X Input Device Extension Library

Mark Patrick, Ardent Computer
George Sachs
Hewlett-Packard

X Input Device Extension Library
by Mark Patrick

George Sachs
Hewlett-Packard

X Version 11, Release 7.7

Version 1.0
Copyright © 1989, 1990, 1991 Hewlett-Packard Company, Ardent Computer

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice and this permission notice appear in all copies. Ardent and Hewlett-Packard
make no representations about the suitability for any purpose of the information in this document. It is provided "as
is" without express or implied warranty.

Copyright © 1989, 1990, 1991, 1992 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the “Software’’), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

X Window System is a trademark of The Open Group.

Table of Contents

1. INPUL EXEENSION ..iiniiiiiii e e e e et e e e e e a e e eanas 1
OVEIVIEW ..iiiiiiiitiie et et ettt e et et et eete et e et s et s et s e ttseansatnseatneatneatnsasnsesnneeen 1
DTS Te 1 aNAN o] o} o - o o RPN 1

CoOre INPUL DEVICES .uuivniiiiiiiiieiii e et e et et e e et et e e eanas 1
Extension INPut DEeVICESc.civiiiiiiiiiiiiiie e 1

Using Extension Input DeviCesccooiuiviiiiiiiiiiiiiiiiiiiincn e, 3

Library EXtension ReqUESEScc.cviiiiiiiiiiiiiiiin et e e e evi e evieeeni e eees 3
Window Manager FUNCEIONSc.uvviiiiiiiiiiriiiiie e evie e eeii s 3

BV EIIES ottt e it e aas 30

Event Handling FUNCEIONScoivviiiiiiiiiiiiiee e 37

A. Input Extension Protocol Encoding

iii

Chapter 1. Input Extension

Overview

This document describes an extension to the X11 server. The purpose of this exten-
sion is to support the use of additional input devices beyond the pointer and key-
board devices defined by the core X protocol. This first section gives an overview
of the input extension. The following sections correspond to chapters 9, 10, and
11, ~“Window and Session Manager Functions", "~ Events', and " Event Handling
Functions" of the " "Xlib - C Language Interface' manual and describe how to use
the input device extension.

Design Approach

The design approach of the extension is to define functions and events analogous
to the core functions and events. This allows extension input devices and events to
be individually distinguishable from each other and from the core input devices and
events. These functions and events make use of a device identifier and support the
reporting of n-dimensional motion data as well as other data that is not currently
reportable via the core input events.

Core Input Devices

The X server core protocol supports two input devices: a pointer and a keyboard.
The pointer device has two major functions. First, it may be used to generate motion
information that client programs can detect. Second, it may also be used to indicate
the current location and focus of the X keyboard. To accomplish this, the server
echoes a cursor at the current position of the X pointer. Unless the X keyboard has
been explicitly focused, this cursor also shows the current location and focus of the
X keyboard.

The X keyboard is used to generate input that client programs can detect.

The X keyboard and X pointer are referred to in this document as the core devices,
and the input events they generate (KeyPress , KeyRel ease , ButtonPress |,

But t onRel ease , and Mbti onNoti fy) are known as the core input events. All other
input devices are referred to as extension input devices, and the input events they
generate are referred to as extension input events. This input extension does not
change the behavior or functionality of the core input devices, core events, or core
protocol requests, with the exception of the core grab requests. These requests may
affect the synchronization of events from extension devices. See the explanation in
the section titled " Event Synchronization and Core Grabs."

Selection of the physical devices to be initially used by the server as the core devices
is left implementation dependent. Functions are defined that allow client programs
to change which physical devices are used as the core devices.

Extension Input Devices

The input extension controls access to input devices other than the X keyboard and
X pointer. It allows client programs to select input from these devices independently
from each other and independently from the core devices. Input events from these

Input Extension

devices are of extension types (Devi ceKeyPress , Devi ceKeyRel ease , Devi ce-
ButtonPress , DeviceButtonRel ease , DeviceMtionNotify , and so on) and
contain a device identifier so that events of the same type coming from different
input devices can be distinguished.

Extension input events are not limited in size by the size of the server 32-byte wire
events. Extension input events may be constructed by the server sending as many
wire-sized events as necessary to return the information required for that event.
The library event reformatting routines are responsible for combining these into
one or more client XEvents.

Any input device that generates key, button, or motion data may be used as an ex-
tension input device. Extension input devices may have zero or more keys, zero or
more buttons, and may report zero or more axes of motion. Motion may be reported
as relative movements from a previous position or as an absolute position. All valu-
ators reporting motion information for a given extension input device must report
the same kind of motion information (absolute or relative).

This extension is designed to accommodate new types of input devices that may be
added in the future. The protocol requests that refer to specific characteristics of
input devices organize that information by input device classes. Server implemen-
tors may add new classes of input devices without changing the protocol requests.

All extension input devices are treated like the core X keyboard in determining their
location and focus. The server does not track the location of these devices on an
individual basis and, therefore, does not echo a cursor to indicate their current
location. Instead, their location is determined by the location of the core X pointer.
Like the core X keyboard, some may be explicitly focused. If they are not explicitly
focused, their focus is determined by the location of the core X pointer.

Input Device Classes

Some of the input extension requests divide input devices into classes based on their
functionality. This is intended to allow new classes of input devices to be defined at
a later time without changing the semantics of these functions. The following input
device classes are currently defined:

KEY The device reports key events.
BUTTON The device reports button events.

VALUA- The device reports valuator data in motion events.
TOR

PROXIMI- The device reports proximity events.
TY

FOCUS The device can be focused.

FEED- The device supports feedbacks.
BACK

Additional classes may be added in the future. Functions that support multiple input
classes, such as the XLi st nput Devi ces function that lists all available input de-
vices, organize the data they return by input class. Client programs that use these
functions should not access data unless it matches a class defined at the time those

Input Extension

clients were compiled. In this way, new classes can be added without forcing exist-
ing clients that use these functions to be recompiled.

Using Extension Input Devices

A client that wishes to access an input device does so through the library functions
defined in the following sections. A typical sequence of requests that a client would
make is as follows:

* XLi st I nput Devi ces - lists all of the available input devices. From the information
returned by this request, determine whether the desired input device is attached
to the server. For a description of the XLi st | nput Devi ces request, see the section
entitled " Listing Available Devices."

* XOpenDevi ce - requests that the server open the device for access by this client.
This request returns an XDevi ce structure that is used by most other input ex-
tension requests to identify the specified device. For a description of the XOpen-
Devi ce request, see the section entitled " Enabling and Disabling Extension De-
vices."

¢ Determine the event types and event classes needed to select the desired input ex-
tension events, and identify them when they are received. This is done via macros
whose name corresponds to the desired event, for example, Devi ceKeyPr ess
For a description of these macros, see the section entitled " Selecting Extension
Device Events."

* XSel ect Ext ensi onEvent - selects the desired events from the server. For
a description of the XSel ext Ext ensi onEvent request, see the section entitled
" Selecting Extension Device Events."

* XNext Event - receives the next available event. This is the core XNext Event func-
tion provided by the standard X libarary.

Other requests are defined to grab and focus extension devices, to change their key,
button, or modifier mappings, to control the propagation of input extension events,
to get motion history from an extension device, and to send input extension events
to another client. These functions are described in the following sections.

Library Extension Requests

Extension input devices are accessed by client programs through the use of new
protocol requests. The following requests are provided as extensions to Xlib. Con-
stants and structures referenced by these functions may be found in the files <X11/
ext ensi ons/ XI . h> and <X11/ ext ensi ons/ Xl nput . h>, which are attached to this
document as Appendix A.

The library will return NoSuchExt ensi on if an extension request is made to a server
that does not support the input extension.

Input extension requests cannot be used to access the X keyboard and X pointer
devices.

Window Manager Functions

This section discusses the following X Input Extension Window Manager topics:

Input Extension

* Changing the core devices

* Event synchronization and core grabs
* Extension active grabs

* Passively grabbing a key

» Passively grabbing a button

» Thawing a device

¢ Controlling device focus

¢ Controlling device feedback

* Ringing a bell on an input device
* Controlling device encoding

¢ Controlling button mapping

* Obtaining the state of a device

Changing the Core Devices

These functions are provided to change which physical device is used as the X point-
er or X keyboard.

Note

Using these functions may change the characteristics of the core devices.
The new pointer device may have a different number of buttons from the
old one, or the new keyboard device may have a different number of keys or
report a different range of keycodes. Client programs may be running that
depend on those characteristics. For example, a client program could allo-
cate an array based on the number of buttons on the pointer device and then
use the button numbers received in button events as indices into that array.
Changing the core devices could cause such client programs to behave im-
properly or to terminate abnormally if they ignore the ChangeDevi ceNoti fy
event generated by these requests.

These functions change the X keyboard or X pointer device and generate an
XChangeDevi ceNot i fy event and a Mappi ngNot i fy event. The specified device be-
comes the new X keyboard or X pointer device. The location of the core device does
not change as a result of this request.

These requests fail and return Al r eadyGr abbed if either the specified device or the
core device it would replace are grabbed by some other client. They fail and return
Gr abFr ozen if either device is frozen by the active grab of another client.

These requests fail with a BadDevi ce error if the specified device is invalid, has not
previously been opened via XOpenDevi ce , or is not supported as a core device by
the server implementation.

Once the device has successfully replaced one of the core devices, it is treated as
a core device until it is in turn replaced by another ChangeDevi ce request or until

Input Extension

the server terminates. The termination of the client that changed the device will not
cause it to change back. Attempts to use the XC oseDevi ce request to close the
new core device will fail with a BadDevi ce error.

To change which physical device is used as the X keyboard, use the XChangeKey-
boar dDevi ce function. The specified device must support input class Keys (as re-
ported in the Li st | nput Devi ces request) or the request will fail with a BadMat ch
error.

i nt XChangeKeyboar dDevi ce(*di splay, *device);
display Specifies the connection to the X server.
device Specifies the desired device.

If no error occurs, XChangeKeyboar dDevi ce returns Success . A ChangeDevi ceNo-
ti fy event with the request field set to NewKeyboar d is sent to all clients selecting
that event. A Mappi ngNot i fy event with the request field set to Mappi ngKeyboar d
is sent to all clients. The requested device becomes the X keyboard, and the old
keyboard becomes available as an extension input device. The focus state of the
new keyboard is the same as the focus state of the old X keyboard.

XChangeKeyboar dDevi ce can generate Al r eadyG abbed , BadDevi ce , BadMat ch ,
and G abFr ozen errors.

To change which physical device is used as the X pointer, use the XChangePoi nt -
er Devi ce function. The specified device must support input class Val uat or s (as re-
ported in the XLi st nput Devi ces request) and report at least two axes of motion,
or the request will fail with a BadMat ch error. If the specified device reports more
than two axes, the two specified in the xaxis and yaxis arguments will be used. Data
from other valuators on the device will be ignored.

If the specified device reports absolute positional information, and the server im-
plementation does not allow such a device to be used as the X pointer, the request
will fail with a BadDevi ce error.

i nt XChangePoi nt er Devi ce(*di splay, *device, xaxis, yaxis);

display Specifies the connection to the X server.
device Specifies the desired device.
xaxis Specifies the zero-based index of the axis to be used as the

x-axis of the pointer device.

yaxis Specifies the zero-based index of the axis to be used as the
y-axis of the pointer device.

If no error occurs, XChangePoi nt er Devi ce returns Success . A ChangeDevi ceNo-
ti fy event with the request field set to NewPoi nt er is sent to all clients selecting
that event. A Mappi ngNot i fy event with the request field set to Mappi ngPoi nt er is
sent to all clients. The requested device becomes the X pointer, and the old pointer
becomes available as an extension input device.

XChangePoi nt er Devi ce can generate Al r eadyG abbed , BadDevi ce , BadMat ch ,
and Gr abFr ozen errors.

Input Extension

Event Synchronization and Core Grabs

Implementation of the input extension requires an extension of the meaning of event
synchronization for the core grab requests. This is necessary in order to allow win-
dow managers to freeze all input devices with a single request.

The core grab requests require a pointer mode and keyboard mode argument. The
meaning of these modes is changed by the input extension. For the XG abPoi nt er
and XG abBut t on requests, pointer mode controls synchronization of the pointer
device, and keyboard mode controls the synchronization of all other input devices.
For the XGr abKeyboar d and XGr abKey requests, pointer mode controls the synchro-
nization of all input devices, except the X keyboard, while keyboard mode controls
the synchronization of the keyboard. When using one of the core grab requests,
the synchronization of extension devices is controlled by the mode specified for the
device not being grabbed.

Extension Active Grabs

Active grabs of extension devices are supported via the XG abDevi ce function in
the same way that core devices are grabbed using the core XG abKeyboar d func-
tion, except that an extension input device is passed as a function parameter. The
XUngr abDevi ce function allows a previous active grab for an extension device to
be released.

Passive grabs of buttons and keys on extension devices are supported via the
XGrabDevi ceButton and XGrabDevi ceKey functions. These passive grabs are re-
leased via the XuUngr abDevi ceKey and XuUngr abDevi ceButt on functions.

To grab an extension device, use the XG abDevi ce function. The device must have
previously been opened using the XOpenDevi ce function.

i nt XG abDevi ce(*di spl ay, *devi ce, grab_w ndow, owner _events,
event _count, *event |ist, t hi s_devi ce_node, ot her _devi ce_node,
time);

"display" Specifies the connection to the X server.

device Specifies the desired device.

grab_window Specifies the ID of a window associated with the de-

vice specified above.

owner _events Specifies a boolean value of either True or Fal se .

event_count Specifies the number of elements in the event list ar-
ray.

event list Specifies a pointer to a list of event classes that indi-

cate which events the client wishes to receive. These
event classes must have been obtained using the de-
vice being grabbed.

this device_mode Controls further processing of events from this de-
vice. You can pass one of these constants: G- abMod-
eSync or Gr abMbdeAsync .

Input Extension

other device mode Controls further processing of events from all other
devices. You can pass one of these constants: G ab-
ModeSync or GrabMbdeAsync .

time Specifies the time. This may be either a timestamp
expressed in milliseconds or Current Ti me .

XGr abDevi ce actively grabs an extension input device and generates Devi ceFo-
cusl n and Devi ceFocusQut events. Further input events from this device are re-
ported only to the grabbing client. This function overrides any previous active grab
by this client for this device.

The event list parameter is a pointer to a list of event classes. This list indicates
which events the client wishes to receive while the grab is active. If owner events
is Fal se , input events from this device are reported with respect to grab window
and are reported only if specified in event list. If owner events is True , then if
a generated event would normally be reported to this client, it is reported normal-
ly. Otherwise, the event is reported with respect to the grab window and is only
reported if specified in event list.

The this device mode argument controls the further processing of events from this
device, and the other device mode argument controls the further processing of in-
put events from all other devices.

 If the this device_ mode argument is G- abMbdeAsync , device event processing
continues normally; if the device is currently frozen by this client, then processing
of device events is resumed. If the this device mode argument is G- abMbdeSync
the state of the grabbed device (as seen by client applications) appears to freeze,
and no further device events are generated by the server until the grabbing client
issues a releasing XAl | owDevi ceEvent s call or until the device grab is released.
Actual device input events are not lost while the device is frozen; they are simply
queued for later processing.

 If the other device mode is G abMbdeAsync , event processing from other input
devices is unaffected by activation of the grab. If other device mode is G- abMbd-
eSync , the state of all devices except the grabbed device (as seen by client appli-
cations) appears to freeze, and no further events are generated by the server un-
til the grabbing client issues a releasing XAl | owEvent s or XAl | owDevi ceEvent s
call or until the device grab is released. Actual events are not lost while the other
devices are frozen; they are simply queued for later processing.

XGr abDevi ce fails on the following conditions:
» Ifthe device is actively grabbed by some other client, it returns Al r eadyG abbed .
» If grab _window is not viewable, it returns G- abNot Vi ewabl e .

 If the specified time is earlier than the last-grab-time for the specified device or
later than the current X server time, it returns G- abl nval i dTi me . Otherwise, the
last-grab-time for the specified device is set to the specified time and Current Ti e
is replaced by the current X server time.

» If the device is frozen by an active grab of another client, it returns G- abFr ozen .

If a grabbed device is closed by a client while an active grab by that client is in
effect, that active grab will be released. Any passive grabs established by that client

Input Extension

will be released. If the device is frozen only by an active grab of the requesting
client, it is thawed.

XGrabDevi ce can generate BadCd ass , BadDevi ce , BadVal ue , and BadW ndow
errors.

To release a grab of an extension device, use the XungrabDevi ce function.

int XUngrabDevice(*display, *device, tinme);

display Specifies the connection to the X server.
device Specifies the desired device.
time Specifies the time. This may be either a timestamp ex-

pressed in milliseconds, or Current Ti ne .

XUngr abDevi ce allows a client to release an extension input device and any queued
events if this client has it grabbed from either XG abDevi ce or XGr abDevi ceKey . If
any other devices are frozen by the grab, XuUngr abDevi ce thaws them. This function
does not release the device and any queued events if the specified time is earlier
than the last-device-grab time or is later than the current X server time. It also
generates Devi ceFocusl n and Devi ceFocusQut events. The X server automatically
performs an XuUngr abDevi ce if the event window for an active device grab becomes
not viewable or if the client terminates without releasing the grab.

XUngr abDevi ce can generate BadDevi ce errors.

Passively Grabbing a Key

To passively grab a single key on an extension device, use XGr abDevi ceKey . That
device must have previously been opened using the XOpenDevi ce function, or the
request will fail with a BadDevi ce error. If the specified device does not support
input class Keys , the request will fail with a BadMat ch error.

i nt XG abDevi ceKey(*di spl ay, *devi ce, keycode, nodi -
fiers, *nodi fi er _devi ce, grab_w ndow, owner _events, event _count,
*event |list, this _device node, other_device node);

display Specifies the connection to the X server.
device Specifies the desired device.
keycode Specifies the keycode of the key that is to be grabbed.

You can pass either the keycode or AnyKey .

modifiers Specifies the set of keymasks. This mask is the bit-
wise inclusive OR of these keymask bits: Shi f t Mask ,
LockMask , Control Mask , ModlMask , Mbd2Mask ,
Mbd3Mask , Mod4Mask , and Mbd5Mask .

You can also pass AnyModi fi er , which is equivalent
to issuing the grab key request for all possible mod-
ifier combinations (including the combination of no
modifiers).

Input Extension

modifier device Specifies the device whose modifiers are to be used.
If NULL is specified, the core X keyboard is used as
the modifier device.

grab_window Specifies the ID of a window associated with the de-
vice specified above.

owner _events Specifies a boolean value of either True or Fal se .

event count Specifies the number of elements in the event list ar-
ray.

event list Specifies a pointer to a list of event classes that indi-

cate which events the client wishes to receive.

this device_mode Controls further processing of events from this de-
vice. You can pass one of these constants: G- abMod-
eSync or G abModeAsync .

other device mode Controls further processing of events from all other
devices. You can pass one of these constants: G ab-
ModeSync or GrabMbdeAsync .

XGr abDevi ceKey is analogous to the core XG abKey function. It creates an explicit
passive grab for a key on an extension device. The XGrabDevi ceKey function es-
tablishes a passive grab on a device. Consequently, in the future,

» IF the device is not grabbed and the specified key, which itself can be a modifier
key, is logically pressed when the specified modifier keys logically are down on
the specified modifier device (and no other keys are down),

¢ AND no other modifier keys logically are down,

« AND EITHER the grab window is an ancestor of (or is) the focus window or the
grab window is a descendent of the focus window and contains the pointer,

* AND a passive grab on the same device and key combination does not exist on
any ancestor of the grab window,

« THEN the device is actively grabbed, as for XGr abDevi ce , the last-device-grab
time is set to the time at which the key was pressed (as transmitted in the De-
vi ceKeyPr ess event), and the Devi ceKeyPr ess event is reported.

The interpretation of the remaining arguments is as for XGr abDevi ce . The active
grab is terminated automatically when the logical state of the device has the spec-
ified key released (independent of the logical state of the modifier keys).

Note that the logical state of a device (as seen by means of the X protocol) may lag
the physical state if device event processing is frozen.

A modifier of AnyModi fi er is equivalent to issuing the request for all possible modi-
fier combinations (including the combination of no modifiers). It is not required that
all modifiers specified have currently assigned keycodes. A key of AnyKey is equiv-
alent to issuing the request for all possible keycodes. Otherwise, the key must be in
the range specified by min keycode and max keycode in the information returned
by the XLi st | nput Devi ces function. If it is not within that range, XGr abDevi ceKey
generates a BadVal ue error.

Input Extension

XGr abDevi ceKey generates a BadAccess error if some other client has issued a
XGr abDevi ceKey with the same device and key combination on the same window.
When using AnyModi fi er or AnyKey , the request fails completely and the X server
generates a BadAccess error, and no grabs are established if there is a conflicting
grab for any combination.

XGr abDevi ceKey returns Success upon successful completion of the request.

XG abDevi ceKey can generate BadAccess , BadC ass , BadDevi ce , BadMWat ch ,
BadVal ue , and BadW ndow errors.

