the number of entries in the argument list.
An initialization procedure performs the following:

» Allocates space for and copies any resources referenced by address that the client
is allowed to free or modify after the widget has been created. For example, if a
widget has a field that is a St ri ng, it may choose not to depend on the characters
at that address remaining constant but dynamically allocate space for the string
and copy it to the new space. Widgets that do not copy one or more resources
referenced by address should clearly so state in their user documentation.

Note

It is not necessary to allocate space for or to copy callback lists.

46

Widget Instantiation

* Computes values for unspecified resource fields. For example, if width and height
are zero, the widget should compute an appropriate width and height based on
its other resources.

Note

A widget may directly assign only its own width and height within the
initialize, initialize hook, set values, and set values hook procedures; see
Chapter 6, Geometry Management.
¢ Computes values for uninitialized nonresource fields that are derived from re-
source fields. For example, graphics contexts (GCs) that the widget uses are de-
rived from resources like background, foreground, and font.

An initialization procedure also can check certain fields for internal consistency. For
example, it makes no sense to specify a colormap for a depth that does not support
that colormap.

Initialization procedures are called in superclass-to-subclass order after all fields
specified in the resource lists have been initialized. The initialize procedure does
not need to examine args and num_args if all public resources are declared in the
resource list. Most of the initialization code for a specific widget class deals with
fields defined in that class and not with fields defined in its superclasses.

If a subclass does not need an initialization procedure because it does not need to
perform any of the above operations, it can specify NULL for the initialize field in
the class record.

Sometimes a subclass may want to overwrite values filled in by its superclass. In
particular, size calculations of a superclass often are incorrect for a subclass, and
in this case, the subclass must modify or recalculate fields declared and computed
by its superclass.

As an example, a subclass can visually surround its superclass display. In this case,
the width and height calculated by the superclass initialize procedure are too small
and need to be incremented by the size of the surround. The subclass needs to know
if its superclass's size was calculated by the superclass or was specified explicitly.
All widgets must place themselves into whatever size is explicitly given, but they
should compute a reasonable size if no size is requested.

The request and new arguments provide the necessary information for a subclass
to determine the difference between an explicitly specified field and a field com-
puted by a superclass. The request widget is a copy of the widget as initialized by
the arglist and resource database. The new widget starts with the values in the re-
quest, but it has been updated by all superclass initialization procedures called so
far. A subclass initialize procedure can compare these two to resolve any potential
conflicts.

In the above example, the subclass with the visual surround can see if the width and
height in the request widget are zero. If so, it adds its surround size to the width
and height fields in the new widget. If not, it must make do with the size originally
specified.

The new widget will become the actual widget instance record. Therefore, the ini-
tialization procedure should do all its work on the new widget; the request widget
should never be modified. If the initialize procedure needs to call any routines that
operate on a widget, it should specify new as the widget instance.

47

Widget Instantiation

Constraint Instance Initialization: The ConstraintClass-
Part initialize Procedure

The constraint initialization procedure pointer, found in the Const r ai nt Cl assPart
initialize field of the widget class record, is of type (*Xt1nitProc). The values
passed to the parent constraint initialization procedures are the same as those
passed to the child's class widget initialization procedures.

The constraints field of the request widget points to a copy of the constraints record
as initialized by the arglist and resource database.

The constraint initialization procedure should compute any constraint fields derived
from constraint resources. It can make further changes to the new widget to make
the widget and any other constraint fields conform to the specified constraints, for
example, changing the widget's size or position.

If a constraint class does not need a constraint initialization procedure, it can specify
NULL for the initialize field of the Constrai nt d assPart in the class record.

Nonwidget Data Initialization: The initialize_hook Proce-

dure

Note

The initialize hook procedure is obsolete, as the same information is now
available to the initialize procedure. The procedure has been retained for
those widgets that used it in previous releases.

The initialize hook procedure pointer is of type (* Xt Ar gsProc) :

t ypedef void(*XtArgsProc)(w, args, numargs);

w Specifies the widget.

args Specifies the argument list passed by the client. If the
client created the widget using a varargs form, any re-
sources specified via Xt VaTypedAr g are converted to the
widget representation and the list is transformed into the
ArgLi st format.

num_args Specifies the number of entries in the argument list.

If this procedure is not NULL, it is called immediately after the corresponding ini-
tialize procedure or in its place if the initialize field is NULL.

The initialize hook procedure allows a widget instance to initialize nonresource data
using information from the specified argument list as if it were a resource.

Realizing Widgets

To realize a widget instance, use Xt Real i zeW dget .

48

Widget Instantiation

voi d Xt Real i zeW dget (w);
w Specifies the widget. Must be of class Core or any subclass thereof.

If the widget is already realized, Xt Real i zeW dget simply returns. Otherwise it per-
forms the following:

* Binds all action names in the widget's translation table to procedures (see the
section called “Action Names to Procedure Translations”).

* Makes a postorder traversal of the widget tree rooted at the specified widget and
calls each non-NULL change managed procedure of all composite widgets that
have one or more managed children.

* Constructs an XSet W ndowAt t ri but es structure filled in with information derived
from the Core widget fields and calls the realize procedure for the widget, which
adds any widget-specific attributes and creates the X window.

» If the widget is not a subclass of conposi t eW dget G ass, Xt Real i zeW dget re-
turns; otherwise it continues and performs the following:

* » Descends recursively to each of the widget's managed children and calls the
realize procedures. Primitive widgets that instantiate children are responsible
for realizing those children themselves.

* Maps all of the managed children windows that have mapped when _managed
True. If a widget is managed but mapped when managed is Fal se, the widget
is allocated visual space but is not displayed.

If the widget is a top-level shell widget (that is, it has no parent), and
mapped when _managed is Tr ue, Xt Real i zeW dget maps the widget window.

Xt Creat eW dget, Xt VaCr eat eW dget , Xt Real i zeW dget , Xt ManageChi | dr en, Xt Un-
manage\ %Chi | dren, Xt Unreal i zeW dget, Xt Set MappedwWhenManaged, and Xt De-
st roy\ %W dget maintain the following invariants:

» If a composite widget is realized, then all its managed children are realized.
* If a composite widget is realized, then all its managed children that have
mapped when_managed Tr ue are mapped.

All Intrinsics functions and all widget routines should accept either realized or un-
realized widgets. When calling the realize or change managed procedures for chil-
dren of a composite widget, Xt Real i zeW dget calls the procedures in reverse or-
der of appearance in the Conposi t ePart children list. By default, this ordering of
the realize procedures will result in the stacking order of any newly created sub-
windows being top-to-bottom in the order of appearance on the list, and the most
recently created child will be at the bottom.

To check whether or not a widget has been realized, use Xt | sReal i zed.
Bool ean XtlsRealized(w);

w Specifies the widget. Must be of class Object or any subclass there-
of.

The Xt | sReal i zed function returns Tr ue if the widget has been realized, that is, if
the widget has a nonzero window ID. If the specified object is not a widget, the state
of the nearest widget ancestor is returned.

Some widget procedures (for example, set values) might wish to operate differently
after the widget has been realized.

49

Widget Instantiation

Widget Instance Window Creation: The realize Proce-

dure

The realize procedure pointer in a widget class is of type (* Xt Real i zePr oc) .

typedef void (*XtRealizeProc)(w, value_mask, attributes);

w Specifies the widget.

value mask Specifies which fields in the attributes structure are
used.

attributes Specifies the window attributes to use in the XCre-

at eW ndow call.
The realize procedure must create the widget's window.

Before calling the class realize procedure, the generic Xt Real i zeW dget function
fills in a mask and a corresponding XSet W ndowAt t ri but es structure. It sets the
following fields in attributes and corresponding bits in value mask based on infor-
mation in the widget core structure:

» The background pixmap (or background pixel if background pixmap is Xt Un-
speci fi edPi xmap) is filled in from the corresponding field.

* The border pixmap (or border pixel if border pixmap is Xt Unspeci fi edPi xmap)
is filled in from the corresponding field.

e The colormap is filled in from the corresponding field.

* The event mask is filled in based on the event handlers registered, the event
translations specified, whether the expose field is non-NULL, and whether
visible interest is Tr ue.

» The bit_gravity is set to Nor t hWest Gr avi ty if the expose field is NULL.

These or any other fields in attributes and the corresponding bits in value mask can
be set by the realize procedure.

Note that because realize is not a chained operation, the widget class realize pro-
cedure must update the XSet W ndowAt t ri but es structure with all the appropriate
fields from non-Core superclasses.

A widget class can inherit its realize procedure from its superclass during class ini-
tialization. The realize procedure defined for cor eW dget O ass calls Xt Cr eat eW n-
dow with the passed value mask and attributes and with window class and visual
set to CopyFr onPar ent . Both conposi t eW dget Cl ass and const rai nt W dget C ass
inherit this realize procedure, and most new widget subclasses can do the same
(see the section called “Inheritance of Superclass Operations”).

The most common noninherited realize procedures set bit_gravity in the mask and
attributes to the appropriate value and then create the window. For example, de-
pending on its justification, Label might set bit gravity to West Gravity, Center-
Gravity, or East Gravi ty. Consequently, shrinking it would just move the bits ap-
propriately, and no exposure event is needed for repainting.

If a composite widget's children should be realized in an order other than that spec-
ified (to control the stacking order, for example), it should call Xt Real i zeW dget on
its children itself in the appropriate order from within its own realize procedure.

50

Widget Instantiation

Widgets that have children and whose class is not a subclass of conposi t eW dget -
Cl ass are responsible for calling Xt Real i zeW dget on their children, usually from
within the realize procedure.

Realize procedures cannot manage or unmanage their descendants.

Window Creation Convenience Routine

Rather than call the Xlib XCr eat eW ndow function explicitly, a realize procedure
should normally call the Intrinsics analog Xt Cr eat eW ndow, which simplifies the cre-
ation of windows for widgets.

voi d Xt Creat eW ndow(w, wi ndow class, visual, value_mask, attributes);

w Specifies the widget that defines the additional win-
dow attributed. Must be of class Core or any subclass
thereof.

window class Specifies the Xlib window class (for example, | n-

put Qut put, | nput Onl y, or CopyFronParent).

visual Specifies the visual type (usually CopyFr onParent).

value_mask Specifies which fields in the attributes structure are
used.

attributes Specifies the window attributes to use in the XCr e-

at eW ndow call.

The Xt Cr eat eW ndow function calls the Xlib XCr eat eW ndow function with values
from the widget structure and the passed parameters. Then, it assigns the created
window to the widget's window field.

Xt Cr eat eW ndow evaluates the following fields of the widget core structure: depth,
screen, parent->core.window, x, y, width, height, and border width.

Obtaining Window Information from a Widget

The Core widget class definition contains the screen and window ids. The window
field may be NULL for a while (see the section called “Creating Widgets” and the
section called “Realizing Widgets”).

The display pointer, the parent widget, screen pointer, and window of a widget are
available to the widget writer by means of macros and to the application writer by
means of functions.

Di splay XtDisplay(w;

w Specifies the widget. Must be of class Core or any subclass thereof.
Xt Di spl ay returns the display pointer for the specified widget.

W dget Xt Parent (w);

w Specifies the widget. Must be of class Object or any subclass there-
of.

51

Widget Instantiation

Xt Par ent returns the parent object for the specified widget. The returned object
will be of class Object or a subclass.

Screen *Xt Screen(w);

w Specifies the widget. Must be of class Core or any subclass thereof.
* Xt Scr een returns the screen pointer for the specified widget.

W ndow Xt W ndow(w) ;

w Specifies the widget. Must be of class Core or any subclass thereof.
Xt W ndow returns the window of the specified widget.

The display pointer, screen pointer, and window of a widget or of the closest wid-
get ancestor of a nonwidget object are available by means of * Xt Di spl ayOf Obj ect,
*Xt Scr eenOf Obj ect, and Xt W ndowOf Obj ect .

Di splay *XtDi spl ayOf Cbj ect (w) ;

object Specifies the object. Must be of class Object or any subclass
thereof.

*Xt Di spl ayOf Obj ect is identical in function to Xt Di spl ay if the object is a widget;
otherwise * Xt Di spl ayOf Obj ect returns the display pointer for the nearest ancestor
of object that is of class Widget or a subclass thereof.

Screen *Xt ScreenOf Obj ect (obj ect) ;

object Specifies the object. Must be of class Object or any subclass
thereof.

*Xt Scr eenCf Obj ect is identical in function to * Xt Scr een if the object is a widget;
otherwise * Xt Scr eenCOf Obj ect returns the screen pointer for the nearest ancestor
of object that is of class Widget or a subclass thereof.

W ndow Xt W ndowCOf Chj ect (obj ect) ;

object Specifies the object. Must be of class Object or any subclass
thereof.

Xt W ndowOf Qbj ect is identical in function to Xt W ndow if the object is a widget;
otherwise Xt W ndowOF Obj ect returns the window for the nearest ancestor of object
that is of class Widget or a subclass thereof.

To retrieve the instance name of an object, use Xt Nane.
String Xt Name(object);

object Specifies the object whose name is desired. Must be of class
Object or any subclass thereof.

Xt Nane returns a pointer to the instance name of the specified object. The storage
is owned by the Intrinsics and must not be modified. The name is not qualified by
the names of any of the object's ancestors.

52

Widget Instantiation

Several window attributes are locally cached in the widget instance. Thus, they
can be set by the resource manager and Xt Set Val ues as well as used by routines
that derive structures from these values (for example, depth for deriving pixmaps,
background pixel for deriving GCs, and so on) or in the Xt Cr eat eW ndow call.

The x, y, width, height, and border width window attributes are available to geome-
try managers. These fields are maintained synchronously inside the Intrinsics. When
an XConf i gur eW ndowis issued by the Intrinsics on the widget's window (on request
of its parent), these values are updated immediately rather than some time later
when the server generates a Confi gureNoti fy event. (In fact, most widgets do not
select Subst ruct ur eNot i fy events.) This ensures that all geometry calculations are
based on the internally consistent toolkit world rather than on either an inconsistent
world updated by asynchronous Confi gureNoti fy events or a consistent, but slow,
world in which geometry managers ask the server for window sizes whenever they
need to lay out their managed children (see Chapter 6, Geometry Management).

Unrealizing Widgets

To destroy the windows associated with a widget and its non-pop-up descendants,
use Xt Unr eal i zeW dget .

voi d Xt UnrealizeWdget(w;
w Specifies the widget. Must be of class Core or any subclass thereof.

If the widget is currently unrealized, Xt Unr eal i zeW dget simply returns. Otherwise
it performs the following:

* Unmanages the widget if the widget is managed.

* Makes a postorder (child-to-parent) traversal of the widget tree rooted at the spec-
ified widget and, for each widget that has declared a callback list resource named
" “unrealizeCallback", executes the procedures on the XtNunrealizeCallback list.

* Destroys the widget's window and any subwindows by calling XDest r oyW ndow
with the specified widget's window field.

Any events in the queue or which arrive following a call to Xt Unr eal i zeW dget will
be dispatched as if the window(s) of the unrealized widget(s) had never existed.

Destroying Widgets
The Intrinsics provide support

* To destroy all the pop-up children of the widget being destroyed and destroy all
children of composite widgets.

* To remove (and unmap) the widget from its parent.

» To call the callback procedures that have been registered to trigger when the
widget is destroyed.

* To minimize the number of things a widget has to deallocate when destroyed.

* To minimize the number of XDest r oyW ndow calls when destroying a widget tree.

To destroy a widget instance, use Xt Dest r oyW dget .

voi d Xt DestroyW dget (w);

53

Widget Instantiation

w Specifies the widget. Must be of class Object or any subclass there-
of.

The Xt Dest royW dget function provides the only method of destroying a widget,
including widgets that need to destroy themselves. It can be called at any time,
including from an application callback routine of the widget being destroyed. This
requires a two-phase destroy process in order to avoid dangling references to de-
stroyed widgets.

In phase 1, Xt Dest r oyW dget performs the following:

» If the being destroyed field of the widget is Tr ue, it returns immediately.

* Recursively descends the widget tree and sets the being destroyed field to True
for the widget and all normal and pop-up children.

¢ Adds the widget to a list of widgets (the destroy list) that should be destroyed
when it is safe to do so.

Entries on the destroy list satisfy the invariant that if w2 occurs after wl on the
destroy list, then w2 is not a descendent, either normal or pop-up, of wl.

Phase 2 occurs when all procedures that should execute as a result of the current
event have been called, including all procedures registered with the event and trans-
lation managers, that is, when the current invocation of Xt Di spat chEvent is about
to return, or immediately if not in Xt Di spat chEvent .

In phase 2, Xt Dest r oyW dget performs the following on each entry in the destroy
list in the order specified:

 If the widget is not a pop-up child and the widget's parent is a subclass of com
posi t e\ 9 dget d ass, and if the parent is not being destroyed, it calls Xt Unnan-
ageChi | d on the widget and then calls the widget's parent's delete child proce-
dure (see the section called “Deletion of Children: The delete child Procedure”).
¢ Calls the destroy callback procedures registered on the widget and all normal and
pop-up descendants in postorder (it calls child callbacks before parent callbacks).

The Xt DestroyW dget function then makes second traversal of the widget and all
normal and pop-up descendants to perform the following three items on each widget
in postorder:

 If the widget is not a pop-up child and the widget's parent is a subclass of con-
strai nt\ %N dget C ass, it calls the Constrai nt Cl assPart destroy procedure for
the parent, then for the parent's superclass, until finally it calls the Const rai nt -
Cl assPart destroy procedure for const r ai nt W dget d ass.

* Calls the CoreC assPart destroy procedure declared in the widget class, then
the destroy procedure declared in its superclass, until finally it calls the destroy
procedure declared in the Object class record. Callback lists are deallocated.

« If the widget class object class part contains an Obj ect C assExt ensi on record
with the record type NULLQUARK and the deallocate field is not NULL, calls the
deallocate procedure to deallocate the instance and if one exists, the constraint
record. Otherwise, the Intrinsics will deallocate the widget instance record and
if one exists, the constraint record.

* Calls XDestroyW ndow if the specified widget is realized (that is, has an X win-
dow). The server recursively destroys all normal descendant windows. (Windows
of realized pop-up Shell children, and their descendants, are destroyed by a shell
class destroy procedure.)

54

Widget Instantiation

Adding and Removing Destroy Callbacks

When an application needs to perform additional processing during the destruction
of a widget, it should register a destroy callback procedure for the widget. The
destroy callback procedures use the mechanism described in Chapter 8, Callbacks.
The destroy callback list is identified by the resource name XtNdestroyCallback.

For example, the following adds an application-supplied destroy callback procedure
ClientDestroy with client data to a widget by calling Xt AddCal | back.

XtAddCallback(w, XtNdestroyCallback, ClientDestroy, client_data)

Similarly, the following removes the application-supplied destroy callback proce-
dure ClientDestroy by calling Xt RenoveCal | back.

XtRemoveCallback(w, XtNdestroyCallback, ClientDestroy, client data)

The ClientDestroy argument is of type (* Xt Cal | backPr oc) ; see the section called
“Using Callback Procedure and Callback List Definitions”.

Dynamic Data Deallocation: The destroy Procedure

The destroy procedure pointers in the Cbj ect G assPart, Rect Obj Cl assPart, and
Cor ed assPart structures are of type Xt W dget Pr oc.

typedef void XtWdgetProc(w;
w Specifies the widget being destroyed.

The destroy procedures are called in subclass-to-superclass order. Therefore, a
widget's destroy procedure should deallocate only storage that is specific to the
subclass and should ignore the storage allocated by any of its superclasses. The
destroy procedure should deallocate only resources that have been explicitly creat-
ed by the subclass. Any resource that was obtained from the resource database or
passed in an argument list was not created by the widget and therefore should not
be destroyed by it. If a widget does not need to deallocate any storage, the destroy
procedure entry in its class record can be NULL.

Deallocating storage includes, but is not limited to, the following steps:

Calling Xt Fr ee on dynamic storage allocated with Xt Mal | oc, Xt Cal | oc, and so on.
Calling XFr eePi xmap on pixmaps created with direct X calls.

Calling Xt Rel easeGC on GCs allocated with Xt Get GC.

Calling XFr eeGC on GCs allocated with direct X calls.

Calling Xt RenmoveEvent Handl er on event handlers added to other widgets.
Calling Xt RenoveTi neQut on timers created with Xt AppAddTi neQut .

Calling Xt Dest r oyW dget for each child if the widget has children and is not a
subclass of conposi t eW dget d ass.

During destroy phase 2 for each widget, the Intrinsics remove the widget from the
modal cascade, unregister all event handlers, remove all key, keyboard, button, and
pointer grabs and remove all callback procedures registered on the widget. Any
outstanding selection transfers will time out.

55

Widget Instantiation

Dynamic Constraint Data Deallocation: The Constraint-
ClassPart destroy Procedure

The constraint destroy procedure identified in the Constraintd assPart con-
strai nt Wdget C ass. This constraint destroy procedure pointer is of type Xt W d-
get Proc. The constraint destroy procedures are called in subclass-to-superclass or-
der, starting at the class of the widget's parent and ending at const r ai nt\ %W dget -
Cl ass. Therefore, a parent's constraint destroy procedure should deallocate only
storage that is specific to the constraint subclass and not storage allocated by any
of its superclasses.

If a parent does not need to deallocate any constraint storage, the constraint destroy
procedure entry in its class record can be NULL.

Widget Instance Deallocation: The deallocate Procedure

The deallocate procedure pointer in the Obj ect O assExt ensi on record is of type
Xt Deal | ocat ePr oc.

typedef void (*XtDeall ocateProc)(w dget, nore_bytes);
widget Specifies the widget being destroyed.

more bytes Specifies the auxiliary memory received from the cor-
responding allocator along with the widget, or NULL.

When a widget is destroyed, if an Obj ect 0 assExt ensi on record exists in the object
class part extension field with record type NULLQUARK and the deallocate field
is not NULL, the Xt Deal | ocat ePr oc will be called. If no ObjectClassPart extension
record is declared with record type equal to NULLQUARK, then Xt | nherit Al |l o-
cat e and Xt I nheri t Deal | ocat e are assumed. The responsibilities of the deallocate
procedure are to deallocate the memory specified by more bytes if it is not NULL,
to deallocate the constraints record as specified by the widget's core.constraints
field if it is not NULL, and to deallocate the widget instance itself.

If no Xt Deal | ocat ePr oc is found, it is assumed that the Intrinsics originally allocat-
ed the memory and is responsible for freeing it.

Exiting from an Application

All X Toolkit applications should terminate by calling Xt Dest r oyAppl i cati onCon-
t ext and then exiting using the standard method for their operating system (typi-
cally, by calling exi t for POSIX-based systems). The quickest way to make the win-
dows disappear while exiting is to call Xt UhnmapW dget on each top-level shell wid-
get. The Intrinsics have no resources beyond those in the program image, and the
X server will free its resources when its connection to the application is broken.

Depending upon the widget set in use, it may be necessary to explicitly destroy in-
dividual widgets or widget trees with Xt Dest r oyW dget before calling Xt Dest r oy-
Appl i cati onCont ext in order to ensure that any required widget cleanup is prop-
erly executed. The application developer must refer to the widget documentation
to learn if a widget needs to perform cleanup beyond that performed automatically
by the operating system. If the client is a session participant (see the section called

56

Widget Instantiation

“Session Participation”), then the client may wish to resign from the session before
exiting. See the section called “Resigning from a Session” for details.

57

Chapter 3. Composite Widgets and
Their Children

Composite widgets (widgets whose class is a subclass of conposi t eW dget Cl ass)
can have an arbitrary number of children. Consequently, they are responsible for
much more than primitive widgets. Their responsibilities (either implemented di-
rectly by the widget class or indirectly by Intrinsics functions) include:

* Overall management of children from creation to destruction.

* Destruction of descendants when the composite widget is destroyed.

» Physical arrangement (geometry management) of a displayable subset of children
(that is, the managed children).

* Mapping and unmapping of a subset of the managed children.

Overall management is handled by the generic procedures Xt Cr eat eW dget and
Xt Dest r oyW dget . Xt Cr eat eW dget adds children to their parent by calling the
parent's insert_child procedure. Xt Dest r oyW dget removes children from their par-
ent by calling the parent's delete child procedure and ensures that all children of
a destroyed composite widget also get destroyed.

Only a subset of the total number of children is actually managed by the geometry
manager and hence possibly visible. For example, a composite editor widget sup-
porting multiple editing buffers might allocate one child widget for each file buffer,
but it might display only a small number of the existing buffers. Widgets that are in
this displayable subset are called managed widgets and enter into geometry man-
ager calculations. The other children are called unmanaged widgets and, by defin-
ition, are not mapped by the Intrinsics.

Children are added to and removed from their parent's managed set by using
Xt ManageChi | d, Xt ManageChi | dr en, Xt UnmanageChi | d, Xt UnmanageChi | dr en, and
Xt ChangeManagedSet , which notify the parent to recalculate the physical layout of
its children by calling the parent's change managed procedure. The Xt Cr eat eMan-
agedW dget convenience function calls Xt Cr eat eW dget and Xt ManageChi | d on the
result.

Most managed children are mapped, but some widgets can be in a state where they
take up physical space but do not show anything. Managed widgets are not mapped
automatically if their map when_managed field is Fal se. The default is Tr ue and is
changed by using Xt Set MappedWhenManaged.

Each composite widget class declares a geometry manager, which is responsible
for figuring out where the managed children should appear within the composite
widget's window. Geometry management techniques fall into four classes:

Fixed boxes Fixed boxes have a fixed number of children created by
the parent. All these children are managed, and none ever
makes geometry manager requests.

Homogeneous boxes Homogeneous boxes treat all children equally and apply
the same geometry constraints to each child. Many clients
insert and delete widgets freely.

Heterogeneous boxes Heterogeneous boxes have a specific location where each
child is placed. This location usually is not specified in pix-

58

Composite Widgets
and Their Children

els, because the window may be resized, but is expressed
rather in terms of the relationship between a child and the
parent or between the child and other specific children.
The class of heterogeneous boxes is usually a subclass of
Constraint.

Shell boxes Shell boxes typically have only one child, and the child's
size is usually exactly the size of the shell. The geometry
manager must communicate with the window manager, if
it exists, and the box must also accept Confi gureNotify
events when the window size is changed by the window
manager.

Addition of Children to a Composite Widget:
The insert_child Procedure

To add a child to the parent's list of children, the Xt Cr eat eW dget function calls the
parent's class routine insert child. The insert child procedure pointer in a compos-
ite widget is of type Xt W dget Pr oc.

typedef void (*XtWdgetProc)(w;
w Passes the newly created child.

Most composite widgets inherit their superclass's operation. The insert child rou-
tine in ConpositeWdgetClass calls the insert_position procedure and in-
serts the child at the specified position in the children list, expanding it if necessary.

Some composite widgets define their own insert child routine so that they can or-
der their children in some convenient way, create companion controller widgets
for a new widget, or limit the number or class of their child widgets. A composite
widget class that wishes to allow nonwidget children (see Chapter 12, Nonwidget
Objects) must specify a Conposi t e assExt ensi on extension record as described
in the section called “CompositeClassPart Structure” and set the accepts objects
field in this record to Tr ue. If the Conposi t ed assExt ensi on record is not specified
or the accepts objects field is Fal se, the composite widget can assume that all its
children are of a subclass of Core without an explicit subclass test in the insert child
procedure.

If there is not enough room to insert a new child in the children array (that is,
num_children is equal to num_slots), the insert_child procedure must first reallocate
the array and update num_slots. The insert child procedure then places the child
at the appropriate position in the array and increments the num_children field.

Insertion Order of Children: The
Insert_position Procedure

Instances of composite widgets sometimes need to specify more about the order in
which their children are kept. For example, an application may want a set of com-
mand buttons in some logical order grouped by function, and it may want buttons
that represent file names to be kept in alphabetical order without constraining the
order in which the buttons are created.

59

Composite Widgets
and Their Children

An application controls the presentation order of a set of children by supplying an
XtNinsertPosition resource. The insert position procedure pointer in a composite
widget instance is of type (* Xt Or der Proc) .

typedef Cardinal (*XtOrderProc)(w;
w Passes the newly created widget.

Composite widgets that allow clients to order their children (usually homogeneous
boxes) can call their widget instance's insert position procedure from the class's
insert child procedure to determine where a new child should go in its children
array. Thus, a client using a composite class can apply different sorting criteria
to widget instances of the class, passing in a different insert position procedure
resource when it creates each composite widget instance.

The return value of the insert position procedure indicates how many children
should go before the widget. Returning zero indicates that the widget should go be-
fore all other children, and returning num_children indicates that it should go after
all other children. The default insert position function returns num children and
can be overridden by a specific composite widget's resource list or by the argument
list provided when the composite widget is created.

Deletion of Children: The delete _child Proce-

To remove the child from the parent's children list, the Xt Dest r oyW dget function
eventually causes a call to the Composite parent's class delete child procedure. The
delete child procedure pointer is of type Xt W dget Pr oc.

typedef void (*XtWdgetProc)(w;
w Passes the child being deleted.

Most widgets inherit the delete child procedure from their superclass. Composite
widgets that create companion widgets define their own delete child procedure to
remove these companion widgets.

Adding and Removing Children from the Man-
aged Set

The Intrinsics provide a set of generic routines to permit the addition of widgets to
or the removal of widgets from a composite widget's managed set. These generic
routines eventually call the composite widget's change managed procedure if the
procedure pointer is non-NULL. The change managed procedure pointer is of type
Xt W dget Proc. The widget argument specifies the composite widget whose man-
aged child set has been modified.

Managing Children

To add a list of widgets to the geometry-managed (and hence displayable) subset of
their Composite parent, use Xt ManageChi | dr en.

60

Composite Widgets
and Their Children

typedef Widget *WidgetList;
voi d Xt ManageChi | dren(children, numchildren);

children Specifies a list of child widgets. Each child must be
of class RectObj or any subclass thereof.

num_children Specifies the number of children in the list.
The Xt ManageChi | dr en function performs the following:

¢ Issues an error if the children do not all have the same parent or if the parent's
class is not a subclass of conposi t eW dget d ass.

¢ Returns immediately if the common parent is being destroyed; otherwise, for each
unique child on the list, Xt ManageChi | dr en ignores the child if it already is man-
aged or is being destroyed, and marks it if not.

e If the parent is realized and after all children have been marked, it makes some
of the newly managed children viewable:

e « Calls the change managed routine of the widgets' parent.
* Calls Xt Real i zeW dget on each previously unmanaged child that is unrealized.
* Maps each previously unmanaged child that has map when _managed Tr ue.

Managing children is independent of the ordering of children and independent of
creating and deleting children. The layout routine of the parent should consider
children whose managed field is True and should ignore all other children. Note
that some composite widgets, especially fixed boxes, call Xt ManageChi | d from their
insert child procedure.

If the parent widget is realized, its change managed procedure is called to notify it
that its set of managed children has changed. The parent can reposition and resize
any of its children. It moves each child as needed by calling Xt MoveW dget, which
first updates the x and y fields and which then calls XMoveW ndow.

If the composite widget wishes to change the size or border width of any of
its children, it calls Xt Resi zeW dget, which first updates the width, height, and
border width fields and then calls XConf i gur eW ndow. Simultaneous repositioning
and resizing may be done with Xt Conf i gur eW dget ; see the section called “Widget
Placement and Sizing”.

To add a single child to its parent widget's set of managed children, use Xt Man-
ageChi | d.

voi d Xt ManageChi | d(chil d);

child Specifies the child. Must be of class RectObj or any subclass
thereof.

The Xt ManageChi | d function constructs a W dget Li st of length 1 and calls Xt Man-
ageChi | dren.

To create and manage a child widget in a single procedure, use Xt Cr eat eManaged-
W dget or Xt VaCr eat eManagedW dget .

W dget Xt Cr eat eManagedW dget (nane, wi dget _cl ass, par ent, args,
num ar gs) ;

61

Composite Widgets

and Their Children
name Specifies the resource instance name for the created
widget.
widget class Specifies the widget class pointer for the created
widget. (rC
parent Specifies the parent widget. Must be of class Com-

posite or any subclass thereof.

args Specifies the argument list to override any other re-
source specifications.

num_args Specifies the number of entries in the argument list.

The Xt Cr eat eManagedW dget function is a convenience routine that calls Xt Cr e-
at eW dget and Xt ManageChi | d.

W dget Xt VaCr eat eManagedW dget (name, wi dget cl ass, parent);

name Specifies the resource instance name for the created
widget.

widget class Specifies the widget class pointer for the created
widget. (rC

parent Specifies the parent widget. Must be of class Com-

posite or any subclass thereof.

Specifies the variable argument list to override any
other resource specifications.

Xt VaCr eat eManagedW dget is identical in function to Xt Cr eat eManagedW dget with
the args and num_args parameters replaced by a varargs list, as described in Sec-
tion 2.5.1.

Unmanaging Children

To remove a list of children from a parent widget's managed list, use Xt Unman-
ageChi | dren.

voi d Xt UnmanageChi | dren(children, numchildren);

children Specifies a list of child widgets. Each child must be
of class RectObj or any subclass thereof.

num_children Specifies the number of children.
The Xt UnnanageChi | dr en function performs the following:

* Returns immediately if the common parent is being destroyed.

¢ Issues an error if the children do not all have the same parent or if the parent is
not a subclass of conposi t eW dget d ass.

* For each unique child on the list, Xt UnmanageChi | dr en ignores the child if it is
unmanaged; otherwise it performs the following:

e * Marks the child as unmanaged.
» If the child is realized and the map when managed field is Tr ue, it is unmapped.

62

Composite Widgets
and Their Children

» If the parent is realized and if any children have become unmanaged, calls the
change managed routine of the widgets' parent.

Xt UnnmanageChi | dren does not destroy the child widgets. Removing widgets from
a parent's managed set is often a temporary banishment, and some time later the
client may manage the children again. To destroy widgets entirely, Xt Dest r oyW d-
get should be called instead; see the section called “Exiting from an Application”.

To remove a single child from its parent widget's managed set, use Xt Unman-
ageChi | d.

voi d Xt UnmanageChi |l d(child);

child Specifies the child. Must be of class RectObj or any subclass
thereof.

The Xt UnmanageChi | d function constructs a widget list of length 1 and calls Xt Un-
manageChi | dren.

These functions are low-level routines that are used by generic composite widget
building routines. In addition, composite widgets can provide widget-specific, high-
level convenience procedures.

Bundling Changes to the Managed Set

A client may simultaneously unmanage and manage children with a single call
to the Intrinsics. In this same call the client may provide a callback procedure
that can modify the geometries of one or more children. The composite widget
class defines whether this single client call results in separate invocations of the
change managed method, one to unmanage and the other to manage, or in just a
single invocation.

To simultaneously remove from and add to the geometry-managed set of children
of a composite parent, use Xt ChangeManagedSet .

voi d Xt ChangeManagedSet (unmanage_chi |l dr en, num unmanage_chil dren,
do_change _proc, client_data, manage_chil dren, num manage_chil dren);

unmanage children Specifies the list of widget children to initially re-
move from the managed set.

num_unmanage children Specifies the number of entries in the
unmanage_children list.

do _change proc Specifies a procedure to invoke between unmanag-
ing and managing the children, or NULL.

client data Specifies client data to be passed to the
do_change proc.

manage children Specifies the list of widget children to finally add to
the managed set.

num_manage children Specifies the number of entries in the
manage children list.

63

Composite Widgets
and Their Children

The Xt ChangeManagedSet function performs the following:

* Returns immediately if num _unmanage children and num_manage_children are
both 0.

* Issues a warning and returns if the widgets specified in the manage children and
the unmanage children lists do not all have the same parent or if that parent is
not a subclass of conposi t eW dget d ass.

* Returns immediately if the common parent is being destroyed.

* If do change proc is not NULL and the parent's ConpositeC assExtension
allows change managed set field is Fal se, then Xt ChangeManagedSet performs
the following:

e * Calls Xt UnmanageChi | dr en (unmanage_children, num_unmanage children).

* Calls the do change proc.

* Calls Xt ManageChi | dr en (manage_children, num_manage children).

¢ Otherwise, the following is performed:

* « For each child on the unmanage_children list; if the child is already unmanaged
it is ignored, otherwise it is marked as unmanaged, and if it is realized and its
map when_managed field is Tr ue, it is unmapped.

» If do change proc is non-NULL, the procedure is invoked.

» For each child on the manage children list; if the child is already managed or
is being destroyed, it is ignored; otherwise it is marked as managed.

e If the parent is realized and after all children have been marked, the
change managed method of the parent is invoked, and subsequently some of
the newly managed children are made viewable by calling Xt Real i zeW dget on
each previously unmanaged child that is unrealized and mapping each previ-
ously unmanaged child that has map when _managed Tr ue.

If no Conposit eCl assExt ensi on record is found in the parent's composite class
part extension field with record type NULLQUARK and version greater than 1,
and if Xt | nherit ChangeManaged was specified in the parent's class record dur-
ing class initialization, the value of the allows change managed set field is inher-
ited from the superclass. The value inherited from conposi t eW dget C ass for the
allows change managed set field is Fal se.

It is not an error to include a child in both the unmanage children and the
manage children lists. The effect of such a call is that the child remains managed
following the call, but the do change proc is able to affect the child while it is in
an unmanaged state.

The do change proc is of type * Xt DoChangePr oc.

t ypedef voi d * Xt DoChangePr oc(conposite_parent, unmange_chi l dren,
num unmanage_chi |l dren, manage_chi | dren, num manage_chi | dr en,
client_data);

composite parent Passes the composite parent whose managed set is
being altered.

unmanage children Passes the list of children just removed from the man-
aged set.
num_unmanage children Passes the number of entries in the

unmanage_children list.

manage children Passes the list of children about to be added to the
managed set.

64

Composite Widgets

and Their Children
num_manage children Passes the number of entries in the manage children
list.
client data Passes the client data passed to Xt ChangeMan-
agedSet .

The do change proc procedure is used by the caller of Xt ChangeManagedSet to
make changes to one or more children at the point when the managed set contains
the fewest entries. These changes may involve geometry requests, and in this case
the caller of Xt ChangeManagedSet may take advantage of the fact that the Intrinsics
internally grant geometry requests made by unmanaged children without invoking
the parent's geometry manager. To achieve this advantage, if the do change proc
procedure changes the geometry of a child or of a descendant of a child, then that
child should be included in the unmanage children and manage_children lists.

Determining if a Widget Is Managed

To determine the managed state of a given child widget, use Xt | sManaged.
Bool ean Xt|sManaged(w);

w Specifies the widget. Must be of class Object or any subclass there-
of.

The Xt | sManaged function returns Tr ue if the specified widget is of class RectObj
or any subclass thereof and is managed, or Fal se otherwise.

Controlling When Widgets Get Mapped

A widget is normally mapped if it is managed. However, this behavior can be over-
ridden by setting the XtNmappedWhenManaged resource for the widget when it is
created or by setting the map when _managed field to Fal se.

To change the value of a given widget's map when managed field, use
Xt Set MappedWhenManaged.

voi d Xt Set MappedwWhenManaged(w, map_when_nanaged) ;

w Specifies the widget. Must be of class Core or any
subclass thereof.

map when _managed Specifies a Boolean value that indicates the
new value that is stored into the widget's
map when managed field.

If the widget is realized and managed, and if map when managed is True,
Xt Set MappedWhenManaged maps the window. If the widget is realized and managed,
and if map when _managed is Fal se, it unmaps the window. Xt Set MappedWhenMan-
aged is a convenience function that is equivalent to (but slightly faster than) calling
Xt Set Val ues and setting the new value for the XtNmappedWhenManaged resource
then mapping the widget as appropriate. As an alternative to using Xt Set Mapped-
WhenManaged to control mapping, a client may set mapped when_managed to Fal se
and use Xt MapW dget and Xt UnmapW dget explicitly.

To map a widget explicitly, use Xt MapW dget .

65

Composite Widgets
and Their Children

Xt MapW dget (w) ;

w Specifies the widget. Must be of class Core or any subclass thereof.
To unmap a widget explicitly, use Xt UnnapW dget .

Xt UnmapW dget (w) ;

w Specifies the widget. Must be of class Core or any subclass thereof.

Constrained Composite Widgets

The Constraint widget class is a subclass of conposi t eW dget C ass. The name is
derived from the fact that constraint widgets may manage the geometry of their
children based on constraints associated with each child. These constraints can
be as simple as the maximum width and height the parent will allow the child to
occupy or can be as complicated as how other children should change if this child
is moved or resized. Constraint widgets let a parent define constraints as resources
that are supplied for their children. For example, if the Constraint parent defines the
maximum sizes for its children, these new size resources are retrieved for each child
as if they were resources that were defined by the child widget's class. Accordingly,
constraint resources may be included in the argument list or resource file just like
any other resource for the child.

Constraint widgets have all the responsibilities of normal composite widgets and,
in addition, must process and act upon the constraint information associated with
each of their children.

To make it easy for widgets and the Intrinsics to keep track of the constraints asso-
ciated with a child, every widget has a constraints field, which is the address of a
parent-specific structure that contains constraint information about the child. If a
child's parent does not belong to a subclass of constrai nt Wdget C ass, then the
child's constraints field is NULL.

Subclasses of Constraint can add constraint data to the constraint record defined by
their superclass. To allow this, widget writers should define the constraint records
in their private .h file by using the same conventions as used for widget records.
For example, a widget class that needs to maintain a maximum width and height
for each child might define its constraint record as follows:

typedef struct {

Dimension max_width, max_ height;

} MaxConstraintPart;

typedef struct {

MaxConstraintPart max;

} MaxConstraintRecord, *MaxConstraint;

A subclass of this widget class that also needs to maintain a minimum size would
define its constraint record as follows:

typedef struct {
Dimension min width, min height;
} MinConstraintPart;

66

Composite Widgets
and Their Children

typedef struct {

MaxConstraintPart max;

MinConstraintPart min;

} MaxMinConstraintRecord, *MaxMinConstraint;

Constraints are allocated, initialized, deallocated, and otherwise maintained insofar
as possible by the Intrinsics. The Constraint class record part has several entries
that facilitate this. All entries in Constrai nt C assPart are fields and procedures
that are defined and implemented by the parent, but they are called whenever ac-
tions are performed on the parent's children.

The Xt Creat eW dget function uses the constraint size field in the parent's class
record to allocate a constraint record when a child is created. Xt Cr eat eW dget also
uses the constraint resources to fill in resource fields in the constraint record asso-
ciated with a child. It then calls the constraint initialize procedure so that the parent
can compute constraint fields that are derived from constraint resources and can
possibly move or resize the child to conform to the given constraints.

When the Xt Get Val ues and Xt Set Val ues functions are executed on a child, they use
the constraint resources to get the values or set the values of constraints associated
with that child. Xt Set Val ues then calls the constraint set values procedures so that
the parent can recompute derived constraint fields and move or resize the child as
appropriate. If a Constraint widget class or any of its superclasses have declared
a Const r ai nt d assExt ensi on record in the Constrai nt G assPart extension fields
with a record type of NULLQUARK and the get values hook field in the extension
record is non-NULL, Xt Get Val ues calls the get values hook procedure(s) to allow
the parent to return derived constraint fields.

The Xt Dest r oyW dget function calls the constraint destroy procedure to deallocate
any dynamic storage associated with a constraint record. The constraint record it-
self must not be deallocated by the constraint destroy procedure; Xt Dest r oyW dget
does this automatically.

67

Chapter 4. Shell Widgets

Shell widgets hold an application's top-level widgets to allow them to communicate
with the window manager and session manager. Shells have been designed to be
as nearly invisible as possible. Clients have to create them, but they should never
have to worry about their sizes.

If a shell widget is resized from the outside (typically by a window manager), the
shell widget also resizes its managed child widget automatically. Similarly, if the
shell's child widget needs to change size, it can make a geometry request to the
shell, and the shell negotiates the size change with the outer environment. Clients
should never attempt to change the size of their shells directly.

The five types of public shells are:

OverrideShell Used for shell windows that completely bypass the window
manager (for example, pop-up menu shells).

TransientShell Used for shell windows that have the WM_TRANSIENT_FOR
property set. The effect of this property is dependent upon the
window manager being used.

TopLevelShell Used for normal top-level windows (for example, any additional
top-level widgets an application needs).

ApplicationShell Formerly used for the single main top-level window that the
window manager identifies as an application instance and
made obsolete by SessionShell.

SessionShell Used for the single main top-level window that the window
manager identifies as an application instance and that inter-
acts with the session manager.

Shell Widget Definitions

Widgets negotiate their size and position with their parent widget, that is, the widget
that directly contains them. Widgets at the top of the hierarchy do not have parent
widgets. Instead, they must deal with the outside world. To provide for this, each
top-level widget is encapsulated in a special widget, called a shell widget.

Shell widgets, whose class is a subclass of the Composite class, encapsulate other
widgets and can allow a widget to avoid the geometry clipping imposed by the par-
ent-child window relationship. They also can provide a layer of communication with
the window manager.

The eight different types of shells are:

Shell The base class for shell widgets; provides the fields needed for
all types of shells. Shell is a direct subclass of compositeWid-
getClass.

OverrideShell A subclass of Shell; used for shell windows that completely by-

pass the window manager.

WMShell A subclass of Shell; contains fields needed by the common win-
dow manager protocol.

68

Shell Widgets

VendorShell A subclass of WMShell; contains fields used by vendor-specific
window managers.

TransientShell A subclass of VendorShell; used for shell windows that desire
the WM_TRANSIENT _FOR property.

TopLevelShell A subclass of VendorShell; used for normal top-level windows.

ApplicationShell A subclass of TopLevelShell; may be used for an application's
additional root windows.

SessionShell A subclass of ApplicationShell; used for an application's main
root window.

Note that the classes Shell, WMShell, and VendorShell are internal and should not
be instantiated or subclassed. Only OverrrideShell, TransientShell, TopLevelShell,
ApplicationShell, and SessionShell are intended for public use.

ShellClassPart Definitions

Only the Shell class has additional class fields, which are all contained in the Shel | -
Cl assExt ensi onRec. None of the other Shell classes have any additional class fields:

typedef struct {
XtPointer extension;
} ShellClassPart, OverrideShellClassPart,
WMShellClassPart, VendorShellClassPart, TransientShellClassPart,
TopLevelShellClassPart, ApplicationShellClassPart, SessionShellClassPart;

The full Shell class record definitions are:

typedef struct ShellClassRec {
CoreClassPart core class;
CompositeClassPart composite class;
ShellClassPart shell class;

} ShellClassRec;

typedef struct {

XtPointer next extension; See the section called “Class Extension Records
XrmQuark record type; See the section called “Class Extension Records”
long version; See the section called “Class Extension Records”

Cardinal record size; See the section called “Class Extension Records”
XtGeometryHandler root geometry manager; See below

} ShellClassExtensionRec, *ShellClassExtension;

”

typedef struct OverrideShellClassRec {
CoreClassPart core class;
CompositeClassPart composite class;
ShellClassPart shell class;
OverrideShellClassPart override shell class;
} OverrideShellClassRec;

69

Shell Widgets

typedef struct WMShellClassRec {
CoreClassPart core class;
CompositeClassPart composite class;
ShellClassPart shell class;
WMShellClassPart wm shell class;

} WMShellClassRec;

typedef struct VendorShellClassRec {
CoreClassPart core class;
CompositeClassPart composite class;
ShellClassPart shell class;
WMShellClassPart wm shell class;
VendorShellClassPart vendor shell class;
} VendorShellClassRec;

typedef struct TransientShellClassRec {
CoreClassPart core class;
CompositeClassPart composite class;
ShellClassPart shell class;

WMShellClassPart wm shell class;
VendorShellClassPart vendor shell class;
TransientShellClassPart transient shell class;
} TransientShellClassRec;

typedef struct TopLevelShellClassRec {
CoreClassPart core class;
CompositeClassPart composite class;
ShellClassPart shell class;
WMShellClassPart wm shell class;
VendorShellClassPart vendor shell class;
TopLevelShellClassPart top level shell class;
} TopLevelShellClassRec;

typedef struct ApplicationShellClassRec {
CoreClassPart core class;

CompositeClassPart composite class;
ShellClassPart shell class;

WMShellClassPart wm shell class;
VendorShellClassPart vendor shell class;
TopLevelShellClassPart top level shell class;
ApplicationShellClassPart application shell class;
} ApplicationShellClassRec;

typedef struct SessionShellClassRec {
CoreClassPart core class;
CompositeClassPart composite class;
ShellClassPart shell class;
WMShellClassPart wm shell class;
VendorShellClassPart vendor shell class;
TopLevelShellClassPart top level shell class;

70

Shell Widgets

ApplicationShellClassPart application shell class;
SessionShellClassPart session shell class;
} SessionShellClassRec;

The single occurrences of the class records and pointers for creating instances of
shells are:

extern ShellClassRec shellClassRec;

extern OverrideShellClassRec overrideShellClassRec;
extern WMShellClassRec wmShellClassRec;

extern VendorShellClassRec vendorShellClassRec;
extern TransientShellClassRec transientShellClassRec;
extern TopLevelShellClassRec topLevelShellClassRec;
extern ApplicationShellClassRec applicationShellClassRec;
extern SessionShellClassRec sessionShellClassRec;
extern WidgetClass shellWidgetClass;

extern WidgetClass overrideShellWidgetClass;

extern WidgetClass wmShellWidgetClass;

extern WidgetClass vendorShellWidgetClass;

extern WidgetClass transientShellWidgetClass;

extern WidgetClass topLevelShellWidgetClass;

extern WidgetClass applicationShellWidgetClass;
extern WidgetClass sessionShellWidgetClass;

The following opaque types and opaque variables are defined for generic operations
on widgets whose class is a subclass of Shell.

Types Variables

ShellWidget shellWidgetClass
OverrideShellWidget overrideShellWidgetClass
WMShellWidget wmShellWidgetClass
VendorShellWidget vendorShellWidgetClass
TransientShellWidget transientShellWidgetClass
TopLevelShellWidget topLevelShellWidgetClass
ApplicationShellWidget applicationShellWidgetClass
SessionShellWidget sessionShellWidgetClass
ShellWidgetClass

OverrideShellWidgetClass

WMShellWidgetClass

VendorShellWidgetClass
TransientShellWidgetClass
TopLevelShellWidgetClass
ApplicationShellWidgetClass
SessionShellWidgetClass

The declarations for all Intrinsics-defined shells except VendorShell appear in
Shel | . h and Shel | P. h. VendorShell has separate public and private .h files which
are included by Shel | . h and Shel | P. h.

71

Shell Widgets

Shel | . h uses incomplete structure definitions to ensure that the compiler catches
attempts to access private data in any of the Shell instance or class data structures.

The symbolic constant for the Shell d assExtension version identifier is
Xt Shel | Ext ensi onVer si on (see the section called “Class Extension Records”).

The root geometry manager procedure acts as the parent geometry manager
for geometry requests made by shell widgets. When a shell widget calls either
Xt MakeGeonet r yRequest or Xt MakeResi zeRequest, the root geometry manager
procedure is invoked to negotiate the new geometry with the window manager. If
the window manager permits the new geometry, the root geometry manager pro-
cedure should return Xt GeonetryYes; if the window manager denies the geome-
try request or does not change the window geometry within some timeout interval
(equal to wm_timeout in the case of WMShells), the root geometry manager proce-
dure should return Xt Geonet r yNo. If the window manager makes some alternative
geometry change, the root geometry manager procedure may return either Xt Ge-
onet ryNo and handle the new geometry as a resize or Xt Geonet r yAl npst in antic-
ipation that the shell will accept the compromise. If the compromise is not accept-
ed, the new size must then be handled as a resize. Subclasses of Shell that wish
to provide their own root geometry manager procedures are strongly encouraged
to use enveloping to invoke their superclass's root_geometry manager procedure
under most situations, as the window manager interaction may be very complex.

If no Shel | O assPart extension record is declared with record type equal to NUL-
LQUARK, then Xt | nheri t Root Geonet r yManager is assumed.

ShellPart Definition

The various shell widgets have the following additional instance fields defined in
their widget records:

typedef struct {

String geometry;
XtCreatePopupChildProc create popup child proc;
XtGrabKind grab kind;

Boolean spring loaded;

Boolean popped up;

Boolean allow shell resize;
Boolean client specified;

Boolean save under;

Boolean override redirect;
XtCallbackList popup_callback;
XtCallbackList popdown_callback;
Visual * visual;

} ShellPart;

typedef struct {
int empty;
} OverrideShellPart;

typedef struct {
String title;

72

Shell Widgets

int wm_timeout;
Boolean wait for wm;
Boolean transient;
Boolean urgency;
Widget client leader;
String window role;
struct OldXSizeHints {
long flags;

int x,y;

int width, height;

int min width, min height;
int max width, max height;
int width inc, height inc;
struct {

int x;

inty;

} min aspect, max aspect;
} size hints;

XWMHints wm hints;

int base width, base height, win gravity;
Atom title encoding;
} WMShellPart;

typedef struct {
int vendor specific;
} VendorShellPart;

typedef struct {

Widget transient for;

} TransientShellPart;
typedef struct {

String icon_name;

Boolean iconic;

Atom icon name encoding;
} TopLevelShellPart;

typedef struct {

char * class;

XrmClass xrm_class;
int argc;

char ** argv;

} ApplicationShellPart;

typedef struct {
SmcConn connection;
String session id;
String * restart command;
String * clone command;
String * discard command;
String * resign_command;
String * shutdown command;

73

Shell Widgets

String * environment;

String current dir;

String program path;

unsigned char restart_style;
Boolean join session;
XtCallbackList save callbacks;
XtCallbackList interact_callbacks;
XtCallbackList cancel callbacks;
XtCallbackList save complete callbacks;
XtCallbackList die callbacks;
XtCallbackList error callbacks;

} SessionShellPart;

The full shell widget instance record definitions are:

typedef struct {

CorePart core;
CompositePart composite;
ShellPart shell;

} ShellRec, *ShellWidget;

typedef struct {

CorePart core;

CompositePart composite;

ShellPart shell;

OverrideShellPart override;

} OverrideShellRec, *OverrideShellWidget;

typedef struct {

CorePart core;

CompositePart composite;
ShellPart shell;

WMShellPart wm;

} WMShellRec, *WMShellWidget;

typedef struct {

CorePart core;

CompositePart composite;

ShellPart shell;

WMShellPart wm;

VendorShellPart vendor;

} VendorShellRec, *VendorShellWidget;

typedef struct {

CorePart core;

CompositePart composite;

ShellPart shell;

WMShellPart wm;

VendorShellPart vendor;

TransientShellPart transient;

} TransientShellRec, *TransientShellWidget;

74

Shell Widgets

Shell

typedef struct {

CorePart core;

CompositePart composite;

ShellPart shell;

WMShellPart wm;

VendorShellPart vendor;
TopLevelShellPart topLevel;

} TopLevelShellRec, *TopLevelShellWidget;

typedef struct {

CorePart core;

CompositePart composite;

ShellPart shell;

WMShellPart wm;

VendorShellPart vendor;

TopLevelShellPart topLevel;
ApplicationShellPart application;

} ApplicationShellRec, *ApplicationShellWidget;

typedef struct {

CorePart core;

CompositePart composite;

ShellPart shell;

WMShellPart wm;

VendorShellPart vendor;
TopLevelShellPart topLevel;
ApplicationShellPart application;
SessionShellPart session;

} SessionShellRec, *SessionShellWidget;

Resources

The resource names, classes, and representation types specified in the shel | O ass-
Rec resource list are:

Name Class Representation
XtNallowShellResize XtCAllowShellResize XtRBoolean
XtNcreatePopupChildProc XtCCreatePopupChildProc XtRFunction
XtNgeometry XtCGeometry XtRString
XtNoverrideRedirect XtCOverrideRedirect XtRBoolean
XtNpopdownCallback XtCCallback XtRCallback
XtNpopupCallback XtCCallback XtRCallback
XtNsaveUnder XtCSaveUnder XtRBoolean
XtNvisual XtCVisual XtRVisual

OverrideShell declares no additional resources beyond those defined by Shell.

The resource names, classes, and representation types specified in the wnthel | -
Cl assRec resource list are:

75

Shell Widgets

Name Class Representation
XtNbaseHeight XtCBaseHeight XtRInt
XtNbaseWidth XtCBaseWidth XtRInt
XtNclientLeader XtCClientLeader XtRWidget
XtNheightlnc XtCHeightlInc XtRInt
XtNiconMask XtCIconMask XtRBitmap
XtNiconPixmap XtClIconPixmap XtRBitmap
XtNiconWindow XtCIconWindow XtRWindow
XtNiconX XtCIconX XtRInt
XtNiconY XtCIconY XtRInt
XtNinitialState XtClnitialState XtRInitialState
XtNinput XtCInput XtRBool
XtNmaxAspectX XtCMaxAspectX XtRInt
XtNmaxAspectY XtCMaxAspectY XtRInt
XtNmaxHeight XtCMaxHeight XtRInt
XtNmaxWidth XtCMaxWidth XtRInt
XtNminAspectX XtCMinAspectX XtRInt
XtNminAspectY XtCMinAspectY XtRInt
XtNminHeight XtCMinHeight XtRInt
XtNminWidth XtCMinWidth XtRInt
XtNtitle XtCTitle XtRString
XtNtitleEncoding XtCTitleEncoding XtRAtom
XtNtransient XtCTransient XtRBoolean
XtNwaitforwm, XtNwait- XtCWaitforwm, XtCWait- XtRBoolean
ForWm ForWm

XtNwidthInc XtCWidthInc XtRInt
XtNwindowRole XtCWindowRole XtRString
XtNwinGravity XtCWinGravity XtRGravity
XtNwindowGroup XtCWindowGroup XtRWindow
XtNwmTimeout XtCWmTimeout XtRInt
XtNurgency XtCUrgency XtRBoolean

The class resource list for VendorShell is implementation-defined.

