
X Display Manager Control Protocol

X.Org Standard

Keith Packard, Massachusetts Institute of Technology

X Display Manager Control Protocol: X.Org Standard
by Keith Packard
X Version 11, Release 7.7
Version 1.1
Copyright © 1989, 2004 The Open Group

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of The Open Group shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization from The Open Group.

X Window System is a trademark of The Open Group.

iii

Table of Contents
1. Purpose and Goals .. 1
2. Overview of the Protocol .. 3
3. Data Types .. 4
4. Packet Format ... 5
5. Protocol ... 6
6. Session Termination .. 17
7. State Diagrams .. 18
8. Protocol Encoding ... 22
9. Display Class Format .. 26
10. Manufacturer Display ID Format .. 27
11. Authentication ... 28

1

Chapter 1. Purpose and Goals
The purpose of the X Display Manager Control Protocol (XDMCP) is to provide a
uniform mechanism for an autonomous display to request login service from a re-
mote host. By autonomous, we mean the display consists of hardware and process-
es that are independent of any particular host where login service is desired. (For
example, the server cannot simply be started by a fork/exec sequence on the host.)
An X terminal (screen, keyboard, mouse, processor, network interface) is a prime
example of an autonomous display.

From the point of view of the end user, it is very important to make autonomous dis-
plays as easy to use as traditional hardwired character terminals. Specifically, you
can typically just power on a hardwired terminal and be greeted with a login prompt.
The same should be possible with autonomous displays. However, in a network en-
vironment with multiple hosts, the end user may want to choose which host(s) to
connect to. In an environment with many displays and many hosts, a site adminis-
trator may want to associate particular collections of hosts with particular displays.
We would like to support the following options:

• The display has a single, fixed host to which it should connect. It should be possible
to power on the display and receive a login prompt, without user intervention.

• Any one of several hosts on a network or subnetwork may be acceptable for ac-
cepting login from the display. (For example, the user's file systems can be mount-
ed onto any such host, providing comparable environments.) It should be possible
for the display to broadcast to find such hosts and to have the display either au-
tomatically choose a host or present the possible hosts to the user for selection.

• The display has a fixed set of hosts that it can connect to. It should be possible for
the display to have that set stored in RAM, but it should also be possible for a site
administrator to be able to maintain host sets for a large number of displays using
a centralized facility, without having to interact (physically or electronically) with
each individual display. Particular hosts should be allowed to refuse login service,
based on whatever local criteria are desired.

The control protocol should be designed in such a way that it can be used over a
reasonable variety of communication transport layers. In fact, it is quite desirable
if every major network protocol family that supports the standard X protocol is also
capable of supporting XDMCP, because the end result of XDMCP negotiation will
be standard X protocol connections to the display. However, because the number
of displays per host may be large, a connection-based protocol appears less desir-
able than a connection-less protocol. For this reason the protocol is designed to use
datagram services with the display responsible for sequencing and retransmission.

To keep the burden on displays at a minimum (because display cost is not a factor
that can be ignored), it is desirable that displays not be required to maintain per-
manent state (across power cycles) for the purposes of the control protocol, and it
is desirable to keep required state at a minimum while the display is powered on.

Security is an important consideration and must be an integral part of the design.
The important security goals in the context of XDMCP are:

• It should be possible for the display to verify that it is communicating with a legit-
imate host login service. Because the user will present credentials (for example,
password) to this service, it is important to avoid spoof attacks.

Purpose and Goals

2

• It should be possible for the display and the login service to negotiate the autho-
rization mechanism to be used for the standard X protocol.

• It should be possible to provide the same level of security in verifying the login
service as is provided by the negotiated authorization mechanism.

• Because there are no firm standards yet in the area of security, XDMCP must be
flexible enough to accomodate a variety of security mechanisms.

3

Chapter 2. Overview of the Protocol
XDMCP is designed to provide authenticated access to display management ser-
vices for remote displays. A new network server, called a \fIDisplay Manager\fP, will
use XDMCP to communicate with displays to negotiate the startup of X sessions.
The protocol allows the display to authenticate the manager. It also allows most of
the configuration information to be centralized with the manager and to ease the
burden of system administration in a large network of displays. The essential goal
is to provide plug-and-play services similar to those provided in the familiar main-
frame/terminal world.

Displays may be turned off by the user at any time. Any existing session running
on a display that has been turned off must be identifiable. This is made possible by
requiring a three-way handshake to start a session. If the handshake succeeds, any
existing session is terminated immediately and a new session started. There is the
problem (at least with TCP) that connections may not be closed when the display
is turned off. In most environments, the manager should reduce this problem by
periodically XSync'ing on its own connection, perhaps every five to ten minutes, and
terminating the session if its own connection ever closes.