To release a passive grab of a single key on an extension device, use XuUngr abDe-

Vi ceKey .

i nt XUngr abDevi ceKey(*di spl ay, *devi ce, keycode, nodi fiers,

*nodi fier_device, ungrab_w ndow);

display Specifies the connection to the X server.

device Specifies the desired device.

keycode Specifies the keycode of the key that is to be
ungrabbed. You can pass either the keycode or
AnyKey .

modifiers Specifies the set of keymasks. This mask is the bit-

wise inclusive OR of these keymask bits: Shi f t Mask ,
LockMask , Control Mask , MddlMask , Mod2Mask |,
Mod3Mask , Mbd4Mask , and Mod5Mask .

You can also pass AnyModi fi er , which is equiva-
lent to issuing the ungrab key request for all possible
modifier combinations (including the combination of
no modifiers).

modifier device Specifies the device whose modifiers are to be used.
If NULL is specified, the core X keyboard is used as
the modifier device.

ungrab_window Specifies the ID of a window associated with the de-
vice specified above.

XUngr abDevi ceKey is analogous to the core XUngr abKey function. It releases an
explicit passive grab for a key on an extension input device.

XUngr abDevi ceKey can generate BadAl | oc , BadDevi ce , BadMvat ch , BadVal ue ,
and BadW ndow errors.

Passively Grabbing a Button

To establish a passive grab for a single button on an extension device, use XG ab-
Devi ceButt on . The specified device must have previously been opened using the
XOpenDevi ce function, or the request will fail with a BadDevi ce error. If the speci-
fied device does not support input class Butt ons , the request will fail with a Bad-
Mat ch error.

10

Input Extension

i nt XG abDevi ceBut t on(
fiers, . grab_w ndow,

*di spl ay, *devi ce, but t on, nodi -
owner _events, event _count, *event |ist,

thi s_devi ce_npde, other_devi ce_node);

display
device

button

modifiers

modifier device

grab_window

owner _events

event count

event list

this device_ mode

other device mode

Specifies the connection to the X server.
Specifies the desired device.

Specifies the code of the button that is to be grabbed.
You can pass either the button or AnyButton .

Specifies the set of keymasks. This mask is the bit-
wise inclusive OR of these keymask bits: Shi f t Mask ,
LockMask , Control Mask , MdlMask , Mod2Mask
Mbd3Mask , Mod4Mask , and Mbd5Mask .

You can also pass AnyModi fi er , which is equivalent
to issuing the grab request for all possible modifier
combinations (including the combination of no mod-
ifiers).

Specifies the device whose modifiers are to be used.
If NULL is specified, the core X keyboard is used as
the modifier device.

Specifies the ID of a window associated with the de-
vice specified above.

Specifies a boolean value of either Tr ue or Fal se .

Specifies the number of elements in the event list ar-
ray.

Specifies a list of event classes that indicates which
device events are to be reported to the client.

Controls further processing of events from this de-
vice. You can pass one of these constants: G- abMod-
eSync or G abModeAsync .

Controls further processing of events from all other
devices. You can pass one of these constants: G ab-
ModeSync or GrabMbdeAsync .

XGr abDevi ceBut t on is analogous to the core XGr abBut t on function. It creates an
explicit passive grab for a button on an extension input device. Because the server
does not track extension devices, no cursor is specified with this request. For the
same reason, there is no confine to parameter. The device must have previously
been opened using the XOpenDevi ce function.

The XGrabDevi ceButton function establishes a passive grab on a device. Conse-

quently, in the future,

* IF the device is not grabbed and the specified button is logically pressed when
the specified modifier keys logically are down (and no other buttons or modifier

keys are down),

11

Input Extension

 AND EITHER the grab window is an ancestor of (or is) the focus window OR the
grab window is a descendent of the focus window and contains the pointer,

* AND a passive grab on the same device and button/key combination does not exist
on any ancestor of the grab window,

« THEN the device is actively grabbed, as for XG abDevi ce , the last-grab time is
set to the time at which the button was pressed (as transmitted in the Devi ce-
But t onPr ess event), and the Devi ceBut t onPr ess event is reported.

The interpretation of the remaining arguments is as for XGr abDevi ce . The active
grab is terminated automatically when logical state of the device has all buttons
released (independent of the logical state of the modifier keys).

Note that the logical state of a device (as seen by means of the X protocol) may lag
the physical state if device event processing is frozen.

A modifier of AnyMbodi fi er is equivalent to issuing the request for all possible mod-
ifier combinations (including the combination of no modifiers). It is not required
that all modifiers specified have currently assigned keycodes. A button of AnyBut -
t on is equivalent to issuing the request for all possible buttons. Otherwise, it is not
required that the specified button be assigned to a physical button.

XGr abDevi ceBut t on generates a BadAccess error if some other client has issued
a XG abDevi ceButton with the same device and button combination on the same
window. When using AnyMbdi fi er or AnyButton , the request fails completely and
the X server generates a BadAccess error and no grabs are established if there is
a conflicting grab for any combination.

XG abDevi ceBut t on can generate BadAccess , BadCd ass , BadDevi ce , Bad-
Mat ch , BadVal ue , and BadW ndow errors.

To release a passive grab of a button on an extension device, use XUngr abDevi ce-
Button .

i nt XUngr abDevi ceButton(*di spl ay, *devi ce, butt on, nodi fi ers,
*nodi fier_device, ungrab_w ndow);

display Specifies the connection to the X server.

device Specifies the desired device.

button Specifies the code of the button that is to be un-

grabbed. You can pass either a button or AnyBut t on .

modifiers Specifies the set of keymasks. This mask is the bit-
wise inclusive OR of these keymask bits: Shi f t Mask ,
LockMask , Control Mask , MdlMask , Mod2Mask ,
Mbd3Mask , Mod4Mask , and Mbd5Mask .

You can also pass AnyModi fier , which is equiva-
lent to issuing the ungrab key request for all possible
modifier combinations (including the combination of
no modifiers).

modifier device Specifies the device whose modifiers are to be used.
If NULL is specified, the core X keyboard is used as
the modifier device.

12

Input Extension

ungrab_window Specifies the ID of a window associated with the de-
vice specified above.

XUngr abDevi ceBut t on is analogous to the core XUngr abBut t on function. It releases
an explicit passive grab for a button on an extension device. That device must have
previously been opened using the XOpenDevi ce function, or a BadDevi ce error will
result.

A modifier of AnyMbdi fi er is equivalent to issuing the request for all possible mod-
ifier combinations (including the combination of no modifiers).

XUngr abDevi ceBut t on can generate BadAl | oc , BadDevi ce , Badivatch , Bad-
Val ue , and BadW ndow errors.

Thawing a Device

To allow further events to be processed when a device has been frozen, use XAl -
| owDevi ceEvents .

int XAl IlowbDeviceEvents(*display, *device, event_node, tine);

display Specifies the connection to the X server.
device Specifies the desired device.
event_mode Specifies the event mode. You can pass one of these

constants: AsyncThi sDevice , SyncThi sDevice
AsyncQt her Devi ces , ReplayThi sDevice , Asyn-
cAl'l , or SyncAll

time Specifies the time. This may be either a timestamp ex-
pressed in milliseconds, or Current Ti e .

XAl | owDevi ceEvent s releases some queued events if the client has caused a device
to freeze. It has no effect if the specified time is earlier than the last-grab time of
the most recent active grab for the client and device, or if the specified time is later
than the current X server time. The following describes the processing that occurs
depending on what constant you pass to the event mode argument:

* AsyncThi sDevi ce

 If the specified device is frozen by the client, event processing for that continues
as usual. If the device is frozen multiple times by the client on behalf of multiple
separate grabs, AsyncThi sDevi ce thaws for all. AsyncThi sDevi ce has no effect if
the specified device is not frozen by the client, but the device need not be grabbed
by the client.

* SyncThi sDevi ce

 If the specified device is frozen and actively grabbed by the client, event process-
ing for that device continues normally until the next key or button event is report-
ed to the client. At this time, the specified device again appears to freeze. How-
ever, if the reported event causes the grab to be released, the specified device
does not freeze. SyncThi sDevi ce has no effect if the specified device is not frozen
by the client or is not grabbed by the client.

* Repl ayThi sDevi ce

13

Input Extension

» If the specified device is actively grabbed by the client and is frozen as the re-
sult of an event having been sent to the client (either from the activation of a
Gr abDevi ceBut t on or from a previous Al | owDevi ceEvent s with mode SyncThi s-
Devi ce , butnotfroma G ab), the grab is released and that event is complete-
ly reprocessed. This time, however, the request ignores any passive grabs at or
above (toward the root) the grab-window of the grab just released. The request
has no effect if the specified device is not grabbed by the client or if it is not frozen
as the result of an event.

* AsyncQt her Devi ces

» Ifthe remaining devices are frozen by the client, event processing for them contin-
ues as usual. If the other devices are frozen multiple times by the client on behalf
of multiple separate grabs, AsyncQ her Devi ces *“thaws' for all. AsyncQ her De-
vi ces has no effect if the devices are not frozen by the client, but those devices
need not be grabbed by the client.

e SyncAl |

 If all devices are frozen by the client, event processing (for all devices) continues
normally until the next button or key event is reported to the client for a grabbed
device, at which time the devices again appear to freeze. However, if the reported
event causes the grab to be released, then the devices do not freeze (but if any
device is still grabbed, then a subsequent event for it will still cause all devices
to freeze). SyncAl | has no effect unless all devices are frozen by the client. If
any device is frozen twice by the client on behalf of two separate grabs, SyncAl |
"thaws" for both (but a subsequent freeze for SyncAl | will freeze each device only
once).

* AsyncAl |

 If all devices are frozen by the client, event processing (for all devices) continues
normally. If any device is frozen multiple times by the client on behalf of multiple
separate grabs, AsyncAl | "“thaws "for all. If any device is frozen twice by the
client on behalf of two separate grabs, AsyncAl | " “thaws'" for both. AsyncAl | has
no effect unless all devices are frozen by the client.

AsyncThi sDevi ce , SyncThi sDevi ce , and Repl ayThi sDevi ce have no effect on
the processing of events from the remaining devices. AsyncQ her Devi ces has no
effect on the processing of events from the specified device. When the event mode
is SyncAl | or AsyncAll , the device parameter is ignored.

It is possible for several grabs of different devices (by the same or different clients)
to be active simultaneously. If a device is frozen on behalf of any grab, no event
processing is performed for the device. It is possible for a single device to be frozen
because of several grabs. In this case, the freeze must be released on behalf of each
grab before events can again be processed.

XAl | owDevi ceEvent s can generate BadDevi ce and BadVal ue errors.
Controlling Device Focus
The current focus window for an extension input device can be determined using

the XGet Devi ceFocus function. Extension devices are focused using the XSet De-
vi ceFocus function in the same way that the keyboard is focused using the core

14

Input Extension

XSet | nput Focus function, except that a device ID is passed as a function parameter.
One additional focus state, Fol | owKeyboard , is provided for extension devices.

To get the current focus state, revert state, and focus time of an extension device,
use XGet Devi ceFocus .

i nt XGet Devi ceFocus(*di spl ay, *devi ce, *focus_return,
*revert _to return, *focus_time_return);

display Specifies the connection to the X server.
device Specifies the desired device.
focus return Specifies the address of a variable into which the

server can return the ID of the window that con-
tains the device focus or one of the constants None ,
Poi nt er Root , or Fol | owKeyboard .

revert to return Specifies the address of a variable into which the
server can return the current revert to status for the
device.

focus time return Specifies the address of a variable into which the
server can return the focus time last set for the de-
vice.

XGet Devi ceFocus returns the focus state, the revert-to state, and the last-fo-
cus-time for an extension input device.

XGet Devi ceFocus can generate BadDevi ce and BadMat ch errors.
To set the focus of an extension device, use XSet Devi ceFocus .

int XSetDeviceFocus(*display, *device, focus, revert_to, tine);

display Specifies the connection to the X server.
device Specifies the desired device.
focus Specifies the ID of the window to which the device's fo-

cus should be set. This may be a window ID, or Poi nt -
er Root , Fol | owKeyboard , or None .

revert to Specifies to which window the focus of the device should
revert if the focus window becomes not viewable. One
of the following constants may be passed: Revert ToPar -
ent , Revert ToPoi nter Root , Revert ToNone , or Re-
vert ToFol | owKeyboard .

time Specifies the time. You can pass either a timestamp, ex-
pressed in milliseconds, or Current Ti ne .

XSet Devi ceFocus changes the focus for an extension input device and the last-
focus-change-time. It has no effect if the specified time is earlier than the last-fo-
cus-change-time or is later than the current X server time. Otherwise, the last-fo-
cus-change-time is set to the specified time. This function causes the X server to
generate Devi ceFocusl n and Devi ceFocusQut events.

15

Input Extension

The action taken by the server when this function is requested depends on the value
of the focus argument:

» If the focus argument is None , all input events from this device will be discarded
until a new focus window is set. In this case, the revert to argument is ignored.

¢ If the focus argument is a window ID, it becomes the focus window of the device.
If an input event from the device would normally be reported to this window or to
one of its inferiors, the event is reported normally. Otherwise, the event is reported
relative to the focus window.

 If the focus argument is Poi nt er Root , the focus window is dynamically taken to
be the root window of whatever screen the pointer is on at each input event. In
this case, the revert to argument is ignored.

« If the focus argument is Fol | owkeyboard , the focus window is dynamically
taken to be the same as the focus of the X keyboard at each input event.

The specified focus window must be viewable at the time XSet Devi ceFocus is
called. Otherwise, it generates a BadMat ch error. If the focus window later becomes
not viewable, the X server evaluates the revert to argument to determine the new
focus window.

 If the revert to argument is Revert ToParent , the focus reverts to the parent
(or the closest viewable ancestor), and the new revert to value is taken to be
Revert ToNone .

» Ifthe revert to argument is Revert ToPoi nt er Root , Revert ToFol | owKeyboard ,
or Revert ToNone , the focus reverts to that value.

When the focus reverts, the X server generates Devi ceFocusl n and Devi ceFocusQut
events, but the last-focus-change time is not affected.

XSet Devi ceFocus can generate BadDevi ce , BadMatch , BadVal ue , and Bad-
W ndow errors.

Controlling Device Feedback

To determine the current feedback settings of an extension input device, use XGet -
FeedbackCont r ol

XFeedbackSt at e * XGet FeedbackCont r ol (*di spl ay, *devi ce,

*num f eedbacks_return);

display Specifies the connection to the X server.

device Specifies the desired device.

num_feedbacks return Id{etl_lrns the number of feedbacks supported by the
evice.

XGet FeedbackCont r ol returns a list of FeedbackSt at e structures that describe the
feedbacks supported by the specified device. There is an XFeedbackSt at e structure
for each class of feedback. These are of variable length, but the first three members
are common to all.

16

Input Extension

typedef struct {

Xl D cl ass;
int |ength;
XIDid;

} XFeedbackSt at e;
The common members are as follows:

* The class member identifies the class of feedback. It may be compared to con-
stants defined in the file < X11/ ext ensi ons/ XI . h >. Currently defined feedback
constants include: KbdFeedbackC ass , PtrFeedbackd ass , Stri ngFeedback-
Class , IntegerFeedbackCl ass , LedFeedbackC ass , and Bel | Feedback-
Cl ass .

* The length member specifies the length of the FeedbackSt at e structure and can
be used by clients to traverse the list.

* The id member uniquely identifies a feedback for a given device and class. This
allows a device to support more than one feedback of the same class. Other feed-
backs of other classes or devices may have the same ID.

Those feedbacks equivalent to those supported by the core keyboard are reported
in class KbdFeedback using the XKbdFeedbackSt at e structure, which is defined as
follows:

typedef struct {
XI'D cl ass;
int |ength;
XIDid;

int click;

i nt percent;

int pitch;

int duration;

int | ed_mask;

i nt global _auto_repeat;
char auto_repeats[32];

} XKbdFeedbackSt at e;

The additional members of the XKbdFeedbackSt at e structure report the current
state of the feedback:

* The click member specifies the key-click volume and has a value in the range 0
(off) to 100 (loud).

* The percent member specifies the bell volume and has a value in the range 0 (off)
to 100 (loud).

* The pitch member specifies the bell pitch in Hz. The range of the value is imple-
mentation-dependent.

17

Input Extension

* The duration member specifies the duration in milliseconds of the bell.

* The led mask member is a bit mask that describes the current state of up to 32
LEDs. A value of 1 in a bit indicates that the corresponding LED is on.

* The global auto repeat member has a value of Aut oRepeat ModeOn or Aut oRepeat -
ModeOf f

» The auto repeats member is a bit vector. Each bit set to 1 indicates that auto-re-
peat is enabled for the corresponding key. The vector is represented as 32 bytes.
Byte N (from 0) contains the bits for keys 8N to 8N + 7, with the least significant
bit in the byte representing key 8N.

Those feedbacks equivalent to those supported by the core pointer are reported
in class Pt r Feedback using the XPt r FeedbackSt at e structure, which is defined as
follows:

typedef struct {

Xl D cl ass;
int length;
XIDid;

i nt accel Num

i nt accel Denom

int threshold;
} XPtrFeedbackSt at e;

The additional members of the XPtr FeedbackSt at e structure report the current
state of the feedback:

e The accelNum member returns the numerator for the acceleration multiplier.
¢ The accelDenom member returns the denominator for the acceleration multiplier.
¢ The accelDenom member returns the threshold for the acceleration.

Integer feedbacks are those capable of displaying integer numbers and reported
via the Xl nt eger FeedbackSt at e structure. The minimum and maximum values that
they can display are reported.

typedef struct {
XI D cl ass;
int Iength;
XIDid;
int resolution;
int mnVval;
i nt maxVal ;
} Xl nteger FeedbackSt at e;

The additional members of the XI nt eger FeedbackSt at e structure report the capa-
bilities of the feedback:

18

Input Extension

* The resolution member specifies the number of digits that the feedback can dis-
play.

* The minVal member specifies the minimum value that the feedback can display.
* The maxVal specifies the maximum value that the feedback can display.

String feedbacks are those that can display character information and are reported
via the XSt ri ngFeedbacksSt at e structure. Clients set these feedbacks by passing a
list of KeySyns to be displayed. The XGet FeedbackControl function returns the
set of key symbols that the feedback can display, as well as the maximum number
of symbols that can be displayed. The XSt ri ngFeedbackSt at e structure is defined
as follows:

typedef struct {

Xl D cl ass;
int |ength;
XIDid;

i nt max_synbol s;

int numsyns_supported;

KeySym *syns_support ed;
} XStringFeedbackSt at e;

The additional members of the XSt ri ngFeedbackSt at e structure report the capa-
bilities of the feedback:

* The max symbols member specifies the maximum number of symbols that can be
displayed.

» The syms_supported member is a pointer to the list of supported symbols.

* The num syms supported member specifies the length of the list of supported
symbols.

Bell feedbacks are those that can generate a sound and are reported via the
XBel | FeedbackSt at e structure. Some implementations may support a bell as part
of a KbdFeedback feedback. Class Bel | Feedback is provided for implementations
that do not choose to do so and for devices that support multiple feedbacks that can
produce sound. The meaning of the members is the same as that of the correspond-
ing fields in the XKbdFeedbacksSt at e structure.

typedef struct {
XI D cl ass;
int |ength;
XIDid;
i nt percent;
int pitch;
int duration;
} XBel | FeedbackSt at e;

19

Input Extension

Led feedbacks are those that can generate a light and are reported via the XLed-
FeedbacksSt at e structure. Up to 32 lights per feedback are supported. Each bit
in led mask corresponds to one supported light, and the corresponding bit in
led values indicates whether that light is currently on (1) or off (0). Some imple-
mentations may support leds as part of a KbdFeedback feedback. Class LedFeedback
is provided for implementations that do not choose to do so and for devices that
support multiple led feedbacks.

typedef struct {

Xl D cl ass;
int length;
XIDid;

Mask | ed val ues;
Mask | ed _nask;
} XLedFeedbacksSt at e;

XGet FeedbackCont r ol can generate BadDevi ce and BadMat ch errors.

To free the information returned by the XGet FeedbackControl function, use
XFr eeFeedbackLi st

void XFreeFeedbackList(*list);

list Specifies the pointer to the XFeedbackState structure re-
turned by a previous call to XGet FeedbackCont r ol

XFr eeFeedbackLi st frees the list of feedback control information.

To change the settings of a feedback on an extension device, use XChangeFeedback-
Control . This function modifies the current control values of the specified feed-
back using information passed in the appropriate XFeedbackCont r ol structure for
the feedback. Which values are modified depends on the valuemask passed.

i nt XChangeFeedbackControl (*display, *device, valuemask, *value);

display Specifies the connection to the X server.
device Specifies the desired device.
valuemask Specifies one value for each bit in the mask (least to most

significant bit). The values are associated with the feed-
backs for the specified device.

value Specifies a pointer to the XFeedbackCont r ol structure.