The resource names, classes, and representation types that are specified in the

t ransi ent \ ¥%8hel | G assRec resource list are:

Name

Class

Representation

XtNtransientFor

XtCTransientFor

XtRWidget

The resource names, classes, and representation types that are specified in the

t opLevel Shel | O assRec resource list are:

76

Shell Widgets

Name Class Representation
XtNiconName XtCIconName XtRString
XtNiconNameEncoding XtCIconNameEncoding XtRAtom
XtNiconic XtClconic XtRBoolean

The resource names, classes, and representation types that are specified in the
appl i cati on\ ¥8hel | d assRec resource list are:

Name Class Representation
XtNargc XtCArgc XtRInt
XtNargv XtCArgv XtRStringArray

The resource names, classes, and representation types that are specified in the
sessi onShel | d assRec resource list are:

Name Class Representation
XtNcancelCallback XtCCallback XtRCallback
XtNcloneCommand XtCCloneCommand XtRCommandArgArray
XtNconnection XtCConnection XtRSmcConn
XtNcurrentDirectory XtCCurrentDirectory XtRDirectoryString
XtNdieCallback XtCCallback XtRCallback
XtNdiscardCommand XtCDiscardCommand XtRCommandArgArray
XtNenvironment XtCEnvironment XtREnvironmentArray
XtNerrorCallback XtCCallback XtRCallback
XtNinteractCallback XtCCallback XtRCallback
XtNjoinSession XtCJoinSession XtRBoolean
XtNprogramPath XtCProgramPath XtRString
XtNresignCommand XtCResignCommand XtRCommandArgArray
XtNrestartCommand XtCRestartCommand XtRCommandArgArray
XtNrestartStyle XtCRestartStyle XtRRestartStyle
XtNsaveCallback XtCCallback XtRCallback
XtNsaveCompleteCallback XtCCallback XtRCallback
XtNsessionlD XtCSessionlD XtRString

XtNshutdownCommand XtCShutdownCommand XtRCommandArgArray

ShellPart Default Values

The default values for fields common to all classes of public shells (filled in by the
Shell resource lists and the Shell initialize procedures) are:

77

Shell Widgets

Field Default Value

geometry NULL

create popup child proc NULL

grab kind (none)

spring loaded (none)

popped up Fal se

allow_shell resize Fal se

client specified (internal)

save under Tr ue for OverrideShell and Transien-
tShell, False otherwise

override redirect Tr ue for OverrideShell, Fal se otherwise

popup callback NULL

popdown_callback NULL

visual CopyFr onPar ent

The geometry field specifies the size and position and is usually given only on a
command line or in a defaults file. If the geometry field is non-NULL when a widget
of class WMShell is realized, the geometry specification is parsed using XWMGeone-
t ry with a default geometry string constructed from the values of x, y, width, height,
width_inc, and height _inc and the size and position flags in the window manager
size hints are set. If the geometry specifies an x or y position, then USPosi ti on is
set. If the geometry specifies a width or height, then USSi ze is set. Any fields in the
geometry specification override the corresponding values in the Core x, y, width,
and height fields. If geometry is NULL or contains only a partial specification, then
the Core x, y, width, and height fields are used and PPosi ti on and PSi ze are set as
appropriate. The geometry string is not copied by any of the Intrinsics Shell class-
es; a client specifying the string in an arglist or varargs list must ensure that the
value remains valid until the shell widget is realized. For further information on the
geometry string, see the section called “Parsing the Window Geometry” in Xlib —
C Language X Interface.

The create popup child proc procedure is called by the Xt Popup procedure and
may remain NULL. The grab kind, spring loaded, and popped up fields maintain
widget state information as described under Xt Popup, Xt MenuPopup, Xt Popdown, and
Xt MenuPopdown. The allow_shell resize field controls whether the widget contained
by the shell is allowed to try to resize itself. If allow_shell resize is Fal se, any geom-
etry requests made by the child will always return Xt Geonet r yNo without interact-
ing with the window manager. Setting save under Tr ue instructs the server to at-
tempt to save the contents of windows obscured by the shell when it is mapped
and to restore those contents automatically when the shell is unmapped. It is useful
for pop-up menus. Setting override redirect Tr ue determines whether the window
manager can intercede when the shell window is mapped. For further information
on override redirect, see the section called “Window Attributes” in Xlib — C Lan-
guage X Interface and the section called “Pop-up Windows” and the section called
“Redirection of Operations” in the Inter-Client Communication Conventions Manu-
al. The pop-up and pop-down callbacks are called during Xt Popup and Xt Popdown.
The default value of the visual resource is the symbolic value CopyFr onPar ent . The
Intrinsics do not need to query the parent's visual type when the default value is
used; if a client using Xt Get Val ues to examine the visual type receives the value

78

Shell Widgets

CopyFr onPar ent, it must then use XGet W ndowAt t ri but es if it needs the actual vi-
sual type.

The default values for Shell fields in WMShell and its subclasses are:

Field Default Value

title Icon name, if specified, otherwise the
application's name

wm_timeout Five seconds, in units of milliseconds

wait for wm True

transient Tr ue for TransientShell, Fal se other-
wise

urgency Fal se

client leader NULL

window _role NULL

min width Xt Unspeci fi edShel | | nt

min height Xt Unspeci fi edShel | | nt

max_width Xt Unspeci fi edShel | | nt

max_height Xt Unspeci fi edShel | | nt

width inc Xt Unspeci fi edShel | | nt

height inc Xt Unspeci fi edShel | | nt

min aspect x Xt Unspeci fi edShel | | nt

min aspect y Xt Unspeci fi edShel | I nt

max_aspect x Xt Unspeci fi edShel | I nt

max aspect y Xt Unspeci fi edShel I I nt

input Fal se

initial state Normal

icon pixmap None

icon window None

icon x Xt Unspeci fi edShel | I nt

icon y Xt Unspeci fi edShel | I nt

icon mask None

window group Xt Unspeci fi edW ndow

base width Xt Unspeci fi edShel | | nt

base height Xt Unspeci fi edShel | | nt

win_gravity Xt Unspeci fi edShel | I nt

title encoding See text

The title and title encoding fields are stored in the WM_NAME property on the
shell's window by the WMShell realize procedure. If the title encoding field is None,
the title string is assumed to be in the encoding of the current locale and the encod-
ing of the WM_NAME property is set to XSt dl CCText St yl e. If alanguage procedure
has not been set the default value of title encoding is XA_STRING, otherwise the
default value is None. The wm_timeout field specifies, in milliseconds, the amount of

79

Shell Widgets

time a shell is to wait for confirmation of a geometry request to the window manag-
er. If none comes back within that time, the shell assumes the window manager is
not functioning properly and sets wait for wm to Fal se (later events may reset this
value). When wait for wm is Fal se, the shell does not wait for a response, but re-
lies on asynchronous notification. If transient is Tr ue, the WM_TRANSIENT _FOR
property will be stored on the shell window with a value as specified below. The in-
terpretation of this property is specific to the window manager under which the ap-
plication is run; see the Inter-Client Communication Conventions Manual for more
details.

The realize and set values procedures of WMShell store the
WM_CLIENT_LEADER property on the shell window. When client leader is not
NULL and the client leader widget is realized, the property will be created with the
value of the window of the client leader widget. When client leader is NULL and
the shell widget has a NULL parent, the widget's window is used as the value of the
property. When client_leader is NULL and the shell widget has a non-NULL parent,
a search is made for the closest shell ancestor with a non-NULL client leader, and
if none is found the shell ancestor with a NULL parent is the result. If the resulting
widget is realized, the property is created with the value of the widget's window.

When the value of window role is not NULL, the realize and set values procedures
store the WM_WINDOW_ROLE property on the shell's window with the value of
the resource.

All other resources specify fields in the window manager hints and the window
manager size hints. The realize and set values procedures of WMShell set the cor-
responding flag bits in the hints if any of the fields contain nondefault values. In
addition, if a flag bit is set that refers to a field with the value Xt Unspeci f i edShel -
I I nt, the value of the field is modified as follows:

Field Replacement

base width, base height 0

width inc, height inc 1

max width, max height 32767

min width, min height 1

min aspect x, min aspect y -1

max aspect x, max aspect y -1

icon x, icon y -1

win_gravity Value returned by X\WMCGeonet ry if

called, else Nort hWest Gravity

If the shell widget has a non-NULL parent, then the realize and set values pro-
cedures replace the value Xt Unspeci fi edW ndow in the window group field with
the window id of the root widget of the widget tree if the root widget is realized.
The symbolic constant Xt Unspeci fi edW ndowGr oup may be used to indicate that
the window group hint flag bit is not to be set. If transient is True, the shell's
class is not a subclass of TransientShell, and window group is not Xt Unspeci -
fi edW ndowGr oup, the WMShell realize and set values procedures then store the
WM_TRANSIENT _FOR property with the value of window group.

Transient shells have the following additional resource:

80

Shell Widgets

Field Replacement
transient for NULL

The realize and set values procedures of TransientShell store the
WM_TRANSIENT_FOR property on the shell window if transient is True. If
transient foris non-NULL and the widget specified by transient foris realized, then
its window is used as the value of the WM_TRANSIENT_FOR property; otherwise,
the value of window group is used.

TopLevel shells have the the following additional resources:

Field Default Value

icon name Shell widget's name
iconic False

icon name encoding See text

The icon name and icon name _encoding fields are stored in the WM_ICON_NAME
property on the shell's window by the TopLevelShell realize procedure. If the
icon name encoding field is None, the icon name string is assumed to be in the en-
coding of the current locale and the encoding of the WM_ICON_NAME property
is set to XSt dI CCText Styl e. If a language procedure has not been set, the default
value of icon name _encoding is XA_STRING, otherwise the default value is None.
The iconic field may be used by a client to request that the window manager iconify
or deiconify the shell; the TopLevelShell set values procedure will send the appro-
priate WM_CHANGE_STATE message (as specified by the Inter-Client Communi-
cation Conventions Manual) if this resource is changed from Fal se to Tr ue and will
call Xt Popup specifying grab kind as Xt Gr abNone if iconic is changed from True
to Fal se. The XtNiconic resource is also an alternative way to set the XtNinitialS-
tate resource to indicate that a shell should be initially displayed as an icon; the
TopLevelShell initialize procedure will set initial state to | coni cSt at e if iconic is
True.

Application shells have the following additional resources:

Field Default Value
argc 0
argv NULL

The argc and argv fields are used to initialize the standard property
WM_COMMAND. See the Inter-Client Communication Conventions Manual for
more information.

The default values for the SessionShell instance fields, which are filled in from the
resource lists and by the initialize procedure, are

81

Shell Widgets

Field Default Value
cancel callbacks NULL

clone command See text
connection NULL
current_dir NULL

die callbacks NULL

discard command NULL
environment NULL

error callbacks NULL
interact_callbacks NULL

join session True

program path NULL
resign_command NULL

restart command See text
restart style SmRestartIfRunning
save callbacks NULL

save _complete callbacks NULL

session id NULL
shutdown command NULL

The connection field contains the session connection object or NULL if a session
connection is not being managed by this widget.

The session_id is an identification assigned to the session participant by the session
manager. The session_id will be passed to the session manager as the client identi-
fier of the previous session. When a connection is established with the session man-
ager, the client id assigned by the session manager is stored in the session id field.
When not NULL, the session_id of the Session shell widget that is at the root of the
widget tree of the client leader widget will be used to create the SM_CLIENT _ID
property on the client leader's window.

If join_session is Fal se, the widget will not attempt to establish a connection to the
session manager at shell creation time. See the section called “Joining a Session”
and the section called “Resigning from a Session” for more information on the func-
tionality of this resource.

The restart command, clone command, discard command, resign command,
shutdown_command, environment, current dir, program_path, and restart style
fields contain standard session properties.

When a session connection is established or newly managed by the shell, the
shell initialize and set values methods check the values of the restart command,
clone command, and program_path resources. At that time, if restart command is
NULL, the value of the argv resource will be copied to restart command. Whether or
not restart command was NULL, if "-xtsessionID" "<session id>" does not already
appear in the restart command, it will be added by the initialize and set values
methods at the beginning of the command arguments; if the "-xtsessionID" argu-
ment already appears with an incorrect session id in the following argument, that
argument will be replaced with the current session id.

82

Shell Widgets

After this, the shell initialize and set values procedures check the clone command.
If clone_ command is NULL, restart command will be copied to clone command,
except the "-xtsessionID" and following argument will not be copied.

Finally, the shell initialize and set values procedures check the program path.
If program path is NULL, the first element of restart command is copied to
program_path.

The possible values of restart style are SnRestart | fRunni ng, SnrRest art Anyway,
SnRestart| mmedi atel y, and SnRest art Never. A resource converter is registered
for this resource; for the strings that it recognizes, see the section called “Prede-
fined Resource Converters”.

The resource type EnvironmentArray is a NULL-terminated array of pointers to
strings; each string has the format "name=value". The " =' character may not appear
in the name, and the string is terminated by a null character.

Session Participation

Applications can participate in a user's session, exchanging messages with the ses-
sion manager as described in the X Session Management Protocol and the X Session
Management Library.

When a widget of sessi onShel | W dget Cl ass or a subclass is created, the widget
provides support for the application as a session participant and continues to pro-
vide support until the widget is destroyed.

Joining a Session

When a Session shell is created, if connection is NULL, and if join session is Tr ue,
and if argv or restart command is not NULL, and if in POSIX environments the
SESSION_MANAGER environment variable is defined, the shell will attempt to
establish a new connection with the session manager.

To transfer management of an existing session connection from an application to the
shell at widget creation time, pass the existing session connection ID as the connec-
tion resource value when creating the Session shell, and if the other creation-time
conditions on session participation are met, the widget will maintain the connection
with the session manager. The application must ensure that only one Session shell
manages the connection.

In the Session shell set values procedure, if join session changes from Fal se
to True and connection is NULL and when in POSIX environments the
SESSION_MANAGER environment variable is defined, the shell will attempt to
open a connection to the session manager. If connection changes from NULL to
non-NULL, the Session shell will take over management of that session connection
and will set join session to True. If join session changes from Fal se to True and
connection is not NULL, the Session shell will take over management of the session
connection.

When a successful connection has been established, connection contains the session
connection ID for the session participant. When the shell begins to manage the
connection, it will call Xt AppAddl nput to register the handler which watches for
protocol messages from the session manager. When the attempt to connect fails, a
warning message is issued and connection is set to NULL.

83

Shell Widgets

While the connection is being managed, if a SaveYour sel f, SaveYour sel f Phase2,
I nt eract, Shut downCancel | ed, SaveConpl et e, or Di e message is received from
the session manager, the Session shell will call out to application callback pro-
cedures registered on the respective callback list of the Session shell and will
send SaveYour sel f Phase2Request, | nteract Request, | nt eract Done, SaveYour -
sel f Done, and Connecti onCl osed messages as appropriate. Initially, all of the
client's session properties are undefined. When any of the session property resource
values are defined or change, the Session shell initialize and set values procedures
will update the client's session property value by a Set Pr operti es or a Del et ePr op-
erti es message, as appropriate. The session ProcessID and UserID properties are
always set by the shell when it is possible to determine the value of these properties.

Saving Application State

The session manager instigates an application checkpoint by sending a SaveYour -
sel f request. Applications are responsible for saving their state in response to the
request.

When the SaveYour sel f request arrives, the procedures registered on the Session
shell's save callback list are called. If the application does not register any save
callback procedures on the save callback list, the shell will report to the session
manager that the application failed to save its state. Each procedure on the save
callback list receives a token in the call data parameter.

The checkpoint token in the call data parameter is of type Xt Checkpoi nt Token.

typedef struct {

int save type;

int interact_style;

Boolean shutdown;

Boolean fast;

Boolean cancel shutdown

int phase;

int interact _dialog type; /* return */
Boolean request_cancel; /* return */
Boolean request _next phase; /* return */
Boolean save success; /* return */

} XtCheckpointTokenRec, *XtCheckpointToken;

The save type, interact style, shutdown, and fast fields of the token contain the
parameters of the SaveYoursel f message. The possible values of save type are
SnBavelocal , SnSaved obal , and SnBaveBot h; these indicate the type of informa-
tion to be saved. The possible values of interact style are Smi nt er act St yl eNone,
Sm nteract Styl eErrors, and Sm nteract Styl eAny; these indicate whether user
interaction would be permitted and, if so, what kind of interaction. If shutdown is
Tr ue, the checkpoint is being performed in preparation for the end of the session.
If fast is True, the client should perform the checkpoint as quickly as possible. If
cancel shutdown is Tr ue, a Shut downCancel | ed message has been received for the
current save operation. (See the section called “Resigning from a Session”.) The
phase is used by manager clients, such as a window manager, to distinguish between
the first and second phase of a save operation. The phase will be either 1 or 2. The
remaining fields in the checkpoint token structure are provided for the application
to communicate with the shell.

84

Shell Widgets

Upon entry to the first application save callback procedure, the return fields in
the token have the following initial values: interact dialog type is SnDi al ogNor nal ;
request_cancel is Fal se; request next phase is Fal se; and save success is Tr ue.
When a token is returned with any of the four return fields containing a noninitial
value, and when the field is applicable, subsequent tokens passed to the application
during the current save operation will always contain the noninitial value.

The purpose of the token's save success field is to indicate the outcome of the en-
tire operation to the session manager and ultimately, to the user. Returning Fal se
indicates some portion of the application state could not be successfully saved. If
any token is returned to the shell with save success Fal se, tokens subsequently
received by the application for the current save operation will show save success
as Fal se. When the shell sends the final status of the checkpoint to the session
manager, it will indicate failure to save application state if any token was returned
with save success Fal se.

Session participants that manage and save the state of other clients should structure
their save or interact callbacks to set request next phase to Tr ue when phase is 1,
which will cause the shell to send the SaveYour sel f Phase2Request when the first
phase is complete. When the SaveYour sel f Phase2 message is received, the shell
will invoke the save callbacks a second time with phase equal to 2. Manager clients
should save the state of other clients when the callbacks are invoked the second
time and phase equal to 2.

The application may request additional tokens while a checkpoint is under way, and
these additional tokens must be returned by an explicit call.

To request an additional token for a save callback response that has a deferred
outcome, use Xt Sessi onCet Token.

Xt Checkpoi nt Token Xt Sessi onGet Token(w dget) ;

widget Specifies the Session shell widget which manages session
participation.

The Xt Sessi onGet Token function will return NULL if no checkpoint operation is
currently under way.

To indicate the completion of checkpoint processing including user interaction, the
application must signal the Session shell by returning all tokens. (See the section
called “Interacting with the User during a Checkpoint” and the section called “Com-
pleting a Save”). To return a token, use Xt Sessi onRet ur nToken.

voi d Xt Sessi onRet urnToken(token);

token Specifies a token that was received as the call data by a pro-
cedure on the interact callback list or a token that was re-
ceived by a call to Xt Sessi onGet Token.

Tokens passed as call data to save callbacks are implicitly returned when the save
callback procedure returns. A save callback procedure should not call Xt Sessi on-
Ret ur nToken on the token passed in its call data.

Requesting Interaction

When the token interact style allows user interaction, the application may interact
with the user during the checkpoint, but must wait for permission to interact. Appli-

85

Shell Widgets

cations request permission to interact with the user during the checkpointing oper-
ation by registering a procedure on the Session shell's interact callback list. When
all save callback procedures have returned, and each time a token that was granted
by a call to Xt Sessi onGet Token is returned, the Session shell examines the interact
callback list. If interaction is permitted and the interact callback list is not empty,
the shell will send an | nt er act Request to the session manager when an interact
request is not already outstanding for the application.

The type of interaction dialog that will be requested is specified by the
interact dialog type field in the checkpoint token. The possible values for
interact _dialog type are SnDi al ogErr or and SnDi al ogNor mal . If a token is returned
with interact dialog type containing SnDi al ogErr or, the interact request and any
subsequent interact requests will be for an error dialog; otherwise, the request will
be for a normal dialog with the user.

When a token is returned with save success Fal se or interact dialog type SnDi -
al ogError, tokens subsequently passed to callbacks during the same active SaveY-
our sel f response will reflect these changed values, indicating that an error condi-
tion has occurred during the checkpoint.

The request cancel field is a return value for interact callbacks only. Upon return
from a procedure on the save callback list, the value of the token's request cancel
field is not examined by the shell. This is also true of tokens received through a call
to Xt Sessi onGet Token.

Interacting with the User during a Checkpoint

When the session manager grants the application's request for user interaction, the
Session shell receives an | nt er act message. The procedures registered on the in-
teract callback list are executed, but not as if executing a typical callback list. These
procedures are individually executed in sequence, with a checkpoint token function-
ing as the sequencing mechanism. Each step in the sequence begins by removing a
procedure from the interact callback list and executing it with a token passed in the
call data. The interact callback will typically pop up a dialog box and return. When
the user interaction and associated application checkpointing has completed, the
application must return the token by calling Xt Sessi onRet ur nToken. Returning the
token completes the current step and triggers the next step in the sequence.

During interaction the client may request cancellation of a shutdown. When a to-
ken passed as call data to an interact procedure is returned, if shutdown is True
and cancel shutdown is Fal se, request cancel indicates whether the application
requests that the pending shutdown be cancelled. If request _cancel is Tr ue, the field
will also be True in any tokens subsequently granted during the checkpoint oper-
ation. When a token is returned requesting cancellation of the session shutdown,
pending interact procedures will still be called by the Session shell. When all inter-
act procedures have been removed from the interact callback list, executed, and
the final interact token returned to the shell, an | nt er act Done message is sent to
the session manager, indicating whether a pending session shutdown is requested
to be cancelled.

Responding to a Shutdown Cancellation

Callbacks registered on the cancel callback list are invoked when the Session shell
processes a Shut downCancel | ed message from the session manager. This may oc-
cur during the processing of save callbacks, while waiting for interact permission,

86

Shell Widgets

during user interaction, or after the save operation is complete and the application
is expecting a SaveConpl et e or a Di e message. The call data for these callbacks
is NULL.

When the shell notices that a pending shutdown has been cancelled, the token
cancel shutdown field will be Tr ue in tokens subsequently given to the application.

Receiving notice of a shutdown cancellation does not cancel the pending execu-
tion of save callbacks or interact callbacks. After the cancel callbacks execute, if
interact style is not Sm nt er act St yl eNone and the interact list is not empty, the
procedures on the interact callback list will be executed and passed a token with
interact style Sm nt er act St yl eNone. The application should not interact with the
user, and the Session shell will not send an | nt er act Done message.

Completing a Save

When there is no user interaction, the shell regards the application as having fin-
ished saving state when all callback procedures on the save callback list have re-
turned, and any additional tokens passed out by Xt Sessi onGet Token have been re-
turned by corresponding calls to Xt Sessi onRet ur nToken. If the save operation in-
volved user interaction, the above completion conditions apply, and in addition, all
requests for interaction have been granted or cancelled, and all tokens passed to
interact callbacks have been returned through calls to Xt Sessi onRet ur nToken. If
the save operation involved a manager client that requested the second phase, the
above conditions apply to both the first and second phase of the save operation.

When the application has finished saving state, the Session shell will report the
result to the session manager by sending the SaveYour sel f Done message. If the
session is continuing, the shell will receive the SaveConpl et e message when all
applications have completed saving state. This message indicates that applications
may again allow changes to their state. The shell will execute the save complete
callbacks. The call data for these callbacks is NULL.

Responding to a Shutdown

Callbacks registered on the die callback list are invoked when the session manager
sends a Di e message. The callbacks on this list should do whatever is appropriate
to quit the application. Before executing procedures on the die callback list, the
Session shell will close the connection to the session manager and will remove the
handler that watches for protocol messages. The call data for these callbacks is
NULL.

Resigning from a Session

When the Session shell widget is destroyed, the destroy method will close the con-
nection to the session manager by sending a Connect i onCl osed protocol message
and will remove the input callback that was watching for session protocol messages.

When Xt Set Val ues is used to set join session to Fal se, the set values method of
the Session shell will close the connection to the session manager if one exists by
sending a Connect i onCl osed message, and connection will be set to NULL.

Applications that exit in response to user actions and that do not wait for phase
2 destroy to complete on the Session shell should set join session to Fal se before
exiting.

87

Shell Widgets

When Xt Set Val ues is used to set connection to NULL, the Session shell will stop
managing the connection, if one exists. However, that session connection will not
be closed.

Applications that wish to ensure continuation of a session connection beyond the
destruction of the shell should first retrieve the connection resource value, then
set the connection resource to NULL, and then they may safely destroy the widget
without losing control of the session connection.

The error callback list will be called if an unrecoverable communications error oc-
curs while the shell is managing the connection. The shell will close the connection,
set connection to NULL, remove the input callback, and call the procedures regis-
tered on the error callback list. The call data for these callbacks is NULL.

88

Chapter 5. Pop-Up Widgets

Pop-

Pop-up widgets are used to create windows outside of the window hierarchy defined
by the widget tree. Each pop-up child has a window that is a descendant of the root
window, so that the pop-up window is not clipped by the pop-up widget's parent
window. Therefore, pop-ups are created and attached differently to their widget
parent than normal widget children.

A parent of a pop-up widget does not actively manage its pop-up children; in fact, it
usually does not operate upon them in any way. The popup list field in the Cor ePar t
structure contains the list of its pop-up children. This pop-up list exists mainly to
provide the proper place in the widget hierarchy for the pop-up to get resources
and to provide a place for Xt Dest r oyW dget to look for all extant children.

A composite widget can have both normal and pop-up children. A pop-up can be
popped up from almost anywhere, not just by its parent. The term child always refers
to a normal, geometry-managed widget on the composite widget's list of children,
and the term pop-up child always refers to a widget on the pop-up list.

Up Widget Types
There are three kinds of pop-up widgets:
¢ Modeless pop-ups

A modeless pop-up (for example, a dialog box that does not prevent continued
interaction with the rest of the application) can usually be manipulated by the
window manager and looks like any other application window from the user's
point of view. The application main window itself is a special case of a modeless
pop-up.

¢ Modal pop-ups

A modal pop-up (for example, a dialog box that requires user input to continue)
can sometimes be manipulated by the window manager, and except for events
that occur in the dialog box, it disables user-event distribution to the rest of the
application.

* Spring-loaded pop-ups

A spring-loaded pop-up (for example, a menu) can seldom be manipulated by the
window manager, and except for events that occur in the pop-up or its descen-
dants, it disables user-event distribution to all other applications.

Modal pop-ups and spring-loaded pop-ups are very similar and should be coded
as if they were the same. In fact, the same widget (for example, a ButtonBox or
Menu widget) can be used both as a modal pop-up and as a spring-loaded pop-
up within the same application. The main difference is that spring-loaded pop-ups
are brought up with the pointer and, because of the grab that the pointer button
causes, require different processing by the Intrinsics. Furthermore, all user input
remap events occurring outside the spring-loaded pop-up (e.g., in a descendant) are
also delivered to the spring-loaded pop-up after they have been dispatched to the
appropriate descendant, so that, for example, button-up can take down a spring-
loaded pop-up no matter where the button-up occurs.

89

Pop-Up Widgets

Any kind of pop-up, in turn, can pop up other widgets. Modal and spring-loaded pop-
ups can constrain user events to the most recent such pop-up or allow user events
to be dispatched to any of the modal or spring-loaded pop-ups currently mapped.

Regardless of their type, all pop-up widget classes are responsible for communicat-
ing with the X window manager and therefore are subclasses of one of the Shell
widget classes.

Creating a Pop-Up Shell

For a widget to be popped up, it must be the child of a pop-up shell widget. None of
the Intrinsics-supplied shells will simultaneously manage more than one child. Both
the shell and child taken together are referred to as the pop-up. When you need to
use a pop-up, you always refer to the pop-up by the pop-up shell, not the child.

To create a pop-up shell, use Xt Cr eat ePopupShel | .

W dget Xt Creat ePopupShel | (name, wi dget cl ass, parent, args, numargs);

name Specifies the instance name for the created shell wid-
get.

widget class Specifies the widget class pointer for the created
shell widget.

parent Specifies the parent widget. Must be of class Core or

any subclass thereof.

args Specifies the argument list to override any other re-
source specifications.

num_args Specifies the number of entries in the argument list.

The Xt Cr eat ePopupShel | function ensures that the specified class is a subclass of
Shell and, rather than using insert_child to attach the widget to the parent's children
list, attaches the shell to the parent's popup list directly.

The screen resource for this widget is determined by first scanning args for the
XtNscreen argument. If no XtNscreen argument is found, the resource database
associated with the parent's screen is queried for the resource name.screen, class
Class.Screen where Class is the class name field from the CoreCd assPart of the
specified widget class. If this query fails, the parent's screen is used. Once the
screen is determined, the resource database associated with that screen is used to
retrieve all remaining resources for the widget not specified in args.

A spring-loaded pop-up invoked from a translation table via Xt MenuPopup must al-
ready exist at the time that the translation is invoked, so the translation manager
can find the shell by name. Pop-ups invoked in other ways can be created when the
pop-up actually is needed. This delayed creation of the shell is particularly useful
when you pop up an unspecified number of pop-ups. You can look to see if an ap-
propriate unused shell (that is, not currently popped up) exists and create a new
shell if needed.

To create a pop-up shell using varargs lists, use Xt VaCr eat ePopupShel | .

W dget Xt VaCreat ePopupShel | (name, wi dget_cl ass, parent, ...);

90

Pop-Up Widgets

name Specifies the instance name for the created shell wid-
get.

widget class Specifies the widget class pointer for the created
shell widget.

parent Specifies the parent widget. Must be of class Core or

any subclass thereof.

Specifies the variable argument list to override any
other resource specifications.

Xt VaCr eat ePopupShel | is identical in function to Xt Cr eat ePopupShel | with the
args and num_args parameters replaced by a varargs list as described in Section
2.5.1.

Creating Pop-Up Children

Once a pop-up shell is created, the single child of the pop-up shell can be created
either statically or dynamically.

At startup, an application can create the child of the pop-up shell, which is appro-
priate for pop-up children composed of a fixed set of widgets. The application can
change the state of the subparts of the pop-up child as the application state changes.
For example, if an application creates a static menu, it can call Xt Set Sensi ti ve (or,
in general, Xt Set Val ues) on any of the buttons that make up the menu. Creating the
pop-up child early means that pop-up time is minimized, especially if the application
calls Xt Real i zeW dget on the pop-up shell at startup. When the menu is needed,
all the widgets that make up the menu already exist and need only be mapped. The
menu should pop up as quickly as the X server can respond.

Alternatively, an application can postpone the creation of the child until it is needed,
which minimizes application startup time and allows the pop-up child to reconfig-
ure itself each time it is popped up. In this case, the pop-up child creation routine
might poll the application to find out if it should change the sensitivity of any of
its subparts.

Pop-up child creation does not map the pop-up, even if you create the child and call
Xt Real i zeW dget on the pop-up shell.

All shells have pop-up and pop-down callbacks, which provide the opportunity either
to make last-minute changes to a pop-up child before it is popped up or to change
it after it is popped down. Note that excessive use of pop-up callbacks can make
popping up occur more slowly.

Mapping a Pop-Up Widget
Pop-ups can be popped up through several mechanisms:

* A call to Xt Popup or Xt PopupSpr i ngLoaded.

* One of the supplied callback procedures Xt Cal | backNone, Xt Cal | backNonexcl u-
si ve, or Xt Cal | backExcl usi ve.

* The standard translation action Xt MenuPopup.

Some of these routines take an argument of type Xt Gr abKi nd, which is defined as

91

Pop-Up Widgets

typedef enum {XtGrabNone, XtGrabNonexclusive, XtGrabExclusive} XtGrabKind;

The create popup child proc procedure pointer in the shell widget instance record
is of type * Xt Cr eat ePopupChi | dPr oc.

voi d *Xt Creat ePopupChi | dProc(w);
w Specifies the shell widget being popped up.
To map a pop-up from within an application, use Xt Popup.

voi d Xt Popup(popup_shell, grab_kind);

popup _shell Specifies the shell widget.
grab kind Specifies the way in which user events should be con-
strained.

The Xt Popup function performs the following:

» Calls Xt CheckSubcl ass to ensure popup shell's class is a subclass of shel | W d-
get d ass.

* Raises the window and returns if the shell's popped up field is already Tr ue.

* Calls the callback procedures on the shell's popup callback list, specifying a point-
er to the value of grab_kind as the call data argument.

» Sets the shell popped up field to Tr ue, the shell spring loaded field to Fal se, and
the shell grab kind field from grab kind.

 If the shell's create popup child proc field is non-NULL, Xt Popup calls it with
popup _shell as the parameter.

» If grab kind is either Xt Gr abNonexcl usi ve or Xt Gr abExcl usi ve, it calls

XtAddGrab(popup shell, (grab kind == XtGrabExclusive), False)
* Calls Xt Real i zeW dget with popup shell specified.
* Calls XMapRai sed with the window of popup shell.

To map a spring-loaded pop-up from within an application, use Xt Pop-
upSpri ngLoaded.

voi d Xt PopupSpri ngLoaded(popup_shel |);
popup shell Specifies the shell widget to be popped up.

The Xt PopupSpri ngLoaded function performs exactly as Xt Popup except that it sets
the shell spring loaded field to Tr ue and always calls Xt AddGr ab with exclusive Tr ue
and spring-loaded Tr ue.

To map a pop-up from a given widget's callback list, you also can register one of the
Xt Cal | backNone, Xt Cal | backNonexcl usi ve, or Xt Cal | backExcl usi ve convenience
routines as callbacks, using the pop-up shell widget as the client data.

voi d Xt Cal | backNone(w, client _data, call _data);
w Specifies the widget.

client data Specifies the pop-up shell.

92

Pop-Up Widgets

call data Specifies the callback data argument, which is not
used by this procedure.

voi d Xt Cal | backNonexcl usi ve(w, client_data, call _data);

w Specifies the widget.
client data Specifies the pop-up shell.
call data Specifies the callback data argument, which is not

used by this procedure.

voi d Xt Cal | backExcl usi ve(w, client_data, call _data);

w Specifies the widget.
client data Specifies the pop-up shell.
call data Specifies the callback data argument, which is not

used by this procedure.

The Xt Cal | backNone, Xt Cal | backNonexcl usi ve, and Xt Cal | backExcl usi ve func-
tions call Xt Popup with the shell specified by the client data argument and
grab _kind set as the name specifies. Xt Cal | backNone, Xt Cal | backNonexcl u-
sive, and Xt Cal | backExcl usi ve specify Xt GrabNone, Xt GrabNonexcl usi ve, and
Xt GrabExcl usi ve, respectively. Each function then sets the widget that executed
the callback list to be insensitive by calling Xt Set Sensi ti ve. Using these functions
in callbacks is not required. In particular, an application must provide customized
code for callbacks that create pop-up shells dynamically or that must do more than
desensitizing the button.

Within a translation table, to pop up a menu when a key or pointer button is pressed
or when the pointer is moved into a widget, use Xt MenuPopup, or its synonym,
MenuPopup. From a translation writer's point of view, the definition for this transla-
tion action is

voi d Xt MenuPopup(shel | _nane);
shell name Specifies the name of the shell widget to pop up.

Xt MenuPopup is known to the translation manager, which registers the correspond-
ing built-in action procedure Xt MenuPopupActi on using Xt Regi st er GrabActi on
specifying owner events True, event mask ButtonPressMask | ButtonRel ease-
Mask, and pointer mode and keyboard mode G abMbdeAsync.

If Xt MenuPopup is invoked on Butt onPress, it calls Xt PopupSpri ngLoaded on the
specified shell widget. If Xt MenuPopup is invoked on KeyPress or Ent er W ndow, it
calls Xt Popup on the specified shell widget with grab_kind set to Xt G abNonexcl u-
si ve. Otherwise, the translation manager generates a warning message and ignores
the action.

Xt MenuPopup tries to find the shell by searching the widget tree starting at the
widget in which it is invoked. If it finds a shell with the specified name in the pop-
up children of that widget, it pops up the shell with the appropriate parameters.
Otherwise, it moves up the parent chain to find a pop-up child with the specified
name. If Xt MenuPopup gets to the application top-level shell widget and has not
found a matching shell, it generates a warning and returns immediately.

93

Pop-Up Widgets

Unmapping a Pop-Up Widget
Pop-ups can be popped down through several mechanisms:

e A call to Xt Popdown
* The supplied callback procedure Xt Cal | backPopdown
* The standard translation action Xt MenuPopdown

To unmap a pop-up from within an application, use Xt Popdown.

voi d Xt Popdown(popup_shel I);

popup _shell Specifies the shell widget to pop down.
The Xt Popdown function performs the following:

* Calls Xt CheckSubcl ass to ensure popup shell's class is a subclass of shel | W d-
get d ass.

* Checks that the popped up field of popup shell is Tr ue; otherwise, it returns im-
mediately.

* Unmaps popup _shell's window and, if override redirect is Fal se, sends a synthet-
ic UnmapNot i f y event as specified by the Inter-Client Communication Conventions
Manual.

* If popup shell's grab kind is either Xt G abNonexcl usi ve or Xt G- abExcl usi ve, it
calls Xt RenmoveGr ab.

» Sets popup shell's popped up field to Fal se.

» Calls the callback procedures on the shell's popdown_callback list, specifying a
pointer to the value of the shell's grab kind field as the call data argument.

To pop down a pop-up from a callback list, you may use the callback Xt Cal | back-
Popdown.

voi d Xt Cal | backPopdown(w, client_data, call_data);

w Specifies the widget.
client data Specifies a pointer to the Xt Popdownl D structure.
call data Specifies the callback data argument, which is not

used by this procedure.

The Xt Cal | backPopdown function casts the client data parameter to a pointer of
type Xt Popdown| D.

typedef struct {

Widget shell widget;

Widget enable widget;

} XtPopdownIDRec, *XtPopdownlID;

The shell widget is the pop-up shell to pop down, and the enable widget is usually
the widget that was used to pop it up in one of the pop-up callback convenience
procedures.

Xt Cal | backPopdown calls Xt Popdown with the specified shell widget and then calls
Xt Set Sensi ti ve to resensitize enable widget.

94

Pop-Up Widgets

Within a translation table, to pop down a spring-loaded menu when a key or pointer
button is released or when the pointer is moved into a widget, use Xt MenuPopdown or
its synonym, MenuPopdown. From a translation writer's point of view, the definition
for this translation action is

voi d Xt MenuPopdown(shel | _nane);
shell name Specifies the name of the shell widget to pop down.

If a shell name is not given, Xt MenuPopdown calls Xt Popdown with the widget for
which the translation is specified. If shell name is specified in the translation table,
Xt MenuPopdown tries to find the shell by looking up the widget tree starting at the
widget in which it is invoked. If it finds a shell with the specified name in the pop-
up children of that widget, it pops down the shell; otherwise, it moves up the parent
chain to find a pop-up child with the specified name. If Xt MenuPopdown gets to the
application top-level shell widget and cannot find a matching shell, it generates a
warning and returns immediately.

95

Chapter 6. Geometry Management

A widget does not directly control its size and location; rather, its parent is respon-
sible for controlling them. Although the position of children is usually left up to their
parent, the widgets themselves often have the best idea of their optimal sizes and,
possibly, preferred locations.

To resolve physical layout conflicts between sibling widgets and between a widget
and its parent, the Intrinsics provide the geometry management mechanism. Almost
all composite widgets have a geometry manager specified in the geometry manager
field in the widget class record that is responsible for the size, position, and stacking
order of the widget's children. The only exception is fixed boxes, which create their
children themselves and can ensure that their children will never make a geometry
request.

Initiating Geometry Changes

Parents, children, and clients each initiate geometry changes differently. Because
a parent has absolute control of its children's geometry, it changes the geome-
try directly by calling Xt Move\ %N dget , Xt Resi zeW dget , or Xt Confi gur eW dget . A
child must ask its parent for a geometry change by calling Xt MakeGeonet r yRequest
or Xt MakeResi zeRequest . An application or other client code initiates a geometry
change by calling Xt Set Val ues on the appropriate geometry fields, thereby giving
the widget the opportunity to modify or reject the client request before it gets prop-
agated to the parent and the opportunity to respond appropriately to the parent's

reply.

When a widget that needs to change its size, position, border width, or stacking
depth asks its parent's geometry manager to make the desired changes, the geom-
etry manager can allow the request, disallow the request, or suggest a compromise.

When the geometry manager is asked to change the geometry of a child, the geom-
etry manager may also rearrange and resize any or all of the other children that it
controls. The geometry manager can move children around freely using Xt MoveW d-
get . When it resizes a child (that is, changes the width, height, or border width)
other than the one making the request, it should do so by calling Xt Resi zeW dget .
The requesting child may be given special treatment; see the section called “Child
Geometry Management: The geometry manager Procedure”. It can simultaneously
move and resize a child with a single call to Xt Confi gur eW dget .

Often, geometry managers find that they can satisfy a request only if they can re-
configure a widget that they are not in control of; in particular, the composite wid-
get may want to change its own size. In this case, the geometry manager makes a
request to its parent's geometry manager. Geometry requests can cascade this way
to arbitrary depth.

Because such cascaded arbitration of widget geometry can involve extended nego-
tiation, windows are not actually allocated to widgets at application startup until all
widgets are satisfied with their geometry; see the section called “Creating Widgets”
and the section called “Realizing Widgets”.

96

Geometry Management

Note

1. The Intrinsics treatment of stacking requests is deficient in several areas.
Stacking requests for unrealized widgets are granted but will have no ef-
fect. In addition, there is no way to do an Xt Set Val ues that will generate
a stacking geometry request.

2. After a successful geometry request (one that returned Xt Geonet r yYes),
a widget does not know whether its resize procedure has been called.
Widgets should have resize procedures that can be called more than once
without ill effects.

General Geometry Manager Requests

When making a geometry request, the child specifies an Xt W dget Geonet ry struc-
ture.

typedef unsigned long XtGeometryMask;
typedef struct {

XtGeometryMask request mode;
Position x, y;

Dimension width, height;

Dimension border width;

Widget sibling;

int stack mode;

} XtWidgetGeometry;

To make a general geometry manager request from a widget, use Xt MakeGeone-
t ryRequest .

Xt Geonet ryResul t Xt MakeGeonet r yRequest (w, request, reply_return);

w Specifies the widget making the request. Must be of
class RectODbj or any subclass thereof.

request Specifies the desired widget geometry (size, position,
border width, and stacking order).

reply return Returns the allowed widget size, or may be NULL if
the requesting widget is not interested in handling
Xt Geonret r yAl nost .

Depending on the condition, Xt MakeGeonet r yRequest performs the following:

« If the widget is unmanaged or the widget's parent is not realized, it makes the
changes and returns Xt Geonet r yYes.

« If the parent's class is not a subclass of conposi t eW dget Cl ass or the parent's
geometry manager field is NULL, it issues an error.

 If the widget's being destroyed field is Tr ue, it returns Xt Geonet r yNo.

» If the widget x, y, width, height, and border width fields are all equal to the
requested values, it returns Xt GeonetryYes; otherwise, it calls the parent's
geometry manager procedure with the given parameters.

» If the parent's geometry manager returns Xt Geonet r yYes and if Xt CWQuer yOnl y
is not set in request->request mode and if the widget is realized, Xt MakeGeone-

97

Geometry Management

tryRequest calls the XConf i gur eW ndowXlib function to reconfigure the widget's
window (set its size, location, and stacking order as appropriate).

» If the geometry manager returns Xt Georet r yDone, the change has been approved
and actually has been done. In this case, Xt MakeGeonet r yRequest does no config-
uring and returns Xt Geonet r yYes. Xt MakeGeonet r yRequest never returns Xt Ge-
omet r yDone.

e Otherwise, Xt MakeGeonetryRequest just returns the resulting value from the
parent's geometry manager.

Children of primitive widgets are always unmanaged; therefore, Xt MakeGeone-
tryRequest always returns Xt Geonet ryYes when called by a child of a primitive
widget.

The return codes from geometry managers are

typedef enum {
XtGeometryYes,
XtGeometryNo,
XtGeometryAlmost,
XtGeometryDone

} XtGeometryResult;

The request_mode definitions are from <X11/ X. h>.

#define CWK (1<<0)
#define CWY (1<<1)
#define CWN dt h (1<<2)
#define CWHei ght (1<<3)
#define CWBor der W dt h (1<<4)
#define CW&i bl i ng (1<<5)
#define CWBt ackMbde (1<<6)

The Intrinsics also support the following value.
#define Xt CWueryOnl y (1<<7)

Xt CWuer yOnl y indicates that the corresponding geometry request is only a query
as to what would happen if this geometry request were made and that no widgets
should actually be changed.

Xt MakeGeonet ryRequest, like the XConfigureW ndow Xlib function, uses
request_ mode to determine which fields in the Xt W dget Geonetry structure the
caller wants to specify.

The stack_mode definitions are from <X11/ X. h>:

#define Above 0
#define Bel ow 1
#define Topl f 2
#define Bott ol f 3
#define Opposite 4

98

Geometry Management

The Intrinsics also support the following value.
#define Xt SMDont Change 5
For definition and behavior of Above, Bel ow, Topl f, Bot t o f, and Opposi te, BLAH

in Xlib — C Language X Interface.. Xt SMDont Change indicates that the widget wants
its current stacking order preserved.

Resize Requests

To make a simple resize request from a widget, you can use Xt MakeResi zeRequest
as an alternative to Xt MakeGeonet r yRequest .

typedef Xt GeonetryResult Xt MakeResi zeRequest(w, width, width return);

w Specifies the widget making the request. Must be of
class RectODbj or any subclass thereof.

width Specify the desired widget width and height.

height

width _return Return the allowed widget width and height.

height return

The Xt MakeResi zeRequest function, a simple interface to Xt MakeGeonet r yRequest,
creates an Xt W dget Geonet r y structure and specifies that width and height should
change by setting request mode to CWN dt h | CWHei ght . The geometry manager is
free to modify any of the other window attributes (position or stacking order) to sat-
isfy the resize request. If the return value is Xt Geonet r yAl nost, width return and
height return contain a compromise width and height. If these are acceptable, the
widget should immediately call Xt MakeResi zeRequest again and request that the
compromise width and height be applied. If the widget is not interested in Xt Geom
et r yAl nost replies, it can pass NULL for width return and height return.

Potential Geometry Changes

Sometimes a geometry manager cannot respond to a geometry request from a child
without first making a geometry request to the widget's own parent (the original
requestor's grandparent). If the request to the grandparent would allow the parent
to satisfy the original request, the geometry manager can make the intermediate
geometry request as if it were the originator. On the other hand, if the geometry
manager already has determined that the original request cannot be completely sat-
isfied (for example, if it always denies position changes), it needs to tell the grand-
parent to respond to the intermediate request without actually changing the geom-
etry because it does not know if the child will accept the compromise. To accomplish
this, the geometry manager uses Xt CWQuer yOnl y in the intermediate request.

When Xt CWuer yOnl y is used, the geometry manager needs to cache enough in-
formation to exactly reconstruct the intermediate request. If the grandparent's re-
sponse to the intermediate query was Xt Geonet r yAl nost, the geometry manager
needs to cache the entire reply geometry in the event the child accepts the parent's
compromise.

99

Geometry Management

If the grandparent's response was Xt Geonet r yAl nost, it may also be necessary to
cache the entire reply geometry from the grandparent when Xt CWQuer yOnl y is not
used. If the geometry manager is still able to satisfy the original request, it may
immediately accept the grandparent's compromise and then act on the child's re-
quest. If the grandparent's compromise geometry is insufficient to allow the child's
request and if the geometry manager is willing to offer a different compromise to
the child, the grandparent's compromise should not be accepted until the child has
accepted the new compromise.

Note that a compromise geometry returned with Xt Geonet r yAl nost is guaranteed
only for the next call to the same widget; therefore, a cache of size 1 is sufficient.

Child Geometry Management: The
geometry _manager Procedure

The geometry manager procedure pointer in a composite widget class is of type
* Xt Geonet r yHandl er .

Xt GeonetryResul t * Xt Geonret ryHandl er (w, request, geonetry_return);

w Passes the widget making the request.
request Passes the new geometry the child desires.
geometry return Passes a geometry structure in which the geometry

manager may store a compromise.
A class can inherit its superclass's geometry manager during class initialization.

A bit set to zero in the request's request mode field means that the child widget
does not care about the value of the corresponding field, so the geometry manager
can change this field as it wishes. A bit set to 1 means that the child wants that
geometry element set to the value in the corresponding field.

If the geometry manager can satisfy all changes requested and if Xt CWQuer yOnl y
is not specified, it updates the widget's x, y, width, height, and border width fields
appropriately. Then, it returns Xt Geonet ryYes, and the values pointed to by the
geometry return argument are undefined. The widget's window is moved and re-
sized automatically by Xt MakeGeonet r yRequest .

Homogeneous composite widgets often find it convenient to treat the widget making
the request the same as any other widget, including reconfiguring it using Xt Con-
figureW dget or Xt Resi zeW dget as part of its layout process, unless Xt CWuer yOn-
| y is specified. If it does this, it should return Xt Geonet r yDone to inform Xt MakeGe-
onet r yRequest that it does not need to do the configuration itself.

Note

To remain compatible with layout techniques used in older widgets (before
Xt Geonet r yDone was added to the Intrinsics), a geometry manager should
avoid using Xt Resi zeW dget or Xt Conf i gur eW dget on the child making the
request because the layout process of the child may be in an intermediate
state in which it is not prepared to handle a call to its resize procedure. A
self-contained widget set may choose this alternative geometry management

100

Geometry Management

scheme, however, provided that it clearly warns widget developers of the
compatibility consequences.

Although Xt MakeGeonet r yRequest resizes the widget's window (if the geometry
manager returns Xt Geonet ryYes), it does not call the widget class's resize proce-
dure. The requesting widget must perform whatever resizing calculations are need-
ed explicitly.

If the geometry manager disallows the request, the widget cannot change its geom-
etry. The values pointed to by geometry return are undefined, and the geometry
manager returns Xt Geonet r yNo.

Sometimes the geometry manager cannot satisfy the request exactly but may be
able to satisfy a similar request. That is, it could satisfy only a subset of the re-
quests (for example, size but not position) or a lesser request (for example, it cannot
make the child as big as the request but it can make the child bigger than its cur-
rent size). In such cases, the geometry manager fills in the structure pointed to by
geometry return with the actual changes it is willing to make, including an appropri-
ate request_ mode mask, and returns Xt Geonet r yAl nost . If a bit in geometry return-
>request mode is zero, the geometry manager agrees not to change the corre-
sponding value if geometry return is used immediately in a new request. If a bit is
1, the geometry manager does change that element to the corresponding value in
geometry return. More bits may be set in geometry return->request mode than in
the original request if the geometry manager intends to change other fields should
the child accept the compromise.

When Xt Geonet r yAl nost is returned, the widget must decide if the compromise
suggested in geometry return is acceptable. If it is, the widget must not change its
geometry directly; rather, it must make another call to Xt MakeGeonet r yRequest .

If the next geometry request from this child uses the geometry return values filled
in by the geometry manager with an Xt Geonet r yAl nost return and if there have
been no intervening geometry requests on either its parent or any of its other chil-
dren, the geometry manager must grant the request, if possible. That is, if the child
asks immediately with the returned geometry, it should get an answer of Xt Geone-
tryYes. However, dynamic behavior in the user's window manager may affect the
final outcome.

To return Xt GeonetryYes, the geometry manager frequently rearranges the posi-
tion of other managed children by calling Xt MoveW dget . However, a few geome-
try managers may sometimes change the size of other managed children by calling
Xt Resi zeW dget or Xt Confi gur eW dget . If Xt CWQuer yOnl y is specified, the geom-
etry manager must return data describing how it would react to this geometry re-
quest without actually moving or resizing any widgets.

Geometry managers must not assume that the request and geometry return argu-
ments point to independent storage. The caller is permitted to use the same field
for both, and the geometry manager must allocate its own temporary storage, if
necessary.

Widget Placement and Sizing

To move a sibling widget of the child making the geometry request, the parent uses
Xt MoveW dget .

101

Geometry Management

voi d Xt MoveW dget (w, X, y);

w Specifies the widget. Must be of class RectObj or any subclass
thereof.

X

Y Specify the new widget x and y coordinates.

The Xt MoveW dget function returns immediately if the specified geometry fields are
the same as the old values. Otherwise, Xt MoveW dget writes the new x and y values
into the object and, if the object is a widget and is realized, issues an Xlib XMboveW n-
dow call on the widget's window.

To resize a sibling widget of the child making the geometry request, the parent uses
Xt Resi zeW dget .

voi d Xt Resi zeW dget (w, wi dth, height, border_w dth);

w Specifies the widget. Must be of class RectObj or any
subclass thereof.

width

height

border width Specify the new widget size.

The Xt Resi zeW dget function returns immediately if the specified geometry fields
are the same as the old values. Otherwise, Xt Resi zeW dget writes the new width,
height, and border width values into the object and, if the object is a widget and is
realized, issues an XConf i gur eW ndow call on the widget's window.

If the new width or height is different from the old values, Xt Resi zeW dget calls
the object's resize procedure to notify it of the size change.

To move and resize the sibling widget of the child making the geometry request,
the parent uses Xt Conf i gur eW dget .

voi d Xt ConfigureWdget(w, x, y, width, height, border_w dth);

w Specifies the widget. Must be of class RectObj or any
subclass thereof.

X

y Specify the new widget x and y coordinates.

width

height

border width Specify the new widget size.

The Xt Conf i gur eW dget function returns immediately if the specified new geometry
fields are all equal to the current values. Otherwise, Xt Conf i gur eW dget writes the

102

Geometry Management

new x, y, width, height, and border width values into the object and, if the object
is a widget and is realized, makes an Xlib XConf i gur eW ndow call on the widget's
window.

If the new width or height is different from its old value, Xt Confi gur eW dget calls
the object's resize procedure to notify it of the size change; otherwise, it simply
returns.

To resize a child widget that already has the new values of its width, height, and
border width, the parent uses Xt Resi zeW ndow.

voi d Xt Resi zeW ndow(w) ;
w Specifies the widget. Must be of class Core or any subclass thereof.

The Xt Resi zeW ndow function calls the XConfi gur eW ndow Xlib function to make
the window of the specified widget match its width, height, and border width. This
request is done unconditionally because there is no inexpensive way to tell if these
values match the current values. Note that the widget's resize procedure is not
called.

There are very few times to use Xt Resi zeW ndow; instead, the parent should use
Xt Resi zeW dget .

Preferred Geometry

Some parents may be willing to adjust their layouts to accommodate the preferred
geometries of their children. They can use Xt Quer yGeonet ry to obtain the preferred
geometry and, as they see fit, can use or ignore any portion of the response.

To query a child widget's preferred geometry, use Xt Quer yGeonetry.
Xt Geonet ryResul t Xt QueryCGeonetry(w, intended, preferred return);

w Specifies the widget. Must be of class RectObj or any
subclass thereof.

intended Specifies the new geometry the parent plans to give
to the child, or NULL.

preferred return Returns the child widget's preferred geometry.

To discover a child's preferred geometry, the child's parent stores the new geometry
in the corresponding fields of the intended structure, sets the corresponding bits
in intended.request mode, and calls Xt Quer yGeonet ry. The parent should set only
those fields that are important to it so that the child can determine whether it may
be able to attempt changes to other fields.

Xt QueryGeonetry clears all bits in the preferred return->request mode field
and checks the query geometry field of the specified widget's class record. If
query geometry is not NULL, Xt Quer yGeonetry calls the query geometry proce-
dure and passes as arguments the specified widget, intended, and preferred return
structures. If the intended argument is NULL, Xt Quer yGeonet ry replaces it with a
pointer to an Xt W dget Geonet ry structure with request mode equal to zero before
calling the query geometry procedure.

103

Geometry Management

Note

If Xt Quer yGeonet ry is called from within a geometry manager procedure for
the widget that issued Xt MakeGeonet r yRequest or Xt MakeResi zeRequest,
the results are not guaranteed to be consistent with the requested changes.
The change request passed to the geometry manager takes precedence over
the preferred geometry.

The query geometry procedure pointer is of type * Xt Geonet r yHandl er .

t ypedef Xt Geonet ryResul t (* Xt Geonet ryHandl er) (w, request,

preferred_return);

w Passes the child widget whose preferred geometry is
required.

request Passes the geometry changes that the parent plans
to make.

preferred return Passes a structure in which the child returns its pre-

ferred geometry.

The query geometry procedure is expected to examine the bits set in re-
quest->request_mode, evaluate the preferred geometry of the widget, and store the
result in preferred return (setting the bits in preferred return->request mode cor-
responding to those geometry fields that it cares about). If the proposed geometry
change is acceptable without modification, the query geometry procedure should
return Xt GeonetryYes. If at least one field in preferred return with a bit set in
preferred return->request mode is different from the corresponding field in re-
quest or if a bit was set in preferred return->request mode that was not set in
the request, the query geometry procedure should return Xt Geonet r yAl nost . If the
preferred geometry is identical to the current geometry, the query geometry pro-
cedure should return Xt Geonet r yNo.

Note

The query geometry procedure may assume that no Xt MakeResi zeRequest
or Xt MakeGeonet r yRequest is in progress for the specified widget; that is, it
is not required to construct a reply consistent with the requested geometry
if such a request were actually outstanding.

After calling the query geometry procedure or if the query geometry field is NULL,
Xt Quer yGeonet ry examines all the unset bits in preferred return->request mode
and sets the corresponding fields in preferred return to the current values from
the widget instance. If CWst ackMbde is not set, the stack_mode field is set to Xt SM
Dont Change. Xt Quer yGeonet ry returns the value returned by the query geometry
procedure or Xt Geonet r yYes if the query geometry field is NULL.

Therefore, the caller can interpret a return of Xt Geonet ryYes as not needing to
evaluate the contents of the reply and, more important, not needing to modify its
layout plans. A return of Xt Geonet r yAl nbst means either that both the parent and
the child expressed interest in at least one common field and the child's preference
does not match the parent's intentions or that the child expressed interest in a
field that the parent might need to consider. A return value of Xt Geonret r yNo means
that both the parent and the child expressed interest in a field and that the child

104

Geometry Management

suggests that the field's current value in the widget instance is its preferred value.
In addition, whether or not the caller ignores the return value or the reply mask,
it is guaranteed that the preferred return structure contains complete geometry
information for the child.

Parents are expected to call Xt Quer yGeonet ry in their layout routine and wherever
else the information is significant after change managed has been called. The first
time it is invoked, the changed managed procedure may assume that the child's
current geometry is its preferred geometry. Thus, the child is still responsible for
storing values into its own geometry during its initialize procedure.

