
Athena Widget Set -
C Language Interface

X Consortium Standard

Chris D. Peterson, formerly MIT X Consortium

Athena Widget Set - C Language Interface: X Consortium Standard
by Chris D. Peterson
X Version 11, Release 7.7
Copyright © 1985, 1986, 1987, 1988, 1989, 1991, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

X Window System is a trademark of The OpenGroup.

Copyright © 1985, 1986, 1987, 1988, 1989, 1991 Digital Equipment Corporation, Maynard, Massachusetts.

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appears in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Digital not be used in in advertising or publicity
pertaining to distribution of the software without specific, written prior permission. Digital makes no representations
about the suitability of the software described herein for any purpose. It is provided “as is” without express or
implied warranty.

iii

Table of Contents
1. Athena Widgets and The Intrinsics ... 1

Introduction to the X Toolkit ... 1
Terminology .. 2
Underlying Model .. 3
Conventions Used in this Manual .. 4
Format of the Widget Reference Chapters .. 4
Input Focus .. 6

2. Using Widgets ... 7
Using Widgets .. 7

Setting the Locale .. 7
Initializing the Toolkit .. 7
Creating a Widget .. 8
Common Resources .. 9
Resource Conversions .. 10
Realizing a Widget ... 11
Processing Events .. 11
Standard Widget Manipulation Functions .. 12
Using the Client Callback Interface ... 14
Programming Considerations ... 15
Example Programs ... 20

3. Simple Widgets ... 21
Command Widget ... 21

Resources ... 22
Command Actions ... 23

Grip Widget .. 25
Resources ... 25
Grip Actions .. 26

Label Widget .. 27
Resources ... 28

List Widget ... 29
Resources ... 30
List Actions ... 32
List Callbacks ... 33
Changing the List ... 33
Highlighting an Item .. 34
Unhighlighting an Item .. 34
Retrieving the Currently Selected Item ... 34
Restrictions ... 34

Panner Widget .. 35
Resources ... 35
Panner Actions .. 38
Panner Callbacks .. 39

Repeater Widget .. 39
Resources ... 39
Repeater Actions .. 42

Scrollbar Widget .. 42
Resources ... 43
Scrollbar Actions .. 45
Scrollbar Callbacks ... 46
Convenience Routines .. 47
Setting Float Resources ... 47

Athena Widget Set -
C Language Interface

iv

Simple Widget .. 48
Resources ... 48

StripChart Widget .. 49
Resources ... 50
Getting the StripChart Value ... 51

Toggle Widget .. 52
Resources ... 52
Toggle Actions .. 55
Toggle Actions .. 55
Radio Groups .. 56
Convenience Routines .. 56

4. Menus .. 58
Using the Menus .. 58
Sme Object ... 59

Resources ... 59
Subclassing the Sme Object ... 59

SmeBSB Object .. 60
Resources ... 60

SmeLine Object .. 62
Resources ... 62

5. Text Widgets .. 64
Text Widget for Users .. 64

Default Key Bindings .. 64
Search and Replace .. 65
File Insertion .. 67
Text Selections for Users ... 67

Text Widget Actions ... 68
Cursor Movement Actions\fP .. 69
Delete Actions .. 70
Selection Actions .. 70
The New Line Actions .. 71
Kill and Actions .. 71
Miscellaneous Actions .. 72
Text Selections for Application Programmers 74

Default Translation Bindings ... 75
Text Functions .. 76

Selecting Text ... 77
Unhighlighting Text .. 77
Getting Current Text Selection .. 77
Replacing Text .. 77
Searching for Text .. 78
Redisplaying Text ... 78
Resources Convenience Routines ... 79

Customizing the Text Widget ... 81
Text Widget .. 81

Resources ... 82
TextSink Object .. 83

Resources ... 84
Subclassing the TextSink ... 84

TextSrc Object .. 88
Resources ... 89
Subclassing the TextSrc ... 89

Ascii Sink Object and Multi Sink Object ... 92
Resources ... 93

Athena Widget Set -
C Language Interface

v

Ascii Source Object and Multi Source Object ... 93
Resources ... 94
Convenience Routines .. 95

Ascii Text Widget ... 96
Resources ... 97

6. Composite and Constraint Widgets ... 100
Box Widget ... 101

Resources ... 101
Layout Semantics ... 102

Dialog Widget ... 103
Resources ... 103
Constraint Resources ... 105
Layout Semantics ... 106
Automatically Created Children. .. 107
Convenience Routines .. 107

Form Widget .. 108
Resources ... 108
Constraint Resources ... 109
Layout Semantics ... 110
Convenience Routines .. 111

Paned Widget ... 111
Using the Paned Widget ... 112
Resources ... 112
Constraint Resources ... 115
Layout Semantics ... 116
Grip Translations .. 117
Convenience Routines .. 118

Porthole Widget ... 119
Resources ... 120
Layout Semantics ... 121
Porthole Callbacks .. 121

Tree Widget ... 121
Resources ... 121
Constraint Resources ... 123
Layout Semantics ... 123
Convenience Routines .. 123

Viewport Widget .. 123
Resources ... 124
Layout Semantics ... 126

7. Creating New Widgets (Subclassing) .. 127
Public Header File ... 128
Private Header File .. 130
Widget Source File .. 131

8. Acknowledgments .. 135

1

Chapter 1. Athena Widgets and The
Intrinsics

The X Toolkit is made up of two distinct pieces, the Xt Intrinsics and a widget set.
The Athena widget set is a sample implementation of a widget set built upon the
Intrinsics. In the X Toolkit, a widget is the combination of an X window or subwindow
and its associated input and output semantics.

Because the Intrinsics provide the same basic functionality to all widget sets it may
be possible to use widgets from the Athena widget set with other widget sets based
upon the Intrinsics. Since widget sets may also implement private protocols, all
functionality may not be available when mixing and matching widget sets. For in-
formation about the Intrinsics, see the X Toolkit Intrinsics - C Language Interface.

The Athena widget set is a library package layered on top of the Intrinsics and Xlib
that provides a set of user interface tools sufficient to build a wide variety of appli-
cations. This layer extends the basic abstractions provided by X and provides the
next layer of functionality primarily by supplying a cohesive set of sample widgets.
Although the Intrinsics are a Consortium standard, there is no standard widget set.

To the extent possible, the Intrinsics are "policy-free". The application environment
and widget set, not the Intrinsics, define, implement, and enforce:

• Policy

• Consistency

• Style

Each individual widget implementation defines its own policy. The X Toolkit design
allows for, but does not necessarily encourage, the free mixing of radically differing
widget implementations.

Introduction to the X Toolkit
The X Toolkit provides tools that simplify the design of application user interfaces
in the X Window System programming environment. It assists application program-
mers by providing a set of common underlying user-interface functions. It also lets
widget programmers modify existing widgets, by subclassing, or add new widgets.
By using the X Toolkit in their applications, programmers can present a similar user
interface across applications to all workstation users.

The X Toolkit consists of:

• A set of Intrinsics functions for building widgets

• An architectural model for constructing widgets

• A widget set for application programming

While the majority of the Intrinsics functions are intended for the widget program-
mer, a subset of the Intrinsics functions are to be used by application programmers
(see X Toolkit Intrinsics - C Language Interface). The architectural model lets the

Athena Widgets
and The Intrinsics

2

widget programmer design new widgets by using the Intrinsics and by combining
other widgets. The application interface layers built on top of the X Toolkit include
a coordinated set of widgets and composition policies. Some of these widgets and
policies are specific to a single application domain, and others are common to a
variety of applications.

The remainder of this chapter discusses the X Toolkit and Athena widget set:

• Terminology

• Model

• Conventions used in this manual

• Format of the Widget Reference Chapters

Terminology

In addition to the terms already defined for X programming (see Xlib - C Language
Interface), the following terms are specific to the Intrinsics and Athena widget set
and used throughout this document.

Application programmer

• A programmer who uses the X Toolkit to produce an application user interface.

Child

• A widget that is contained within another "parent" widget.

Class

• The general group to which a specific object belongs.

Client

• A function that uses a widget in an application or for composing other widgets.

FullName

• The name of a widget instance appended to the full name of its parent.

Instance

• A specific widget object as opposed to a general widget class.

Method

• A function or procedure implemented by a widget class.

Name

• The name that is specific to an instance of a widget for a given client. This name
is specified at creation time and cannot be modified.

Object

Athena Widgets
and The Intrinsics

3

• A data abstraction consisting of private data and private and public functions
that operate on the private data. Users of the abstraction can interact with the
object only through calls to the object's public functions. In the X Toolkit, some
of the object's public functions are called directly by the application, while others
are called indirectly when the application calls the common Intrinsics functions.
In general, if a function is common to all widgets, an application uses a single
Intrinsics function to invoke the function for all types of widgets. If a function is
unique to a single widget type, the widget exports the function.

Parent

• A widget that contains at least one other ("child") widget. A parent widget is also
known as a composite widget.

Resource

• A named piece of data in a widget that can be set by a client, by an application,
or by user defaults.

Superclass

• A larger class of which a specific class is a member. All members of a class are
also members of the superclass.

User

• A person interacting with a workstation.

Widget

• An object providing a user-interface abstraction (for example, a Scrollbar widget).

Widget class

• The general group to which a specific widget belongs, otherwise known as the
type of the widget.

Widget programmer

• A programmer who adds new widgets to the X Toolkit.

Underlying Model
The underlying architectural model is based on the following premises:

•

• Every user-interface widget is associated with an X window. The X window ID for
a widget is readily available from the widget. Standard Xlib calls can be used by
widgets for many of their input and output operations.

•

• The data for every widget is private to the widget and its subclasses. That is, the
data is neither directly accessible nor visible outside of the module implementing
the widget. All program interaction with the widget is performed by a set of op-
erations (methods) that are defined for the widget.