Displays should not be required to retain permanent state for purposes of the con-
trol protocol. One solution to packets received out of sequence would be to use mo-
notonically increasing message identifiers in each message to allow both sides to
ignore messages that arrive out-of-sequence. For this to work, displays would at a
minimum have to increment a stable crash count each time they are powered on and
use that number as part of a larger sequence number. But if displays cannot retain
permanent state this cannot work. Instead, the manager assumes the responsibility
for permanent state by generating unique numbers that identify a particular session
and the protocol simply ignores packets that correspond to an invalid session.

The Manager must not be responsible for packet reception. To prevent the Manager
from becoming stuck because of a hostile display, no portion of the protocol requires
the Manager to retransmit a packet. Part of this means that any valid packet that the
Manager does receive must be acknowledged in some way to prevent the display
from continuously resending packets. The display can keep the protocol running as
it will always know when the Manager has received (at least one copy of) a packet.
On the Manager side, this means that any packet may be received more than once
(if the response was lost) and duplicates must be ignored.

4

Chapter 3. Data Types
XDMCP packets contain several types of data. Integer values are always stored most
significant byte first in the packet ("Big Endian" order). As XDMCP will not be used
to transport large quantities of data, this restriction will not substantially hamper
the efficiency of any implementation. Also, no padding of any sort will occur within
the packets.

Type Name Length (Bytes) Description
CARD8 1 A single byte unsigned integer
CARD16 2 Two byte unsigned integer
CARD32 4 Four byte unsigned integer
ARRAY8 n+2 This is actually a CARD16 followed by

a collection of CARD8. The value of the
CARD16 field (n) specifies the number
of CARD8 values to follow

ARRAY16 2*m+1 This is a CARD8 (m) which specifies the
number of CARD16 values to follow

ARRAY32 4*l+1 This is a CARD8 (l) which specifies the
number of CARD32 values to follow

ARRAYofARRAY8 ? This is a CARD8 which specifies the
number of ARRAY8 values to follow.

5

Chapter 4. Packet Format
All XDMCP packets have the following information:

Length (Bytes) Field Type Description
2 CARD16 version number
2 CARD16 opcode packet header
2 CARD16 n = length of remaining data in bytes
n ??? packet-specific data

The fields are as follows:

Version number This specifies the version of XDMCP that generated
this packet in case changes in this protocol are re-
quired. Displays and managers may choose to support
older versions for compatibility. This field will initially
be one (1).

Opcode This specifies what step of the protocol this pack-
et represents and should contain one of the fol-
lowing values (encoding provided in section below):
BroadcastQuery, Query, IndirectQuery, Forward-
Query, Willing, Unwilling, Request, Accept, De-
cline, Manage, Refuse, Failed, KeepAlive or Alive.

Length of data in bytes This specifies the length of the information following
the first 6 bytes. Each packet-type has a different for-
mat and will need to be separately length-checked
against this value. Because every data item has either
an explicit or implicit length, this can be easily accom-
plished. Packets that have too little or too much data
should be ignored.

Packets should be checked to make sure that they satisfy the following conditions:

1. They must contain valid opcodes.

2. The length of the remaining data should correspond to the sum of the lengths of
the individual remaining data items.

3. The opcode should be expected (a finite state diagram is given in a later section).

4. If the packet is of type Manage or Refuse, the Session ID should match the value
sent in the preceding Accept packet.

6

Chapter 5. Protocol
Each of the opcodes is described below. Because a given packet type is only ever
sent one way, each packet description below indicates the direction. Most of the
packets have additional information included beyond the description above. The ad-
ditional information is appended to the packet header in the order described with-
out padding, and the length field is computed accordingly.

Query
BroadcastQuery
IndirectQuery
 Display -> Manager
 Additional Fields:
 Authentication Names: ARRAYofARRAY8
 Specifies a list of authentication names that the display

supports. The manager will choose one of these and re-
turn it in the Willing packet.

 Semantics
 A Query packet is sent from the display to a specific host

to ask if that host is willing to provide management ser-
vices to this display. The host should respond with Will-
ing if it is willing to service the display or Unwilling if it
is not.

A BroadcastQuery packet is similar to the Query packet
except that it is intended to be received by all hosts on
the network (or subnetwork). However, unlike Query re-
quests, hosts that are not willing to service the display
should simply ignore BroadcastQuery requests.

An IndirectQuery packet is sent to a well known man-
ager that forwards the request to a larger collection of
secondary managers using ForwardQuery packets. In
this way, the collection of managers that respond can be
grouped on other than network boundaries; the use of
a central manager reduces system administrative over-
head. The primary manager may also send a Willing
packet in response to this packet.

Each packet type has slightly different semantics:
 The Query packet is destined only for a single

host. If the display is instructed to Query multi-
ple managers, it will send multiple Query pack-
ets. The Query packet also demands a response
from the manager, either Willing or Unwilling.