Size Change Management: The resize Proce-
dure

A child can be resized by its parent at any time. Widgets usually need to know when
they have changed size so that they can lay out their displayed data again to match
the new size. When a parent resizes a child, it calls Xt Resi zeW dget , which updates
the geometry fields in the widget, configures the window if the widget is realized,
and calls the child's resize procedure to notify the child. The resize procedure point-
er is of type Xt W dget Pr oc.

If a class need not recalculate anything when a widget is resized, it can specify
NULL for the resize field in its class record. This is an unusual case and should
occur only for widgets with very trivial display semantics. The resize procedure
takes a widget as its only argument. The x, y, width, height, and border width fields
of the widget contain the new values. The resize procedure should recalculate the
layout of internal data as needed. (For example, a centered Label in a window that
changes size should recalculate the starting position of the text.) The widget must
obey resize as a command and must not treat it as a request. A widget must not issue
an Xt MakeGeonet r yRequest or Xt MakeResi zeRequest call from its resize procedure.

105

Chapter 7. Event Management

While Xlib allows the reading and processing of events anywhere in an application,
widgets in the X Toolkit neither directly read events nor grab the server or pointer.
Widgets register procedures that are to be called when an event or class of events
occurs in that widget.

A typical application consists of startup code followed by an event loop that reads
events and dispatches them by calling the procedures that widgets have registered.
The default event loop provided by the Intrinsics is Xt AppMai nLoop.

The event manager is a collection of functions to perform the following tasks:

* Add or remove event sources other than X server events (in particular, timer in-
terrupts, file input, or POSIX signals).

* Query the status of event sources.

* Add or remove procedures to be called when an event occurs for a particular
widget.

* Enable and disable the dispatching of user-initiated events (keyboard and pointer
events) for a particular widget.

* Constrain the dispatching of events to a cascade of pop-up widgets.

» Register procedures to be called when specific events arrive.

* Register procedures to be called when the Intrinsics will block.

* Enable safe operation in a multi-threaded environment.

Most widgets do not need to call any of the event handler functions explicitly.
The normal interface to X events is through the higher-level translation manager,
which maps sequences of X events, with modifiers, into procedure calls. Applica-
tions rarely use any of the event manager routines besides Xt AppMai nLoop.

Adding and Deleting Additional Event Sources

While most applications are driven only by X events, some applications need to
incorporate other sources of input into the Intrinsics event-handling mechanism.
The event manager provides routines to integrate notification of timer events and
file data pending into this mechanism.

The next section describes functions that provide input gathering from files. The

application registers the files with the Intrinsics read routine. When input is pending
on one of the files, the registered callback procedures are invoked.

Adding and Removing Input Sources

To register a new file as an input source for a given application context, use Xt Ap-

pAddl nput .

Xt | nputld Xt AppAddl nput (app_cont ext, source, condi tion, proc,

client_data);

app_context Specifies the application context that identifies the ap-
plication.

106

Event Management

source Specifies the source file descriptor on a POSIX-based
system or other operating-system-dependent device
specification.

condition Specifies the mask that indicates a read, write, or ex-

ception condition or some other operating-system-de-
pendent condition.

proc Specifies the procedure to be called when the condi-
tion is found.

client data Specifies an argument passed to the specified proce-
dure when it is called.

The Xt AppAddI nput function registers with the Intrinsics read routine a new source
of events, which is usually file input but can also be file output. Note that file should
be loosely interpreted to mean any sink or source of data. Xt AppAddl nput also spec-
ifies the conditions under which the source can generate events. When an event is
pending on this source, the callback procedure is called.

The legal values for the condition argument are operating-system-dependent. On
a POSIX-based system, source is a file number and the condition is some union of
the following:

XtInputReadMask Specifies that proc is to be called when source has
data to be read.

XtInputWriteMask Specifies that proc is to be called when source is
ready for writing.

XtInputExceptMask Specifies that proc is to be called when source has
exception data.

Callback procedure pointers used to handle file events are of type (* Xt | nput Cal | -
backProc) .

typedef void (*XtlnputCallbackProc)(client_data, source, id);

client data Passes the client data argument that was registered
for this procedure in Xt App\ %Addl nput .

source Passes the source file descriptor generating the event.

id Passes the id returned from the corresponding Xt Ap-
pAddl nput call.

See the section called “Using the Intrinsics in a Multi-Threaded Environment” for
information regarding the use of Xt AppAddl nput in multiple threads.

To discontinue a source of input, use Xt Renovel nput .
voi d Xt Renovel nput (i d);

id Specifies the id returned from the corresponding Xt AppAddI nput
call.

The Xt Renovel nput function causes the Intrinsics read routine to stop watching for
events from the file source specified by id.

107

Event Management

See the section called “Using the Intrinsics in a Multi-Threaded Environment” for
information regarding the use of Xt Renovel nput in multiple threads.

Adding and Removing Blocking Notifications

Occasionally it is desirable for an application to receive notification when the In-
trinsics event manager detects no pending input from file sources and no pending
input from X server event sources and is about to block in an operating system call.

To register a hook that is called immediately prior to event blocking, use Xt AppAd-
dBl ockHook.

Xt Bl ockHookl d Xt AppAddBlI ockHook(app_context, proc, client _data);

app_context Specifies the application context that identifies the ap-
plication.

proc Specifies the procedure to be called before blocking.

client data Specifies an argument passed to the specified proce-

dure when it is called.

The Xt AppAddBl ockHook function registers the specified procedure and returns an
identifier for it. The hook procedure proc is called at any time in the future when
the Intrinsics are about to block pending some input.

The procedure pointers used to provide notification of event blocking are of type
* Xt Bl ockHookPr oc.

voi d *Xt Bl ockHookProc(client _data);

client data Passes the client data argument that was registered
for this procedure in Xt App\ ¥AddBl ockHook.

To discontinue the use of a procedure for blocking notification, use Xt RenoveBl ock-
Hook.

voi d Xt RemoveBl ockHook(i d);

id Specifies the identifier returned from the corresponding call to
Xt AppAddBI ockHook.

The Xt RenpbveBl ockHook function removes the specified procedure from the list of
procedures that are called by the Intrinsics read routine before blocking on event
sources.

Adding and Removing Timeouts

The timeout facility notifies the application or the widget through a callback proce-
dure that a specified time interval has elapsed. Timeout values are uniquely identi-
fied by an interval id.

To register a timeout callback, use Xt AppAddTi neQut .

XtInterval I d Xt AppAddTi neQut (app_context, interval, proc, client_data);

108

Event Management

app_context Specifies the application context for which the timer
is to be set.

interval Specifies the time interval in milliseconds.

proc Specifies the procedure to be called when the time ex-
pires.

client data Specifies an argument passed to the specified proce-

dure when it is called.

The Xt AppAddTi neQut function creates a timeout and returns an identifier for it.
The timeout value is set to interval. The callback procedure proc is called when
Xt AppNext Event or Xt AppPr ocessEvent is next called after the time interval elaps-
es, and then the timeout is removed.

Callback procedure pointers used with timeouts are of type * Xt Ti mer Cal | backPr oc.
void *Xt Ti mer Cal | backProc(client_data, timer);

client data Passes the client data argument that was registered
for this procedure in Xt App\ ¥AddTi neQut .

timer Passes the id returned from the corresponding Xt Ap-
pAddTi neQut call.

See the section called “Using the Intrinsics in a Multi-Threaded Environment” for
information regarding the use of Xt AppAddTi neCQut in multiple threads.

To clear a timeout value, use Xt RenoveTi neCut .
voi d Xt RemoveTi meQut (timer);
timer Specifies the id for the timeout request to be cleared.

The Xt RenoveTi neCut function removes the pending timeout. Note that timeouts
are automatically removed once they trigger.

Please refer to Section 7.12 for information regarding the use of Xt RenoveTi neQut
in multiple threads.

Adding and Removing Signal Callbacks

The signal facility notifies the application or the widget through a callback proce-
dure that a signal or other external asynchronous event has occurred. The regis-
tered callback procedures are uniquely identified by a signal id.

Prior to establishing a signal handler, the application or widget should call Xt Ap-
pAddSi gnal and store the resulting identifier in a place accessible to the signal han-
dler. When a signal arrives, the signal handler should call Xt Not i ceSi gnal to notify
the Intrinsics that a signal has occured. To register a signal callback use Xt AppAd-
dSi gnal .

Xt Si gnal I d Xt AppAddSi gnal (app_context, proc, client_data);

app_context Specifies the application context that identifies the ap-
plication.

109

Event Management

proc Specifies the procedure to be called when the signal
is noticed.
client data Specifies an argument passed to the specified proce-

dure when it is called.

The callback procedure pointers used to handle signal events are of type (* Xt Si g-
nal Cal | backProc).

typedef void (*XtSignal Call backProc)(client _data, id);

client data Passes the client data argument that was registered
for this procedure in Xt AppAddSi gnal .

id Passes the id returned from the corresponding Xt Ap-
pAddSi gnal call.

To notify the Intrinsics that a signal has occured, use Xt Not i ceSi gnal .
voi d Xt NoticeSignal (id);

id Specifies the id returned from the corresponding Xt AppAddSi g-
nal call.

On a POSIX-based system, Xt Not i ceSi gnal is the only Intrinsics function that can
safely be called from a signal handler. If Xt Not i ceSi gnal is invoked multiple times
before the Intrinsics are able to invoke the registered callback, the callback is
only called once. Logically, the Intrinsics maintain " pending' flag for each regis-
tered callback. This flag is initially Fal se and is set to True by Xt Noti ceSi gnal .
When Xt AppNext Event or Xt AppPr ocessEvent (with a mask including Xt | MSi gnal)
is called, all registered callbacks with " "pending" True are invoked and the flags
are reset to Fal se.

If the signal handler wants to track how many times the signal has been raised,
it can keep its own private counter. Typically the handler would not do any other
work; the callback does the actual processing for the signal. The Intrinsics never
block signals from being raised, so if a given signal can be raised multiple times
before the Intrinsics can invoke the callback for that signal, the callback must be
designed to deal with this. In another case, a signal might be raised just after the
Intrinsics sets the pending flag to Fal se but before the callback can get control,
in which case the pending flag will still be Tr ue after the callback returns, and the
Intrinsics will invoke the callback again, even though all of the signal raises have
been handled. The callback must also be prepared to handle this case.

To remove a registered signal callback, call Xt RenoveSi gnal .
voi d Xt RenoveSi gnal (i d);

id Specifies the id returned by the corresponding call to Xt AppAd-
dSi gnal .

The client should typically disable the source of the signal before calling
Xt RenpveSi gnal . If the signal could have been raised again before the source was
disabled and the client wants to process it, then after disabling the source but be-
fore calling Xt RenoveSi gnal the client can test for signals with Xt AppPendi ng and
process them by calling Xt AppPr ocessEvent with the mask Xt | MSi gnal .

110

Event Management

Constraining Events to a Cascade of Widgets

Modal widgets are widgets that, except for the input directed to them, lock out user
input to the application.

When a modal menu or modal dialog box is popped up using Xt Popup, user events
(keyboard and pointer events) that occur outside the modal widget should be deliv-
ered to the modal widget or ignored. In no case will user events be delivered to a
widget outside the modal widget.

Menus can pop up submenus, and dialog boxes can pop up further dialog boxes to
create a pop-up cascade. In this case, user events may be delivered to one of several
modal widgets in the cascade.

Display-related events should be delivered outside the modal cascade so that expo-
sure events and the like keep the application's display up-to-date. Any event that
occurs within the cascade is delivered as usual. The user events delivered to the
most recent spring-loaded shell in the cascade when they occur outside the cascade
are called remap events and are KeyPr ess, KeyRel ease, But t onPr ess, and But t on-
Rel ease. The user events ignored when they occur outside the cascade are Mot i on-
Noti fy and Ent er Not i f y. All other events are delivered normally. In particular, note
that this is one way in which widgets can receive LeaveNot i f y events without first
receiving Ent er Not i fy events; they should be prepared to deal with this, typically
by ignoring any unmatched LeaveNoti fy events.

Xt Popup uses the Xt AddG ab and Xt RenoveG ab functions to constrain user events
to a modal cascade and subsequently to remove a grab when the modal widget is
popped down.

To constrain or redirect user input to a modal widget, use Xt AddGr ab.
voi d Xt AddG ab(w, exclusive, spring_ | oaded);

w Specifies the widget to add to the modal cascade.
Must be of class Core or any subclass thereof.

exclusive Specifies whether user events should be dispatched
exclusively to this widget or also to previous widgets
in the cascade.

spring loaded Specifies whether this widget was popped up be-
cause the user pressed a pointer button.

The Xt AddGr ab function appends the widget to the modal cascade and checks that
exclusive is Tr ue if spring loaded is True. If this condition is not met, Xt AddG ab
generates a warning message.

The modal cascade is used by Xt Di spat chEvent when it tries to dispatch a user
event. When at least one modal widget is in the widget cascade, Xt Di spat chEvent
first determines if the event should be delivered. It starts at the most recent cascade
entry and follows the cascade up to and including the most recent cascade entry
added with the exclusive parameter Tr ue.

This subset of the modal cascade along with all descendants of these widgets com-
prise the active subset. User events that occur outside the widgets in this subset

111

Event Management

are ignored or remapped. Modal menus with submenus generally add a submenu
widget to the cascade with exclusive Fal se. Modal dialog boxes that need to restrict
user input to the most deeply nested dialog box add a subdialog widget to the cas-
cade with exclusive Tr ue. User events that occur within the active subset are deliv-
ered to the appropriate widget, which is usually a child or further descendant of
the modal widget.

Regardless of where in the application they occur, remap events are always deliv-
ered to the most recent widget in the active subset of the cascade registered with
spring loaded True, if any such widget exists. If the event occurred in the active
subset of the cascade but outside the spring-loaded widget, it is delivered normally
before being delivered also to the spring-loaded widget. Regardless of where it is
dispatched, the Intrinsics do not modify the contents of the event.

To remove the redirection of user input to a modal widget, use Xt RenoveG- ab.
voi d Xt RenmoveG ab(w);
w Specifies the widget to remove from the modal cascade.

The Xt RenpveGr ab function removes widgets from the modal cascade starting at the
most recent widget up to and including the specified widget. It issues a warning if
the specified widget is not on the modal cascade.

Requesting Key and Button Grabs

The Intrinsics provide a set of key and button grab interfaces that are parallel to
those provided by Xlib and that allow the Intrinsics to modify event dispatching
when necessary. X Toolkit applications and widgets that need to passively grab keys
or buttons or actively grab the keyboard or pointer should use the following Intrin-
sics routines rather than the corresponding Xlib routines.

To passively grab a single key of the keyboard, use Xt G abKey.

voi d Xt GrabKey(w dget, keycode, nodifiers, owner_events, pointer_node);

widget Specifies the widget in whose window the key is to
be grabbed. Must be of class Core or any subclass
thereof.

keycode , modi- Specify arguments to XGr abKey; see Section 12.2 in

fiers , owner events Xlib — C Language X Interface.

, pointer mode ,
keyboard mode

Xt Gr abKey calls XG abKey specifying the widget's window as the grab window if
the widget is realized. The remaining arguments are exactly as for XGr abKey. If
the widget is not realized, or is later unrealized, the call to XGr abKey is performed
(again) when the widget is realized and its window becomes mapped. In the future,
if Xt Di spat chEvent is called with a KeyPr ess event matching the specified keycode
and modifiers (which may be AnyKey or AnyModi fi er, respectively) for the widget's
window, the Intrinsics will call Xt Ungr abKeyboar d with the timestamp from the Key-
Pr ess event if either of the following conditions is true:

* There is a modal cascade and the widget is not in the active subset of the cascade
and the keyboard was not previously grabbed, or

112

Event Management

* XFi |l ter Event returns Tr ue.
To cancel a passive key grab, use Xt Ungr abKey.

voi d Xt Ungr abKey(w dget, keycode, nodifiers);

widget Specifies the widget in whose window the key was
grabbed.
keycode , modifiers Specify arguments to XUngr abKey; see Section 12.2 in

Xlib — C Language X Interface.

The Xt Ungr abKey procedure calls XUngr abKey specifying the widget's window as
the ungrab window if the widget is realized. The remaining arguments are exactly
as for XUngr abKey. If the widget is not realized, Xt Ungr abKey removes a deferred
Xt G abKey request, if any, for the specified widget, keycode, and modifiers.

To actively grab the keyboard, use Xt G- abKeyboar d.
i nt Xt G abKeyboard(w dget, owner_events, pointer_node, tine);

widget Specifies the widget for whose window the keyboard
is to be grabbed. Must be of class Core or any sub-
class thereof.

owner _events , Specify arguments to XG abKeyboar d; see Section
pointer mode , 12.2 in Xlib — C Language X Interface.
keyboard mode , time

If the specified widget is realized, Xt Gr abKeyboar d calls XGr abKeyboar d specifying
the widget's window as the grab window. The remaining arguments and return value
are exactly as for XGr abKeyboar d. If the widget is not realized, Xt Gr abKeyboar d
immediately returns Gr abNot Vi ewabl e. No future automatic ungrab is implied by
Xt Gr abKeyboar d.

To cancel an active keyboard grab, use Xt Ungr abKeyboar d.
voi d Xt Ungr abKeyboard(w dget, tine);
widget Specifies the widget that has the active keyboard grab.

time Specifies the additional argument to XUngr abKeyboar d; see
Section 12.2 in Xlib — C Language X Interface.

Xt Ungr abKeyboar d calls XUngr abKeyboar d with the specified time.
To passively grab a single pointer button, use Xt Gr abBut t on.

voi d Xt G abButton(w dget, button, nodifiers, owner_events, event_nask,
poi nt er _node, confine_to, cursor);

widget Specifies the widget in whose window the button is
to be grabbed. Must be of class Core or any subclass
thereof.

button , modifiers Specify arguments to XG abBut t on; see Section 12.1

, owner events , in Xlib — C Language X Interface.

event mask , pointer mode

113

Event Management

, keyboard mode ,
confine to, cursor

Xt GrabBut t on calls XGr abBut t on specifying the widget's window as the grab win-
dow if the widget is realized. The remaining arguments are exactly as for XG- ab-
But t on. If the widget is not realized, or is later unrealized, the call to XGr abBut t on
is performed (again) when the widget is realized and its window becomes mapped.
In the future, if Xt Di spat chEvent is called with a Butt onPr ess event matching the
specified button and modifiers (which may be AnyButt on or AnyModi fi er, respec-
tively) for the widget's window, the Intrinsics will call Xt Ungr abPoi nt er with the
timestamp from the But t onPr ess event if either of the following conditions is true:

* There is a modal cascade and the widget is not in the active subset of the cascade
and the pointer was not previously grabbed, or
* XFi |l ter Event returns Tr ue.

To cancel a passive button grab, use Xt Ungr abBut t on.

voi d Xt UngrabButton(w dget, button, nodifiers);

widget Specifies the widget in whose window the button was
grabbed.
button , modifiers Specify arguments to XUngr abBut t on; see Section 12.1

in Xlib — C Language X Interface.

The Xt Ungr abBut t on procedure calls XUngr abBut t on specifying the widget's win-
dow as the ungrab window if the widget is realized. The remaining arguments are
exactly as for XUngr abBut t on. If the widget is not realized, Xt Ungr abBut t on removes
a deferred Xt Gr abBut t on request, if any, for the specified widget, button, and mod-
ifiers.

To actively grab the pointer, use Xt Gr abPoi nt er .

int XtGabPointer(w dget, owner_events, event_mask, pointer_node,
confine_to, cursor, time);

widget Specifies the widget for whose window the pointer is
to be grabbed. Must be of class Core or any subclass
thereof.

owner events , event mask Specify arguments to XG abPoi nter; see Section
, pointer mode , 12.1 in Xlib — C Language X Interface.

keyboard mode ,

confine to, cursor, time

If the specified widget is realized, Xt G- abPoi nt er calls XGr abPoi nt er, specifying
the widget's window as the grab window. The remaining arguments and return val-
ue are exactly as for XG abPoi nt er . If the widget is not realized, Xt Gr abPoi nt er
immediately returns Gr abNot Vi ewabl e. No future automatic ungrab is implied by
Xt GrabPoi nt er.

To cancel an active pointer grab, use Xt Ungr abPoi nt er .
voi d Xt UngrabPoi nter (w dget, tinme);

widget Specifies the widget that has the active pointer grab.

114

Event Management

time Specifies the time argument to XUngr abPoi nt er ; see Section

12.1 in Xlib — C Language X Interface.

Xt Ungr abPoi nt er calls XUngr abPoi nt er with the specified time.

Focusing Events on a Child

To redirect keyboard input to a normal descendant of a widget without calling
XSet | nput Focus, use Xt Set Keyboar dFocus.

voi d Xt Set Keyboar dFocus(subtree);

subtree Specifies the subtree of the hierarchy for which the key-

board focus is to be set. Must be of class Core or any
subclass thereof.

descendant Specifies either the normal (non-pop-up) descendant of

subtree to which keyboard events are logically direct-
ed, or None. It is not an error to specify None when no
input focus was previously set. Must be of class Object
or any subclass thereof.

Xt Set Keyboar dFocus causes Xt Di spat chEvent to remap keyboard events occurring
within the specified subtree and dispatch them to the specified descendant widget
or to an ancestor. If the descendant's class is not a subclass of Core, the descendant
is replaced by its closest windowed ancestor.

When there is no modal cascade, keyboard events can be dispatched to a widget in
one of five ways. Assume the server delivered the event to the window for widget E
(because of X input focus, key or keyboard grabs, or pointer position).

If neither E nor any of E's ancestors have redirected the keyboard focus, or if the

event activated a grab for E as specified by a call to Xt G abKey with any value

of owner events, or if the keyboard is actively grabbed by E with owner events

Fal se via Xt GrabKeyboar d or Xt GrabKey on a previous key press, the event is

dispatched to E.

Beginning with the ancestor of E closest to the root that has redirected the key-

board focus or E if no such ancestor exists, if the target of that focus redirection

has in turn redirected the keyboard focus, recursively follow this focus chain to
find a widget F that has not redirected focus.

» If Eis the final focus target widget F or a descendant of F, the event is dispatched

to E.

If E is not F, an ancestor of F, or a descendant of F, and the event activated a

grab for E as specified by a call to Xt Gr abKey for E, Xt Ungr abKeyboar d is called.

If E is an ancestor of F, and the event is a key press, and either

* E has grabbed the key with Xt G- abKey and owner events Fal se, or

* E has grabbed the key with Xt G abKey and owner events Tr ue, and the coor-
dinates of the event are outside the rectangle specified by E's geometry, then
the event is dispatched to E.

Otherwise, define A as the closest common ancestor of E and F:

» If there is an active keyboard grab for any widget via either Xt G abKeyboar d
or Xt G abKey on a previous key press, or if no widget between F and A (non-
inclusive) has grabbed the key and modifier combination with Xt G abKey and
any value of owner events, the event is dispatched to F.

115

Event Management

* Else, the event is dispatched to the ancestor of F closest to A that has grabbed
the key and modifier combination with Xt G abKey.

When there is a modal cascade, if the final destination widget as identified above
is in the active subset of the cascade, the event is dispatched; otherwise the event
is remapped to a spring-loaded shell or discarded. Regardless of where it is dis-
patched, the Intrinsics do not modify the contents of the event.

When subtree or one of its descendants acquires the X input focus or the pointer
moves into the subtree such that keyboard events would now be delivered to the
subtree, a Focusl n event is generated for the descendant if FocusChange events
have been selected by the descendant. Similarly, when subtree loses the X input
focus or the keyboard focus for one of its ancestors, a FocusQut event is generated
for descendant if FocusChange events have been selected by the descendant.

A widget tree may also actively manage the X server input focus. To do so, a widget
class specifies an accept focus procedure.

The accept focus procedure pointer is of type * Xt Accept FocusProc.

Bool ean * Xt Accept FocusProc(w, tine);

w Specifies the widget.

time Specifies the X time of the event causing the accept focus.

Widgets that need the input focus can call XSet | nput Focus explicitly, pursuant to
the restrictions of the Inter-Client Communication Conventions Manual.. To allow
outside agents, such as the parent, to cause a widget to take the input focus, every
widget exports an accept focus procedure. The widget returns a value indicating
whether it actually took the focus or not, so that the parent can give the focus to
another widget. Widgets that need to know when they lose the input focus must use
the Xlib focus notification mechanism explicitly (typically by specifying translations
for Focusl n and FocusQut events). Widgets classes that never want the input focus
should set the accept focus field to NULL.

To call a widget's accept_focus procedure, use Xt Cal | Accept Focus.

Bool ean Xt Cal | Accept Focus(w, tine);

w Specifies the widget. Must be of class Core or any subclass
thereof.

time Specifies the X time of the event that is causing the focus
change.

The Xt Cal | Accept Focus function calls the specified widget's accept focus proce-
dure, passing it the specified widget and time, and returns what the accept focus
procedure returns. If accept focus is NULL, Xt Cal | Accept Focus returns Fal se.

Events for Drawables That Are Not a Widget's Window

Sometimes an application must handle events for drawables that are not associat-
ed with widgets in its widget tree. Examples include handling Gr aphi csExpose and
NoExpose events on Pixmaps, and handling Pr opert yNot i f y events on the root win-
dow.

116

Event Management

To register a drawable with the Intrinsics event dispatching, use Xt Regi st er Dr aw-
abl e.

voi d Xt Regi st erDrawabl e(di spl ay, drawable, w dget);

display Specifies the drawable's display.
drawable Specifies the drawable to register.
widget Specifies the widget to register the drawable for.

Xt Regi st er Dr awabl e associates the specified drawable with the specified widget
so that future calls to Xt W ndowToW dget with the drawable will return the widget.
The default event dispatcher will dispatch future events that arrive for the drawable
to the widget in the same manner as events that contain the widget's window.

If the drawable is already registered with another widget, or if the drawable is the
window of a widget in the client's widget tree, the results of calling Xt Regi st er -
Dr awabl e are undefined.

To unregister a drawable with the Intrinsics event dispatching, use Xt Unr egi st er -
Dr awabl e.

voi d Xt Unregi st er Drawabl e(di spl ay, drawable);
display Specifies the drawable's display.
drawable Specifies the drawable to unregister.

Xt Unr egi st er Dr awabl e removes an association created with Xt Regi st er Dr awabl e.
If the drawable is the window of a widget in the client's widget tree the results of
calling Xt Unr egi st er Dr awabl e are undefined.

Querying Event Sources

The event manager provides several functions to examine and read events (includ-
ing file and timer events) that are in the queue. The next three functions are Intrin-
sics equivalents of the XPendi ng, XPeekEvent , and XNext Event Xlib calls.

To determine if there are any events on the input queue for a given application, use
Xt AppPendi ng.

Xt | nput Mask Xt AppPendi ng(app_cont ext);

app_context Specifies the application context that identifies the ap-
plication to check.

The Xt AppPendi ng function returns a nonzero value if there are events pending
from the X server, timer pending, other input sources pending, or signal sources
pending. The value returned is a bit mask that is the OR of Xt | MXEvent , Xt | MTi ner,
Xt | MAl t er nat el nput, and Xt | MSi gnal (see Xt AppProcessEvent). If there are no
events pending, Xt AppPendi ng flushes the output buffers of each Display in the
application context and returns zero.

To return the event from the head of a given application's input queue without re-
moving input from the queue, use Xt AppPeekEvent .

117

Event Management

Bool ean Xt AppPeekEvent (app_context, event_return);

app_context Specifies the application context that identifies the
application.

event return Returns the event information to the specified event
structure.

If there is an X event in the queue, Xt AppPeekEvent copies it into event return
and returns True. If no X input is on the queue, Xt AppPeekEvent flushes the out-
put buffers of each Display in the application context and blocks until some in-
put is available (possibly calling some timeout callbacks in the interim). If the
next available input is an X event, Xt AppPeekEvent fills in event return and re-
turns True. Otherwise, the input is for an input source registered with Xt AppAd-
dl nput, and Xt AppPeekEvent returns Fal se. The sample implementations provides
XtAppPeekEvent as described. Timeout callbacks are called while blocking for in-
put. If some input for an input source is available, Xt AppPeekEvent will return Tr ue
without returning an event.

To remove and return the event from the head of a given application's X event queue,
use Xt AppNext Event .

voi d Xt AppNext Event (app_cont ext, event_return);

app_context Specifies the application context that identifies the
application.

event return Returns the event information to the specified event
structure.

If the X event queue is empty, Xt AppNext Event flushes the X output buffers of each
Display in the application context and waits for an X event while looking at the other
input sources and timeout values and calling any callback procedures triggered by
them. This wait time can be used for background processing; see the section called
“Adding Background Work Procedures”.

Dispatching Events

The Intrinsics provide functions that dispatch events to widgets or other application
code. Every client interested in X events on a widget uses Xt AddEvent Handl er to
register which events it is interested in and a procedure (event handler) to be called
when the event happens in that window. The translation manager automatically
registers event handlers for widgets that use translation tables; see Chapter 10,
Translation Management.

Applications that need direct control of the processing of different types of input
should use Xt AppPr ocessEvent .

voi d Xt AppProcessEvent (app_cont ext, mask);

app_context Specifies the application context that identifies the ap-
plication for which to process input.

mask Specifies what types of events to process. The mask
is the bitwise inclusive OR of any combination of
Xt | MKEvent, Xtl Mliner, XtlMAlternatel nput, and

118

Event Management

Xt | MSi gnal . As a convenience, I ntrinsic. h defines
the symbolic name Xt | MAl | to be the bitwise inclusive
OR of these four event types.

The Xt AppPr ocessEvent function processes one timer, input source, signal source,
or X event. If there is no event or input of the appropriate type to process, then
Xt AppPr ocessEvent blocks until there is. If there is more than one type of input
available to process, it is undefined which will get processed. Usually, this proce-
dure is not called by client applications; see Xt AppMai nLoop. Xt AppPr ocessEvent
processes timer events by calling any appropriate timer callbacks, input sources
by calling any appropriate input callbacks, signal source by calling any appropriate
signal callbacks, and X events by calling Xt Di spat chEvent .

When an X event is received, it is passed to Xt Di spat chEvent, which calls the ap-
propriate event handlers and passes them the widget, the event, and client-specific
data registered with each procedure. If no handlers for that event are registered,
the event is ignored and the dispatcher simply returns.

To dispatch an event returned by Xt AppNext Event, retrieved directly from the Xlib
queue, or synthetically constructed, to any registered event filters or event han-
dlers, call Xt Di spat chEvent .

Bool ean Xt Di spat chEvent (event);

event Specifies a pointer to the event structure to be dispatched to
the appropriate event handlers.

The Xt Di spat chEvent function first calls XFi | t er Event with the event and the win-
dow of the widget to which the Intrinsics intend to dispatch the event, or the event
window if the Intrinsics would not dispatch the event to any handlers. If XFi | -

t er Event returns Tr ue and the event activated a server grab as identified by a previ-
ous call to Xt G- abKey or Xt Gr abBut t on, Xt Di spat chEvent calls Xt Ungr abKeyboar d
or Xt Ungr abPoi nt er with the timestamp from the event and immediately returns
True.If XFi | t er Event returns Tr ue and a grab was not activated, Xt Di spat chEvent

just immediately returns Tr ue. Otherwise, Xt Di spat chEvent sends the event to the
event handler functions that have been previously registered with the dispatch rou-
tine. Xt Di spat chEvent returns True if XFi | t er Event returned Tr ue, or if the event
was dispatched to some handler, and Fal se if it found no handler to which to dis-
patch the event. Xt Di spat chEvent records the last timestamp in any event that con-
tains a timestamp (see Xt Last Ti mest anpPr ocessed), regardless of whether it was
filtered or dispatched. If a modal cascade is active with spring loaded Tr ue, and if
the event is a remap event as defined by Xt AddGr ab, Xt Di spat chEvent may dispatch
the event a second time. Ifit does so, Xt Di spat chEvent will call XFi | t er Event again
with the window of the spring-loaded widget prior to the second dispatch, and if
XFi | t er Event returns Tr ue, the second dispatch will not be performed.

The Application Input Loop

To process all input from a given application in a continuous loop, use the conve-
nience procedure Xt AppMi nLoop.

voi d Xt AppMai nLoop(app_cont ext);

app_context Specifies the application context that identifies the ap-
plication.

119

Event Management

The Xt AppMai nLoop function first reads the next incoming X event by calling Xt App-
Next Event and then dispatches the event to the appropriate registered procedure
by calling Xt Di spat chEvent . This constitutes the main loop of X Toolkit applications.
There is nothing special about Xt AppMai nLoop; it simply calls Xt AppNext Event and
then Xt Di spat chEvent in a conditional loop. At the bottom of the loop, it checks
to see if the specified application context's destroy flag is set. If the flag is set, the
loop breaks. The whole loop is enclosed between a matching Xt AppLock and Xt Ap-
pUnl ock.

Applications can provide their own version of this loop, which tests some global
termination flag or tests that the number of top-level widgets is larger than zero
before circling back to the call to Xt AppNext Event .

Setting and Checking the Sensitivity State of a
Widget

Many widgets have a mode in which they assume a different appearance (for exam-
ple, are grayed out or stippled), do not respond to user events, and become dormant.

When dormant, a widget is considered to be insensitive. If a widget is insensitive,
the event manager does not dispatch any events to the widget with an event type of
KeyPr ess, KeyRel ease, But t onPr ess, But t onRel ease, Moti onNotify, EnterNotify,
LeaveNoti fy, Focusl n, or FocusQut .

A widget can be insensitive because its sensitive field is Fal se or because one of its
ancestors is insensitive and thus the widget's ancestor sensitive field also is Fal se.
A widget can but does not need to distinguish these two cases visually.

Note

Pop-up shells will have ancestor sensitive Fal se if the parent was insensitive
when the shell was created. Since Xt Set Sensi ti ve on the parent will not
modify the resource of the pop-up child, clients are advised to include a re-
source specification of the form " *TransientShell.ancestorSensitive: True"
in the application defaults resource file or to otherwise ensure that the par-
ent is sensitive when creating pop-up shells.

To set the sensitivity state of a widget, use Xt Set Sensi ti ve.
voi d Xt SetSensitive(w, sensitive);

w Specifies the widget. Must be of class RectObj or any
subclass thereof.

sensitive Specifies whether the widget should receive keyboard,
pointer, and focus events.

The Xt Set Sensi ti ve function first calls Xt Set Val ues on the current widget with
an argument list specifying the XtNsensitive resource and the new value. If sensi-
tive is Fal se and the widget's class is a subclass of Composite, Xt Set Sensitive
recursively propagates the new value down the child tree by calling Xt Set Val ues
on each child to set ancestor sensitive to Fal se. If sensitive is Tr ue and the widget's
class is a subclass of Composite and the widget's ancestor sensitive field is Tr ue,
Xt Set Sensi ti ve sets the ancestor sensitive of each child to True and then recur-

120

Event Management

sively calls Xt Set Val ues on each normal descendant that is now sensitive to set
ancestor sensitive to Tr ue.

Xt Set Sensi ti ve calls Xt Set Val ues to change the sensitive and ancestor sensitive
fields of each affected widget. Therefore, when one of these changes, the widget's
set_values procedure should take whatever display actions are needed (for example,
graying out or stippling the widget).

Xt Set Sensi ti ve maintains the invariant that, if the parent has either sensitive or
ancestor sensitive Fal se, then all children have ancestor sensitive Fal se.

To check the current sensitivity state of a widget, use Xt | sSensi ti ve.
Bool ean XtlsSensitive(w);

w Specifies the object. Must be of class Object or any subclass there-
of.

The Xt | sSensitive function returns Tr ue or Fal se to indicate whether user input
events are being dispatched. If object's class is a subclass of RectObj and both sen-
sitive and ancestor sensitive are True, Xt | sSensi ti ve returns Tr ue; otherwise, it
returns Fal se.

Adding Background Work Procedures

The Intrinsics have some limited support for background processing. Because
most applications spend most of their time waiting for input, you can register an
idle-time work procedure that is called when the toolkit would otherwise block
in Xt AppNext Event or Xt AppProcessEvent. Work procedure pointers are of type
(* Xt Wr kProc) .

t ypedef Bool ean (*XtWorkProc)(client _data);

client data Passes the client data specified when the work proce-
dure was registered.

This procedure should return True when it is done to indicate that it should be
removed. If the procedure returns Fal se, it will remain registered and called again
when the application is next idle. Work procedures should be very judicious about
how much they do. If they run for more than a small part of a second, interactive
feel is likely to suffer.

To register a work procedure for a given application, use Xt AppAddWor kPr oc.

Xt Wor kProcl d Xt AppAddwWor kProc(app_context, proc, client_data);

app_context Specifies the application context that identifies the ap-
plication.
proc Specifies the procedure to be called when the applica-

tion is idle.

client data Specifies the argument passed to the specified proce-
dure when it is called.

The Xt AppAddWor kPr oc function adds the specified work procedure for the appli-
cation identified by app context and returns an opaque unique identifier for this

121

Event Management

work procedure. Multiple work procedures can be registered, and the most recently
added one is always the one that is called. However, if a work procedure adds an-
other work procedure, the newly added one has lower priority than the current one.

To remove a work procedure, either return Tr ue from the procedure when it is called
or use Xt RenoveWor kPr oc outside of the procedure.

voi d Xt RenmoveWdr kProc(i d);
id Specifies which work procedure to remove.

The Xt RenpveWor kPr oc function explicitly removes the specified background work
procedure.

X Event Filters

The event manager provides filters that can be applied to specific X events. The
filters, which screen out events that are redundant or are temporarily unwanted,
handle pointer motion compression, enter/leave compression, and exposure com-
pression.

Pointer Motion Compression

Widgets can have a hard time keeping up with a rapid stream of pointer motion
events. Furthermore, they usually do not care about every motion event. To throw
out redundant motion events, the widget class field compress motion should be
Tr ue. When a request for an event would return a motion event, the Intrinsics check
if there are any other motion events for the same widget immediately following the
current one and, if so, skip all but the last of them.

Enter/Leave Compression

To throw out pairs of enter and leave events that have no intervening events, as
can happen when the user moves the pointer across a widget without stopping in it,
the widget class field compress _enterleave should be True. These enter and leave
events are not delivered to the client if they are found together in the input queue.

Exposure Compression

Many widgets prefer to process a series of exposure events as a single expose region
rather than as individual rectangles. Widgets with complex displays might use the
expose region as a clip list in a graphics context, and widgets with simple displays
might ignore the region entirely and redisplay their whole window or might get the
bounding box from the region and redisplay only that rectangle.

In either case, these widgets do not care about getting partial exposure events.
The compress exposure field in the widget class structure specifies the type and
number of exposure events that are dispatched to the widget's expose procedure.
This field must be initialized to one of the following values:

#define XtExposeNoCompress ((XtEnum)False)
#define XtExposeCompressSeries ((XtEnum)True)

122

Event Management

#define XtExposeCompressMultiple <implementation-defined>
#define XtExposeCompressMaximal <implementation-defined>

optionally ORed with any combination of the following flags (all with implementa-
tion-defined values): Xt ExposeG aphi csExpose, Xt ExposeG aphi csExposeMer ged,
Xt ExposeNoExpose, and Xt ExposeNoRegi on.

If the compress_exposure field in the widget class structure does not specify Xt Ex-
poseNoConpr ess, the event manager calls the widget's expose procedure only once
for a series of exposure events. In this case, all Expose or Gr aphi csExpose events
are accumulated into a region. When the final event is received, the event manager
replaces the rectangle in the event with the bounding box for the region and calls
the widget's expose procedure, passing the modified exposure event and (unless
Xt ExposeNoRegi on is specified) the region. For more information on regions, see
Section 16.5 in Xlib — C Language X Interface..)

The values have the following interpretation:
Xt ExposeNoConpr ess

* No exposure compression is performed; every selected event is individually dis-
patched to the expose procedure with a region argument of NULL.

Xt ExposeConpressSeri es

» Each series of exposure events is coalesced into a single event, which is dis-
patched when an exposure event with count equal to zero is reached.

Xt ExposeConpressMul ti pl e

* Consecutive series of exposure events are coalesced into a single event, which
is dispatched when an exposure event with count equal to zero is reached and
either the event queue is empty or the next event is not an exposure event for
the same widget.

Xt ExposeConpr essMaxi mal

» All expose series currently in the queue for the widget are coalesced into a single
event without regard to intervening nonexposure events. If a partial series is in
the end of the queue, the Intrinsics will block until the end of the series is received.

The additional flags have the following meaning:
Xt ExposeG aphi csExpose

* Specifies that G- aphi csExpose events are also to be dispatched to the expose pro-
cedure. G aphi csExpose events are compressed, if specified, in the same manner
as Expose events.

Xt ExposeG aphi csExposeMer ged

* Specifies in the case of Xt ExposeConpressMil ti pl e and Xt ExposeConpr essMax-
i mal that series of G aphi csExpose and Expose events are to be compressed to-
gether, with the final event type determining the type of the event passed to the
expose procedure. If this flag is not set, then only series of the same event type
as the event at the head of the queue are coalesced. This flag also implies Xt Ex-
poseG aphi csExpose.

123

Event Management

Xt ExposeNoExpose

* Specifies that NoExpose events are also to be dispatched to the expose procedure.
NoExpose events are never coalesced with other exposure events or with each
other.

Xt ExposeNoRegi on

* Specifies that the final region argument passed to the expose procedure is NULL.
The rectangle in the event will still contain bounding box information for the entire
series of compressed exposure events. This option saves processing time when
the region is not needed by the widget.

Widget Exposure and Visibility

Every primitive widget and some composite widgets display data on the screen by
means of direct Xlib calls. Widgets cannot simply write to the screen and forget
what they have done. They must keep enough state to redisplay the window or parts
of it if a portion is obscured and then reexposed.

Redisplay of a Widget: The expose Procedure

The expose procedure pointer in a widget class is of type (* Xt ExposePr oc) .

typedef void (*Xt ExposeProc)(w, event, region);

w Specifies the widget instance requiring redisplay.

event Specifies the exposure event giving the rectangle requiring
redisplay.

region Specifies the union of all rectangles in this exposure se-
quence.

The redisplay of a widget upon exposure is the responsibility of the expose proce-
dure in the widget's class record. If a widget has no display semantics, it can specify
NULL for the expose field. Many composite widgets serve only as containers for
their children and have no expose procedure.

Note

If the expose procedure is NULL, Xt Real i zeW dget fills in a default bit grav-
ity of Nort hWest Gr avi t y before it calls the widget's realize procedure.

If the widget's compress exposure class field specifies Xt ExposeNoConpr ess or
Xt ExposeNoRegi on, or if the event type is NoExpose (see the section called “Expo-
sure Compression”), region is NULL. If Xt ExposeNoConpr ess is not specified and
the event type is not NoExpose, the event is the final event in the compressed series
but x, y, width, and height contain the bounding box for all the compressed events.
The region is created and destroyed by the Intrinsics, but the widget is permitted
to modify the region contents.

A small simple widget (for example, Label) can ignore the bounding box informa-
tion in the event and redisplay the entire window. A more complicated widget (for
example, Text) can use the bounding box information to minimize the amount of

124

Event Management

calculation and redisplay it does. A very complex widget uses the region as a clip
list in a GC and ignores the event information. The expose procedure is not chained
and is therefore responsible for exposure of all superclass data as well as its own.

However, it often is possible to anticipate the display needs of several levels of
subclassing. For example, rather than implement separate display procedures for
the widgets Label, Pushbutton, and Toggle, you could write a single display routine
in Label that uses display state fields like

Boolean invert;
Boolean highlight;
Dimension highlight width;

Label would have invert and highlight always Fal se and highlight width zero. Push-
button would dynamically set highlight and highlight width, but it would leave in-
vert always Fal se. Finally, Toggle would dynamically set all three. In this case, the
expose procedures for Pushbutton and Toggle inherit their superclass's expose pro-
cedure; see the section called “Inheritance of Superclass Operations”.

Widget Visibility

Some widgets may use substantial computing resources to produce the data they
will display. However, this effort is wasted if the widget is not actually visible on the
screen, that is, if the widget is obscured by another application or is iconified.

The visible field in the core widget structure provides a hint to the widget that it
need not compute display data. This field is guaranteed to be True by the time an
exposure event is processed if any part of the widget is visible, but is Fal se if the
widget is fully obscured.

Widgets can use or ignore the visible hint. If they ignore it, they should have
visible interest in their widget class record set Fal se. In such cases, the visible field
is initialized Tr ue and never changes. If visible interest is Tr ue, the event manager
asks for VisibilityNotify events for the widget and sets visible to True on Vi s-
i bilityUnobscuredorVisibilityPartiallyQbscured events and Fal se on Vi si -
bilityFull yOoscured events.

X Event Handlers

Event handlers are procedures called when specified events occur in a widget.
Most widgets need not use event handlers explicitly. Instead, they use the Intrinsics
translation manager. Event handler procedure pointers are of the type (* Xt Even-

t Handl er) .

t ypedef voi d (*Xt Event Handl er) (w, client_data, event,
continue_to_di spatch);

w Specifies the widget for which the event arrived.
client data Specifies any client-specific information registered

with the event handler.

event Specifies the triggering event.

125

Event Management

continue to dispatch Specifies whether the remaining event handlers reg-
istered for the current event should be called.

After receiving an event and before calling any event handlers, the Boolean pointed
to by continue to dispatch is initialized to True. When an event handler is called,
it may decide that further processing of the event is not desirable and may store
Fal se in this Boolean, in which case any handlers remaining to be called for the
event are ignored.

The circumstances under which the Intrinsics may add event handlers to a widget
are currently implementation-dependent. Clients must therefore be aware that stor-
ing Fal se into the continue to dispatch argument can lead to portability problems.

Event Handlers That Select Events

To register an event handler procedure with the dispatch mechanism, use Xt AddE-
vent Handl er .

voi d Xt AddEvent Handl er (w, event _mask, nonmaskable, proc, client_data);

w Specifies the widget for which this event handler is
being registered. Must be of class Core or any subclass
thereof.

event _mask Specifies the event mask for which to call this proce-
dure.

nonmaskable Specifies whether this procedure should be called

on the nonmaskable events (G aphi csExpose, No-
Expose, Sel ecti ond ear, Sel ecti onRequest, Sel ec-
tionNotify, dient Message, and Mappi ngNotify).

proc Specifies the procedure to be called.
client data Specifies additional data to be passed to the event han-
dler.

The Xt AddEvent Handl er function registers a procedure with the dispatch mecha-
nism that is to be called when an event that matches the mask occurs on the speci-
fied widget. Each widget has a single registered event handler list, which will con-
tain any procedure/client_data pair exactly once regardless of the manner in which
it is registered. If the procedure is already registered with the same client_data val-
ue, the specified mask augments the existing mask. If the widget is realized, Xt Ad-
dEvent Handl er calls XSel ect | nput, if necessary. The order in which this procedure
is called relative to other handlers registered for the same event is not defined.

To remove a previously registered event handler, use Xt RenbveEvent Handl er .

voi d Xt RenoveEvent Handl er (w, event _nmask, nonmaskabl e, proc,
client_data);

w Specifies the widget for which this procedure is regis-
tered. Must be of class Core or any subclass thereof.

event _mask Specifies the event mask for which to unregister this
procedure.

126

Event Management

nonmaskable Specifies whether this procedure should be removed
on the nonmaskable events (G aphi csExpose, No-
Expose, Sel ecti ond ear, Sel ecti onRequest, Sel ec-
tionNotify, Cient Message, and Mappi ngNotify).

proc Specifies the procedure to be removed.
client data Specifies the registered client data.

The Xt RenpveEvent Handl er function unregisters an event handler registered with
Xt AddEvent Handl er or XtlnsertEvent Handl er for the specified events. The re-
quest is ignored if client data does not match the value given when the handler
was registered. If the widget is realized and no other event handler requires the
event, Xt RenoveEvent Handl er calls XSel ect | nput . If the specified procedure has
not been registered or if it has been registered with a different value of client data,
Xt RemoveEvent Handl er returns without reporting an error.

To stop a procedure registered with Xt AddEvent Handl er or Xt | nsert Event Handl er
from receiving all selected events, call Xt RenoveEvent Handl er with an event mask
of Xt Al | Event s and nonmaskable Tr ue. The procedure will continue to receive any
events that have been specified in calls to Xt AddRawEvent Handl er or Xt | nsert Raw
Event Handl er .

To register an event handler procedure that receives events before or after all pre-
viously registered event handlers, use Xt | nsert Event Handl er .
typedef enum {XtListHead, XtListTail} XtListPosition;

voi d Xt I nsert Event Handl er (w, event _nmask, nonmaskabl e, proc,
client_data, position);

w Specifies the widget for which this event handler is
being registered. Must be of class Core or any subclass
thereof.

event mask Specifies the event mask for which to call this proce-
dure.

nonmaskable Specifies whether this procedure should be called

on the nonmaskable events (G aphi csExpose, No-
Expose, Sel ecti ond ear, Sel ecti onRequest, Sel ec-
tionNotify, dient Message, and Mappi ngNotify).

proc Specifies the procedure to be called.

client data Specifies additional data to be passed to the client's
event handler.

position Specifies when the event handler is to be called rela-
tive to other previously registered handlers.

Xt I nsert Event Handl er is identical to Xt AddEvent Handl er with the additional posi-
tion argument. If position is Xt Li st Head, the event handler is registered so that it is
called before any event handlers that were previously registered for the same wid-
get. If position is Xt Li st Tai | , the event handler is registered to be called after any

127

Event Management

previously registered event handlers. If the procedure is already registered with
the same client_data value, the specified mask augments the existing mask and the
procedure is repositioned in the list.

Event Handlers That Do Not Select Events

On occasion, clients need to register an event handler procedure with the dispatch
mechanism without explicitly causing the X server to select for that event. To do
this, use Xt AddRawEvent Handl er .

voi d Xt AddRawEvent Handl er (w, event _mask, nonmaskabl e, proc,
client_data);

w Specifies the widget for which this event handler is
being registered. Must be of class Core or any subclass
thereof.

event _mask Specifies the event mask for which to call this proce-
dure.

nonmaskable Specifies whether this procedure should be called

on the nonmaskable events (G aphi csExpose, No-
Expose, Sel ecti ond ear, Sel ecti onRequest, Sel ec-
tionNotify, dient Message, and Mappi ngNotify).

proc Specifies the procedure to be called.

client data Specifies additional data to be passed to the client's
event handler.

The Xt AddRawEvent Handl er function is similar to Xt AddEvent Handl er except that
it does not affect the widget's event mask and never causes an XSel ect | nput for its
events. Note that the widget might already have those mask bits set because of other
nonraw event handlers registered on it. If the procedure is already registered with
the same client data, the specified mask augments the existing mask. The order in
which this procedure is called relative to other handlers registered for the same
event is not defined.

To remove a previously registered raw event handler, use Xt RenbveRawEven-
t Handl er.

voi d Xt RenoveRawEvent Handl er (w, event _mask, nonmaskabl e, proc,
client_data);

w Specifies the widget for which this procedure is regis-
tered. Must be of class Core or any subclass thereof.

event_mask Specifies the event mask for which to unregister this
procedure.
nonmaskable Specifies whether this procedure should be removed

on the nonmaskable events (G aphi csExpose, No-
Expose, Sel ecti ond ear, Sel ecti onRequest, Sel ec-
tionNotify, dient Message, and Mappi ngNotify).

proc Specifies the procedure to be registered.

128

Event Management

client data Specifies the registered client data.

The Xt RenbveRawEvent Handl er function unregisters an event handler registered
with Xt AddRawEvent Handl er or Xt | nsert RawEvent Handl er for the specified events
without changing the window event mask. The request is ignored if client data does
not match the value given when the handler was registered. If the specified proce-
dure has not been registered or if it has been registered with a different value of
client data, Xt RenoveRawEvent Handl er returns without reporting an error.

To stop a procedure registered with Xt AddRawEvent Handl er or Xt | nsert RawEven-
t Handl er from receiving all nonselected events, call Xt RenoveRawEvent Handl er
with an event _mask of Xt Al | Event s and nonmaskable Tr ue. The procedure will con-
tinue to receive any events that have been specified in calls to Xt AddEvent Handl er
or Xt | nsert Event Handl er.

To register an event handler procedure that receives events before or after all pre-
viously registered event handlers without selecting for the events, use Xt | nser -
t RawEvent Handl er .

voi d Xt I nsert RawEvent Handl er (w, event _mask, nonmaskabl e, proc,
client_data, position);

w Specifies the widget for which this event handler is
being registered. Must be of class Core or any subclass
thereof.

event _mask Specifies the event mask for which to call this proce-
dure.

nonmaskable Specifies whether this procedure should be called

on the nonmaskable events (G aphi csExpose, No-
Expose, Sel ecti ond ear, Sel ecti onRequest, Sel ec-
tionNotify, dient Message, and Mappi ngNotify).

proc Specifies the procedure to be registered.

client data Specifies additional data to be passed to the client's
event handler.

position Specifies when the event handler is to be called rela-
tive to other previously registered handlers.

The Xt | nsert RawEvent Handl er function is similar to Xt | nsert Event Handl er ex-
cept that it does not modify the widget's event mask and never causes an XSel ec-
t I nput for the specified events. If the procedure is already registered with the same
client datavalue, the specified mask augments the existing mask and the procedure
is repositioned in the list.

Current Event Mask

To retrieve the event mask for a given widget, use Xt Bui | dEvent Mask.
Event Mask Xt Bui | dEvent Mask(w) ;

w Specifies the widget. Must be of class Core or any subclass thereof.

129

Event Management

The Xt Bui | dEvent Mask function returns the event mask representing the logical
OR of all event masks for event handlers registered on the widget with Xt AddEven-
t Handl er and Xt I nsert Event Handl er and all event translations, including acceler-
ators, installed on the widget. This is the same event mask stored into the XSet W n-
dowAt t ri but es structure by Xt Real i zeW dget and sent to the server when event
handlers and translations are installed or removed on the realized widget.

Event Handlers for X11 Protocol Extensions

To register an event handler procedure with the Intrinsics dispatch mechanism ac-
cording to an event type, use Xt | nsert Event TypeHandl er.

void XtlnsertEvent TypeHandl er (wi dget, event_type, select_data, proc,
client _data, position);

widget Specifies the widget for which this event handler is
being registered. Must be of class Core or any subclass
thereof.

event type Specifies the event type for which to call this event
handler.

select data Specifies data used to request events of the specified

type from the server, or NULL.

proc Specifies the event handler to be called.

client data Specifies additional data to be passed to the event han-
dler.

position Specifies when the event handler is to be called rela-

tive to other previously registered handlers.

Xt | nsert Event TypeHandl er registers a procedure with the dispatch mechanism
that is to be called when an event that matches the specified event type is dis-
patched to the specified widget.

If event type specifies one of the core X protocol events, then select data must be
a pointer to a value of type Event Mask, indicating the event mask to be used to
select for the desired event. This event mask is included in the value returned by
Xt Bui | dEvent Mask. If the widget is realized, Xt | nsert Event TypeHand! er calls XS-
el ect | nput if necessary. Specifying NULL for select data is equivalent to specify-
ing a pointer to an event mask containing 0. This is similar to the Xt | nsert Raw
Event Handl er function.

If event type specifies an extension event type, then the semantics of the data point-
ed to by select data are defined by the extension selector registered for the speci-
fied event type.

In either case the Intrinsics are not required to copy the data pointed to by
select data, so the caller must ensure that it remains valid as long as the event
handler remains registered with this value of select data.

The position argument allows the client to control the order of invocation of event
handlers registered for the same event type. If the client does not care about the

130

Event Management

order, it should normally specify Xt Li st Tai | , which registers this event handler
after any previously registered handlers for this event type.

Each widget has a single registered event handler list, which will contain any pro-
cedure/client data pair exactly once if it is registered with Xt | nsert Event Type-
Handl er, regardless of the manner in which it is registered and regardless of
the value(s) of select data. If the procedure is already registered with the same
client_data value, the specified mask augments the existing mask and the procedure
is repositioned in the list.

To remove an event handler registered with Xt| nsertEvent TypeHandl er, use
Xt RenoveEvent TypeHandl er .

voi d Xt RenoveEvent TypeHandl er (wi dget, event_type, select_data, proc,
client_data);

widget Specifies the widget for which the event handler was
registered. Must be of class Core or any subclass
thereof.

event type Specifies the event type for which the handler was reg-
istered.

select data Specifies data used to deselect events of the specified

type from the server, or NULL.
proc Specifies the event handler to be removed.

client data Specifies the additional client data with which the pro-
cedure was registered.

The Xt RenobveEvent TypeHandl er function unregisters an event handler registered
with Xt | nsert Event TypeHandl er for the specified event type. The request is ig-
nored if client data does not match the value given when the handler was regis-
tered.

If event type specifies one of the core X protocol events, select data must be a
pointer to a value of type Event Mask, indicating the event mask to be used to
deselect for the appropriate event. If the widget is realized, Xt RenbveEvent Type-
Handl er calls XSel ect | nput if necessary. Specifying NULL for select data is equiv-
alent to specifying a pointer to an event mask containing 0. This is similar to the
Xt RenbveRawEvent Handl er function.

If event type specifies an extension event type, then the semantics of the data point-
ed to by select data are defined by the extension selector registered for the speci-
fied event type.

To register a procedure to select extension events for a widget, use Xt Regi st er Ex-
t ensi onSel ect or .

voi d Xt Regi st er Ext ensi onSel ect or (*di spl ay, m n_event _type,
max_event _type, proc, client_data);

display Specifies the display for which the extension selector
is to be registered.

min_event type

131

Event Management

max_event type Specifies the range of event types for the extension.
proc Specifies the extension selector procedure.
client data Specifies additional data to be passed to the exten-

sion selector.

The Xt Regi st er Ext ensi onSel ect or function registers a procedure to arrange for
the delivery of extension events to widgets.

If min_event type and max_event _type match the parameters to a previous call to
Xt Regi st er Ext ensi onSel ect or for the same display, then proc and client data re-
place the previously registered values. If the range specified by min_event type and
max_event type overlaps the range of the parameters to a previous call for the same
display in any other way, an error results.