Athena Widgets
and The Intrinsics

4

•

• Widget semantics are clearly separated from widget layout geometry. Widgets are
concerned with implementing specific user-interface semantics. They have little
control over issues such as their size or placement relative to other widget peers.
Mechanisms are provided for associating geometric managers with widgets and
for widgets to make suggestions about their own geometry.

Conventions Used in this Manual
• All resources available to the widgets are listed with each widget. Many of these

are available to more than one widget class due to the object oriented nature of
the Intrinsics. The new resources for each widget are listed in bold text, and the
inherited resources are listed in plain text.

• Global symbols are printed in bold and can be function names, symbols defined
in include files, or structure names. Arguments are printed in italics.

• Each function is introduced by a general discussion that distinguishes it from oth-
er functions. The function declaration itself follows, and each argument is specif-
ically explained. General discussion of the function, if any is required, follows the
arguments. Where applicable, the last paragraph of the explanation lists the re-
turn values of the function.

• To eliminate any ambiguity between those arguments that you pass and those that
a function returns to you, the explanations for all arguments that you pass start
with the word specifies or, in the case of multiple arguments, the word specify.
The explanations for all arguments that are returned to you start with the word
returns or, in the case of multiple arguments, the word return. The explanations
for all arguments that you can pass and are returned start with the words specifies
and returns.

• Any pointer to a structure that is used to return a value is designated as such by
the _return suffix as part of its name. All other pointers passed to these functions
are used for reading only. A few arguments use pointers to structures that are
used for both input and output and are indicated by using the _in_out suffix.

Format of the Widget Reference Chapters
The majority of this document is a reference guide for the Athena widget set. Chap-
ters three through six give the programmer all information necessary to use the
widgets. The layout of the chapters follows a specific pattern to allow the program-
mer to easily find the desired information.

The first few pages of every chapter give an overview of the widgets in that section.
Widgets are grouped into chapters by functionality.

"Chapter Simple Widgets

"Chapter Menus

"Chapter Text Widgets

"Chapter Composite and Constraint Widget

Athena Widgets
and The Intrinsics

5

Following the introduction will be a description of each widget in that chapter. When
no functional grouping is obvious the widgets are listed in alphabetical order, such
as in chapters three and six.

The first section of each widget's description is a table that contains general infor-
mation about this widget class. Here is the table for the Box widget, and an expla-
nation of all the entries.

Application Header file <X11/Xaw/Box.h>
Class Header file <X11/Xaw/BoxP.h>
Class boxWidgetClass
Class Name Box
Superclass Composite

Application Header File This file must be included when an application uses
this widget. It usually contains the class definition,
and some resource macros. This is often called the
``public'' header file.

Class Header File This file will only be used by widget programmers.
It will need to be included by any widget that sub-
classes this widget. This is often called the ̀ `private''
header file.

Class This is the widget class of this widget. This global
symbol is passed to XtCreateWidget so that the In-
trinsics will know which type of widget to create.

Class Name This is the resource name of this class. This name can
be used in a resource file to match any widget of this
class.

Superclass This is the superclass that this widget class is de-
scended from. If you understand how the superclass
works it will allow you to more quickly understand
what this widget does, since much of its functionality
may be inherited from its superclass.

After this table follows a general description of the default behavior of this widget,
as seen by the user. In many cases this functionality may be overridden by the ap-
plication programmer, or by the user.

The next section is a table showing the name, class, type and default value of each
resource that is available to this widget. There is also a column containing notes
describing special restrictions placed upon individual resources.

A This resource may be automatically adjusted when another re-
source is changed.

C This resource is only settable at widget creation time, and may not
be modified with XtSetValues.

Athena Widgets
and The Intrinsics

6

D Do not modify this resource. While setting this resource will work,
it can cause unexpected behavior. When this symbol appears there
is another, preferred, interface provided by the X Toolkit.

R This resource is READ-ONLY, and may not be modified.

After the resource table is a detailed description of every resource available to that
widget. Many of these are redundant, but printing them with each widget saves
page flipping. The names of the resources that are inherited are printed in plain text,
while the names of the resources that are new to this class are printed in bold. If
you have already read the description of the superclass you need only pay attention
to the resources printed in bold.

For each composite widget there is a section on layout semantics that follows the
resource description. This section will describe the effect of constraint resources
on the layout of the children, as well as a general description of where it prefers
to place its children.

Descriptions of default translations and action routines come next, for widgets to
which they apply. The last item in each widget's documentation is the description
of all convenience routines provided by the widget.

Input Focus
The Intrinsics define a resource on all Shell widgets that interact with the window
manager called input. This resource requests the assistance of window manager
in acquiring the input focus. The resource defaults to False in the Intrinsics, but
is redefined to default to True when an application is using the Athena widget set.
An application programmer may override this default and set the resource back to
False if the application does not need the window manager to give it the input focus.
See the X Toolkit Intrinsics - C Language Interface for details on the input resource.

7

Chapter 2. Using Widgets
Using Widgets

Widgets serve as the primary tools for building a user interface or application envi-
ronment. The Athena widget set consists of primitive widgets that contain no chil-
dren (for example, a command button) and composite widgets which may contain
one or more widget children (for example, a Box widget).

The remaining chapters explain the widgets that are provided by the Athena widget
set. These user-interface components serve as an interface for application program-
mers who do not want to implement their own widgets. In addition, they serve as a
starting point for those widget programmers who, using the Intrinsics mechanisms,
want to implement alternative application programming interfaces.

This chapter is a brief introduction to widget programming. The examples provided
use the Athena widgets, though most of the concepts will apply to all widget sets.
Although there are several programming interfaces to the X Toolkit, only one is
described here. A full description of the programming interface is provided in the
document X Toolkit Intrinsics - C Language Interface.

Setting the Locale
If it is desirable that the application take advantage of internationalization (i18n),
you must establish locale with XtSetLanguageProc before XtDisplayInitialize or
XtAppInitialize is called. For full details, please refer to the document X Toolkit
Intrinsics - C Language Interface, section 2.2. However, the following simplest-case
call is sufficient in many or most applications.

 XtSetLanguageProc(NULL, NULL, NULL);

Most notably, this will affect the Standard C locale, determine which resource files
will be loaded, and what fonts will be required of FontSet specifications. In many
cases, the addition of this line is the only source change required to internationalize
Xaw programs, and will not disturb the function of programs in the default "C"
locale.

Initializing the Toolkit
You must call a toolkit initialization function before invoking any other toolkit rou-
tines (besides locale setting, above). XtAppInitialize opens the X server connec-
tion, parses the command line, and creates an initial widget that will serve as the
root of a tree of widgets created by this application.

Widget XtAppInitialize(app_context_return, application_class, op-
tions, num_options, *argc_in_out, *argv_in_out, *fallback_resources,
args, num_args);

app_con_return Returns the application context of this application, if
non-NULL.

Using Widgets

8

application_class Specifies the class name of this application, which
is usually the generic name for all instances of this
application. A useful convention is to form the class
name by capitalizing the first letter of the application
name. For example, the application named ``xman''
has a class name of ``Xman''.

options Specifies how to parse the command line for any ap-
plication-specific resources. The options argument is
passed as a parameter to XrmParseCommand. For fur-
ther information, see Xlib - C Language Interface.

num_options Specifies the number of entries in the options list.

argc_in_out Specifies a pointer to the number of command line
parameters.

argv_in_out Specifies the command line parameters.

fallback_resources Specifies resource values to be used if the site-wide
application class defaults file cannot be opened, or
NULL.

args Specifies the argument list to use when creating the
Application shell.

num_args Specifies the number of arguments in args.

This function will remove the command line arguments that the toolkit reads from
argc_in_out, and argv_in_out. It will then attempt to open the display. If the display
cannot be opened, an error message is issued and XtAppInitialize terminates the
application. Once the display is opened, all resources are read from the locations
specified by the Intrinsics. This function returns an ApplicationShell widget to be
used as the root of the application's widget tree.

Creating a Widget
Creating a widget is a three-step process. First, the widget instance is allocated,
and various instance-specific attributes are set by using XtCreateWidget. Second,
the widget's parent is informed of the new child by using XtManageChild. Finally,
X windows are created for the parent and all its children by using XtRealizeWid-
get and specifying the top-most widget. The first two steps can be combined by
using XtCreateManagedWidget. In addition, XtRealizeWidget is automatically
called when the child becomes managed if the parent is already realized.

To allocate, initialize, and manage a widget, use XtCreateManagedWidget .

Widget XtCreateManagedWidget(name, widget_class, parent, args,
num_args);

name Specifies the instance name for the created widget
that is used for retrieving widget resources.

widget_class Specifies the widget class pointer for the created
widget.

Using Widgets

9

parent Specifies the parent widget ID.

args Specifies the argument list. The argument list is
a variable-length list composed of name and value
pairs that contain information pertaining to the spe-
cific widget instance being created. For further infor-
mation, see Section 2.7.2.

num_args Specifies the number of arguments in the argument
list. If the num_args is zero, the argument list is never
referenced.

When a widget instance is successfully created, the widget identifier is returned to
the application. If an error is encountered, the XtError routine is invoked to inform
the user of the error.

For further information, see X Toolkit Intrinsics - C Language Interface.

Common Resources
Although a widget can have unique arguments that it understands, all widgets have
common arguments that provide some regularity of operation. The common argu-
ments allow arbitrary widgets to be managed by higher-level components without
regard for the individual widget type. Widgets will ignore any argument that they
do not understand.