XChangeFeedbackCont rol controls the device characteristics described by the
XFeedbackCont rol structure. There is an XFeedbackControl structure for each
class of feedback. These are of variable length, but the first three members are
common to all and are as follows:

typedef struct {

20

Input Extension

Xl D cl ass;
int |ength;
XIDid;

} XFeedbackControl ;

Feedback class KbdFeedback controls feedbacks equivalent to those provided by
the core keyboard using the KbdFeedbackCont rol structure, which is defined as
follows:.

typedef struct {
XI D cl ass;
int length;
XIDid;
int click;
nt percent;
nt pitch;
nt duration;
nt | ed _nask;
nt | ed val ue;
nt key;
nt auto_repeat node;
} XKbdFeedbackControl ;

This class controls the device characteristics described by the XKbdFeedbackCon-
trol structure. These include the key click percent, global auto repeat, and indi-
vidual key auto-repeat. Valid modes are Aut oRepeat MbodeOn , Aut oRepeat ModeOF f
and Aut oRepeat MbdeDef aul t

Valid masks are as follows:

#def i ne DvKeyd i ckPer cent (1><<0)
#def i ne DvPer cent (1><<0)
#def i ne DvPi tch (1><<0)
#def i ne DvDur ati on (1><<0)
#def i ne DvLed (1><<0)
#def i ne DvLedMode (1><<0)
#def i ne DvKey (1><<0)
#def i ne DvAut oRepeat Mode (1><<0)

Feedback class Pt r Feedback controls feedbacks equivalent to those provided by the
core pointer using the Pt r FeedbackCont r ol structure, which is defined as follows:

typedef struct {

Xl D cl ass;
int length;
XIDid;

i nt accel Num

21

Input Extension

i nt accel Denon
int threshol d;
} XPtrFeedbackControl ;

Which values are modified depends on the valuemask passed.

Valid masks are as follows:

#defi ne DvAccel num (1L<<0)
#defi ne DvAccel Denom (1L<<1)
#defi ne DvThreshol d (1L<<2)

The acceleration, expressed as a fraction, is a multiplier for movement. For exam-
ple, specifying 3/1 means that the device moves three times as fast as normal. The
fraction may be rounded arbitrarily by the X server. Acceleration takes effect only if
the device moves more than threshold pixels at once and applies only to the amount
beyond the value in the threshold argument. Setting a value to -1 restores the de-
fault. The values of the accelNumerator and threshold fields must be nonzero for
the pointer values to be set. Otherwise, the parameters will be unchanged. Negative
values generate a BadVal ue error, as does a zero value for the accelDenominator
field.

This request fails with a BadMat ch error if the specified device is not currently re-
porting relative motion. If a device that is capable of reporting both relative and
absolute motion has its mode changed from Rel ati ve to Absol ute by an XSet De-
vi ceMbde request, valuator control values will be ignored by the server while the
device is in that mode.

Feedback class | nt eger Feedback controls integer feedbacks displayed on input de-
vices and are reported via the | nt eger FeedbackCont r ol structure, which is defined
as follows:

typedef struct {

Xl D cl ass;
int length;
XIDid;

int int_to_display;
} Xl nteger FeedbackControl ;

Valid masks are as follows:

#defi ne Dvil nt eger (1L<<0)

Feedback class Stri ngFeedback controls string feedbacks displayed on input de-
vices and reported via the Stri ngFeedbackControl structure, which is defined as
follows:

22

Input Extension

typedef struct {

Xl D cl ass;
int |ength;
XIDid;

i nt num keysyns;
KeySym *syns_t o_di spl ay;
} XStringFeedbackControl;

Valid masks are as follows:

#def i ne DvString (1L<<0)

Feedback class Bel | Feedback controls a bell on an input device and is reported via
the Bel | FeedbackCont r ol structure, which is defined as follows:

typedef struct {
XI D cl ass;
int length;
XIDid;
i nt percent;
int pitch;
int duration;
} XBel | FeedbackControl ;

Valid masks are as follows:

#def i ne DvPer cent (1L<<1)
#def i ne DvPi tch (1L<<2)
#def i ne DvDur ati on (1L<<3)

Feedback class LedFeedback controls lights on an input device and are reported via
the LedFeedbackCont r ol structure, which is defined as follows:

typedef struct {

Xl D cl ass;
int length;
XIDid;

int | ed_mask;
i nt | ed_val ues;
} XLedFeedbackControl ;

Valid masks are as follows:

#define DvlLed (1L<<4)

23

Input Extension

#def i ne DvLedMbde (1L<<5)

XChangeFeedbackCont r ol can generate BadDevi ce , BadFeedBack , BadMatch ,
and BadVal ue errors.

Ringing a Bell on an Input Device
To ring a bell on an extension input device, use XDevi ceBel |

int XDeviceBell(*display, *device, feedbackid, percent);

display Specifies the connection to the X server.
device Specifies the desired device.
feedbackclass Specifies the feedbackclass. Valid values are Kbd-

Feedbackd ass and Bel | Feedbackd ass .
feedbackid Specifies the ID of the feedback that has the bell.

percent Specifies the volume in the range -100 (quiet) to 100
percent (loud).

XDevi ceBel | is analogous to the core XBel | function. It rings the specified bell
on the specified input device feedback, using the specified volume. The specified
volume is relative to the base volume for the feedback. If the value for the percent
argument is not in the range -100 to 100 inclusive, a BadVal ue error results. The
volume at which the bell rings when the percent argument is nonnegative is:

base - [(base * percent) / 100] + percent

The volume at which the bell rings when the percent argument is negative is:

base + [(base * percent) / 100]
To change the base volume of the bell, use XChangeFeedbackCont r ol

XDevi ceBel | can generate BadDevi ce and BadVal ue errors.

Controlling Device Encoding

To get the key mapping of an extension device that supports input class Keys , use
XGet Devi ceKeyMappi ng .

KeySym * XGet Devi ceKeyMappi ng(*di spl ay, *devi ce,

first_keycode wanted, keycode count, *keysyns_per_keycode_return);

display Specifies the connection to the X server.

device Specifies the desired device.

first keycode wanted Specifies the first keycode that is to be returned.

keycode count Specifies the number of keycodes that are to be re-
turned.

24

Input Extension

keysyms per keycode return Returns the number of keysyms per keycode.

XCGet Devi ceKeyMappi ng is analogous to the core XGet Keyboar dMappi ng function. It
returns the symbols for the specified number of keycodes for the specified extension
device.

XGet Devi ceKeyMappi ng returns the symbols for the specified number of key-
codes for the specified extension device, starting with the specified keycode. The
first keycode wanted must be greater than or equal to min-keycode as returned
by the XLi st I nput Devi ces request (else a BadVal ue error results). The following
value:

first_keycode wanted + keycode_count - 1

must be less than or equal to max-keycode as returned by the XLi st | nput Devi ces
request (else a BadVal ue error results).

The number of elements in the keysyms list is as follows:

keycode count * keysyns_per keycode return

And KEYSYM number N (counting from zero) for keycode K has an index (counting
from zero), in keysyms, of the following:

(K - first_keycode wanted) * keysyns_per keycode return + N

The keysyms per keycode return value is chosen arbitrarily by the server to be
large enough to report all requested symbols. A special KEYSYM value of NoSynbol
is used to fill in unused elements for individual keycodes.

To free the data returned by this function, use XFr ee.

If the specified device has not first been opened by this client via XOpenDevi ce
this request will fail with a BadDevi ce error. If that device does not support input
class Keys , this request will fail with a BadMat ch error.

XGet Devi ceKeyMappi ng can generate BadDevi ce , BadMatch , and BadVal ue er-
rors.

To change the keyboard mapping of an extension device that supports input class
Keys , use XChangeDevi ceKeyMappi ng .

i nt XChangeDevi ceKeyMappi ng(*di spl ay, *devi ce, first_keycode,
keysyns_per _keycode, *keysyns, num codes);

display Specifies the connection to the X server.

device Specifies the desired device.

first keycode Specifies the first keycode that is to be changed.
keysyms per keycode Specifies the keysyms that are to be used.
keysyms Specifies a pointer to an array of keysyms.

25

Input Extension

num_codes Specifies the number of keycodes that are to be
changed.

XChangeDevi ceKeyMappi ng is analogous to the core XChangeKeyboar dMappi ng
function. It defines the symbols for the specified number of keycodes for the spec-
ified extension keyboard device.

If the specified device has not first been opened by this client via XOpenDevi ce ,
this request will fail with a BadDevi ce error. If the specified device does not support
input class Keys , this request will fail with a BadMat ch error.

The number of elements in the keysyms list must be a multiple of
keysyms per keycode. Otherwise, XChangeDevi ceKeyMappi ng generates a
BadLengt h error. The specified first keycode must be greater than or equal to the
min keycode value returned by the Li st | nput Devi ces request, or this request will
fail with a BadVal ue error. In addition, if the following expression is not less than
the max keycode value returned by the Li st | nput Devi ces request, the request will
fail with a BadVal ue error:

first_keycode + (numcodes / keysyms_per_keycode) - 1

XChangeDevi ceKeyMappi ng can generate BadAl | oc , BadDevi ce , BadMatch ,
and BadVal ue errors.

To obtain the keycodes that are used as modifiers on an extension device that sup-
ports input class Keys , use XGet Devi ceModi fi er Mappi ng .

XModi fi erKeymap * XGet Devi ceMbdi fi er Mappi ng(*di splay, *device);
display Specifies the connection to the X server.
device Specifies the desired device.

XCGet Devi ceModi fi er Mappi ng is analogous to the core XGet Modi fi er Mappi ng func-

tion. The XGet Devi ceMbodi fi er Mappi ng function returns a newly created XModi -
fi er Keymap structure that contains the keys being used as modifiers for the speci-
fied device. The structure should be freed after use with XFr eeModi fi er Mappi ng .

If only zero values appear in the set for any modifier, that modifier is disabled.

XCGet Devi ceModi fi er Mappi ng can generate BadDevi ce and BadMat ch errors.

To set which keycodes are to be used as modifiers for an extension device, use
XSet Devi ceModi fi er Mappi ng .

i nt XSetDeviceMdifierMpping(*display, *device, *nodnap);

display Specifies the connection to the X server.
device Specifies the desired device.
modmap Specifies a pointer to the XModi fi er Keymap structure.

XSet Devi ceModi fi er Mappi ng is analogous to the core XSet Modi fi er Mappi ng func-

tion. The XSet Devi ceModi fi er Mappi ng function specifies the keycodes of the keys,
if any, that are to be used as modifiers. A zero value means that no key should
be used. No two arguments can have the same nonzero keycode value. Otherwise,

26

Input Extension

XSet Devi ceModi fi er Mappi ng generates a BadVal ue error. There are eight mod-
ifiers, and the modifiermap member of the XMbodi fi er Keymap structure contains
eight sets of max keypermod keycodes, one for each modifier in the order Shift |,
Lock , Control , Modl , Mbd2 , Mod3 , Mbd4 , and Mod5 . Only nonzero keycodes
have meaning in each set, and zero keycodes are ignored. In addition, all of the
nonzero keycodes must be in the range specified by min keycode and max keycode
reported by the XLi st nput Devi ces function. Otherwise, XSet Modi f i er Mappi ng
generates a BadVal ue error. No keycode may appear twice in the entire map. Oth-
erwise, it generates a BadVal ue error.

A X server can impose restrictions on how modifiers can be changed, for example,
if certain keys do not generate up transitions in hardware or if multiple modifier
keys are not supported. If some such restriction is violated, the status reply is Map-
pi ngFai | ed , and none of the modifiers are changed. If the new keycodes specified
for a modifier differ from those currently defined and any (current or new) keys for
that modifier are in the logically down state, the status reply is Mappi ngBusy , and
none of the modifiers are changed. XSet Modi fi er Mappi ng generates a Devi ceMap-
pi ngNot i fy event on a Mappi ngSuccess status.

XSet Devi ceModi f i er Mappi ng can generate BadAl | oc , BadDevi ce , BadMat ch
and BadVal ue errors.

Controlling Button Mapping

To set the mapping of the buttons on an extension device, use XSet Devi ceBut t on-
Mappi ng .

int XSetDeviceButtonMappi ng(*di splay, *device, map[], nnap);

display Specifies the connection to the X server.

device Specifies the desired device.

map Specifies the mapping list.

nmap Specifies the number of items in the mapping list.

XSet Devi ceBut t onMappi ng sets the mapping of the buttons on an extension device.

If it succeeds, the X server generates a Devi ceMappi ngNoti fy event, and XSet -
Devi ceBut t onMappi ng returns Mappi ngSuccess . Elements of the list are indexed
starting from one. The length of the list must be the same as XGet Devi ceButt on-
Mappi ng would return, or a BadVal ue error results. The index is a button number,
and the element of the list defines the effective number. A zero element disables a
button, and elements are not restricted in value by the number of physical buttons.
However, no two elements can have the same nonzero value, or a BadVal ue error
results. If any of the buttons to be altered are logically in the down state, XSet De-
vi ceBut t onMappi ng returns Mappi ngBusy , and the mapping is not changed.

XSet Devi ceBut t onMappi ng can generate BadDevi ce , BadMatch , and BadVal ue
errors.

To get the button mapping, use XGet Devi ceBut t onMappi ng .
i nt XGetDevi ceButtonMappi ng(*display, *device, map_return[], nnap);

display Specifies the connection to the X server.

27

Input Extension

device Specifies the desired device.
map _return Specifies the mapping list.
nmap Specifies the number of items in the mapping list.

XGet Devi ceBut t onMappi ng returns the current mapping of the specified extension

device. Elements of the list are indexed starting from one. XGet Devi ceButt onMap-
pi ng returns the number of physical buttons actually on the pointer. The nominal
mapping for the buttons is the identity mapping: mapl[i]=i. The nmap argument
specifies the length of the array where the button mapping is returned, and only
the first nmap elements are returned in map return.

XGet Devi ceBut t onMappi ng can generate BadDevi ce and BadMat ch errors.

Obtaining the State of a Device

To obtain information that describes the state of the keys, buttons, and valuators of
an extension device, use XQueryDevi ceStat e .

XDevi ceState * XQueryDeviceState(*display, *device);
display Specifies the connection to the X server.
device Specifies the desired device.

XQuer yDevi ceSt at e returns a pointer to an XDevi ceSt at e structure, which points
to a list of structures that describe the state of the keys, buttons, and valuators on
the device:

typedef struct {
XI D devi ce_i d;
i nt num cl asses;
Xl nput Cl ass *dat a;
} XDevi ceSt at e;

The structures are of variable length, but the first two members are common to all
and are as follows:

typedef struct {
unsi gned char cl ass;
unsi gned char | ength;
} Xl nput d ass;

The class member contains a class identifier. This identifier can be compared with
constants defined in the file < X11/extensi ons/ XlI.h >. Currently defined con-
stants are: Keyd ass , ButtonC ass , and Val uator C ass .

The length member contains the length of the structure and can be used by clients
to traverse the list.

28

Input Extension

The XVal uat or St at e structure describes the current state of the valuators on the
device. The num valuators member contains the number of valuators on the device.
The mode member is a mask whose bits report the data mode and other state infor-
mation for the device. The following bits are currently defined:

Devi ceMode 1<<0 Rel ative = 0, Absolute =1
ProxinmtyState 1<<1 InProximty = 0, QuOProximty =1

The valuators member contains a pointer to an array of integers that describe the
current value of the valuators. If the mode is Rel ati ve , these values are undefined.

typedef struct {
unsi gned char cl ass;
unsi gned char | ength;
unsi gned char num val uat ors;
unsi gned char node;
int *val uators;
} Xval uator St at e

The XKey St at e structure describes the current state of the keys on the device. Byte
N (from 0) contains the bits for key 8N to 8N + 7 with the least significant bit in
the byte representing key 8N.

t ypedef struct {
unsi gned char cl ass;
unsi gned char |ength;
short num keys;
char keys[32];

} XKeySt at e;

The XBut t onSt at e structure describes the current state of the buttons on the de-
vice. Byte N (from 0) contains the bits for button 8N to 8N + 7 with the least sig-
nificant bit in the byte representing button 8N.

typedef struct ({
unsi gned char cl ass;
unsi gned char | ength;
short num buttons;
char buttons[32];

} XButtonState;

XQuer yDevi ceSt at e can generate BadDevi ce errors.

To free the data returned by this function, use XFr eeDevi ceSt ate .

29

Input Extension

void XFreeDeviceState(*state);

state Specifies the pointer to the XDevi ceSt at e data returned by a
previous call to XQuer yDevi ceState .

XFr eeDevi ceSt at e frees the device state data.

Events

The input extension creates input events analogous to the core input events. These
extension input events are generated by manipulating one of the extension input
devices. The remainder of this section discusses the following X Input Extension
event topics:

e Event types
¢ Event classes

e Event structures

Event Types

Event types are integer numbers that a client can use to determine what kind of
event it has received. The client compares the type field of the event structure with
known event types to make this determination.

The core input event types are constants and are defined in the header file < X11/
X. h >, Extension event types are not constants. Instead, they are dynamically allo-
cated by the extension's request to the X server when the extension is initialized. Be-
cause of this, extension event types must be obtained by the client from the server.

The client program determines the event type for an extension event by using the
information returned by the XOpenDevi ce request. This type can then be used for
comparison with the type field of events received by the client.

Extension events propagate up the window hierarchy in the same manner as core
events. If a window is not interested in an extension event, it usually propagates to
the closest ancestor that is interested, unless the dont propagate list prohibits it.
Grabs of extension devices may alter the set of windows that receive a particular
extension event.

The following table lists the event category and its associated event type or types.

Event Category Event Type

Device key Devi ceKeyPress

Devi ceKeyRel ease

Device motion Devi ceBut t onPr ess

Devi ceBut t onRel ease
Devi ceMoti onNot i fy

Device input focus Devi ceFocusl n
Devi ceFocusCut
Device state notification Devi ceStateNotify

30

Input Extension

Event Category Event Type
Device proximity Proxi mtyln
Proxi m t yQut
Device mapping Devi ceMappi ngNot i fy
Device change ChangeDevi ceNoti fy

Event Classes

Event classes are integer numbers that are used in the same way as the core event
masks. They are used by a client program to indicate to the server which events
that client program wishes to receive.

The core input event masks are constants and are defined in the header file < X11/
X. h >. Extension event classes are not constants. Instead, they are dynamically
allocated by the extension's request to the X server when the extension is initialized.
Because of this, extension event classes must be obtained by the client from the
server.

The event class for an extension event and device is obtained from information re-
turned by the XOpenDevi ce function. This class can then be used in an XSel ect Ex-
t ensi onEvent request to ask that events of that type from that device be sent to
the client program.

For Devi ceButt onPress events, the client may specify whether or not an implic-
it passive grab should be done when the button is pressed. If the client wants to
guarantee that it will receive a Devi ceBut t onRel ease event for each Devi ceBut -
t onPr ess event it receives, it should specify the Devi ceButt onPressG ab class in
addition to the Devi ceBut t onPr ess class. This restricts the client in that only one
client at a time may request Devi ceBut t onPr ess events from the same device and
window if any client specifies this class.

If any client has specified the Devi ceButt onPressG ab class, any requests by any
other client that specify the same device and window and specify either Devi ceBut -
t onPress or Devi ceBut t onPr essG ab will cause an Access error to be generated.

If only the Devi ceButt onPress class is specified, no implicit passive grab will be
done when a button is pressed on the device. Multiple clients may use this class to
specify the same device and window combination.

The client may also select Devi ceMbti on events only when a button is down.
It does this by specifying the event classes Devi ceButtonlMotion through
Devi ceButt on5Mboti on . An input device will support only as many button motion
classes as it has buttons.

Event Structures

Each extension event type has a corresponding structure declared in < X11/ ext en-
si ons/ Xl nput. h >. All event structures have the following common members:

type Set to the event type number that uniquely identifies it.
For example, when the X server reports a Devi ceKey-
Press event to a client application, it sends an XDe-
vi ceKeyPr essEvent structure.

31

Input Extension

serial Set from the serial number reported in the protocol but
expanded from the 16-bit least significant bits to a full
32-bit value.

send_event Set to True if the event came from an XSendEvent re-
quest.
display Set to a pointer to a structure that defines the display

on which the event was read.

Extension event structures report the current position of the X pointer. In addition,
if the device reports motion data and is reporting absolute data, the current value
of any valuators the device contains is also reported.

Device Key Events

Key events from extension devices contain all the information that is contained in
a key event from the X keyboard. In addition, they contain a device ID and report
the current value of any valuators on the device, if that device is reporting absolute
data. If data for more than six valuators is being reported, more than one key event
will be sent. The axes count member contains the number of axes that are being
reported. The server sends as many of these events as are needed to report the
device data. Each event contains the total number of axes reported in the axes count
member and the first axis reported in the current event in the first axis member. If
the device supports input class Val uators , but is not reporting absolute mode
data, the axes count member contains zero (0).

The location reported in the x, y and x root, y root members is the location of the
core X pointer.