When a widget is realized, after the core.realize method is called, the Intrinsics
check to see if any event handler specifies an event type within the range of a reg-
istered extension selector. If so, the Intrinsics call each such selector. If an event
type handler is added or removed, the Intrinsics check to see if the event type falls
within the range of a registered extension selector, and if it does, calls the selector.
In either case the Intrinsics pass a list of all the widget's event types that are within
the selector's range. The corresponding select data are also passed. The selector is
responsible for enabling the delivery of extension events required by the widget.

An extension selector is of type (* Xt Ext ensi onSel ect Proc) .

typedef void (*Xt Ext ensi onSel ect Proc) (wi dget, event _types, sel ect _data,
count, client_data);

widget Specifies the widget that is being realized or is having
an event handler added or removed.

event types Specifies a list of event types that the widget has reg-
istered event handlers for.

select data Specifies a list of the select data parameters specified
in Xt I nsert Event TypeHandl er.

count Specifies the number of entries in the event types and
select _data lists.

client data Specifies the additional client data with which the pro-
cedure was registered.

The event types and select data lists will always have the same number of ele-
ments, specified by count. Each event type/select data pair represents one call to
Xt I nsert Event TypeHandl er.

To register a procedure to dispatch events of a specific type within Xt Di s-
pat chEvent , use Xt Set Event Di spat cher .

Xt Event Di spat chProc Xt Set Event Di spat cher (di spl ay, event_type, proc);

display Specifies the display for which the event dispatcher is
to be registered.

132

Event Management

event type Specifies the event type for which the dispatcher should
be invoked.
proc Specifies the event dispatcher procedure.

The Xt Set Event Di spat cher function registers the event dispatcher procedure spec-
ified by proc for events with the type event type. The previously registered dis-
patcher (or the default dispatcher if there was no previously registered dispatcher)
is returned. If proc is NULL, the default procedure is restored for the specified type.

In the future, when Xt Di spat chEvent is called with an event type of event type, the
specified proc (or the default dispatcher) is invoked to determine a widget to which
to dispatch the event.

The default dispatcher handles the Intrinsics modal cascade and keyboard focus
mechanisms, handles the semantics of compress enterleave and compress motion,
and discards all extension events.

An event dispatcher procedure pointer is of type (* Xt Event Di spat chProc).
t ypedef Bool ean (* Xt Event Di spat chProc) (event);
event Passes the event to be dispatched.

The event dispatcher procedure should determine whether this event is of a type
that should be dispatched to a widget.

If the event should be dispatched to a widget, the event dispatcher procedure should
determine the appropriate widget to receive the event, call XFi | t er Event with the
window of this widget, or None if the event is to be discarded, and if XFi | t er Event
returns Fal se, dispatch the event to the widget using Xt Di spat chEvent ToW dget .
The procedure should return True if either XFi |l t er Event or Xt Di spat chEvent -
ToW dget returned Tr ue and Fal se otherwise.

If the event should not be dispatched to a widget, the event dispatcher procedure
should attempt to dispatch the event elsewhere as appropriate and return Tr ue if it
successfully dispatched the event and Fal se otherwise.

Some dispatchers for extension events may wish to forward events according to the
Intrinsics' keyboard focus mechanism. To determine which widget is the end result
of keyboard event forwarding, use Xt Get Keyboar dFocusW dget .

W dget Xt Get Keyboar dFocusW dget (w dget) ;
widget Specifies the widget to get forwarding information for.

The Xt Get Keyboar dFocusW dget function returns the widget that would be the end
result of keyboard event forwarding for a keyboard event for the specified widget.

To dispatch an event to a specified widget, use Xt Di spat chEvent ToW dget .
Bool ean Xt Di spat chEvent ToW dget (w dget, event);
widget Specifies the widget to which to dispatch the event.

event Specifies a pointer to the event to be dispatched.

133

Event Management

The Xt Di spat chEvent ToW dget function scans the list of registered event handlers
for the specified widget and calls each handler that has been registered for the
specified event type, subject to the continue to dispatch value returned by each
handler. The Intrinsics behave as if event handlers were registered at the head of
the list for Expose, NoExpose, Gr aphi csExpose, and Vi si bilityNotify events to
invoke the widget's expose procedure according to the exposure compression rules
and to update the widget's visible field if visible interest is True. These internal
event handlers never set continue to dispatch to Fal se.

Xt Di spat chEvent ToW dget returns Tr ue if any event handler was called and Fal se
otherwise.

Using the Intrinsics in a Multi-Threaded Envi-
ronment

The Intrinsics may be used in environments that offer multiple threads of execution
within the context of a single process. A multi-threaded application using the In-
trinsics must explicitly initialize the toolkit for mutually exclusive access by calling
Xt Tool kit Threadl nitialize.

Initializing a Multi-Threaded Intrinsics Application

To test and initialize Intrinsics support for mutually exclusive thread access, call
Xt Tool kit Threadl nitialize.

Bool ean Xt Tool kit Threadlnitialize();

Xt Tool kit Threadl ni ti ali ze returns True if the Intrinsics support mutually ex-
clusive thread access, otherwise it returns Fal se. Xt Tool kit Threadl niti alize
must be called before Xt Cr eat eAppl i cati onCont ext, Xt Appl nitial i ze, Xt QpenAp-
plication, or Xt Set LanguagePr oc is called. Xt Tool ki t Threadl ni ti al i ze may be
called more than once; however, the application writer must ensure that it is not
called simultaneously by two or more threads.

Locking X Toolkit Data Structures

The Intrinsics employs two levels of locking: application context and process. Lock-
ing an application context ensures mutually exclusive access by a thread to the state
associated with the application context, including all displays and widgets associ-
ated with it. Locking a process ensures mutually exclusive access by a thread to
Intrinsics process global data.

A client may acquire a lock multiple times and the effect is cumulative. The client
must ensure that the lock is released an equal number of times in order for the lock
to be acquired by another thread.

Most application writers will have little need to use locking as the Intrinsics per-
forms the necessary locking internally. Resource converters are an exception. They
require the application context or process to be locked before the application can
safely call them directly, for example:

134

Event Management

XtAppLock(app context);
XtCvtStringToPixel(dpy, args, num_args, fromVal, toVal, closure ret);
XtAppUnlock(app context);

When the application relies upon Xt Convert AndSt or e or a converter to provide the
storage for the results of a conversion, the application should acquire the process
lock before calling out and hold the lock until the results have been copied.

Application writers who write their own utility functions, such as one which re-
trieves the being destroyed field from a widget instance, must lock the application
context before accessing widget internal data. For example:

#include <X11/CoreP.h>

Boolean BeingDestroyed (widget)

Widget widget;

{

Boolean ret;
XtAppLock(XtWidgetToApplicationContext(widget));
ret = widget->core.being destroyed;
XtAppUnlock(XtWidgetToApplicationContext(widget));
return ret;

}

A client that wishes to atomically call two or more Intrinsics functions must lock
the application context. For example:

XtAppLock(XtWidgetToApplicationContext(widget));
XtUnmanageChild (widgetl);

XtManageChild (widget2);
XtAppUnlock(XtWidgetToApplicationContext(widget));

Locking the Application Context

To ensure mutual exclusion of application context, display, or widget internal state,
use Xt AppLock.

voi d Xt AppLock(app_context);
app_context Specifies the application context to lock.

Xt AppLock blocks until it is able to acquire the lock. Locking the application context
also ensures that only the thread holding the lock makes Xlib calls from within Xt.
An application that makes its own direct Xlib calls must either lock the application
context around every call or enable thread locking in Xlib.

To unlock a locked application context, use Xt AppUnl ock.
voi d Xt AppUnl ock(app_cont ext);

app_context Specifies the application context that was previously
locked.

135

Event Management

Locking the Process

To ensure mutual exclusion of X Toolkit process global data, a widget writer must
use Xt ProcessLock.

voi d Xt ProcessLock();

Xt ProcessLock blocks until it is able to acquire the lock. Widget writers may use
XtProcessLock to guarantee mutually exclusive access to widget static data.

To unlock a locked process, use Xt ProcessUnl ock.
voi d Xt ProcessUnl ock();

To lock both an application context and the process at the same time, call Xt AppLock
first and then Xt Pr ocessLock. To release both locks, call Xt ProcessUnl ock first and
then Xt AppUnl ock. The order is important to avoid deadlock.

Event Management in a Multi-Threaded Environment

In a nonthreaded environment an application writer could reasonably assume that
it is safe to exit the application from a quit callback. This assumption may no longer
hold true in a multi-threaded environment; therefore it is desirable to provide a
mechanism to terminate an event-processing loop without necessarily terminating
its thread.

To indicate that the event loop should terminate after the current event dispatch
has completed, use Xt AppSet Exi t FI ag.

voi d Xt AppSet Exi t Fl ag(app_context);
app_context Specifies the application context.
Xt AppMai nLoop tests the value of the flag and will return if the flag is Tr ue.

Application writers who implement their own main loop may test the value of the
exit flag with Xt AppGet Exi t Fl ag.

Bool ean Xt AppGet Exi t Fl ag(app_cont ext);
app_context Specifies the application context.

Xt AppCet Exi t Fl ag will normally return Fal se, indicating that event processing may
continue. When Xt AppGet Exi t Fl ag returns Tr ue, the loop must terminate and re-
turn to the caller, which might then destroy the application context.

Application writers should be aware that, if a thread is blocked in Xt AppNext Event,
Xt AppPeekEvent, or Xt AppPr ocessEvent and another thread in the same application
context opens a new display, adds an alternate input, or a timeout, any new source(s)
will not normally be "noticed" by the blocked thread. Any new sources are "noticed"
the next time one of these functions is called.

The Intrinsics manage access to events on a last-in, first-out basis. If multiple
threads in the same application context block in Xt AppNext Event , Xt AppPeekEvent,
or Xt AppProcessEvent, the last thread to call one of these functions is the first
thread to return.

136

Chapter 8. Callbacks

Applications and other widgets often need to register a procedure with a widget that
gets called under certain prespecified conditions. For example, when a widget is
destroyed, every procedure on the widget's destroy callbacks list is called to notify
clients of the widget's impending doom.

Every widget has an XtNdestroyCallbacks callback list resource. Widgets can define
additional callback lists as they see fit. For example, the Pushbutton widget has a
callback list to notify clients when the button has been activated.

Except where otherwise noted, it is the intent that all Intrinsics functions may be
called at any time, including from within callback procedures, action routines, and
event handlers.

Using Callback Procedure and Callback List
Definitions

Callback procedure pointers for use in callback lists are of type (* Xt Cal | backProc) .
typedef void (*XtCallbackProc)(w, client _data, call _data);

w Specifies the widget owning the list in which the call-
back is registered.

client data Specifies additional data supplied by the client when
the procedure was registered.

call data Specifies any callback-specific data the widget wants
to pass to the client. For example, when Scrollbar exe-
cutes its XtNthumbChanged callback list, it passes the
new position of the thumb.

The client data argument provides a way for the client registering the callback
procedure also to register client-specific data, for example, a pointer to additional
information about the widget, a reason for invoking the callback, and so on. The
client _data value may be NULL if all necessary information is in the widget. The
call data argument is a convenience to avoid having simple cases where the client
could otherwise always call Xt Get Val ues or a widget-specific function to retrieve
data from the widget. Widgets should generally avoid putting complex state infor-
mation in call data. The client can use the more general data retrieval methods, if
necessary.

Whenever a client wants to pass a callback list as an argument in an Xt Cr eat eW d-
get, Xt Set Val ues, or Xt Get Val ues call, it should specify the address of a NULL-
terminated array of type Xt Cal | backLi st .

typedef struct {

XtCallbackProc callback;
XtPointer closure;

} XtCallbackRec, *XtCallbackList;

137

Callbacks

For example, the callback list for procedures A and B with client data clientDataA
and clientDataB, respectively, is

static XtCallbackRec callbacks[] = {

{A, (XtPointer) clientDataA},

{B, (XtPointer) clientDataB},
{(XtCallbackProc) NULL, (XtPointer) NULL}
¥

Although callback lists are passed by address in arglists and varargs lists, the In-
trinsics recognize callback lists through the widget resource list and will copy the
contents when necessary. Widget initialize and set values procedures should not
allocate memory for the callback list contents. The Intrinsics automatically do this,
potentially using a different structure for their internal representation.

Identifying Callback Lists

Whenever a widget contains a callback list for use by clients, it also exports in its
public .h file the resource name of the callback list. Applications and client widgets
never access callback list fields directly. Instead, they always identify the desired
callback list by using the exported resource name. All the callback manipulation
functions described in this chapter except Xt Cal | Cal | backLi st check to see that
the requested callback list is indeed implemented by the widget.

For the Intrinsics to find and correctly handle callback lists, they must be declared
with a resource type of Xt RCal | back. The internal representation of a callback list
is implementation-dependent; widgets may make no assumptions about the value
stored in this resource if it is non-NULL. Except to compare the value to NULL
(which is equivalent to Xt Cal | backSt at us Xt Cal | backHasNone), access to call-
back list resources must be made through other Intrinsics procedures.

Adding Callback Procedures

To add a callback procedure to a widget's callback list, use Xt AddCal | back.
voi d Xt AddCal | back(w, call back_nane, call back, client_data);

w Specifies the widget. Must be of class Object or any
subclass thereof.

callback_name Specifies the callback list to which the procedure is
to be appended.

callback Specifies the callback procedure.

client data Specifies additional data to be passed to the specified
procedure when it is invoked, or NULL.

A callback will be invoked as many times as it occurs in the callback list.

To add a list of callback procedures to a given widget's callback list, use Xt Add-
Cal | backs.

voi d Xt AddCal | backs(w, call back_nane, call backs);

138

Callbacks

w Specifies the widget. Must be of class Object or any
subclass thereof.

callback name Specifies the callback list to which the procedures
are to be appended.

callbacks Specifies the null-terminated list of callback proce-
dures and corresponding client data.

Removing Callback Procedures

To delete a callback procedure from a widget's callback list, use Xt RenmoveCal | back.
voi d Xt RenoveCal | back(w, callback _name, call back, client_data);

w Specifies the widget. Must be of class Object or any
subclass thereof.

callback_name Specifies the callback list from which the procedure
is to be deleted.

callback Specifies the callback procedure.
client data Specifies the client data to match with the registered
callback entry.

The Xt RenoveCal | back function removes a callback only if both the procedure and
the client data match.

To delete a list of callback procedures from a given widget's callback list, use
Xt RenoveCal | backs.

voi d Xt RenoveCal | backs(w, call back_nane, call backs);

w Specifies the widget. Must be of class Object or any
subclass thereof.

callback_name Specifies the callback list from which the procedures
are to be deleted.

callbacks Specifies the null-terminated list of callback proce-
dures and corresponding client data.

To delete all callback procedures from a given widget's callback list and free all
storage associated with the callback list, use Xt RenoveAl | Cal | backs.

voi d Xt RenmoveAl | Cal | backs(w, call back_nane);

w Specifies the widget. Must be of class Object or any
subclass thereof.

callback_name Specifies the callback list to be cleared.

Executing Callback Procedures

To execute the procedures in a given widget's callback list, specifying the callback
list by resource name, use Xt Cal | Cal | backs.

139

Callbacks

voi d Xt Call Cal | backs(w, callback_name, call _data);

w Specifies the widget. Must be of class Object or any
subclass thereof.

callback_name Specifies the callback list to be executed.

call data Specifies a callback-list-specific data value to pass to

each of the callback procedure in the list, or NULL.

Xt Cal | Cal | backs calls each of the callback procedures in the list named by
callback _name in the specified widget, passing the client data registered with the
procedure and call-data.

To execute the procedures in a callback list, specifying the callback list by address,
use Xt Cal | Cal | backLi st .

voi d Xt Call Cal | backLi st (w dget, call backs, call_data);

widget Specifies the widget instance that contains the callback
list. Must be of class Object or any subclass thereof.

callbacks Specifies the callback list to be executed.

call data Specifies a callback-list-specific data value to pass to
each of the callback procedures in the list, or NULL.

The callbacks parameter must specify the contents of a widget or object resource
declared with representation type Xt RCal | back. If callbacks is NULL, Xt Cal | Cal | -
backLi st returns immediately; otherwise it calls each of the callback procedures in
the list, passing the client data and call data.

Checking the Status of a Callback List

To find out the status of a given widget's callback list, use Xt HasCal | backs.

typedef enum {XtCallbackNoList, XtCallbackHasNone, XtCallbackHasSome}
XtCallbackStatus;

Xt Cal | backSt at us Xt HasCal | backs(w, call back_name);

w Specifies the widget. Must be of class Object or any
subclass thereof.

callback_name Specifies the callback list to be checked.

The Xt HasCal | backs function first checks to see if the widget has a callback list
identified by callback name. If the callback list does not exist, Xt HasCal | backs re-
turns Xt Cal | backNoLi st . If the callback list exists but is empty, it returns Xt Cal | -
backHasNone. If the callback list exists and has at least one callback registered, it
returns Xt Cal | backHas Sorre.

140

Chapter 9. Resource Management

A resource is a field in the widget record with a corresponding resource entry in
the resources list of the widget or any of its superclasses. This means that the field
is settable by Xt Cr eat eW dget (by naming the field in the argument list), by an
entry in a resource file (by using either the name or class), and by Xt Set Val ues.
In addition, it is readable by Xt Get Val ues. Not all fields in a widget record are
resources. Some are for bookkeeping use by the generic routines (like managed and
being destroyed). Others can be for local bookkeeping, and still others are derived
from resources (many graphics contexts and pixmaps).

Widgets typically need to obtain a large set of resources at widget creation time.
Some of the resources come from the argument list supplied in the call to Xt Cr e-
at eW dget , some from the resource database, and some from the internal defaults
specified by the widget. Resources are obtained first from the argument list, then
from the resource database for all resources not specified in the argument list, and
last, from the internal default, if needed.

Resource Lists

A resource entry specifies a field in the widget, the textual name and class of the
field that argument lists and external resource files use to refer to the field, and a
default value that the field should get if no value is specified. The declaration for
the Xt Resour ce structure is

typedef struct {
String resource name;
String resource class;
String resource_type;
Cardinal resource_size;
Cardinal resource offset;
String default type;
XtPointer default addr;

} XtResource, *XtResourceList;

When the resource list is specified as the Cor eCl assPart, Obj ect C assPart, Rec-
t Qbj d assPart, or Constrai nt 0 assPart resources field, the strings pointed to by
resource_name, resource_class, resource type, and default type must be perma-
nently allocated prior to or during the execution of the class initialization procedure
and must not be subsequently deallocated.

The resource_name field contains the name used by clients to access the field in the
widget. By convention, it starts with a lowercase letter and is spelled exactly like the
field name, except all underscores () are deleted and the next letter is replaced by
its uppercase counterpart. For example, the resource name for background pixel
becomes backgroundPixel. Resource names beginning with the two-character se-
quence " xt", and resource classes beginning with the two-character sequence
" Xt" are reserved to the Intrinsics for future standard and implementation-depen-
dent uses. Widget header files typically contain a symbolic name for each resource
name. All resource names, classes, and types used by the Intrinsics are named in
<X11/ St ri ngDef s. h>. The Intrinsics's symbolic resource names begin with *"XtN"

141

Resource Management

and are followed by the string name (for example, XtNbackgroundPixel for back-
groundPixel).

The resource class field contains the class string used in resource specification files
to identify the field. A resource class provides two functions:

* It isolates an application from different representations that widgets can use for
a similar resource.

« It lets you specify values for several actual resources with a single name. A re-
source class should be chosen to span a group of closely related fields.

For example, a widget can have several pixel resources: background, foreground,
border, block cursor, pointer cursor, and so on. Typically, the background defaults to
white and everything else to black. The resource class for each of these resources in
the resource list should be chosen so that it takes the minimal number of entries in
the resource database to make the background ivory and everything else darkblue.

In this case, the background pixel should have a resource class of " Background"
and all the other pixel entries a resource class of " “Foreground''. Then, the resource
file needs only two lines to change all pixels to ivory or darkblue:

*Background: ivory
*Foreground: darkblue

Similarly, a widget may have several font resources (such as normal and bold), but
all fonts should have the class Font. Thus, changing all fonts simply requires only
a single line in the default resource file:

*Font: 6x13

By convention, resource classes are always spelled starting with a capital letter to
distinguish them from resource names. Their symbolic names are preceded with
T XtC" (for example, XtCBackground).

The resource_type field gives the physical representation type of the resource and
also encodes information about the specific usage of the field. By convention, it
starts with an uppercase letter and is spelled identically to the type name of the
field. The resource type is used when resources are fetched to convert from the
resource database format (usually String) or the format of the resource default
value (almost anything, but often String) to the desired physical representation
(see the section called “Resource Conversions”). The Intrinsics define the following
resource types:

Resource Type Structure or Field Type
Xt RAccel er at or Tabl e XtAccelerators

Xt RAt om Atom

Xt RBi t map Pixmap, depth=1

Xt RBool ean Boolean

Xt RBool Bool

Xt RCal | back XtCallbackList

Xt RCar di nal Cardinal

Xt RCol or XColor

142

Resource Management

Resource Type

Structure or Field Type

Xt RCol or map

Xt RConmandAr gAr r ay
Xt RCur sor

Xt RDi mensi on

XtRDi rectoryString
Xt RDi spl ay

Xt REnum

Xt REnvi r onment Ar r ay
XtRFi |l e

Xt RFl oat

Xt RFont

Xt RFont Set

Xt RFont St ruct

Xt RFuncti on

Xt RGeonetry

XtRG avity
XtRinitial State
Xt Rl nt

Xt RLongBool ean
Xt RObj ect

Xt RPi xel

Xt RPi xmap

Xt RPoi nt er

Xt RPosi tion

Xt RRestart Styl e
Xt RScr een

Xt RShor t

Xt RSntConn
XtRString

Xt RSt ri ngArray
Xt RSt ri ngTabl e
Xt RTr ansl ati onTabl e
Xt RUnsi gnedChar
Xt RVi sual

Xt RW dget

Xt RW dget C ass
Xt RW dget Li st

Xt RW ndow

Colormap
String*
Cursor
Dimension
String
Display*
XtEnum
String*
FILE*
float

Font
XFontSet
XFontStruct*
0

char*, format as defined by XPar seGe-
onmetry

int

int

int

long

Object

Pixel

Pixmap
XtPointer
Position
unsigned char
Screen*

short
XtPointer
String

String*
String*
XtTranslations
unsigned char
Visual*
Widget
WidgetClass
WidgetList
Window

143

Resource Management

<X11/ Stri ngDef s. h> also defines the following resource types as a convenience for
widgets, although they do not have any corresponding data type assigned: Xt REd-
it Mode, Xt RJustify, and Xt ROri ent ati on.

The resource_size field is the size of the physical representation in bytes; you should
specify it as si zeof (type) so that the compiler fills in the value. The resource_offset
field is the offset in bytes of the field within the widget. You should use the Xt Of f -
set O macro to retrieve this value. The default type field is the representation type
of the default resource value. If default type is different from resource type and
the default value is needed, the resource manager invokes a conversion procedure
from default type to resource type. Whenever possible, the default type should be
identical to the resource type in order to minimize widget creation time. However,
there are sometimes no values of the type that the program can easily specify. In
this case, it should be a value for which the converter is guaranteed to work (for
example, Xt Def aul t For egr ound for a pixel resource). The default addr field speci-
fies the address of the default resource value. As a special case, if default type is
Xt RSt ri ng, then the value in the default addr field is the pointer to the string rather
than a pointer to the pointer. The default is used if a resource is not specified in
the argument list or in the resource database or if the conversion from the repre-
sentation type stored in the resource database fails, which can happen for various
reasons (for example, a misspelled entry in a resource file).

Two special representation types (XtRImmediate and XtRCallProc) are usable only
as default resource types. XtRImmediate indicates that the value in the default addr
field is the actual value of the resource rather than the address of the value. The
value must be in the correct representation type for the resource, coerced to an
Xt Poi nt er . No conversion is possible, since there is no source representation type.
XtRCallProc indicates that the value in the default addr field is a procedure point-
er. This procedure is automatically invoked with the widget, resource offset, and a
pointer to an Xr nVal ue in which to store the result. XtRCallProc procedure pointers
are of type (* Xt Resour ceDef aul t Proc) .

typedef void (*XtResourceDefaultProc)(w, offset, value);

w Specifies the widget whose resource value is to be obtained.
offset Specifies the offset of the field in the widget record.
value Specifies the resource value descriptor to return.

The (* Xt Resour ceDef aul t Proc) procedure should fill in the value->addr field with
a pointer to the resource value in its correct representation type.

To get the resource list structure for a particular class, use Xt Get Resour celLi st .
voi d Xt Get Resourceli st (class, resources_return, numresources_return);

class Specifies the object class to be queried. It must be
obj ect O ass or any subclass thereof.

resources return Returns the resource list.
num_resources_return Returns the number of entries in the resource list.

If Xt Get Resour celi st is called before the class is initialized, it returns the resource
list as specified in the class record. If it is called after the class has been initialized,

144

Resource Management

Xt Get Resour ceLi st returns a merged resource list that includes the resources for
all superclasses. The list returned by Xt Get Resour ceLi st should be freed using
Xt Fr ee when it is no longer needed.

To get the constraint resource list structure for a particular widget class, use Xt Get -
Const rai nt Resour ceLi st .

voi d Xt Get Const r ai nt Resour celi st (cl ass, resources_return,
num resources_return);

class Specifies the object class to be queried. It must be
obj ect O ass or any subclass thereof.

resources_return Returns the constraint resource list.

num_resources return Returns the number of entries in the constraint re-
source list.

If Xt Get Constrai nt Resour celi st is called before the widget class is initialized, the
resource list as specified in the widget class Constraint part is returned. If Xt Get -
Constrai nt Resour ceLi st is called after the widget class has been initialized, the
merged resource list for the class and all Constraint superclasses is returned. If the
specified class is not a subclass of const r ai nt W dget d ass, *resources return is set
to NULL and *num_resources return is set to zero. The list returned by Xt Get Con-
strai nt Resour ceLi st should be freed using Xt Fr ee when it is no longer needed.

The routines Xt Set Val ues and Xt Get Val ues also use the resource list to set and
get widget state; see the section called “Obtaining Widget State” and the section
called “Setting Widget State”.

Here is an abbreviated version of a possible resource list for a Label widget:

/* Resources specific to Label */

static XtResource resources[] = {

{XtNforeground, XtCForeground, XtRPixel, sizeof(Pixel),
XtOffsetOf(LabelRec, label.foreground), XtRString, XtDefaultForeground},

{XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct*),
XtOffsetOf(LabelRec, label.font), XtRString, XtDefaultFont},

{XtNlabel, XtCLabel, XtRString, sizeof(String),
XtOffsetOf(LabelRec, label.label), XtRString, NULL},

}

The complete resource name for a field of a widget instance is the concatenation of
the application shell name (from Xt AppCr eat eShel |), the instance names of all the
widget's parents up to the top of the widget tree, the instance name of the widget
itself, and the resource name of the specified field of the widget. Similarly, the full
resource class of a field of a widget instance is the concatenation of the application
class (from Xt AppCr eat eShel |), the widget class names of all the widget's parents
up to the top of the widget tree, the widget class name of the widget itself, and the
resource class of the specified field of the widget.

145

Resource Management

Byte Offset Calculations

To determine the byte offset of a field within a structure type, use Xt O f set O .
Cardinal XtOfsetOf(structure_type, field _nane);

structure_type Specifies a type that is declared as a structure.
field name Specifies the name of a member within the structure.

The Xt O f set 0 macro expands to a constant expression that gives the offset in
bytes to the specified structure member from the beginning of the structure. It is
normally used to statically initialize resource lists and is more portable than Xt Of f -
set , which serves the same function.

To determine the byte offset of a field within a structure pointer type, use Xt O f set .

Cardinal XtOffset(pointer_type, field_name);

pointer type Specifies a type that is declared as a pointer to a
structure.
field name Specifies the name of a member within the structure.

The Xt O f set macro expands to a constant expression that gives the offset in bytes
to the specified structure member from the beginning of the structure. It may be
used to statically initialize resource lists. Xt Of f set isless portable than Xt O f set OF .

Superclass-to-Subclass Chaining of Resource
Lists

The Xt Creat eW dget function gets resources as a superclass-to-subclass chained
operation. That is, the resources specified in the obj ect d ass resource list are
fetched, then those in rect Obj d ass, and so on down to the resources specified
for this widget's class. Within a class, resources are fetched in the order they are
declared.

In general, if a widget resource field is declared in a superclass, that field is included
in the superclass's resource list and need not be included in the subclass's resource
list. For example, the Core class contains a resource entry for background pixel.
Consequently, the implementation of Label need not also have a resource entry for
background pixel. However, a subclass, by specifying a resource entry for that field
in its own resource list, can override the resource entry for any field declared in
a superclass. This is most often done to override the defaults provided in the su-
perclass with new ones. At class initialization time, resource lists for that class are
scanned from the superclass down to the class to look for resources with the same
offset. A matching resource in a subclass will be reordered to override the super-
class entry. If reordering is necessary, a copy of the superclass resource list is made
to avoid affecting other subclasses of the superclass.

Also at class initialization time, the Intrinsics produce an internal representation of
the resource list to optimize access time when creating widgets. In order to save
memory, the Intrinsics may overwrite the storage allocated for the resource list in

146

Resource Management

the class record; therefore, widgets must allocate resource lists in writable storage
and must not access the list contents directly after the class initialize procedure
has returned.

Subresources

A widget does not do anything to retrieve its own resources; instead, Xt Cr eat eW d-
get does this automatically before calling the class initialize procedure.

Some widgets have subparts that are not widgets but for which the widget would
like to fetch resources. Such widgets call Xt Get Subr esour ces to accomplish this.

voi d Xt Get Subresources(w, base, nane, class, resources, numresources,
args, num args);

w Specifies the object used to qualify the subpart re-
source name and class. Must be of class Object or
any subclass thereof.

base Specifies the base address of the subpart data struc-
ture into which the resources will be written.

name Specifies the name of the subpart.

class Specifies the class of the subpart.

resources Specifies the resource list for the subpart.
num_resources Specifies the number of entries in the resource list.
args Specifies the argument list to override any other re-

source specifications.
num_args Specifies the number of entries in the argument list.

The Xt Get Subr esour ces function constructs a name and class list from the appli-
cation name and class, the names and classes of all the object's ancestors, and the
object itself. Then it appends to this list the name and class pair passed in. The
resources are fetched from the argument list, the resource database, or the default
values in the resource list. Then they are copied into the subpart record. If args is
NULL, num_args must be zero. However, if num_args is zero, the argument list is
not referenced.

Xt Get Subr esour ces may overwrite the specified resource list with an equivalent
representation in an internal format, which optimizes access time if the list is used
repeatedly. The resource list must be allocated in writable storage, and the caller
must not modify the list contents after the call if the same list is to be used again.
Resources fetched by Xt Get Subr esour ces are reference-counted as if they were
referenced by the specified object. Subresources might therefore be freed from the
conversion cache and destroyed when the object is destroyed, but not before then.

To fetch resources for widget subparts using varargs lists, use Xt VaGet Subr e-
sour ces.

voi d Xt VaGet Subr esour ces(w, base, nane, cl ass, resour ces,
num r esour ces);

147

Resource Management

w Specifies the object used to qualify the subpart re-
source name and class. Must be of class Object or
any subclass thereof.

base Specifies the base address of the subpart data struc-
ture into which the resources will be written.

name Specifies the name of the subpart.

class Specifies the class of the subpart.

resources Specifies the resource list for the subpart.
num_resources Specifies the number of entries in the resource list.

Specifies the variable argument list to override any
other resource specifications.

Xt VaGet Subr esour ces is identical in function to Xt Get Subr esour ces with the args
and num_args parameters replaced by a varargs list, as described in Section 2.5.1.

Obtaining Application Resources

To retrieve resources that are not specific to a widget but apply to the overall ap-
plication, use Xt Get Appl i cati onResour ces.

voi d Xt Get Appl i cati onResources(w, base, resources, numresources, args,

num ar gs) ;

w Specifies the object that identifies the resource data-
base to search (the database is that associated with
the display for this object). Must be of class Object
or any subclass thereof.

base Specifies the base address into which the resource
values will be written.

resources Specifies the resource list.

num_resources Specifies the number of entries in the resource list.

args Specifies the argument list to override any other re-
source specifications.

num_args Specifies the number of entries in the argument list.

The Xt Get Appl i cati onResour ces function first uses the passed object, which is
usually an application shell widget, to construct a resource name and class list. The
full name and class of the specified object (that is, including its ancestors, if any) is
logically added to the front of each resource name and class. Then it retrieves the
resources from the argument list, the resource database, or the resource list default
values. After adding base to each address, Xt Get Appl i cati onResour ces copies the
resources into the addresses obtained by adding base to each offset in the resource
list. If args is NULL, num_args must be zero. However, if num _args is zero, the
argument list is not referenced. The portable way to specify application resources
is to declare them as members of a structure and pass the address of the structure
as the base argument.

148

Resource Management

Xt Get Appl i cati onResour ces may overwrite the specified resource list with an
equivalent representation in an internal format, which optimizes access time if the
list is used repeatedly. The resource list must be allocated in writable storage, and
the caller must not modify the list contents after the call if the same list is to be
used again. Any per-display resources fetched by Xt Get Appl i cat i onResour ces will
not be freed from the resource cache until the display is closed.

To retrieve resources for the overall application using varargs lists, use Xt VaGet Ap-
pl i cati onResources.

voi d Xt VaGet Appl i cati onResources(w, base, resources, numresources);

w Specifies the object that identifies the resource data-
base to search (the database is that associated with
the display for this object). Must be of class Object
or any subclass thereof.

base Specifies the base address into which the resource
values will be written.

resources Specifies the resource list for the subpart.
num_resources Specifies the number of entries in the resource list.

Specifies the variable argument list to override any
other resource specifications.

Xt VaGet Appl i cati onResour ces is identical in function to Xt Get Appli cati onRe-
sour ces with the args and num_args parameters replaced by a varargs list, as de-
scribed in Section 2.5.1.

Resource Conversions

The Intrinsics provide a mechanism for registering representation converters that
are automatically invoked by the resource-fetching routines. The Intrinsics addi-
tionally provide and register several commonly used converters. This resource con-
version mechanism serves several purposes:

* It permits user and application resource files to contain textual representations
of nontextual values.

e It allows textual or other representations of default resource values that are de-
pendent on the display, screen, or colormap, and thus must be computed at run-
time.

* It caches conversion source and result data. Conversions that require much com-
putation or space (for example, string-to-translation-table) or that require round-
trips to the server (for example, string-to-font or string-to-color) are performed
only once.

Predefined Resource Converters

The Intrinsics define all the representations used in the Object, RectObj, Core, Com-
posite, Constraint, and Shell widget classes. The Intrinsics register the following
resource converters that accept input values of representation type Xt RSt ri ng.

149

Resource Management

Target Representa- Converter Name Additional Args

tion

Xt RAccel erator Tabl e Xt Cvt StringToAccel erat or Tabl e

Xt RAt om Xt Cvt StringToAt om Display*

Xt RBool ean Xt Cvt St ri ngToBool ean

Xt RBool Xt Cvt Stri ngToBool

Xt RConmandAr gAr r ay Xt Cvt St ri ngToConmmandAr gAr r ay

Xt RCur sor Xt Cvt St ri ngToCur sor Display*

Xt RDi mensi on Xt Cvt St ri ngToDi mensi on

XtRDi rectoryString Xt Cvt StringToDirectoryString

Xt RDi spl ay Xt Cvt St ri ngToDi spl ay

XtRFile XtCvt StringToFile

Xt RFl oat Xt Cvt Stri ngToFl oat

Xt RFont Xt Cvt St ri ngToFont Display*

Xt RFont Set Xt Cvt St ri ngToFont Set Display*, String lo-
cale

Xt RFont Struct Xt Cvt Stri ngToFont Struct Display*

XtRGavity XtCvt StringToGavity

XtRInitial State XtCvt StringTolnitial State

Xt Rl nt Xt Cvt Stri ngTol nt

Xt RPi xel XtCvt StringToPi xel col or Convert Args

Xt RPosi tion Xt Cvt StringToPosition

Xt RRestart Styl e XtCvt StringToRestart Styl e

Xt RShor t Xt Cvt StringToShort

Xt RTransl ati onTabl e XtCvt StringToTransl ati onTabl e

Xt RUnsi gnedChar Xt Cvt St ri ngToUnsi gnedChar

Xt RVi sual Xt Cvt StringToVi sual Screen*, Cardinal
depth

The String-to-Pixel conversion has two predefined constants that are guaranteed
to work and contrast with each other: Xt Def aul t For egr ound and Xt Def aul t Back-
ground. They evaluate to the black and white pixel values of the widget's screen,
respectively. If the application resource reverseVideo is Tr ue, they evaluate to the
white and black pixel values of the widget's screen, respectively. Similarly, the
String-to-Font and String-to-FontStruct converters recognize the constant Xt De-
faul t Font and evaluate this in the following manner:

* Query the resource database for the resource whose full name is " “xtDefaultFont",
class " XtDefaultFont" (that is, no widget name/class prefixes), and use a type
Xt RSt ri ng value returned as the font name or a type Xt RFont or Xt RFont St r uct
value directly as the resource value.

« If the resource database does not contain a value for xtDefaultFont, class XtDe-
faultFont, or if the returned font name cannot be successfully opened, an imple-
mentation-defined font in ISO8859-1 character set encoding is opened. (One pos-
sible algorithm is to perform an XLi st Font s using a wildcard font name and use
the first font in the list. This wildcard font name should be as broad as possible

150

Resource Management

to maximize the probability of locating a useable font; for example, "-*-*-*-R-*-*-
.120--***.]S08859-1".)

* If no suitable ISO8859-1 font can be found, issue a warning message and return
Fal se.

The String-to-FontSet converter recognizes the constant Xt Def aul t Font Set and
evaluate this in the following manner:

* Query the resource database for the resource whose full name is " xtDefault-
FontSet', class " XtDefaultFontSet'" (that is, no widget name/class prefixes), and
use a type Xt RStri ng value returned as the base font name list or a type Xt R-
Font Set value directly as the resource value.

» Ifthe resource database does not contain a value for xtDefaultFontSet, class XtDe-
faultFontSet, or if a font set cannot be successfully created from this resource,
an implementation-defined font set is created. (One possible algorithm is to per-
form an XCr eat eFont Set using a wildcard base font name. This wildcard base
font name should be as broad as possible to maximize the probability of locating
a useable font; for example, "-*-*-*-R-*¥-*k_1 (kK F*N)

» If no suitable font set can be created, issue a warning message and return Fal se.

If a font set is created but missing charset_list is not empty, a warning is issued
and the partial font set is returned. The Intrinsics register the String-to-FontSet
converter with a conversion argument list that extracts the current process locale at
the time the converter is invoked. This ensures that the converter is invoked again
if the same conversion is required in a different locale.

The String-to-Gravity conversion accepts string values that are the names of win-
dow and bit gravities and their numerical equivalents, as defined in Xlib — C Lan-
guage X Interface.: Forget Gravi ty, UnmapGravi ty, Nort hWest Gravi ty, Nort hGr av-
ity, NorthEast Gavity, West G avity, Center Gavity, East G avity, Sout hWest -
Gravity, SouthGravity, Sout hEast Gravity, and Stati cG avi ty. Alphabetic case
is not significant in the conversion.

The String-to-CommandArgArray conversion parses a String into an array of
strings. White space characters separate elements of the command line. The con-
verter recognizes the backslash character “"\\'' as an escape character to allow the
following white space character to be part of the array element.

The String-to-DirectoryString conversion recognizes the string * " XtCurrentDirec-
tory" and returns the result of a call to the operating system to get the current
directory.

The String-to-RestartStyle conversion accepts the values RestartlfRunning,
Rest art Anyway, Rest art | mredi at el y, and Rest art Never as defined by the X Ses-
sion Management Protocol.

The String-to-InitialState conversion accepts the values Nor mal St at e or | coni ¢S-
t at e as defined by the Inter-Client Communication Conventions Manual..

The String-to-Visual conversion calls XMat chVi sual | nf o using the screen and depth
fields from the core part and returns the first matching Visual on the list. The widget
resource list must be certain to specify any resource of type Xt RVi sual after the
depth resource. The allowed string values are the visual class names defined in X
Window System Protocol, Section 8; St ati cGray, Stati cCol or, TrueCol or, G ayS-
cal e, PseudoCol or, and Di rect Col or.

151

Resource Management

The Intrinsics register the following resource converter that accepts an input value
of representation type Xt RCol or.

Target Representation Converter Name Additional Args
Xt RPi xel Xt Cvt Col or ToPi xel

The Intrinsics register the following resource converters that accept input values
of representation type Xt R nt .

Target Representation Converter Name Additional Args
Xt RBool ean Xt Cvt | nt ToBool ean

Xt RBool Xt Cvt | nt ToBool

Xt RCol or Xt Cvt | nt ToCol or col or Convert Args
Xt RDi mensi on Xt Cvt I nt ToDi mensi on

Xt RFI oat Xt Cvt | nt ToFl oat

Xt RFont Xt Cvt | nt ToFont

Xt RPi xel Xt Cvt | nt ToPi xel

Xt RPi xmap Xt Cvt | nt ToPi xmap

Xt RPosi tion Xt Cvt I nt ToPosi ti on

Xt RShor t Xt Cvt | nt ToShort

Xt RUnsi gnedChar Xt Cvt | nt ToUnsi gnedChar

The Intrinsics register the following resource converter that accepts an input value
of representation type Xt RPi xel .

Target Representation Converter Name Additional Args
Xt RCol or Xt Cvt Pi xel ToCol or

New Resource Converters

Type converters use pointers to XrnValue structures (defined in <X11/

Xresour ce. h>; see Section 15.4 in Xlib — C Language X Interface.) for input and
output values.

typedef struct {
unsigned int size;
XPointer addr;

} XrmValue, *XrmValuePtr;

The addr field specifies the address of the data, and the size field gives the total
number of significant bytes in the data. For values of type Stri ng, addr is the ad-
dress of the first character and size includes the NULL-terminating byte.

A resource converter procedure pointer is of type (* Xt TypeConverter).

typedef Bool ean (*Xt TypeConverter)(display, args, numargs, from to,
converter_data);

display Specifies the display connection with which this con-
version is associated.

152

Resource Management

args Specifies a list of additional Xr mal ue arguments
to the converter if additional context is needed to
perform the conversion, or NULL. For example, the
String-to-Font converter needs the widget's display,
and the String-to-Pixel converter needs the widget's
screen and colormap.

num_args Specifies the number of entries in args.
from Specifies the value to convert.
to Specifies a descriptor for a location into which to

store the converted value.

converter data Specifies a location into which the converter may
store converter-specific data associated with this
conversion.

The display argument is normally used only when generating error messages, to
identify the application context (with the function Xt Di spl ayToAppl i cati onCon-
text).

The to argument specifies the size and location into which the converter should
store the converted value. If the addr field is NULL, the converter should allocate
appropriate storage and store the size and location into the to descriptor. If the type
converter allocates the storage, it remains under the ownership of the converter
and must not be modified by the caller. The type converter is permitted to use static
storage for this purpose, and therefore the caller must immediately copy the data
upon return from the converter. If the addr field is not NULL, the converter must
check the size field to ensure that sufficient space has been allocated before storing
the converted value. If insufficient space is specified, the converter should update
the size field with the number of bytes required and return Fal se without modifying
the data at the specified location. If sufficient space was allocated by the caller, the
converter should update the size field with the number of bytes actually occupied
by the converted value. For converted values of type Xt RStri ng, the size should
include the NULL-terminating byte, if any. The converter may store any value in the
location specified in converter data; this value will be passed to the destructor, if
any, when the resource is freed by the Intrinsics.

The converter must return Tr ue if the conversion was successful and Fal se other-
wise. If the conversion cannot be performed because of an improper source value,
a warning message should also be issued with Xt AppWar ni nghVsg.

Most type converters just take the data described by the specified from argument
and return data by writing into the location specified in the to argument. A few need
other information, which is available in args. A type converter can invoke another
type converter, which allows differing sources that may convert into a common in-
termediate result to make maximum use of the type converter cache.

Note that if an address is written into to->addr, it cannot be that of a local variable
of the converter because the data will not be valid after the converter returns. Static
variables may be used, as in the following example. If the converter modifies the
resource database, the changes affect any in-progress widget creation, Xt Get Ap-
plicati onResources, or Xt Get Subr esour ces in an implementation-defined man-
ner; however, insertion of new entries or changes to existing entries is allowed and
will not directly cause an error.

153

Resource Management

The following is an example of a converter that takes a stri ng and converts it to
a Pi xel . Note that the display parameter is used only to generate error messages;
the Screen conversion argument is still required to inform the Intrinsics that the
converted value is a function of the particular display (and colormap).

#define done(type, value) \\
{ \\
if (toVal->addr != NULL) { \\
if (toVal->size < sizeof(type)) { \\
toVal->size = sizeof(type); \\
return False; \\

J I\

(type)(toVal->addr) = (value); \\
PN

else { \\

static type static val; \\
static val = (value); \\
toVal->addr = (XPointer)&static val; \\
Foo\N

toVal->size = sizeof(type); \\

return True; \\

}

static Boolean CvtStringToPixel(dpy, args, num args, fromVal, toVal, converter data)

Display *dpy;

XrmValue *args;

Cardinal *num _args;

XrmValue *fromVal;

XrmValue *toVal;

XtPointer *converter data;

{

static XColor screenColor;

XColor exactColor;

Screen *screen;

Colormap colormap;

Status status;

if *num _args != 2)
XtAppWarningMsg(XtDisplayToApplicationContext(dpy),
"wrongParameters", "cvtStringToPixel", "XtToolkitError",
"String to pixel conversion needs screen and colormap arguments",
(String *)NULL, (Cardinal *)NULL);

screen = *((Screen**) args[0].addr);

colormap = *((Colormap *) args[1].addr);

if (CompareISOLatin1(str, XtDefaultBackground) == 0) {
*closure ret = False;

done(Pixel, WhitePixelOfScreen(screen));

}

if (CompareISOLatin1(str, XtDefaultForeground) == 0) {
*closure ret = False;

done(Pixel, BlackPixelOfScreen(screen));

}

status = XAllocNamedColor(DisplayOfScreen(screen), colormap, (char*)fromVal->addr,

&screenColor, &exactColor);
if (status == 0) {

154

Resource Management

String params[1];
Cardinal num params = 1;
params[0] = (String)fromVal->addr;
XtAppWarningMsg(XtDisplayToApplicationContext(dpy),
"noColormap", "cvtStringToPixel", "XtToolkitError",
"Cannot allocate colormap entry for \\"%s\\"", params,\
&num params);
*converter data = (char *) False;
return False;
} else {
*converter data = (char *) True;
done(Pixel, &screenColor.pixel);

}
}

All type converters should define some set of conversion values for which they are
guaranteed to succeed so these can be used in the resource defaults. This issue aris-
es only with conversions, such as fonts and colors, where there is no string repre-
sentation that all server implementations will necessarily recognize. For resources
like these, the converter should define a symbolic constant in the same manner as
Xt Def aul t For egr ound, Xt Def aul t Backgr ound, and Xt Def aul t Font .

To allow the Intrinsics to deallocate resources produced by type converters, a re-
source destructor procedure may also be provided.

A resource destructor procedure pointer is of type (* Xt Destructor).
typedef void (*XtDestructor)(app, to, converter_data, args, num.args);

app Specifies an application context in which the re-
source is being freed.

to Specifies a descriptor for the resource produced by
the type converter.

converter data Specifies the converter-specific data returned by the
type converter.

args Specifies the additional converter arguments as
passed to the type converter when the conversion
was performed.

num_args Specifies the number of entries in args.

The destructor procedure is responsible for freeing the resource specified by the
to argument, including any auxiliary storage associated with that resource, but not
the memory directly addressed by the size and location in the to argument or the
memory specified by args.

Issuing Conversion Warnings

The Xt Di spl aySt ri ngConver si onVar ni ng procedure is a convenience routine for
resource type converters that convert from string values.

voi d Xt Di spl ayStri ngConversi onWar ni ng(di spl ay, fromval ue);

155

Resource Management

display Specifies the display connection with which the conver-
sion is associated.

from value Specifies the string that could not be converted.
to type Specifies the target representation type requested.

The Xt Di spl aySt ri ngConver si onWar ni ng procedure issues a warning message us-
ing Xt AppVvar ni ngMsg with name " conversionError', type " string", class " Xt-
ToolkitError", and the default message ' Cannot convert "from value" to type
to type".

To issue other types of warning or error messages, the type converter should use
Xt AppWar ni ngMsg or Xt AppEr r or Msg.

To retrieve the application context associated with a given display connection, use
Xt Di spl ayToAppl i cati onCont ext .

Xt AppCont ext Xt Di spl ayToAppl i cati onCont ext (di spl ay) ;
display Specifies an open and initialized display connection.

The Xt Di spl ayToAppl i cati onCont ext function returns the application context in
which the specified display was initialized. If the display is not known to the Intrin-
sics, an error message is issued.

Registering a New Resource Converter

When registering a resource converter, the client must specify the manner in which
the conversion cache is to be used when there are multiple calls to the converter.
Conversion cache control is specified via an Xt CacheType argument.

typedef int XtCacheType;
An Xt CacheType field may contain one of the following values:
Xt CacheNone

* Specifies that the results of a previous conversion may not be reused to satisfy
any other resource requests; the specified converter will be called each time the
converted value is required.

Xt CacheAl |

* Specifies that the results of a previous conversion should be reused for any re-
source request that depends upon the same source value and conversion argu-
ments.

Xt CacheByDi spl ay

* Specifies that the results of a previous conversion should be used as for
Xt CacheAl | but the destructor will be called, if specified, if Xt O oseDi spl ay is
called for the display connection associated with the converted value, and the
value will be removed from the conversion cache.

The qualifier Xt CacheRef Count may be ORed with any of the above values. If
Xt CacheRef Count is specified, calls to Xt Cr eat eW dget, Xt Cr eat eManagedW dget,

156

Resource Management

Xt Get Appl i cati onResour ces, and Xt Get Subr esour ces that use the converted val-
ue will be counted. When a widget using the converted value is destroyed, the count
is decremented, and, if the count reaches zero, the destructor procedure will be
called and the converted value will be removed from the conversion cache.

To register a type converter for all application contexts in a process, use Xt Set -
TypeConvert er, and to register a type converter in a single application context, use
Xt AppSet TypeConverter.

voi d Xt Set TypeConverter(fromtype, to_type, converter, convert_args,
num args, cache_type, destructor);

from_type Specifies the source type.

to type Specifies the destination type.

converter Specifies the resource type converter procedure.
convert_args Specifies additional conversion arguments, or NULL.
num_args Specifies the number of entries in convert args.
cache type Specifies whether or not resources produced by this

converter are sharable or display-specific and when
they should be freed.

destructor Specifies a destroy procedure for resources pro-
duced by this conversion, or NULL if no additional
action is required to deallocate resources produced
by the converter.

Xt AppSet TypeConvert er (app_cont ext, fromtype, to_type, converter,
convert_args, num.args, cache_type, destructor);

app_context Specifies the application context.

from_type Specifies the source type.

to type Specifies the destination type.

converter Specifies the resource type converter procedure.
convert_args Specifies additional conversion arguments, or NULL.
num_args Specifies the number of entries in convert args.
cache type Specifies whether or not resources produced by this

converter are sharable or display-specific and when
they should be freed.

destructor Specifies a destroy procedure for resources pro-
duced by this conversion, or NULL if no additional
action is required to deallocate resources produced
by the converter.

Xt Set TypeConverter registers the specified type converter and destructor in all
application contexts created by the calling process, including any future application

157

Resource Management

contexts that may be created. Xt AppSet TypeConvert er registers the specified type
converter in the single application context specified. If the same from type and
to type are specified in multiple calls to either function, the most recent overrides
the previous ones.

For the few type converters that need additional arguments, the Intrinsics con-
version mechanism provides a method of specifying how these arguments should
be computed. The enumerated type Xt AddressMode and the structure Xt Con-
vert ArgRec specify how each argument is derived. These are defined in <X11/
Intrinsic.h>.

typedef enum {

/* address mode parameter representation */
XtAddress, /* address */
XtBaseOffset, /* offset */
XtImmediate, /* constant */
XtResourceString, /* resource name string */
XtResourceQuark, /* resource name quark */
XtWidgetBaseOffset, /* offset */
XtProcedureArg /* procedure to call */

} XtAddressMode;

typedef struct {

XtAddressMode address mode;
XtPointer address id;

Cardinal size;

} XtConvertArgRec, *XtConvertArgList;

The size field specifies the length of the data in bytes. The address mode field spec-
ifies how the address id field should be interpreted. Xt Addr ess causes address_id
to be interpreted as the address of the data. Xt BaseO f set causes address id to be
interpreted as the offset from the widget base. Xt | nmedi at e causes address id to
be interpreted as a constant. Xt Resour ceStri ng causes address id to be interpret-
ed as the name of a resource that is to be converted into an offset from the widget
base. Xt Resour ceQuar k causes address id to be interpreted as the result of an Xr -
ntt ri ngToQuar k conversion on the name of a resource, which is to be converted
into an offset from the widget base. Xt W dget BaseOf f set is similar to Xt BaseOf f -
set except that it searches for the closest windowed ancestor if the object is not of
a subclass of Core (see Chapter 12, Nonwidget Objects). Xt Pr ocedur eAr g specifies
that address id is a pointer to a procedure to be invoked to return the conversion
argument. If Xt Pr ocedur eAr g is specified, address id must contain the address of
a function of type (* Xt Convert ArgProc).

typedef void (*XtConvertArgProc)(app, to, converter_data, args,
num ar gs) ;

app Specifies an application context in which the re-
source is being freed.

to Specifies a descriptor for the resource produced by
the type converter.

converter data Specifies the converter-specific data returned by the
type converter.

158

Resource Management

args Specifies the additional converter arguments as
passed to the type converter when the conversion
was performed.

num_args Specifies the number of entries in args.

The destructor procedure is responsible for freeing the resource specified by the
to argument, including any auxiliary storage associated with that resource, but not
the memory directly addressed by the size and location in the to argument or the
memory specified by args.

Resource Converter Invocation

All resource-fetching routines (for example, Xt Get Subr esour ces, Xt Get Appl i ca-
ti onResour ces, and so on) call resource converters if the resource database or
varargs list specifies a value that has a different representation from the desired
representation or if the widget's default resource value representation is different
from the desired representation.

To invoke explicit resource conversions, use Xt Convert AndSt ore or Xt Cal | Con-
verter.

typedef XtPointer XtCacheRef;

Bool ean Xt Cal | Converter(di splay, converter, conversion_args, numargs,
from to_in_out, cache_ref _return);

display Specifies the display with which the conversion is to
be associated.

converter Specifies the conversion procedure to be called.

conversion_args Specifies the additional conversion arguments need-
ed to perform the conversion, or NULL.

num_args Specifies the number of entries in conversion_args.
from Specifies a descriptor for the source value.

to in out Returns the converted value.

cache ref return Returns a conversion cache id.

The Xt Cal | Converter function looks up the specified type converter in the appli-
cation context associated with the display and, if the converter was not registered
or was registered with cache type Xt CacheAl | or Xt CacheByDi spl ay, looks in the
conversion cache to see if this conversion procedure has been called with the spec-
ified conversion arguments. If so, it checks the success status of the prior call, and
if the conversion failed, Xt Cal | Convert er returns Fal se immediately; otherwise it
checks the size specified in the to argument, and, if it is greater than or equal to
the size stored in the cache, copies the information stored in the cache into the lo-
cation specified by to->addr, stores the cache size into to->size, and returns Tr ue.
If the size specified in the to argument is smaller than the size stored in the cache,
Xt Cal | Converter copies the cache size into to->size and returns Fal se. If the con-
verter was registered with cache type Xt CacheNone or no value was found in the

159

Resource Management

conversion cache, Xt Cal | Convert er calls the converter, and if it was not registered
with cache type Xt CacheNone, enters the result in the cache. Xt Cal | Converter then
returns what the converter returned.

The cache ref return field specifies storage allocated by the caller in which an
opaque value will be stored. If the type converter has been registered with the
Xt CacheRef Count modifier and if the value returned in cache ref return is non-
NULL, then the caller should store the cache ref return value in order to decre-
ment the reference count when the converted value is no longer required. The
cache_ref return argument should be NULL if the caller is unwilling or unable to
store the value.

To explicitly decrement the reference counts for resources obtained from Xt Cal | -
Converter, use Xt AppRel easeCacheRef s.

voi d Xt AppRel easeCacheRef s(app_context, refs);
app_context Specifies the application context.
refs Specifies the list of cache references to be released.

Xt AppRel easeCacheRef s decrements the reference count for the conversion entries
identified by the refs argument. This argument is a pointer to a NULL-terminated
list of Xt CacheRef values. If any reference count reaches zero, the destructor, if any,
will be called and the resource removed from the conversion cache.

As a convenience to clients needing to explicitly decrement reference counts via
a callback function, the Intrinsics define two callback procedures, Xt Cal | backRe-
| easeCacheRef and Xt Cal | backRel easeCacheRef Li st .

voi d Xt Cal | backRel easeCacheRef (obj ect, client_data, call _data);

object Specifies the object with which the resource is asso-
ciated.

client data Specifies the conversion cache entry to be released.

call data Is ignored.

This callback procedure may be added to a callback list to release a previously re-
turned Xt CacheRef value. When adding the callback, the callback client data argu-
ment must be specified as the value of the Xt CacheRef data cast to type Xt Poi nter.

voi d Xt Cal | backRel easeCacheRef Li st (obj ect, client_data, call _data);

object Specifies the object with which the resources are as-
sociated.

client data Specifies the conversion cache entries to be released.

call data Is ignored.

This callback procedure may be added to a callback list to release a list of previously
returned Xt CacheRef values. When adding the callback, the callback client data
argument must be specified as a pointer to a NULL-terminated list of Xt CacheRef
values.

160

Resource Management

To lookup and call a resource converter, copy the resulting value, and free a cached
resource when a widget is destroyed, use Xt Convert AndSt or e.

Bool ean Xt Convert AndSt ore(object, fromtype, from to_type, to_in_out);

object Specifies the object to use for additional arguments, if
any are needed, and the destroy callback list. Must be of
class Object or any subclass thereof.

from_type Specifies the source type.

from Specifies the value to be converted.

to type Specifies the destination type.

to in out Specifies a descriptor for storage into which the convert-

ed value will be returned.