The following resources are retrieved from the argument list or from the resource
database by all of the Athena widgets:

Name Class Type Default Value
accelerators Accelerators AcceleratorTable NULL

ancestorSensitive AncestorSensitive Boolean True
background Background Pixel XtDefault-

Background
backgroundPixmap Pixmap Pixmap XtUnspeci-

fiedPixmap
borderColor BorderColor Pixel XtDefault-

Foreground
borderPixmap Pixmap Pixmap XtUnspeci-

fiedPixmap
borderWidth BorderWidth Dimension 1

colormap Colormap Colormap Parent's Colormap
depth Depth int Parent's Depth

destroyCallback Callback XtCallbackList NULL
height Height Dimension widget dependent

mappedWhen-
Managed

MappedWhen-
Managed

Boolean True

screen Screen Screen Parent's Screen
sensitive Sensitive Boolean True

Using Widgets

10

Name Class Type Default Value
translations Translations TranslationTable widget dependent

width Width Dimension widget dependent
x Position Position 0
y Position Position 0

The following additional resources are retrieved from the argument list or from the
resource database by many of the Athena widgets:

Name Class Type Default Value
callback Callback XtCallbackList NULL
cursor Cursor Cursor widget dependent

foreground Foreground Pixel XtDefault-
Foreground

insensitiveBorder Insensitive Pixmap GreyPixmap

Resource Conversions
Most resources in the Athena widget set have a converter registered that will trans-
late the string in a resource file to the correct internal representation. While some
are obvious (string to integer, for example), others need specific mention of the al-
lowable values. Three general converters are described here:

• Cursor

• Pixel

• Bitmap

Many widgets have defined special converters that apply only to that widget. When
these occur, the documentation section for that widget will describe the converter.

Cursor Conversion

The value for the cursorName resource is specified in the resource database as a
string, and is of the following forms:

• A standard X cursor name from < X11/cursorfont.h >. The names in
cursorfont.h each describe a specific cursor. The resource names for these cur-
sors are exactly like the names in this file except the XC_ is not used. The cursor
definition XC_gumby has a resource name of gumby.

• Glyphs, as in FONT font-name glyph-index [[font-name] glyph-index]. The first
font and glyph specify the cursor source pixmap. The second font and glyph spec-
ify the cursor mask pixmap. The mask font defaults to the source font, and the
mask glyph index defaults to the source glyph index.

• A relative or absolute file name. If a relative or absolute file name is specified, that
file is used to create the source pixmap. Then the string "Mask" is appended to
locate the cursor mask pixmap. If the "Mask" file does not exist, the suffix "msk"

Using Widgets

11

is tried. If "msk" fails, no cursor mask will be used. If the filename does not start
with '/' or './' the the bitmap file path is used (see section 2.4.3).

Pixel Conversion

The string-to-pixel converter takes any name that is acceptable to XParseColor (see
Xlib - C Language Interface). In addition this routine understands the special toolkit
symbols `XtDefaultForeground' and `XtDefaultBackground', described in X Toolkit
Intrinsics - C Language Interface. In short the acceptable pixel names are:

• Any color name for the rgb.txt file (typically in the directory /usr/lib/X11 on POSIX
systems).

• A numeric specification of the form #<red><green><blue> where these numer-
ic values are hexadecimal digits (both upper and lower case).

• The special strings `XtDefaultForeground' and `XtDefaultBackground'

Bitmap Conversion

The string-to-bitmap converter attempts to locate a file containing bitmap data
whose name is specified by the input string. If the file name is relative (i.e. does
not begin with / or ./), the directories to be searched are specified in the bitmap-
FilePath resource--class BitmapFilePath. This resource specifies a colon (:) sepa-
rated list of directories that will be searched for the named bitmap or cursor glyph
(see section 2.4.1). The bitmapFilePath resource is global to the application, and
may not be specified differently for each widget that wishes to convert a cursor
to bitmap. In addition to the directories specified in the bitmapFilePath resource
a default directory is searched. When using POSIX the default directory is /usr/
include/X11/bitmaps .

Realizing a Widget
The XtRealizeWidget function performs two tasks:

• Calculates the geometry constraints of all managed descendants of this widget.
The actual calculation is put off until realize time for performance reasons.

• Creates an X window for the widget and, if it is a composite widget, realizes each
of its managed children.

void XtRealizeWidget(w);

• Specifies the widget.

For further information about this function, see the X Toolkit Intrinsics - C Language
Interface.

Processing Events
Now that the application has created, managed and realized its widgets, it is ready
to process the events that will be delivered by the X Server to this client. A function
call that will process the events is XtAppMainLoop.

void XtAppMainLoop(app_context);

Using Widgets

12

app_context Specifies the application context of this application.
The value is normally returned by XtAppInitialize.

This function never returns: it is an infinite loop that processes the X events. User
input can be handled through callback procedures and application defined action
routines. More details are provided in X Toolkit Intrinsics - C Language Interface.

Standard Widget Manipulation Functions
After a widget has been created, a client can interact with that widget by calling
one of the standard widget manipulation routines provided by the Intrinsics, or a
widget class-specific manipulation routine.

The Intrinsics provide generic routines to give the application programmer access
to a set of standard widget functions. The common widget routines let an application
or composite widget perform the following operations on widgets without requiring
explicit knowledge of the widget type.

• Control the mapping of widget windows

• Destroy a widget instance

• Obtain an argument value

• Set an argument value

Mapping Widgets

By default, widget windows are mapped (made viewable) automatically by XtRe-
alizeWidget. This behavior can be disabled by using XtSetMappedWhenManaged,
making the client responsible for calling XtMapWidget to make the widget viewable.

void XtSetMappedWhenManaged(w, map_when_managed);

w Specifies the widget.

map_when_managed Specifies the new value. If map_when_managed is
True, the widget is mapped automatically when it is
realized. If map_when_managed is False, the client
must call XtMapWidget or make a second call to
XtSetMappedWhenManaged to cause the child window
to be mapped.

The definition for XtMapWidget is:

void XtMapWidget(w);

w Specifies the widget.

When you are creating several children in sequence for a previously realized com-
mon parent it is generally more efficient to construct a list of children as they are
created (using XtCreateWidget) and then use XtManageChildren to request that
their parent managed them all at once. By managing a list of children at one time,
the parent can avoid wasteful duplication of geometry processing and the associat-
ed ``screen flash''.

Using Widgets

13

void XtManageChildren(children, num_children);

children Specifies a list of children to add.

num_children Specifies the number of children to add.

If the parent is already visible on the screen, it is especially important to batch up-
dates so that the minimum amount of visible window reconfiguration is performed.

For further information about these functions, see the X Toolkit Intrinsics - C Lan-
guage Interface.

Destroying Widgets

To destroy a widget instance of any type, use XtDestroyWidget

void XtDestroyWidget(w);

w Specifies the widget.

XtDestroyWidget destroys the widget and recursively destroys any children that it
may have, including the windows created by its children. After calling XtDestroy-
Widget , no further references should be made to the widget or any children that
the destroyed widget may have had.

Retrieving Widget Resource Values

To retrieve the current value of a resource attribute associated with a widget in-
stance, use XtGetValues .

void XtGetValues(w, args, num_args);

w Specifies the widget.

args Specifies a variable-length argument list of name and ad-
dress pairs that contain the resource name and the ad-
dress into which the resource value is stored.

num_args Specifies the number of arguments in the argument list.

The arguments and values passed in the argument list are dependent on the wid-
get. Note that the caller is responsible for providing space into which the returned
resource value is copied; the ArgList contains a pointer to this storage (e.g. x and y
must be allocated as Position). For further information, see the X Toolkit Intrinsics
- C Language Interface.

Modifying Widget Resource Values

To modify the current value of a resource attribute associated with a widget in-
stance, use XtSetValues .

void XtSetValues(w, args, num_args);

w Specifies the widget.

args Specifies an array of name and value pairs that contain
the arguments to be modified and their new values.

Using Widgets

14

num_args Specifies the number of arguments in the argument list.

The arguments and values that are passed will depend on the widget being modi-
fied. Some widgets may not allow certain resources to be modified after the wid-
get instance has been created or realized. No notification is given if any part of a
XtSetValues request is ignored.

For further information about these functions, see the X Toolkit Intrinsics - C Lan-
guage Interface. The argument list entry for XtGetValues specifies the address
to which the caller wants the value copied. The argument list entry for XtSet-
Values , however, contains the new value itself, if the size of value is less than
sizeof(XtArgVal) (architecture dependent, but at least sizeof(long)); otherwise, it is
a pointer to the value. String resources are always passed as pointers, regardless
of the length of the string.

Using the Client Callback Interface
Widgets can communicate changes in their state to their clients by means of a call-
back facility. The format for a client's callback handler is:

void CallbackProc(w, client_data, call_data);

w Specifies widget for which the callback is registered.

client_data Specifies arbitrary client-supplied data that the wid-
get should pass back to the client when the widget ex-
ecutes the client's callback procedure. This is a way
for the client registering the callback to also register
client-specific data: a pointer to additional information
about the widget, a reason for invoking the callback,
and so on. If no additional information is necessary,
NULL may be passed as this argument. This field is
also frequently known as the closure.

call_data Specifies any callback-specific data the widget wants
to pass to the client. For example, when Scrollbar ex-
ecutes its jumpProc callback list, it passes the current
position of the thumb in call_data.

Callbacks can be registered either by creating an argument containing the callback
list described below or by using the special convenience routines XtAddCallback
and XtAddCallbacks. When the widget is created, a pointer to a list of callback
procedure and data pairs can be passed in the argument list to XtCreateWidget .
The list is of type XtCallbackList :

typedef struct {
 XtCallbackProc callback;
 XtPointer closure;
} XtCallbackRec, *XtCallbackList;

The callback list must be allocated and initialized before calling XtCreateWidget .
The end of the list is identified by an entry containing NULL in callback and closure.

Using Widgets

15

Once the widget is created, the client can change or de-allocate this list; the widget
itself makes no further reference to it. The closure field contains the client_data
passed to the callback when the callback list is executed.