The BroadcastQuery packet is sent to many
hosts. Each manager that receives this packet
will not respond with an Unwilling packet.

Protocol

7

The IndirectQuery packet is sent to only one
manager with the request that the request be
forwarded to a larger list of managers using
ForwardQuery packets. This list is expected to
be maintained at one central site to reduce ad-
ministrative overhead. The function of this pack-
et type is similar to BroadcastQuery except
that BroadcastQuery is not forwarded.

 Valid Responses:
 Willing, Unwilling
 Problems/Solutions:
 Problem:
 Not all managers receive the query packet.

Indication:
 None if BroadcastQuery or IndirectQuery was

sent, else failure to receive Willing.
 Solution:
 Repeatedly send the packet while waiting for

user to choose a manager.
 Timeout/Retransmission policy:
 An exponential backoff algorithm should be used here

to reduce network load for long-standing idle displays.
Start at 2 seconds, back off by factors of 2 to 32 sec-
onds, and discontinue retransmit after 126 seconds.
The display should reset the timeout when user-input
is detected. In this way, the display will wakeup when
touched by the user.

ForwardQuery

 Primary Manager -> Secondary Manager

Additional Fields:
 Client Address: ARRAY8
 Specifies the network address of the client display.
 Client Port: ARRAY8
 Specifies an identification of the client task on the client

display.
 Authentication Names: ARRAYofARRAY8
 Is a duplicate of Authentication Names array that was

received in the IndirectQuery packet.
 Semantics:
 When primary manager receives a IndirectQuery packet, it is

responsible for sending ForwardQuery packets to an appropriate
list of managers that can provide service to the display using the
same network type as the one the original IndirectQuery pack-
et was received from. The Client Address and Client Port fields
must contain an address that the secondary manager can use to

Protocol

8

reach the display also using this same network. Each secondary
manager sends a Willing packet to the display if it is willing to
provide service.

ForwardQuery packets are similar to BroadcastQuery packets in
that managers that are not willing to service particular displays
should not send a Unwilling packet.

 Valid Responses:
 Willing

 Problems/Solutions:
 Identical to BroadcastQuery
 Timeout/Retransmission policy:
 Like all packets sent from a manager, this packet should never

be retransmitted.
Willing

 Manager -> Display

Additional Fields:
 Authentication Name: ARRAY8
 Specifies the authentication method, selected from the

list offered in the Query , BroadcastQuery , or Indi-
rectQuery packet that the manger expects the display
to use in the subsequent Request packet. This choice
should remain as constant as feasible so that displays
that send multiple Query packets can use the Authenti-
cation Name from any Willing packet that arrives.

The display is free to ignore managers that request an
insufficient level of authentication.

 Hostname: ARRAY8
 Is a human readable string describing the host from

which the packet was sent. The protocol specifies no in-
terpretation of the data in this field.

 Status: ARRAY8
 Is a human readable string describing the status of the

host. This could include load average/number of users
connected or other information. The protocol specifies
no interpretation of the data in this field.

 Semantics:
 A Willing packet is sent by managers that may service connec-

tions from this display. It is sent in response to either a Query ,
BroadcastQuery , or ForwardQuery but does not imply a com-
mitment to provide service (for example, it may later decide that
it has accepted enough connections already).

 Problems/Solutions:
 Problem:
 Willing not received by the display.

Protocol

9

Indication:
 None if BroadcastQuery or IndirectQuery was

sent, else failure to receive Willing .
 Solution:
 The display should continue to send the query

until a response is received.
 Timeout/Retransmission policy:
 Like all packets sent from the manager to the display, this packet

should never be retransmitted.
Unwilling

 Manager -> Display

Additional Fields:
 The Hostname and Status fields as in the Willing packet. The

Status field should indicate to the user a reason for the refusal of
service.

 Semantics:
 An Unwilling packet is sent by managers in response to direct

Query requests (as opposed to BroadcastQuery or Indirect-
Query requests) if the manager will not accept requests for man-
agement. This is typically sent by managers that wish to only
service particular displays or that handle a limited number of
displays at once.

 Problems/Solutions:
 Problem:
 Unwilling not received by the display.

Indication:
 Display fails to receive Unwilling .
 Solution:
 The display should continue to send Query mes-

sages until a response is received.
 Timeout/Retransmission policy:
 Like all packets sent from the manager to the display, this packet

should never be retransmitted.
Request

 Display -> Manager

Additional Fields:
 Display Number: CARD16
 Specifies the index of this particular server for the host

on which the display is resident. This value will be zero
for most autonomous displays.

 Connection Types: ARRAY16
 Specifies an array indicating the stream services accept-

ed by the display. If the high-order byte in a particular

Protocol

10

entry is zero, the low-order byte corresponds to an X-
protocol host family type.