The Xt Convert AndSt or e function looks up the type converter registered to con-
vert from type to to type, computes any additional arguments needed, and then
calls Xt Cal | Converter (or XtDirectConvert if an old-style converter was regis-
tered with Xt AddConvert er or Xt AppAddConvert er; see Appendix C) with the from
and to in out arguments. The to in out argument specifies the size and location
into which the converted value will be stored and is passed directly to the converter.
If the location is specified as NULL, it will be replaced with a pointer to private
storage and the size will be returned in the descriptor. The caller is expected to
copy this private storage immediately and must not modify it in any way. If a non-
NULL location is specified, the caller must allocate sufficient storage to hold the
converted value and must also specify the size of that storage in the descriptor. The
size field will be modified on return to indicate the actual size of the converted data.
If the conversion succeeds, Xt Conver t AndSt or e returns Tr ue; otherwise, it returns
Fal se.

Xt Convert AndSt or e adds Xt Cal | backRel easeCacheRef to the destroyCallback list
of the specified object if the conversion returns an Xt CacheRef value. The resulting
resource should not be referenced after the object has been destroyed.

Xt Cr eat eW dget performs processing equivalent to Xt Convert AndSt or e when ini-
tializing the object instance. Because there is extra memory overhead required to
implement reference counting, clients may distinguish those objects that are never
destroyed before the application exits from those that may be destroyed and whose
resources should be deallocated.

To specify whether reference counting is to be enabled for the resources of a partic-
ular object when the object is created, the client can specify a value for the Bool ean
resource XtNinitialResourcesPersistent, class XtClnitialResourcesPersistent.

When Xt Cr eat eW dget is called, if this resource is not specified as Fal se in either
the arglist or the resource database, then the resources referenced by this object
are not reference-counted, regardless of how the type converter may have been
registered. The effective default value is Tr ue; thus clients that expect to destroy
one or more objects and want resources deallocated must explicitly specify Fal se
for XtNinitialResourcesPersistent.

The resources are still freed and destructors called when Xt Cl oseDi spl ay is called
if the conversion was registered as Xt CacheByDi spl ay.

161

Resource Management

Reading and Writing Widget State

Any resource field in a widget can be read or written by a client. On a write opera-
tion, the widget decides what changes it will actually allow and updates all derived
fields appropriately.

Obtaining Widget State

To retrieve the current values of resources associated with a widget instance, use
Xt CGet Val ues.

voi d Xt Get Val ues(object, args, num args);

object Specifies the object whose resource values are to be re-
turned. Must be of class Object or any subclass thereof.

args Specifies the argument list of name/address pairs that
contain the resource names and the addresses into which
the resource values are to be stored. The resource names
are widget-dependent.

num_args Specifies the number of entries in the argument list.

The Xt Get Val ues function starts with the resources specified for the Object class
and proceeds down the subclass chain to the class of the object. The value field of a
passed argument list must contain the address into which to copy the contents of the
corresponding object instance field. If the field is a pointer type, the lifetime of the
pointed-to data is defined by the object class. For the Intrinsics-defined resources,
the following lifetimes apply:

* Not valid following any operation that modifies the resource:
* XtNchildren resource of composite widgets.

» All resources of representation type XtRCallback.

* Remain valid at least until the widget is destroyed:

¢ « XtNaccelerators, XtNtranslations.

* Remain valid until the Display is closed:

e * XtNscreen.

It is the caller's responsibility to allocate and deallocate storage for the copied data
according to the size of the resource representation type used within the object.

If the class of the object's parent is a subclass of const r ai nt W dget d ass, Xt Get -
Val ues then fetches the values for any constraint resources requested. It starts with
the constraint resources specified for const r ai nt W dget d ass and proceeds down
the subclass chain to the parent's constraint resources. If the argument list contains
a resource name that is not found in any of the resource lists searched, the value at
the corresponding address is not modified. If any get values hook procedures in the
object's class or superclass records are non-NULL, they are called in superclass-to-
subclass order after all the resource values have been fetched by Xt Get Val ues.
Finally, if the object's parent is a subclass of constrai nt W dget d ass, and if any
of the parent's class or superclass records have declared Constrai nt O assExt en-
si on records in the Constraint class part extension field with a record type of NUL-
LQUARK, and if the get values hook field in the extension record is non-NULL,

162

Resource Management

Xt Get Val ues calls the get values hook procedures in superclass-to-subclass order.
This permits a Constraint parent to provide nonresource data via Xt Get Val ues.

Get _values hook procedures may modify the data stored at the location addressed
by the value field, including (but not limited to) making a copy of data whose re-
source representation is a pointer. None of the Intrinsics-defined object classes copy
data in this manner. Any operation that modifies the queried object resource may
invalidate the pointed-to data.

To retrieve the current values of resources associated with a widget instance using
varargs lists, use Xt VaGet Val ues.

voi d Xt VaGet Val ues(object, ...);

object Specifies the object whose resource values are to be re-
turned. Must be of class Object or any subclass thereof.

Specifies the variable argument list for the resources to be
returned.

Xt VaGet Val ues is identical in function to Xt Get Val ues with the args and num_args
parameters replaced by a varargs list, as described in Section 2.5.1. All value en-
tries in the list must specify pointers to storage allocated by the caller to which the
resource value will be copied. It is the caller's responsibility to ensure that sufficient
storage is allocated. If Xt VaTypedAr g is specified, the type argument specifies the
representation desired by the caller and the size argument specifies the number
of bytes allocated to store the result of the conversion. If the size is insufficient, a
warning message is issued and the list entry is skipped.

Widget Subpart Resource Data: The get_values _hook Procedure

Widgets that have subparts can return resource values from them through Xt Get -
Val ues by supplying a get values hook procedure. The get values hook procedure
pointer is of type (* Xt ArgsProc).

typedef void (*XtArgsProc)(w, args, num.args);

w Specifies the widget whose subpart resource values are
to be retrieved.

args Specifies the argument list that was passed to Xt Get Val -
ues or the transformed varargs list passed to Xt VaGet -
Val ues.

num_args Specifies the number of entries in the argument list.

The widget with subpart resources should call Xt GetSubval ues in the
get values hook procedure and pass in its subresource list and the args and
num_args parameters.

Widget Subpart State

To retrieve the current values of subpart resource data associated with a widget
instance, use Xt Get Subval ues. For a discussion of subpart resources, see the sec-
tion called “Subresources”.

voi d Xt Get Subval ues(base, resources, numresources, args, numargs);

163

Resource Management

base Specifies the base address of the subpart data struc-
ture for which the resources should be retrieved.

resources Specifies the subpart resource list.
num_resources Specifies the number of entries in the resource list.
args Specifies the argument list of name/address pairs

that contain the resource names and the addresses
into which the resource values are to be stored.

num_args Specifies the number of entries in the argument list.

The Xt Get Subval ues function obtains resource values from the structure identified
by base. The value field in each argument entry must contain the address into which
to store the corresponding resource value. It is the caller's responsibility to allocate
and deallocate this storage according to the size of the resource representation type
used within the subpart. If the argument list contains a resource name that is not
found in the resource list, the value at the corresponding address is not modified.

To retrieve the current values of subpart resources associated with a widget in-
stance using varargs lists, use Xt VaGet Subval ues.

voi d Xt VaCGet Subval ues(base, resources, numresources, ...);

base Specifies the base address of the subpart data struc-
ture for which the resources should be retrieved.

resources Specifies the subpart resource list.
num_resources Specifies the number of entries in the resource list.

Specifies a variable argument list of name/address
pairs that contain the resource names and the ad-
dresses into which the resource values are to be
stored.

Xt VaGet Subval ues is identical in function to Xt Get Subval ues with the args and
num_args parameters replaced by a varargs list, as described in Section 2.5.1. Xt -
VaTypedAr g is not supported for Xt VaGet Subval ues. If Xt VaTypedAr g is specified in
the list, a warning message is issued and the entry is then ignored.

Setting Widget State

To modify the current values of resources associated with a widget instance, use
Xt Set Val ues.

voi d Xt Set Val ues(obj ect, args, num args);

object Specifies the object whose resources are to be modified.
Must be of class Object or any subclass thereof.

args Specifies the argument list of name/value pairs that con-
tain the resources to be modified and their new values.

num_args Specifies the number of entries in the argument list.

164

Resource Management

The Xt Set Val ues function starts with the resources specified for the Object class
fields and proceeds down the subclass chain to the object. At each stage, it replaces
the object resource fields with any values specified in the argument list. Xt Set Val -
ues then calls the set values procedures for the object in superclass-to-subclass or-
der. If the object has any non-NULL set values hook fields, these are called imme-
diately after the corresponding set values procedure. This procedure permits sub-
classes to set subpart data via Xt Set Val ues.

If the class of the object's parent is a subclass of const r ai nt W dget d ass, Xt Set -
Val ues also updates the object's constraints. It starts with the constraint resources
specified for const rai nt W dget O ass and proceeds down the subclass chain to the
parent's class. At each stage, it replaces the constraint resource fields with any val-
ues specified in the argument list. It then calls the constraint set values procedures
from const r ai nt W dget G ass down to the parent's class. The constraint set values
procedures are called with widget arguments, as for all set values procedures, not
just the constraint records, so that they can make adjustments to the desired values
based on full information about the widget. Any arguments specified that do not
match a resource list entry are silently ignored.

If the object is of a subclass of RectObj, Xt Set Val ues determines if a geometry re-
quest is needed by comparing the old object to the new object. If any geometry
changes are required, Xt Set Val ues restores the original geometry and makes the
request on behalf of the widget. If the geometry manager returns Xt Geonet r yYes,
Xt Set Val ues calls the object's resize procedure. If the geometry manager returns
Xt Geonet r yDone, Xt Set Val ues continues, as the object's resize procedure should
have been called by the geometry manager. If the geometry manager returns Xt Ge-
onet r yNo, Xt Set Val ues ignores the geometry request and continues. If the geom-
etry manager returns Xt Geonet r yAl nost, Xt Set Val ues calls the set values almost
procedure, which determines what should be done. Xt Set Val ues then repeats this
process, deciding once more whether the geometry manager should be called.

Finally, if any of the set values procedures returned Tr ue, and the widget is real-
ized, Xt Set Val ues causes the widget's expose procedure to be invoked by calling
X ear Ar ea on the widget's window.

To modify the current values of resources associated with a widget instance using
varargs lists, use Xt VaSet Val ues.

voi d Xt VaSet Val ues(object, ...);

object Specifies the object whose resources are to be modified.
Must be of class Object or any subclass thereof.

Specifies the variable argument list of name/value pairs that
contain the resources to be modified and their new values.

Xt VaSet Val ues is identical in function to Xt Set Val ues with the args and num_args
parameters replaced by a varargs list, as described in Section 2.5.1.

Widget State: The set_values Procedure

The set_values procedure pointer in a widget class is of type (* Xt Set Val uesFunc) .

typedef Bool ean (*Xt Set Val uesFunc) (current, request, new, args,
num ar gs) ;

165

Resource Management

current Specifies a copy of the widget as it was before the Xt Set -
Val ues call.

request Specifies a copy of the widget with all values changed
as asked for by the Xt Set Val ues call before any class
set values procedures have been called.

new Specifies the widget with the new values that are actually
allowed.
args Specifies the argument list passed to Xt Set Val ues or the

transformed argument list passed to Xt VaSet Val ues.
num_args Specifies the number of entries in the argument list.

The set values procedure should recompute any field derived from resources that
are changed (for example, many GCs depend on foreground and background pixels).
If no recomputation is necessary, and if none of the resources specific to a subclass
require the window to be redisplayed when their values are changed, you can spec-
ify NULL for the set values field in the class record.

Like the initialize procedure, set values mostly deals only with the fields defined in
the subclass, but it has to resolve conflicts with its superclass, especially conflicts
over width and height.

Sometimes a subclass may want to overwrite values filled in by its superclass. In
particular, size calculations of a superclass are often incorrect for a subclass, and,
in this case, the subclass must modify or recalculate fields declared and computed
by its superclass.

As an example, a subclass can visually surround its superclass display. In this case,
the width and height calculated by the superclass set values procedure are too
small and need to be incremented by the size of the surround. The subclass needs
to know if its superclass's size was calculated by the superclass or was specified ex-
plicitly. All widgets must place themselves into whatever size is explicitly given, but
they should compute a reasonable size if no size is requested. How does a subclass
know the difference between a specified size and a size computed by a superclass?

The request and new parameters provide the necessary information. The request
widget is a copy of the widget, updated as originally requested. The new widget
starts with the values in the request, but it has additionally been updated by all
superclass set _values procedures called so far. A subclass set_values procedure can
compare these two to resolve any potential conflicts. The set values procedure need
not refer to the request widget unless it must resolve conflicts between the cur-
rent and new widgets. Any changes the widget needs to make, including geometry
changes, should be made in the new widget.

In the above example, the subclass with the visual surround can see if the width and
height in the request widget are zero. If so, it adds its surround size to the width
and height fields in the new widget. If not, it must make do with the size originally
specified. In this case, zero is a special value defined by the class to permit the
application to invoke this behavior.

The new widget is the actual widget instance record. Therefore, the set values pro-
cedure should do all its work on the new widget; the request widget should never

166

Resource Management

be modified. If the set values procedure needs to call any routines that operate on
a widget, it should specify new as the widget instance.

Before calling the set values procedures, the Intrinsics modify the resources of the
request widget according to the contents of the arglist; if the widget names all its
resources in the class resource list, it is never necessary to examine the contents
of args.

Finally, the set values procedure must return a Boolean that indicates whether the
widget needs to be redisplayed. Note that a change in the geometry fields alone
does not require the set values procedure to return Tr ue; the X server will eventu-
ally generate an Expose event, if necessary. After calling all the set values proce-
dures, Xt Set Val ues forces a redisplay by calling Xd ear Ar ea if any of the set_values
procedures returned Tr ue. Therefore, a set values procedure should not try to do
its own redisplaying.

Set values procedures should not do any work in response to changes in geometry
because Xt Set Val ues eventually will perform a geometry request, and that request
might be denied. If the widget actually changes size in response to a call to Xt Set -
Val ues, its resize procedure is called. Widgets should do any geometry-related work
in their resize procedure.

Note that it is permissible to call Xt Set Val ues before a widget is realized. Therefore,
the set values procedure must not assume that the widget is realized.

Widget State: The set_values_almost Procedure

The set values almost procedure pointer in the widget class record is of type
(*Xt Al nost Proc) .

typedef void (*XtAl nostProc)(old, new, request, reply);

old Specifies a copy of the object as it was before the Xt Set -
Val ues call.

new Specifies the object instance record.

request Specifies the original geometry request that was sent to

the geometry manager that caused Xt Geonet r yAl nost to
be returned.

reply Specifies the compromise geometry that was returned by
the geometry manager with Xt Geonet r yAl nost .

Most classes inherit the set_values almost procedure from their superclass by spec-
ifying Xt I nheri t Set Val uesAl nost in the class initialization. The set values almost
procedure in r ect Obj O ass accepts the compromise suggested.

The set _values almost procedure is called when a client tries to set a widget's geom-
etry by means of a call to Xt Set Val ues and the geometry manager cannot satisfy the
request but instead returns Xt Geonet r yNo or Xt Geonet r yAl nost and a compromise
geometry. The new object is the actual instance record. The X, y, width, height, and
border width fields contain the original values as they were before the Xt Set Val ues
call, and all other fields contain the new values. The request parameter contains
the new geometry request that was made to the parent. The reply parameter con-
tains reply->request mode equal to zero if the parent returned Xt Geonet r yNo and

167

Resource Management

contains the parent's compromise geometry otherwise. The set values almost pro-
cedure takes the original geometry and the compromise geometry and determines
if the compromise is acceptable or whether to try a different compromise. It returns
its results in the request parameter, which is then sent back to the geometry man-
ager for another try. To accept the compromise, the procedure must copy the con-
tents of the reply geometry into the request geometry; to attempt an alternative
geometry, the procedure may modify any part of the request argument; to terminate
the geometry negotiation and retain the original geometry, the procedure must set
request->request_ mode to zero. The geometry fields of the old and new instances
must not be modified directly.

Widget State: The ConstraintClassPart set_values Procedure

The constraint set values procedure pointer is of type (* Xt Set Val uesFunc). The
values passed to the parent's constraint set values procedure are the same as those
passed to the child's class set values procedure. A class can specify NULL for the
set_values field of the Constrai nt Part if it need not compute anything.

The constraint set values procedure should recompute any constraint fields derived
from constraint resources that are changed. Furthermore, it may modify other wid-
get fields as appropriate. For example, if a constraint for the maximum height of a
widget is changed to a value smaller than the widget's current height, the constraint
set _values procedure may reset the height field in the widget.

Widget Subpart State

To set the current values of subpart resources associated with a widget instance,
use Xt Set Subval ues. For a discussion of subpart resources, see the section called
“Subresources”.

voi d Xt Set Subval ues(base, resources, numresources, args, numargs);

base Specifies the base address of the subpart data struc-
ture into which the resources should be written.

resources Specifies the subpart resource list.

num_resources Specifies the number of entries in the resource list.

args Specifies the argument list of name/value pairs that
contain the resources to be modified and their new
values.

num_args Specifies the number of entries in the argument list.

The Xt Set Subval ues function updates the resource fields of the structure identified
by base. Any specified arguments that do not match an entry in the resource list
are silently ignored.

To set the current values of subpart resources associated with a widget instance
using varargs lists, use Xt VaSet Subval ues.

voi d Xt VaSet Subval ues(base, resources, numresources);

base Specifies the base address of the subpart data struc-
ture into which the resources should be written.

168

Resource Management

resources Specifies the subpart resource list.
num_resources Specifies the number of entries in the resource list.

Specifies the variable argument list of name/value
pairs that contain the resources to be modified and
their new values.

Xt VaSet Subval ues is identical in function to Xt Set Subval ues with the args and
num_args parameters replaced by a varargs list, as described in Section 2.5.1.
Xt VaTypedAr g is not supported for Xt VaSet Subval ues. If an entry containing Xt -
VaTypedAr g is specified in the list, a warning message is issued and the entry is
ignored.

Widget Subpart Resource Data: The set_values_hook Procedure

Note

The set values hook procedure is obsolete, as the same information is now
available to the set values procedure. The procedure has been retained for
those widgets that used it in versions prior to Release 4.

Widgets that have a subpart can set the subpart resource values through Xt Set -
Val ues by supplying a set values hook procedure. The set values hook procedure
pointer in a widget class is of type (* Xt Ar gsFunc) .

t ypedef Bool ean (*Xt ArgsFunc)(w, args, num. args);

w Specifies the widget whose subpart resource values are
to be changed.

args Specifies the argument list that was passed to Xt Set Val -
ues or the transformed varargs list passed to Xt VaSet -
Val ues.

num_args Specifies the number of entries in the argument list.

The widget with subpart resources may call Xt Set Val ues from the set values hook
procedure and pass in its subresource list and the args and num_args parameters.

169

Chapter 10. Translation Management

Except under unusual circumstances, widgets do not hardwire the mapping of user
events into widget behavior by using the event manager. Instead, they provide a
default mapping of events into behavior that you can override.

The translation manager provides an interface to specify and manage the mapping
of X event sequences into widget-supplied functionality, for example, calling proce-
dure Abc when the y key is pressed.

The translation manager uses two kinds of tables to perform translations:

¢ The action tables, which are in the widget class structure, specify the mapping
of externally available procedure name strings to the corresponding procedure
implemented by the widget class.

* A translation table, which is in the widget class structure, specifies the mapping
of event sequences to procedure name strings.

You can override the translation table in the class structure for a specific widget
instance by supplying a different translation table for the widget instance. The re-
sources XtNtranslations and XtNbaseTranslations are used to modify the class de-
fault translation table; see the section called “Translation Table Management”.

Action Tables

All widget class records contain an action table, an array of Xt Act i onsRec entries.
In addition, an application can register its own action tables with the translation
manager so that the translation tables it provides to widget instances can access
application functionality directly. The translation action procedure pointer is of type
(* Xt Acti onProc).

typedef void (*XtActionProc)(w, event, parans, num parans);
w Specifies the widget that caused the action to be called.

event Specifies the event that caused the action to be called.
If the action is called after a sequence of events, then
the last event in the sequence is used.

params Specifies a pointer to the list of strings that were speci-
fied in the translation table as arguments to the action,
or NULL.

num_params Specifies the number of entries in params.

typedef struct XtActionsRec {
String string;

XtActionProc proc;

} XtActionsRec, *XtActionList;

The string field is the name used in translation tables to access the procedure. The
proc field is a pointer to a procedure that implements the functionality.

170

Translation Management

When the action list is specified as the Cor e assPart actions field, the string point-
ed to by string must be permanently allocated prior to or during the execution of
the class initialization procedure and must not be subsequently deallocated.

Action procedures should not assume that the widget in which they are invoked is
realized; an accelerator specification can cause an action procedure to be called for
a widget that does not yet have a window. Widget writers should also note which of
a widget's callback lists are invoked from action procedures and warn clients not
to assume the widget is realized in those callbacks.

For example, a Pushbutton widget has procedures to take the following actions:

» Set the button to indicate it is activated.

Unset the button back to its normal mode.

» Highlight the button borders.

* Unhighlight the button borders.

* Notify any callbacks that the button has been activated.

The action table for the Pushbutton widget class makes these functions available
to translation tables written for Pushbutton or any subclass. The string entry is the
name used in translation tables. The procedure entry (usually spelled identically to
the string) is the name of the C procedure that implements that function:

XtActionsRec actionTable[] = {
{"Set", Set},

{"Unset", Unset},
{"Highlight", Highlight},
{"Unhighlight", Unhighlight}
{"Notify", Notify},

¥

The Intrinsics reserve all action names and parameters starting with the characters
T Xt" for future standard enhancements. Users, applications, and widgets should
not declare action names or pass parameters starting with these characters except
to invoke specified built-in Intrinsics functions.

Action Table Registration

The actions and num_actions fields of Cored assPart specify the actions imple-
mented by a widget class. These are automatically registered with the Intrinsics
when the class is initialized and must be allocated in writable storage prior to Core
class part initialization, and never deallocated. To save memory and optimize ac-
cess, the Intrinsics may overwrite the storage in order to compile the list into an
internal representation.

To declare an action table within an application and register it with the translation
manager, use Xt AppAddAct i ons.

voi d Xt AppAddActi ons(app_context, actions, num actions);

app_context Specifies the application context.
actions Specifies the action table to register.
num_actions Specifies the number of entries in this action table.

171

Translation Management

If more than one action is registered with the same name, the most recently regis-
tered action is used. If duplicate actions exist in an action table, the first is used.
The Intrinsics register an action table containing Xt MenuPopup and Xt MenuPopdown
as part of Xt Cr eat eAppl i cati onCont ext .

Action Names to Procedure Translations

The translation manager uses a simple algorithm to resolve the name of a procedure
specified in a translation table into the actual procedure specified in an action table.
When the widget is realized, the translation manager performs a search for the
name in the following tables, in order:

* The widget's class and all superclass action tables, in subclass-to-superclass or-
der.

¢ The parent's class and all superclass action tables, in subclass-to-superclass order,
then on up the ancestor tree.

¢ The action tables registered with Xt AppAddActi ons and Xt AddActi ons from the
most recently added table to the oldest table.

As soon as it finds a name, the translation manager stops the search. If it cannot
find a name, the translation manager generates a warning message.

Action Hook Registration

An application can specify a procedure that will be called just before every action
routine is dispatched by the translation manager. To do so, the application supplies
a procedure pointer of type (* Xt Acti onHookPr oc) .

typedef void (*XtActionHookProc)(w, client_data, action_nane, event,
paranms, num parans);

w Specifies the widget whose action is about to be dis-
patched.
client data Specifies the application-specific closure that was

passed to Xt AppAddAct i onHook.
action_name Specifies the name of the action to be dispatched.

event Specifies the event argument that will be passed to
the action routine.

params Specifies the action parameters that will be passed to
the action routine.

num_params Specifies the number of entries in params.

Action hooks should not modify any of the data pointed to by the arguments other
than the client data argument.

To add an action hook, use Xt AppAddAct i onHook.
Xt Act i onHookl d Xt AppAddAct i onHook(app, proc, client_data);

app Specifies the application context.

172

Translation Management

proc Specifies the action hook procedure.

client data Specifies application-specific data to be passed to the
action hook.

Xt AppAddAct i onHook adds the specified procedure to the front of a list maintained
in the application context. In the future, when an action routine is about to be in-
voked for any widget in this application context, either through the translation man-
ager or via Xt Cal | Acti onPr oc, the action hook procedures will be called in reverse
order of registration just prior to invoking the action routine.

Action hook procedures are removed automatically and the Xt Acti onHookld is
destroyed when the application context in which they were added is destroyed.

To remove an action hook procedure without destroying the application context,
use Xt RenoveAct i onHook.

voi d Xt RemoveAct i onHook(i d);
id Specifies the action hook id returned by Xt AppAddAct i onHook.

Xt RenpbveAct i onHook removes the specified action hook procedure from the list in
which it was registered.

Translation Tables

All widget instance records contain a translation table, which is a resource with a
default value specified elsewhere in the class record. A translation table specifies
what action procedures are invoked for an event or a sequence of events. A trans-
lation table is a string containing a list of translations from an event sequence into
one or more action procedure calls. The translations are separated from one anoth-
er by newline characters (ASCII LF). The complete syntax of translation tables is
specified in Appendix B.

As an example, the default behavior of Pushbutton is

» Highlight on enter window.

* Unhighlight on exit window.

e Invert on left button down.

Call callbacks and reinvert on left button up.

The following illustrates Pushbutton's default translation table:

static String defaultTranslations =
"<EnterWindow>: Highlight()\\n\\
<LeaveWindow>: Unhighlight()\\n\\
<Btnl1Down>: Set()\\n\\
<Btn1Up>: Notify() Unset()";

The tm_table field of the Cor ed assPart should be filled in at class initialization time
with the string containing the class's default translations. If a class wants to inherit
its superclass's translations, it can store the special value Xt | nheri t Transl ati ons
into tm_table. In Core's class part initialization procedure, the Intrinsics compile
this translation table into an efficient internal form. Then, at widget creation time,

173

Translation Management

this default translation table is combined with the XtNtranslations and XtNbase-
Translations resources; see the section called “Translation Table Management”.

The resource conversion mechanism automatically compiles string translation ta-
bles that are specified in the resource database. If a client uses translation tables
that are not retrieved via a resource conversion, it must compile them itself using
Xt Par seTr ansl ati onTabl e.

The Intrinsics use the compiled form of the translation table to register the neces-
sary events with the event manager. Widgets need do nothing other than specify the
action and translation tables for events to be processed by the translation manager.

Event Sequences

An event sequence is a comma-separated list of X event descriptions that describes
a specific sequence of X events to map to a set of program actions. Each X event
description consists of three parts: The X event type, a prefix consisting of the X
modifier bits, and an event-specific suffix.

Various abbreviations are supported to make translation tables easier to read. The
events must match incoming events in left-to-right order to trigger the action se-
quence.

Action Sequences

Action sequences specify what program or widget actions to take in response to
incoming X events. An action sequence consists of space-separated action proce-
dure call specifications. Each action procedure call consists of the name of an ac-
tion procedure and a parenthesized list of zero or more comma-separated string
parameters to pass to that procedure. The actions are invoked in left-to-right order
as specified in the action sequence.

Multi-Click Time

Translation table entries may specify actions that are taken when two or more iden-
tical events occur consecutively within a short time interval, called the multi-click
time. The multi-click time value may be specified as an application resource with
name multiClickTime'" and class *“MultiClickTime'" and may also be modified dy-
namically by the application. The multi-click time is unique for each Display value
and is retrieved from the resource database by Xt Di spl ayl ni ti al i ze. If no value
is specified, the initial value is 200 milliseconds.

To set the multi-click time dynamically, use Xt Set Mul ti O i ckTi ne.
void XtSetMiltidickTime(display, tinme);

display Specifies the display connection.

time Specifies the multi-click time in milliseconds.

Xt Set Mul ti O i ckTi ne sets the time interval used by the translation manager to
determine when multiple events are interpreted as a repeated event. When a repeat
count is specified in a translation entry, the interval between the timestamps in each
pair of repeated events (e.g., between two But t onPr ess events) must be less than
the multi-click time in order for the translation actions to be taken.

174

Translation Management

To read the multi-click time, use Xt Get Mul ti Cl i ckTi ne.
int XtGetMiltidickTime(display);
display Specifies the display connection.

Xt Get Mul ti O i ckTi e returns the time in milliseconds that the translation manager
uses to determine if multiple events are to be interpreted as a repeated event for
purposes of matching a translation entry containing a repeat count.

Translation Table Management

Sometimes an application needs to merge its own translations with a widget's trans-
lations. For example, a window manager provides functions to move a window. The
window manager wishes to bind this operation to a specific pointer button in the
title bar without the possibility of user override and bind it to other buttons that
may be overridden by the user.

To accomplish this, the window manager should first create the title bar and then
should merge the two translation tables into the title bar's translations. One trans-
lation table contains the translations that the window manager wants only if the
user has not specified a translation for a particular event or event sequence (i.e.,
those that may be overridden). The other translation table contains the translations
that the window manager wants regardless of what the user has specified.

Three Intrinsics functions support this merging:
XtParseTranslationTable Compiles a translation table.

XtAugmentTranslations Merges a compiled translation table into a widget's
compiled translation table, ignoring any new transla-
tions that conflict with existing translations.

XtOverrideTranslations Merges a compiled translation table into a widget's
compiled translation table, replacing any existing
translations that conflict with new translations.

To compile a translation table, use Xt Par seTr ansl ati onTabl e.
Xt Transl ati ons Xt ParseTransl ati onTabl e(t abl e);
table Specifies the translation table to compile.

The Xt ParseTransl ati onTabl e function compiles the translation table, provided
in the format given in Appendix B, into an opaque internal representation of type
Xt Tr ansl ati ons. Note that if an empty translation table is required for any purpose,
one can be obtained by calling Xt Par seTr ansl ati onTabl e and passing an empty
string.

To merge additional translations into an existing translation table, use Xt Augnent -
Transl ati ons.

voi d Xt Augnment Transl ati ons(w, translations);

w Specifies the widget into which the new translations
are to be merged. Must be of class Core or any sub-
class thereof.

175

Translation Management

translations Specifies the compiled translation table to merge in.

The Xt Augnent Tr ansl at i ons function merges the new translations into the existing
widget translations, ignoring any #r epl ace, #augnent , or #overri de directive that
may have been specified in the translation string. The translation table specified
by translations is not altered by this process. Xt Augnment Tr ansl at i ons logically ap-
pends the string representation of the new translations to the string representation
of the widget's current translations and reparses the result with no warning mes-
sages about duplicate left-hand sides, then stores the result back into the widget in-
stance; i.e., if the new translations contain an event or event sequence that already
exists in the widget's translations, the new translation is ignored.

To overwrite existing translations with new translations, use Xt Overri deTr ansl a-
tions.

voi d Xt OverrideTransl ati ons(w, translations);

w Specifies the widget into which the new translations
are to be merged. Must be of class Core or any sub-
class thereof.

translations Specifies the compiled translation table to merge in.

The Xt Overri deTransl ati ons function merges the new translations into the exist-
ing widget translations, ignoring any #r epl ace, #augnent, or #overri de directive
that may have been specified in the translation string. The translation table spec-
ified by translations is not altered by this process. Xt Overri deTr ansl ati ons logi-
cally appends the string representation of the widget's current translations to the
string representation of the new translations and reparses the result with no warn-
ing messages about duplicate left-hand sides, then stores the result back into the
widget instance; i.e., if the new translations contain an event or event sequence
that already exists in the widget's translations, the new translation overrides the
widget's translation.

To replace a widget's translations completely, use Xt Set Val ues on the XtNtransla-
tions resource and specify a compiled translation table as the value.

To make it possible for users to easily modify translation tables in their resource
files, the string-to-translation-table resource type converter allows the string to
specify whether the table should replace, augment, or override any existing trans-
lation table in the widget. To specify this, a pound sign (#) is given as the first
character of the table followed by one of the keywords " “replace', " “augment", or
““override'" to indicate whether to replace, augment, or override the existing table.
The replace or merge operation is performed during the Core instance initialization.
Each merge operation produces a new translation resource value; if the original ta-
bles were shared by other widgets, they are unaffected. If no directive is specified,
T #replace' is assumed.

At instance initialization the XtNtranslations resource is first fetched. Then, if it was
not specified or did not contain " #replace", the resource database is searched for
the resource XtNbaseTranslations. If XtNbaseTranslations is found, it is merged into
the widget class translation table. Then the widget translations field is merged into
the result or into the class translation table if XtNbaseTranslations was not found.
This final table is then stored into the widget translations field. If the XtNtransla-
tions resource specified " #replace'’, no merge is done. If neither XtNbaseTransla-

176

Translation Management

tions or XtNtranslations are specified, the class translation table is copied into the
widget instance.

To completely remove existing translations, use Xt Uni nstal | Transl ati ons.
voi d Xt Uninstall Transl ati ons(w);

w Specifies the widget from which the translations are to be re-
moved. Must be of class Core or any subclass thereof.

The Xt Uni nst al | Tr ansl ati ons function causes the entire translation table for the
widget to be removed.

Using Accelerators

It is often desirable to be able to bind events in one widget to actions in another. In
particular, it is often useful to be able to invoke menu actions from the keyboard.
The Intrinsics provide a facility, called accelerators, that lets you accomplish this.
An accelerator table is a translation table that is bound with its actions in the con-
text of a particular widget, the source widget. The accelerator table can then be
installed on one or more destination widgets. When an event sequence in the des-
tination widget would cause an accelerator action to be taken, and if the source
widget is sensitive, the actions are executed as though triggered by the same event
sequence in the accelerator source widget. The event is passed to the action pro-
cedure without modification. The action procedures used within accelerators must
not assume that the source widget is realized nor that any fields of the event are in
reference to the source widget's window if the widget is realized.

Each widget instance contains that widget's exported accelerator table as a re-
source. Each class of widget exports a method that takes a displayable string rep-
resentation of the accelerators so that widgets can display their current accelera-
tors. The representation is the accelerator table in canonical translation table form
(see Appendix B). The display accelerator procedure pointer is of type (* Xt St ri ng-
Proc).

typedef void (*XtStringProc)(w, string);
w Specifies the source widget that supplied the accelerators.

string Specifies the string representation of the accelerators for
this widget.

Accelerators can be specified in resource files, and the string representation is the
same as for a translation table. However, the interpretation of the #augment and
#overri de directives applies to what will happen when the accelerator is installed;
that is, whether or not the accelerator translations will override the translations in
the destination widget. The default is #augnment , which means that the accelerator
translations have lower priority than the destination translations. The #r epl ace di-
rective is ignored for accelerator tables.

To parse an accelerator table, use Xt Par seAccel er at or Tabl e.
Xt Accel erat ors Xt ParseAccel erat or Tabl e(source);

source Specifies the accelerator table to compile.

177

Translation Management

The Xt Par seAccel er at or Tabl e function compiles the accelerator table into an
opaque internal representation. The client should set the XtNaccelerators resource
of each widget that is to be activated by these translations to the returned value.

To install accelerators from a widget on another widget, use Xt | nst al | Accel er a-
tors.

void Xtlnstall Accel erators(destination, source);

destination Specifies the widget on which the accelerators are to
be installed. Must be of class Core or any subclass
thereof.

source Specifies the widget from which the accelerators are

to come. Must be of class Core or any subclass thereof.

The Xt | nst al | Accel er at or s function installs the accelerators resource value from
source onto destination by merging the source accelerators into the destination
translations. If the source display accelerator field is non-NULL, Xt | nst al | Accel -
er at or s calls it with the source widget and a string representation of the accelera-
tor table, which indicates that its accelerators have been installed and that it should
display them appropriately. The string representation of the accelerator table is its
canonical translation table representation.

As a convenience for installing all accelerators from a widget and all its descendants
onto one destination, use Xt I nstal | Al | Accel erators.

void Xtlnstall Al Accel erators(destination, source);

destination Specifies the widget on which the accelerators are to
be installed. Must be of class Core or any subclass
thereof.

source Specifies the root widget of the widget tree from which

the accelerators are to come. Must be of class Core or
any subclass thereof.

The Xtlnstall All Accel erators function recursively descends the widget tree
rooted at source and installs the accelerators resource value of each widget encoun-
tered onto destination. A common use is to call Xt I nstal | All Accel erators and
pass the application main window as the source.

KeyCode-to-KeySym Conversions

The translation manager provides support for automatically translating KeyCodes in
incoming key events into KeySyms. KeyCode-to-KeySym translator procedure point-
ers are of type (* Xt KeyProc) .

t ypedef voi d (* Xt KeyProc) (di spl ay, keycode, nodi fiers,
nodi fiers_return, keysymreturn);

display Specifies the display that the KeyCode is from.
keycode Specifies the KeyCode to translate.

modifiers Specifies the modifiers to the KeyCode.

178

Translation Management

modifiers_return Specifies a location in which to store a mask that in-
dicates the subset of all modifiers that are examined
by the key translator for the specified keycode.

keysym return Specifies a location in which to store the resulting
KeySym.

This procedure takes a KeyCode and modifiers and produces a KeySym. For any
given key translator function and keyboard encoding, modifiers return will be a
constant per KeyCode that indicates the subset of all modifiers that are examined
by the key translator for that KeyCode.

The KeyCode-to-KeySym translator procedure must be implemented such that mul-
tiple calls with the same display, keycode, and modifiers return the same result un-
til either a new case converter, an (* Xt CasePr oc), is installed or a Mappi ngNoti fy
event is received.

The Intrinsics maintain tables internally to map KeyCodes to KeySyms for each open
display. Translator procedures and other clients may share a single copy of this table
to perform the same mapping.

To return a pointer to the KeySym-to-KeyCode mapping table for a particular display,
use Xt Get Keysynirabl e.

KeySym * Xt Get Keysynirabl e(di spl ay, m n_keycode_ret urn,
keysyns_per _keycode_return);

display Specifies the display whose table is required.
min_keycode return Returns the minimum KeyCode valid for the display.

keysyms per keycode return Returns the number of KeySyms stored for each Key-
Code.

Xt Get KeysyniTabl e returns a pointer to the Intrinsics' copy of the server's
KeyCode-to-KeySym table. This table must not be modified. There are
keysyms per keycode return KeySyms associated with each KeyCode, located in
the table with indices starting at index

(test_keycode - min keycode return) * keysyms per keycode return

for KeyCode test keycode. Any entries that have no KeySyms associated with them
contain the value NoSynbol . Clients should not cache the KeySym table but should
call Xt Get Keysynilrabl e each time the value is needed, as the table may change prior
to dispatching each event.

For more information on this table, see Section 12.7 in Xlib — C Language X Inter-
face..

To register a key translator, use Xt Set KeyTr ansl at or .
voi d Xt Set KeyTr ansl at or (di spl ay, proc);
display Specifies the display from which to translate the events.

proc Specifies the procedure to perform key translations.

179

Translation Management

The Xt Set KeyTr ansl at or function sets the specified procedure as the current key
translator. The default translator is Xt Tr ansl at eKey, an (* Xt KeyProc) that uses
the Shift, Lock, numlock, and group modifiers with the interpretations defined in X
Window System Protocol, Section 5. It is provided so that new translators can call
it to get default KeyCode-to-KeySym translations and so that the default translator
can be reinstalled.

To invoke the currently registered KeyCode-to-KeySym translator, use Xt Tr ans-
| at eKeycode.

voi d Xt Tr ansl at eKeycode(di spl ay, keycode, nodifiers, nodifiers_return,
keysym return);

display Specifies the display that the KeyCode is from.
keycode Specifies the KeyCode to translate.

modifiers Specifies the modifiers to the KeyCode.
modifiers_return Returns a mask that indicates the modifiers actually

used to generate the KeySym.
keysym return Returns the resulting KeySym.

The Xt Tr ansl at eKeycode function passes the specified arguments directly to the
currently registered KeyCode-to-KeySym translator.

To handle capitalization of nonstandard KeySyms, the Intrinsics allow clients to
register case conversion routines. Case converter procedure pointers are of type
(*Xt CaseProc).

t ypedef voi d (*Xt CaseProc) (di spl ay, keysym | ower _return,
upper _return);

display Specifies the display connection for which the con-
version is required.

keysym Specifies the KeySym to convert.

lower return Specifies a location into which to store the lowercase
equivalent for the KeySym.

upper return Specifies a location into which to store the uppercase
equivalent for the KeySym.

If there is no case distinction, this procedure should store the KeySym into both
return values.

To register a case converter, use Xt Regi st er CaseConverter.

voi d Xt Regi st er CaseConverter(di splay, proc, start, stop);

display Specifies the display from which the key events are to
come.

proc Specifies the (* Xt CaseProc) to do the conversions.

start Specifies the first KeySym for which this converter is valid.

180

Translation Management

stop Specifies the last KeySym for which this converter is valid.

The Xt Regi st er CaseConvert er registers the specified case converter. The start and
stop arguments provide the inclusive range of KeySyms for which this converter
is to be called. The new converter overrides any previous converters for KeySyms
in that range. No interface exists to remove converters; you need to register an
identity converter. When a new converter is registered, the Intrinsics refresh the
keyboard state if necessary. The default converter understands case conversion for
all Latin KeySyms defined in X Window System Protocol, Appendix A.

To determine uppercase and lowercase equivalents for a KeySym, use Xt Convert -
Case.

voi d Xt Convert Case(di splay, keysym |ower_return, upper_return);

display Specifies the display that the KeySym came from.
keysym Specifies the KeySym to convert.

lower return Returns the lowercase equivalent of the KeySym.
upper return Returns the uppercase equivalent of the KeySym.

The Xt Conver t Case function calls the appropriate converter and returns the results.
A user-supplied (* Xt KeyPr oc) may need to use this function.

Obtaining a KeySym in an Action Procedure

When an action procedure is invoked on a KeyPr ess or KeyRel ease event, it often
has a need to retrieve the KeySym and modifiers corresponding to the event that
caused it to be invoked. In order to avoid repeating the processing that was just
performed by the Intrinsics to match the translation entry, the KeySym and modi-
fiers are stored for the duration of the action procedure and are made available to
the client.

To retrieve the KeySym and modifiers that matched the final event specification in
the translation table entry, use Xt Get Acti onKeysym

KeySym Xt Get Acti onKeysyn{event, nodifiers return);

event Specifies the event pointer passed to the action pro-
cedure by the Intrinsics.

modifiers_return Returns the modifiers that caused the match, if non-
NULL.

If Xt Get Acti onKeysymis called after an action procedure has been invoked by the
Intrinsics and before that action procedure returns, and if the event pointer has the
same value as the event pointer passed to that action routine, and if the event is a
KeyPr ess or KeyRel ease event, then Xt Get Act i onKeysymreturns the KeySym that
matched the final event specification in the translation table and, if modifiers return
is non-NULL, the modifier state actually used to generate this KeySym; otherwise,
if the event is a KeyPr ess or KeyRel ease event, then Xt Get Act i onKeysymecalls Xt -
Tr ansl at eKeycode and returns the results; else it returns NoSynbol and does not
examine modifiers return.

181

Translation Management

Note that if an action procedure invoked by the Intrinsics invokes a subsequent
action procedure (and so on) via Xt Cal | Acti onProc, the nested action procedure
may also call Xt Get Act i onKeysymto retrieve the Intrinsics' KeySym and modifiers.

KeySym-to-KeyCode Conversions

To return the list of KeyCodes that map to a particular KeySym in the keyboard
mapping table maintained by the Intrinsics, use Xt KeysynifoKeycodelLi st .

voi d Xt KeysyniroKeycodelLi st (di spl ay, keysym keycodes_return,
keycount return);

display Specifies the display whose table is required.
keysym Specifies the KeySym for which to search.

keycodes return Returns a list of KeyCodes that have keysym associ-

ated with them, or NULL if keycount return is 0.
keycount return Returns the number of KeyCodes in the keycode list.

The Xt KeysynmToKeycodelLi st procedure returns all the KeyCodes that have keysym
in their entry for the keyboard mapping table associated with display. For each entry
in the table, the first four KeySyms (groups 1 and 2) are interpreted as specified by
X Window System Protocol, Section 5. If no KeyCodes map to the specified KeySym,
keycount return is zero and *keycodes return is NULL.

The caller should free the storage pointed to by keycodes return using Xt Fr ee when
it is no longer useful. If the caller needs to examine the KeyCode-to-KeySym table
for a particular KeyCode, it should call Xt Get Keysynirabl e.

Registering Button and Key Grabs for Actions

To register button and key grabs for a widget's window according to the event bind-
ings in the widget's translation table, use Xt Regi st er G- abAct i on.

voi d Xt Regi st er GrabActi on(acti on_proc, owner _events, event _mask,
poi nt er _node) ;

action _proc Specifies the action procedure to search for in trans-
lation tables.

owner _events

event_mask

pointer mode

keyboard mode Specify arguments to Xt G abBut t on or Xt Gr abKey.

Xt Regi st er Gr abAct i on adds the specified action proc to a list known to the trans-
lation manager. When a widget is realized, or when the translations of a realized
widget or the accelerators installed on a realized widget are modified, its transla-
tion table and any installed accelerators are scanned for action procedures on this
list. If any are invoked on But t onPr ess or KeyPr ess events as the only or final event

182

Translation Management

in a sequence, the Intrinsics will call Xt G- abBut t on or Xt Gr abKey for the widget
with every button or KeyCode which maps to the event detail field, passing the spec-
ified owner _events, event mask, pointer mode, and keyboard mode. For Butt on-
Press events, the modifiers specified in the grab are determined directly from the
translation specification and confine to and cursor are specified as None. For Key-
Pr ess events, if the translation table entry specifies colon (:) in the modifier list, the
modifiers are determined by calling the key translator procedure registered for the
display and calling Xt G abKey for every combination of standard modifiers which
map the KeyCode to the specified event detail KeySym, and ORing any modifiers
specified in the translation table entry, and event mask is ignored. If the translation
table entry does not specify colon in the modifier list, the modifiers specified in the
grab are those specified in the translation table entry only. For both But t onPr ess
and KeyPr ess events, don't-care modifiers are ignored unless the translation entry
explicitly specifies **Any" in the modifiers field.

If the specified action proc is already registered for the calling process, the new
values will replace the previously specified values for any widgets that become re-
alized following the call, but existing grabs are not altered on currently realized
widgets.

When translations or installed accelerators are modified for a realized widget, any
previous key or button grabs registered as a result of the old bindings are released
if they do not appear in the new bindings and are not explicitly grabbed by the client
with Xt Gr abKey or Xt Gr abBut t on.

Invoking Actions Directly

Normally action procedures are invoked by the Intrinsics when an event or event
sequence arrives for a widget. To invoke an action procedure directly, without gen-
erating (or synthesizing) events, use Xt Cal | Acti onPr oc.

voi d Xt Call Acti onProc(w dget, action, event, parans, num parans);

widget Specifies the widget in which the action is to be in-
voked. Must be of class Core or any subclass thereof.

action Specifies the name of the action routine.

event Specifies the contents of the event passed to the action
routine.

params Specifies the contents of the params passed to the ac-

tion routine.
num_params Specifies the number of entries in params.

Xt Cal | Acti onPr oc searches for the named action routine in the same manner and
order as translation tables are bound, as described in Section 10.1.2, except that
application action tables are searched, if necessary, as of the time of the call to
Xt Cal | Acti onProc. If found, the action routine is invoked with the specified widget,
event pointer, and parameters. It is the responsibility of the caller to ensure that
the contents of the event, params, and num_params arguments are appropriate for
the specified action routine and, if necessary, that the specified widget is realized
or sensitive. If the named action routine cannot be found, Xt Cal | Acti onProc gen-
erates a warning message and returns.

183

Translation Management

Obtaining a Widget's Action List

Occasionally a subclass will require the pointers to one or more of its superclass's
action procedures. This would be needed, for example, in order to envelop the
superclass's action. To retrieve the list of action procedures registered in the
superclass's actions field, use Xt Get Act i onLi st .

voi d Xt Get Acti onLi st (wi dget _cl ass, actions_return, numactions_return);

widget class Specifies the widget class whose actions are to be
returned.

actions_return Returns the action list.

num_actions_return Returns the number of action procedures declared

by the class.

Xt Get Act i onLi st returns the action table defined by the specified widget class.
This table does not include actions defined by the superclasses. If widget class is
not initialized, or is not cor eW dget A ass or a subclass thereof, or if the class does
not define any actions, *actions return will be NULL and *num_actions return will
be zero. If *actions return is non-NULL the client is responsible for freeing the table
using Xt Fr ee when it is no longer needed.

184

Chapter 11. Utility Functions

The Intrinsics provide a number of utility functions that you can use to

Determine the number of elements in an array.
Translate strings to widget instances.

Manage memory usage.

Share graphics contexts.

Manipulate selections.

Merge exposure events into a region.
Translate widget coordinates.

Locate a widget given a window id.

Handle errors.

Set the WM _COLORMAP WINDOWS property.
Locate files by name with string substitutions.
Register callback functions for external agents.
Locate all the displays of an application context.

Determining the Number of Elements in an Ar-
ray

To determine the number of elements in a fixed-size array, use Xt Nunber .
Car di nal Xt Number (array);
array Specifies a fixed-size array of arbitrary type.

The Xt Nunber macro returns the number of elements allocated to the array.

Translating Strings to Widget Instances

To translate a widget name to a widget instance, use Xt NanmeToW dget .
W dget Xt NaneToW dget (ref erence, nanes);

reference Specifies the widget from which the search is to start.
Must be of class Core or any subclass thereof.

names Specifies the partially qualified name of the desired wid-
get.

The Xt NaneToW dget function searches for a descendant of the reference widget
whose name matches the specified names. The names parameter specifies a simple
object name or a series of simple object name components separated by periods or
asterisks. Xt NaneToW dget returns the descendant with the shortest name matching
the specification according to the following rules, where child is either a pop-up
child or a normal child if the widget's class is a subclass of Composite :

* Enumerate the object subtree rooted at the reference widget in breadth-first or-
der, qualifying the name of each object with the names of all its ancestors up to,
but not including, the reference widget. The ordering between children of a com-
mon parent is not defined.

185

Utility Functions

* Return the first object in the enumeration that matches the specified name, where
each component of names matches exactly the corresponding component of the
qualified object name and asterisk matches any series of components, including
none.

* If no match is found, return NULL.

Since breadth-first traversal is specified, the descendant with the shortest matching
name (i.e., the fewest number of components), if any, will always be returned. How-
ever, since the order of enumeration of children is undefined and since the Intrinsics
do not require that all children of a widget have unique names, Xt NameToW dget
may return any child that matches if there are multiple objects in the subtree with
the same name. Consecutive separators (periods or asterisks) including at least one
asterisk are treated as a single asterisk. Consecutive periods are treated as a single
period.

Managing Memory Usage

The Intrinsics memory management functions provide uniform checking for null
pointers and error reporting on memory allocation errors. These functions are com-
pletely compatible with their standard C language runtime counterparts nal | oc,
cal l oc, real | oc, and f r ee with the following added functionality:

e Xt Mal | oc, Xt Cal | oc, and Xt Real | oc give an error if there is not enough memory.
* Xt Fr ee simply returns if passed a NULL pointer.
* Xt Real | oc simply allocates new storage if passed a NULL pointer.

See the standard C library documentation on mal | oc, cal | oc, real | oc, and free
for more information.

To allocate storage, use Xt Mal | oc.
char * XtMall oc(size);
size Specifies the number of bytes desired.

The Xt Mal | oc function returns a pointer to a block of storage of at least the specified
size bytes. If there is insufficient memory to allocate the new block, Xt Mal | oc calls
Xt Error Msg.

To allocate and initialize an array, use Xt Cal | oc.

char * XtCalloc(num size);

num Specifies the number of array elements to allocate.
size Specifies the size of each array element in bytes.

The Xt Cal | oc function allocates space for the specified number of array elements
of the specified size and initializes the space to zero. If there is insufficient memory
to allocate the new block, Xt Cal | oc calls Xt Err or Msg. Xt Cal | oc returns the address
of the allocated storage.

To change the size of an allocated block of storage, use Xt Real | oc.

char *Xt Real | oc(ptr, num;

186

Utility Functions

ptr Specifies a pointer to the old storage allocated with Xt Mal | oc,
Xt Cal | oc, or Xt Real | oc, or NULL.

num Specifies number of bytes desired in new storage.

The Xt Real | oc function changes the size of a block of storage, possibly moving it.
Then it copies the old contents (or as much as will fit) into the new block and frees
the old block. If there is insufficient memory to allocate the new block, Xt Real | oc
calls Xt Error Msg. If ptris NULL, Xt Real | oc simply calls Xt Mal | oc. Xt Real | oc then
returns the address of the new block.

To free an allocated block of storage, use Xt Fr ee.
void XtFree(ptr);

ptr Specifies a pointer to a block of storage allocated with Xt Mal -
| oc, Xt Cal | oc, or Xt Real | oc, or NULL.

The Xt Fr ee function returns storage, allowing it to be reused. If ptris NULL, Xt Fr ee
returns immediately.

To allocate storage for a new instance of a type, use Xt New.
type XtNew(t);
type Specifies a previously declared type.

Xt New returns a pointer to the allocated storage. If there is insufficient memory to
allocate the new block, Xt New calls Xt Er r or Msg. Xt Newis a convenience macro that
calls Xt Mal | oc with the following arguments specified:

((type *) XtMalloc((unsigned) sizeof(type)))

The storage allocated by Xt New should be freed using Xt Fr ee.
To copy an instance of a string, use Xt NewSt ri ng.

String XtNewString(string);

string Specifies a previously declared string.

Xt NewSt ri ng returns a pointer to the allocated storage. If there is insufficient mem-
ory to allocate the new block, Xt NewSt ri ng calls Xt Err or Msg. Xt NewSt ri ng is a con-
venience macro that calls Xt Mal | oc with the following arguments specified:

(strcpy(XtMalloc((unsigned)strlen(str) + 1), str))

The storage allocated by Xt NewSt ri ng should be freed using Xt Fr ee.

Sharing Graphics Contexts

The Intrinsics provide a mechanism whereby cooperating objects can share a graph-
ics context (GC), thereby reducing both the number of GCs created and the total
number of server calls in any given application. The mechanism is a simple caching
scheme and allows for clients to declare both modifiable and nonmodifiable fields
of the shared GCs.

187

Utility Functions

To obtain a shareable GC with modifiable fields, use Xt Al | ocat eGC.

GC Xt AllocateGC(object, depth, value_mask, values, dynam c_mask,
unused_nask) ;

object Specifies an object, giving the screen for which the
returned GC is valid. Must be of class Object or any
subclass thereof.

depth Specifies the depth for which the returned GC is
valid, or 0.

value mask Specifies fields of the GC that are initialized from val-
ues.

values Specifies the values for the initialized fields.

dynamic_mask Specifies fields of the GC that will be modified by the
caller.

unused mask Specifies fields of the GC that will not be needed by
the caller.

The Xt Al | ocat eGC function returns a shareable GC that may be modified by the
client. The screen field of the specified widget or of the nearest widget ancestor of
the specified object and the specified depth argument supply the root and drawable
depths for which the GC is to be valid. If depth is zero, the depth is taken from the
depth field of the specified widget or of the nearest widget ancestor of the specified
object.

The value mask argument specifies fields of the GC that are initialized with the
respective member of the values structure. The dynamic_mask argument specifies
fields that the caller intends to modify during program execution. The caller must
ensure that the corresponding GC field is set prior to each use of the GC. The
unused mask argument specifies fields of the GC that are of no interest to the caller.
The caller may make no assumptions about the contents of any fields specified in
unused mask. The caller may assume that at all times all fields not specified in
either dynamic_mask or unused mask have their default value if not specified in
value mask or the value specified by values. If a field is specified in both value_mask
and dynamic_mask, the effect is as if it were specified only in dynamic _mask and
then immediately set to the value in values. If a field is set in unused mask and also
in either value_mask or dynamic_mask, the specification in unused mask is ignored.

Xt Al | ocat eGCtries to minimize the number of unique GCs created by comparing the
arguments with those of previous calls and returning an existing GC when there are
no conflicts. Xt Al | ocat eGC may modify and return an existing GC if it was allocated
with a nonzero unused mask.

To obtain a shareable GC with no modifiable fields, use Xt Get GC.
GC Xt Get GC(obj ect, val ue_nmask, val ues);
object Specifies an object, giving the screen and depth for

which the returned GC is valid. Must be of class Object
or any subclass thereof.

188

Utility Functions

value mask Specifies which fields of the values structure are spec-
ified.
values Specifies the actual values for this GC.

The Xt Get GC function returns a shareable, read-only GC. The parameters to this
function are the same as those for XCr eat eGC except that an Object is passed instead
of a Display. Xt Get GCis equivalent to Xt Al | ocat eGCwith depth, dynamic_mask, and
unused_mask all zero.

Xt Get GC shares only GCs in which all values in the GC returned by XCr eat eGC are
the same. In particular, it does not use the value mask provided to determine which
fields of the GC a widget considers relevant. The value _mask is used only to tell the
server which fields should be filled in from values and which it should fill in with
default values.

To deallocate a shared GC when it is no longer needed, use Xt Rel easeGC.

voi d Xt Rel easeGC(obj ect, gc);

object Specifies any object on the Display for which the GC was
created. Must be of class Object or any subclass thereof.

gc Specifies the shared GC obtained with either Xt Al | ocat eGC
or Xt Get GC.

References to shareable GCs are counted and a free request is generated to the
server when the last user of a given GC releases it.

Managing Selections

Arbitrary widgets in multiple applications can communicate with each other by
means of the Intrinsics global selection mechanism, which conforms to the specifi-
cations in the Inter-Client Communication Conventions Manual.. The Intrinsics sup-
ply functions for providing and receiving selection data in one logical piece (atomic
transfers) or in smaller logical segments (incremental transfers).