The second method for registering callbacks is to use XtAddCallback after the
widget has been created.

void XtAddCallback(w, callback_name, callback, client_data);

w Specifies the widget to add the callback to.

callback_name Specifies the callback list within the widget to ap-
pend to.

callback Specifies the callback procedure to add.

client_data Specifies the data to be passed to the callback when
it is invoked.

XtAddCallback adds the specified callback to the list for the named widget.

All widgets provide a callback list named destroyCallback where clients can reg-
ister procedures that are to be executed when the widget is destroyed. The destroy
callbacks are executed when the widget or an ancestor is destroyed. The call_data
argument is unused for destroy callbacks.

Programming Considerations
This section provides some guidelines on how to set up an application program that
uses the X Toolkit.

Writing Applications

When writing an application that uses the X Toolkit, you should make sure that your
application performs the following:

1. Include < X11/Intrinsic.h > in your application programs. This header file
automatically includes < X11/Xlib.h >, so all Xlib functions also are defined.
It may also be necessary to include < X11/StringDefs.h > when setting up
argument lists, as many of the XtNsomething definitions are only defined in this
file.

2. Include the widget-specific header files for each widget type that you need to use.
For example, < X11/Xaw/Label.h > and < X11/Xaw/Command.h >.

3. Call the XtAppInitialize function before invoking any other toolkit or Xlib
functions. For further information, see Section 2.1 and the X Toolkit Intrinsics -
C Language Interface.

4. To pass attributes to the widget creation routines that will override any site or
user customizations, set up argument lists. In this document, a list of valid argu-
ment names is provided in the discussion of each widget. The names each have
a global symbol defined that begins with XtN to help catch spelling errors. For
example, XtNlabel is defined for the label resource of many widgets.

5. For further information, see Section 2.9.2.2.

Using Widgets

16

6. When the argument list is set up, create the widget with the XtCreateManaged-
Widget function. For further information, see Section 2.2 and the X Toolkit Intrin-
sics - C Language Interface.

7. If the widget has any callback routines, set by the XtNcallback argument or the
XtAddCallback function, declare these routines within the application.

8. After creating the initial widget hierarchy, windows must be created for each
widget by calling XtRealizeWidget on the top level widget.

9. Most applications now sit in a loop processing events using XtAppMainLoop ,
for example:

10.
XtCreateManagedWidget(name, class, parent, args, num_args);
XtRealizeWidget(shell);
XtAppMainLoop(app_context);

11.For information about this function, see the X Toolkit Intrinsics - C Language
Interface.

12.Link your application with libXaw (the Athena widgets), libXmu (miscellaneous
utilities), libXt (the X Toolkit Intrinsics), libSM (Session Management), libICE
(Inter-Client Exchange), libXext (the extension library needed for the shape ex-
tension code which allows rounded Command buttons), and libX11 (the core X
library). The following provides a sample command line:

13.
cc -o application application.c \-lXaw \-lXmu \-lXt \
\-lSM \-lICE \-lXext \-lX11

Changing Resource Values

The Intrinsics support two methods of changing the default resource values; the re-
source manager, and an argument list passed into XtCreateWidget. While resources
values will get updated no matter which method you use, the two methods provide
slightly different functionality.

Resource Manag-
er

This method picks up resource definitions described in Xlib
- C Language Interface from many different locations at run
time. The locations most important to the application program-
mer are the fallback resources and the app-defaults file, (see X
Toolkit Intrinsics - C Language Interface for the complete list).
Since these resource are loaded at run time, they can be over-
ridden by the user, allowing an application to be customized to
fit the particular needs of each individual user. These values
can also be modified without the need to rebuild the applica-
tion, allowing rapid prototyping of user interfaces. Application
programmers should use resources in preference to hard-cod-
ed values whenever possible.

Argument Lists The values passed into the widget at creation time via an argu-
ment list cannot be modified by the user, and allow no oppor-
tunity for customization. It is used to set resources that cannot
be specified as strings (e.g. callback lists) or resources that
should not be overridden (e.g. window depth) by the user.

Using Widgets

17

Specifying Resources

It is important for all X Toolkit application programmers to understand how to use
the X Resource Manager to specify resources for widgets in an X application. This
section will describe the most common methods used to specify these resources,
and how to use the X Resource manager.

Xrdb The xrdb utility may be used to load a file containing re-
sources into the X server. Once the resources are loaded,
the resources will affect any new applications started on
the display that they were loaded onto.

Application Defaults The application defaults (app-defaults) file (normally in /
usr/lib/X11/app-defaults/classname) for an application is
loaded whenever the application is started.

The resource specification has two colon-separated parts, a name, and a value. The
value is a string whose format is dependent on the resource specified by name.
Name is constructed by appending a resource name to a full widget name.

The full widget name is a list of the name of every ancestor of the desired widget
separated by periods (.). Each widget also has a class associated with it. A class
is a type of widget (e.g. Label or Scrollbar or Box). Notice that class names, by
convention, begin with capital letters and instance names begin with lower case
letters. The class of any widget may be used in place of its name in a resource
specification. Here are a few examples:

xman.form.button1 This is a fully specified resource name, and will af-
fect only widgets called button1 that are children of
widgets called form that are children of applications
named xman. (Note that while typically two widgets
that are siblings will have different names, it is not
prohibited.)

Xman.Form.Command This will match any Command widget that is a child
of a Form widget that is itself a child of an application
of class Xman.

Xman.Form.button1 This is a mixed resource name with both widget
names and classes specified.

This syntax allows an application programmer to specify any widget in the widget
tree. To match more than one widget (for example a user may want to make all
Command buttons blue), use an asterisk (*) instead of a period. When an asterisk
is used, any number of widgets (including zero) may exist between the two widget
names. For example:

Xman*Command This matches all Command widgets in the Xman ap-
plication.

Foo*button1 This matches any widget in the Foo application that
is named button1.

The root of all application widget trees is the widget returned by XtAppInitial-
ize. Even though this is actually an ApplicationShell widget, the toolkit replaces
its widget class with the class name of the application. The name of this widget is

Using Widgets

18

either the name used to invoke the application (argv[0]) or the name of the appli-
cation specified using the standard -name command line option supported by the
Intrinsics.

The last step in constructing the resource name is to append the name of the re-
source with either a period or asterisk to the full or partial widget name already
constructed.

*foreground:Blue Specifies that all widgets in all applications will have
a foreground color of blue.

Xman*borderWidth:10 Specifies that all widgets in an application whose
class is Xman will have a border width of 10 (pixels).

xman.form.button1.label:TestingSpecifies that a particular widget in the xman appli-
cation will have a label named Testing.

An exclamation point (!) in the first column of a line indicates that the rest of the
line should be treated as a comment.

Final Words

The Resource manager is a powerful tool that can be used very effectively to cus-
tomize X Toolkit applications at run time by either the application programmer or
the user. Some final points to note:

• An application programmer may add new resources to their application. These
resources are associated with the global application, and not any particular wid-
get. The X Toolkit function used for adding the application resources is XtGetAp-
plicationResources.

• Be careful when creating resource files. Since widgets will ignore resources that
they do not understand, any spelling errors will cause a resource to have no effect.

• Only one resource line will match any given resource. There is a set of precedence
rules, which take the following general stance.

• • More specific overrides less specific, thus period always overrides asterisk.

• Names on the left are more specific and override names on the right.

• When resource specifications are exactly the same, user defaults will override
program defaults.

For a complete explanation of the rules of precedence, and other specific topics see
X Toolkit Intrinsics - C Language Interface and Xlib - C Language Interface.

Creating Argument Lists

To set up an argument list for the inline specification of widget attributes, you may
use any of the four approaches discussed in this section. Each resource name has
a global symbol associated with it. This global symbol has the form XtNresource
name. For example, the symbol for ``foreground'' is XtNforeground. For further
information, see the X Toolkit Intrinsics - C Language Interface.

Argument are specified by using the following structure:

Using Widgets

19

typedef struct {
 String name;
 XtArgVal value;
} Arg, *ArgList;

The first approach is to statically initialize the argument list. For example:

static Arg arglist[] = {
 {XtNwidth, (XtArgVal) 400},
 {XtNheight, (XtArgVal) 300},
};

This approach is convenient for lists that do not need to be computed at runtime
and makes adding or deleting new elements easy. The XtNumber macro is used to
compute the number of elements in the argument list, preventing simple program-
ming errors:

XtCreateWidget(name, class, parent, arglist, XtNumber(arglist));

The second approach is to use the XtSetArg macro. For example:

Arg arglist[10];
XtSetArg(arglist[1], XtNwidth, 400);
XtSetArg(arglist[2], XtNheight, 300);

To make it easier to insert and delete entries, you also can use a variable index:

Arg arglist[10];
Cardinal i=0;
XtSetArg(arglist[i], XtNwidth, 400); i++;
XtSetArg(arglist[i], XtNheight, 300); i++;

The i variable can then be used as the argument list count in the widget create func-
tion. In this example, XtNumber would return 10, not 2, and therefore is not useful.
You should not use auto-increment or auto-decrement within the first argument to
XtSetArg . As it is currently implemented, XtSetArg is a macro that dereferences
the first argument twice.

The third approach is to individually set the elements of the argument list array:

Using Widgets

20

Arg arglist[10];
arglist[0].name = XtNwidth;
arglist[0].value = (XtArgVal) 400;
arglist[1].name = XtNheight;
arglist[1].value = (XtArgVal) 300;

Note that in this example, as in the previous example, XtNumber would return 10,
not 2, and therefore would not be useful.

The fourth approach is to use a mixture of the first and third approaches: you can
statically define the argument list but modify some entries at runtime. For example:

static Arg arglist[] = {
 {XtNwidth, (XtArgVal) 400},
 {XtNheight, (XtArgVal) NULL},
};
arglist[1].value = (XtArgVal) 300;

In this example, XtNumber can be used, as in the first approach, for easier code
maintenance.