 Connection Addresses: ARRAYofARRAY8
 For each connection type in the previous array, the cor-

responding entry in this array indicates the network ad-
dress of the display device.

 Authentication Name: ARRAY8

Authentication Data: ARRAY8
 Specifies the authentication protocol that the display ex-

pects the manager to validate itself with. The Authenti-
cation Data is expected to contain data that the manager
will interpret, modify and use to authenticate itself.

 Authorization Names: ARRAYofARRAY8
 Specifies which types of authorization the display sup-

ports. The manager may decide to reject displays with
which it cannot perform authorization.

 Manufacturer Display ID: ARRAY8
 Can be used by the manager to determine how to de-

crypt the Authentication Data field in this packet. See
the section below on Manufacturer Display ID Format.

 Semantics:
 A Request packet is sent by a display to a specific host to re-

quest a session ID in preparation for a establishing a connection.
If the manager is willing to service a connection to this display,
it should return an Accept packet with a valid session ID and
should be ready for a subsequent Manage request. Otherwise, it
should return a Decline packet.

 Valid Responses:
 Accept , Decline
 Problems/Solutions:
 Problem:
 Request not received by manager.
 Indication:
 Display timeout waiting for response.
 Solution:
 Display resends Request message.
 Problem:
 Message received out of order by manager.
 Indication:
 None.
 Solution:
 Each time a Request is sent, the manager sends

the Session ID associated with the next session
in the Accept . If that next session is not yet

Protocol

11

started, the manager will simply resend with the
same Session ID. If the session is in progress,
the manager will reply with a new Session ID; in
which case, the Accept will be discarded by the
display.

 Timeout/Retransmission policy:
 Timeout after 2 seconds, exponential backoff to 32 seconds. Af-

ter no more than 126 seconds, give up and report an error to the
user.

Accept

 Manager -> Display

Additional Fields:
 Session ID: CARD32
 Identifies the session that can be started by the manag-

er.
 Authentication Name: ARRAY8

Authentication Data: ARRAY8
 Is the data sent back to the display to authenticate the

manager. If the Authentication Data is not the value ex-
pected by the display, it should terminate the protocol at
this point and display an error to the user.

 Authorization Name: ARRAY8

Authorization Data: ARRAY8
 Is the data sent to the display to indicate the type of au-

thorization the manager will be using in the first call to
XOpenDisplay after the Manage packet is received.

 Semantics:
 An Accept packet is sent by a manager in response to a Request

packet if the manager is willing to establish a connection for the
display. The Session ID is used to identify this connection from
any preceding ones and will be used by the display in its subse-
quent Manage packet. The Session ID is a 32-bit number that is
incremented each time an Accept packet is sent as it must be
unique over a reasonably long period of time.

If the authentication information is invalid, a Decline packet will
be returned with an appropriate Status message.

 Problems/Solutions:
 Problem:
 Accept or Decline not received by display.
 Indication:
 Display timeout waiting for response to Re-

quest .

 Solution:
 Display resends Request message.

Protocol

12

 Problem:
 Message received out of order by display.
 Indication:
 Display receives Accept after Manage has been

sent.
 Solution:
 Display discards Accept messages after it has

sent a Manage message.
 Timeout/Retransmission policy:
 Like all packets sent from the manager to the display, this packet

should never be retransmitted.
Decline

 Manager -> Display

Additional Fields:
 Status: ARRAY8
 Is a human readable string indicating the reason for re-

fusal of service.
 Authentication Name: ARRAY8

Authentication Data: ARRAY8
 Is the data sent back to the display to authenticate the

manager. If the Authentication Data is not the value ex-
pected by the display, it should terminate the protocol at
this point and display an error to the user.

 Semantics:
 A Decline packet is sent by a manager in response to a Request

packet if the manager is unwilling to establish a connection for
the display. This is allowed even if the manager had responded
Willing to a previous query.

 Problems/Solutions:
 Same as for Accept .
 Timeout/Retransmission policy:
 Like all packets sent from a manager to a display, this packet

should never be retransmitted.
Manage

 Display -> Manager

Additional Fields:
 Session ID: CARD32
 Should contain the nonzero session ID returned in the

Accept packet.
 Display Number: CARD16
 Must match the value sent in the previous Request pack-

et.

Protocol

13

 Display Class: ARRAY8
 Specifies the class of the display. See the Display Class

Format section, which discusses the format of this field.
 Semantics:
 A Manage packet is sent by a display to ask the manager to begin

a session on the display. If the Session ID is correct the manag-
er should open a connection; otherwise, it should respond with
a Refuse or Failed packet, unless the Session ID matches a cur-
rently running session or a session that has not yet successful-
ly opened the display but has not given up the attempt. In this
latter case, the Manage packet should be ignored. This will work
as stream connections give positive success indication to both
halves of the stream, and positive failure indication to the con-
nection initiator (which will eventually generate a Failed pack-
et).