The XDevi ceKeyEvent structure is defined as follows:

typedef struct {

int type; /* of event */

unsi gned | ong serial; /* # of last request processed */

Bool send_event; /[* true if from SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */
W ndow wi ndow; /* "event" wi ndow reported relative to */
XI D devi cei d;

W ndow r oot ; /* root wi ndow event occurred on */

W ndow subwi ndow; /* child wi ndow */

Time tine; /[* mlliseconds */

int x, vy; /* X, y coordinates in event w ndow */
int x_root; /* coordinates relative to root */

int y_root; /* coordinates relative to root */
unsi gned int state; /* key or button mask */

unsi gned int keycode; [* detail */

Bool sane_screen; /* sane screen flag */

unsi gned int device_state; /* device key or button mask */

unsi gned char axes_count;
unsi gned char first_axis;
int axi s_data[6];

32

Input Extension

} XDevi ceKeyEvent;

t ypedef XDevi ceKeyEvent XDevi ceKeyPressedEvent;
typedef XDevi ceKeyEvent XDevi ceKeyRel easedEvent;

Device Button Events

Button events from extension devices contain all the information that is contained
in a button event from the X pointer. In addition, they contain a device ID and report
the current value of any valuators on the device if that device is reporting absolute
data. If data for more than six valuators is being reported, more than one button
event may be sent. The axes count member contains the number of axes that are
being reported. The server sends as many of these events as are needed to report the
device data. Each event contains the total number of axes reported in the axes count
member and the first axis reported in the current event in the first axis member. If
the device supports input class Val uators , but is not reporting absolute mode
data, the axes count member contains zero (0).

The location reported in the x, y and x root, y root members is the location of the
core X pointer.

typedef struct {

int type; /* of event */

unsi gned | ong serial; /* # of last request processed by server */
Bool send_event; /* true if froma SendEvent request */

Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow; /* "event" window reported relative to */
XI D devi cei d;

W ndow r oot ; /* root window that the event occurred on */
W ndow subwi ndow; /* child wi ndow */

Time tinme; /* mlliseconds */

int x, vy; /* X, y coordinates in event w ndow */

int x_root; /* coordinates relative to root */

int y root; /* coordinates relative to root */

unsi gned int state; /* key or button nmask */

unsi gned int button; /[* detail */

Bool sane_screen; /* sanme screen flag */

unsi gned int device_state; /* device key or button nask */

unsi gned char axes_count;
unsi gned char first_axis;
int axis_data[6];

} XDevi ceButtonEvent;

t ypedef XDevi ceButtonEvent XDevi ceButtonPressedEvent;
t ypedef XDevi ceButtonEvent XDevi ceButtonRel easedEvent;

Device Motion Events

Motion events from extension devices contain all the information that is contained
in a motion event from the X pointer. In addition, they contain a device ID and report
the current value of any valuators on the device.

33

Input Extension

The location reported in the x, y and x root, y root members is the location of the
core X pointer, and so is 2-dimensional.

Extension motion devices may report motion data for a variable number of axes.
The axes count member contains the number of axes that are being reported. The
server sends as many of these events as are needed to report the device data. Each
event contains the total number of axes reported in the axes count member and the
first axis reported in the current event in the first axis member.

typedef struct {

int type; /* of event */

unsi gned | ong serial; /* # of last request processed by server *
Bool send_event; /* true if froma SendEvent request */

Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow; /* "event" wi ndow reported relative to */
XI D devi cei d;

W ndow r oot ; /* root wi ndow that the event occurred on
W ndow subwi ndow; /* child wi ndow */

Time tine; /[* mlliseconds */

int x, vy; /* X, y coordinates in event w ndow */

int x_root; /* coordinates relative to root */

int y_root; /* coordinates relative to root */

unsi gned int state; /* key or button mask */

char is_hint; /[* detail */

Bool sane_screen; /* sane screen flag */

unsi gned int device_state; /* device key or button mask */

unsi gned char axes_count;
unsi gned char first_axis;
int axi s_data[6];

} XDevi ceMbdti onEvent;

Device Focus Events

These events are equivalent to the core focus events. They contain the same infor-
mation, with the addition of a device ID to identify which device has had a focus
change, and a timestamp.

Devi ceFocusl n and Devi ceFocusQut events are generated for focus changes of ex-
tension devices in the same manner as core focus events are generated.

typedef struct {

int type; /* of event */

unsi gned | ong serial; /* # of last request processed by server */
Bool send_event; /* true if this came froma SendEvent request
Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow; /* "event" window it is reported relative to *
XI D devi cei d;

i nt node; /* NotifyNormal, NotifyGab, NotifyUngrab */
int detail;

34

Input Extension

Noti fyAncestor, NotifyVirtual, Notifylnferi
Not i f yNonLi near, Noti f yNonLi near Virtual, Not
Not i f yPoi nt er Root, Noti fyDet ai |l None

/

EE B

Time tine;
} XDevi ceFocusChangeEvent ;

t ypedef XDevi ceFocusChangeEvent XDevi ceFocusl nEvent;
t ypedef XDevi ceFocusChangeEvent XDevi ceFocusCQut Event;

Device StateNotify Event

This event is analogous to the core keymap event but reports the current state of
the device for each input class that it supports. It is generated after every Devi ce-
Focusl n event and Ent er Not i f y event and is delivered to clients who have selected
XDevi ceSt at eNot i fy events.

If the device supports input class Val uat ors , the mode member in the XVal ua-
t or St at us structure is a bitmask that reports the device mode, proximity state, and
other state information. The following bits are currently defined:

0x01 Relative = 0, Absolute =1
0x02 InProximty =0, QuOProximty =1

If the device supports more valuators than can be reported in a single XEvent ,
multiple XDevi ceSt at eNot i fy events will be generated.

typedef struct {
unsi gned char cl ass;
unsi gned char |ength;
} Xl nputd ass;

typedef struct {

int type;

unsi gned | ong serial; /* # of last request processed by server */

Bool send_event; /* true if this cane froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow;
XI D devi cei d;
Time time;
i nt num cl asses;
char dat a[64];
} XDevi ceSt at eNoti fyEvent;

typedef struct {
unsi gned char cl ass;
unsi gned char |ength;
unsi gned char num val uat ors;

35

Input Extension

unsi gned char node;
int val uators[6];
} Xval uat or St at us;

typedef struct {
unsi gned char cl ass;
unsi gned char |ength;
short num keys;
char keys[32];

} XKeySt at us;

typedef struct {
unsi gned char cl ass;
unsi gned char | ength;
short num buttons;
char buttons[32];

} XButtonSt at us;

Device Mapping Event

This event is equivalent to the core Mappi ngNoti fy event. It notifies client pro-
grams when the mapping of keys, modifiers, or buttons on an extension device has
changed.

typedef struct {
int type;
unsi gned | ong serial;
Bool send_event;
Di spl ay *di spl ay;
W ndow wi ndow;
XI D devi cei d;
Time tine;
i nt request;
int first_keycode;
int count;

} XDevi ceMappi ngEvent ;

ChangeDeviceNotify Event

This event has no equivalent in the core protocol. It notifies client programs when
one of the core devices has been changed.

typedef struct {
int type;
unsi gned | ong serial;
Bool send_event;
Di spl ay *di spl ay;
W ndow wi ndow;
XI D devi cei d;

36

Input Extension

Time tine;
i nt request;
} XChangeDevi ceNot i f yEvent ;

Proximity Events

These events have no equivalent in the core protocol. Some input devices such as
graphics tablets or touchscreens may send these events to indicate that a stylus has
moved into or out of contact with a positional sensing surface.

The event contains the current value of any valuators on the device if that device
is reporting absolute data. If data for more than six valuators is being reported,
more than one proximity event may be sent. The axes count member contains the
number of axes that are being reported. The server sends as many of these events
as are needed to report the device data. Each event contains the total number of
axes reported in the axes count member and the first axis reported in the current
event in the first axis member. If the device supports input class Val uators , but
is not reporting absolute mode data, the axes count member contains zero (0).

typedef struct {

int type; /* Proximtyln or ProximtyQut */

unsi gned | ong serial; /* # of last request processed by server */

Bool send_event; /* true if this cane froma SendEvent request */
Di spl ay *displ ay; /* Display the event was read from */

W ndow wi ndow;
XI D devi cei d;
W ndow r oot ;
W ndow subwi ndow;
Tinme tine;
int x, vy;
int x_root, y_root;
unsi gned int state;
Bool sane_screen;
unsi gned int device_state; /* device key or button mask */
unsi gned char axes_count;
unsi gned char first_axis;
int axi s_data[6];
} XProximtyNotifyEvent;

typedef XProximtyNotifyEvent XProximtylnEvent;
typedef XProximityNotifyEvent XProximtyQutEvent;

Event Handling Functions

This section discusses the X Input Extension event handling functions that allow
you to:

¢ Determine the extension version
¢ List the available devices

¢ Enable and disable extension devices

37

Input Extension

* Change the mode of a device

* Initialize valuators on an input device
* Get input device controls

e Change input device controls

» Select extension device events

* Determine selected device events

* Control event propogation

* Send an event

* Get motion history

Determining the Extension Version
XExt ensi onVer si on * XGet Ext ensi onVersi on(*di splay, *name);
display Specifies the connection to the X server.
name Specifies the name of the desired extension.

XGet Ext ensi onVer si on allows a client to determine whether a server supports the
desired version of the input extension.

The XExt ensi onVer si on structure returns information about the version of the ex-
tension supported by the server and is defined as follows:

t ypedef struct {
Bool present;
short nmj or_version;
short m nor_version;
} XExt ensi onVer si on;

The major and minor versions can be compared with constants defined in the header
file < X11/ ext ensi ons/ Xl . h >, Each version is a superset of the previous versions.

You should use XFr ee. to free the data returned by this function.

Listing Available Devices

A client program that wishes to access a specific device must first determine
whether that device is connected to the X server. This is done through the XLi st n-
put Devi ces function, which will return a list of all devices that can be opened by
the X server. The client program can use one of the names defined in the < X11/
ext ensi ons/ Xl . h > header file in an Xl nt er nAt omrequest to determine the device
type of the desired device. This type can then be compared with the device types
returned by the XLi st | nput Devi ces request.

XDevi cel nfo * XLi st nput Devi ces(*di splay, *ndevices);

38

Input Extension

display Specifies the connection to the X server.

ndevices Specifies the address of a variable into which the server
can return the number of input devices available to the
X server.

XLi st | nput Devi ces allows a client to determine which devices are available for X
input and information about those devices. An array of XDevi cel nf o structures is
returned, with one element in the array for each device. The number of devices is
returned in the ndevices argument.

The X pointer device and X keyboard device are reported, as well as all available
extension input devices. The use member of the XDevi cel nf o structure specifies
the current use of the device. If the value of this memberis | sXPoi nt er , the device
is the X pointer device. If the value is | sXKeyboard , the device is the X keyboard
device. If the value is | sXExt ensi onDevi ce , the device is available for use as an
extension input device.

Each XDevi cel nf o entry contains a pointer to a list of structures that describe the
characteristics of each class of input supported by that device. The num classes
member contains the number of entries in that list.

If the device supports input class Val uators , one of the structures pointed to by
the XDevi cel nf o structure will be an XVal uat or | nf o structure. The axes member
of that structure contains the address of an array of XAxi sl nf o structures. There is
one element in this array for each axis of motion reported by the device. The num-
ber of elements in this array is contained in the num_axes element of the Xval ua-
tor I nf o structure. The size of the motion buffer for the device is reported in the
motion_buffer member of the XVval uat or | nf o structure.

The XDevi cel nf o structure is defined as follows:

typedef struct _XDevicelnfo {

XIDid;

Atom type;

char *nane;

i nt num cl asses;

int use;

XAnyC assPtr inputcl assinfo;
} XDevi cel nf o;

The structures pointed to by the XDevi cel nf o structure are defined as follows:

typedef struct _XKeylnfo {
XI D cl ass;
int length;
unsi gned short m n_keycode;
unsi gned short nax_keycode;
unsi gned short num keys;

39

Input Extension

} XKeyl nf o;

typedef struct _XButtonlnfo {
XI D cl ass;
int |ength;
short num buttons;

} XButtonl nf o;

typedef struct _XValuatorlnfo {
XI D cl ass;
int |ength;
unsi gned char num axes;
unsi gned char node;
unsi gned | ong notion_buffer;
XAxi sl nfoPtr axes;

} Xval uat or | nf o;

The XAxi sl nf o structure pointed to by the XVal uat or I nf o structure is defined as
follows:

typedef struct _XAxislnfo {
int resolution;
int mn_val ue;
i nt max_val ue;

} XAxi sl nfo;

The following atom names are defined in the < X11/ ext ensi ons/ Xl . h > header file.

MOUSE QUADRATURE

TABLET SPACEBALL
KEYBOARD DATAGLOVE
TOUCHSCREEN EYETRACKER
TOUCHPAD CURSORKEYS
BUTTONBOX FOOTMOUSE
BARCODE | D_MODULE
KNOB_BOX ONE_KNOB
TRACKBALL NI NE_KNOB\ s+1

These names can be used in an Xl nt er nAt omrequest to return an atom that can be
used for comparison with the type member of the XDevi cel nf o structure.

XLi st | nput Devi ces returns NULL if there are no input devices to list.
To free the data returned by XLi st | nput Devi ces , use XFreeDevi celi st
void XFreeDevicelList(*list);

list Specifies the pointer to the XDevi cel nf o array returned by a
previous call to XLi st | nput Devi ces .

40

Input Extension

XFr eeDevi celLi st frees the list of input device information.

Enabling and Disabling Extension Devices

Each client program that wishes to access an extension device must request that
the server open that device by calling the XOpenDevi ce function.

XDevice * XOpenDevice(*display, device_id);
display Specifies the connection to the X server.

device_id Specifies the ID that uniquely identifies the device to be
opened. This ID is obtained from the XLi st | nput De-
Vi ces request.

XOpenDevi ce opens the device for the requesting client and, on success, returns
an XDevi ce structure, which is defined as follows:

typedef struct {

Xl D devi ce_i d;

i nt num cl asses;

Xl nput C asslnfo *cl asses;
} XDevi ce;

The XDevi ce structure contains a pointer to an array of Xl nput d assl nf o struc-
tures. Each element in that array contains information about events of a particular
input class supported by the input device.

The Xl nput d assl nf o structure is defined as follows:

typedef struct {
unsi gned char input_cl ass;
unsi gned char event type_base;
} Xl nput d assl nfo;

A client program can determine the event type and event class for a given event by
using macros defined by the input extension. The name of the macro corresponds to
the desired event, and the macro is passed the structure that describes the device
from which input is desired, for example:

Devi ceKeyPress(XDevi ce *devi ce, event _type, event_cl ass)

The macro will fill in the values of the event class to be used in an XSel ect Ext en-
si onEvent request to select the event and the event type to be used in comparing
with the event types of events received via XNext Event .

XOpenDevi ce can generate BadDevi ce errors.

41

Input Extension

Before terminating, the client program should request that the server close the
device by calling the XC oseDevi ce function.

int Xd oseDevice(*display, *device);
display Specifies the connection to the X server.
device Specifies the device to be closed.

X oseDevi ce closes the device for the requesting client and frees the associated
XDevi ce structure.

A client may open the same extension device more than once. Requests after the
first successful one return an additional XDevi ce structure with the same informa-
tion as the first, but otherwise have no effect. A single XC oseDevi ce request will
terminate that client's access to the device.

Closing a device releases any active or passive grabs the requesting client has es-
tablished. If the device is frozen only by an active grab of the requesting client, any
queued events are released.

If a client program terminates without closing a device, the server will automatically
close that device on behalf of the client. This does not affect any other clients that
may be accessing that device.

XCl oseDevi ce can generate BadDevi ce errors.

Changing the Mode of a Device

Some devices are capable of reporting either relative or absolute motion data. To
change the mode of a device from relative to absolute, use XSet Devi ceMbde .

int XSetDeviceMde(*display, *device, node);

display Specifies the connection to the X server.
device Specifies the device whose mode should be changed.
mode Specifies the mode. You can pass Absol ut e or Rel ati ve .

XSet Devi ceMode allows a client to request the server to change the mode of a

device that is capable of reporting either absolute positional data or relative motion
data. If the device is invalid or if the client has not previously requested that the
server open the device via an XOpenDevi ce request, this request will fail with a
BadDevi ce error. If the device does not support input class Val uat or s or if it is not
capable of reporting the specified mode, the request will fail with a BadMat ch error.

This request will fail and return Devi ceBusy if another client has already opened
the device and requested a different mode.

XSet Devi ceMode can generate BadDevi ce , BadMat ch , BadMbde , and Devi ceBusy
errors.

Initializing Valuators on an Input Device

Some devices that report absolute positional data can be initialized to a starting
value. Devices that are capable of reporting relative motion or absolute positional

42

Input Extension

data may require that their valuators be initialized to a starting value after the mode
of the device is changed to Absol ut e .

To initialize the valuators on such a device, use XSet Devi ceVal uators .

Status XSet Devi ceVal uat ors(*di splay, *device, numyvaluators);

display Specifies the connection to the X server.

device Specifies the device whose valuators should be ini-
tialized.

valuators Specifies the values to which each valuator should be
set.

first_valuator Specifies the first valuator to be set.

num_valuators Specifies the number of valuators to be set.

XSet Devi ceVal uat or s initializes the specified valuators on the specified extension
input device. Valuators are numbered beginning with zero. Only the valuators in
the range specified by first valuator and num valuators are set. A BadVal ue error
results if the number of valuators supported by the device is less than the following
expression:

first_valuator + numval uators

If the request succeeds, Success is returned. If the specified device is grabbed by
some other client, the request will fail and a status of Al r eadyGr abbed will be re-
turned.

XSet Devi ceVal uat or s can generate BadDevi ce , BadLength , BadMatch , and
BadVal ue errors.

Getting Input Device Controls

Some input devices support various configuration controls that can be queried or
changed by clients. The set of supported controls will vary from one input device to
another. Requests to manipulate these controls will fail if either the target X server
or the target input device does not support the requested device control.

Each device control has a unique identifier. Information passed with each device
control varies in length and is mapped by data structures unique to that device
control.

To query a device control, use XGet Devi ceCont r ol
XDevi ceControl * XGetDeviceControl (*di splay, *device, control);
display Specifies the connection to the X server.

device Specifies the device whose configuration control status is
to be returned.

43

Input Extension

control Identifies the specific device control to be queried.

XCGet Devi ceCont r ol returns the current state of the specified device control. If the
target X server does not support that device control, a BadVal ue error is returned.
If the specified device does not support that device control, a BadMat ch error is
returned.

If the request is successful, a pointer to a generic XDevi ceSt at e structure is re-
turned. The information returned varies according to the specified control and is
mapped by a structure appropriate for that control. The first two members are com-
mon to all device controls and are defined as follows:

typedef struct {
Xl D control;
int length;
} XDevi ceSt at e;
\fP

The control may be compared to constants defined in the file < X11/exten-
sions/ Xl . h > Currently defined device controls include DEVICE RESOLUTION.

The information returned for the DEVICE RESOLUTION control is defined in the
XDevi ceResol uti onSt at e structure, which is defined as follows:

typedef struct {
XI D control
int length;
i nt num val uat ors;
int *resol utions;
int *mn_resol utions;
int *nax_resol utions;
} XDevi ceResol uti onSt at e

This device control returns a list of valuators and the range of valid resolutions al-
lowed for each. Valuators are numbered beginning with zero (0). Resolutions for all
valuators on the device are returned. For each valuatorion the device, resolutions[i]
returns the current setting of the resolution, min resolutions[i] returns the mini-
mum valid setting, and max resolutions[i] returns the maximum valid setting.

When this control is specified, XGet Devi ceControl fails with a BadMvat ch error if
the specified device has no valuators.

XGet Devi ceCont r ol can generate BadMat ch and BadVal ue errors.
Changing Input Device Controls
Some input devices support various configuration controls that can be changed by

clients. Typically, this would be done to initialize the device to a known state or
configuration. The set of supported controls will vary from one input device to an-

44

Input Extension

other. Requests to manipulate these controls will fail if either the target X server or
the target input device does not support the requested device control. Setting the
device control will also fail if the target input device is grabbed by another client or
is open by another client and has been set to a conflicting state.

Each device control has a unique identifier. Information passed with each device
control varies in length and is mapped by data structures unique to that device
control.

To change a device control, use XChangeDevi ceContr ol

Status XChangeDevi ceControl (*di splay, *device, control, *value);
display Specifies the connection to the X server.
device Specifies the device whose configuration control status is

to be modified.

control Identifies the specific device control to be changed.

value Specifies a pointer to an XDevi ceCont r ol structure that de-
scribes which control is to be changed and how it is to be
changed.

XChangeDevi ceCont r ol changes the current state of the specified device control.
If the target X server does not support that device control, a BadVal ue error is
returned. If the specified device does not support that device control, a Badvat ch
error is returned. If another client has the target device grabbed, a status of Al -
readyGr abbed is returned. If another client has the device open and has set it to
a conflicting state, a status of Devi ceBusy is returned. If the request fails for any
reason, the device control will not be changed.

If the request is successful, the device control will be changed and a status of Suc-
cess is returned. The information passed varies according to the specified control
and is mapped by a structure appropriate for that control. The first two members
are common to all device controls:

typedef struct {
XID control;
int |ength;

} XDevi ceControl ;

The control may be set using constants defined in the < X11/extensions/ Xl .h >
header file. Currently defined device controls include DEVICE RESOLUTION.