Example Programs
The best way to understand how to use any programming library is by trying some
simple examples. A collection of example programs that introduces each of the wid-
gets in that Athena widget set, as well as many important toolkit programming con-
cepts, is available in the X11R5 contrib release as distributed by the X Consortium.
It can be found in the directory contrib/examples/Xaw in the archive at http://
www.x.org/releases/X11R5/contrib-1.tar.Z See the README file from that directory
for a guide to the examples.

http://www.x.org/releases/X11R5/contrib-1.tar.Z
http://www.x.org/releases/X11R5/contrib-1.tar.Z

21

Chapter 3. Simple Widgets
Each of these widgets performs a specific user interface function. They are simple
because they cannot have widget children\(emthey may only be used as leaves of
the widget tree. These widgets display information or take user input.

Command A push button that, when selected, may cause a specific action to take
place. This widget can display a multi-line string or a bitmap or pixmap
image.

Grip A rectangle that, when selected, will cause an action to take place.

Label A rectangle that can display a multi-line string or a bitmap or pixmap
image.

List A list of text strings presented in row column format that may be in-
dividually selected. When an element is selected an action may take
place.

Panner A rectangular area containing a slider that may be moved in two di-
mensions. Notification of movement may be continuous or discrete.

Repeater A push button that triggers an action at an increasing rate when
selected. This widget can display a multi-line string or a bitmap or
pixmap image.

Scrollbar A rectangular area containing a thumb that when slid along one di-
mension may cause a specific action to take place. The Scrollbar may
be oriented horizontally or vertically.

Simple The base class for most of the simple widgets. Provides a rectangular
area with a settable mouse cursor and special border.

StripChart A real time data graph that will automatically update and scroll.

Toggle A push button that contains state information. Toggles may also be
used as "radio buttons" to implement a "one of many" or "zero or one
of many" group of buttons. This widget can display a multi-line string
or a bitmap or pixmap image.

Command Widget

Application header file <X11/Xaw/Command.h>

Class header file <X11/Xaw/CommandP.h>

Class commandWidgetClass

Class Name Command

Simple Widgets

22

Superclass Label

The Command widget is an area, often rectangular, that contains text or a graphi-
cal image. Command widgets are often referred to as ``push buttons.'' When the
pointer is over a Command widget, the widget becomes highlighted by drawing a
rectangle around its perimeter. This highlighting indicates that the widget is ready
for selection. When mouse button 1 is pressed, the Command widget indicates that
it has been selected by reversing its foreground and background colors. When the
mouse button is released, the Command widget's notify action is invoked, calling
all functions on its callback list. If the pointer is moved off of the widget before the
pointer button is released, the widget reverts to its normal foreground and back-
ground colors, and releasing the pointer button has no effect. This behavior allows
the user to cancel an action.

Resources
When creating a Command widget instance, the following resources are retrieved
from the argument list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators Accelera-

torTable
 NULL

ances-
torSensitive

Ances-
torSensitive

Boolean D True

background Background Pixel XtDefault-
Background

background-
Pixmap

Pixmap Pixmap XtUnspeci-
fiedPixmap

bitmap Bitmap Pixmap None
borderColor BorderColor Pixel XtDefault-

Foreground
borderPixmap Pixmap Pixmap XtUnspeci-

fiedPixmap
borderWidth BorderWidth Dimension 1

callback Callback XtCallbackList NULL
colormap Colormap Colormap Parent's

Colormap
cornerRound-

Percent
CornerRound-

Percent
Dimension 25

cursor Cursor Cursor None
cursorName Cursor String NULL

depth Depth int C Parent's Depth
destroy-
Callback

Callback XtCallbackList NULL

encoding Encoding UnsignedChar XawTextEncoding8bit
font Font XFontStruct XtDefaultFont

Simple Widgets

23

Name Class Type Notes Default Value
foreground Foreground Pixel XtDefault-

Foreground
height Height Dimension A graphic height

+ 2 * inter-
nalHeight

highlight-
Thickness

Thickness Dimension A 2 (0 if Shaped)

insensi-
tiveBorder

Insensitive Pixmap GreyPixmap

internalHeight Height Dimension 2
internalWidth Width Dimension 4
international International Boolean C False

justify Justify Justify XtJustifyCen-
ter (center)

label Label String name of widget
leftBitmap LeftBitmap Bitmap None

mappedWhen-
Managed

MappedWhen-
Managed

Boolean True

pointerColor Foreground Pixel XtDefault-
Foreground

pointerColor-
Background

Background Pixel XtDefault-
Background

resize Resize Boolean True
screen Screen Screen R Parent's

Screen
sensitive Sensitive Boolean True

shapeStyle ShapeStyle ShapeStyle Rectangle
translations Translations Transla-

tionTable
 See below

width Width Dimension A graphic width
+ 2 * inter-
nalWidth

x Position Position 0
y Position Position 0
_

\" Resource Descriptions

Command Actions
The Command widget supports the following actions:

• Switching the button's interior between the foreground and background colors
with set, unset, and reset.

Simple Widgets

24

• Processing application callbacks with notify

• Switching the internal border between highlighted and unhighlighted states with
highlight and unhighlight

The following are the default translation bindings used by the Command widget:

 <EnterWindow>: highlight(\|)
 <LeaveWindow>: reset(\|)
 <Btn1Down>: set(\|)
 <Btn1Up>: notify(\|) unset(\|)

The full list of actions supported by Command is:

highlight(condition) Displays the internal highlight border in the color
(foreground or background) that contrasts with the
interior color of the Command widget. The conditions
WhenUnset and Always are understood by this action
procedure. If no argument is passed, WhenUnset is
assumed.

unhighlight(\|) Displays the internal highlight border in the color
(foreground or background) that matches the inte-
rior color of the Command widget.

set(\|) Enters the set state, in which notify is possible. This
action causes the button to display its interior in the
foreground color. The label or bitmap is displayed in
the background color.

unset(\|) Cancels the set state and displays the interior of the
button in the background color. The label or bitmap
is displayed in the foreground color.

reset(\|) Cancels any set or highlight and displays the interior
of the button in the background color, with the label
or bitmap displayed in the foreground color.

notify(\|) When the button is in the set state this action calls all
functions in the callback list named by the callback
resource. The value of the call_data argument passed
to these functions is undefined.

A very common alternative to registering callbacks is to augment a Command's
translations with an action performing the desired function. This often takes the
form of:

*Myapp*save.translations: #augment <Btn1Down>,<Btn1Up>: Save()

Simple Widgets

25

When a bitmap of depth greater that one (1) is specified the set(), unset(), and reset()
actions have no effect, since there are no foreground and background colors used
in a multi-plane pixmap.

Grip Widget

Application header file <X11/Xaw/Grip.h>

Class header file <X11/Xaw/GripP.h>

Class gripWidgetClass

Class Name Grip

Superclass Simple

The Grip widget provides a small rectangular region in which user input events
(such as ButtonPress or ButtonRelease) may be handled. The most common use for
the Grip widget is as an attachment point for visually repositioning an object, such
as the pane border in a Paned widget.

Resources
When creating a Grip widget instance, the following resources are retrieved from
the argument list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators Accelera-

torTable
 NULL

ances-
torSensitive

Ances-
torSensitive

Boolean D True

background Background Pixel XtDefault-
Background

background-
Pixmap

Pixmap Pixmap XtUnspeci-
fiedPixmap

borderColor BorderColor Pixel XtDefault-
Foreground

borderPixmap Pixmap Pixmap XtUnspeci-
fiedPixmap

borderWidth BorderWidth Dimension 0
callback Callback Callback NULL
colormap Colormap Colormap Parent's

Colormap
cursor Cursor Cursor None

Simple Widgets

26

Name Class Type Notes Default Value
cursorName Cursor String NULL

depth Depth int C Parent's Depth
destroy-
Callback

Callback XtCallbackList NULL

foreground Foreground Pixel XtDefault-
Foreground

height Height Dimension 8
insensi-

tiveBorder
Insensitive Pixmap GreyPixmap

international International Boolean C False
mappedWhen-

Managed
MappedWhen-

Managed
Boolean True

pointerColor Foreground Pixel XtDefault-
Foreground

pointerColor-
Background

Background Pixel XtDefault-
Background

screen Screen Screen R Parent's
Screen

sensitive Sensitive Boolean True
translations Translations Transla-

tionTable
 NULL

width Width Dimension 8
x Position Position 0
y Position Position 0

callback All routines on this list are called whenever the Gri-
pAction action routine is invoked. The call_data con-
tains all information passed to the action routine. A de-
tailed description is given below in the Grip Actions
section.

foreground A pixel value which indexes the widget's colormap to
derive the color used to flood fill the entire Grip widget.

Grip Actions

The Grip widget does not declare any default event translation bindings, but it does
declare a single action routine named GripAction. The client specifies an arbitrary
event translation table, optionally giving parameters to the GripAction routine.

The GripAction routine executes the callbacks on the callback list, passing as
call_data a pointer to a XawGripCallData structure, defined in the Grip widget's
application header file.

Simple Widgets

27

typedef struct _XawGripCallData {
 XEvent *event;
 String *params;
 Cardinal num_params;
} XawGripCallDataRec, *XawGripCallData,
 GripCallDataRec, *GripCallData; /* supported for R4 compatibility */

In this structure, the event is a pointer to the input event that triggered the action.
params and num_params give the string parameters specified in the translation
table for the particular event binding.

The following is an example of a translation table that uses the GripAction:

 <Btn1Down>: GripAction(press)
 <Btn1Motion>: GripAction(move)
 <Btn1Up>: GripAction(release)

For a complete description of the format of translation tables, see the X Toolkit
Intrinsics - C Language Interface.