 Valid Responses:
 X connection with correct auth info, Refuse , Failed .
 Problems/Solutions:
 Problem:
 Manage not received by manager.
 Indication:
 Display timeout waiting for response.
 Solution:
 Display resends Manage message.
 Problem:
 Manage received out of order by manager.
 Indication:
 Session already in progress with matching Ses-

sion ID.
 Solution:
 Manage packet ignored.
 Indication:
 Session ID does not match next Session ID.
 Solution:
 Refuse message is sent.
 Problem:
 Display cannot be opened on selected stream.
 Indication:
 Display connection setup fails.
 Solution:
 Failed message is sent including a human read-

able reason.
 Problem:

Protocol

14

 Display open does not succeed before a second manage
packet is received because of a timeout occuring in the
display.

 Indication:
 Manage packet received with Session ID match-

ing the session attempting to connect to the dis-
play.

 Solution:
 Manage packet is ignored. As the stream connec-

tion will either succeed, which will result in an
active session, or the stream will eventually give
up hope of connecting and send a Failed pack-
et; no response to this Manage packet is neces-
sary.

 Timeout/Retransmission policy:
 Timeout after 2 seconds, exponential backoff to 32 seconds. Af-

ter no more than 126 seconds, give up and report an error to the
user.

Refuse

 Manager -> Display

Additional Fields:
 Session ID: CARD32
 Should be set to the Session ID received in the Manage

packet.
 Semantics:
 A Refuse packet is sent by a manager when the Session ID re-

ceived in the Manage packet does not match the current Session
ID. The display should assume that it received an old Accept
packet and should resend its Request packet.

 Problems/Solutions:
 Problem:
 Error message is lost.
 Indication:
 Display times out waiting for new connection,

Refuse or Failed .
 Solution:
 Display resends Manage message.
 Timeout/Retransmission policy:
 Like all packets sent from a manager to a display, this packet

should never be retransmitted.
Failed

 Manager -> Display

Additional Fields:
 Session ID: CARD32

Protocol

15

 Should be set to the Session ID received in the Manage
packet.

 Status: ARRAY8
 Is a human readable string indicating the reason for fail-

ure.
 Semantics:
 A Failed packet is sent by a manager when it has problems es-

tablishing the initial X connection in response to the Manage
packet.

 Problems/Solutions
 Same as for Refuse .
KeepAlive

 Display -> Manager

Additional Fields:
 Display Number: CARD16
 Set to the display index for the display host.
 Session ID: CARD32
 Should be set to the Session ID received in the Manage

packet during the negotiation for the current session.
 Sematics:
 A KeepAlive packet can be sent at any time during the session

by a display to discover if the manager is running. The manag-
er should respond with Alive whenever it receives this type of
packet.

This allows the display to discover when the manager host is
no longer running. A display is not required to send KeepAlive
packets and, upon lack of receipt of Alive packets, is not re-
quired to perform any specific action.

The expected use of this packet is to terminate an active session
when the manager host or network link fails. The display should
keep track of the time since any packet has been received from
the manager host and use KeepAlive packets when a substantial
time has elapsed since the most recent packet.

 Valid Responses:
 Alive

 Problems/Solutions:
 Problem:
 Manager does not receive the packet or display does not

receive the response.
 Indication:
 No Alive packet is returned.
 Solution:

Protocol

16

 Retransmit the packet with an exponential back-
off; start at 2 seconds and assume the host is
not up after no less than 30 seconds.

Alive

 Manager -> Display

Additional Fields:
 Session Running: CARD8
 Indicates that the session identified by Session ID is cur-

rently active. The value is zero if no session is active or
one if a session is active.

 Session ID: CARD32
 Specifies the ID of the currently running session; if any.

When no session is active this field should be zero.
 Semantics:
 An Alive packet is sent in response to a KeepAlive request. If a

session is currently active on the display, the manager includes
the Session ID in the packet. The display can use this informa-
tion to determine the status of the manager.

17

Chapter 6. Session Termination
When the session is over, the initial connection with the display (the one that ac-
knowledges the Manage packet) will be closed by the manager. If only a single ses-
sion was active on the display, all other connections should be closed by the display
and the display should be reset. If multiple sessions are active simultaneously and
the display can identify which connections belong to the terminated sesssion, those
connections should be closed. Otherwise, all connections should be closed and the
display reset only when all sessions have been terminated (that is, all initial con-
nections closed).

The session may also be terminated at any time by the display if the managing
host no longer responds to KeepAlive packets. The exact time-outs for sending
KeepAlive packets is not specified in this protocol as the trade off should not be
fixed between loading an otherwise idle system with spurious KeepAlive packets
and not noticing that the manager host is down for a long time.