The information that can be changed by the DEVICE RESOLUTION control is de-
fined in the XDevi ceResol uti onCont r ol structure, which is defined as follows:

typedef struct {
XI D control;

45

Input Extension

int |ength;
int first_valuator;
i nt num val uat ors;
int *resolutions;
} XDevi ceResol uti onControl;

This device control changes the resolution of the specified valuators on the speci-
fied extension input device. Valuators are numbered beginning with zero. Only the
valuators in the range specified by first valuator and num valuators are set. A value
of -1 in the resolutions list indicates that the resolution for this valuator is not to
be changed. The num valuators member specifies the number of valuators in the
resolutions list.

When this control is specified, XChangeDevi ceCont r ol fails with a BadMat ch error
if the specified device has no valuators. If a resolution is specified that is not within
the range of valid values (as returned by XGet Devi ceControl), XChangeDevi ce-
Contr ol fails with a BadVal ue error. A BadVal ue error results if the number of val-
uators supported by the device is less than the following expression:

first_valuator + numval uators,

XChangeDevi ceCont r ol can generate BadMat ch and BadVal ue errors.

Selecting Extension Device Events

To select device input events, use XSel ect Ext ensi onEvent . The parameters
passed are a pointer to a list of classes that define the desired event types and de-
vices, a count of the number of elements in the list, and the ID of the window from
which events are desired.

i nt XSel ect Ext ensi onEvent (*di spl ay, wi ndow, *event _|ist,
event _count);

display Specifies the connection to the X server.

window Specifies the ID of the window from which the client
wishes to receive events.

event list Specifies a pointer to an array of event classes that
specify which events are desired.

event count Specifies the number of elements in the event list.

XSel ect Ext ensi onEvent requests the server to send events that match the events
and devices described by the event list and that come from the requested window.
The elements of the XEvent O ass array are the event class values obtained by in-
voking a macro with the pointer to an XDevi ce structure returned by the XOpenDe-
vi ce request. For example, the Devi ceKeyPr ess macro would return the XEvent -
Cl ass for Devi ceKeyPr ess events from the specified device if it were invoked in the
following form:

46

Input Extension

Devi ceKeyPress (XDevi ce *device, event_type, event_cl ass)

Macros are defined for the following event classes:

Devi ceKeyPr ess

Devi ceKeyRel ease

Devi ceBut t onPr ess

Devi ceBut t onRel ease
Devi ceMoti onNoti fy
Devi ceFocusl n

Devi ceFocusQut
Proximtyln

Pr oxi m t yQut

Devi ceStateNotify

Devi ceMappi ngNot i fy
ChangeDevi ceNot i fy
Devi cePoi nt er Mot i onHi nt
Devi ceBut t on1Mot i on
Devi ceBut t on2Mot i on
Devi ceBut t on3MWbt i on,
Devi ceBut t on4Mot i on
Devi ceBut t on5Mot i on
Devi ceBut t onMbt i on,
Devi ceOwer Gr abBut t on
Devi ceBut t onPressG ab

To get the next available event from within a client program, use the core XNex-
t Event function. This returns the next event whether it came from a core device
or an extension device.

Succeeding XSel ect Ext ensi onEvent requests using event classes for the same
device as was specified on a previous request will replace the previous set of select-
ed events from that device with the new set.

XSel ect Ext ensi onEvent can generate BadAccess , Badd ass , BadLength ,
and BadW ndow errors.

Determining Selected Device Events

To determine which extension events are currently selected from a given window,
use XGet Sel ect edExt ensi onEvents .

i nt XCet Sel ect edExt ensi onEvent s(*di spl ay, Wi ndow,
*this_client_count, **this_client, *all _clients_count,
**all _clients);

display Specifies the connection to the X server.

window Specifies the ID of the window from which the client
wishes to receive events.

this client count Returns the number of elements in the this client list.

47

Input Extension

this client Returns a list of XEvent O asses that specify which
events are selected by this client.

all clients count Returns the number of elements in the all clients list.

all clients Returns a list of XEvent O asses that specify which

events are selected by all clients.

XGet Sel ect edExt ensi onEvent s returns pointers to two event class arrays. One
lists the extension events selected by this client from the specified window. The oth-
er lists the extension events selected by all clients from the specified window. This
information is analogous to that returned in your event mask and all event masks
of the XW ndowAt t ri but es structure when an XGet W ndowAt t ri but es request is
made. To free the two arrays returned by this function, use XFr ee.

XCet Sel ect edExt ensi onEvent s can generate BadW ndow errors.

Controlling Event Propagation

Extension events propagate up the window hierarchy in the same manner as core
events. If a window is not interested in an extension event, it usually propagates to
the closest ancestor that is interested, unless the dont propagate list prohibits it.
Grabs of extension devices may alter the set of windows that receive a particular
extension event.

Client programs may control event propagation through the use of the follow-
ing two functions: XChangeDevi ceDont Propagat eLi st and XGet Devi ceDont Pr op-
agat eLi st

i nt XChangeDevi ceDont Propagat eLi st (*di splay, w ndow, event_count,
*events, node);

display Specifies the connection to the X server.

window Specifies the desired window.

event count Specifies the number of elements in the events list.
events Specifies a pointer to the list of XEventClasses.

mode Specifies the mode. You can pass AddToList or

Del et eFr onli st

XChangeDevi ceDont Pr opagat eLi st adds an event to or deletes an event from the
do not propagate list of extension events for the specified window. There is one list
per window, and the list remains for the life of the window. The list is not altered if
a client that changed the list terminates.

Suppression of event propagation is not allowed for all events. If a specified XEvent -
Cl ass is invalid because suppression of that event is not allowed, a BadCl ass error
results.

XChangeDevi ceDont Pr opagat eLi st can generate Badd ass , Badvbde , and Bad-
W ndow errors.

XEvent Cl ass * XGet Devi ceDont Propagat eLi st (*di spl ay, wi ndow,
*event _count);

48

Input Extension

display Specifies the connection to the X server.
window Specifies the desired window.
event count Returns the number of elements in the array returned

by this function.

XGet Devi ceDont Pr opagat eLi st allows a client to determine the do not propagate

list of extension events for the specified window. It returns an array of XEvent -
Cl ass , each XEvent O ass representing a device/event type pair. To free the data
returned by this function, use XFr ee.

XCGet Devi ceDont Propagat eLi st can generate BadW ndow errors.

Sending an Event

To send an extension event to another client, use XSendExt ensi onEvent

i nt XSendExt ensi onEvent (*di spl ay, *devi ce, wi ndow, pr opagat e,
event _count, *event list, *event);

display Specifies the connection to the X server.
device Specifies the device whose ID is recorded in the event.
window Specifies the destination window ID. You can pass a

window ID, Poi nt er W ndow or | nput Focus .

propagate Specifies a boolean value that is either Tr ue or Fal se .

event count Specifies the number of elements in the event list ar-
ray.

event list Specifies a pointer to an array of XEvent d ass .

event Specifies a pointer to the event that is to be sent.

XSendExt ensi onEvent identifies the destination window, determines which clients
should receive the specified event, and ignores any active grabs. It requires a list
of XEvent d ass to be specified. These are obtained by opening an input device with
the XOpenDevi ce request.

XSendExt ensi onEvent uses the window argument to identify the destination win-
dow as follows:

» If you pass Poi nt er W ndow , the destination window is the window that contains
the pointer.

» If you pass | nput Focus and if the focus window contains the pointer, the destina-
tion window is the window that contains the pointer. If the focus window does not
contain the pointer, the destination window is the focus window.

To determine which clients should receive the specified events, XSendExt ensi on-
Event uses the propagate argument as follows:

» If propagate is Fal se , the event is sent to every client selecting from the desti-
nation window any of the events specified in the event list array.

49

Input Extension

« If propagate is True and no clients have selected from the destination window
any of the events specified in the event list array, the destination is replaced
with the closest ancestor of destination for which some client has selected one
of the specified events and for which no intervening window has that event in its
do not propagate mask. If no such window exists, or if the window is an ancestor
of the focus window, and | nput Focus was originally specified as the destination,
the event is not sent to any clients. Otherwise, the event is reported to every client
selecting on the final destination any of the events specified in event list.

The event in the XEvent structure must be one of the events defined by the input
extension, so that the X server can correctly byte swap the contents as necessary.
The contents of the event are otherwise unaltered and unchecked by the X server
except to force send event to Tr ue in the forwarded event and to set the sequence
number in the event correctly.

XSendExt ensi onEvent returns zero if the conversion-to-wire protocol failed; oth-
erwise, it returns nonzero.

XSendExt ensi onEvent can generate BadC ass , BadDevice , BadValue , and
BadW ndow errors.

Getting Motion History

XDevi ceTi mneCoord * XCet Devi ceMbt i onEvent s(axi s_count _return),
*di spl ay, *devi ce, st op, *nevents_return, *node_return,
*axi s_count_return);

display Specifies the connection to the X server.

device Specifies the desired device.

start Specifies the start time.

stop Specifies the stop time.

nevents return Returns the number of positions in the motion buffer

returned for this request.

mode _return Returns the mode of the nevents information. The
mode will be one of the following: Absol ut e or Rel -
ative .

axis_count _return Returns the number of axes reported in each of the

positions returned.

XGet Devi ceMot i onEvent s returns all positions in the device's motion history buffer
that fall between the specified start and stop times inclusive. If the start time is in
the future or is later than the stop time, no positions are returned.

The return type for this function is an XDevi ceTi neCoor d structure, which is defined
as follows:

typedef struct {

50

Input Extension

Time tine;
unsi gned int *dat a;
} XDevi ceTi neCoor d;

The data member is a pointer to an array of data items. Each item is of type int,
and there is one data item per axis of motion reported by the device. The number
of axes reported by the device is returned in the axis count variable.

The value of the data items depends on the mode of the device. The mode is re-
turned in the mode variable. If the mode is Absol ute , the data items are the raw
values generated by the device. These may be scaled by the client program using
the maximum values that the device can generate for each axis of motion that it
reports. The maximum value for each axis is reported in the max val member of the
XAxi sl nf o structure, which is part of the information returned by the XLi stln-
put Devi ces request.

If the mode is Rel ati ve , the data items are the relative values generated by the
device. The client program must choose an initial position for the device and main-
tain a current position by accumulating these relative values.

Consecutive calls to XGet Devi ceMdti onEvent s can return data of different modes,
that is, if some client program has changed the mode of the device via an XSet -
Devi ceMode request.

XGet Devi ceMot i onEvent s can generate BadDevi ce and BadMat ch errors.

To free the data returned by XGet Devi ceMbt i onEvents , use XFreeDevi ceMt i on-
Events .

void XFreeDevi ceMdtionEvents(*events);

events Specifies the pointer to the XDevi ceTi neCoord array re-
turned by a previous call to XGet Devi ceMbt i onEvents .

XFr eeDevi ceMot i onEvent s frees the specified array of motion information. Ap-
pendi x A

The following information is contained in the <X11/ ext ensi ons/ Xl nput . h> and
<X11/ ext ensi ons/ Xl . h> header files:

/* Definitions used by the library and client */

#i fndef _XI NPUT_H_
#define _XINPUT_H_

#ifndef XLIB H_
#i ncl ude <X11/ Xli b. h>
#endi f

#i fndef XI_H_
#i ncl ude "Xl . h"
#endi f

51

Input Extension

#def i ne _devi ceKeyPress 0
#def i ne _devi ceKeyRel ease 1
#define _devi ceButtonPress 0
#defi ne _devi ceButtonRel ease 1
#def i ne _devi ceMoti onNotify 0
#defi ne _devi ceFocusln 0
#defi ne _devi ceFocusQut 1
#define _proximtyln 0
#defi ne _proxi mtyQut 1
#defi ne _deviceStateNotify 0
#def i ne _devi ceMappi ngNotify 1
#def i ne _changeDevi ceNotify 2

#def i ne Fi ndTypeAndC ass(d, type, class, classid, offset) \

{ int i; Xinputd asslinfo *ip; \
type = 0; class = 0; \
for (i=0, ip= ((XDevice *) d)->classes; \

i< ((XDevice *) d)->numcl asses; \

i ++, ip++) \

if (ip->input_class == classid) \

{type = ip->event_type_base + offset; \
class = ((XDevice *) d)->device_id << 8 | type;}}

#def i ne Devi ceKeyPress(d, type, class) \
Fi ndTypeAndd ass(d, type, class, KeyCd ass, _devi ceKeyPress)

#def i ne Devi ceKeyRel ease(d, type, class) \
Fi ndTypeAndd ass(d, type, class, Keyd ass, _devi ceKeyRel ease)

#def i ne Devi ceButtonPress(d, type, class) \
Fi ndTypeAndd ass(d, type, class, ButtonC ass, _devi ceButtonPress)

#def i ne Devi ceButtonRel ease(d, type, class) \
Fi ndTypeAndd ass(d, type, class, ButtonC ass, _deviceButtonRel ease)

#def i ne Devi ceMotionNotify(d, type, class) \
Fi ndTypeAndd ass(d, type, class, Valuatord ass, _deviceMtionNotify)

#def i ne Devi ceFocusln(d, type, class) \
Fi ndTypeAndd ass(d, type, class, FocusCd ass, _deviceFocusln)

#def i ne Devi ceFocusQut (d, type, class) \
Fi ndTypeAndd ass(d, type, class, FocusC ass, _devi ceFocusQut)

#define Proximtyln(d, type, class) \
Fi ndTypeAndd ass(d, type, class, ProximtyC ass, _proximnmtyln)

#define ProximtyQut(d, type, class) \

52

Input Extension

Fi ndTypeAndd ass(d, type, class, ProximtyC ass, _proximnmtyCut)

#defi ne DeviceStateNotify(d, type, class) \
Fi ndTypeAndd ass(d, type, class, Oherd ass, _deviceStateNotify)

#def i ne Devi ceMappi ngNotify(d, type, class) \
Fi ndTypeAndd ass(d, type, class, Qherd ass, _deviceMappi ngNotify)

#def i ne ChangeDevi ceNotify(d, type, class) \
Fi ndTypeAndd ass(d, type, class, Qherd ass, _changeDeviceNotify)

#def i ne Devi cePoi nterMtionH nt(d, type, class) \
{ class = ((XDevice *) d)->device_id << 8 | _devicePointerMotionHint;}

#def i ne Devi ceButtonlMtion(d, type, class) \
{ class = ((XDevice *) d)->device_id << 8 | _deviceButtonlMdtion;}

#def i ne Devi ceButton2Mtion(d, type, class) \
{ class = ((XDevice *) d)->device_id << 8 | _deviceButton2Mti on;}

#def i ne Devi ceButton3Mdtion(d, type, class) \
{ class = ((XDevice *) d)->device_id << 8 | _deviceButton3Mdtion;}

#def i ne Devi ceButtondMtion(d, type, class) \
{ class = ((XDevice *) d)->device_id << 8 | _deviceButton4Mti on;}

#def i ne Devi ceButton5Mdtion(d, type, class) \
{ class = ((XDevice *) d)->device_id << 8 | _deviceButton5MWtion;}

#def i ne Devi ceButtonhbtion(d, type, class) \
{ class = ((XDevice *) d)->device_id << 8 | _deviceButtonhbtion;}

#def i ne Devi ceOnner GrabButton(d, type, class) \
{ class = ((XDevice *) d)->device_id << 8 | _deviceOnner G abButton;}

#def i ne Devi ceButtonPressGrab(d, type, class) \
{ class = ((XDevice *) d)->device_id << 8 | _deviceButtonG ab;}

#def i ne NoExt ensi onEvent (d, type, class) \
{ class = ((XDevice *) d)->device_id << 8 | _noExtensionEvent;}

#def i ne BadDevi ce(dpy, error) _xibaddevice(dpy, &error)
#def i ne BadCl ass(dpy, error) _xibadcl ass(dpy, &error)
#def i ne BadEvent (dpy, error) _xi badevent (dpy, &error)
#def i ne BadMbde(dpy, error) _xi badnode(dpy, &error)

#def i ne Devi ceBusy(dpy, error) _xidevicebusy(dpy, &error)

/***

*

* DeviceKey events. These events are sent by input devices that

53

Input Extension

support input class Keys.
The location of the X pointer is reported in the coordinate
fields of the x,y and x_root,y root fields.

b I

typedef struct

{

i nt type; /* of event */

unsi gned long serial; /* # of last request processed */

Bool send_event; /[* true if from SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */
W ndow wi ndow, /* "event" wi ndow reported relative to */
XD devi cei d;

W ndow root; /* root wi ndow event occured on */

W ndow subwi ndow; /* child wi ndow */

Ti me time; /[* mlliseconds */

i nt X, Y; /* X, y coordinates in event w ndow */
i nt X_root; /* coordinates relative to root */

i nt y_root; /* coordinates relative to root */
unsi gned i nt st at e; /* key or button mask */

unsi gned i nt keycode; [* detail */

Bool same_screen; [* sane screen flag */

unsi gned i nt device_state; /* device key or button mask */

unsi gned char axes_count;

unsi gned char first_axis;

i nt axi s_dat a[6] ;

} XDevi ceKeyEvent;

t ypedef XDevi ceKeyEvent XDevi ceKeyPressedEvent;
typedef XDevi ceKeyEvent XDevi ceKeyRel easedEvent;

/***

*

These events are sent
i nput cl ass Buttons.

* Devi ceButton events.
* that support

*

*/

by extension devices

typedef struct {

i nt type; /* of event */

unsi gned | ong serial; /* # of last request processed by server */
Bool send_event; /* true if froma SendEvent request */

Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow, /* "event" wi ndow reported relative to */
XD devi cei d;

W ndow root; /* root wi ndow that the event occured on */
W ndow subw ndow; /* child wi ndow */

Ti me time; /[* mlliseconds */

i nt X, VY; /* X, y coordinates in event w ndow */

i nt X_root; /* coordinates relative to root */

i nt y_root; /* coordinates relative to root */

unsigned int state; /* key or button mask */

unsi gned int button; [* detail */

54

Input Extension

Bool same_screen; [* sane screen flag */

unsigned int device_state; /* device key or button mask */
unsi gned char axes_count;

unsi gned char first_axis;

i nt axi s_dat a[6] ;

} XDevi ceButt onEvent;

t ypedef XDevi ceButtonEvent XDevi ceButtonPressedEvent;
t ypedef XDevi ceButtonEvent XDevi ceButtonRel easedEvent;

/***

*

* DeviceMdtionNotify event. These events are sent by extension devices

* that support input class Val uators.
*

*/

typedef struct

{

i nt type; /* of event */

unsi gned | ong serial; /* # of last request processed by server */
Bool send_event; /* true if froma SendEvent request */

Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow, /* "event" wi ndow reported relative to */
XD devi cei d;

W ndow root; /* root wi ndow that the event occured on */
W ndow subwi ndow; /* child wi ndow */

Ti me time; /[* mlliseconds */

i nt X, VY; /* X, y coordinates in event w ndow */

i nt X_root; /* coordinates relative to root */

i nt y_root; /* coordinates relative to root */

unsigned int state; /* key or button mask */

char is_hint; /[* detail */

Bool same_screen; /* same screen flag */

unsigned int device_state; /* device key or button mask */
unsi gned char axes_count;

unsi gned char first_axis;

i nt axi s_dat a[6] ;

} XDevi ceMbdti onEvent;

/***

*

* Devi ceFocusChange events. These events are sent when the focus

* of an extension device that can be focused is changed.
*

*/

typedef struct

{

i nt type; /* of event */

unsi gned | ong serial; /* # of last request processed by server */
Bool send_event; /* true if froma SendEvent request */

Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow, /* "event" wi ndow reported relative to */

55

Input Extension

XD devi cei d;

i nt node; /* NotifyNormal, NotifyGab, NotifyUngrab */
i nt detail;

/*

* NotifyAncestor, NotifyVirtual, Notifylnferior,
* NotifyNonLi near, Noti fyNonLi nearVirtual, NotifyPointer,
* NotifyPoi nter Root, NotifyDetail None
*/
Ti me time;
} XDevi ceFocusChangeEvent ;

t ypedef XDevi ceFocusChangeEvent XDevi ceFocusl nEvent;
t ypedef XDevi ceFocusChangeEvent XDevi ceFocusCQut Event;

/***

*

* ProximtyNotify events. These events are sent by those absolute

* positioning devices that are capable of generating proximty informtion.
*

*/
t ypedef struct
{
i nt type; /[* Proximtyln or ProximtyQut */
unsi gned | ong serial; /* # of last request processed by server */
Bool send_event; /* true if this cane froma SendEvent request
Di spl ay *display; /* Display the event was read from */
W ndow wi ndow,
XD devi cei d;
W ndow root;
W ndow subwi ndow;
Ti me time;
i nt X, VY;
i nt X_root, y_root;
unsi gned i nt st at e;
Bool sane_screen;
unsi gned i nt device_state; /* device key or button mask */

unsi gned char axes_count;

unsi gned char first_axis;

i nt axi s_dat a[6] ;

} XProximtyNotifyEvent;
typedef XProximtyNotifyEvent XProximtylnEvent;
typedef XProximtyNotifyEvent XProximtyQutEvent;

/***

*

* DeviceStateNotify events are generated on Enter Wndow and Focusln

* for those clients who have sel ected Devi ceSt at e.
*

*/

t ypedef struct
{

unsi gned char cl ass;

56

Input Extension

unsi gned char | engt h;
} Xl nputd ass;
typedef struct {
i nt type;
unsi gned | ong serial; /* # of last request processed by server */
Bool send_event; /* true if this cane froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */
W ndow wi ndow,
XD devi cei d;
Ti me time;
i nt num cl asses;
char dat a[64] ;

} XDevi ceSt at eNoti fyEvent;

typedef struct {

unsi gned char cl ass;

unsi gned char | engt h;

unsi gned char num val uat ors;
unsi gned char node;

i nt
} Xval uat or St at us;

val uat or s[6] ;

typedef struct {

unsi gned char cl ass;
unsi gned char | engt h;
short num keys;
char keys[32];
} XKeySt at us;
typedef struct {
unsi gned char cl ass;
unsi gned char | engt h;

short

num but t ons;

char
} XButtonSt at us;

butt ons[32];

/***

*

* Devi ceMappi ngNotify event. This event is sent when the key mapping,

* modi fier mapping, or button mapping of an extension device is changed.
*

*/

typedef struct {

i nt type;

unsi gned | ong serial; /* # of last request processed by server */

Bool send_event; /* true if this cane froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow, /* unused */

XD devi cei d;

Ti me time;

i nt request; /* one of Mappi nghbodi fier, Mappi ngKeyboard

Mappi ngPoi nter */

57

Input Extension

i nt first_keycode;/* first keycode */
i nt count ; /* defines range of change w. first_keycode*/
} XDevi ceMappi ngEvent ;

/***

*

* ChangeDevi ceNotify event. This event is sent when an

* XChangeKeyboard or XChangePoi nter request is made.
*

*/

typedef struct {

i nt type;

unsi gned | ong serial; /* # of last request processed by server */

Bool send_event; /* true if this cane froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow, /* unused */

XD devi cei d;

Ti me time;

i nt request; /* NewPoi nter or NewKeyboard */

} XChangeDevi ceNot i f yEvent;

/***

*

* Control structures for input devices that support input class
* Feedback. These are used by the XGet FeedbackControl and

* XChangeFeedbackControl functions.