Label Widget

Application header file <X11/Xaw/Label.h>

Class header file <X11/Xaw/LabelP.h>

Class labelWidgetClass

Class Name Label

Superclass Simple

A Label widget holds a graphic displayed within a rectangular region of the screen.
The graphic may be a text string containing multiple lines of characters in an 8 bit
or 16 bit character set (to be displayed with a font), or in a multi-byte encoding (for
use with a fontset). The graphic may also be a bitmap or pixmap. The Label widget

Simple Widgets

28

will allow its graphic to be left, right, or center justified. Normally, this widget can
be neither selected nor directly edited by the user. It is intended for use as an output
device only.

Resources
When creating a Label widget instance, the following resources are retrieved from
the argument list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators Accelera-

torTable
 NULL

ances-
torSensitive

Ances-
torSensitive

Boolean D True

background Background Pixel XtDefault-
Background

background-
Pixmap

Pixmap Pixmap XtUnspeci-
fiedPixmap

bitmap Bitmap Pixmap None
borderColor BorderColor Pixel XtDefault-

Foreground
borderPixmap Pixmap Pixmap XtUnspeci-

fiedPixmap
borderWidth BorderWidth Dimension 1

colormap Colormap Colormap Parent's
Colormap

cursor Cursor Cursor None
cursorName Cursor String NULL

depth Depth int C Parent's Depth
destroy-
Callback

Callback XtCallbackList NULL

encoding Encoding UnsignedChar XawTextEncoding8bit
font Font XFontStruct XtDefaultFont

fontSet FontSet XFontSet XtDefault-
FontSet

foreground Foreground Pixel XtDefault-
Foreground

height Height Dimension A graphic height
+ 2 * inter-
nalHeight

insensi-
tiveBorder

Insensitive Pixmap GreyPixmap

internalHeight Height Dimension 2
internalWidth Width Dimension 4
international International Boolean C False

Simple Widgets

29

Name Class Type Notes Default Value
justify Justify Justify XtJustifyCen-

ter (center)
label Label String name of widget

leftBitmap LeftBitmap Bitmap None
mappedWhen-

Managed
MappedWhen-

Managed
Boolean True

pointerColor Foreground Pixel XtDefault-
Foreground

pointerColor-
Background

Background Pixel XtDefault-
Background

resize Resize Boolean True
screen Screen Screen R Parent's

Screen
sensitive Sensitive Boolean True

translations Translations Transla-
tionTable

 See above

width Width Dimension A graphic width
+ 2 * inter-
nalWidth

x Position Position 0
y Position Position 0

List Widget

Application header file <X11/Xaw/List.h>

Class header file <X11/Xaw/ListP.h>

Class listWidgetClass

Class Name List

Superclass Simple

The List widget contains a list of strings formatted into rows and columns. When
one of the strings is selected, it is highlighted, and the List widget's Notify action
is invoked, calling all routines on its callback list. Only one string may be selected
at a time.

Simple Widgets

30

Resources

When creating a List widget instance, the following resources are retrieved from
the argument list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators Accelera-

torTable
 NULL

ances-
torSensitive

Ances-
torSensitive

Boolean D True

background Background Pixel XtDefault-
Background

background-
Pixmap

Pixmap Pixmap XtUnspeci-
fiedPixmap

borderColor BorderColor Pixel XtDefault-
Foreground

borderPixmap Pixmap Pixmap XtUnspeci-
fiedPixmap

borderWidth BorderWidth Dimension 1
callback Callback Callback NULL
colormap Colormap Colormap Parent's

Colormap
columnSpacing Spacing Dimension 6

cursor Cursor Cursor XC_left_ptr
cursorName Cursor String NULL

default-
Columns

Columns int 2

depth Depth int C Parent's Depth
destroy-
Callback

Callback XtCallbackList NULL

font Font FontStruct XtDefaultFont
fontSet FontSet XFontSet XtDefault-

FontSet
forceColumns Columns Boolean False

foreground Foreground Pixel XtDefault-
Foreground

height Height Dimension A Enough
space to con-
tain the list

insensi-
tiveBorder

Insensitive Pixmap GreyPixmap

internalHeight Height Dimension 2
internalWidth Width Dimension 4
international International Boolean C False

Simple Widgets

31

Name Class Type Notes Default Value
list List Pointer name of widget

longest Longest int A 0
mappedWhen-

Managed
MappedWhen-

Managed
Boolean True

numberStrings NumberStrings int A computed
for NULL ter-
minated list

pasteBuffer Boolean Boolean False
pointerColor Foreground Pixel XtDefault-

Foreground
pointerColor-
Background

Background Pixel XtDefault-
Background

rowSpacing Spacing Dimension 2
screen Screen Screen R Parent's

Screen
sensitive Sensitive Boolean True

translations Translations Transla-
tionTable

 See below

verticalList Boolean Boolean False
width Width Dimension A Enough

space to con-
tain the list

x Position Position 0
y Position Position 0
_

callback All functions on this list are called whenever the no-
tify action is invoked. The call_data argument con-
tains information about the element selected and is
described in detail in the List Callbacks section.

columnSpacing

rowSpacing The amount of space, in pixels, between each of the
rows and columns in the list.

defaultColumns The default number of columns. This value is used
when neither the width nor the height of the List wid-
get is specified or when forceColumns is True.

font The text font to use when displaying the list, when
the international resource is false.

fontSet The text font set to use when displaying the list,
when the international resource is true.

forceColumns Forces the default number of columns to be used re-
gardless of the List widget's current size.

Simple Widgets

32

foreground A pixel value which indexes the widget's colormap
to derive the color used to paint the text of the list
elements.

\fPinternalHeight\fP

\fPinternalWidth\fP The margin, in pixels, between the edges of the list
and the corresponding edge of the List widget's win-
dow.

list An array of text strings displayed in the List widget.
If numberStrings is zero (the default) then the list
must be NULL terminated. If a value is not specified
for the list, then numberStrings is set to 1, and the
name of the widget is used as the list, and longest
is set to the length of the name of the widget. The
list is used in place, and must be available to the
List widget for the lifetime of this widget, or until it
is changed with XtSetValues or XawListChange.

longest Specifies the width, in pixels, of the longest string
in the current list. The List widget will compute this
value if zero (the default) is specified. If this resource
is set by hand, entries longer than this will be clipped
to fit.

numberStrings The number of strings in the current list. If a value
of zero (the default) is specified, the List widget will
compute it. When computing the number of strings
the List widget assumes that the list is NULL ter-
minated.

pasteBuffer If this resource is set to True then the name of
the currently selected list element will be put into
CUT_BUFFER_0.

verticalList If this resource is set to True then the list elements
will be presented in column major order.

List Actions
The List widget supports the following actions:

• Highlighting and unhighlighting the list element under the pointer with Set and
Unset

• Processing application callbacks with Notify

The following is the default translation table used by the List Widget:

<Btn1Down>,<Btn1Up>: Set(\|) Notify(\|)

The full list of actions supported by List widget is:

Simple Widgets

33

Set(\|) Sets the list element that is currently under the point-
er. To inform the user that this element is currently set,
it is drawn with foreground and background colors re-
versed. If this action is called when there is no list el-
ement under the cursor, the currently set element will
be unset.

Unset(\|) Cancels the set state of the element under the pointer,
and redraws it with normal foreground and background
colors.

Notify(\|) Calls all callbacks on the List widget's callback list. In-
formation about the currently selected list element is
passed in the call_data argument (see List Callbacks
below).

List Callbacks
All procedures on the List widget's callback list will have a XawListReturnStruct
passed to them as call_data. The structure is defined in the List widget's application
header file.

typedef struct _XawListReturnStruct {
 String string; /* string shown in the list. */
 int list_index; /* index of the item selected. */
} XawListReturnStruct;

Note
The list_index item used to be called simply index. Unfortunately, this name
collided with a global name defined on some operating systems, and had to
be changed.

Changing the List
To change the list that is displayed, use XawListChange .

void XawListChange(w, list, longest, resize);

w Specifies the List widget.

list Specifies the new list for the List widget to display.

nitems Specifies the number of items in the list. If a value less
than 1 is specified, list must be NULL terminated, and the
number of items will be calculated by the List widget.

longest Specifies the length of the longest item in the list in pixels.
If a value less than 1 is specified, the List widget will cal-
culate the value.

Simple Widgets

34

resize Specifies a Boolean value that if True indicates that the List
widget should try to resize itself after making the change.
The constraints of the List widget's parent are always en-
forced, regardless of the value specified here.

XawListChange will unset all list elements that are currently set before the list is
actually changed. The list is used in place, and must remain usable for the lifetime
of the List widget, or until list has been changed again with this function or with
XtSetValues.

Highlighting an Item
To highlight an item in the list, use XawListHighlight .

void XawListHighlight(w, item);

w Specifies the List widget.

item Specifies an index into the current list that indicates the item
to be highlighted.

Only one item can be highlighted at a time. If an item is already highlighted when
XawListHighlight is called, the highlighted item is unhighlighted before the new
item is highlighted.

Unhighlighting an Item
To unhighlight the currently highlighted item in the list, use XawListUnhighlight .

void XawListUnhighlight(w);

w Specifies the List widget.

Retrieving the Currently Selected Item
To retrieve the list element that is currently set, use XawListShowCurrent .

XawListReturnStruct *XawListShowCurrent(w);

w Specifies the List widget.

XawListShowCurrent returns a pointer to an XawListReturnStruct structure,
containing the currently highlighted item. If the value of the index member is
XAW_LIST_NONE, the string member is undefined, and no item is currently select-
ed.

Restrictions
Many programmers create a ``scrolled list'' by putting a List widget with many
entries as a child of a Viewport widget. The List continues to create a window as
big as its contents, but that big window is only visible where it intersects the parent
Viewport's window. (I.e., it is ``clipped.'')