The incremental interface is provided for a selection owner or selection requestor
that cannot or prefers not to pass the selection value to and from the Intrinsics in
a single call. For instance, either an application that is running on a machine with
limited memory may not be able to store the entire selection value in memory or a
selection owner may already have the selection value available in discrete chunks,
and it would be more efficient not to have to allocate additional storage to copy the
pieces contiguously. Any owner or requestor that prefers to deal with the selection
value in segments can use the incremental interfaces to do so. The transfer between
the selection owner or requestor and the Intrinsics is not required to match the
underlying transport protocol between the application and the X server; the Intrin-
sics will break too large a selection into smaller pieces for transport if necessary
and will coalesce a selection transmitted incrementally if the value was requested
atomically.

Setting and Getting the Selection Timeout Value

To set the Intrinsics selection timeout, use Xt AppSet Sel ect i onTi neout .

189

Utility Functions

voi d Xt AppSet Sel ecti onTi neout (app_context, tineout);

app_context Specifies the application context.

timeout Specifies the selection timeout in milliseconds.
To get the current selection timeout value, use Xt AppCet Sel ecti onTi neout .
unsi gned | ong Xt AppCet Sel ecti onTi neout (app_context);

app_context Specifies the application context.

The Xt AppCet Sel ecti onTi neout function returns the current selection timeout val-
ue in milliseconds. The selection timeout is the time within which the two commu-
nicating applications must respond to one another. The initial timeout value is set by
the selectionTimeout application resource as retrieved by Xt Di spl ayl ni ti ali ze. If
selectionTimeout is not specified, the default is five seconds.

Using Atomic Transfers

When using atomic transfers, the owner will completely process one selection re-
quest at a time. The owner may consider each request individually, since there is
no possibility for overlap between evaluation of two requests.

Atomic Transfer Procedures

The following procedures are used by the selection owner when providing selection
data in a single unit.

The procedure pointer specified by the owner to supply the selection data to the
Intrinsics is of type (* Xt Convert Sel ecti onProc).

t ypedef Bool ean (*Xt Convert Sel ecti onProc) (w, sel ecti on, target,
type_return, value_return, length return, format_return);

w Specifies the widget that currently owns this selec-
tion.
selection Specifies the atom naming the selection requested

(for example, XA PRI MARY or XA SECONDARY).

target Specifies the target type of the selection that has
been requested, which indicates the desired infor-
mation about the selection (for example, File Name,
Text, Window).

type return Specifies a pointer to an atom into which the property
type of the converted value of the selection is to be
stored. For instance, either File Name or Text might
have property type XA STRI NG.

value return Specifies a pointer into which a pointer to the con-
verted value of the selection is to be stored. The se-
lection owner is responsible for allocating this stor-
age. If the selection owner has provided an (*Xt S-
el ecti onDoneProc) for the selection, this storage is
owned by the selection owner; otherwise, it is owned

190

Utility Functions

by the Intrinsics selection mechanism, which frees it
by calling Xt Fr ee when it is done with it.

length return Specifies a pointer into which the number of el-
ements in value return, each of size indicated by
format return, is to be stored.

format return Specifies a pointer into which the size in bits of the
data elements of the selection value is to be stored.

This procedure is called by the Intrinsics selection mechanism to get the value of
a selection as a given type from the current selection owner. It returns Tr ue if the
owner successfully converted the selection to the target type or Fal se otherwise.
If the procedure returns Fal se, the values of the return arguments are undefined.
Each (*Xt Convert Sel ecti onProc) should respond to target value TARGETS by re-
turning a value containing the list of the targets into which it is prepared to convert
the selection. The value returned in format return must be one of 8, 16, or 32 to
allow the server to byte-swap the data if necessary.

This procedure does not need to worry about responding to the MULTIPLE or the
TIMESTAMP target values (see the section called “Window Creation Convenience
Routine” in the Inter-Client Communication Conventions Manual.). A selection re-
quest with the MULTIPLE target type is transparently transformed into a series of
calls to this procedure, one for each target type, and a selection request with the
TIMESTAMP target value is answered automatically by the Intrinsics using the time
specified in the call to Xt OmSel ecti on or Xt OmSel ecti onl ncrenent al .

Toretrieve the Sel ecti onRequest event that triggered the (* Xt Convert Sel ecti on-
Proc) procedure, use Xt Get Sel ecti onRequest .

XSel ecti onRequest Event * Xt Get Sel ecti onRequest (w, sel ecti on,
request id);

w Specifies the widget that currently owns this selection.
Must be of class Core or any subclass thereof.

selection Specifies the selection being processed.

request _id Specifies the requestor id in the case of incremental
selections, or NULL in the case of atomic transfers.

Xt Get Sel ecti onRequest may be called only from within an (*Xt Convert Sel ec-
tionProc) procedure and returns a pointer to the Sel ecti onRequest event that
caused the conversion procedure to be invoked. Request id specifies a unique id for
the individual request in the case that multiple incremental transfers are outstand-
ing. For atomic transfers, request id must be specified as NULL. If no Sel ecti on-
Request event is being processed for the specified widget, selection, and request id,
Xt Get Sel ecti onRequest returns NULL.

The procedure pointer specified by the owner when it desires notification upon los-
ing ownership is of type (* Xt LoseSel ecti onProc) .

typedef void (*XtLoseSel ectionProc)(w, selection);
w Specifies the widget that has lost selection ownership.

selection Specifies the atom naming the selection.

191

Utility Functions

This procedure is called by the Intrinsics selection mechanism to inform the speci-
fied widget that it has lost the given selection. Note that this procedure does not
ask the widget to relinquish the selection ownership; it is merely informative.

The procedure pointer specified by the owner when it desires notification of receipt
of the data or when it manages the storage containing the data is of type (*Xt S-
el ecti onDoneProc).

typedef void (*XtSel ecti onDoneProc) (w, selection, target);

w Specifies the widget that owns the converted selection.

selection Specifies the atom naming the selection that was con-
verted.

target Specifies the target type to which the conversion was
done.

This procedure is called by the Intrinsics selection mechanism to inform the selec-
tion owner that a selection requestor has successfully retrieved a selection value. If
the selection owner has registered an (* Xt Sel ect i onDonePr oc), it should expect it
to be called once for each conversion that it performs, after the converted value has
been successfully transferred to the requestor. If the selection owner has registered
an (* Xt Sel ecti onDoneProc), it also owns the storage containing the converted se-
lection value.

Getting the Selection Value

The procedure pointer specified by the requestor to receive the selection data from
the Intrinsics is of type (* Xt Sel ecti onCal | backPr o).

typedef void (*XtSel ectionCall backPro)(w, client_data, selection, type,
val ue, length, fornmat);

w Specifies the widget that requested the selection val-
ue.
client data Specifies a value passed in by the widget when it re-

quested the selection.

selection Specifies the name of the selection that was request-
ed.
type Specifies the representation type of the selection val-

ue (for example, XA STRING). Note that it is not
the target that was requested (which the client must
remember for itself), but the type that is used to
represent the target. The special symbolic constant
XT_CONVERT_FAI L is used to indicate that the selection
conversion failed because the selection owner did not
respond within the Intrinsics selection timeout inter-
val.

value Specifies a pointer to the selection value. The request-
ing client owns this storage and is responsible for free-
ing it by calling Xt Fr ee when it is done with it.

192

Utility Functions

length Specifies the number of elements in value.
format Specifies the size in bits of the data in each element
of value.

This procedure is called by the Intrinsics selection mechanism to deliver the re-
quested selection to the requestor.

If the Sel ecti onNot i fy event returns a property of None, meaning the conversion
has been refused because there is no owner for the specified selection or the owner
cannot convert the selection to the requested target for any reason, the procedure
is called with a value of NULL and a length of zero.

To obtain the selection value in a single logical unit, use Xt Get Sel ecti onVal ue or
Xt Get Sel ecti onVal ues.

voi d Xt Get Sel ecti onVal ue(w, selection, target, callback, client_data,
tinme);

w Specifies the widget making the request. Must be of
class Core or any subclass thereof.

selection Specifies the particular selection desired; for example,
XA PRI MARY.

target Specifies the type of information needed about the se-
lection.

callback Specifies the procedure to be called when the selec-

tion value has been obtained. Note that this is how the
selection value is communicated back to the client.

client data Specifies additional data to be passed to the specified
procedure when it is called.

time Specifies the timestamp that indicates when the se-
lection request was initiated. This should be the time-
stamp of the event that triggered this request; the val-
ue Curr ent Ti me is not acceptable.

The Xt Get Sel ecti onVal ue function requests the value of the selection converted
to the target type. The specified callback is called at some time after Xt Get Sel ec-
ti onVal ue is called, when the selection value is received from the X server. It may
be called before or after Xt Get Sel ecti onVal ue returns. For more information about
selection, target, and time, see Section 2.6 in the Inter-Client Communication Con-
ventions Manual..

void XtGetSel ectionValues(w, selection, targets, count, callback,
client_data, tine);

w Specifies the widget making the request. Must be of
class Core or any subclass thereof.

selection Specifies the particular selection desired (that is, pri-
mary or secondary).

targets Specifies the types of information needed about the
selection.

193

Utility Functions

count Specifies the length of the targets and client data
lists.
callback Specifies the callback procedure to be called with

each selection value obtained. Note that this is how
the selection values are communicated back to the
client.

client data Specifies a list of additional data values, one for each
target type, that are passed to the callback procedure
when it is called for that target.

time Specifies the timestamp that indicates when the se-
lection request was initiated. This should be the time-
stamp of the event that triggered this request; the val-
ue Current Ti ne is not acceptable.

The Xt Get Sel ect i onVal ues function is similar to multiple calls to Xt Get Sel ect i on-
Val ue except that it guarantees that no other client can assert ownership between
requests and therefore that all the conversions will refer to the same selection val-
ue. The callback is invoked once for each target value with the corresponding client
data. For more information about selection, target, and time, see section 2.6 in the
Inter-Client Communication Conventions Manual..

Setting the Selection Owner

To set the selection owner and indicate that the selection value will be provided in
one piece, use Xt OwmnSel ecti on.

Bool ean Xt OmnSel ecti on(w, sel ecti on, time, convert _proc,
| ose_sel ecti on, done_proc);

w Specifies the widget that wishes to become the own-
er. Must be of class Core or any subclass thereof.

selection Specifies the name of the selection (for example,
XA PRI MARY).

time Specifies the timestamp that indicates when the own-

ership request was initiated. This should be the time-
stamp of the event that triggered ownership; the val-
ue Current Ti ne is not acceptable.

convert_proc Specifies the procedure to be called whenever a
client requests the current value of the selection.

lose selection Specifies the procedure to be called whenever the
widget has lost selection ownership, or NULL if the
owner is not interested in being called back.

done proc Specifies the procedure called after the requestor
has received the selection value, or NULL if the own-
er is not interested in being called back.

The Xt OmnSel ecti on function informs the Intrinsics selection mechanism that a
widget wishes to own a selection. It returns Tr ue if the widget successfully becomes
the owner and Fal se otherwise. The widget may fail to become the owner if some

194

Utility Functions

other widget has asserted ownership at a time later than this widget. The widget
can lose selection ownership either because some other widget asserted later own-
ership of the selection or because the widget voluntarily gave up ownership of the
selection. The lose selection procedure is not called if the widget fails to obtain se-
lection ownership in the first place.

If a done proc is specified, the client owns the storage allocated for passing the
value to the Intrinsics. If done procis NULL, the convert proc must allocate storage
using Xt Mal | oc, Xt Real | oc, or Xt Cal | oc, and the value specified is freed by the
Intrinsics when the transfer is complete.

Usually, a selection owner maintains ownership indefinitely until some other widget
requests ownership, at which time the Intrinsics selection mechanism informs the
previous owner that it has lost ownership of the selection. However, in response to
some user actions (for example, when a user deletes the information selected), the
application may wish to explicitly inform the Intrinsics by using Xt Di sownSel ecti on
that it no longer is to be the selection owner.

voi d Xt Di sownSel ection(w, selection, tine);

w Specifies the widget that wishes to relinquish ownership.
selection Specifies the atom naming the selection being given up.
time Specifies the timestamp that indicates when the request

to relinquish selection ownership was initiated.

The Xt Di sownSel ecti on function informs the Intrinsics selection mechanism that
the specified widget is to lose ownership of the selection. If the widget does not
currently own the selection, either because it lost the selection or because it never
had the selection to begin with, Xt Di sownSel ecti on does nothing.

After a widget has called Xt Di sownSel ecti on, its convert procedure is not called
even if a request arrives later with a timestamp during the period that this wid-
get owned the selection. However, its done procedure is called if a conversion that
started before the call to Xt Di sownSel ect i on finishes after the call to Xt Di sownS-
el ection.

Using Incremental Transfers

When using the incremental interface, an owner may have to process more than one
selection request for the same selection, converted to the same target, at the same
time. The incremental functions take a request id argument, which is an identifi-
er that is guaranteed to be unique among all incremental requests that are active
concurrently.

For example, consider the following:

* Upon receiving a request for the selection value, the owner sends the first seg-
ment.

* While waiting to be called to provide the next segment value but before sending
it, the owner receives another request from a different requestor for the same
selection value.

» To distinguish between the requests, the owner uses the request _id value. This
allows the owner to distinguish between the first requestor, which is asking for the
second segment, and the second requestor, which is asking for the first segment.

195

Utility Functions

Incremental Transfer Procedures

The following procedures are used by selection owners who wish to provide the
selection data in multiple segments.

The procedure pointer specified by the incremental owner to supply the selection
data to the Intrinsics is of type (* Xt Convert Sel ecti onl ncr Proc).

typedef XtPointer XtRequestld;

typedef Boolean (*XtConvert SelectionlncrProc)(w, selection, target,
type_return, value return, length_return, format_return, max_|ength,

client_data, request_id);

w

selection

target

type return

value return

length_return

format_return

max_length

client data

request _id

Specifies the widget that currently owns this selec-
tion.

Specifies the atom that names the selection request-
ed.

Specifies the type of information required about the
selection.

Specifies a pointer to an atom into which the property
type of the converted value of the selection is to be
stored.

Specifies a pointer into which a pointer to the con-
verted value of the selection is to be stored. The se-
lection owner is responsible for allocating this stor-
age.

Specifies a pointer into which the number of el-
ements in value return, each of size indicated by
format return, is to be stored.

Specifies a pointer into which the size in bits of the
data elements of the selection value is to be stored so
that the server may byte-swap the data if necessary.

Specifies the maximum number of bytes which may
be transferred at any one time.

Specifies the value passed in by the widget when it
took ownership of the selection.

Specifies an opaque identification for a specific re-
quest.

This procedure is called repeatedly by the Intrinsics selection mechanism to get the
next incremental chunk of data from a selection owner who has called Xt OmSel ec-
ti onl ncrenent al . It must return Tr ue if the procedure has succeeded in converting
the selection data or Fal se otherwise. On the first call with a particular request
id, the owner must begin a new incremental transfer for the requested selection
and target. On subsequent calls with the same request id, the owner may assume
that the previously supplied value is no longer needed by the Intrinsics; that is, a

196

Utility Functions

fixed transfer area may be allocated and returned in value return for each segment
to be transferred. This procedure should store a non-NULL value in value return
and zero in length return to indicate that the entire selection has been delivered.
After returning this final segment, the request id may be reused by the Intrinsics
to begin a new transfer.

To retrieve the Sel ecti onRequest event that triggered the selection conversion
procedure, use Xt Get Sel ecti onRequest, described in Section 11.5.2.1.

The procedure pointer specified by the incremental selection owner when it desires
notification upon no longer having ownership is of type (* Xt LoseSel ecti onl ncr -
Proc).

typedef void (*XtLoseSel ectionlncrProc)(w, selection, client_data);

w Specifies the widget that has lost the selection owner-
ship.

selection Specifies the atom that names the selection.

client data Specifies the value passed in by the widget when it

took ownership of the selection.

This procedure, which is optional, is called by the Intrinsics to inform the selection
owner that it no longer owns the selection.

The procedure pointer specified by the incremental selection owner when it desires
notification of receipt of the data or when it manages the storage containing the
data is of type (* Xt Sel ecti onDonel ncr Proc).

t ypedef voi d (*Xt Sel ecti onDonel ncr Proc) (w, sel ecti on, target,
request _id, client_data);

w Specifies the widget that owns the selection.

selection Specifies the atom that names the selection being
transferred.

target Specifies the target type to which the conversion was
done.

request_id Specifies an opaque identification for a specific re-
quest.

client data Specified the value passed in by the widget when it

took ownership of the selection.

This procedure, which is optional, is called by the Intrinsics after the requestor has
retrieved the final (zero-length) segment of the incremental transfer to indicate that
the entire transfer is complete. If this procedure is not specified, the Intrinsics will
free only the final value returned by the selection owner using Xt Fr ee.

The procedure pointer specified by the incremental selection owner to notify it if
a transfer should be terminated prematurely is of type (* Xt Cancel Convert Sel ec-
tionProc).

typedef void (*XtCancel Convert Sel ectionProc)(w, selection, target,
request _id, client_data);

197

Utility Functions

w Specifies the widget that owns the selection.

selection Specifies the atom that names the selection being
transferred.

target Specifies the target type to which the conversion was
done.

request _id Specifies an opaque identification for a specific re-
quest.

client data Specifies the value passed in by the widget when it

took ownership of the selection.

This procedure is called by the Intrinsics when it has been determined by means
of a timeout or other mechanism that any remaining segments of the selection no
longer need to be transferred. Upon receiving this callback, the selection request is
considered complete and the owner can free the memory and any other resources
that have been allocated for the transfer.

Getting the Selection Value Incrementally

To obtain the value of the selection using incremental transfers, use Xt Get Sel ec-
ti onVal uel ncrenent al or Xt Get Sel ecti onVal uesl ncrenent al .

voi d Xt Cet Sel ecti onVal uel ncrenent al (w, sel ecti on, target,
sel ection_cal |l back, client_data, tine);

w Specifies the widget making the request. Must be of
class Core or any subclass thereof.

selection Specifies the particular selection desired.

target Specifies the type of information needed about the
selection.

selection_callback Specifies the callback procedure to be called to re-

ceive each data segment.

client data Specifies client-specific data to be passed to the spec-
ified callback procedure when it is invoked.

time Specifies the timestamp that indicates when the se-
lection request was initiated. This should be the time-
stamp of the event that triggered this request; the
value Cur r ent Ti ne is not acceptable.

The Xt Get Sel ecti onVal uel ncrenent al function is similar to Xt Get Sel ecti onVal -
ue except that the selection callback procedure will be called repeatedly upon de-
livery of multiple segments of the selection value. The end of the selection value is
indicated when selection callback is called with a non-NULL value of length zero,
which must still be freed by the client. If the transfer of the selection is aborted in the
middle of a transfer (for example, because of a timeout), the selection callback pro-
cedure is called with a type value equal to the symbolic constant XT_CONVERT_FAI L
so that the requestor can dispose of the partial selection value it has collected up
until that point. Upon receiving XT_CONVERT_FAI L, the requesting client must de-

198

Utility Functions

termine for itself whether or not a partially completed data transfer is meaningful.
For more information about selection, target, and time, see the section called “Use
of Selection Atoms” in the Inter-Client Communication Conventions Manual.

void Xt GetSel ectionVal ueslncrenental (w, selection, targets, count,
sel ection_cal |l back, client_data, tinme);

w Specifies the widget making the request. Must be of
class Core or any subclass thereof.

selection Specifies the particular selection desired.

targets Specifies the types of information needed about the
selection.

count Specifies the length of the targets and client data
lists.

selection_callback Specifies the callback procedure to be called to re-

ceive each selection value.

client data Specifies a list of client data (one for each target
type) values that are passed to the callback proce-
dure when it is invoked for the corresponding target.

time Specifies the timestamp that indicates when the se-
lection request was initiated. This should be the time-
stamp of the event that triggered this request; the
value Cur r ent Ti ne is not acceptable.

The Xt Get Sel ecti onVal uesl ncrenent al function is similar to Xt Get Sel ecti onVa-
| uel ncrenent al except that it takes a list of targets and client data. Xt Get Sel ec-
ti onVal uesl ncrenent al is equivalent to calling Xt Get Sel ecti onVal uel ncr enen-
t al successively for each target/client data pair except that Xt Get Sel ecti onVal -
uesl ncrenent al does guarantee that all the conversions will use the same selection
value because the ownership of the selection cannot change in the middle of the
list, as would be possible when calling Xt Get Sel ecti onVal uel ncr enent al repeat-
edly. For more information about selection, target, and time, see Section 2.6 in the
Inter-Client Communication Conventions Manual.

Setting the Selection Owner for Incremental Transfers

To set the selection owner when using incremental transfers, use Xt OmSel ec-
tionlncrenental .

Bool ean Xt OmSel ecti onl ncrenental (w, sel ection, tinme, convert_call back,
| ose_cal | back, done_cal |l back, cancel callback, client_data);

w Specifies the widget that wishes to become the own-
er. Must be of class Core or any subclass thereof.

selection Specifies the atom that names the selection.

time Specifies the timestamp that indicates when the se-
lection ownership request was initiated. This should
be the timestamp of the event that triggered owner-
ship; the value Current Ti ne is not acceptable.

199

Utility Functions

convert_callback Specifies the procedure to be called whenever the
current value of the selection is requested.

lose callback Specifies the procedure to be called whenever the
widget has lost selection ownership, or NULL if the
owner is not interested in being notified.

done callback Specifies the procedure called after the requestor
has received the entire selection, or NULL if the own-
er is not interested in being notified.

cancel callback Specifies the callback procedure to be called when a
selection request aborts because a timeout expires,
or NULL if the owner is not interested in being noti-
fied.

client data Specifies the argument to be passed to each of the
callback procedures when they are called.

The Xt OmSel ecti onl ncr enent al procedure informs the Intrinsics incremental se-
lection mechanism that the specified widget wishes to own the selection. It returns
Tr ue if the specified widget successfully becomes the selection owner or Fal se oth-
erwise. For more information about selection, target, and time, see Section 2.6 in
the Inter-Client Communication Conventions Manual.

If a done callback procedure is specified, the client owns the storage allocated for
passing the value to the Intrinsics. If done_callback is NULL, the convert callback
procedure must allocate storage using Xt Mal | oc, Xt Real | oc, or Xt Cal | oc, and the
final value specified is freed by the Intrinsics when the transfer is complete. After
a selection transfer has started, only one of the done callback or cancel callback
procedures is invoked to indicate completion of the transfer.

The lose_callback procedure does not indicate completion of any in-progress trans-
fers; it is invoked at the time a Sel ecti onCl ear event is dispatched regardless of
any active transfers, which are still expected to continue.

A widget that becomes the selection owner using Xt OmSel ect i onl ncr enent al may
use Xt Di sownSel ect i on to relinquish selection ownership.

Setting and Retrieving Selection Target Parameters

To specify target parameters for a selection request with a single target, use
Xt Set Sel ecti onPar anet ers.

void Xt Set Sel ecti onParanet ers(requestor, sel ecti on, type, val ue,
[ength, format);

requestor Specifies the widget making the request. Must be of
class Core or any subclass thereof.

selection Specifies the atom that names the selection.

type Specifies the type of the property in which the parame-
ters are passed.

value Specifies a pointer to the parameters.

200

Utility Functions

length Specifies the number of elements containing data in val-
ue, each element of a size indicated by format.

format Specifies the size in bits of the data in the elements of
value.

The specified parameters are copied and stored in a new property of the speci-
fied type and format on the requestor's window. To initiate a selection request with
a target and these parameters, a subsequent call to Xt Get Sel ecti onVal ue or to
Xt Get Sel ecti onVal uel ncrenent al specifying the same requestor widget and se-
lection atom will generate a Convert Sel ecti on request referring to the property
containing the parameters. If Xt Set Sel ecti onPar anet er s is called more than once
with the same widget and selection without a call to specify a request, the most
recently specified parameters are used in the subsequent request.

The possible values of format are 8, 16, or 32. If the format is 8, the elements of
value are assumed to be sizeof(char); if 16, sizeof(short); if 32, sizeof(long).

To generate a MULTIPLE target request with parameters for any of the multi-
ple targets of the selection request, precede individual calls to Xt Get Sel ecti on-
Val ue and Xt Get Sel ecti onVal uel ncrenent al with corresponding individual calls
to Xt Set Sel ecti onPar anet er s, and enclose these all within Xt Cr eat eSel ecti on-
Request and Xt SendSel ecti onRequest. Xt Get Sel ecti onVal ues and Xt Get Sel ec-
ti onVal uesl ncrenent al cannot be used to make selection requests with parame-
terized targets.

To retrieve any target parameters needed to perform a selection conversion, the
selection owner calls Xt Get Sel ecti onPar aneters.

voi d Xt Get Sel ecti onPar anet er s(owner, sel ection, request _id,
type_return, value_ return, length return, format _return);

owner Specifies the widget that owns the specified selec-
tion.

selection Specifies the selection being processed.

request _id Specifies the requestor id in the case of incremental

selections, or NULL in the case of atomic transfers.

type return Specifies a pointer to an atom in which the property
type of the parameters is stored.

value return Specifies a pointer into which a pointer to the para-
meters is to be stored. A NULL is stored if no para-
meters accompany the request.

length _return Specifies a pointer into which the number of da-
ta elements in value return of size indicated by
format return are stored.

format return Specifies a pointer into which the size in bits of the
parameter data in the elements of value is stored.

Xt Get Sel ect i onPar anet er s may be called only from within an (* Xt Convert Sel ec-
tionProc) or from within the first call to an (* Xt Convert Sel ect i onl ncr Proc) with
a new request _id.

201

Utility Functions

It is the responsibility of the caller to free the returned parameters using Xt Fr ee
when the parameters are no longer needed.

Generating MULTIPLE Requests

To have the Intrinsics bundle multiple calls to make selection requests into a single
request using a MULTIPLE target, use Xt Cr eat eSel ecti onRequest and Xt SendS-
el ecti onRequest .

voi d Xt Creat eSel ecti onRequest (requestor, sel ection);

requestor Specifies the widget making the request. Must be of
class Core or any subclass thereof.

selection Specifies the particular selection desired.

When Xt Cr eat eSel ect i onRequest is called, subsequent calls to Xt Get Sel ecti on-
Val ue, Xt Get Sel ecti onVal uel ncrenent al , Xt Get Sel ecti onVal ues, and Xt Get S-
el ectionVal uesl ncrenent al , with the requestor and selection as specified to
Xt Cr eat eSel ect i onRequest, are bundled into a single selection request with mul-
tiple targets. The request is made by calling Xt SendSel ect i onRequest .

voi d Xt SendSel ecti onRequest (requestor, selection, tinme);

requestor Specifies the widget making the request. Must be of
class Core or any subclass thereof.

selection Specifies the particular selection desired.

time Specifies the timestamp that indicates when the selec-
tion request was initiated. The value Curr ent Ti ne is not
acceptable.

When Xt SendSel ecti onRequest is called with a value of requestor and selection
matching a previous call to Xt Cr eat eSel ect i onRequest, a selection request is sent
to the selection owner. If a single target request is queued, that request is made.
If multiple targets are queued, they are bundled into a single request with a tar-
get of MULTIPLE using the specified timestamp. As the values are returned, the
callbacks specified in Xt Get Sel ecti onVal ue, Xt Get Sel ecti onVal uel ncrenental ,
Xt Get Sel ecti onVal ues, and Xt Get Sel ecti onVal uel ncr enent al are invoked.

Multi-threaded applications should lock the application context before calling
Xt Cr eat eSel ecti onRequest and release the lock after calling Xt SendSel ecti on-
Request to ensure that the thread assembling the request is safe from interference
by another thread assembling a different request naming the same widget and se-
lection.

To relinquish the composition of a MULTIPLE request without sending it, use
Xt Cancel Sel ecti onRequest .

voi d Xt Cancel Sel ecti onRequest (requestor, selection);

requestor Specifies the widget making the request. Must be of
class Core or any subclass thereof.

selection Specifies the particular selection desired.

202

Utility Functions

When Xt Cancel Sel ecti onRequest is called, any requests queued since the last call
to Xt Cr eat eSel ecti onRequest for the same widget and selection are discarded and
any resources reserved are released. A subsequent call to Xt SendSel ecti onRequest
will not result in any request being made. Subsequent calls to Xt Get Sel ect i onVa-
 ue, Xt Cet Sel ecti onVal ues, Xt Get Sel ecti onVal uel ncrenent al , or Xt Get Sel ec-
tionVal uesl ncrenent al will not be deferred.

Auxiliary Selection Properties

Certain uses of parameterized selections require clients to name other window prop-
erties within a selection parameter. To permit reuse of temporary property names
in these circumstances and thereby reduce the number of unique atoms created in
the server, the Intrinsics provides two interfaces for acquiring temporary property
names.

To acquire a temporary property name atom for use in a selection request, the client
may call Xt Reser vePropertyAt om

At om Xt ReservePropertyAtom(w) ;

w Specifies the widget making a selection request.

Xt Reser vePr opert yAt omreturns an atom that may be used as a property name dur-
ing selection requests involving the specified widget. As long as the atom remains

reserved, it is unique with respect to all other reserved atoms for the widget.

To return a temporary property name atom for reuse and to delete the property
named by that atom, use Xt Rel easePr opert yAt om

voi d Xt Rel easePropertyAtomw, atom;
w Specifies the widget used to reserve the property name atom.

atom Specifies the property name atom returned by Xt Reserve-
Pr opert yAt omthat is to be released for reuse.

Xt Rel easePr opert yAt ommarks the specified property name atom as no longer in
use and ensures that any property having that name on the specified widget's win-
dow is deleted. If atom does not specify a value returned by Xt Reser veProperty-
At omfor the specified widget, the results are undefined.

Retrieving the Most Recent Timestamp

To retrieve the timestamp from the most recent call to Xt Di spat chEvent that con-
tained a timestamp, use Xt Last Ti nest anpPr ocessed.

Ti me Xt Last Ti mest anpProcessed(di spl ay) ;

display Specifies an open display connection.

If no KeyPr ess, KeyRel ease, Butt onPr ess, Butt onRel ease, Mbti onNotify, Enter-
Notify, LeaveNotify, PropertyNotify, or Sel ecti onCl ear event has yet been

passed to Xt Di spat chEvent for the specified display, Xt Last Ti nest anpPr ocessed
returns zero.

203

Utility Functions

Retrieving the Most Recent Event

To retrieve the event from the most recent call to Xt Di spat chEvent for a specific
display, use Xt Last Event Pr ocessed.

XEvent *XtLast Event Processed(di spl ay);

display Specifies the display connection from which to retrieve the
event.

Returns the last event passed to Xt Di spat chEvent for the specified display. Returns
NULL if there is no such event. The client must not modify the contents of the
returned event.

Merging Exposure Events into a Region

The Intrinsics provide an Xt AddExposur eToRegi on utility function that merges Ex-
pose and G aphi csExpose events into a region for clients to process at once rather
than processing individual rectangles. For further information about regions, see
the section called “Manipulating Regions” in Xlib — C Language X Interface..

To merge Expose and Graphi csExpose events into a region, use Xt AddExposur e-
ToRegi on.

voi d Xt AddExposur eToRegi on(event, region);
event Specifies a pointer to the Expose or Gr aphi csExpose event.
region Specifies the region object (as defined in <X11/ Xuti |l . h>).

The Xt AddExposur eToRegi on function computes the union of the rectangle defined
by the exposure event and the specified region. Then it stores the results back in
region. If the event argument is not an Expose or Gr aphi csExpose event, Xt AddEx-
posur eToRegi on returns without an error and without modifying region.

This function is used by the exposure compression mechanism; see the section
called “Exposure Compression”

Translating Widget Coordinates

To translate an x-y coordinate pair from widget coordinates to root window absolute
coordinates, use Xt Tr ans| at eCoor ds.

voi d Xt Transl ateCoords(w, X, rootx_return);

w Specifies the widget. Must be of class RectObj or any
subclass thereof.

X

Y Specify the widget-relative x and y coordinates.

rootx_return

rooty return Return the root-relative x and y coordinates.

204

Utility Functions

While Xt Tr ansl at eCoor ds is similar to the Xlib XTr ansl at eCoor di nat es function,
it does not generate a server request because all the required information already
is in the widget's data structures.

Translating a Window to a Widget

To translate a given window and display pointer into a widget instance, use Xt W n-
dowToW dget .

W dget Xt W ndowToW dget (di spl ay, w ndow);
display Specifies the display on which the window is defined.
window Specifies the drawable for which you want the widget.

If there is a realized widget whose window is the specified drawable on the specified
display, Xt W ndowToW dget returns that widget. If not and if the drawable has been
associated with a widget through Xt Regi st er Dr awabl e, Xt W ndowToW dget returns
the widget associated with the drawable. In other cases it returns NULL.

Handling Errors

The Intrinsics allow a client to register procedures that are called whenever a fatal
or nonfatal error occurs. These facilities are intended for both error reporting and
logging and for error correction or recovery.

Two levels of interface are provided:

* A high-level interface that takes an error name and class and retrieves the error
message text from an error resource database.
* A low-level interface that takes a simple string to display.

The high-level functions construct a string to pass to the lower-level interface. The
strings may be specified in application code and are overridden by the contents of
an external systemwide file, the "error database file". The location and name of this
file are implementation-dependent.

Note

The application-context-specific error handling is not implemented on many
systems, although the interfaces are always present. Most implementations
will have just one set of error handlers for all application contexts within a
process. If they are set for different application contexts, the ones registered
last will prevail.

To obtain the error database (for example, to merge with an application- or wid-
get-specific database), use Xt AppGet Er r or Dat abase.

Xr nDat abase * Xt AppGet Er r or Dat abase(app_cont ext) ;
app_context Specifies the application context.

The Xt AppGet Er r or Dat abase function returns the address of the error database.
The Intrinsics do a lazy binding of the error database and do not merge in the data-
base file until the first call to Xt AppGet Er r or Dat abaseText .

205

Utility Functions

For a complete listing of all errors and warnings that can be generated by the In-
trinsics, see Appendix D, Intrinsics Error Messages

The high-level error and warning handler procedure pointers are of type (* Xt Er -
ror MsgHandl er) .

typedef void (*XtErrorMgHandl er) (nanme, type, class, defaultp, parans,
num par ans) ;

name Specifies the name to be concatenated with the speci-
fied type to form the resource name of the error mes-
sage.

type Specifies the type to be concatenated with the name to

form the resource name of the error message.
class Specifies the resource class of the error message.

defaultp Specifies the default message to use if no error data-
base entry is found.

params Specifies a pointer to a list of parameters to be substi-
tuted in the message.

num_params Specifies the number of entries in params.

The specified name can be a general kind of error, like "invalidParameters" or "in-
validWindow", and the specified type gives extra information such as the name of
the routine in which the error was detected. Standard pri nt f notation is used to
substitute the parameters into the message.

An error message handler can obtain the error database text for an error or a warn-
ing by calling Xt AppGet Er r or Dat abaseText .

voi d Xt AppCet Er r or Dat abaseText (app_cont ext, nane, defaul t,
buffer_return, nbytes, database);

app_context Specifies the application context.

name , type Specify the name and type concatenated to form the

resource name of the error message.
class Specifies the resource class of the error message.

default Specifies the default message to use if an error data-
base entry is not found.

buffer return Specifies the buffer into which the error message is
to be returned.

nbytes Specifies the size of the buffer in bytes.

database Specifies the name of the alternative database to be
used, or NULL if the application context's error data-
base is to be used.

The Xt AppGet Er r or Dat abaseText returns the appropriate message from the error
database or returns the specified default message if one is not found in the error

206

Utility Functions

database. To form the full resource name and class when querying the database,
the name and type are concatenated with a single "." between them and the class

is concatenated with itself with a single "." if it does not already contain a

To return the application name and class as passed to Xt Di spl ayl nitialize fora
particular Display, use Xt Get Appl i cat i onNanmeAnddCl ass.

voi d Xt Get Appl i cati onNanmeAndd ass(di splay, name_return, class_return);

display Specifies an open display connection that has been
initialized with Xt Di spl ayl niti al i ze.

name _return Returns the application name.
class return Returns the application class.

Xt Get Appl i cat i onNanmeAndCl ass returns the application name and class passed to
Xt Di spl ayl nitialize for the specified display. If the display was never initialized
or has been closed, the result is undefined. The returned strings are owned by the
Intrinsics and must not be modified or freed by the caller.

To register a procedure to be called on fatal error conditions, use Xt AppSet Er r or Ms-
gHandl er.

Xt Err or MsgHandl er Xt AppSet Err or MsgHandl er (app_cont ext, nsg_handl er);

app_context Specifies the application context.
msg _handler Specifies the new fatal error procedure, which should
not return.

Xt AppSet Er r or MsgHandl er returns a pointer to the previously installed high-level
fatal error handler. The default high-level fatal error handler provided by the Intrin-
sics is named _Xt Def aul t Er r or Msg and constructs a string from the error resource
database and calls Xt Er r or . Fatal error message handlers should not return. If one
does, subsequent Intrinsics behavior is undefined.

To call the high-level error handler, use Xt AppEr r or Msg.

voi d Xt AppError Msg(app_context, nanme, type, class, default, parans,
num par ans) ;

app_context Specifies the application context.

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error data-

base entry is not found.

params Specifies a pointer to a list of values to be stored in
the message.

num_params Specifies the number of entries in params.

207

Utility Functions

The Intrinsics internal errors all have class "XtToolkitError".

To register a procedure to be called on nonfatal error conditions, use Xt AppSet -
War ni ngMsgHandl er .

Xt Err or MsgHandl er Xt AppSet War ni ngMsgHandl| er (app_cont ext, nsg_handl er);
app_context Specifies the application context.

msg _handler Specifies the new nonfatal error procedure, which
usually returns.

Xt AppSet Var ni ngMsgHandl er returns a pointer to the previously installed high-level
warning handler. The default high-level warning handler provided by the Intrinsics
is named _ Xt Def aul t War ni ngMsg and constructs a string from the error resource
database and calls Xt War ni ng.

To call the installed high-level warning handler, use Xt AppWar ni nghsg.

voi d Xt AppWar ni ngMsg(app_context, nane, type, class, default, parans,
num par amns) ;

app_context Specifies the application context.

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error data-

base entry is not found.

params Specifies a pointer to a list of values to be stored in
the message.

num_params Specifies the number of entries in params.
The Intrinsics internal warnings all have class "XtToolkitError".

The low-level error and warning handler procedure pointers are of type (* Xt Er -
ror Handl er) .

typedef void (*XtErrorHandl er) (nmessage);
message Specifies the error message.
The error handler should display the message string in some appropriate fashion.

To register a procedure to be called on fatal error conditions, use Xt AppSet Er -
ror Handl er .

Xt Error Handl er Xt AppSet Err or Handl er (app_cont ext, handl er);

app_context Specifies the application context.
handler Specifies the new fatal error procedure, which should
not return.

208

Utility Functions

Xt AppSet Err or Handl er returns a pointer to the previously installed low-level fa-
tal error handler. The default low-level error handler provided by the Intrinsics is
_Xt Def aul t Er r or . On POSIX-based systems, it prints the message to standard error
and terminates the application. Fatal error message handlers should not return. If
one does, subsequent Intrinsics behavior is undefined.

To call the installed fatal error procedure, use Xt AppError.

voi d Xt AppError(app_context, nessage);

app_context Specifies the application context.
message Specifies the message to be reported.

Most programs should use Xt AppError Msg, not Xt AppError, to provide for cus-
tomization and internationalization of error messages.

To register a procedure to be called on nonfatal error conditions, use Xt AppSet -
War ni ngHandl er .

Xt Error Handl er Xt AppSet War ni ngHandl er (app_context, handl er);
app_context Specifies the application context.

handler Specifies the new nonfatal error procedure, which
usually returns.

Xt AppSet War ni ngHandl er returns a pointer to the previously installed low-level
warning handler. The default low-level warning handler provided by the Intrinsics
is _Xt Def aul t Var ni ng. On POSIX-based systems, it prints the message to standard
error and returns to the caller.

To call the installed nonfatal error procedure, use Xt App\War ni ng.

voi d Xt AppWar ni ng(app_context, nessage);

app_context Specifies the application context.

message Specifies the nonfatal error message to be reported.

Most programs should use Xt AppWar ni ngMsg, not Xt AppWar ni ng, to provide for cus-
tomization and internationalization of warning messages.

Setting WM_COLORMAP_WINDOWS

A client may set the value of the WM_COLORMAP_WINDOWS property on a
widget's window by calling Xt Set WMCol or mapW ndows.

voi d Xt Set WMCol or mapW ndows(wi dget, |ist, count);

widget Specifies the widget on whose window the
WM_COLORMAP_WINDOWS property is stored. Must be
of class Core or any subclass thereof.

list Specifies a list of widgets whose windows are potentially to
be listed in the WM_COLORMAP_WINDOWS property.

209

Utility Functions

count Specifies the number of widgets in Iist.

Xt Set WMCol or mapW ndows returns immediately if widget is not realized or if count
is 0. Otherwise, Xt Set WMCol or mapW ndows constructs an ordered list of windows by
examining each widget in [ist in turn and ignoring the widget if it is not realized,
or adding the widget's window to the window list if the widget is realized and if its
colormap resource is different from the colormap resources of all widgets whose
windows are already on the window list.

Finally, Xt Set WMCol or mapW ndows stores the resulting window list in the
WM_COLORMAP_WINDOWS property on the specified widget's window. Refer to
Section 4.1.8 in the Inter-Client Communication Conventions Manual. for details of
the semantics of the WM_COLORMAP_WINDOWS property.

Finding File Names

The Intrinsics provide procedures to look for a file by name, allowing string sub-
stitutions in a list of file specifications. Two routines are provided for this: Xt Fi nd-
Fi | e and Xt Resol vePat hnanme. Xt Fi ndFi | e uses an arbitrary set of client-specified
substitutions, and Xt Resol vePat hnane uses a set of standard substitutions corre-
sponding to the X/Open Portability Guide language localization conventions. Most
applications should use Xt Resol vePat hnane.

A string substitution is defined by a list of Substit uti on entries.

typedef struct {

char match;

String substitution;

} SubstitutionRec, *Substitution;

File name evaluation is handled in an operating-system-dependent fashion by an
(*Xt Fi | ePredi cat e) procedure.

t ypedef Bool ean (*XtFilePredicate)(fil enane);

filename Specifies a potential filename.

A file predicate procedure is called with a string that is potentially a file name. It
should return Tr ue if this string specifies a file that is appropriate for the intended
use and Fal se otherwise.

To search for a file using substitutions in a path list, use Xt Fi ndFi | e.

String XtFindFile(path, substitutions, numsubstitutions, predicate);

path Specifies a path of file names, including substitution
characters.

substitutions Specifies a list of substitutions to make into the path.

num_substitutions Specifies the number of substitutions passed in.

predicate Specifies a procedure called to judge each potential

file name, or NULL.

210

Utility Functions

The path parameter specifies a string that consists of a series of potential file names
delimited by colons. Within each name, the percent character specifies a string sub-
stitution selected by the following character. The character sequence "%:" specifies
an embedded colon that is not a delimiter; the sequence is replaced by a single
colon. The character sequence "%%" specifies a percent character that does not
introduce a substitution; the sequence is replaced by a single percent character. If a
percent character is followed by any other character, Xt Fi ndFi | e looks through the
specified substitutions for that character in the match field and, if found, replaces
the percent and match characters with the string in the corresponding substitution
field. A substitution field entry of NULL is equivalent to a pointer to an empty string.
If the operating system does not interpret multiple embedded name separators in
the path (i.e., "/" in POSIX) the same way as a single separator, Xt Fi ndFi | e will
collapse multiple separators into a single one after performing all string substitu-
tions. Except for collapsing embedded separators, the contents of the string substi-
tutions are not interpreted by Xt Fi ndFi | e and may therefore contain any operat-
ing-system-dependent characters, including additional name separators. Each re-
sulting string is passed to the predicate procedure until a string is found for which
the procedure returns Tr ue; this string is the return value for Xt Fi ndFi | e. If no
string yields a Tr ue return from the predicate, Xt Fi ndFi | e returns NULL.

If the predicate parameter is NULL, an internal procedure that checks if the file
exists, is readable, and is not a directory is used.

It is the responsibility of the caller to free the returned string using Xt Fr ee when
it is no longer needed.

To search for a file using standard substitutions in a path list, use Xt Resol vePat h-
nane.

String Xt Resol vePat hnane(di spl ay, type, substitutions,

num substitutions, predicate);

display Specifies the display to use to find the language for
language substitutions.

type

filename

suffix Specify values to substitute into the path.

path Specifies the list of file specifications, or NULL.

substitutions Specifies a list of additional substitutions to make in-
to the path, or NULL.

num_substitutions Specifies the number of entries in substitutions.

predicate Specifies a procedure called to judge each potential

file name, or NULL.

The substitutions specified by Xt Resol vePat hnane are determined from the value
of the language string retrieved by Xt Di spl ayl ni ti al i ze for the specified display.
To set the language for all applications specify "*xnlLanguage: lang" in the resource
database. The format and content of the language string are implementation-de-
fined. One suggested syntax is to compose the language string of three parts; a "lan-
guage part", a "territory part" and a "codeset part". The manner in which this com-

211

Utility Functions

position is accomplished is implementation-defined, and the Intrinsics make no in-
terpretation of the parts other than to use them in substitutions as described below.

Xt Resol vePat hnane calls Xt Fi ndFi | e with the following substitutions in addition
to any passed by the caller and returns the value returned by Xt Fi ndFi | e:

%N The value of the filename parameter, or the application's class name if
filename is NULL.

%T The value of the type parameter.

%S The value of the suffix parameter.

%L The language string associated with the specified display.

%]l The language part of the display's language string.

%t The territory part of the display's language string.

%c The codeset part of the display's language string.

%C The customization string retrieved from the resource database associ-

ated with display.
%D The value of the implementation-specific default path.

If a path is passed to Xt Resol vePat hnane, it is passed along to Xt Fi ndFi | e. If the
path argument is NULL, the value of the XFILESEARCHPATH environment vari-
able is passed to Xt Fi ndFi | e. If XFILESEARCHPATH is not defined, an implemen-
tation-specific default path is used that contains at least six entries. These entries
must contain the following substitutions:

%C, %N, %S, %T, %L or %C, %N, %S, %T, %I, %t, %c
%C, %N, %S, %T, %l

%C, %N, %S, %T

%N, %S, %T, %L or %N, %S, %T, %l, %t, %c

%N, %S, %T, %l

%N, %S, %T

SR

The order of these six entries within the path must be as given above. The order
and use of substitutions within a given entry are implementation-dependent. If the
path begins with a colon, it is preceded by %N%S. If the path includes two adjacent
colons, Y\Y& is inserted between them.

The type parameteris intended to be a category of files, usually being translated into
a directory in the pathname. Possible values might include "app-defaults"”, "help",
and "bitmap".

The suffix parameter is intended to be appended to the file name. Possible values
might include ".txt", ".dat", and ".bm".

A suggested value for the default path on POSIX-based systems is
fusr/lib/X11/%L/%T/%N%C%S:/usr/lib/X11/%l/%T/%N%C%S:\

/usr/lib/X11/%T/%N%C%S:/usr/lib/X11/%L/%T/%N %S:\
/ust/lib/X11/%l/%T/%N%S:/usr/lib/X11/%T/%N%S

212

Utility Functions

Using this example, if the user has specified a language, it is used as a subdirectory
of /usr/lib/X11 that is searched for other files. If the desired file is not found there,
the lookup is tried again using just the language part of the specification. If the
file is not there, it is looked for in /usr/lib/X11. The type parameter is used as a
subdirectory of the language directory or of /usr/lib/X11, and suffix is appended to
the file name.

The %D substitution allows the addition of path elements to the implementation-spe-
cific default path, typically to allow additional directories to be searched with-
out preventing resources in the system directories from being found. For exam-
ple, a user installing resource files under a directory called "ourdir" might set
XFILESEARCHPATH to

%D:ourdir/%T/%N%C:ourdir/%T/%N

The customization string is obtained by querying the resource database current-
ly associated with the display (the database returned by Xr nGet Dat abase) for the
resource application name.customization, class application class.Customization,
where application name and application class are the values returned by Xt Get Ap-
pl i cati onNaneAndd ass. If no value is specified in the database, the empty string
is used.

It is the responsibility of the caller to free the returned string using Xt Fr ee when
it is no longer needed.

Hooks for External Agents

Applications may register functions that are called at a particular control points
in the Intrinsics. These functions are intended to be used to provide notification
of an "X Toolkit event", such as widget creation, to an external agent, such as an
interactive resource editor, drag-and-drop server, or an aid for physically challenged
users. The control points containing such registration hooks are identified in a "hook
registration" object.

To retrieve the hook registration widget, use Xt HooksOf Di spl ay.
W dget Xt HooksOf Di spl ay(di spl ay);
display Specifies the desired display.

The class of this object is a private, implementation-dependent subclass of Qbj ect .
The hook object has no parent. The resources of this object are the callback lists for
hooks and the read-only resources for getting a list of parentless shells. All of the
callback lists are initially empty. When a display is closed, the hook object associated
with it is destroyed.

The following procedures can be called with the hook registration object as an ar-
gument:

e Xt AddCal | back, Xt AddCal |l backs, XtRenoveCall back, XtRenoveCall backs,
Xt RenoveAl | Cal | backs, Xt Cal |l Cal | backs, Xt HasCal | backs, Xt Cal | Cal | back-
Li st

e Xt d ass, Xt Supercl ass, XtlsSubcl ass, Xt CheckSubcl ass, XtlsCbject, Xtls-
Rect Obj , Xt |1 sWdget, Xt|sConposite, XtlsConstraint, XtlsShell, XtlsOver-

213

Utility Functions

Hook

rideShell, XtlsWwshell, XtlsVendorShell, XtlsTransientShell, XtlsTo-
pl evel Shel I, Xt 1 sAppl i cati onShel |, Xt|sSessi onShel |

e Xt W dget ToAppl i cati onCont ext

* Xt Nane, Xt Parent, *Xt Di spl ayOf Qbj ect, * Xt Scr eenOf Obj ect

* Xt Set Val ues, Xt Get Val ues, Xt VaSet Val ues, Xt VaCGet Val ues

Object Resources

The resource names, classes, and representation types that are specified in the hook
object resource list are:

Name Class Representation
XtNcreateHook XtCCallback XtRCallback
XtNchangeHook XtCCallback XtRCallback
XtNconfigureHook XtCCallback XtRCallback
XtNgeometryHook XtCCallback XtRCallback
XtNdestroyHook XtCCallback XtRCallback
XtNshells XtCReadOnly XtRWidgetList
XtNnumShells XtCReadOnly XtRCardinal

Descriptions of each of these resources:

The XtNcreateHook callback list is called from: Xt Cr eat eW dget, Xt Cr eat eMan-
agedW dget, Xt Creat ePopupShel |, Xt AppCreat eShel |, and their corresponding
varargs versions.

The call data parameter in a createHook callback may be cast to type Xt Cr eat e-
HookDat a.

typedef struct {

String type;

Widget widget;

ArgList args;

Cardinal num_args;

} XtCreateHookDataRec, *XtCreateHookData;

The type is set to Xt Hcr eat e, widget is the newly created widget, and args and
num_args are the arguments passed to the create function. The callbacks are called
before returning from the create function.

The XtNchangeHook callback list is called from:

* Xt Set Val ues, Xt VaSet Val ues

* Xt ManageChi | d, Xt ManageChi | dr en, Xt UnmanageChi | d, Xt UnmanageChi | dr en

* Xt Real i zeW dget, Xt Unreal i zeW dget

e Xt AddCal | back, XtRenoveCal | back, XtAddCallbacks, XtRenoveCall backs,
Xt RenoveAl | Cal | backs

Xt Augnent Tr ansl ati ons, Xt Overri deTransl ati ons, Xt Uni nstal | Transl ati ons
Xt Set Keyboar dFocus, Xt Set WMCol or mapW ndows

Xt Set MappedWhenManaged, Xt MapW dget , Xt UnmapW dget

Xt Popup, Xt PopupSpr i ngLoaded, Xt Popdown

214

Utility Functions

The call data parameter in a changeHook callback may be cast to type Xt Change-
HookDat a.

typedef struct {

String type;

Widget widget;

XtPointer event data;

Cardinal num event data;

} XtChangeHookDataRec, *XtChangeHookData;

When the changeHook callbacks are called as a result of a call to Xt Set Val ues or
Xt VaSet Val ues, type is set to Xt Hset Val ues, widget is the new widget passed to
the set values procedure, and event data may be cast to type Xt ChangeHookSet -
Val uesDat a.

typedef struct {

Widget old, req;

ArgList args;

Cardinal num_args;

} XtChangeHookSetValuesDataRec, *XtChangeHookSetValuesData;

The old, req, args, and num_args are the parameters passed to the set values pro-
cedure. The callbacks are called after the set values and constraint set values pro-
cedures have been called.

When the changeHook callbacks are called as a result of a call to Xt ManageChi | d
or Xt ManageChi | dren, type is set to Xt HranageChil dren, widget is the parent,
event data may be cast to type WidgetList and is the list of children being managed,
and num_event data is the length of the widget list. The callbacks are called after
the children have been managed.

When the changeHook callbacks are called as a result of a call to Xt UnnanageChi | d
or Xt UnnmanageChi | dr en, type is set to Xt HunmanageChi | dr en, widget is the parent,
event data may be cast to type WidgetList and is a list of the children being unman-
aged, and num_event data is the length of the widget list. The callbacks are called
after the children have been unmanaged.

The changeHook callbacks are called twice as a result of a call to Xt ChangeMan-
agedSet, once after unmanaging and again after managing. When the callbacks are
called the first time, type is set to Xt HunmanageSet , widget is the parent, event data
may be cast to type WidgetList and is a list of the children being unmanaged, and
num_event data is the length of the widget list. When the callbacks are called the
second time, the type is set to Xt HmanageSet, widget is the parent, event data
may be cast to type WidgetList and is a list of the children being managed, and
num_event data is the length of the widget list.

When the changeHook callbacks are called as a result of a call to Xt Real i zeW dget,
the type is set to Xt Hreal i zeW dget and widget is the widget being realized. The
callbacks are called after the widget has been realized.

When the changeHook callbacks are called as a result of a call to Xt Unr eal i zeW d-
get, the type is set to Xt Hunr eal i zeW dget , and widget is the widget being unreal-
ized. The callbacks are called after the widget has been unrealized.

215

Utility Functions

When the changeHook callbacks are called as a result of a call to Xt AddCal | back,
type is set to Xt HaddCal | back, widget is the widget to which the callback is being
added, and event data may be cast to type String and is the name of the callback be-
ing added. The callbacks are called after the callback has been added to the widget.

When the changeHook callbacks are called as a result of a call to Xt AddCal | backs,
the type is set to Xt HaddCal | backs, widget is the widget to which the callbacks
are being added, and event data may be cast to type String and is the name of the
callbacks being added. The callbacks are called after the callbacks have been added
to the widget.

When the changeHook callbacks are called as a result of a call to Xt RenmoveCal | back,
the type is set to Xt Hr enoveCal | back, widget is the widget from which the callback
is being removed, and event data may be cast to type String and is the name of
the callback being removed. The callbacks are called after the callback has been
removed from the widget.

When the changeHook callbacks are called as a result of a call to Xt RenoveCal | -
backs, the type is set to Xt Hr enpbveCal | backs, widget is the widget from which the
callbacks are being removed, and event data may be cast to type String and is the
name of the callbacks being removed. The callbacks are called after the callbacks
have been removed from the widget.

When the changeHook callbacks are called as a result of a call to Xt RenoveAl | -
Cal | backs, the type is set to Xt Hr enpveAl | Cal | backs and widget is the widget from
which the callbacks are being removed. The callbacks are called after the callbacks
have been removed from the widget.

When the changeHook callbacks are called as a result of a call to Xt Augnent Tr ans-
| ati ons, the type is set to Xt Haugnent Tr ansl at i ons and widget is the widget whose
translations are being modified. The callbacks are called after the widget's transla-
tions have been modified.

When the changeHook callbacks are called as a result of a call to Xt Overri deTr ans-
| ati ons, the type is set to Xt Hoverri deTransl ati ons and widget is the widget
whose translations are being modified. The callbacks are called after the widget's
translations have been modified.

When the changeHook callbacks are called as a result of a call to Xt Uni nstall -
Transl ati ons, The type is Xt Huni nstal | Transl ati ons and widget is the widget
whose translations are being uninstalled. The callbacks are called after the widget's
translations have been uninstalled.

When the changeHook callbacks are called as a result of a call to Xt Set Keyboar d-
Focus, the type is set to Xt Hset Keyboar dFocus and event data may be cast to type
Widget and is the value of the descendant argument passed to Xt Set Keyboar dFo-
cus. The callbacks are called before returning from Xt Set Keyboar dFocus.

When the changeHook callbacks are called as a result of a call to Xt Set WMCol or map-
W ndows, type is set to Xt Hset WMCol or mepW ndows, event data may be cast to type
WidgetList and is the value of the list argument passed to Xt Set WMCol or mapW n-
dows, and num_event data is the length of the list. The callbacks are called before
returning from Xt Set WMCol or mapW ndows.

When the changeHook callbacks are called as a result of a call to Xt Set MappedWhen-
Managed, the type is set to Xt Hset MappedWhenManaged and event data may be cast

216

Utility Functions

to type Boolean and is the value of the mapped when managed argument passed
to Xt Set MappedwWhenManaged. The callbacks are called after setting the widget's
mapped when managed field and before realizing or unrealizing the widget.

When the changeHook callbacks are called as a result of a call to Xt MapW dget , the
type is set to Xt HapW dget and widget is the widget being mapped. The callbacks
are called after mapping the widget.

When the changeHook callbacks are called as a result of a call to Xt UnnmapW dget,
the type is set to Xt HunmapW dget and widget is the widget being unmapped. The
callbacks are called after unmapping the widget.

When the changeHook callbacks are called as a result of a call to Xt Popup, the type is
set to Xt Hpopup, widget is the widget being popped up, and event data may be cast
to type XtGrabKind and is the value of the grab kind argument passed to Xt Popup.
The callbacks are called before returning from Xt Popup.

When the changeHook callbacks are called as a result of a call to XtPop-
upSpri ngLoaded, the type is set to Xt HpopupSpri ngLoaded and widget is the wid-
get being popped up. The callbacks are called before returning from Xt Pop-
upSpri ngLoaded.