*

*/

typedef struct {

Xl D cl ass;
i nt | engt h;
Xl D id;

} XFeedbacksSt at e;

typedef struct {

XD cl ass;

i nt | engt h;

XI D id;

i nt click;

i nt percent;

i nt pitch;

i nt dur ati on;

i nt | ed_mask;

i nt gl obal _auto_repeat;
char aut o_repeat s[32];

} XKbdFeedbacksSt at e;

typedef struct {

Xl D cl ass;

i nt | engt h;
Xl D id;

i nt accel Num

58

Input Extension

i nt accel Denoni
i nt t hreshol d;
} XPtrFeedbackSt at e;

typedef struct {

Xl D cl ass;

i nt | engt h;

Xl D id;

i nt resol ution;
i nt m nVal ;

i nt maxVal ;

} Xl nteger FeedbackSt at e;

typedef struct {

XD cl ass;

i nt | engt h;

XI D i d;

i nt max_synbol s;

i nt num syms_support ed;

KeySym *syms_supported;
} XStringFeedbackSt at e;

typedef struct {

Xl D cl ass;

i nt | engt h;
XI D i d;

i nt percent;
i nt pitch;

i nt durati on;

} XBel | FeedbackSt at e;

typedef struct {

Xl D cl ass;

i nt | engt h;

XI D i d;

i nt | ed_val ues;
i nt | ed_mask;

} XLedFeedbacksSt at e;

typedef struct {

Xl D cl ass;
i nt | engt h;
Xl D id;

} XFeedbackControl ;

typedef struct {

Xl D cl ass;

i nt | engt h;

Xl D id;

i nt accel Num

i nt accel Denom
i nt t hr eshol d;

} XPtrFeedbackControl ;

59

Input Extension

typedef struct {

Xl D cl ass;

i nt | engt h;

XI D i d;

i nt click;

i nt percent;

i nt pitch;

i nt dur ati on;

i nt | ed_mask;
i nt | ed_val ue;
i nt key;

i nt aut o_r epeat _node;

} XKbdFeedbackControl ;

typedef struct {

XD cl ass;

i nt | engt h;

XI D i d;

i nt num keysyms;

KeySym *syms_to_di spl ay;
} XStringFeedbackControl;

typedef struct {

XD cl ass;

i nt | engt h;

XI D i d;

i nt i nt _to_display;

} XInteger FeedbackControl ;

typedef struct {

Xl D cl ass;

i nt | engt h;
XI D id;

i nt percent;
i nt pitch;

i nt durati on;

} XBel | FeedbackControl ;

typedef struct {

Xl D cl ass;

i nt | engt h;

XI D i d;

i nt | ed_mask;

i nt | ed_val ues;

} XLedFeedbackControl ;

/***

*

* Device control structures.
*

*/

typedef struct {
Xl D control;

60

Input Extension

i nt | engt h;
} XDevi ceContr ol

typedef struct {

Xl D control;

i nt | engt h;

i nt first_val uator;
i nt num val uat ors;
i nt *resol utions;

} XDevi ceResol uti onContr ol

typedef struct {

Xl D control;

i nt | engt h;

i nt num val uat ors;

i nt *resol utions;

i nt *m n_resol utions;
i nt *max_resol utions;

} XDevi ceResol uti onSt at e

/***

* An array of XDevicelList structures is returned by the

* XLi st I nput Devi ces function. Each entry contains information

* about one input device. Anpbng that information is an array of
* pointers to structures that describe the characteristics of

* the input device.

*

*

typedef struct _XAnyd assinfo *XAnyC assPtr
typedef struct _XAnyd assinfo {

XD cl ass;

i nt | engt h;

} XAnyd assl nf o;
typedef struct _XDevicelnfo *XDevicel nfoPtr

typedef struct _XDevicel nfo

{

Xl D id;

At om type;

char *nane;

i nt num cl asses;
i nt use;

XAnyCl assPtr i nput cl assi nf o;

} XDevi cel nf o;
typedef struct _XKeylnfo *XKeyl nfoPtr
typedef struct _XKeylnfo

{

Xl D cl ass;

61

Input Extension

i nt | engt h;

unsi gned short m n_keycode;
unsi gned short max_keycode;
unsi gned short num keys;

} XKeyl nf o;

typedef struct _XButtonlnfo *XButtonlnfoPtr

typedef struct _XButtonlnfo {

Xl D cl ass;
i nt | engt h;
short num but t ons;

} XButtonl nf o;
typedef struct _XAxislnfo *XAxislnfoPtr

typedef struct _XAxislnfo {

i nt resol ution;
i nt m n_val ue;
i nt max_val ue;
} XAxi sl nfo;

typedef struct _XVal uatorlnfo *Xval uatorlnfoPtr

t ypedef struct _XVal uatorlnfo
{
XD cl ass;
i nt | engt h;
unsi gned char num axes;
unsi gned char node;
unsi gned | ong not i on_buf fer
XAxi sl nfoPtr axes;

} Xval uat or | nf o;

/***

*

t he device reports.

E I I I

typedef struct {
unsi gned char i nput _cl ass;
unsi gned char event _type_base;
} Xl nput d assl nf o;

typedef struct {
Xl D device_id;
i nt num cl asses;

62

An XDevice structure is returned by the XOpenDevice function.

It contains an array of pointers to Xlnputd assinfo structures.

Each contains information about a class of input supported by the
device, including a pointer to an array of data for each type of event

Input Extension

Xl nput Cl asslnfo *cl asses;
} XDevi ce;

/***

*

* The followi ng structure is used to return information for the

* XCet Sel ect edExt ensi onEvents functi on.
*

*/
typedef struct {
XEvent d ass event _type;
XD devi ce;

} XEvent Li st;

/***

* The following structure is used to return notion history data from
* an input device that supports the input class Val uators.

* This information is returned by the XGetDeviceMdti onEvents function.
*

*

typedef struct {
Ti me time;
i nt *dat a;
} XDevi ceTi neCoor d;

/***

*

* Device state structure.
* This is returned by the XQueryDeviceState request.

*

*/
typedef struct {
Xl D device_id;
i nt num cl asses;
Xl nput d ass *dat a;

} XDevi ceSt at e;

/***

*

Note that the node field is a bitfield that reports the Proximty
status of the device as well as the node. The node field should

be OR d with the mask Devi ceMbde and conpared with the val ues

Absol ute and Relative to determ ne the node, and should be OR d

with the mask ProximtyState and conmpared with the values InProximty
and QutOFProximty to determine the proximty state.

E I B T T

63

Input Extension

typedef struct {
unsi gned char
unsi gned char
unsi gned char
unsi gned char
i nt

} Xval uator State

typedef struct {
unsi gned char
unsi gned char
short
char

} XKeySt at e;

typedef struct {
unsi gned char
unsi gned char
short
char

} XButtonStat e;

/***

*

cl ass;

| engt h;

num val uat ors;

node;
*val uat or s;

cl ass;

| engt h;
num keys;

keys[32];

cl ass;

| engt h;
num but t ons;

butt ons[32];

* Function definitions.

*

*/

_XFUNCPROTOBEG N

XChangeKeyboar dDevi ce(

/* display */,
/* device */

XChangePoi nt er Devi ce(

/* display */,
/* device */,
/* xaxis */,
[* yaxis */

XG abDevi ce(

/* display */,
[* device */,
/* grab_w ndow */,

/* owner Events */,

extern int
#1 f NeedFuncti onPr ot ot ypes
Di spl ay*
XDevi ce*
#endi f
)
extern int
#1 f NeedFuncti onPr ot ot ypes
Di spl ay*
XDevi ce*
i nt
i nt
#endi f
);
extern int
#1 f NeedFuncti onPr ot ot ypes
Di spl ay*
XDevi ce*
W ndow
Bool
i nt

XEvent Cl ass*

/* event count */,

/* event list */,

64

Input Extension

i nt
i nt
Ti ne
#endi f
)

extern int

/* this_device_node */,
/* ot her_devi ces_node */,

[* time */

XUngr abDevi ce(

#1 f NeedFuncti onPr ot ot ypes

/* display */,
/* device */,
[* time */

XG abDevi ceKey(

/* display */,

Di spl ay*
XDevi ce*
Ti me
#endi f
)
extern int
#1 f NeedFuncti onPr ot ot ypes
Di spl ay*
XDevi ce*

unsi gned i nt
unsi gned i nt
XDevi ce*

W ndow

Bool

unsi gned i nt
XEvent C ass*

/* device */,
/[* key */,
/* nodifiers */,
/* nodifier_device */,
/* grab_w ndow */,
/* owner _events */,
/* event _count */,
/* event list */,
/* this_device_node */,
/* ot her_devi ces_node */

XUngr abDevi ceKey(

/* display */,

i nt
i nt
#endi f
)
extern int
#1 f NeedFuncti onPr ot ot ypes
Di spl ay*
XDevi ce*

unsi gned i nt

unsi gned i nt

XDevi ce*

W ndow
#endi f

)

extern int

/* device */,

/[* key */,

/* nodifiers */,

/* modifier_dev */,
/* grab_w ndow */

XG abDevi ceBut t on(

#1 f NeedFuncti onPr ot ot ypes

Di spl ay*
XDevi ce*
unsi gned i nt
unsi gned i nt
XDevi ce*

W ndow

Bool

unsi gned i nt
XEvent C ass*
i nt

i nt

/* display */,
/* device */,
/* button */,
/* nodifiers */,
/* nodifier_device */,
/* grab_w ndow */,
/* owner _events */,
/* event _count */,
/* event list */,
/* this_device_node */,
/* ot her_devi ces_node */

65

Input Extension

#endi f

)

extern int XUngr abDevi ceBut t on(

#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* /* device */,
unsi gned i nt /* button */,
unsi gned i nt /* nodifiers */,
XDevi ce* /* modifier_dev */,
W ndow /* grab_w ndow */

#endi f

)

extern int XAl | owDevi ceEvent s(

#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* /* device */,
i nt /* event node */,
Ti me [* time */

#endi f

)

extern int XGet Devi ceFocus(

#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* /* device */,
W ndow* /* focus */,
i nt* /* revert_to */,
Ti me* [* time */

#endi f

)

extern int XSet Devi ceFocus(

#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* /* device */,
W ndow /* focus */,
i nt /* revert_to */,
Ti me [* time */

#endi f

)

ext ern XFeedbackSt ate * XGet FeedbackCont r ol (

#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* /* device */,
i nt* /* num feedbacks */

#endi f

);

extern int XFr eeFeedbackLi st (

#1 f NeedFuncti onPr ot ot ypes
XFeedbackSt at e* [* list */

66

Input Extension

#endi f
)
extern int XChangeFeedbackCont r ol (
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* [* device */,
unsi gned | ong /* mask */,
XFeedbackCont r ol * [* f *]
#endi f
)
extern int XDevi ceBel | (
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* [* device */,
XD /* feedbackcl ass */,
XD /* feedbackid */,
i nt /* percent */
#endi f
)
extern KeySym * XGet Devi ceKeyMappi ng(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* [* device */,
#1 f NeedW dePr ot ot ypes
unsi gned i nt [* first */,
#el se
KeyCode [* first */,
#endi f
i nt /* keycount */,
i nt* /* syms_per_code */
#endi f
)
extern int XChangeDevi ceKeyMappi ng(
#i f NeedFuncti onPr ot ot ypes
Di spl ay* [* display */,
XDevi ce* [* device */,
i nt [* first */,
i nt /* synms_per_code */,
Key Synt [* keysyns */,
i nt /* count */
#endi f
);
ext ern XModi fi er Keymap * XCGet Devi ceMbdi fi er Mappi ng(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* [* device */
#endi f
);

67

Input Extension

extern int XSet Devi ceModi fi er Mappi ng(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* [* device */,
XModi f i er Keymap* /* nmodmap */
#endi f
)
extern int XSet Devi ceBut t onMappi ng(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* [* device */,
unsi gned char* /[* map[] */,
i nt /* nmap */
#endi f
)
extern int XGet Devi ceBut t onMappi ng(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* [* device */,
unsi gned char* [* map[] */,
unsi gned i nt /* nmap */
#endi f
)
extern XDeviceState *XQuer yDevi ceSt at e(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* [* device */
#endi f
)
extern int XFreeDevi ceSt at e(
#i f NeedFuncti onPr ot ot ypes
XDevi ceSt at e* [* list */
#endi f
)

ext ern XExt ensi onVer si on * XCGet Ext ensi onVer si on(
#1 f NeedFuncti onPr ot ot ypes

Di spl ay* /* display */,
_Xconst char* /* name */
#endi f
);
ext ern XDevi cel nfo *XLi st | nput Devi ces(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
int* /* ndevices */
#endi f
);
extern int XFr eeDevi celLi st (

68

Input Extension

#1 f NeedFuncti onPr ot ot ypes

XDevi cel nf o* [* list */
#endi f
)
ext ern XDevi ce *XOpenDevi ce(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
Xl D [* id */
#endi f
)
extern int XCl oseDevi ce(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* /* device */
#endi f
)
extern int XSet Devi ceMode(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* /* device */,
i nt /* node */
#endi f
)
extern int XSet Devi ceVal uat or s(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* /* device */,
int* /* valuators */,
i nt /* first_valuator */,
i nt /* numval uators */
#endi f
)
ext ern XDevi ceContr ol * XCGet Devi ceCont r ol (
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* /* device */,
i nt /* control */
#endi f
)
extern int XChangeDevi ceCont r ol (
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* /* device */,
i nt /* control */,
XDevi ceControl * [* d */
#endi f
)

69

Input Extension

extern int XSel ect Ext ensi onEvent (
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
W ndow [* w */,
XEvent Ol ass* /* event list */,
i nt [* count */
#endi f
)
extern int XGet Sel ect edExt ensi onEvent s(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
W ndow [* w */,
i nt* /* this_client_count */,
XEvent Cl ass** /* this _client _list */,
i nt* /* all _clients_count */,
XEvent Cl ass** /* all _clients_list */
#endi f
)
extern int XChangeDevi ceDont Pr opagat eLi st (
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
W ndow /* wi ndow */,
i nt [* count */,
XEvent Cl ass* [* events */,
i nt [* nmode */
#endi f
)
extern XEvent O ass * XCGet Devi ceDont Pr opagat eLi st (
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
W ndow /* wi ndow */,
int* /* count */
#endi f
)
extern Status XSendExt ensi onEvent (
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* [* device */,
W ndow [* dest */,
Bool /[* prop */,
i nt [* count */,
XEvent Cl ass* [* list */,
XEvent * [* event */
#endi f
);
ext ern XDevi ceTi meCoor d * XCGet Devi ceMbt i onEvent s(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* [* device */,

70

Input Extension

Ti ne /* start */,

Ti me /[* stop */,

int* /* nEvents */,

int* /* node */,

i nt* /* axis_count */
#endi f
)
extern int XFr eeDevi ceMbt i onEvent s(
#1 f NeedFuncti onPr ot ot ypes

XDevi ceTi neCoor d* /* events */
#endi f
)
extern int XFr eeDevi ceCont r ol (
#1 f NeedFuncti onPr ot ot ypes

XDevi ceContr ol * /* control */
#endi f
)
_ XFUNCPROTCOEND

#endi f /* _XINPUT_H_ */
/* Definitions used by the server, library and client */

#i fndef _XI _H

#define XI_H_
#def i ne sz_xCet Ext ensi onVer si onReq 8
#def i ne sz_xGCet Ext ensi onVer si onRepl y 32
#def i ne sz_xLi st nput Devi cesReq 4
#def i ne sz_xLi st nput Devi cesRepl y 32
#def i ne sz_xOpenDevi ceReq 8

#def i ne sz_xOpenDevi ceReply 32
#def i ne sz_xC oseDevi ceReq 8

#def i ne sz_xSet Devi ceMbdeReq 8
#def i ne sz_xSet Devi ceMbdeRepl y 32
#def i ne sz_xSel ect Ext ensi onEvent Req 12
#def i ne sz_xGCet Sel ect edExt ensi onEvent sReq 8
#def i ne sz_xCet Sel ect edExt ensi onEvent sRepl y 32
#def i ne sz_xChangeDevi ceDont Pr opagat eLi st Req 12
#def i ne sz_xGCet Devi ceDont Propagat eLi st Req 8
#def i ne sz_xCet Devi ceDont Propagat eLi st Repl y 32
#def i ne sz_xCet Devi ceMbti onEvent sReq 16
#def i ne sz_xCet Devi ceMbti onEvent sRepl y 32
#def i ne sz_xChangeKeyboar dDevi ceReq 8
#def i ne sz_xChangeKeyboar dDevi ceRepl y 32
#def i ne sz_xChangePoi nt er Devi ceReq 8
#def i ne sz_xChangePoi nt er Devi ceRepl y 32
#def i ne sz_xG abDevi ceReq 20

#def i ne sz_xG abDevi ceReply 32
#def i ne sz_xUngr abDevi ceReq 12

71

Input Extension

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

sz_xG abDevi ceKeyReq

sz_xG abDevi ceKeyRepl y

sz_xUngr abDevi ceKeyReq

sz_xG abDevi ceButt onReq

sz_xG abDevi ceButt onRepl y
sz_xUngr abDevi ceBut t onReq
sz_xAl | owDevi ceEvent sReq
sz_xGet Devi ceFocusReq

sz_xGet Devi ceFocusRepl y

sz_xSet Devi ceFocusReq

sz_xGet FeedbackCont r ol Req
sz_xGet FeedbackCont r ol Repl y
sz_xChangeFeedbackCont r ol Req
sz_xGet Devi ceKeyMappi ngReq
sz_xGet Devi ceKeyMappi ngRepl y
sz_xChangeDevi ceKeyMappi ngReq
sz_xGet Devi ceModi fi er Mappi ngReq
sz_xSet Devi ceModi fi er Mappi ngReq
sz_xSet Devi
sz_xGet Devi
sz_xGet Devi

ceBut t onMappi ngReq
ceBut t onMappi ngRepl y
sz_xSet Devi ceBut t onMappi ngReq
sz_xSet Devi ceBut t onMappi ngRepl y
sz_xQueryDevi ceSt at eReq
sz_xQueryDevi ceSt at eRepl y
sz_xSendExt ensi onEvent Req
sz_xDevi ceBel | Req

sz_xSet Devi ceVal uat or sReq
sz_xSet Devi ceVal uat or sRepl y
sz_xGet Devi ceCont r ol Req

sz_xGet Devi ceControl Reply
sz_xChangeDevi ceContr ol Req

ceModi fi er Mappi ngRepl y

sz_xChangeDevi ceControl Reply

I NAMVE " Xl nput Ext ensi on"
Xl _KEYBOARD " KEYBOARD"

XI _MOUSE " MOUSE"

XI _TABLET " TABLET"

XI _TOUCHSCREEN " TOUCHSCREEN'
XI _TOUCHPAD " TOUCHPAD"

XI _BARCODE " BARCODE"

XI _BUTTONBOX " BUTTONBOX"

XI _KNOB_BOX " KNOB_BOX"

XI _ONE_KNCB " ONE_KNOB"

XI _NI NE_KNCB " NI NE_KNOB"

XI _TRACKBALL " TRACKBALL"

Xl _QUADRATURE " QUADRATURE"

Xl _I D_MODULE "1 D_MODULE"

XI _SPACEBALL " SPACEBALL"

XI _DATAGLOVE " DATAGLOVE"