18

Chapter 7. State Diagrams
The following state diagrams are designed to cover all actions of both the display
and the manager. Any packet that is received out-of-sequence will be ignored.

Display:

start: User-requested connect to one host -> query

User-requested connect to some host -> broadcast

User-requested connect to site host-list -> indirect

query: Send Query packet -> collect-query

collect-query: Receive Willing -> start-connection

Receive Unwilling -> stop-connection

Timeout -> query

broadcast: Send BroadcastQuery packet

-> collect-broadcast-query

collect-broadcast-query: Receive Willing -> update-broadcast-willing

User-requested connect to one host -> start-connec-
tion

Timeout -> broadcast

update-broadcast-willing: Add new host to the host list presented to the user

-> collect-broadcast-query

indirect: Send IndirectQuery packet

-> collect-indirect-query

collect-indirect-query: Receive Willing -> update-indirect-willing

User-requested connect to one host -> start-connec-
tion

Timeout -> indirect

update-indirect-willing: Add new host to the host list presented to the user

-> collect-indirect-query

start-connection: Send Request packet

-> await-request-response

await-request-response: Receive Accept -> manage

Receive Decline -> stop-connection

State Diagrams

19

Timeout -> start-connection

manage: Save Session ID

Send Manage packet with Session ID

-> await-manage-response

await-manage-response: Receive XOpenDisplay : -> run-session

Receive Refuse with matching Session ID -> start-
connection

Receive Failed with matching Session ID -> stop-
connection

Timeout -> manage

stop-connection: Display cause of termination to user

-> start

run-session: Decide to send KeepAlive packet -> keep-alive

wait close of first display connection

-> reset-display

keep-alive: Send KeepAlive packet with current Session ID

-> await-alive

await-alive: Receive Alive with matching Session ID -> run-ses-
sion

Receive Alive with nonmatching Session ID or
FALSE Session Running -> reset-display

Final timeout without receiving Alive packet -> re-
set-display

Timeout -> keep-alive

reset-display: (if possible) -> close all display connections associat-
ed with this session

Last session -> close all display connections

-> start

Manager:

idle: Receive Query -> query-respond

Receive BroadcastQuery -> broadcast-respond

Receive IndirectQuery -> indirect-respond

State Diagrams

20

Receive ForwardQuery -> forward-respond Receive

Request -> request-respond

Receive Manage -> manage

An active session terminates -> finish-session

Receive KeepAlive -> send-alive

-> idle

query-respond: If willing to manage -> send-willing

-> send-unwilling

broadcast-respond: If willing to manage -> send-willing

-> idle

indirect-respond: Send ForwardQuery packets to all managers on redirect list

If willing to manage -> send-willing

-> idle

forward-respond: Decode destination address, if willing to manage -> send-
willing

-> idle

send-willing: Send Willing packet

-> idle

send-unwilling: Send Unwilling packet -> idle

request-respond: If manager is willing to allow a session on display -> ac-
cept-session

-> decline-session

accept-session: Generate Session ID and save Session ID, display address,
and display number somewhere

Send Accept packet

-> idle

decline-session: Send Decline packet

-> idle

manage: If Session ID matches saved Session ID -> run-session

If Session ID matches Session ID of session in process of
starting up, or currently active session -> idle

State Diagrams

21

-> refuse

refuse: Send Refuse packet

-> idle

run-session: Terminate any session in progress

XOpenDisplay

Open display succeeds -> start-session

-> failed

failed: Send Failed packet

-> idle

start-session: Start a new session

-> idle

finish-session: XCloseDisplay

-> idle

send-alive: Send Alive packet containing current status

-> idle

22

Chapter 8. Protocol Encoding
When XDMCP is implemented on top of the Internet User Datagram Protocol (UDP),
port number 177 is to be used. When using UDP over IPv4, Broadcast Query packets
are sent via UDP broadcast. When using UDP over IPv6, Broadcast Query packets
are sent via multicast, either to an address in the IANA registered XDMCP multicast
address range of FF0X:0:0:0:0:0:0:12B (where the X is replaced by a valid scope id)
or to a locally assigned multicast address. The version number in all packets will be
1. Packet opcodes are 16-bit integers.

Packet Name Encoding
BroadcastQuery 1
Query 2
IndirectQuery 3
ForwardQuery 4
Willing 5
Unwilling 6
Request 7
Accept 8
Decline 9
Manage 10
Refuse 11
Failed 12
KeepAlive 13 a

Alive 14 b
a A previous version of this document incorrectly reversed the opcodes of Alive and KeepAlive.
b A previous version of this document incorrectly reversed the opcodes of Alive and KeepAlive.