While this is a useful technique, there is a serious drawback. X does not support
windows above 32,767 pixels in width or height, but this height limit will be exceed-
ed by a List's window when the List has many entries (i.e., with a 12 point font,
about 3000 entries would be too many.)

Simple Widgets

35

Panner Widget

Application header file <X11/Xaw/Panner.h>

Class header file <X11/Xaw/PannerP.h>

Class pannerWidgetClass

Class Name Panner

Superclass Simple

A Panner widget is a rectangle, called the ``canvas,'' on which another rectangle,
the ``slider,'' moves in two dimensions. It is often used with a Porthole widget to
move, or ``scroll,'' a third widget in two dimensions, in which case the slider's size
and position gives feedback as to what portion of the third widget is visible.

The slider may be scrolled around the canvas by pressing, dragging, and releasing
Button1; the default translation also enables scrolling via arrow keys and some other
keys. While scrolling is in progress, the application receives notification through
callback procedures. Notification may be done either continuously whenever the
slider moves or discretely whenever the slider has been given a new location.

Resources
When creating a Panner widget instance, the following resources are retrieved from
the argument list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators Accelera-

torTable
 NULL

allowOff AllowOff Boolean False
ances-

torSensitive
Ances-

torSensitive
Boolean D True

background Background Pixel XtDefault-
Background

background-
Pixmap

Pixmap Pixmap XtUnspeci-
fiedPixmap

back-
groundStipple

Back-
groundStipple

String NULL

borderColor BorderColor Pixel XtDefault-
Foreground

borderPixmap Pixmap Pixmap XtUnspeci-
fiedPixmap

Simple Widgets

36

Name Class Type Notes Default Value
borderWidth BorderWidth Dimension 1
canvasHeight CanvasHeight Dimension 0
canvasWidth CanvasWidth Dimension 0

colormap Colormap Colormap Parent's
Colormap

cursor Cursor Cursor None
cursorName Cursor String NULL
defaultScale DefaultScale Dimension 8

depth Depth int C Parent's Depth
destroy-
Callback

Callback XtCallbackList NULL

foreground Foreground Pixel XtDefault-
Foreground

height Height Dimension A depends on
orientation

internalSpace InternalSpace Dimension 4
international International Boolean C False

lineWidth LineWidth Dimension 0
mappedWhen-

Managed
MappedWhen-

Managed
Boolean True

pointerColor Foreground Pixel XtDefault-
Foreground

pointerColor-
Background

Background Pixel XtDefault-
Background

reportCallback ReportCallback Callback NULL
resize Resize Boolean True

rubberBand RubberBand Boolean False
screen Screen Screen R Parent's

Screen
sensitive Sensitive Boolean True

shadowColor ShadowColor Pixel XtDefault-
Foreground

shad-
owThickness

Shad-
owThickness

Dimension 2

sliderX SliderX Position 0
sliderY SliderY Position 0

sliderHeight SliderHeight Dimension 0
sliderWidth SliderWidth Dimension 0
translations Translations Transla-

tionTable
 See below

Simple Widgets

37

Name Class Type Notes Default Value
width Width Dimension A depends on

orientation
x Position Position 0
y Position Position 0

allowOff Whether to allow the edges of the slider to go off the
edges of the canvas.

backgroundStipple The name of a bitmap pattern to be used as the back-
ground for the area representing the canvas.

canvasHeight

canvasWidth The size of the canvas.

defaultScale The percentage size that the Panner widget should
have relative to the size of the canvas.

foreground A pixel value which indexes the widget's colormap to
derive the color used to draw the slider.

internalSpace The width of internal border in pixels between a slid-
er representing the full size of the canvas and the
edge of the Panner widget.

lineWidth The width of the lines in the rubberbanding rectangle
when rubberbanding is in effect instead of continu-
ous scrolling. The default is 0.

reportCallback All functions on this callback list are called when the
notify action is invoked. See the Panner Actions
section for details.

resize Whether or not to resize the panner whenever the
canvas size is changed so that the defaultScale is
maintained.

rubberBand Whether or not scrolling should be discrete (only
moving a rubberbanded rectangle until the scrolling
is done) or continuous (moving the slider itself). This
controls whether or not the move action procedure
also invokes the notify action procedure.

shadowColor The color of the shadow underneath the slider.

shadowThickness The width of the shadow underneath the slider.

sliderX

sliderY The location of the slider in the coordinates of the
canvas.

sliderHeight

Simple Widgets

38

sliderWidth The size of the slider.

Panner Actions
The actions supported by the Panner widget are:

start() This action begins movement of the slider.

stop() This action ends movement of the slider.

abort() This action ends movement of the slider and restores
it to the position it held when the start action was
invoked.

move() This action moves the outline of the slider (if the rub-
berBand resource is True) or the slider itself (by in-
voking the notify action procedure).

page(xamount,yamount) This action moves the slider by the specified
amounts. The format for the amounts is a signed or
unsigned floating-point number (e.g., +1.0 or \-.5)
followed by either p indicating pages (slider sizes), or
c indicating canvas sizes. Thus, page(+0,+.5p) rep-
resents vertical movement down one-half the height
of the slider and page(0,0) represents moving to the
upper left corner of the canvas.

notify() This action informs the application of the slider's cur-
rent position by invoking the reportCallback func-
tions registered by the application.

set(what,value) This action changes the behavior of the Panner. The
what argument must currently be the string rubber-
band and controls the value of the rubberBand re-
source. The value argument may have one of the val-
ues on, off, or toggle.

The default bindings for Panner are:

 <Btn1Down>: start(\|)
 <Btn1Motion>: move(\|)
 <Btn1Up>: notify(\|) stop(\|)
 <Btn2Down>: abort(\|)
 <Key>KP_Enter: set(rubberband,toggle)
 <Key>space: page(+1p,+1p)
 <Key>Delete: page(\-1p,\-1p)
 <Key>BackSpace: page(\-1p,\-1p)
 <Key>Left: page(\-.5p,+0)
 <Key>Right: page(+.5p,+0)
 <Key>Up: page(+0,\-.5p)
 <Key>Down: page(+0,+.5p)
 <Key>Home: page(0,0)

Simple Widgets

39

Panner Callbacks
The functions registered on the reportCallback list are invoked by the notify ac-
tion as follows:

void ReportProc(panner, client_data, report);

panner Specifies the Panner widget.

panner Specifies the client data.

panner Specifies a pointer to an XawPannerReport structure containing the loca-
tion and size of the slider and the size of the canvas.

Repeater Widget

Application header file <X11/Xaw/Repeater.h>

Class header file <X11/Xaw/RepeaterP.h>

Class repeaterWidgetClass

Class Name Repeater

Superclass Command

The Repeater widget is a subclass of the Command widget; see the Command doc-
umentation for details. The difference is that the Repeater can call its registered
callbacks repeatedly, at an increasing rate. The default translation does so for the
duration the user holds down pointer button 1 while the pointer is on the Repeater.

Resources
When creating a Repeater widget instance, the following resources are retrieved
from the argument list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators Accelera-

torTable
 NULL

ances-
torSensitive

Ances-
torSensitive

Boolean D True

background Background Pixel XtDefault-
Background

background-
Pixmap

Pixmap Pixmap XtUnspeci-
fiedPixmap

bitmap Bitmap Pixmap None

Simple Widgets

40

Name Class Type Notes Default Value
borderColor BorderColor Pixel XtDefault-

Foreground
borderPixmap Pixmap Pixmap XtUnspeci-

fiedPixmap
borderWidth BorderWidth Dimension 1

callback Callback XtCallbackList NULL
colormap Colormap Colormap Parent's

Colormap
cornerRound-

Percent
CornerRound-

Percent
Dimension 25

cursor Cursor Cursor None
cursorName Cursor String NULL

decay Decay Int 5
depth Depth int C Parent's Depth

destroy-
Callback

Callback XtCallbackList NULL

encoding Encoding UnsignedChar XawTextEncoding8bit
flash Boolean Boolean False
font Font XFontStruct XtDefaultFont

fontSet FontSet XFontSet XtDefault-
FontSet

foreground Foreground Pixel XtDefault-
Foreground

height Height Dimension A graphic height
+ 2 * inter-
nalHeight

highlight-
Thickness

Thickness Dimension A 2 (0 if Shaped)

initialDelay Delay Int 200
insensi-

tiveBorder
Insensitive Pixmap GreyPixmap

internalHeight Height Dimension 2
internalWidth Width Dimension 4
international International Boolean C False

justify Justify Justify XtJustifyCen-
ter (center)

label Label String name of widget
leftBitmap LeftBitmap Bitmap None

mappedWhen-
Managed

MappedWhen-
Managed

Boolean True

minimumDelay MinimumDelay Int 10

Simple Widgets

41

Name Class Type Notes Default Value
pointerColor Foreground Pixel XtDefault-

Foreground
pointerColor-
Background

Background Pixel XtDefault-
Background

repeatDelay Delay Int 50
resize Resize Boolean True
screen Screen Pointer R Parent's

Screen
sensitive Sensitive Boolean True

shapeStyle ShapeStyle ShapeStyle Rectangle
startCallback StartCallback Callback NULL
stopCallback StopCallback Callback NULL
translations Translations Transla-

tionTable
 See below

width Width Dimension A graphic width
+ 2 * inter-
nalWidth

x Position Position 0
y Position Position 0

\" Resource Descriptions

decay The number of milliseconds that should be subtract-
ed from each succeeding interval while the Repeater
button is being held down until the interval has
reached minimumDelay milliseconds.

flash Whether or not to flash the Repeater button whenev-
er the timer goes off.

initialDelay The number of milliseconds between the beginning
of the Repeater button being held down and the first
invocation of the callback function.

minimumDelay The minimum time between callbacks in millisec-
onds.

repeatDelay The number of milliseconds between each callback
after the first (minus an increasing number of de-
cays).

startCallback The list of functions to invoke by the start action
(typically when the Repeater button is first pressed).
The callback data parameter is set to NULL.

stopCallback The list of functions to invoke by the stop action (typi-
cally when the Repeater button is released). The call-
back data parameter is set to NULL.