Xl _EYETRACKER " EYETRACKER'

Xl _CURSORKEYS " CURSORKEYS"

XI _FOOTMOUSE " FOOTMOUSE"

72

Input Extension

#def i
#def i
#def i
#def i
#def i

#def i
#def i

#def i
#def i

#def i
#def i

#def i
#def i

#def i
#def i

#def i

#def i

#def i
#def i

#def i
#def i

#def i
#def i

#def i

#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i

#def i
#def i
#def i

ne
ne
ne
ne
ne

ne
ne

ne
ne

ne
ne

ne
ne

ne
ne

ne

ne

ne
ne

ne
ne

ne
ne

ne

ne
ne
ne

ne
ne
ne
ne
ne
ne

ne
ne

ne
ne
ne

Dont _Check 0
Xl nput _Initial _Rel ease

Xl nput _Add_XDevi ceBel | 2
Xl nput _Add_XSet Devi ceVal uat or s

Xl nput _Add_XChangeDevi ceCont r ol

[

Xl _Absent 0
Xl _Present 1

Xl _Initial_Rel ease_Maj or
Xl _Initial _Release_M nor

Xl _Add_XDevi ceBel | _Maj or
Xl _Add_XDevi ceBel | _M nor

Xl _Add_XSet Devi ceVal uat or s_Maj or
Xl _Add_XSet Devi ceVal uat ors_M nor

Xl _Add_XChangeDevi ceCont r ol _Maj or
Xl _Add_XChangeDevi ceCont rol _M nor

DEVI CE_RESOLUTI ON 1
NoSuchExt ensi on 1

COUNT 0
CREATE 1

NewPoi nt er 0
NewKeyboar d 1

XPO NTER 0
XKEYBOARD 1

UseXKeyboard OxFF

| sXPoi nt er 0
| sXKeyboar d 1
| sXExt ensi onDevi ce 2

AsyncThi sDevi ce 0
SyncThi sDevi ce 1
Repl ayThi sDevi ce 2
AsyncQt her Devi ces 3
AsyncAl | 4

SyncAl | 5

Fol | owKeyboard 3
Revert ToFol | owKeyboard 3

DvAccel Num (1L << 0)
DvAccel Denom (1L << 1)
DvThreshol d (1L << 2)

[

73

Input Extension

0)
0)

0)

1)
1)
1)

#def i ne DvKeyd i ckPer cent (1L<<0)
#def i ne DvPer cent (1L<<1)
#defi ne DvPitch (1L<<2)
#def i ne DvDurati on (1L<<3)
#def i ne DvLed (1L<<4)
#def i ne DvLedMbde (1L<<5)
#def i ne DvKey (1L<<6)
#def i ne DvAut oRepeat Mode (1L<<7)
#define DvString (1L <<
#def i ne Dvl nt eger (1L <<
#def i ne Devi ceMode (1L <<
#defi ne Rel ative 0
#def i ne Absol ute 1
#define ProximtyState (1L <<
#define InProximty (OL <<
#define QutOFProximty (1L <<
#def i ne AddToLi st 0
#def i ne Del et eFronLi st 1
#def i ne Keyd ass 0

#def i ne Buttond ass 1

#def i ne Val uat or Cl ass 2
#def i ne FeedbackC ass 3
#defi ne Proxi mtyd ass 4

#def i ne Focusd ass 5

#defi ne Ot herd ass 6

#def i ne KbdFeedbackC ass 0

#def i ne PtrFeedbackC ass 1

#defi ne StringFeedbackd ass 2
#def i ne | nt eger Feedbackd ass 3
#def i ne LedFeedbackd ass 4

#def i ne Bel | Feedbackd ass 5

#define _devi cePoi nterMtionH nt O

#define _devi ceButtonlMtion 1
#define _devi ceButton2Mtion 2
#define _devi ceButton3Mtion 3
#define _devi ceButton4Motion 4
#define _devi ceButton5Motion 5
#define _devi ceButtonhMtion 6
#define _devi ceButtonG ab 7
#define _devi ceOmer GrabButton 8
#defi ne _noExt ensi onEvent 9
#defi ne Xl _BadDevi ce 0

#defi ne Xl _BadEvent 1

#defi ne Xl _BadMode 2

74

Input Extension

#def i ne Xl _Devi ceBusy 3
#define Xl _BadC ass 4
t ypedef unsi gned | ong XEvent d ass;

/***

*

* EXtension version structure.
*

*/

typedef struct {

i nt present;
short maj or _ver si on;
short m nor _versi on;

} XExt ensi onVer si on;

#endif /* XI_H_ */

75

Appendix A. Input Extension Protocol
Encoding

Syntactic Conventions

All numbers are in decimal, unless prefixed with #x, in which case they are in hexa-
decimal (base 16).

The general syntax used to describe requests, replies, errors, events, and compound
types is:
Nanmeof Thi ng
encode-form
encode-form
Each encode-form describes a single component.

For components described in the protocol as:

name: TYPE

the encode-form is:

N TYPE nane

N is the number of bytes occupied in the data stream, and TYPE is the interpretation
of those bytes. For example,

dept h: CARD8

becomes:

1 CARD8 depth

For components with a static numeric value the encode-form is:

N val ue name

76

Input Extension
Protocol Encoding

The value is always interpreted as an N-byte unsigned integer. For example, the
first two bytes of a Window error are always zero (indicating an error in general)
and three (indicating the Window error in particular):

10 Error
1 3 code

For components described in the protocol as:

nane: {Nanel, ..., Nanel}

the encode-form is:

N nane
val uel Nanmel

val uel Nanel
The value is always interpreted as an N-byte unsigned integer. Note that the size of
N is sometimes larger than that strictly required to encode the values. For example:

class: {lnputQutput, InputOnly, CopyFronParent}

becomes:

2 cl ass
0 CopyFr onPar ent
1 I nput Qut put
2 InputOnly

For components described in the protocol as:

NAME: TYPE or Alternativel ... or Alternativel

the encode-form is:

N TYPE NAME
val uel Alternativel

val uel Alternativel

The alternative values are guaranteed not to conflict with the encoding of TYPE.
For example:

77

Input Extension
Protocol Encoding

destinati on: W NDOW or Poi nter Wndow or | nput Focus

becomes:

4 W NDOW destination
0 Poi nt er W ndow
1 | nput Focus

For components described in the protocol as:

val ue- mask: BI TMASK

the encode-form is:

N Bl TMASK val ue- nask
maskl mask- nanel

maskl mask- nanel

The individual bits in the mask are specified and named, and N is 2 or 4. The most-
significant bit in a BITMASK is reserved for use in defining chained (multiword)
bitmasks, as extensions augment existing core requests. The precise interpretation
of this bit is not yet defined here, although a probable mechanism is that a 1-bit
indicates that another N bytes of bitmask follows, with bits within the overall mask
still interpreted from least-significant to most-significant with an N-byte unit, with
N-byte units interpreted in stream order, and with the overall mask being byte-
swapped in individual N-byte units.

For LISTofVALUE encodings, the request is followed by a section of the form:

VALUEs
encode-form

encode-form

listing an encode-form for each VALUE. The NAME in each encode-form keys to the
corresponding BITMASK bit. The encoding of a VALUE always occupies four bytes,
but the number of bytes specified in the encoding-form indicates how many of the
least-significant bytes are actually used; the remaining bytes are unused and their
values do not matter.

In various cases, the number of bytes occupied by a component will be specified by a
lowercase single-letter variable name instead of a specific numeric value, and often

78

Input Extension
Protocol Encoding

some other component will have its value specified as a simple numeric expression
involving these variables. Components specified with such expressions are always
interpreted as unsigned integers. The scope of such variables is always just the
enclosing request, reply, error, event, or compound type structure. For example:

2 3+n request length
4n LI STof PO NT points

For unused bytes (the values of the bytes are undefined and do not matter), the
encode-form is:

N unused

If the number of unused bytes is variable, the encode-form typically is:

p unused, p=pad(E)

where E is some expression, and pad(E) is the number of bytes needed to round E
up to a multiple of four.

pad(E) = (4 - (E nmod 4)) nod 4
Comon Types
LISTofFOO

* In this document the LISTof notation strictly means some number of repetitions
of the FOO encoding; the actual length of the list is encoded elsewhere.

SETofFOO

* A set is always represented by a bitmask, with a 1-bit indicating presence in the
set.

BITMASK: CARD32

WINDOW: CARD32

BYTE: 8-bit value

INTS8: 8-bit signed integer
INT16: 16-bit signed integer
INT32: 32-bit signed integer
CARDS8: 8-bit unsigned integer

79

Input Extension
Protocol Encoding

CARD16: 16-bit unsigned integer

CARD32: 32-bit unsigned integer

TIMESTAMP: CARD32

EVENTCLASS: CARD32

| NPUTCLASS

0

1
2
3
4
5
6

KeyCd ass

But t onCl ass
Val uat or Cl ass
Feedbackd ass
Proxi mtyd ass
Focusd ass

O herd ass

| NPUTCLASS

0
1
2
3
4

5

KbdFeedbackd ass

Pt r Feedbackd ass
StringFeedbackd ass

I nt eger Feedbackd ass
LedFeedbackd ass

Bel | FeedbackC ass

I NPUTI NFO

0
1
2

KEY! NFO
BUTTONI NFO
VALUATORI NFO

DEVI CEMODE

0
1

Rel ati ve
Absol ut e

PROXI M TYSTATE
O InProximty

1

Qut Of Proximty

80

Input Extension
Protocol Encoding

BOOL
0 Fal se
1 True

KEYSYM: CARD32
KEYCODE: CARDS
BUTTON: CARDS8

SETof KEYBUTNMASK
#x0001 Shift
#x0002 Lock
#x0004 Contr ol
#x0008 Mbodl
#x0010 Mod2
#x0020 Mod3
#x0040 Mbd4
#x0080 Mod5
#x0100 Buttonl
#x0200 Button2
#x0400 Button3
#x0800 Button4
#x1000 Buttonb5
#xe000 unused but nust be zero

SETof KEYMASK
encodi ngs are the same as for SETof KEYBUTMASK, except with
#xff 00 wunused but nust be zero

STRINGS: LISTofCARDS

STR
1 n length of name in bytes
n STRINGS nane

Errors

Request

10 Error

11 code

2 CARD16 sequence number
4 unused

2 CARD16 m nor opcode

81

Input Extension
Protocol Encoding

1 CARD8 mmjor opcode
21 unused

Val ue
10 Error
1 2 code

2 CARD16 sequence number
4 <32-bits> bad val ue

2 CARD16 m nor opcode

1 CARD8 mmjor opcode

21 unused

W ndow
10 Error
1 3 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 m nor opcode
1 CARD8 mmjor opcode
21 unused

Mat ch
10 Error
1 8 code
2 CARD16 sequence number
4 unused

2 CARD16 m nor opcode

1 CARD8 mmjor opcode

21 unused

Access
10 Error
1 10 code
2 CARD16 sequence number
4 unused
2 CARD16 m nor opcode
1 CARD8 mmjor opcode
21 unused

Al |l oc

82

Input Extension
Protocol Encoding

0O Error
11 code
CARD16 sequence numnber
unused
CARD16 mi nor opcode
CARD8 nmj or opcode
1 unused

NFRPNANPR R

Name
10 Error

1 15 code

2 CARD16 sequence numnber
4 unused

2 CARD16 mi nor opcode

1 CARD8 mmjor opcode

21 unused

Devi ce
10 Error

1 CARD8 code

2 CARD16 sequence number
4 unused

2 CARD16 m nor opcode

1 CARD8 mmjor opcode

21 unused

Event
10 Error
CARD8 code

1

2 CARD16 sequence nunber
4 unused

2 CARD16 mi nor opcode

1 CARD8 mmjor opcode

21 unused

Mode

0O Error

CARD8 code

CARD16 sequence numnber
unused

CARD16 mi nor opcode

CARD8 nmj or opcode

1 unused

NFRPNANPR R

83

Input Extension
Protocol Encoding

d ass
10 Error

1 CARD8 code

2 CARD16 sequence number
4 unused

2 CARD16 m nor opcode

1 CARD8 mmjor opcode

21 unused

Keyboards
KEYCODE values are always greater than 7 (and less than 256).
KEYSYM values with the bit #x10000000 set are reserved as vendor-specific.

The names and encodings of the standard KEYSYM values are contained in appendix
F.

Pointers
BUTTON values are numbered starting with one.

Requests

Get Ext ensi onVer si on

1 CARD8 input extension opcode
1 1 GCetExtensionVersion opcode
2 2+(n+p)/4 request length

2 n length of nane

2 unused

n STRINGS nane

p unused, p=pad(n)

=>

11 Reply

1 1 GCetExtensionVersion opcode
2 CARD16 sequence number

4 0 reply length

2 CARD16 mmjor version

2 CARD16 minor version

1 BOOL present

19 unused

Li st I nput Devi ces

84

Input Extension
Protocol Encoding

1 CARD8 input extension opcode
1 2 ListlnputDevices opcode
2 1 request length

=>

11 Reply

12 Li st | nput Devi ces opcode

2 CARD16 seqguence nunber

4 (n+p)/4 reply length

1 CARD8 nunber of input devices

23 unused

n LI STof DEVI CEI NFO i nfo for each input device
p unused, p=pad(n)

DEVI CElI NFO
4 CARD32 device type
1 CARD8 device id
1 CARD8 nunber of input classes this device reports
1 CARD8 device use
0 I sXPoi nter
1 I sXKeyboard
2 | sXExt ensi onDevi ce
1 unused
n LI STof I NPUTI NFO input info for each input class
m STR nane
p unused, p=pad(m

I NPUTI NFO KEYI NFO or BUTTONI NFO or VALUATORI NFO

KEYI NFO
10 classid
18 length
1 KEYCODE mi ni num keycode
1 KEYCODE maxi mum keycode
2 CARD16 nunber of keys
2 unused
BUTTONI NFO
11 classid
14 length

85

Input Extension
Protocol Encoding

2 CARD16 nunber of buttons

VALUATORI NFO
12 class id
1 8+12n length
1 n nunber of axes
1 SETof DEVI CEMODE node
4 CARD32 size of notion buffer
12n LI STof AXISINFO valuator limts

AXI SI NFO
4 CARD32 resolution
4 CARD32 m ni num val ue
4 CARD32 maxi num val ue

OpenDevi ce

1 CARD8 input extension opcode
1 3 OpenDevice opcode

2 2 request length

1 CARD8 device id

3 unused

=>

11 Reply

13 OpenDevi ce opcode

2 CARD16 seqguence nunber

4 (n+p)/4 reply length

1 CARD8 nunber of input classes

23 unused

n LI STof I NPUTCLASSI NFO i nput cl ass information
p unused, p=pad(n)

| NPUTCLASSI NFO

1 CARD8 input class id
KEY

BUTTON

VALUATOR

FEEDBACK

PROXI M TY

FOCUS

abr~hwNPEFLO

86

Input Extension
Protocol Encoding

6 OTHER
1 CARD8 event type base code for this class

Cl oseDevi ce

1 CARD8 input extension opcode
1 4 d oseDevice opcode

2 2 request length

1 CARD8 device id

3 unused

Set Devi ceMode

1 CARD8 input extension opcode
1 5 SetDeviceMde opcode

2 2 request length

1 CARD8 device id

1 CARD8 npde

2 unused

=>

11 Reply

15 Set Devi ceMbde opcode
2 CARD16 seqguence nunber
4 0 reply length

1 CARDS status

0 Success

1 Al readyG abbed

3 + first_error DeviceBusy

23 unused

Sel ect Ext ensi onEvent

1 CARD8 i nput extensi on opcode
16 Sel ect Ext ensi onEvent opcode
2 3+n request length

4 Wndow event w ndow

2 CARD16 count

2 unused

4n LI STof EVENTCLASS desired events

CGet Sel ect edExt ensi onEvent s
1 CARD8 input extension opcode

87

Input Extension
Protocol Encoding

1 7 GCetSel ect edExt ensi onEvents opcode
2 2 request length
4 Wndow event w ndow

=>

11 Reply

1 7 GCetSel ect eExt ensi onEvents opcode
2 CARD16 sequence number

4 n+m reply length

2n this client count

2 m all clients count

20 unused

4n LI STof EVENTCLASS this client 1ist
4m LI STof EVENTCLASS all clients list

ChangeDevi ceDont Pr opagat eLi st
1 CARD8 i nput extensi on opcode
18 ChangeDevi ceDont Pr opagat eLi st opcode
2 3+n request length
W ndow event w ndow
2n count of events
1 node
0 AddTolLi st
1 Del et eFronlLi st
1 unused
4n LI STof EVENTCLASS desired events

N

CGet Devi ceDont Pr opagat eLi st

1 CARD8 input extension opcode

1 9 GetDeviceDont Propagat elLi st opcode
2 2 request length

4 Wndow event w ndow

=>

11 Reply

19 CGet Devi ceDont Pr opagat eLi st opcode
2 CARD16 seqguence nunber

4 n reply length
2n count of events
22 unused

4n LI STof EVENTCLASS don't propagate |i st

88

Input Extension
Protocol Encoding

CGet Devi ceMbt i onEvent s
1 CARD8 input extension opcode
1 10 CetDeviceMtionEvents opcode
2 4 request length
4 TI MESTAMP start
0O CurrentTime
4 TI MESTAMP stop
0O CurrentTime
1 CARD8 device id
3 unused

\Y

1 Reply
10 Get Devi ceMbdti onEvents opcode
CARD16 sequence nunber
(mtl)n reply length
n nunber of DEVI CETI MECOORDs in events
m nunber of valuators per event
CARD8 nopde of the device
0 Absol ute
1 Relative
18 unused
(4m+4) n LI STof DEVI CETI MECOORD event s

PR RANR R

DEVI CETI MECOORD
4 TI MESTAMP tine
4m LI STof I NT32 val uators

ChangeKeyboar dDevi ce
1 CARD8 input extension opcode
1 11 ChangeKeyboar dDevi ce opcode
2 2 request length
1 CARD8 device id
3 unused

=>

11 Reply

1 11 ChangeKeyboar dDevi ce opcode
2 CARD16 sequence number

4 0 reply length

1 status

89

Input Extension
Protocol Encoding

0 Success

1 Al readyG abbed
2 Devi ceFrozen
23 unused

ChangePoi nt er Devi ce

1 CARD8 input extension opcode
1 12 ChangePoi nt er Devi ce opcode
2 2 request length

1 CARD8 x-axis

1 CARD8 y-axis

1 CARD8 device id

1 unused

=>

11 Reply

1 12 ChangePoi nt er Devi ce opcode
2 CARD16 sequence number
4 0 reply length
1 status
0 Success
1 Al readyG abbed
2 Devi ceFrozen
23 unused

GrabDevi ce
1 CARD8 input extension opcode
1 13 GrabDevice opcode
2 5+n request |l ength
4 W NDOW gr ab-w ndow
4 TIMESTAMP tinme
0 CurrentTinme
2 n count of events
1 t hi s- devi ce- node
0 Synchronous
1 Asynchronous
1 ot her - devi ces- node
0 Synchronous
1 Asynchronous
1 BOOL owner-events
1 CARD8 device id
2 unused
4n LI STof EVENTCLASS event i st

90

Input Extension
Protocol Encoding

=>

11 Reply

1 13 G abDevice opcode
2 CARD16 sequence number
4 0 reply length

1 st at us

0 Success

1 Al readyG abbed

2 InvalidTinme

3 Not Vi ewabl e

4 Frozen

23 unused

Ungr abDevi ce
1 CARD8 input extension opcode
1 14 UngrabDevi ce opcode
2 3 request length
4 TI MESTAMP tine
0 CurrentTine
1 CARD8 device id
3 unused

GrabDevi ceKey

CARD8 i nput extension opcode
15 G abDevi ceKey opcode
5+n request |length

W NDOW gr ab-wi ndow

2 n count of events

2 SETof KEYMASK nodifiers
#x8000 AnyModi fi er

1 CARD8 nodifier device
#X0FF UseXKeyboard

1 CARD8 grabbed device

1 KEYCODE key

0 AnyKey

1 t hi s- devi ce- node

0 Synchronous

1 Asynchronous

1 ot her - devi ces- node

0 Synchronous

1 Asynchronous

1 BOOL owner-events

2 unused

4n LI STof EVENTCLASS event |i st

AR R

91

Input Extension
Protocol Encoding

Ungr abDevi ceKey
1 CARD8 input extension opcode
1 16 UngrabDevi ceKey opcode
2 4 request length
4 W NDOW gr ab-w ndow
2 SETof KEYMASK nodifiers
#x8000 AnyModi fi er
1 CARD8 nodifier device
#X0FF UseXKeyboard
1 KEYCCDE key
0 AnyKey
1 CARD8 grabbed device
3 unused

GrabDevi ceButt on

1 CARD8 input extension opcode
1 17 G abDeviceButton opcode
2 5+n request length

W NDOW gr ab-wi ndow

CARD8 grabbed device

CARD8 nodifier device
#X0FF UseXKeyboard
2 n count of desired events
2 SETof KEYMASK nodifiers