When the changeHook callbacks are called as a result of a call to Xt Popdown, the
type is set to Xt Hpopdown and widget is the widget being popped down. The callbacks
are called before returning from Xt Popdown.

A widget set that exports interfaces that change application state without employing
the Intrinsics library should invoke the change hook itself. This is done by:

XtCallCallbacks(XtHooksOfDisplay(dpy), XtNchangeHook, call data);

The XtNconfigureHook callback list is called any time the Intrinsics move, resize,
or configure a widget and when Xt Resi zeW ndow is called.

The call data parameter may be cast to type Xt Conf i gur eHookDat a.

typedef struct {

String type;

Widget widget;

XtGeometryMask changeMask;

XWindowChanges changes;

} XtConfigureHookDataRec, *XtConfigureHookData;

When the configureHook callbacks are called, the type is Xt Hconfi gure, widget
is the widget being configured, and changeMask and changes reflect the changes
made to the widget. The callbacks are called after changes have been made to the
widget.

The XtNgeometryHook callback list is called from Xt MakeGeonetryRequest and
Xt MakeResi zeRequest once before and once after geometry negotiation occurs.

The call data parameter may be cast to type Xt Geonet r yHookDat a.

217

Utility Functions

typedef struct {

String type;

Widget widget;

XtWidgetGeometry* request;

XtWidgetGeometry* reply;

XtGeometryResult result;

} XtGeometryHookDataRec, *XtGeometryHookData;

When the geometryHook callbacks are called prior to geometry negotiation, the
type is Xt Hpr eGeonet ry, widget is the widget for which the request is being made,
and request is the requested geometry. When the geometryHook callbacks are
called after geometry negotiation, the type is Xt Hpost Geonet ry, widget is the wid-
get for which the request was made, request is the requested geometry, reply is
the resulting geometry granted, and result is the value returned from the geometry
negotiation.

The XtNdestroyHook callback list is called when a widget is destroyed. The call data
parameter may be cast to type Xt Dest r oyHookDat a.

typedef struct {

String type;

Widget widget;

} XtDestroyHookDataRec, *XtDestroyHookData;

When the destroyHook callbacks are called as a result of a call to Xt Dest r oyW dget,
the type is Xt Hdest r oy and widget is the widget being destroyed. The callbacks are
called upon completion of phase one destroy for a widget.

The XtNshells and XtnumShells are read-only resources that report a list of all par-
entless shell widgets associated with a display.

Clients who use these hooks must exercise caution in calling Intrinsics functions in
order to avoid recursion.

Querying Open Displays

To retrieve a list of the Displays associated with an application context, use Xt Get -
Di spl ays.

voi d Xt Get Di spl ays(app_context, dpy_return, numdpy_return);

app_context Specifies the application context.

dpy return Returns a list of open Display connections in the spec-
ified application context.

num_dpy return Returns the count of open Display connections in
dpy return.

Xt Get Di spl ays may be used by an external agent to query the list of open displays
that belong to an application context. To free the list of displays, use Xt Fr ee.

218

Chapter 12. Nonwidget Objects

Although widget writers are free to treat Core as the base class of the widget hier-
archy, there are actually three classes above it. These classes are Object, RectObj
(Rectangle Object), and (unnamed), and members of these classes are referred to
generically as objects. By convention, the term widget refers only to objects that are
a subclass of Core, and the term nonwidget refers to objects that are not a subclass
of Core. In the preceding portion of this specification, the interface descriptions
indicate explicitly whether the generic widget argument is restricted to particular
subclasses of Object. Sections 12.2.5, 12.3.5, and 12.5 summarize the permissible
classes of the arguments to, and return values from, each of the Intrinsics routines.

Data Structures

In order not to conflict with previous widget code, the data structures used by non-
widget objects do not follow all the same conventions as those for widgets. In par-
ticular, the class records are not composed of parts but instead are complete data
structures with filler for the widget fields they do not use. This allows the static
class initializers for existing widgets to remain unchanged.

Object Objects

The Object object contains the definitions of fields common to all objects. It en-
capsulates the mechanisms for resource management. All objects and widgets are
members of subclasses of Object, which is defined by the Obj ect d assPart and
bj ect Part structures.

ObjectClassPart Structure

The common fields for all object classes are defined in the Obj ect O assPart struc-
ture. All fields have the same purpose, function, and restrictions as the correspond-
ing fields in Cor eCl assPart ; fields whose names are objn for some integer n are not
used for Object, but exist to pad the data structure so that it matches Core's class
record. The class record initialization must fill all objn fields with NULL or zero as
appropriate to the type.

typedef struct ObjectClassPart {
WidgetClass superclass;

String class name;

Cardinal widget size;

XtProc class initialize;
XtWidgetClassProc class part initialize;
XtEnum class_inited;

XtInitProc initialize;

XtArgsProc initialize hook;
XtProc objl;

XtPointer obj2;

Cardinal obj3;

XtResourcelist resources;
Cardinal num resources;

219

Nonwidget Objects

XrmClass xrm_class;
Boolean obj4;

XtEnum objb;

Boolean 0bj6;

Boolean obj7;

XtWidgetProc destroy;
XtProc obj8;

XtProc obj9;
XtSetValuesFunc set values;
XtArgsFunc set values hook;
XtProc obj10;

XtArgsProc get values hook;
XtProc objl1;

XtVersionType version;
XtPointer callback private;
String obj12;

XtProc objl3;

XtProc objl4;

XtPointer extension;

} ObjectClassPart;

The extension record defined for Obj ect C assPart with a record type equal to
NULLQUARK is Obj ect d assExt ensi onRec.

typedef struct {
XtPointer next extension; See the section called “Class Extension Records”

XrmQuark recErd_type; See the section called “Class Extension Records”
long version; See the section called “Class Extension Records”
Cardinal record size; See the section called “Class Extension Records”

XtAllocateProc allocate; See the section called “Widget Instance Allocation: The allocate Proc
XtDeallocateProc deallocate; See the section called “Widget Instance Deallocation: The dealloca
} ObjectClassExtensionRec, *ObjectClassExtension;

The prototypical Obj ect O ass consists of just the Chj ect Cl assPart.

typedef struct ObjectClassRec {
ObjectClassPart object class;
} ObjectClassRec, *ObjectClass;

The predefined class record and pointer for Obj ect C assRec are

InintrinsicP. h:

extern ObjectClassRec objectClassRec;

Inintrinsic.h:

extern WidgetClass objectClass;

The opaque types Obj ect and Obj ect d ass and the opaque variable obj ect O ass
are defined for generic actions on objects. The symbolic constant for the Obj ect -
Cl assExt ensi on version identifier is Xt Obj ect Ext ensi onVer si on (see the section

220

Nonwidget Objects

called “Class Extension Records”). | ntri nsi c. h uses an incomplete structure def-
inition to ensure that the compiler catches attempts to access private data:

typedef struct ObjectClassRec* ObjectClass;

ObjectPart Structure

The common fields for all object instances are defined in the Obj ect Part structure.
All fields have the same meaning as the corresponding fields in Cor ePart .

typedef struct ObjectPart {
Widget self;

WidgetClass widget class;
Widget parent;

Boolean being destroyed;
XtCallbackList destroy callbacks;
XtPointer constraints;

} ObjectPart;

All object instances have the Object fields as their first component. The prototypical
type bj ect is defined with only this set of fields. Various routines can cast object

pointers, as needed, to specific object types.
InintrinsicP. h:
typedef struct ObjectRec {

ObjectPart object;
} ObjectRec, *Object;

Inintrinsic.h:

typedef struct ObjectRec *Object;

Object Resources

The resource names, classes, and representation types specified in the obj ect -
Cl assRec resource list are:

Name Class Representation
XtNdestroyCallback XtCCallback XtRCallback

ObjectPart Default Values

All fields in Obj ect Part have the same default values as the corresponding fields
in CorePart.

Object Arguments to Intrinsics Routines

The WidgetClass arguments to the following procedures may be obj ect C ass or
any subclass:

221

Nonwidget Objects

XtInitializeWidgetClass, XtCreateWidget, XtVaCreateWidget XtIsSubclass,
XtCheckSubclass XtGetResourcelist, XtGetConstraintResourcelList

The Widget arguments to the following procedures may be of class Object or any
subclass:

* Xt Cr eat eW dget, Xt VaCr eat eW dget

e Xt AddCal | back, XtAddCal |l backs, XtRenoveCall back, XtRenoveCall backs,
Xt RenoveAl | Cal | backs, Xt Cal | Cal | backs, Xt HasCal | backs, Xt Cal | Cal | back-
Li st

e Xt d ass, Xt Superclass, XtlsSubcl ass, Xt CheckSubcl ass, XtlsCbject, Xtls-
Rect Obj , Xt | sWdget, Xt|sConposite, XtlsConstraint, XtlsShell, XtlsOver-
rideShell, XtlsWwshell, XtlsVendorShell, XtlsTransientShell, XtlsTo-
pl evel Shel |, Xt 1 sAppl i cationShel |, Xt|sSessi onShel |

e Xt | sManaged, Xt | sSensi ti ve (both will return Fal se if argument is not a subclass
of RectObj)

e Xt|sReal i zed (returns the state of the nearest windowed ancestor if class of ar-
gument is not a subclass of Core)

e Xt W dget ToAppl i cati onCont ext

e Xt DestroyW dget

e Xt Parent, *Xt Di spl ayOf Obj ect, * Xt Scr eenOf Cbj ect, Xt W ndowOf Obj ect

* Xt Set Keyboar dFocus (descendant)

e Xt Get GC, Xt Rel easeCC

* Xt Name

e Xt Set Val ues, Xt Get Val ues, Xt VaSet Val ues, Xt VaGet Val ues

e Xt Get Subresources, Xt Get Applicati onResources, Xt VaGet Subresources,
Xt VaGet Appl i cati onResour ces

e Xt Convert, Xt Convert AndSt ore

The return value of the following procedures will be of class Object or a subclass:

* Xt Creat eW dget, Xt VaCr eat eW dget
¢ Xt Par ent
e Xt NameToW dget

The return value of the following procedures will be obj ect C ass or a subclass:

e Xt d ass, Xt Supercl ass

Use of Objects

The Object class exists to enable programmers to use the Intrinsics' classing and
resource-handling mechanisms for things smaller and simpler than widgets. Objects
make obsolete many common uses of subresources as described in Sections 9.4,
9.7.2.4, and 9.7.2.5.

Composite widget classes that wish to accept nonwidget children must set the
accepts objects field in the Conposit eCl assExt ensi on structure to True. Xt Cr e-
at eW dget will otherwise generate an error message on an attempt to create a non-
widget child.

Of the classes defined by the Intrinsics, ApplicationShell and SessionShell accept
nonwidget children, and the class of any nonwidget child must not be rect Qoj -

222

Nonwidget Objects

Cl ass or any subclass. The intent of allowing Object children of ApplicationShell
and SessionShell is to provide clients a simple mechanism for establishing the re-
source-naming root of an object hierarchy.

Rectangle Objects

The class of rectangle objects is a subclass of Object that represents rectangular
areas. It encapsulates the mechanisms for geometry management and is called Rec-
tODbj to avoid conflict with the Xlib Rect angl e data type.

RectObjClassPart Structure

As with the Obj ect d assPart structure, all fields in the Rect Obj C assPart struc-
ture have the same purpose and function as the corresponding fields in Cor eCl ass-
Part ; fields whose names are rectn for some integer n are not used for RectObj,
but exist to pad the data structure so that it matches Core's class record. The class
record initialization must fill all rectn fields with NULL or zero as appropriate to
the type.

typedef struct RectObjClassPart {
WidgetClass superclass;

String class name;

Cardinal widget size;

XtProc class initialize;
XtWidgetClassProc class part initialize;
XtEnum class_inited;

XtInitProc initialize;

XtArgsProc initialize hook;
XtProc rectl;

XtPointer rect2;

Cardinal rect3;

XtResourcelList resources;
Cardinal num resources;
XrmClass xrm_class;

Boolean rect4;

XtEnum rect5;

Boolean rect6;

Boolean rect7;

XtWidgetProc destroy;
XtWidgetProc resize;
XtExposeProc expose;
XtSetValuesFunc set values;
XtArgsFunc set values hook;
XtAlmostProc set values almost;
XtArgsProc get values hook;
XtProc rect9;

XtVersionType version;
XtPointer callback private;
String rect10;
XtGeometryHandler query geometry;
XtProc rectll;

XtPointer extension ;

223

Nonwidget Objects

} RectObjClassPart;

The RectObj class record consists of just the Rect Cbj Cl assPart.

typedef struct RectObjClassRec {
RectObjClassPart rect class;
} RectObjClassRec, *RectObjClass;

The predefined class record and pointer for Rect Obj C assRec are

Inintrinsic.h:

extern RectObjClassRec rectObjClassRec;

Inintrinsic.h:

extern WidgetClass rectObjClass;

The opaque types Rect Obj and Rect Obj C ass and the opaque variable rect Obj -
Cl ass are defined for generic actions on objects whose class is RectObj or a subclass
of RectODbj. I ntri nsi c. h uses an incomplete structure definition to ensure that the
compiler catches attempts to access private data:

typedef struct RectObjClassRec* RectObjClass;

RectObjPart Structure

In addition to the Obj ect Part fields, RectObj objects have the following fields de-
fined in the Rect bj Part structure. All fields have the same meaning as the corre-
sponding field in Cor ePart .

typedef struct RectObjPart {
Position x, y;

Dimension width, height;
Dimension border width;
Boolean managed;

Boolean sensitive;

Boolean ancestor sensitive;
} RectObjPart;

RectODbj objects have the RectObj fields immediately following the Object fields.

typedef struct RectObjRec {
ObjectPart object;
RectObjPart rectangle;

} RectObjRec, *RectObj;

Inintrinsic. h:

224

Nonwidget Objects

typedef struct RectObjRec* RectObj;

RectObj Resources

The resource names, classes, and representation types that are specified in the
rect Qoj G assRec resource list are:

Name Class Representation
XtNancestorSensitive XtCSensitive XtRBoolean
XtNborderWidth XtCBorderWidth XtRDimension
XtNheight XtCHeight XtRDimension
XtNsensitive XtCSensitive XtRBoolean
XtNwidth XtCWidth XtRDimension
XtNx XtCPosition XtRPosition
XtNy XtCPosition XtRPosition

RectObjPart Default Values

All fields in Rect Obj Part have the same default values as the corresponding fields
in Cor ePart .

Widget Arguments to Intrinsics Routines

The WidgetClass arguments to the following procedures may be r ect Cbj C ass or
any subclass:

e Xt Cr eat eManagedW dget, Xt VaCr eat eManagedW dget

The Widget arguments to the following procedures may be of class RectObj or any
subclass:

e Xt Confi gur eW dget , Xt MoveW dget , Xt Resi zeW dget

* Xt MakeCGeonet r yRequest, Xt MakeResi zeRequest

* Xt ManageChi | dren, Xt ManageChild, XtUnmanageChildren, Xt UnmanageChild,
Xt ChangeManagedSet

e Xt QueryGeonetry

e Xt Set Sensi tive

e Xt Transl at eCoor ds

The return value of the following procedures will be of class RectObj or a subclass:

* Xt Cr eat eManagedW dget , Xt VaCr eat eManagedW dget

Use of Rectangle Objects

RectObj can be subclassed to provide widgetlike objects (sometimes called gadgets)
that do not use windows and do not have those features that are seldom used in
simple widgets. This can save memory resources both in the server and in applica-
tions but requires additional support code in the parent. In the following discussion,

225

Nonwidget Objects

rectobj refers only to objects whose class is RectObj or a subclass of RectObj, but
not Core or a subclass of Core.

Composite widget classes that wish to accept rectobj children must set the
accepts_objects field in the Conposi t ed assExt ensi on extension structure to Tr ue.
Xt Cr eat eW dget or Xt Cr eat eManagedW dget will otherwise generate an error if
called to create a nonwidget child. If the composite widget supports only children of
class RectObj or a subclass (i.e., not of the general Object class), it must declare an
insert child procedure and check the subclass of each new child in that procedure.
None of the classes defined by the Intrinsics accept rectobj children.

If gadgets are defined in an object set, the parent is responsible for much more than
the parent of a widget. The parent must request and handle input events that occur
for the gadget and is responsible for making sure that when it receives an exposure
event the gadget children get drawn correctly. Rectobj children may have expose
procedures specified in their class records, but the parent is free to ignore them,
instead drawing the contents of the child itself. This can potentially save graphics
context switching. The precise contents of the exposure event and region arguments
to the RectODbj expose procedure are not specified by the Intrinsics; a particular
rectangle object is free to define the coordinate system origin (self-relative or par-
ent-relative) and whether or not the rectangle or region is assumed to have been
intersected with the visible region of the object.

In general, it is expected that a composite widget that accepts nonwidget children
will document those children it is able to handle, since a gadget cannot be viewed
as a completely self-contained entity, as can a widget. Since a particular composite
widget class is usually designed to handle nonwidget children of only a limited set
of classes, it should check the classes of newly added children in its insert child
procedure to make sure that it can deal with them.

The Intrinsics will clear areas of a parent window obscured by rectobj children,
causing exposure events, under the following circumstances:

* A rectobj child is managed or unmanaged.

* In a call to Xt Set Val ues on a rectobj child, one or more of the set values proce-
dures returns Tr ue.

* In a call to Xt Confi gureW dget on a rectobj child, areas will be cleared corre-
sponding to both the old and the new child geometries, including the border;, if
the geometry changes.

* In a call to Xt MoveW dget on a rectobj child, areas will be cleared corresponding
to both the old and the new child geometries, including the border, if the geometry
changes.

* In a call to Xt Resi zeW dget on a rectobj child, a single rectangle will be cleared
corresponding to the larger of the old and the new child geometries if they are
different.

* In a call to Xt MakeGeon®et r yRequest (or Xt MakeResi zeRequest) on a rectobj child
with Xt Quer yOnl y not set, if the manager returns Xt Geonet r yYes, two rectangles
will be cleared corresponding to both the old and the new child geometries.

Stacking order is not supported for rectobj children. Composite widgets with rectobj
children are free to define any semantics desired if the child geometries overlap,
including making this an error.

When a rectobj is playing the role of a widget, developers must be reminded to avoid
making assumptions about the object passed in the Widget argument to a callback
procedure.

226

Nonwidget Objects

Undeclared Class

The Intrinsics define an unnamed class between RectObj and Core for possible fu-
ture use by the X Consortium. The only assumptions that may be made about the
unnamed class are

» The core _class.superclass field of cor eW dget O assRec contains a pointer to the
unnamed class record.

* A pointer to the unnamed class record when dereferenced as an Obj ect Gl ass will
contain a pointer to r ect Obj Cl assRec in its object class.superclass field.

Except for the above, the contents of the class record for this class and the result of
an attempt to subclass or to create a widget of this unnamed class are undefined.

Widget Arguments to Intrinsics Routines

The WidgetClass arguments to the following procedures must be of class Shell or
a subclass:

e Xt Creat ePopupShel | , Xt VaCr eat ePopupShel | , Xt AppCr eat eShel |, Xt VaAppCr e-
at eShel | , Xt OpenAppl i cati on, Xt VaOpenAppl i cati on

The Widget arguments to the following procedures must be of class Core or any
subclass:

* Xt Cr eat ePopupShel I, Xt VaCr eat ePopupShel |

* Xt AddEvent Handl er, Xt AddRawEvent Handl er, Xt RenoveEvent Handl er,
Xt RenoveRawEvent Handl er, Xt | nsert Event Handl er, Xt | nsert RawEvent Handl er
Xt I nsert Event TypeHandl er, Xt RenoveEvent TypeHandl er,

* Xt Regi st er Drawabl e Xt Di spat chEvent ToW dget

* Xt AddGrab, Xt RemoveGrab, Xt GrabKey, Xt GrabKeyboard, XtUngrabKey, XtUn-
gr abKeyboard, Xt G abButton, XtG abPointer, XtUngrabButton, XtUngrab-
Poi nt er

e Xt Bui | dEvent Mask

* Xt Cr eat eW ndow, Xt Di spl ay, * Xt Scr een, Xt W ndow

* Xt NanmeToW dget

e Xt Get Sel ecti onVal ue, Xt Get Sel ecti onVal ues, Xt OwmnSel ection, XtD sownS-
el ection, XtOwmSel ectionlncrenmental, XtGCetSelectionValuelncrenental,
Xt Get Sel ecti onVal uesl ncrenent al , Xt Get Sel ecti onRequest

e XtInstall Accelerators, Xtlnstall All Accel erators (both destination and
source)

* Xt Augnent Tr ansl ati ons, Xt Overri deTransl ati ons, Xt Uni nstal | Transl ati ons,
Xt Cal | Acti onProc

* Xt MapW dget, Xt UnmapW dget

* Xt Real i zeW dget, Xt Unreal i zeW dget

* Xt Set MappedWhenManaged

e Xt Cal | Accept Focus, Xt Set Keyboar dFocus (subtree)

* Xt Resi zeW ndow

* Xt Set WMCol or mapW ndows

The Widget arguments to the following procedures must be of class Composite or
any subclass:

* Xt Cr eat eManagedW dget, Xt VaCr eat eManagedW dget

227

Nonwidget Objects

The Widget arguments to the following procedures must be of a subclass of Shell:

e Xt Popdown, Xt Cal | backPopdown, Xt Popup, Xt Cal | backNone, Xt Cal | backNonex-
cl usi ve, Xt Cal | backExcl usi ve, Xt PopupSpri ngLoaded

The return value of the following procedure will be of class Core or a subclass:
e Xt W ndowToW dget
The return value of the following procedures will be of a subclass of Shell:

* Xt AppCreat eShel |, Xt VaAppCreateShel |, Xt Applnitialize, XtVaApplnitial-
i ze, Xt Cr eat ePopupShel |, Xt VaCr eat ePopupShel |

228

Chapter 13. Evolution of the Intrinsics

The interfaces described by this specification have undergone several sets of revi-
sions in the course of adoption as an X Consortium standard specification. Having
now been adopted by the Consortium as a standard part of the X Window System,
it is expected that this and future revisions will retain backward compatibility in
the sense that fully conforming implementations of these specifications may be pro-
duced that provide source compatibility with widgets and applications written to
previous Consortium standard revisions.

The Intrinsics do not place any special requirement on widget programmers to re-
tain source or binary compatibility for their widgets as they evolve, but several con-
ventions have been established to assist those developers who want to provide such
compatibility.

In particular, widget programmers may wish to conform to the convention de-
scribed in the section called “Class Extension Records” when defining class exten-
sion records.

Determining Specification Revision Level

Widget and application developers who wish to maintain a common source pool that
will build properly with implementations of the Intrinsics at different revision levels
of these specifications but that take advantage of newer features added in later
revisions may use the symbolic macro Xt Speci fi cati onRel ease.

#define XtSpecificationRelease 6

As the symbol Xt Speci fi cat i onRel ease was new to Release 4, widgets and applica-
tions desiring to build against earlier implementations should test for the presence
of this symbol and assume only Release 3 interfaces if the definition is not present.

Release 3 to Release 4 Compatibility

At the data structure level, Release 4 retains binary compatibility with Release 3
(the first X Consortium standard release) for all data structures except WvShel | -
Part, TopLevel Shell Part, and Transi ent Shel | Part. Release 4 changed the ar-
gument type to most procedures that now take arguments of type Xt Poi nt er and
structure members that are now of type Xt Poi nt er in order to avoid potential ANSI
C conformance problems. It is expected that most implementations will be binary
compatible with the previous definition.

Two fields in Cor eCl assPart were changed from Bool ean to Xt Enumto allow im-
plementations additional freedom in specifying the representations of each. This
change should require no source modification.

Additional Arguments

Arguments were added to the procedure definitions for (*Xt | ni t Proc), (* Xt Set -
Val uesFunc), and (*Xt Event Handl er) to provide more information and to allow
event handlers to abort further dispatching of the current event (caution is ad-

229

Evolution of the Intrinsics

vised!). The added arguments to (*Xt I ni t Proc) and (* Xt Set Val uesFunc) make
the initialize hook and set values hook methods obsolete, but the hooks have been
retained for those widgets that used them in Release 3.

set_values_almost Procedures

The use of the arguments by a set values almost procedure was poorly described
in Release 3 and was inconsistent with other conventions.

The current specification for the manner in which a set values almost procedure
returns information to the Intrinsics is not compatible with the Release 3 specifica-
tion, and all widget implementations should verify that any set values almost pro-
cedures conform to the current interface.

No known implementation of the Intrinsics correctly implemented the Release 3
interface, so it is expected that the impact of this specification change is small.

Query Geometry

A composite widget layout routine that calls Xt Quer yGeonet ry is now expected to
store the complete new geometry in the intended structure; previously the specifi-
cation said " “store the changes it intends to make'. Only by storing the complete
geometry does the child have any way to know what other parts of the geometry
may still be flexible. Existing widgets should not be affected by this, except to take
advantage of the new information.

unrealizeCallback Callback List

In order to provide a mechanism for widgets to be notified when they become unre-
alized through a call to Xt Unr eal i zeW dget , the callback list name " "unrealizeCall-
back'" has been defined by the Intrinsics. A widget class that requires notification
on unrealize may declare a callback list resource by this name. No class is required
to declare this resource, but any class that did so in a prior revision may find it
necessary to modify the resource name if it does not wish to use the new semantics.

Subclasses of WMShell

The formal adoption of the Inter-Client Communication Conventions Manual. as an
X Consortium standard has meant the addition of four fields to WvShel | Part and
one field to TopLevel Shel | Part. In deference to some widget libraries that had
developed their own additional conventions to provide binary compatibility, these
five new fields were added at the end of the respective data structures.

To provide more convenience for TransientShells, a field was added to the previously
empty Transi ent Shel | Part. On some architectures the size of the part structure
will not have changed as a result of this.

Any widget implementation whose class is a subclass of TopLevelShell or Transien-
tShell must at minimum be recompiled with the new data structure declarations.
Because WWBhel | Part no longer contains a contiguous XSi zeHi nt s data structure, a
subclass that expected to do a single structure assignment of an XSi zeHi nt s struc-
ture to the size hints field of WvShel | Part must be revised, though the old fields
remain at the same positions within Wvshel | Part .

230

Evolution of the Intrinsics

Resource Type Converters

A new interface declaration for resource type converters was defined to provide
more information to converters, to support conversion cache cleanup with resource
reference counting, and to allow additional procedures to be declared to free re-
sources. The old interfaces remain (in the compatibility section), and a new set of
procedures was defined that work only with the new type converter interface.

In the now obsolete old type converter interface, converters are reminded that they
must return the size of the converted value as well as its address. The example
indicated this, but the description of (* Xt Convert er) was incomplete.

KeySym Case Conversion Procedure

The specification for the (* Xt CaseProc) function type has been changed to match
the Release 3 implementation, which included necessary additional information re-
quired by the function (a pointer to the display connection), and corrects the argu-
ment type of the source KeySym parameter. No known implementation of the In-
trinsics implemented the previously documented interface.

Nonwidget Objects

Formal support for nonwidget objects is new to Release 4. A prototype implemen-
tation was latent in at least one Release 3 implementation of the Intrinsics, but the
specification has changed somewhat. The most significant change is the require-
ment for a composite widget to declare the Conposi t eCl assExt ensi on record with
the accepts objects field set to Tr ue in order to permit a client to create a nonwid-
get child.

The addition of this extension field ensures that composite widgets written under
Release 3 will not encounter unexpected errors if an application attempts to create
a nonwidget child. In Release 4 there is no requirement that all composite widgets
implement the extra functionality required to manage windowless children, so the
accepts objects field allows a composite widget to declare that it is not prepared
to do so.

Release 4 to Release 5 Compatibility

At the data structure level, Release 5 retains complete binary compatibility with
Release 4. The specification of the Obj ect Part, Rect Obj Part, CorePart, Conpos-
itePart, Shel | Part, WvBhel | Part, TopLevel Shel | Part, and Appl i cati onShell -
Part instance records was made less strict to permit implementations to add inter-
nal fields to these structures. Any implementation that chooses to do so would, of
course, force a recompilation. The Xlib specification for Xr mval ue and Xr mOpt i on-
DescRec was updated to use a new type, XPoi nt er, for the addr and value fields,
respectively, to avoid ANSI C conformance problems. The definition of XPoi nt er is
binary compatible with the previous implementation.

baseTranslations Resource

A new pseudo-resource, XtNbaseTranslations, was defined to permit application
developers to specify translation tables in application defaults files while still giv-

231

Evolution of the Intrinsics

ing end users the ability to augment or override individual event sequences. This
change will affect only those applications that wish to take advantage of the new
functionality or those widgets that may have previously defined a resource named
" “baseTranslations''.

Applications wishing to take advantage of the new functionality would change their
application defaults file, e.g., from

app.widget.translations: value
to
app.widget.baseTranslations: value

If it is important to the application to preserve complete compatibility of the defaults
file between different versions of the application running under Release 4 and Re-
lease 5, the full translations can be replicated in both the " translations' and the
" “baseTranslations' resource.

Resource File Search Path

The current specification allows implementations greater flexibility in defining the
directory structure used to hold the application class and per-user application de-
faults files. Previous specifications required the substitution strings to appear in
the default path in a certain order, preventing sites from collecting all the files for
a specific application together in one directory. The Release 5 specification allows
the default path to specify the substitution strings in any order within a single path
entry. Users will need to pay close attention to the documentation for the specif-
ic implementation to know where to find these files and how to specify their own
XFILESEARCHPATH and XUSERFILESEARCHPATH values when overriding the
system defaults.

Customization Resource

Xt Resol vePat hnane supports a new substitution string, %C, for specifying separate
application class resource files according to arbitrary user-specified categories. The
primary motivation for this addition was separate monochrome and color applica-
tion class defaults files. The substitution value is obtained by querying the current
resource database for the application resource name " customization', class ** Cus-
tomization'. Any application that previously used this resource name and class will
need to be aware of the possibly conflicting semantics.

Per-Screen Resource Database

To allow a user to specify separate preferences for each screen of a display, a per-
screen resource specification string has been added and multiple resource databas-
es are created; one for each screen. This will affect any application that modified
the (formerly unique) resource database associated with the display subsequent to
the Intrinsics database initialization. Such applications will need to be aware of the
particular screen on which each shell widget is to be created.

Although the wording of the specification changed substantially in the description
of the process by which the resource database(s) is initialized, the net effect is
the same as in prior releases with the exception of the added per-screen resource
specification and the new customization substitution string in Xt Resol vePat hnane.

232

Evolution of the Intrinsics

Internationalization of Applications

Internationalization as defined by ANSI is a technology that allows support of an
application in a single locale. In adding support for internationalization to the In-
trinsics the restrictions of this model have been followed. In particular, the new In-
trinsics interfaces are designed not to preclude an application from using other al-
ternatives. For this reason, no Intrinsics routine makes a call to establish the locale.
However, a convenience routine to establish the locale at initialize time has been
provided, in the form of a default procedure that must be explicitly installed if the
application desires ANSI C locale behavior.

As many objects in X, particularly resource databases, now inherit the global locale
when they are created, applications wishing to use the ANSI C locale model should
use the new function Xt Set LanguagePr oc to do so.

The internationalization additions also define event filters as a part of the Xlib In-
put Method specifications. The Intrinsics enable the use of event filters through
additions to Xt Di spat chEvent . Applications that may not be dispatching all events
through Xt Di spat chEvent should be reviewed in the context of this new input
method mechanism.

In order to permit internationalization of error messages, the name and path of the
error database file are now allowed to be implementation-dependent. No adequate
standard mechanism has yet been suggested to allow the Intrinsics to locate the
database from localization information supplied by the client.

The previous specification for the syntax of the language string specified by xnl -
Language has been dropped to avoid potential conflicts with other standards. The
language string syntax is now implementation-defined. The example syntax cited is
consistent with the previous specification.

Permanently Allocated Strings

In order to permit additional memory savings, an Xlib interface was added to allow
the resource manager to avoid copying certain string constants. The Intrinsics spec-
ification was updated to explicitly require the Object class name, resource name,
resource class, resource type, default type in resource tables, Core actions
string field, and Constraint resource name, resource class, resource type, and
default type resource fields to be permanently allocated. This explicit requirement
is expected to affect only applications that may create and destroy classes on the fly.

Arguments to Existing Functions

The args argument to Xt Applnitialize, XtVaApplnitialize, *XtOpenDi spl ay,
XtDi splaylnitialize,and XtInitialize were changed from Car di nal * to int* to
conform to pre-existing convention and avoid otherwise annoying typecasting in
ANSI C environments.

Release 5 to Release 6 Compatibility

At the data structure level, Release 6 retains binary compatibility with Release 5 for
all data structures except WvBhel | Part . Three resources were added to the specifi-
cation. The known implementations had unused space in the data structure, there-

233

Evolution of the Intrinsics

fore on some architectures and implementations, the size of the part structure will
not have changed as a result of this.

Widget Internals

Two new widget methods for instance allocation and deallocation were added to the
Object class. These new methods allow widgets to be treated as C++ objects in the
C++ environment when an appropriate allocation method is specified or inherited
by the widget class.

The textual descriptions of the processes of widget creation and widget destruction
have been edited to provide clarification to widget writers. Widgets writers may
have reason to rely on the specific order of the stages of widget creation and de-
struction; with that motivation, the specification now more exactly describes the
process.

As a convenience, an interface to locate a widget class extension record on a linked
list, Xt Get Cl assExt ensi on, has been added.

A new option to allow bundled changes to the managed set of a Compos-
ite widget is introduced in the Composite class extension record. Widgets
that define a change managed procedure that can accommodate additions and
deletions to the managed set of children in a single invocation should set
allows change managed set to Tr ue in the extension record.

The wording of the process followed by Xt UnmanageChi | dr en has changed slightly
to better handle changes to the managed set during phase 2 destroy processing.

A new exposure event compression flag, Xt ExposeNoRegi on, was added. Many wid-
gets specify exposure compression, but either ignore the actual damage region
passed to the core expose procedure or use only the cumulative bounding box data
available in the event. Widgets with expose procedures that do not make use of ex-
act exposure region information can indicate that the Intrinsics need not compute
the region.

General Application Development

Xt OpenAppl i cati on is a new convenience procedure to initialize the toolkit, create
an application context, open an X display connection, and create the root of the
widget instance tree. It is identical to the interface it replaces, Xt Appl ni ti al i ze, in
all respects except that it takes an additional argument specifying the widget class
of the root shell to create. This interface is now the recommended one so that clients
may easily become session participants. The old convenience procedures appear in
the compatibility section.

The toolkit initialization function Xt Tool kitlnitialize may be called multiple
times without penalty.

In order to optimize changes in geometry to a set of geometry-managed children, a
new interface, Xt ChangeManagedSet , has been added.

Communication with Window and Session Managers

The revision of the Inter-Client Communication Conventions Manual. as an X Con-
sortium standard has resulted in the addition of three fields to the specification of
WvBhel | Part . These are urgency, client leader, and window_role.

234

Evolution of the Intrinsics

The adoption of the X Session Management Protocol as an X Consortium standard
has resulted in the addition of a new shell widget, Sessi onShel | , and an accompa-
nying subclass verification interface, Xt | sSessi onShel | . This widget provides sup-
port for communication between an application and a session manager, as well as a
window manager. In order to preserve compatibility with existing subclasses of Ap-
plicati onShel |, the Appl i cati onShel | was subclassed to create the new widget
class. The session protocol requires a modal response to certain checkpointing oper-
ations by participating applications. The Sessi onShel | structures the application's
notification of and responses to messages from the session manager by use of vari-
ous callback lists and by use of the new interfaces Xt Sessi onGet Token and Xt Ses-
si onRet ur nToken. There is also a new command line argument, -xtsessionID, which
facilitates the session manager in restarting applications based on the Intrinsics.

The resource name and class strings defined by the Intrinsics shell widgets in <X11/

Shel | . h> are now listed in Appendix E. The addition of a new symbol for the Wvshel |

wait for wm resource was made to bring the external symbol and the string it repre-
sents into agreement. The actual resource name string in Wvshel | has not changed.
The resource representation type of the XtNwinGravity resource of the WvBhel | was
changed to XtRGravity in order to register a type converter so that window gravity
resource values could be specified by name.

Geometry Management

A clarification to the specification was made to indicate that geometry requests may
include current values along with the requested changes.

Event Management

In Release 6, support is provided for registering selectors and event handlers
for events generated by X protocol extensions and for dispatching those events
to the appropriate widget. The new event handler registration interfaces are
Xt | nsert Event TypeHandl er and Xt RenmoveEvent TypeHandl er. Since the mecha-
nism to indicate selection of extension events is specific to the extension being used,
the Intrinsics introduces Xt Regi st er Ext ensi onSel ect or, which allows the appli-
cation to select for the events of interest. In order to change the dispatching algo-
rithm to accommodate extension events as well as core X protocol events, the In-
trinsics event dispatcher may now be replaced or enveloped by the application with
Xt Set Event Di spat cher . The dispatcher may wish to call Xt Get Keyboar dFocusW d-
get to determine the widget with the current Intrinsics keyboard focus. A dispatch-
er, after determining the destination widget, may use Xt Di spat chEvent ToW dget
to cause the event to be dispatched to the event handlers registered by a specific
widget.

To permit the dispatching of events for nonwidget drawables, such as pixmaps that
are not associated with a widget's window, Xt Regi st er Dr awabl e and Xt Unr egi s-
t er Dr awabl e have been added to the library. A related update was made to the de-
scription of Xt W ndowToW dget .

The library is now thread-safe, allowing one thread at a time to enter the library
and protecting global data as necessary from concurrent use. Threaded toolkit ap-
plications are supported by the new interfaces Xt Tool ki t Threadl ni ti al i ze, Xt Ap-
pLock, Xt AppUnl ock, Xt AppSet Exi t Fl ag, and Xt AppGet Exi t Fl ag. Widget writers
may also use Xt ProcessLock and Xt ProcessUnl ock.

235

Evolution of the Intrinsics

Safe handling of POSIX signals and other asynchronous notifications is now provid-
ed by use of Xt AppAddSi gnal , Xt Not i ceSi gnal , and Xt RenpveSi gnal .

The application can receive notification of an impending block in the Intrinsics event
manager by registering interest through Xt AppAddBl ockHook and Xt RenmoveBl ock-
Hook.

Xt Last Event Pr ocessed returns the most recent event passed to Xt Di spat chEvent
for a specified display.

Resource Management

Resource converters are registered by the Intrinsics for window gravity and for
three new resource types associated with session participation: RestartStyle, Com-
mandArgArray and DirectoryString.

The file search path syntax has been extended to make it easier to include the de-
fault search path, which controls resource database construction, by using the new
substitution string, %D.

Translation Management

The default key translator now recognizes the NumLock modifier. If NumLock is
on and the second keysym is a keypad keysym (a standard keysym named with a
" KP" prefix or a vendor-specific keysym in the hexadecimal range 0x11000000 to
0x1100FFFF), then the default key translator will use the first keysym if Shift and/
or ShiftLock is on and will use the second keysym if neither is on. Otherwise, it will
ignore NumLock and apply the normal protocol semantics.

Selections

The targets of selection requests may be parameterized, as described by the revised
Inter-Client Communication Conventions Manual.. When such requests are made,
Xt Set Sel ect i onPar anet er s is used by the requestor to specify the target parame-
ters and Xt Get Sel ect i onPar anet er s is used by the selection owner to retrieve the
parameters. When a parameterized target is specified in the context of a bundled
request for multiple targets, Xt Cr eat eSel ecti onRequest, Xt Cancel Sel ecti onRe-
quest, and Xt SendSel ecti onRequest are used to envelop the assembly of the re-
quest. When the parameters themselves are the names of properties, the Intrinsics
provides support for the economical use of property atom names; see Xt Reser ve-
Pr opert yAt omand Xt Rel easePr opert yAt om

External Agent Hooks

External agent hooks were added for the benefit of applications that instrument
other applications for purposes of accessibility, testing, and customization. The ex-
ternal agent and the application communicate by a shared protocol which is trans-
parent to the application. The hook callbacks permit the external agent to register
interest in groups or classes of toolkit activity and to be notified of the type and de-
tails of the activity as it occurs. The new interfaces related to this effort are Xt Hook-
sCf Di spl ay, which returns the hook registration widget, and Xt Get Di spl ays, which
returns a list of the X displays associated with an application context.

236

Appendix A. Resource File Format

A resource file contains text representing the default resource values for an appli-
cation or set of applications.

The format of resource files is defined by Xlib — C Language X Interface. and is
reproduced here for convenience only.

The format of a resource specification is

ResourcelLine = Comment | IncludeFile | ResourceSpec | <empty line>

Comment ="1" {<any character except null or newline>}

IncludeFile = "#" WhiteSpace "include" WhiteSpace FileName WhiteS-
pace

FileName = <valid filename for operating system>

ResourceSpec = WhiteSpace ResourceName WhiteSpace ":" WhiteSpace Val-
ue

ResourceName = [Binding] {Component Binding} ComponentName

Binding ="

WhiteSpace = {<space> | <horizontal tab>}

Component = "?" | ComponentName

ComponentName = NameChar {NameChar}

NameChar = "a"-"z" | "A"-"Z" | ot -

Value ={<any character except null or unescaped newline>}

Elements separated by vertical bar (|) are alternatives. Curly braces ({...}) indicate
zero or more repetitions of the enclosed elements. Square brackets ([...]) indicate
that the enclosed element is optional. Quotes ("...") are used around literal charac-
ters.

If the last character on a line is a backslash (\), that line is assumed to continue
on the next line.

To allow a Value to begin with whitespace, the two-character sequence
"\space" (backslash followed by space) is recognized and replaced by a space char-
acter, and the two-character sequence "\tab" (backslash followed by horizontal tab)
is recognized and replaced by a horizontal tab character.

To allow a Value to contain embedded newline characters, the two-character se-
quence "\n" is recognized and replaced by a newline character. To allow a Value
to be broken across multiple lines in a text file, the two-character sequence "\new-
line" (backslash followed by newline) is recognized and removed from the value.

To allow a Value to contain arbitrary character codes, the four-character sequence
"\nnn", where each n is a digit character in the range of "0"-"7", is recognized and
replaced with a single byte that contains the octal value specified by the sequence.
Finally, the two-character sequence "\\" is recognized and replaced with a single
backslash.

237

Appendix B. Translation Table Syntax

Notation
Syntax is specified in EBNF notation with the following conventions:

[a] Means either nothing or "a"
{a} Means zero or more occurrences of "a"

(a] Means either "a" or "b"
b)
\\n Is the newline character

All terminals are enclosed in double quotation marks (
enclosed in angle brackets (< >). Syntax

). Informal descriptions are

The syntax of a translation table is

transla- = [directive] { production }
tionTable
directive = ("#replace" | "#override" | "#augment") "\\\\n"

production = lhs ":" rhs "\\\\n"

Ihs = (event | keyseq) { "," (event | keyseq) }

keyseq = """ keychar {keychar} """

keychar =["~"]"$" | "W\"] <ISO Latin 1 character>

event = [modifier list] "<"event type">"["(" count["+"] ")"] {detail}
modifier list = (["!"][":"] {modifier}) | "None"

modifier = ["~"] modifier name

count =("1" 2" 3" "4 ...

modifier name "@" <keysym> | <see ModifierNames table below>
event type = <see Event Types table below>

detail = <event specific details>

rhs = { name "(" [params] ")" }

name = namechar { namechar }

namechar = { "a"-"z" | "A"-"Z" | "0"-"9" | " " | "-" }

params = string {"," string}

string = quoted string | unquoted string

quoted string= “"” {<Latin 1 character> | escape _char} ["\\\"] “"”
escape char = "\\""

unquoted strimg{<Latin 1 character except space, tab, ",", "\\n", ")">}

The params field is parsed into a list of Stri ng values that will be passed to the
named action procedure. A quoted string may contain an embedded quotation mark
if the quotation mark is preceded by a single backslash (\). The three-character
sequence "\\"" is interpreted as "single backslash followed by end-of-string".

Modifier Names

238

Translation Table Syntax

The modifier field is used to specify standard X keyboard and button modifier mask
bits. Modifiers are legal on event types KeyPr ess, KeyRel ease, But t onPr ess, But -
tonRel ease, MotionNotify, EnterNotify, LeaveNotify, and their abbreviations.
An error is generated when a translation table that contains modifiers for any other
events is parsed.

If the modifier list has no entries and is not "None", it means "don't care" on all
modifiers.

If an exclamation point (!) is specified at the beginning of the modifier list, it
means that the listed modifiers must be in the correct state and no other modifiers
can be asserted.

If any modifiers are specified and an exclamation point (!) is not specified, it means
that the listed modifiers must be in the correct state and "don't care" about any
other modifiers.

If a modifier is preceded by a tilde (~), it means that that modifier must not be
asserted.

If "None" is specified, it means no modifiers can be asserted.

If a colon (:) is specified at the beginning of the modifier list, it directs the In-
trinsics to apply any standard modifiers in the event to map the event keycode
into a KeySym. The default standard modifiers are Shift and Lock, with the in-
terpretation as defined in X Window System Protocol, Section 5. The resulting
KeySym must exactly match the specified KeySym, and the nonstandard modifiers
in the event must match the modifier list. For example, ":<Key>a" is distinct from
":<Key>A", and ":Shift<Key>A" is distinct from ":<Key>A".

If both an exclamation point (!) and a colon (:) are specified at the beginning of
the modifier list, it means that the listed modifiers must be in the correct state
and that no other modifiers except the standard modifiers can be asserted. Any
standard modifiers in the event are applied as for colon (:) above.

If a colon (:) is not specified, no standard modifiers are applied. Then, for example,
"<Key>A" and "<Key>a" are equivalent.

In key sequences, a circumflex (7) is an abbreviation for the Control modifier, a
dollar sign ($) is an abbreviation for Meta, and a backslash (\) can be used to quote
any character, in particular a double quote ("), a circumflex (©), a dollar sign ($),
and another backslash (\). Briefly:

No modifiers: None <event> detail
Any modifiers: <event> detail
Only these modifiers: ! modl mod2 <event> detail

These modifiers and any others: mod1l mod2 <event> detail

The use of "None" for a modifier list is identical to the use of an exclamation point
with no modifers.

Modifier Abbreviation Meaning

Ctrl o Control modifier bit
Shift S Shift modifier bit
Lock | Lock modifier bit
Meta m Meta key modifier
Hyper h Hyper key modifier
Super su Super key modifier

239

Translation Table Syntax

Modifier Abbreviation Meaning

Alt a Alt key modifier
Mod1 Mod1 modifier bit
Mod?2 Mod?2 modifier bit
Mod3 Mod3 modifier bit
Mod4 Mod4 modifier bit
Mod5 Mod5 modifier bit
Buttonl Button1 modifier bit
Button2 Button2 modifier bit
Button3 Button3 modifier bit
Button4 Button4 modifier bit
Button5 Button5 modifier bit
None No modifiers

Any Any modifier combination

A key modifier is any modifier bit one of whose corresponding KeyCodes contains
the corresponding left or right KeySym. For example, "m" or "Meta" means any
modifier bit mapping to a KeyCode whose KeySym list contains XK Meta L or
XK Meta R. Note that this interpretation is for each display, not global or even
for each application context. The Control, Shift, and Lock modifier names refer ex-
plicitly to the corresponding modifier bits; there is no additional interpretation of
KeySyms for these modifiers.

Because it is possible to associate arbitrary KeySyms with modifiers, the set of key
modifiers is extensible. The "@" <keysym> syntax means any modifier bit whose
corresponding KeyCode contains the specified KeySym name.

A modifier list/KeySym combination in a translation matches a modifiers/KeyCode
combination in an event in the following ways:

1.If a colon (:) is used, the Intrinsics call the display's (* Xt KeyProc) with the
KeyCode and modifiers. To match, (modifiers & ~modifiers return) must equal
modifier list, and keysym return must equal the given KeySym.

2.If (:) is not used, the Intrinsics mask off all don't-care bits from the modifiers. This
value must be equal to modifier list. Then, for each possible combination of don't-
care modifiers in the modifier list, the Intrinsics call the display's (* Xt KeyPr oc)
with the KeyCode and that combination ORed with the cared-about modifier bits
from the event. Keysym return must match the KeySym in the translation.

Event Types

The event-type field describes XEvent types. In addition to the standard Xlib sym-
bolic event type names, the following event type synonyms are defined:

Type Meaning
Key KeyPr ess
KeyDown KeyPr ess
KeyUp KeyRel ease

240

Translation Table Syntax

Type Meaning
BtnDown But t onPr ess
BtnUp But t onRel ease
Motion Mot i onNotify
PtrMoved Moti onNoti fy
MouseMoved Mbti onNotify
Enter Enter Noti fy
EnterWindow EnterNotify
Leave LeaveNotify
LeaveWindow LeaveNoti fy
FocusIn Focusl n
FocusOut FocusQut

Keymap KeynmapNot i fy
Expose Expose

GrExp G aphi csExpose
NoExp NoExpose

Visible VisibilityNotify
Create CreateNotify
Destroy DestroyNotify
Unmap UnmapNot i fy

Map MapNot i fy
MapReq MapRequest
Reparent Reparent Noti fy
Configure ConfigureNotify
ConfigureReq Conf i gur eRequest
Grav GravityNotify
ResReq Resi zeRequest
Circ Circul ateNotify
CircReq Ci rcul at eRequest
Prop PropertyNotify
SelClr Sel ecti onCl ear
SelReq Sel ect i onRequest
Select Sel ectionNotify
Clrmap Col or mapNoti fy
Message Cli ent Message
Mapping Mappi ngNoti fy

The supported abbreviations are:

Abbreviation

Event Type

Including

Ctrl

KeyPr ess

with Control modifier

241

Translation Table Syntax

Abbreviation Event Type Including

Meta KeyPr ess with Meta modifier
Shift KeyPr ess with Shift modifier
Btn1Down But t onPr ess with Buttonl detail
Btn1Up But t onRel ease with Button1 detail
Btn2Down But t onPress with Button2 detail
Btn2Up But t onRel ease with Button2 detail
Btn3Down But t onPress with Button3 detail
Btn3Up But t onRel ease with Button3 detail
Btn4Down But t onPr ess with Button4 detail
Btn4Up But t onRel ease with Button4 detail
Btn5Down But t onPress with Button5 detail
Btn5Up But t onRel ease with Button5 detail
BtnMotion Mbti onNoti fy with any button modifier
Btn1Motion Mot i onNoti fy with Buttonl modifier
Btn2Motion Mot i onNoti fy with Button2 modifier
Btn3Motion Mbti onNoti fy with Button3 modifier
Btn4Motion Mot i onNoti fy with Button4 modifier
Btn5Motion Mot i onNoti fy with Button5 modifier

The detail field is event-specific and normally corresponds to the detail field of the
corresponding event as described by X Window System Protocol, Section 11. The
detail field is supported for the following event types:

KeyPress KeySym from event detail (keycode)
KeyRelease KeySym from event detail (keycode)
ButtonPress button from event detail
ButtonRelease button from event detail
MotionNotify event detail

EnterNotify event mode

LeaveNotify event mode

FocusIn event mode

FocusOut event mode

PropertyNotify atom

SelectionClear selection

SelectionRequest selection

SelectionNotify selection

ClientMessage type

MappingNotify request

If the event type is KeyPress or KeyRel ease, the detail field specifies a KeySym
name in standard format which is matched against the event as described above,
for example, <Key>A.

242

Translation Table Syntax

For the PropertyNotify, Sel ecti onC ear, Sel ecti onRequest, Sel ecti onNotify,
and d i ent Message events the detail field is specified as an atom name; for example,
<Message>WM PROTOCOLS. For the Moti onNotify, EnterNotify, LeaveNotify,
Focusl n, FocusQut, and Mappi ngNoti fy events, either the symbolic constants as
defined by X Window System Protocol, Section 11, or the numeric values may be
specified.

If no detail field is specified, then any value in the event detail is accepted as a
match.

A KeySym can be specified as any of the standard KeySym names, a hexadecimal
number prefixed with "0x" or "0X", an octal number prefixed with "0", or a deci-
mal number. A KeySym expressed as a single digit is interpreted as the correspond-
ing Latin 1 KeySym, for example, "0" is the KeySym XK 0. Other single character
KeySyms are treated as literal constants from Latin 1, for example, "!" is treated
as 0x21. Standard KeySym names are as defined in <X11/ keysyndef . h> with the
"XK " prefix removed.

Canonical Representation

Every translation table has a unique, canonical text representation. This represen-
tation is passed to a widget's di spl ay_accel er at or procedure to describe the ac-
celerators installed on that widget. The canonical representation of a translation
table is (see also "Syntax")

transla- = { production }

tionTable

production = lhs ":" rhs "\\n"

lhs =event { "," event }

event =[modifier list] "<"event type">"["(" count["+"] ")"] {detail}
modifier list = ["!"][":"] {modifier}

modifier = ["""] modifier name

count =("1"]"2" | "3" | "4"|...)

modifier names "@" <keysym> | <see canonical modifier names below>

event type = <see canonical event types below>
detail =<event-specific details>

rhs ={ name "(" [params] ")" }

name =namechar { namechar }

namechar = { "a"-"z" | "A"-"Z" | "0"-"9" | " " | "-" }
params =string {"," string}

string =quoted_string

wunn

quoted_string= {<Latin 1 character> | escape char} ["\\\"] “"”

escape char = "\\""

The canonical modifier names are

Ctrl Modl Buttonl
Shift Mod2 Button2

243

Translation Table Syntax

Lock Mod3 Button3

Mod4 Button4
Mod5 Buttonb

The canonical event types are

KeyPress
ButtonPress
MotionNotify
LeaveNotify
FocusOut
Expose
NoExpose
CreateNotify
UnmapNotify
MapRequest
ConfigureNotify
GravityNotify
CirculateNotify
PropertyNotify
SelectionRequest
ColormapNotify

Examples

KeyRelease
ButtonRelease
EnterNotify
FocusIn
KeymapNotify
GraphicsExpose,
VisibilityNotify
DestroyNotify
MapNotify
ReparentNotify
ConfigureRequest
ResizeRequest
CirculateRequest
SelectionClear
SelectionNotify
ClientMessage

» Always put more specific events in the table before more general ones:

Shift <Btn1Down> : twas()\n\

<Btnl1Down> : brillig()

e For double-click on Buttonl Up with Shift, use this specification:

Shift<Btn1Up=>(2) : and()

» This is equivalent to the following line with appropriate timers set between events:

Shift<Btn1Down>,Shift<Btn1Up>,Shift<Btn1Down>,Shift<Btn1Up> : and()
» For double-click on Buttonl Down with Shift, use this specification:

Shift<Btn1Down>(2) : the()

» This is equivalent to the following line with appropriate timers set between events:

Shift<Btn1Down>,Shift<Btn1Up>,Shift<Btn1Down> : the()
* Mouse motion is always discarded when it occurs between events in a table where

no motion event is specified:

Translation Table Syntax

<Btn1Down>,<Btn1Up> : slithy()

This is taken, even if the pointer moves a bit between the down and up events.
Similarly, any motion event specified in a translation matches any number of mo-
tion events. If the motion event causes an action procedure to be invoked, the
procedure is invoked after each motion event.

If an event sequence consists of a sequence of events that is also a noninitial
subsequence of another translation, it is not taken if it occurs in the context of
the longer sequence. This occurs mostly in sequences like the following:

<BtnlDown>,<Btn1Up> : toves()\n\
<Btnl1Up> : did()

The second translation is taken only if the button release is not preceded by a
button press or if there are intervening events between the press and the release.
Be particularly aware of this when using the repeat notation, above, with buttons
and keys, because their expansion includes additional events; and when specifying
motion events, because they are implicitly included between any two other events.
In particular, pointer motion and double-click translations cannot coexist in the
same translation table.

For single click on Button1l Up with Shift and Meta, use this specification:

Shift Meta <Btn1Down>, Shift Meta<Btn1Up=>: gyre()

For multiple clicks greater or equal to a minimum number, a plus sign (+) may
be appended to the final (rightmost) count in an event sequence. The actions will
be invoked on the count-th click and each subsequent one arriving within the
multi-click time interval. For example:

Shift <Btn1Up=>(2+) : and()
To indicate Ent er Not i f y with any modifiers, use this specification:

<Enter> : gimble()
To indicate Ent er Not i f y with no modifiers, use this specification:

None <Enter> : in()
To indicate Ent er Noti fy with Buttonl Down and Button2 Up and "don't care"
about the other modifiers, use this specification:

Buttonl ~Button2 <Enter> : the()
To indicate Ent er Noti fy with Buttonl down and Button2 down exclusively, use
this specification:

I Button1 Button2 <Enter> : wabe()

You do not need to use a tilde (~) with an exclamation point (!).

245

Appendix C. Compatibility Functions

In prototype versions of the X Toolkit each widget class implemented an
Xt<Widget>Create (for example, Xt Label Cr eat e) function, in which most of the
code was identical from widget to widget. In the Intrinsics, a single generic Xt Cr e-
at eW dget performs most of the common work and then calls the initialize proce-
dure implemented for the particular widget class.

Each Composite class also implemented the procedures Xt<Widget>Add and an
Xt<Widget>Delete (for example, Xt But t onBoxAddBut t on and Xt But t onBoxDel et e-
Butt on). In the Intrinsics, the Composite generic procedures Xt ManageChi | dr en
and Xt UnmanageChi | dr en perform error checking and screening out of certain chil-
dren. Then they call the change managed procedure implemented for the widget's
Composite class. If the widget's parent has not yet been realized, the call to the
change managed procedure is delayed until realization time.

Old-style calls can be implemented in the X Toolkit by defining one-line procedures
or macros that invoke a generic routine. For example, you could define the macro
Xt Label Creat e as:

#define XtLabelCreate(name, parent, args, num_args) \
((LabelWidget) XtCreateWidget(name, labelWidgetClass, parent, args, num_args))

Pop-up shells in some of the prototypes automatically performed an Xt ManageChi | d
on their child within their insert child procedure. Creators of pop-up children need
to call Xt ManageChi | d themselves.

Xt Appl nitializeand Xt VaAppl nitialize have been replaced by Xt OQpenAppl i ca-
tion and Xt VaOpenAppl i cati on.