Per packet information follows:

Query, BroadcastQuery, IndirectQuery

 2 CARD16 version number (always 1)
 2 CARD16 opcode (always Query, BroadcastQuery or IndirectQuery)
 2 CARD16 length
 1 CARD8 number of Authentication Names sent (m)
 2 CARD16 length of first Authentication Name (m1)
 m1 CARD8 first Authentication Name
 ... Other Authentication Names

Note that these three packets are identical except for the opcode field.

ForwardQuery
 2 CARD16 version number (always 1)
 2 CARD16 opcode (always ForwardQuery)
 2 CARD16 length
 2 CARD16 length of Client Address (m)

Protocol Encoding

23

 m CARD8 Client Address
 2 CARD16 length of Client Port (n)
 n CARD8 Client Port
 1 CARD8 number of Authentication Names sent (o)
 2 CARD16 length of first Authentication Name (o1)
 o1 CARD8 first Authentication Name
 ... Other Authentication Names

Willing
 2 CARD16 version number (always 1)
 2 CARD16 opcode (always Willing)
 2 CARD16 length (6 + m + n + o)
 2 CARD16 Length of Authentication Name (m)
 m CARD8 Authentication Name
 2 CARD16 Hostname length (n)
 n CARD8 Hostname
 2 CARD16 Status length (o)
 o CARD8 Status

Unwilling
 2 CARD16 version number (always 1)
 2 CARD16 opcode (always Unwilling)
 2 CARD16 length (4 + m + n)
 2 CARD16 Hostname length (m)
 m CARD8 Hostname
 2 CARD16 Status length (n)
 n CARD8 Status

Request
 2 CARD16 version number (always 1)
 2 CARD16 opcode (always Request)
 2 CARD16 length
 2 CARD16 Display Number
 1 CARD8 Count of Connection Types (m)
 2xm CARD16 Connection Types
 1 CARD8 Count of Connection Addresses (n)
 2 CARD16 Length of first Connection Address (n1)
 n1 CARD8 First Connection Address
 ... Other connection addresses
 2 CARD16 Length of Authentication Name (o)
 o CARD8 Authentication Name
 2 CARD16 Length of Authentication Data (p)
 p CARD8 Authentication Data
 1 CARD8 Count of Authorization Names (q)
 2 CARD16 Length of first Authorization Name (q1)
 q1 CARD8 First Authorization Name
 ... Other authorization names
 2 CARD16 Length of Manufacturer Display ID (r)
 r CARD8 Manufacturer Display ID

Accept

Protocol Encoding

24

 2 CARD16 version number (always 1)
 2 CARD16 opcode (always Accept)
 2 CARD16 length (12 + n + m + o + p)
 4 CARD32 Session ID
 2 CARD16 Length of Authentication Name (n)
 n CARD8 Authentication Name
 2 CARD16 Length of Authentication Data (m)
 m CARD8 Authentication Data
 2 CARD16 Length of Authorization Name (o)
 o CARD8 Authorization Name
 2 CARD16 Length of Authorization Data (p)
 p CARD8 Authorization Data

Decline
 2 CARD16 version number (always 1)
 2 CARD16 opcode (always Decline)
 2 CARD16 length (6 + m + n + o)
 2 CARD16 Length of Status (m)
 m CARD8 Status
 2 CARD16 Length of Authentication Name (n)
 n CARD8 Authentication Name
 2 CARD16 Length of Authentication Data (o)
 o CARD8 Authentication Data

Manage
 2 CARD16 version number (always 1)
 2 CARD16 opcode (always Manage)
 2 CARD16 length (8 + m)
 4 CARD32 Session ID
 2 CARD16 Display Number
 2 CARD16 Length of Display Class (m)
 m CARD8 Display Class

Refuse
 2 CARD16 version number (always 1)
 2 CARD16 opcode (always Refuse)
 2 CARD16 length (4)
 4 CARD32 Session ID

Failed
 2 CARD16 version number (always 1)
 2 CARD16 opcode (always Failed)
 2 CARD16 length (6 + m)
 4 CARD32 Session ID
 2 CARD16 Length of Status (m)
 m CARD8 Status

KeepAlive
 2 CARD16 version number (always 1)
 2 CARD16 opcode (always KeepAlive)

Protocol Encoding

25

 2 CARD16 length (6)
 2 CARD16 Display Number
 4 CARD32 Session ID

Alive
 2 CARD16 version number (always 1)
 2 CARD16 opcode (always Alive)
 2 CARD16 length (5)
 1 CARD8 Session Running (0: not running 1: running)
 4 CARD32 Session ID (0: not running)

26

Chapter 9. Display Class Format
The Display Class field of the Manage packet is used by the display manager to collect
common sorts of displays into manageable groups. This field is a string encoded of
ISO-LATIN-1 characters in the following format:

ManufacturerID-ModelNumber

Both elements of this string must exclude characters of the set { -, ., :, *, ?,
<space> }. The ManufacturerID is a string that should be registered with the X
Consortium. The ModelNumber is designed to identify characteristics of the display
within the manufacturer's product line. This string should be documented in the
users manual for the particular device and should probably not be specifiable by
the display user to avoid unexpected configuration errors.