1 t hi s- devi ce- node

0 Synchronous

1 Asynchronous

1 ot her - devi ce- node

0 Synchronous

1 Asynchronous

1 BUTTON button

0 AnyButton

1 BOOL owner-events

#x8000 AnyModi fi er

2 unused
4n LI STof EVENTCLASS event |i st

N

1
1

Ungr abDevi ceBut t on

1 CARD8 input extension opcode
1 18 UngrabDevi ceButton opcode
2 4 request length

4 W NDOW grab-w ndow

2 SETof KEYMASK nodifiers

#x8000 AnyMbdi fi er

1 CARD8 nodifier device

#X0FF UseXKeyboard

1 BUTTON button

92

Input Extension
Protocol Encoding

0 AnyButton
1 CARD8 grabbed device
3 unused

Al | owDevi ceEvent s
1 CARD8 input extension opcode
1 19 AllowbeviceEvents opcode
2 3 request length
4 TI MESTAMP tinme
0 CurrentTinme
1 node
AsyncThi sDevi ce
SyncThi sDevi ce
Repl ayThi sDevi ce
AsyncQt her Devi ces
AsyncAl
SyncAl |
1 CARD8 device id
2 unused

a b~ wdNEFLO

Get Devi ceFocus
1 CARD8 input extension opcode
1 20 CetDevi ceFocus opcode
2 2 request length
1 CARD8 device
3 unused

=>
11 Reply
1 20 CetDevi ceFocus opcode
2 CARD16 sequence nunber
4 0 reply length
4 W NDOW focus
0 None
1 Poi nt er Root
3 Fol | owKeyboard
4 TI MESTAWMP focus tinme
1 revert-to
0 None
1 Poi nt er Root
2 Parent
3 Fol | owKeyboard
15 unused

93

Input Extension
Protocol Encoding

Set Devi ceFocus

1 CARD8 input extension opcode
1 21 SetDevi ceFocus opcode
2 4 request length

4 W NDOW focus

0 None

1 Poi nt er Root

3 Fol | owKeyboard

4 TI MESTAMP tine

0O CurrentTime

1 revert-to

0 None

1 Poi nt er Root

2 Parent

3 Fol | owKeyboard

1 CARD8 device

2 unused

Get FeedbackCont r ol
1 CARD8 input extension opcode
1 22 Cet FeedbackControl opcode
2 2 request length
1 CARD8 device id
3 unused

=>

11 Reply

1 22 Cet FeedbackControl opcode

2 CARD16 sequence number

4 m4 reply length

2 n nunber of feedbacks supported
22 unused

m LI STof FEEDBACKSTATE f eedbacks

FEEDBACKSTATE KBDFEEDBACKSTATE, PTRFEEDBACKSTATE, | NTEGERFEEDBACKSTATE
STRI NGFEEDBACKSTATE, BELLFEEDBACKSTATE, or LEDFEEDBACKSTATE

KBDFEEDBACKSTATE
1 0 feedback class id
1 CARDB id of this feedback
2 20 length
2 CARD16 pitch

94

Input Extension
Protocol Encoding

2 CARD16 duration

4 CARD32 | ed_nask

4 CARD32 | ed val ues

1 gl obal _aut o_r epeat
0 Of
1 On

1 CARD8 click

1 CARD8 percent

1 unused

32 LI STof CARD8 auto_repeats

PTRFEEDBACKSTATE
1 0 feedback class id

1 CARD8 id of this feedback

2 12 length

2 unused

2 CARD16 accel eration-nunerator

2 CARD16 accel erati on-denom nator
2 CARD16 threshold

| NTEGERFEEDBACKSTATE
0 feedback class id
CARD8 id of this feedback
16 length
CARD32 resolution
INT32 m nimum val ue
I NT32 maxi mum val ue

A BRABANREFPR

STRI NG-FEEDBACKSTATE
11 feedback class id
1 CARD8 id of this feedback
2 4n+8 length
2 CARD16 max_synbol s
2n nunber of keysyns supported
4n LI STof KEYSYM key synbol s support ed

BELLFEEDBACKSTATE
1 feedback class id
CARD8 id of this feedback
12 length
CARD8 percent
unused
CARD16 pitch

NWEFEDNPRF B

95

Input Extension
Protocol Encoding

2 CARD16 duration

LEDFEEDBACKSTATE
1 feedback class id
CARD8 id of this feedback
12 length
CARD32 | ed_nask
Bl TMASK | ed_val ues
#x0001 On
#x0002 O f

A BRADNPREPLPR

ChangeFeedbackCont r ol
1 CARD8 input extension opcode
1 23 ChangeFeedbackControl opcode
2 3+n/4 request |length
4 BI TMASK val ue-mask (has n bits set to 1)
#x0001 keyclick- percent
#x0002 bel | - per cent
#x0004 bell -pitch
#x0008 bel | -duration
#x0010 | ed
#x0020 | ed- node
#x0040 key
#x0080 aut o-r epeat - nbde
#x0001 string
#x0001 i nt eger
#x0001 accel erati on-numer at or
#x0002 accel erati on-denom nat or
#x0004 accel eration-threshol d
1 CARD8 device id
1 CARD8 feedback class id
2 unused
n FEEDBACKCLASS

FEEDBACKCLASS KBDFEEDBACKCTL, PTRFEEDBACKCTL, | NTEGERFEEDBACKCTL
STRI NGFEEDBACKCTL, BELLFEEDBACKCTL, or LEDFEEDBACKCTL

KBDFEEDBACKCTL
1 0 feedback class id
1 CARDB id of this feedback
2 20 length
1 KEYCODE key
1 aut o- r epeat - node

96

Input Extension
Protocol Encoding

0 Of
1 On
2 Default
1 INT8 key-click-percent
1 INT8 bell-percent
2 INT16 bell-pitch
2 INT16 bell-duration
4 CARD32 | ed_nask
4 CARD32 | ed val ues

PTRFEEDBACKCTL

1 feedback class id

CARD8 id of this feedback
12 length

unused

I NT16 numerator

I NT16 denom nat or

INT16 threshold

NNNNNRE P

STRI NGCTL
1 2 feedback class id
1 CARD8 id of this feedback
2 4n+8 length
2 unused
2 n nunber of keysyns to display
4n LI STof KEYSYM [|ist of key synmbols to display

| NTEGERCTL
1 3 feedback class id
1 CARDB id of this feedback
2 8 length
4 | NT32 integer to display

LEDCTL

1 4 feedback class id

1 CARDB id of this feedback
2 12 length
4 CARD32 | ed_nask
4 BITMASK | ed val ues

#x0001 On

#x0002 O f

97

Input Extension
Protocol Encoding

BELLCTL

5 feedback class id

CARD8 id of this feedback
8 length

I NT8 percent

unused
INT16 pitch
I NT16 duration

NNWEFENRE P

Get Devi ceKeyMappi ng
1 CARD8 input extension opcode
1 24 CetDevi ceKeyMappi ng opcode
2 2 request length

1 CARD8 device

1 KEYCODE first-keycode

1 CARD8 count

1 unused

=>

11 Reply

1 24 CetDevi ceKeyMappi ng opcode

2 CARD16 sequence number

4 nm reply length (m= count field fromthe request)
1 n keysyns-per-keycode

23 unused

4nm LI STof KEYSYM keysyns

ChangeDevi ceKeyMappi ng
1 CARD8 input extension opcode
1 25 ChangeDevi ceKeyMappi ng opcode
2 2+nm request length
1 CARD8 device
1 KEYCODE first-keycode
1 m keysyns-per-keycode
1 n keycode-count
4nm LI STof KEYSYM keysyns

CGet Devi ceMbdi fi er Mappi ng
1 CARD8 input extension opcode
1 26 CetDeviceMdifierMppi ng opcode

98

Input Extension
Protocol Encoding

2 2 request length
1 CARD8 device
3 unused

=>

11 Reply

1 26 CetDeviceMdifierMppi ng opcode
2 CARD16 sequence number

4 2n reply length

1 n keycodes-per-nodifier

23 unused

8n LI STof KEYCODE keycodes

Set Devi ceMbdi fi er Mappi ng

1 CARD8 input extension opcode
1 27 SetDeviceMdifier opcode
2 2+2n request length

1 CARD8 device

1 n keycodes-per-nodifier

2 unused
8n LI STof KEYCODE keycodes

=>
11 Reply
1 27 SetDeviceMdifierMappi ng opcode
2 CARD16 sequence number
4 0 reply length
1 status
0 Success
1 Busy
2 Failed
23 unused

Get Devi ceBut t onMappi ng

1 CARD8 input extension opcode

1 28 CetDevi ceButtonMappi ng opcode
2 2 request length

1 CARD8 device

3 unused

99

Input Extension
Protocol Encoding

=>

11 Reply

1 28 CetDevi ceButtonMappi ng opcode
2 CARD16 sequence number

4 (n+p)/4 reply length

1 n nunber of elenents in map |i st
23 unused

n LI STof CARDS map

p unused, p=pad(n)

Set Devi ceBut t onMappi ng
1 CARD8 input extension opcode

1 29 SetDevi ceButtonMappi ng opcode
2 2+(n+p)/4 request length

1 CARD8 device

1 n length of map

2 unused

n LI STof CARD8 map

p unused, p=pad(n)

=>

11 Reply

1 29 SetDevi ceButtonMappi ng opcode
2 CARD16 sequence number
4 0 reply length
1 status
0 Success
1 Busy
23 unused

QueryDevi ceSt at e

1 CARD8 input extension opcode
1 30 QueryDeviceState opcode

2 2 request length

1 CARD8 device

3 unused

=>

11 Reply

1 30 QueryDevi ceSt at e opcode

2 CARD16 seqguence nunber

4 m4 reply length

1n nunber of input classes

100

Input Extension
Protocol Encoding

23 unused
m LI STof | NPUTSTATE

| NPUTSTATE KEYSTATE or BUTTONSTATE or VALUATORSTATE

KEYSTATE
1 CARD8 key input class id
1 36 length
1 CARD8 num keys
1 unused
32 LI STof CARD8 status of keys

BUTTONSTATE
1 CARD8 button input class id
1 36 length
1 CARD8 num buttons
1 unused
32 LI STof CARD8 status of buttons

VALUATORSTATE

1 CARD8 valuator input class id

14n + 4 length

1 n nunber of valuators

1 node

#x01 Devi ceMbde (0 = Relative, 1 = Absol ute)

#x02 ProximtyState (0 = InProximty, 1 = QutOFProximty)
4n LI STof CARD32 status of valuators

SendExt ensi onEvent
1 CARD8 i nput extensi on opcode
131 SendExt ensi onEvent opcode
24+ 8n + m request length
4 WNDOW destination
CARDB devi ce
BOOL propagat e
CARD16 event cl ass count
CARD8 num events
3 unused
32n LI STof EVENTS events to send
4m LI STof EVENTCLASS desired events

RPN R R

101

Input Extension
Protocol Encoding

Devi ceBel

1 CARD8 input extension opcode
1 32 DeviceBell opcode

2 2 request length

1 CARD8 device id

1 CARD8 feedback id

1 CARD8 feedback class

1 INT8 percent

Set Devi ceVal uat ors

1 CARD8 input extension opcode

1 33 SetDeviceVal uators opcode

2 2+ n request length

1 CARD8 device id

1 CARD8 first valuator

1n nunber of valuators

1 unused
4n LI STof I NT32 val uator val ues to set

=>
11 Reply
1 33 Set Devi ceVal uat ors opcode
2 CARD16 sequence nunber
4 0 reply length
1 CARDS status
0 Success
1 Al readyG abbed
23 unused

Cet Devi ceCont r ol

1 CARD8 input extension opcode
1 34 CetDeviceControl opcode

2 2 request length

2 CARD16 device control type

1 CARD8 device id

1 unused

=>

11 Reply

1 34 CGet Devi ceCont rol opcode

102

Input Extension
Protocol Encoding

2 CARD16 seqguence nunber
4 nl4 reply length
1 CARDS status
0 Success
1 Al readyG abbed
3 + first_error DeviceBusy
23 unused
n DEVI CESTATE

DEVI CESTATE DEVI CERESOLUTI ONSTATE

DEVI CERESOLUTI ONSTATE
2 0 control type
2 8 + 12n length
4 n num val uators
4n LI STOF CARD32 resol ution val ues
4n LI STOF CARD32 resol ution m n_val ues
4n LI STOF CARD32 resol uti on nax_val ues

ChangeDevi ceCont r ol

1 CARD8 input extension opcode
35 ChangeDevi ceControl opcode
2+n/ 4 request length
CARD16 control type
CARD8 device id

unused

DEVI CECONTROL

S FPFEFPDNDNPE

DEVI CECONTROL DEVI CERESOLUTI ONCTL

DEVI CERESOLUTI ONCTL
2 1 control type
2 8 +4n length
1 CARD8 first_valuator
1n num val uat or s
2 unused
4n LI STOF CARD32 resol ution val ues

103

Input Extension
Protocol Encoding

=>

1 Reply

35 ChangeDevi ceCont rol opcode
CARD16 sequence nunber

0 reply length

CARDS status

0 Success

1 Al readyG abbed

3 + first_error DeviceBusy

23 unused

P ANRE R

Events

DeviceKeyPress, DeviceKeyRelease, DeviceButtonPress, DeviceButtonRelease,
ProximityIn, ProximityOut, and DeviceStateNotify events may be followed by zero
or more DeviceValuator events. DeviceMotionNotify events will be followed by one
or more DeviceValuator events.

Devi ceVal uat or

1 CARD8 code

1 CARD8 device id

2 CARD16 sequence number

2 SETof KEYBUTMASK state

1 n nunber of valuators this device reports
1 m nunber of first valuator in this event
24 LI STof | NT32 val uators

Devi ceKeyPr ess

CARD8 code

KEYCODE det ai |

CARD16 sequence number
TI MESTAMP tine

W NDOW r oot

W NDOW event

W NDOW child

0 None

INT16 root-x

I NT16 root-y

I NT16 event-x

I NT16 event-y

SETof KEYBUTMASK st ate
BOOL sane-screen
CARD8 device id

#x80 MORE_EVENTS fol | ow

N N N L S

P EPDNNNDNDN

104

Input Extension
Protocol Encoding

Devi ceKeyRel ease

N N N L S

P EPDNNNDNDN

De

N N N L S

P EPDNNNDNDN

CARD8 code

KEYCODE det ai |

CARD16 sequence numnber
TI MESTAMP tine

W NDOW r oot

W NDOW event

W NDOW child

0 None

INT16 root-x

I NT16 root-y

I NT16 event-x

I NT16 event-y

SETof KEYBUTMASK state
BOOL sane-screen
CARD8 device id

#x80 MORE_EVENTS fol | ow

vi ceBut t onPr ess
CARD8 code
BUTTON detai l
CARD16 sequence numnber
TI MESTAMP tine
W NDOW r oot
W NDOW event
W NDOW child
0 None
INT16 root-x
I NT16 root-y
I NT16 event-x
I NT16 event-y
SETof KEYBUTMASK st ate
BOOL sane-screen
CARD8 device id
#x80 MORE_EVENTS fol | ow

Devi ceBut t onRel ease

N N N L S

CARD8 code

BUTTON detai l

CARD16 sequence numnber
TI MESTAMP tine

W NDOW r oot

W NDOW event

W NDOW child

0 None

2 INT16 root-x
2 INT16 root-y

105

Input Extension
Protocol Encoding

I NT16 event-x
I NT16 event-y
SETof KEYBUTMASK st ate
BOOL sane-screen
CARD8 device id
#x80 MORE_EVENTS fol | ow

P FEPDNNDN

Devi ceMot i onNoti fy
1 CARD8 code
1 det ai |
0 Nor nmal
1 Hint
CARD16 sequence numnber
TI MESTAMP tine
W NDOW r oot
W NDOW event
W NDOW child
0 None
INT16 root-x
I NT16 root-y
I NT16 event-x
I NT16 event-y
SETof KEYBUTMASK st ate
BOOL sane-screen
CARD8 device id
#x80 MORE_EVENTS fol | ow

ArBASADDN

P EPDNNNDNDN

Devi ceFocusln

1 CARD8 code

1 det ai |
Ancest or
Vi rtual

I nferior
Nonl i near
Nonl i near Vi rt ual
Poi nt er
Poi nt er Root
None
2 CARD16 sequence number
4 TI MESTAMP tine
4 W NDOW event
1 node

0 Nor nmal

1 Gab

2 Ungrab

3 Wi | eGrabbed
1 CARD8 device id
18 unused

No oh~ WNEO

106

Input Extension
Protocol Encoding

Devi ceFocusQut

1 CARD8 code

1 det ai |
Ancest or
Vi rtual

I nferior

Nonl i near

Nonl i near Vi rt ual
Poi nt er

Poi nt er Root
None
2 CARD16 sequence number
4 TI MESTAMP tine
4 W NDOW event
1 node

0 Nor nmal

1 Gab

2 Ungrab

3 Wi | eGrabbed
1 CARD8 device id
18 unused

No o h~ WNEO

Proximtyln

CARD8 code

unused

CARD16 sequence numnber
TI MESTAMP tine

W NDOW r oot

W NDOW event

W NDOW child

0 None

INT16 root-x

I NT16 root-y

I NT16 event-x

I NT16 event-y

SETof KEYBUTMASK state
BOOL sane-screen

CARD8 device id
#x80 MORE_EVENTS fol | ow

N N N L S

P EPDNNNDNDN

Pr oxi m t yQut

1 CARD8 code

1 unused

2 CARD16 sequence number
4 TI MESTAMP tine

107

Input Extension
Protocol Encoding

4 W NDOW r oot
4 W NDOW event
4 WNDOW child
0 None
INT16 root-x
I NT16 root-y
I NT16 event-x
I NT16 event-y
SETof KEYBUTMASK state
BOOL sane-screen
CARD8 device id
#x80 MORE_EVENTS fol | ow

P EPDNNNDNDN

DeviceStateNotify events may be immediately followed by zero or one DeviceKeyS-
tateNotify and/ or zero or more DeviceValuator events.

Devi ceStateNotify
1 CARD8 code
1 CARD8 device id
#x80 MORE_EVENTS fol | ow
2 CARD16 sequence number
4 TI MESTAMP tine
1 CARD8 num keys
1 CARD8 num buttons
1 CARD8 numvaluators
1 CARD8 valuator nobde and input classes reported
#x01 reporting keys
#x02 reporting buttons
#x04 reporting valuators
#x40 device node (0 = Relative, 1 = Absolute)
#x80 proximty state (0 = InProximty, 1 = QutCOfProximty)
4 LI STof CARD8 first 32 keys (if reported)
4 LI STof CARD8 first 32 buttons (if reported)
12 LI STof CARD32 first 3 valuators (if reported)

Devi ceKeySt at eNot i fy
1 CARD8 code
1 CARD8 device id
#x80 MORE_EVENTS fol | ow
2 CARD16 sequence numnber
28 LI STof CARD8 state of keys 33-255

Devi ceBut t onSt at eNot i fy
1 CARD8 code
1 CARD8 device id
#x80 MORE_EVENTS fol | ow

108

Input Extension
Protocol Encoding

2 CARD16 sequence number
28 LI STof CARD8 state of buttons 33-255

Devi ceVal uat or

1 CARD8 code

1 CARD8 device id
2 CARD16 sequence nunber
2 SETof KEYBUTMASK state

1 n nunber of valuators this device reports
1 n nunber of first valuator in this event
24 LI STof I NT32 val uators

Devi ceMappi ngNot i fy
1 CARD8 code
1 CARD8 device id
2 CARD16 sequence number
1 request
0 Mappi nghbdi fi er
1 Mappi ngKeyboard
2 Mappi ngPoi nt er
1 KEYCODE first-keycode
1 CARD8 count
1 unused
4 TI MESTAMP tinme
20 unused

ChangeDevi ceNot i fy

1 CARD8 code

1 CARD8 id of device specified on change request
2 CARD16 sequence number

4 TI MESTAMP tine

1 r equest

0 NewPoi nt er

1 NewKeyboard
23 unused

109

	X Input Device Extension Library
	Table of Contents
	Chapter 1. Input Extension
	Overview
	Design Approach
	Core Input Devices
	Extension Input Devices
	Input Device Classes

	Using Extension Input Devices

	Library Extension Requests
	Window Manager Functions
	Changing the Core Devices
	Event Synchronization and Core Grabs
	Extension Active Grabs
	Passively Grabbing a Key
	Passively Grabbing a Button
	Thawing a Device
	Controlling Device Focus
	Controlling Device Feedback
	Ringing a Bell on an Input Device
	Controlling Device Encoding
	Controlling Button Mapping
	Obtaining the State of a Device

	Events
	Event Types
	Event Classes
	Event Structures
	Device Key Events
	Device Button Events
	Device Motion Events
	Device Focus Events
	Device StateNotify Event
	Device Mapping Event
	ChangeDeviceNotify Event
	Proximity Events

	Event Handling Functions
	Determining the Extension Version
	Listing Available Devices
	Enabling and Disabling Extension Devices
	Changing the Mode of a Device
	Initializing Valuators on an Input Device
	Getting Input Device Controls
	Changing Input Device Controls
	Selecting Extension Device Events
	Determining Selected Device Events
	Controlling Event Propagation
	Sending an Event
	Getting Motion History

	Appendix A. Input Extension Protocol Encoding