To initialize the Intrinsics internals, create an application context, open and initialize
a display, and create the initial application shell instance, an application may use
Xt ApplnitializeorXtVaApplnitialize.

W dget XtApplnitialize(app_context_return, application_class, options,

num opt i ons, argc_i n_out, argv_i n_out, fal | back_resources, ar gs,

num ar gs) ;

app_context return Returns the application context, if non-NULL.

application_class Specifies the class name of the application.

options Specifies the command line options table.

num_options Specifies the number of entries in options.

argc_in_out Specifies a pointer to the number of command line
arguments.

argv_in_out Specifies a pointer to the command line arguments.

fallback_resources Specifies resource values to be used if the applica-
tion class resource file cannot be opened or read, or
NULL.

! This appendix is part of the formal Intrinsics Specification.

246

Compatibility Functions

args Specifies the argument list to override any other re-
source specifications for the created shell widget.

num_args Specifies the number of entries in the argument list.

The Xt Applnitialize function calls Xt Tool kitlnitialize followed by XtCre-
at eAppl i cati onCont ext, then calls * Xt OpenDi spl ay with display string NULL and
application_ name NULL, and finally calls Xt AppCr eat eShel | with application name
NULL, widget class appl i cati on\ %Ghel | \ %V dget \ % ass, and the specified args
and num_args and returns the created shell. The modified argc and argv re-
turned by Xt Di spl aylnitialize are returned in argc in out and argv_in out. If
app_context return is not NULL, the created application context is also returned.
If the display specified by the command line cannot be opened, an error message
is issued and Xt Appl ni ti al i ze terminates the application. If fallback resources is
non-NULL, Xt AppSet Fal | backResour ces is called with the value prior to calling
* Xt OpenDi spl ay.

Wdget XtVaApplnitialize(app_context_return, application_class, op-
tions, numoptions, argc_in_out, argv_in_out, fallback _resources);

app_context return Returns the application context, if non-NULL.

application class Specifies the class name of the application.

options Specifies the command line options table.

num_options Specifies the number of entries in options.

argc in_out Specifies a pointer to the number of command line
arguments.

argv_in out Specifies the command line arguments array.

fallback_resources Specifies resource values to be used if the application

class resource file cannot be opened, or NULL.

Specifies the variable argument list to override any
other resource specifications for the created shell.

The Xt VaAppl ni ti al i ze procedure is identical in function to Xt Appl ni ti al i ze with
the args and num_args parameters replaced by a varargs list, as described in Sec-
tion 2.5.1.

As a convenience to people converting from earlier versions of the toolkit with-
out application contexts, the following routines exist: XtInitialize, XtMin-
Loop, Xt Next Event, Xt ProcessEvent, Xt PeekEvent , Xt Pendi ng, Xt Addl nput , Xt Ad-
dTi meQut, Xt AddWor kProc, Xt CreateApplicationShell, Xt AddActi ons, Xt Set S-
el ecti onTi meout, and Xt Get Sel ecti onTi nmeout .

W dget Xtlnitialize(shell nane, application_class, options,
num options, argc, argv);

shell name This parameter is ignored; therefore, you can specify
NULL.
application_class Specifies the class name of this application.

247

Compatibility Functions

options Specifies how to parse the command line for any ap-
plication-specific resources. The options argument is
passed as a parameter to Xr nPar seConmand.

num_options Specifies the number of entries in the options list.

argc Specifies a pointer to the number of command line
parameters.

argv Specifies the command line parameters.

Xtlnitialize calls Xt Tool kitlnitialize to initialize the toolkit internals, cre-
ates a default application context for use by the other convenience routines, calls
* Xt OpenDi spl ay with display string NULL and application name NULL, and finally
calls Xt AppCr eat eShel | with application name NULL and returns the created shell.
The semantics of calling Xt I ni ti al i ze more than once are undefined. This routine
has been replaced by Xt OpenAppl i cati on.

voi d Xt Mai nLoop(voi d);

Xt Mai nLoop first reads the next alternate input, timer, or X event by calling Xt Nex-
t Event . Then it dispatches this to the appropriate registered procedure by calling
Xt Di spat chEvent . This routine has been replaced by Xt AppMai nLoop.

voi d Xt Next Event (event _return);

event return Returns the event information to the specified event
structure.

If no input is on the X input queue for the default application context, Xt Next Event
flushes the X output buffer and waits for an event while looking at the alternate
input sources and timeout values and calling any callback procedures triggered by
them. This routine has been replaced by Xt AppNext Event. XtIniti al i ze must be
called before using this routine.

voi d Xt ProcessEvent (mask) ;
mask Specifies the type of input to process.

Xt ProcessEvent processes one X event, timeout, or alternate input source (depend-
ing on the value of mask), blocking if necessary. It has been replaced by Xt App-
ProcessEvent. Xt I ni ti al i ze must be called before using this function.

Bool ean Xt PeekEvent (event _return);

event return Returns the event information to the specified event
structure.

If there is an event in the queue for the default application context, Xt PeekEvent fills
in the event and returns a nonzero value. If no X input is on the queue, Xt PeekEvent
flushes the output buffer and blocks until input is available, possibly calling some
timeout callbacks in the process. If the input is an event, Xt PeekEvent fills in
the event and returns a nonzero value. Otherwise, the input is for an alternate
input source, and Xt PeekEvent returns zero. This routine has been replaced by
Xt AppPeekEvent . Xt I ni ti al i ze must be called before using this routine.

Bool ean Xt Pendi ng();

248

Compatibility Functions

Xt Pendi ng returns a nonzero value if there are events pending from the X server
or alternate input sources in the default application context. If there are no events
pending, it flushes the output buffer and returns a zero value. It has been replaced
by Xt AppPendi ng. Xt I ni ti al i ze must be called before using this routine.

XtInputld XtAddl nput (source, condition, proc, client_data);

source Specifies the source file descriptor on a POSIX-based
system or other operating-system-dependent device
specification.

condition Specifies the mask that indicates either a read, write,

or exception condition or some operating-system-de-
pendent condition.

proc Specifies the procedure called when input is available.

client data Specifies the parameter to be passed to proc when in-
put is available.

The Xt AddI nput function registers in the default application context a new source
of events, which is usually file input but can also be file output. (The word file should
be loosely interpreted to mean any sink or source of data.) Xt Addl nput also specifies
the conditions under which the source can generate events. When input is pending
on this source in the default application context, the callback procedure is called.
This routine has been replaced by Xt AppAddl nput. XtInitialize must be called
before using this routine.

Xtlnterval Id Xt AddTi neQut (i nterval, proc, client_data);

interval Specifies the time interval in milliseconds.

proc Specifies the procedure to be called when time ex-
pires.

client data Specifies the parameter to be passed to proc when it
is called.

The Xt AddTi meCut function creates a timeout in the default application context and
returns an identifier for it. The timeout value is set to interval. The callback pro-
cedure will be called after the time interval elapses, after which the timeout is re-
moved. This routine has been replaced by Xt AppAddTi neQut. XtInitialize must
be called before using this routine.

Xt Wor kProcl d Xt AddWor kProc(proc, client _data);
proc Procedure to call to do the work.
client data Client data to pass to proc when it is called.

This routine registers a work procedure in the default application context. It has
been replaced by Xt AppAddWor kProc. Xtlnitialize must be called before using
this routine.

W dget Xt CreateApplicationShell (nane, w dget class, args, numargs);

name This parameter is ignored; therefore, you can specify
NULL.

249

Compatibility Functions

widget class Specifies the widget class pointer for the creat-
ed application shell widget. This will usually be
t opLevel Shel | W dget d ass or a subclass thereof.

args Specifies the argument list to override any other re-
source specifications.

num_args Specifies the number of entries in args.

The procedure XtCreateApplicationShell calls XtAppCreateShell with
application name NULL, the application class passed to Xt I niti al i ze, and the de-
fault application context created by Xt | ni ti al i ze. This routine has been replaced
by Xt AppCr eat eShel | .

An old-format resource type converter procedure pointer is of type (* Xt Converter).
typedef void (*XtConverter)(args, numargs, from to);

args Specifies a list of additional Xr nial ue arguments to the
converter if additional context is needed to perform the
conversion, or NULL.

num_args Specifies the number of entries in args.

from Specifies the value to convert.

to Specifies the descriptor to use to return the converted val-
ue.

Type converters should perform the following actions:

¢ Check to see that the number of arguments passed is correct.

¢ Attempt the type conversion.

¢ If successful, return the size and pointer to the data in the to argument; otherwise,
call Xt War ni ngMsg and return without modifying the to argument.

Most type converters just take the data described by the specified from argument
and return data by writing into the specified to argument. A few need other infor-
mation, which is available in the specified argument list. A type converter can in-
voke another type converter, which allows differing sources that may convert into
a common intermediate result to make maximum use of the type converter cache.

Note that the address returned in to->addr cannot be that of a local variable of the
converter because this is not valid after the converter returns. It should be a pointer
to a static variable.

The procedure type (* Xt Converter) has been replaced by (* Xt TypeConverter).

The Xt St ri ngConver si onWar ni ng function is a convenience routine for old-format
resource converters that convert from strings.

voi d Xt StringConversi onWarni ng(src);
src Specifies the string that could not be converted.

dst type Specifies the name of the type to which the string could
not be converted.

250

Compatibility Functions

The Xt St ri ngConver si onWar ni ng function issues a warning message with name
"conversionError", type "string", class "XtToolkitError, and the default message
string "Cannot convert "src" to type dst type". This routine has been superseded by
Xt Di spl aySt ri ngConver si onWar ni ng.

To register an old-format converter, use Xt AddConverter or Xt AppAddConverter.

void XtAddConverter(fromtype, to_type, converter, convert _args,
num ar gs) ;

from type Specifies the source type.

to type Specifies the destination type.

converter Specifies the type converter procedure.
convert_args Specifies how to compute the additional arguments

to the converter, or NULL.
num_args Specifies the number of entries in convert_args.

Xt AddConvert er is equivalent in function to Xt Set TypeConverter with cache type
equal to Xt CacheAl |l for old-format type converters. It has been superseded by
Xt Set TypeConverter.

voi d Xt AppAddConverter (app_context, fromtype, to_type, converter,
convert_args, num.args);

app_context Specifies the application context.

from_type Specifies the source type.

to type Specifies the destination type.

converter Specifies the type converter procedure.
convert_args Specifies how to compute the additional arguments

to the converter, or NULL.
num_args Specifies the number of entries in convert args.

Xt AppAddConverter is equivalent in function to Xt AppSet TypeConverter with
cache type equal to Xt CacheAl | for old-format type converters. It has been super-
seded by Xt AppSet TypeConverter.

To invoke resource conversions, a client may use Xt Convert or, for old-format con-
verters only, Xt Di r ect Convert.

voi d Xt Convert(w, fromtype, from to_type, to_return);

w Specifies the widget to use for additional arguments, if
any are needed.

from_type Specifies the source type.
from Specifies the value to be converted.
to type Specifies the destination type.

251

Compatibility Functions

to return Returns the converted value.

voi d Xt Di rect Convert (converter, args, numargs, from to_return);

converter Specifies the conversion procedure to be called.

args Specifies the argument list that contains the addition-
al arguments needed to perform the conversion (often
NULL).

num_args Specifies the number of entries in args.

from Specifies the value to be converted.

to return Returns the converted value.

The Xt Convert function looks up the type converter registered to convert from type
to to type, computes any additional arguments needed, and then calls Xt Di r ect -
Convert or Xt Cal | Converter.The Xt Di r ect Convert function looks in the converter
cache to see if this conversion procedure has been called with the specified argu-
ments. If so, it returns a descriptor for information stored in the cache; otherwise,
it calls the converter and enters the result in the cache.

Before calling the specified converter, Xt Di r ect Convert sets the return value size
to zero and the return value address to NULL. To determine if the conversion was
successful, the client should check to_return.addr for non-NULL. The data returned
by Xt Convert must be copied immediately by the caller, as it may point to static
data in the type converter.

Xt Convert has been replaced by Xt Convert AndSt ore, and Xt Di r ect Convert has
been superseded by Xt Cal | Converter.

To deallocate a shared GC when it is no longer needed, use Xt Dest r oy GC.
voi d Xt DestroyGC(w, gc);

w Specifies any object on the display for which the shared GC was
created. Must be of class Object or any subclass thereof.

gc Specifies the shared GC to be deallocated.

References to sharable GCs are counted and a free request is generated to the
server when the last user of a given GC destroys it. Note that some earlier versions of
Xt Dest r oyGC had only a gc argument. Therefore, this function is not very portable,
and you are encouraged to use Xt Rel easeCC instead.

To declare an action table in the default application context and register it with the
translation manager, use Xt AddAct i ons.

voi d Xt AddActions(actions, num actions);
actions Specifies the action table to register.
num_actions Specifies the number of entries in actions.

If more than one action is registered with the same name, the most recently regis-
tered action is used. If duplicate actions exist in an action table, the first is used. The

252

Compatibility Functions

Intrinsics register an action table for Xt MenuPopup and Xt MenuPopdown as part of X
Toolkit initialization. This routine has been replaced by Xt AppAddActi ons. Xt I ni -
ti al i ze must be called before using this routine.

To set the Intrinsics selection timeout in the default application context, use Xt Set S-
el ecti onTi meout .

voi d Xt Set Sel ecti onTi neout (ti neout);

timeout Specifies the selection timeout in milliseconds. This routine
has been replaced by Xt AppSet Sel ecti onTi neout . Xt | ni -
tiali ze must be called before using this routine.

To get the current selection timeout value in the default application context, use
Xt Get Sel ecti onTi nmeout .

unsi gned | ong Xt Get Sel ecti onTi neout () ;

The selection timeout is the time within which the two communicating applications
must respond to one another. If one of them does not respond within this interval,
the Intrinsics abort the selection request.

This routine has been replaced by Xt AppGet Sel ecti onTi neout . Xt I ni ti al i ze must
be called before using this routine.

To obtain the global error database (for example, to merge with an application- or
widget-specific database), use * Xt Get Er r or Dat abase.

XrmDat abase * Xt Get Err or Dat abase() ;

The * Xt Get Er r or Dat abase function returns the address of the error database. The
Intrinsics do a lazy binding of the error database and do not merge in the database
file until the first call to Xt Get Er r or Dat baseText . This routine has been replaced
by Xt AppGet Er r or Dat abase.

An error message handler can obtain the error database text for an error or a warn-
ing by calling Xt Get Er r or Dat abaseText .

voi d Xt Get Err or Dat abaseText (name, default, buffer_return, nbytes);

name

type Specify the name and type that are concatenated to
form the resource name of the error message.

class Specifies the resource class of the error message.

default Specifies the default message to use if an error data-
base entry is not found.

buffer return Specifies the buffer into which the error message is
to be returned.

nbytes Specifies the size of the buffer in bytes.

The Xt Get Er r or Dat abaseText returns the appropriate message from the error data-
base associated with the default application context or returns the specified default

253

Compatibility Functions

message if one is not found in the error database. To form the full resource name
and class when querying the database, the name and type are concatenated with a
single "." between them and the class is concatenated with itself with a single "." if
it does not already contain a ".". This routine has been superseded by Xt AppGet Er -
r or Dat abaseText .

To register a procedure to be called on fatal error conditions, use Xt Set Er r or Ms-
gHandl er.

voi d Xt Set Err or MsgHandl er (msg_handl er) ;

msg _handler Specifies the new fatal error procedure, which should
not return.

The default error handler provided by the Intrinsics constructs a string from the
error resource database and calls Xt Error. Fatal error message handlers should
not return. If one does, subsequent Intrinsics behavior is undefined. This routine
has been superseded by Xt AppSet Er r or MsgHandl er .

To call the high-level error handler, use Xt Er r or Msg.

void XtErrorMg(nane, type, class, default, parans, num parans);

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error data-

base entry is not found.

params Specifies a pointer to a list of values to be stored in the
message.
num_params Specifies the number of entries in params.

This routine has been superseded by Xt AppEr r or Msg.

To register a procedure to be called on nonfatal error conditions, use Xt Set War n-
i ngMsgHandl er .

voi d Xt Set War ni ngMsgHandlI er (msg_handl er) ;

msg handler Specifies the new nonfatal error procedure, which
usually returns.

The default warning handler provided by the Intrinsics constructs a string from the
error resource database and calls Xt War ni ng. This routine has been superseded by
Xt AppSet War ni ngMsgHandl er .

To call the installed high-level warning handler, use Xt War ni ngMsg.
voi d Xt War ni ngMsg(nanme, type, class, default, parans, num parans);
name Specifies the general kind of error.

type Specifies the detailed name of the error.

254

Compatibility Functions

class Specifies the resource class.

default Specifies the default message to use if an error data-
base entry is not found.

params Specifies a pointer to a list of values to be stored in the
message.
num_params Specifies the number of entries in params.

This routine has been superseded by Xt AppWar ni nghsg.

To register a procedure to be called on fatal error conditions, use Xt Set Er r or Han-
dl er.

voi d Xt Set Err or Handl er (handl er) ;

handler Specifies the new fatal error procedure, which should not
return.

The default error handler provided by the Intrinsics is _Xt Err or . On POSIX-based
systems, it prints the message to standard error and terminates the application.
Fatal error message handlers should not return. If one does, subsequent X Toolkit
behavior is undefined. This routine has been superseded by Xt AppSet Er r or Handl er .

To call the installed fatal error procedure, use Xt Error.
void XtError(nessage);
message Specifies the message to be reported.

Most programs should use Xt AppEr r or Msg, not Xt Err or, to provide for customiza-
tion and internationalization of error messages. This routine has been superseded
by Xt AppError.

To register a procedure to be called on nonfatal error conditions, use Xt Set War n-
i ngHandl er.

voi d Xt Set War ni ngHandl er (handl er);

handler Specifies the new nonfatal error procedure, which usually
returns.

The default warning handler provided by the Intrinsics is _Xt War ni ng. On POSIX-
based systems, it prints the message to standard error and returns to the caller.
This routine has been superseded by Xt AppSet War ni ngHandl er .

To call the installed nonfatal error procedure, use Xt Vr ni ng.
voi d Xt War ni ng(message) ;
message Specifies the nonfatal error message to be reported.

Most programs should use Xt AppWar ni ngMsg, not Xt War ni ng, to provide for cus-
tomization and internationalization of warning messages. This routine has been su-
perseded by Xt AppWar ni ng.

255

Appendix D. Intrinsics Error Messages

All Intrinsics errors and warnings have class * " XtToolkitError". The following two
tables summarize the common errors and warnings that can be generated by the In-
trinsics. Additional implementation-dependent messages are permitted. Error Mes-

sages

Name Type Default Message

allocError calloc Cannot perform calloc

allocError malloc Cannot perform malloc

allocError realloc Cannot perform realloc

internalError xtMakeGeometryRequest internal error; ShellClas-
sExtension is NULL

invalidArgCount xtGetValues Argument count > 0 on
NULL argument list in
XtGetValues

invalidArgCount xtSetValues Argument count > 0 on
NULL argument list in
XtSetValues

invalidClass applicationShel- ApplicationShell does not

lInsertChild accept RectObj children;

ignored

invalidClass constraintSetValue Subclass of Constraint re-
quired in CallConstrain-
tSetValues

invalidClass xtAppCreateShell XtAppCreateShell re-
quires non-NULL widget
class

invalidClass xtCreatePopupShell XtCreatePopupShell re-
quires non-NULL widget
class

invalidClass xtCreateWidget XtCreateWidget requires
non-NULL widget class

invalidClass xtPopdown XtPopdown requires a
subclass of shellWidget-
Class

invalidClass xtPopup XtPopup requires a sub-
class of shellWidgetClass

invalidDimension xtCreateWindow Widget %s has zero width
and/or height

invalidDimension shellRealize Shell widget %s has zero
width and/or height

invalidDisplay xtInitialize Can't open display: %s

invalidGetValues xtGetValues NULL ArgVal in XtGetVal-

ues

256

Intrinsics Error Messages

Name Type Default Message

invalidExtension shellClassPartInitialize widget class %s has in-
valid ShellClassExtension
record

invalidExtension xtMakeGeometryRequest widget class %s has in-
valid ShellClassExtension
record

invalidGeometryManager xtMakeGeometryRequest XtMakeGeometryRequest
- parent has no geometry
manager

invalidParameter xtAddInput invalid condition passed to
XtAddInput

invalidParameter xtAddInput invalid condition passed to
XtAppAddInput

invalidParent xtChangeManagedSet Attempt to manage a child
when parent is not Com-
posite

invalidParent xtChangeManagedSet Attempt to unmanage a
child when parent is not
Composite

invalidParent xtCreatePopupShell XtCreatePopupShell re-
quires non-NULL parent

invalidParent xtCreateWidget XtCreateWidget requires
non-NULL parent

invalidParent xtMakeGeometryRequest non-shell has no parent in
XtMakeGeometryRequest

invalidParent xtMakeGeometryRequest XtMakeGeometryRequest
- parent not composite

invalidParent xtManageChildren Attempt to manage a child
when parent is not Com-
posite

invalidParent xtUnmanageChildren Attempt to unmanage a
child when parent is not
Composite

invalidProcedure inheritanceProc Unresolved inheritance
operation

invalidProcedure realizeProc No realize class procedure
defined

invalidWindow eventHandler Event with wrong window

missingWidget fetchDisplayArg FetchDisplayArg called
without a widget to refer-
ence

nonWidget xtCreateWidget attempt to add non-widget

child "%s" to parent "%s"
which supports only wid-
gets

257

Intrinsics Error Messages

Name Type Default Message

noPerDisplay closeDisplay Couldn't find per display
information

noPerDisplay getPerDisplay Couldn't find per display

noSelectionProperties

noWidgetAncestor

nullDisplay

nullProc
r2versionMismatch
R3versionMismatch

R4orR5versionMismatch

freeSelectionProperty

windowedAncestor

xtRegisterExtensionSelec-
tor

insertChild
widget
widget

widget

information

internal error: no selec-
tion property context for
display

Object "%s" does not have
windowed ancestor

XtRegisterExtensionSelec-
tor requires a non-NULL
display

"%s" parent has NULL
insert child method

Widget class %s must be
re-compiled.
Widget class %s must be
re-compiled.

Widget class %s must be
re-compiled.

rangeError xtRegisterExtensionSelec- Attempt to register mul-
tor tiple selectors for one ex-

tension event type

sessionManagement SmcOpenConnection Tried to connect to ses-
sion manager, %s

subclassMismatch xtCheckSubclass Widget class %s found
when subclass of %s ex-
pected: %s

Warning Messages

Name Type Default Message

ambiguousParent xtChangeManagedSet Not all children have
same parent

ambiguousParent xtManageChildren Not all children have
same parent in XtMan-
ageChildren

ambiguousParent xtUnmanageChildren Not all children have
same parent in XtUnman-
ageChildren

badFormat xtGetSelectionValue Selection owner returned
type INCR property with
format != 32

badGeometry shellRealize Shell widget "%s" has an

invalid geometry specifi-
cation: "%s"

258

Intrinsics Error Messages

Name Type Default Message

badValue cvtStringToPixel Color name "%s" is not de-
fined

communicationError select Select failed; error code
%s

conversionError string Cannot convert string
"%s" to type %s

conversionError stringToVisual Cannot find Visual of class
%s for display %s

conversionFailed xtConvertVarToArgList Type conversion failed

conversionFailed xtGetTypedArg Type conversion (%s to
%s) failed for widget '%s'

displayError invalidDisplay Can't find display struc-
ture

grabError xtAddGrab XtAddGrab requires exclu-
sive grab if spring loaded
is TRUE

grabError xtRemoveGrab XtRemoveGrab asked to
remove a widget not on
the list

initializationError xtInitialize Initializing Resource Lists
twice

insufficientSpace xtGetTypedArg Insufficient space for con-
verted type '%s' in widget
I%SI

internalError shell Shell's window manager
interaction is broken

invalidAddressMode computeArgs Conversion arguments for
widget '%s' contain an un-
supported address mode

invalidArgCount getResources argument count > 0 on
NULL argument list

invalidCallbackList xtAddCallback Cannot find callback list
in XtAddCallback

invalidCallbackList xtAddCallback Cannot find callback list
in XtAddCallbacks

invalidCallbackList xtCallCallback Cannot find callback list
in XtCallCallbacks

invalidCallbackList xtRemoveAllCallback Cannot find callback list
in XtRemoveAllCallbacks

invalidCallbackList xtRemoveCallback Cannot find callback list
in XtRemoveCallbacks

invalidChild xtChangeManagedSet Null child passed to Un-
manageChildren

invalidChild xtManageChildren null child passed to Man-

ageChildren

259

Intrinsics Error Messages

Name

Type

Default Message

invalidChild
invalidChild
invalidChild
invalidDepth

invalidExtension

invalidExtension

invalidGrab

invalidGrabKind

invalidParameters

invalidParameters

invalidParameters

invalidParameters
invalidParent
invalidPopup
invalidPopup

invalidPopup

invalidPopup

invalidProcedure

xtManageChildren
xtUnmanageChildren
xtUnmanageChildren
setValues

xtCreateWidget

xtCreateWidget

ungrabKeyOrButton

xtPopup

freeTranslations

mergeTranslations

xtMenuPopdown

xtMenuPopupAction
xtCopyFromParent
xtMenuPopup
xtMenuPopdown

unsupportedOperation

unsupportedOperation

deleteChild

null child passed to
XtManageChildren

Null child passed to XtUn-
manageChildren

Null child found in argu-
ment list to unmanage

Can't change widget
depth

widget "%s" class %s has
invalid CompositeClassEx-
tension record

widget class %s has in-
valid ConstraintClassEx-
tension record

Attempt to remove nonex-
istent passive grab

grab kind argument has
invalid value; XtGrabNone
assumed

Freeing XtTranslations re-
quires no extra arguments

MergeTM to Transla-
tionTable needs no extra
arguments

XtMenuPopdown called
with num params != 0 or
1

MenuPopup wants exactly
one argument

CopyFromParent must
have non-NULL parent

Can't find popup widget
"%s" in XtMenuPopup

Can't find popup in widget
"%s" in XtMenuPopdown

Pop-up menu creation is
only supported on Button-
Press, KeyPress or Enter-
Notify events.

Pop-up menu creation is
only supported on Button,
Key or EnterNotify events.

null delete child proce-
dure for class %s in XtDe-
stroy

260

Intrinsics Error Messages

Name Type Default Message

invalidProcedure inputHandler XtRemovelnput: Input
handler not found

invalidProcedure set values almost set values almost proce-

invalidResourceCount

invalidResourceName

invalidShell

invalidSizeOverride

missingCharsetList

noActionProc

noColormap
noFont
noFont
noFont

notInConvertSelection

notRectODbj
notRectODbj

nullWidget

r3versionMismatch
translationError

translationError

getResources

computeArgs

xtTranslateCoords

xtDependencies

cvtStringToFontSet

xtCallActionProc

cvtStringToPixel
cvtStringToFont
cvtStringToFontSet
cvtStringToFontStruct

xtGetSelectionRequest

xtChangeManagedSet
xtManageChildren

xtConvertVarToArgList

widget
nullTable

nullTable

dure shouldn't be NULL

resource count > 0 on
NULL resource list

Cannot find resource
name %s as argument to
conversion

Widget has no shell ances-
tor

Representation size %d
must match superclass's
to override %s

Missing charsets in String
to FontSet conversion

No action proc named
"%s" is registered for wid-
get II%SII

Cannot allocate colormap
entry for "%s"

Unable to load any usable
I1SO8859-1 font

Unable to load any usable
fontset

Unable to load any usable
ISO8859-1 font

XtGetSelectionRequest or
XtGetSelectionParameters
called for widget "%s" out-
side of ConvertSelection
proc

child "%s", class %s is not
a RectObj
child "%s", class %s is not
a RectObj

XtVaTypedArg conversion
needs non-NULL widget
handle

Shell Widget class %s bi-
nary compiled for R3

Can't remove accelerators
from NULL table

Tried to remove nonexis-
tent accelerators

261

Intrinsics Error Messages

Name Type Default Message
translationError ambiguousActions Overriding earlier transla-
tion manager actions.
translationError newActions New actions are:%s
translationError nullTable table to (un)merge must
not be null
translationError nullTable Can't translate event
through NULL table
translationError oldActions Previous entry was: %s %s
translationError unboundActions Actions not found: %s
translationError xtTranslatelnitialize Initializing Translation

translationParseError

translationParseError

translationParseError

translationParseError
translationParseError

typeConversionError

unknownType

unknownType

versionMismatch

wrongParameters

wrongParameters

wrongParameters

wrongParameters

wrongParameters

missingComma

nonLatinl

parseError

parseString
showLine

noConverter

xtConvertVarToArgList

xtGetTypedArg

widget

cvtIntOrPixelToXColor

cvtintToBool

cvtIntToBoolean

cvtintToFloat

cvtIntToFont

manager twice.

... possibly due to missing
',' in event sequence.

... probably due to non-
Latin1 character in quoted
string

translation table syntax
error: %s

Missing """,

... found while parsing
I%SI

No type converter regis-
tered for '%s' to '%s' con-
version.

Unable to find type of re-
source for conversion

Unable to find type of re-
source for conversion

Widget class %s version
mismatch (recompilation
needed):\\n widget %d vs.
intrinsics %d.

Pixel to color conversion
needs screen and col-
ormap arguments

Integer to Bool conversion
needs no extra arguments

Integer to Boolean conver-
sion needs no extra argu-
ments

Integer to Float conver-
sion needs no extra argu-
ments

Integer to Font conversion
needs no extra arguments

262

Intrinsics Error Messages

Name Type Default Message
wrongParameters cvtIntToPixel Integer to Pixel conver-
sion needs no extra argu-
ments
wrongParameters cvtIntToPixmap Integer to Pixmap conver-
sion needs no extra argu-
ments
wrongParameters cvtIntToShort Integer to Short conver-
sion needs no extra argu-
ments
wrongParameters cvtIntToUnsignedChar Integer to UnsignedChar
conversion needs no extra
arguments
wrongParameters cvtStringToAccelera- String to AcceleratorTable
torTable conversion needs no extra
arguments
wrongParameters cvtStringToAtom String to Atom conversion
needs Display argument
wrongParameters cvtStringToBool String to Bool conversion
needs no extra arguments
wrongParameters cvtStringToBoolean String to Boolean conver-
sion needs no extra argu-
ments
wrongParameters cvtStringToCommandAr- String to CommandArgAr-
gArray ray conversion needs no
extra arguments
wrongParameters cvtStringToCursor String to cursor conver-
sion needs display argu-
ment
wrongParameters cvtStringToDimension String to Dimension con-
version needs no extra ar-
guments
wrongParameters cvtStringToDirecto- String to DirectoryString
ryString conversion needs no extra
arguments
wrongParameters cvtStringToDisplay String to Display conver-
sion needs no extra argu-
ments
wrongParameters cvtStringToFile String to File conversion
needs no extra arguments
wrongParameters cvtStringToFloat String to Float conversion
needs no extra arguments
wrongParameters cvtStringToFont String to font conversion
needs display argument
wrongParameters cvtStringToFontSet String to FontSet conver-

sion needs display and lo-
cale arguments

263

Intrinsics Error Messages

Name

Type

Default Message

wrongParameters

wrongParameters

wrongParameters

wrongParameters

wrongParameters

wrongParameters

wrongParameters

wrongParameters

wrongParameters

wrongParameters

wrongParameters
wrongParameters
wrongParameters
wrongParameters
wrongParameters
wrongParameters
wrongParameters

wrongParameters

cvtStringToFontStruct

cvtStringToGravity

cvtStringTolnitialState

cvtStringTolnt

cvtStringToPixel

cvtStringToRestartStyle

cvtStringToShort

cvtStringToTransla-
tionTable

cvtStringToUnsignedChar

cvtStringToVisual

cvtXColorToPixel
freeCursor
freeDirectoryString
freeFile

freeFont
freeFontSet
freeFontStruct

freePixel

String to font conversion
needs display argument

String to Gravity conver-
sion needs no extra argu-
ments

String to InitialState con-
version needs no extra ar-
guments

String to Integer conver-
sion needs no extra argu-
ments

String to pixel conver-
sion needs screen and col-
ormap arguments

String to RestartStyle con-
version needs no extra ar-
guments

String to Integer conver-
sion needs no extra argu-
ments

String to TranslationTable
conversion needs no extra
arguments

String to Integer conver-
sion needs no extra argu-
ments

String to Visual conver-
sion needs screen and
depth arguments

Color to Pixel conversion
needs no extra arguments

Free Cursor requires dis-
play argument

Free Directory String re-
quires no extra arguments

Free File requires no ex-
tra arguments

Free Font needs display
argument

FreeFontSet needs display
and locale arguments

Free FontStruct requires
display argument
Freeing a pixel requires
screen and colormap ar-
guments

264

Appendix E. Defined Strings

The St ri ngDef s. h header file contains definitions for the following resource name,

class, and representation type symbolic constants.

Resource names:

Symbol Definition
XtNaccelerators "accelerators"
XtNallowHoriz "allowHoriz"
XtNallowVert "allowVert"
XtNancestorSensitive "ancestorSensitive"
XtNbackground "background"
XtNbackgroundPixmap "backgroundPixmap"
XtNbitmap "bitmap"
XtNborder "borderColor"
XtNborderColor "borderColor"
XtNborderPixmap "borderPixmap"
XtNborderWidth "borderWidth"
XtNcallback "callback"
XtNchangeHook "changeHook"
XtNchildren "children"
XtNcolormap "colormap"
XtNconfigureHook "configureHook"
XtNcreateHook "createHook"
XtNdepth "depth"
XtNdestroyCallback "destroyCallback"
XtNdestroyHook "destroyHook"
XtNeditType "editType"
XtNfile "file"

XtNfont "font"
XtNfontSet "fontSet"
XtNforceBars "forceBars"
XtNforeground "foreground"
XtNfunction "function"
XtNgeometryHook "geometryHook"
XtNheight "height"
XtNhighlight "highlight"
XtNhSpace "hSpace"
XtNindex "index"

XtNinitialResourcesPersistent

XtNinnerHeight

"initialResourcesPersistent"
"innerHeight"

Defined Strings

Symbol Definition
XtNinnerWidth "innerWidth"
XtNinnerWindow "innerWindow"
XtNinsertPosition "insertPosition"
XtNinternalHeight "internalHeight"
XtNinternalWidth "internalWidth"
XtNjumpProc "jumpProc"
XtNjustify "justify"
XtNknobHeight "knobHeight"
XtNknobIndent "knobIndent"
XtNknobPixel "knobPixel"
XtNknobWidth "knobWidth"
XtNlabel "label”
XtNlength "length"
XtNlowerRight "lowerRight"
XtNmappedWhenManaged "mappedWhenManaged"
XtNmenuEntry "menuEntry"
XtNname "name"
XtNnotify "notify"
XtNnumChildren "numChildren"
XtNnumShells "numShells"
XtNorientation "orientation"
XtNparameter "parameter"
XtNpixmap "pixmap"
XtNpopupCallback "popupCallback"
XtNpopdownCallback "popdownCallback"
XtNresize "resize"
XtNreverseVideo "reverseVideo"
XtNscreen “screen"
XtNscrollProc "scrollProc"
XtNscrollDCursor "scrollDCursor"
XtNscrollHCursor "scrollHCursor"
XtNscrollLCursor "scrollLCursor"
XtNscrollRCursor "scrollRCursor"
XtNscrollUCursor "scrollUCursor"
XtNscrollVCursor "scrollVCursor"
XtNselection "selection"
XtNselectionArray "selectionArray"
XtNsensitive "sensitive"
XtNsession "session"

266

Defined Strings

Symbol Definition
XtNshells "shells"
XtNshown "shown"
XtNspace "space"”
XtNstring “string"
XtNtextOptions "textOptions"
XtNtextSink "textSink"
XtNtextSource "textSource"
XtNthickness "thickness"
XtNthumb "thumb"
XtNthumbProc "thumbProc"
XtNtop "top"
XtNtranslations "translations"
XtNunrealizeCallback "unrealizeCallback"
XtNupdate "update"
XtNuseBottom "useBottom"
XtNuseRight "useRight"
XtNvalue "value"
XtNvSpace "vSpace"
XtNwidth "width"
XtNwindow "window"
XtNx "x"

XtNy "y

Resource classes:

Symbol Definition
XtCAccelerators "Accelerators"
XtCBackground "Background"
XtCBitmap "Bitmap"
XtCBoolean "Boolean"
XtCBorderColor "BorderColor™"
XtCBorderWidth "BorderWidth"
XtCCallback "Callback"
XtCColormap "Colormap"
XtCColor "Color"
XtCCursor "Cursor"
XtCDepth "Depth"
XtCEditType "EditType"
XtCEventBindings "EventBindings"
XtCFile "File"

267

Defined Strings

Symbol Definition
XtCFont "Font"
XtCFontSet "FontSet"
XtCForeground "Foreground"
XtCFraction "Fraction"
XtCFunction "Function”
XtCHeight "Height"
XtCHSpace "HSpace"
XtCIndex "Index"
XtClnitialResourcesPersistent "InitialResourcesPersistent"
XtClInsertPosition "InsertPosition"
XtClInterval "Interval"
XtCJustify "Tustify"
XtCKnobIndent "KnobIndent"
XtCKnobPixel "KnobPixel"
XtCLabel "Label"
XtCLength "Length"
XtCMappedWhenManaged "MappedWhenManaged"
XtCMargin "Margin"
XtCMenuEntry "MenuEntry"
XtCNotify "Notify"
XtCOrientation "Orientation"
XtCParameter "Parameter"
XtCPixmap "Pixmap"
XtCPosition "Position"
XtCReadOnly "ReadOnly"
XtCResize "Resize"
XtCReverseVideo "ReverseVideo"
XtCScreen "Screen"
XtCScrollProc "ScrollProc"
XtCScrollDCursor "ScrollDCursor"
XtCScrollHCursor "ScrollHCursor"
XtCScrollLCursor "ScrollLCursor"
XtCScrollRCursor "ScrollRCursor™
XtCScrollUCursor "ScrollUCursor"
XtCScrollVCursor "ScrollVCursor"
XtCSelection "Selection”
XtCSelectionArray "SelectionArray"
XtCSensitive "Sensitive"
XtCSession "Session"

268

Defined Strings

Symbol Definition
XtCSpace "Space"
XtCString "String"
XtCTextOptions "TextOptions"
XtCTextPosition "TextPosition"
XtCTextSink "TextSink"
XtCTextSource "TextSource"
XtCThickness "Thickness"
XtCThumb "Thumb"
XtCTranslations "Translations"
XtCValue "Value"
XtCVSpace "VSpace"
XtCWidth "Width"
XtCWindow "Window"

XtCX "X

XtCY "y

Resource representation types:

Symbol Definition
XtRAcceleratorTable "AcceleratorTable"
XtRAtom "Atom"
XtRBitmap "Bitmap"
XtRBool "Bool"
XtRBoolean "Boolean"
XtRCallback "Callback"
XtRCallProc "CallProc"
XtRCardinal "Cardinal"
XtRColor "Color"
XtRColormap "Colormap"
XtRCommandArgArray "CommandArgArray"
XtRCursor "Cursor"
XtRDimension "Dimension"
XtRDirectoryString "DirectoryString"
XtRDisplay "Display"
XtREditMode "EditMode"
XtREnum "Enum"
XtREnvironmentArray "EnvironmentArray"
XtRFile "File"

XtRFloat "Float"

XtRFont "Font"

269

Defined Strings

Symbol Definition
XtRFontSet "FontSet"
XtRFontStruct "FontStruct"
XtRFunction "Function"
XtRGeometry "Geometry"
XtRGravity "Gravity"
XtRImmediate "Immediate"
XtRInitialState "InitialState"
XtRInt "Int"
XtRJustify "Tustify"
XtRLongBoolean XtRBool
XtRObject "Object"
XtROrientation "Orientation”
XtRPixel "Pixel"
XtRPixmap "Pixmap"
XtRPointer "Pointer"
XtRPosition "Position"
XtRRestartStyle "RestartStyle"
XtRScreen "Screen"
XtRShort "Short"
XtRSmcConn "SmcConn"
XtRString "String"
XtRStringArray "StringArray"
XtRStringTable "StringTable"
XtRUnsignedChar "UnsignedChar™"
XtRTranslationTable "TranslationTable"
XtRVisual "Visual"
XtRWidget "Widget"
XtRWidgetClass "WidgetClass"
XtRWidgetList "WidgetList"
XtRWindow "Window"
Boolean enumeration constants:

Symbol Definition
XtEoff "off"

XtEfalse "false"

XtEno "no"

XtEon "on"

XtEtrue "true"

XtEyes "yes"

270

Defined Strings

Orientation enumeration constants:

Symbol Definition
XtEvertical "vertical"
XtEhorizontal "horizontal"

Text edit enumeration constants:

Symbol Definition
XtEtextRead "read"

XtEtextAppend "append"”

XtEtextEdit "edit"

Color enumeration constants:

Symbol Definition
XtExtdefaultbackground "xtdefaultbackground"
XtExtdefaultforeground "xtdefaultforeground"
Font constant:

Symbol Definition
XtExtdefaultfont "xtdefaultfont"

Hooks for External Agents constants:

Symbol Definition

XtHcreate "Xtcreate"
XtHsetValues "Xtsetvalues"
XtHmanageChildren "XtmanageChildren"
XtHunmanageChildren "XtunmanageChildren"
XtHmanageSet "XtmanageSet"
XtHunmanageSet "XtunmanageSet"
XtHrealizeWidget "XtrealizeWidget"
XtHunrealizeWidget "XtunrealizeWidget"
XtHaddCallback "XtaddCallback"
XtHaddCallbacks "XtaddCallbacks"
XtHremoveCallback "XtremoveCallback"
XtHremoveCallbacks "XtremoveCallbacks"
XtHremoveAllCallbacks "XtremoveAllCallbacks"

XtHaugmentTranslations
XtHoverrideTranslations
XtHuninstallTranslations
XtHsetKeyboardFocus
XtHsetWMColormapWindows
XtHmapWidget

"XtaugmentTranslations"
"XtoverrideTranslations"
"XtuninstallTranslations"
"XtsetKeyboardFocus"
"XtsetWMColormapWindows"
"XtmapWidget"

271

Defined Strings

Symbol Definition
XtHunmapWidget "XtunmapWidget"
XtHpopup "Xtpopup"
XtHpopupSpringLoaded "XtpopupSpringLoaded"
XtHpopdown "Xtpopdown"
XtHconfigure "Xtconfigure"
XtHpreGeometry "XtpreGeometry"
XtHpostGeometry "XtpostGeometry"
XtHdestroy "Xtdestroy"

The Shel | . h header file contains definitions for the following resource name, class,
and representation type symbolic constants.

Resource names:

Symbol Definition
XtNallowShellResize "allowShellResize"
XtNargc "argc"

XtNargv "argv"
XtNbaseHeight "baseHeight"
XtNbaseWidth "baseWidth"
XtNcancelCallback "cancelCallback"
XtNclientLeader "clientLeader"
XtNcloneCommand "cloneCommand"
XtNconnection "connection"
XtNcreatePopupChildProc "createPopupChildProc"
XtNcurrentDirectory "currentDirectory"
XtNdieCallback "dieCallback"
XtNdiscardCommand "discardCommand"
XtNenvironment "environment"
XtNerrorCallback "errorCallback"
XtNgeometry "geometry"
XtNheightlnc "heightInc"
XtNiconMask "iconMask"
XtNiconName "iconName"
XtNiconNameEncoding "iconNameEncoding"
XtNiconPixmap "iconPixmap"
XtNiconWindow "iconWindow"
XtNiconX "iconX"

XtNiconY "iconY"

XtNiconic "iconic"
XtNinitialState "initialState"

272

Defined Strings

Symbol Definition
XtNinput “input"
XtNinteractCallback "interactCallback"
XtNjoinSession "joinSession"
XtNmaxAspectX "maxAspectX"
XtNmaxAspectY "maxAspectY"
XtNmaxHeight "maxHeight"
XtNmaxWidth "maxWidth"
XtNminAspectX "minAspectX"
XtNminAspectY "minAspectY"
XtNminHeight "minHeight"
XtNminWidth "minWidth"
XtNoverrideRedirect "overrideRedirect"
XtNprogramPath "programPath"
XtNresignCommand "resignCommand"
XtNrestartCommand "restartCommand"
XtNrestartStyle "restartStyle"
XtNsaveCallback "saveCallback"
XtNsaveCompleteCallback "saveCompleteCallback"
XtNsaveUnder "saveUnder"
XtNsessionID "sessionID"
XtNshutdownCommand "shutdownCommand"
XtNtitle "title"
XtNtitleEncoding "titleEncoding"
XtNtransient "transient"
XtNtransientFor "transientFor"
XtNurgency "urgency"
XtNvisual "visual”
XtNwaitForWm "waitforwm"
XtNwaitforwm "waitforwm"
XtNwidthInc "widthInc"
XtNwindowGroup "windowGroup"
XtNwindowRole "windowRole"
XtNwinGravity "winGravity"
XtNwmTimeout "wmTimeout"
Resource classes:

Symbol Definition
XtCAllowShellResize "allowShellResize"
XtCArgc "Argc"

273

Defined Strings

Symbol Definition
XtCArgv "Argv"
XtCBaseHeight "BaseHeight"
XtCBaseWidth "BaseWidth"
XtCClientLeader "ClientLeader"
XtCCloneCommand "CloneCommand"
XtCConnection "Connection"
XtCCreatePopupChildProc "CreatePopupChildProc"
XtCCurrentDirectory "CurrentDirectory"
XtCDiscardCommand "DiscardCommand"
XtCEnvironment "Environment"
XtCGeometry "Geometry"
XtCHeightlnc "HeightInc"
XtCIconMask "IconMask"
XtCIconName "IconName"
XtCIconNameEncoding "IconNameEncoding"
XtCIconPixmap "IconPixmap"
XtCIconWindow "IconWindow"
XtCIconX "IconX"

XtCIconY "IconY"

XtClconic "Iconic"
XtClInitialState "InitialState"
XtCInput "Input"
XtCJoinSession "ToinSession"
XtCMaxAspectX "MaxAspectX"
XtCMaxAspectY "MaxAspectY"
XtCMaxHeight "MaxHeight"
XtCMaxWidth "MaxWidth"
XtCMinAspectX "MinAspectX"
XtCMinAspectY "MinAspectY"
XtCMinHeight "MinHeight"
XtCMinWidth "MinWidth"
XtCOverrideRedirect "OverrideRedirect"
XtCProgramPath "ProgramPath"
XtCResignCommand "ResignCommand"
XtCRestartCommand "RestartCommand"
XtCRestartStyle "RestartStyle"
XtCSaveUnder "SaveUnder"
XtCSessionID "SessionID"
XtCShutdownCommand "ShutdownCommand"

Defined Strings

Symbol Definition
XtCTitle "Title"
XtCTitleEncoding "TitleEncoding"
XtCTransient "Transient"
XtCTransientFor "TransientFor"
XtCUrgency "Urgency"
XtCVisual "Visual"
XtCWaitForWm "Waitforwm"
XtCWaitforwm "Waitforwm"
XtCWidthInc "WidthInc"
XtCWindowGroup "WindowGroup"
XtCWindowRole "WindowRole"
XtCWinGravity "WinGravity"
XtCWmTimeout "WmTimeout"
Resource representation types:

Symbol Definition
XtRAtom "Atom"

275

Appendix F. Resource Configuration
Management

Setting and changing resources in X applications can be difficult for both the ap-
plication programmer and the end user. Resource Configuration Management
(RCM) addresses this problem by changing the X I ntri nsi cs to immediately mod-
ify a resource for a specified widget and each child widget in the hierarchy. In this
context, immediate means: no sourcing of a resource file is required; the application
does not need to be restarted for the new resource values to take effect; and the
change occurs immediately.

The main difference between RCMand the Edi t r es protocol is that the RCMcustomiz-
ing hooks reside in the I ntri nsi cs and thus are linked with other toolkits such as
Motif and the Athena widgets. However, the Edi t Res protocol requires the appli-
cation to link with the Edi t Res routines in the Xmu library and Xmu is not used
by all applications that use Motif. Also, the Edi t Res protocol uses ClientMessage,
whereas the RCMI nt ri nsi cs hooks use PropertyNoti fy events.

X Properties and the PropertyNoti fy events are used to implement RCMand allow
on-the-fly resource customization. When the X Toolkit is initialized, two atoms are
interned with the strings Custom Init and Custom Data. Both _Xt Cr eat ePopupShel |

and _Xt AppCr eat eShel | register a PropertyNoti fy event handler to handle these
properties.

A customization tool uses the Custom Init property to ping an application to get the
application's toplevel window. When the application's property notify event handler
is invoked, the handler deletes the property. No data is transferred in this property.

A customization tool uses the Custom Data property to tell an application that it
should change a resource's value. The data in the property contains the length of the
resource name (the number of bytes in the resource name), the resource name and
the new value for the resource. This property's type is XA_STRI NG and the format
of the string is:

1. The length of the resource name (the number of bytes in the resource name)
2. One space character

3. The resource name

4. One space character

5. The resource value

When setting the application's resource, the event handler calls functions to walk
the application's widget tree, determining which widgets are affected by the re-
source string, and then applying the value with Xt Set Val ues. As the widget tree is
recursively descended, at each level in the widget tree a resource part is tested for
a match. When the entire resource string has been matched, the value is applied
to the widget or widgets.

Before a value is set on a widget, it is first determined if the last part of the resource
is a valid resource for that widget. It must also add the resource to the application's

276

Resource Configu-
ration Management

resource database and then query it using specific resource strings that is builds
from the widget information.

277

	X Toolkit Intrinsics - C Language Interface
	Table of Contents
	About This Manual
	Chapter 1. Intrinsics and Widgets
	Intrinsics
	Languages
	Procedures and Macros
	Widgets
	Core Widgets
	CoreClassPart Structure
	CorePart Structure
	Core Resources
	CorePart Default Values

	Composite Widgets
	CompositeClassPart Structure
	CompositePart Structure
	Composite Resources
	CompositePart Default Values

	Constraint Widgets
	ConstraintClassPart Structure
	ConstraintPart Structure
	Constraint Resources

	Implementation-Specific Types
	Widget Classing
	Widget Naming Conventions
	Widget Subclassing in Public .h Files
	Widget Subclassing in Private .h Files
	Widget Subclassing in .c Files
	Widget Class and Superclass Look Up
	Widget Subclass Verification
	Superclass Chaining
	Class Initialization: class_initialize and class_part_initialize Procedures
	Initializing a Widget Class
	Inheritance of Superclass Operations
	Invocation of Superclass Operations
	Class Extension Records

	Chapter 2. Widget Instantiation
	Initializing the X Toolkit
	Establishing the Locale
	Loading the Resource Database
	Parsing the Command Line
	Creating Widgets
	Creating and Merging Argument Lists
	Creating a Widget Instance
	Creating an Application Shell Instance
	Convenience Procedure to Initialize an Application
	Widget Instance Allocation: The allocate Procedure
	Widget Instance Initialization: The initialize Procedure
	Constraint Instance Initialization: The ConstraintClassPart initialize Procedure
	Nonwidget Data Initialization: The initialize_hook Procedure

	Realizing Widgets
	Widget Instance Window Creation: The realize Procedure
	Window Creation Convenience Routine

	Obtaining Window Information from a Widget
	Unrealizing Widgets

	Destroying Widgets
	Adding and Removing Destroy Callbacks
	Dynamic Data Deallocation: The destroy Procedure
	Dynamic Constraint Data Deallocation: The ConstraintClassPart destroy Procedure
	Widget Instance Deallocation: The deallocate Procedure

	Exiting from an Application

	Chapter 3. Composite Widgets and Their Children
	Addition of Children to a Composite Widget: The insert_child Procedure
	Insertion Order of Children: The insert_position Procedure
	Deletion of Children: The delete_child Procedure
	Adding and Removing Children from the Managed Set
	Managing Children
	Unmanaging Children
	Bundling Changes to the Managed Set
	Determining if a Widget Is Managed

	Controlling When Widgets Get Mapped
	Constrained Composite Widgets

	Chapter 4. Shell Widgets
	Shell Widget Definitions
	ShellClassPart Definitions
	ShellPart Definition
	Shell Resources
	ShellPart Default Values

	Session Participation
	Joining a Session
	Saving Application State
	Requesting Interaction
	Interacting with the User during a Checkpoint
	Responding to a Shutdown Cancellation
	Completing a Save

	Responding to a Shutdown
	Resigning from a Session

	Chapter 5. Pop-Up Widgets
	Pop-Up Widget Types
	Creating a Pop-Up Shell
	Creating Pop-Up Children
	Mapping a Pop-Up Widget
	Unmapping a Pop-Up Widget

	Chapter 6. Geometry Management
	Initiating Geometry Changes
	General Geometry Manager Requests
	Resize Requests
	Potential Geometry Changes
	Child Geometry Management: The geometry_manager Procedure
	Widget Placement and Sizing
	Preferred Geometry
	Size Change Management: The resize Procedure

	Chapter 7. Event Management
	Adding and Deleting Additional Event Sources
	Adding and Removing Input Sources
	Adding and Removing Blocking Notifications
	Adding and Removing Timeouts
	Adding and Removing Signal Callbacks

	Constraining Events to a Cascade of Widgets
	Requesting Key and Button Grabs

	Focusing Events on a Child
	Events for Drawables That Are Not a Widget's Window

	Querying Event Sources
	Dispatching Events
	The Application Input Loop
	Setting and Checking the Sensitivity State of a Widget
	Adding Background Work Procedures
	X Event Filters
	Pointer Motion Compression
	Enter/Leave Compression
	Exposure Compression

	Widget Exposure and Visibility
	Redisplay of a Widget: The expose Procedure
	Widget Visibility

	X Event Handlers
	Event Handlers That Select Events
	Event Handlers That Do Not Select Events
	Current Event Mask
	Event Handlers for X11 Protocol Extensions

	Using the Intrinsics in a Multi-Threaded Environment
	Initializing a Multi-Threaded Intrinsics Application
	Locking X Toolkit Data Structures
	Locking the Application Context
	Locking the Process

	Event Management in a Multi-Threaded Environment

	Chapter 8. Callbacks
	Using Callback Procedure and Callback List Definitions
	Identifying Callback Lists
	Adding Callback Procedures
	Removing Callback Procedures
	Executing Callback Procedures
	Checking the Status of a Callback List

	Chapter 9. Resource Management
	Resource Lists
	Byte Offset Calculations
	Superclass-to-Subclass Chaining of Resource Lists
	Subresources
	Obtaining Application Resources
	Resource Conversions
	Predefined Resource Converters
	New Resource Converters
	Issuing Conversion Warnings
	Registering a New Resource Converter
	Resource Converter Invocation

	Reading and Writing Widget State
	Obtaining Widget State
	Widget Subpart Resource Data: The get_values_hook Procedure
	Widget Subpart State

	Setting Widget State
	Widget State: The set_values Procedure
	Widget State: The set_values_almost Procedure
	Widget State: The ConstraintClassPart set_values Procedure
	Widget Subpart State
	Widget Subpart Resource Data: The set_values_hook Procedure

	Chapter 10. Translation Management
	Action Tables
	Action Table Registration
	Action Names to Procedure Translations
	Action Hook Registration

	Translation Tables
	Event Sequences
	Action Sequences
	Multi-Click Time

	Translation Table Management
	Using Accelerators
	KeyCode-to-KeySym Conversions
	Obtaining a KeySym in an Action Procedure
	KeySym-to-KeyCode Conversions
	Registering Button and Key Grabs for Actions
	Invoking Actions Directly
	Obtaining a Widget's Action List

	Chapter 11. Utility Functions
	Determining the Number of Elements in an Array
	Translating Strings to Widget Instances
	Managing Memory Usage
	Sharing Graphics Contexts
	Managing Selections
	Setting and Getting the Selection Timeout Value
	Using Atomic Transfers
	Atomic Transfer Procedures
	Getting the Selection Value
	Setting the Selection Owner

	Using Incremental Transfers
	Incremental Transfer Procedures
	Getting the Selection Value Incrementally
	Setting the Selection Owner for Incremental Transfers

	Setting and Retrieving Selection Target Parameters
	Generating MULTIPLE Requests
	Auxiliary Selection Properties
	Retrieving the Most Recent Timestamp
	Retrieving the Most Recent Event

	Merging Exposure Events into a Region
	Translating Widget Coordinates
	Translating a Window to a Widget
	Handling Errors
	Setting WM_COLORMAP_WINDOWS
	Finding File Names
	Hooks for External Agents
	Hook Object Resources
	Querying Open Displays

	Chapter 12. Nonwidget Objects
	Data Structures
	Object Objects
	ObjectClassPart Structure
	ObjectPart Structure
	Object Resources
	ObjectPart Default Values
	Object Arguments to Intrinsics Routines
	Use of Objects

	Rectangle Objects
	RectObjClassPart Structure
	RectObjPart Structure
	RectObj Resources
	RectObjPart Default Values
	Widget Arguments to Intrinsics Routines
	Use of Rectangle Objects

	Undeclared Class
	Widget Arguments to Intrinsics Routines

	Chapter 13. Evolution of the Intrinsics
	Determining Specification Revision Level
	Release 3 to Release 4 Compatibility
	Additional Arguments
	set_values_almost Procedures
	Query Geometry
	unrealizeCallback Callback List
	Subclasses of WMShell
	Resource Type Converters
	KeySym Case Conversion Procedure
	Nonwidget Objects

	Release 4 to Release 5 Compatibility
	baseTranslations Resource
	Resource File Search Path
	Customization Resource
	Per-Screen Resource Database
	Internationalization of Applications
	Permanently Allocated Strings
	Arguments to Existing Functions

	Release 5 to Release 6 Compatibility
	Widget Internals
	General Application Development
	Communication with Window and Session Managers
	Geometry Management
	Event Management
	Resource Management
	Translation Management
	Selections
	External Agent Hooks

	Appendix A. Resource File Format
	Appendix B. Translation Table Syntax
	Appendix C. Compatibility Functions
	Appendix D. Intrinsics Error Messages
	Appendix E. Defined Strings
	Appendix F. Resource Configuration Management