27

Chapter 10. Manufacturer Display ID
Format

To authenticate the manager, the display and manager will share a private key. The
manager, then, must be able to discover which key to use for a particular device. The
Manufacturer Display ID field of the Request packet is intended for this purpose.
Typically, the manager host will contain a map between this number and the key.
This field is intended to be unique per display, possibly the ethernet address of the
display in the form:

-Ethernet-8:0:2b:a:f:d2

It can also be a string of the form:

ManufacturerID-ModelNumber-SerialNumber

The ManufacturerID, ModelNumber and SerialNumber are encoded using ISO-
LATIN-1 characters, excluding { -, ., *, ?, <space> }

When the display is shipped to a customer, it should include both the Manufacturer
Display ID and the private key in the documentation set. This information should
not be modifiable by the display user.

28

Chapter 11. Authentication
In an environment where authentication is not needed, XDMCP can disable authen-
tication by having the display send empty Authentication Name and Authentication
Data fields in the Request packet. In this case, the manager will not attempt to au-
thenticate itself. Other authentication protocols may be developed, depending on
local needs.

In an unsecure environment, the display must be able to verify that the source of
the various packets is a trusted manager. These packets will contain authentication
information. As an example of such a system, the following discussion describes
the "XDM-AUTHENTICATION-1" authentication system. This system uses a 56-bit
shared private key, and 64 bits of authentication data. An associated example X
authorization protocol "XDM-AUTHORIZATION-1" will also be discussed. The 56-
bit key is represented as a 64-bit number in network order (big endian). This means
that the first octet in the representation will be zero. When incrementing a 64-bit
value, the 8 octets of data will be interpreted in network order (big endian). That
is, the last octet will be incremented, subsequent carries propogate towards the
first octet.

Assumptions:

1. The display and manager share a private key. This key could be programmed
into the display by the manufacturer and shipped with the unit. It must not be
available from the display itself, but should allow the value to be modified in some
way. The system administrator would be responsible for managing a database of
terminal keys.

2. The display can generate random authentication numbers.

Some definitions first:

• {D}κ = encryption of plain text D by key κ

• {Δ}*κ = decryption of crypto text Δ with key κ

• τ = private key shared by display and manager

• ρ = 64 bit random number generated by display

• α = authentication data in XDMCP packets

• σ = per-session private key, generated by manager

• β = authorization data

Encryption will use the Data Encryption Standard (DES, FIPS 46-3); blocks shorter
than 64 bits will be zero-filled on the right to 64 bits. Blocks longer than 64 bits
will use block chaining:

{D}κ = {D1}κ {D2 xor {D1}κ}κ

The display generates the first authentication data in the Request packet:

αRequest = {ρ}τ

Authentication

29

For the Accept packet, the manager decrypts the initial message and returns αAccept:

ρ = {αRequest}*τ

αAccept = { ρ + 1}τ

The Accept packet also contains the authorization intended for use by the X server.
A description of authorization type "XDM-AUTHORIZATION-1" follows.

The Accept packet contains the authorization name "XDM-AUTHORIZATION-1".
The authorization data is the string:

βAccept = {σ}τ

To create authorization information for connection setup with the X server using the
XDM-AUTHORIZATION-1 authorization protocol, the client computes the following:

N = X client identifier

T = Current time in seconds on client host (32 bits)

β = {ρNT}σ

For TCP connections N is 48 bits long and contains the 32-bit IPv4 address of the
client host followed by the 16-bit port number of the client socket. Formats for other
connections must be registered. The resulting value, β, is 192 bits of authorization
data that is sent in the connection setup to the server. The server receives the pack-
et, decrypts the contents. To accept the connection, the following must hold:

• ρ must match the value generated for the most recent XDMCP negotiation.

• T must be within 1200 seconds of the internally stored time. If no time been re-
ceived before, the current time is set to T.

• No packet containing the same pair (N, T) can have been received in the last 1200
seconds (20 minutes).

	X Display Manager Control Protocol
	Table of Contents
	Chapter 1. Purpose and Goals
	Chapter 2. Overview of the Protocol
	Chapter 3. Data Types
	Chapter 4. Packet Format
	Chapter 5. Protocol
	Chapter 6. Session Termination
	Chapter 7. State Diagrams
	Chapter 8. Protocol Encoding
	Chapter 9. Display Class Format
	Chapter 10. Manufacturer Display ID Format
	Chapter 11. Authentication