Simple Widgets

42

Repeater Actions
The Repeater widget supports the following actions beyond those of the Command
button:

start() This invokes the functions on the startCallback and call-
back lists and sets a timer to go off in initialDelay mil-
liseconds. The timer will cause the callback functions to
be invoked with increasing frequency until the stop action
occurs.

stop() This invokes the functions on the stopCallback list and
prevents any further timers from occuring until the next
start action.

The following are the default translation bindings used by the Repeater widget:

 <EnterWindow>: highlight(\|)
 <LeaveWindow>: unhighlight(\|)
 <Btn1Down>: set(\|) start(\|)
 <Btn1Up>: stop(\|) unset(\|)

Scrollbar Widget

Application header file <X11/Xaw/Scrollbar.h>
Class header file <X11/Xaw/ScrollbarP.h>
Class scrollbarWidgetClass
Class Name Scrollbar
Superclass Simple

A Scrollbar widget is a rectangle, called the ̀ `canvas,'' on which another rectangle,
the ``thumb,'' moves in one dimension, either vertically or horizontally. A Scrollbar
can be used alone, as a value generator, or it can be used within a composite widget
(for example, a Viewport). When a Scrollbar is used to move, or ``scroll,'' the con-
tents of another widget, the size and the position of the thumb usually give feedback
as to what portion of the other widget's contents are visible.

Each pointer button invokes a specific action. Pointer buttons 1 and 3 do not move
the thumb automatically. Instead, they return the pixel position of the cursor on
the scroll region. When pointer button 2 is clicked, the thumb moves to the current
pointer position. When pointer button 2 is held down and the pointer is moved, the
thumb follows the pointer.

The pointer cursor in the scroll region changes depending on the current action.
When no pointer button is pressed, the cursor appears as a double-headed arrow
that points in the direction that scrolling can occur. When pointer button 1 or 3
is pressed, the cursor appears as a single-headed arrow that points in the logical
direction that the thumb will move. When pointer button 2 is pressed, the cursor
appears as an arrow that points to the top or the left of the thumb.

Simple Widgets

43

When the user scrolls, the application receives notification through callback proce-
dures. For both discrete scrolling actions, the callback returns the Scrollbar widget,
the client_data, and the pixel position of the pointer when the button was released.
For continuous scrolling, the callback routine returns the scroll bar widget, the
client data, and the current relative position of the thumb. When the thumb is moved
using pointer button 2, the callback procedure is invoked continuously. When either
button 1 or 3 is pressed, the callback procedure is invoked only when the button is
released and the client callback procedure is responsible for moving the thumb.

Resources
When creating a Scrollbar widget instance, the following resources are retrieved
from the argument list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators Accelera-

torTable
 NULL

ances-
torSensitive

Ances-
torSensitive

Boolean D True

background Background Pixel XtDefault-
Background

background-
Pixmap

Pixmap Pixmap XtUnspeci-
fiedPixmap

borderColor BorderColor Pixel XtDefault-
Foreground

borderPixmap Pixmap Pixmap XtUnspeci-
fiedPixmap

borderWidth BorderWidth Dimension 1
colormap Colormap Colormap parent's

Colormap
cursor Cursor Cursor None

cursorName Cursor String NULL
depth Depth int C parent's Depth

destroy-
Callback

Callback XtCallbackList NULL

foreground Foreground Pixel XtDefault-
Foreground

height Height Dimension A depends on
orientation

insensi-
tiveBorder

Insensitive Pixmap GreyPixmap

international International Boolean C False
jumpProc Callback XtCallbackList NULL

length Length Dimension 1
mappedWhen-

Managed
MappedWhen-

Managed
Boolean True

Simple Widgets

44

Name Class Type Notes Default Value
mini-

mumThumb
Mini-

mumThumb
Dimension 7

orientation Orientation Orientation XtorientVerti-
cal (vertical)

pointerColor Foreground Pixel XtDefault-
Foreground

pointerColor-
Background

Background Pixel XtDefault-
Background

screen Screen Screen R parent's
Screen

scrollDCursor Cursor Cursor XC_sb_down_arrow
scrollHCursor Cursor Cursor XC_sb_h_double_arrow
scrollLCursor Cursor Cursor XC_sb_left_arrow

scrollProc Callback XtCallbackList NULL
scrollRCursor Cursor Cursor XC_sb_right_arrow
scrollUCursor Cursor Cursor XC_sb_up_arrow
scrollVCursor Cursor Cursor XC_sb_v_arrow

sensitive Sensitive Boolean True
shown Shown Float 0.0

thickness Thickness Dimension 14
thumb Thumb Bitmap GreyPixmap

thumbProc Callback XtCallbackList NULL
topOfThumb TopOfThumb Float 0.0
translations Translations Transla-

tionTable
 See below

width Width Dimension A depends on
orientation

x Position Position 0
y Position Position 0

foreground A pixel value which indexes the widget's colormap to
derive the color used to draw the thumb.

jumpProc All functions on this callback list are called when the
NotifyThumb action is invoked. See the Scrollbar
Actions section for details.

length The height of a vertical scrollbar or the width of a
horizontal scrollbar.

minimumThumb The smallest size, in pixels, to which the thumb can
shrink.

orientation The orientation is the direction that the thumb will
be allowed to move. This value can be either Xtori-
entVertical or XtorientHorizontal.

Simple Widgets

45

scrollDCursor This cursor is used when scrolling backward in a ver-
tical scrollbar.

scrollHCursor This cursor is used when a horizontal scrollbar is in-
active.

scrollLCursor This cursor is used when scrolling forward in a hori-
zontal scrollbar.

scrollProc All functions on this callback list may be called
when the NotifyScroll action is invoked. See the
\fBScrollbar Actions\fP section for details.

scrollRCursor This cursor is used when scrolling backward in a hor-
izontal scrollbar, or when thumbing a vertical scroll-
bar.

scrollUCursor This cursor is used when scrolling forward in a ver-
tical scrollbar, or when thumbing a horizontal scroll-
bar.

scrollVCursor This cursor is used when a vertical scrollbar is inac-
tive.

shown This is the size of the thumb, expressed as a percent-
age (0.0 - 1.0) of the length of the scrollbar.

thickness The width of a vertical scrollbar or the height of a
horizontal scrollbar.

thumb This pixmap is used to tile (or stipple) the thumb of
the scrollbar. If no tiling is desired, then set this re-
source to None. This resource will accept either a
bitmap or a pixmap that is the same depth as the win-
dow. The resource converter for this resource con-
structs bitmaps from the contents of files. (See Con-
verting Bitmaps for details.)

topOfThumb The location of the top of the thumb, as a percentage
(0.0 - 1.0) of the length of the scrollbar. This resource
was called top in previous versions of the Athena wid-
get set. The name collided with the a Form widget
constraint resource, and had to be changed.

Scrollbar Actions
The actions supported by the Scrollbar widget are:

StartScroll(value) The possible values are Forward, Backward, or Con-
tinuous. This must be the first action to begin a new
movement.

NotifyScroll(value) The possible values are Proportional or FullLength.
If the argument to StartScroll was Forward or Back-
ward, NotifyScroll executes the scrollProc call-

Simple Widgets

46

backs and passes either; the position of the point-
er, if value is Proportional, or the full length of the
scroll bar, if value is FullLength. If the argument
to StartScroll was Continuous, NotifyScroll returns
without executing any callbacks.

EndScroll(\^) This must be the last action after a movement is com-
plete.

MoveThumb(\^) Repositions the Scrollbar's thumb to the current
pointer location.

NotifyThumb(\^)\ Calls the callbacks and passes the relative position of
the pointer as a percentage of the scroll bar length.

The default bindings for Scrollbar are:

 <Btn1Down>: StartScroll(Forward)
 <Btn2Down>: StartScroll(Continuous) MoveThumb(\|) NotifyThumb(\|)
 <Btn3Down>: StartScroll(Backward)
 <Btn2Motion>: MoveThumb(\|) NotifyThumb(\|)
 <BtnUp>: NotifyScroll(Proportional) EndScroll(\|)

Examples of additional bindings a user might wish to specify in a resource file are:

*Scrollbar.Translations: \\
 ~Meta<Key>space: StartScroll(Forward) NotifyScroll(FullLength) \\n\\
 Meta<Key>space: StartScroll(Backward) NotifyScroll(FullLength) \\n\\
 EndScroll(\|)

Scrollbar Callbacks
There are two callback lists provided by the Scrollbar widget. The procedural inter-
face for these functions is described here.

The calling interface to the scrollProc callback procedure is:

void ScrollProc(scrollbar, client_data, position);

scrollbar Specifies the Scrollbar widget.

client_data Specifies the client data.

position Specifies a pixel position in integer form.

The scrollProc callback is used for incremental scrolling and is called by the No-
tifyScroll action. The position argument is a signed quantity and should be cast
to an int when used. Using the default button bindings, button 1 returns a positive
value, and button 3 returns a negative value. In both cases, the magnitude of the
value is the distance of the pointer in pixels from the top (or left) of the Scrollbar.
The value will never be greater than the length of the Scrollbar.

The calling interface to the jumpProc callback procedure is:

Simple Widgets

47

void JumpProc(scrollbar, client_data, percent_ptr);

scrollbar Specifies the ID of the scroll bar widget.

client_data Specifies the client data.

percent_ptr Specifies the floating point position of the thumb (0.0
\- 1.0).

The jumpProc callback is used to implement smooth scrolling and is called by the
NotifyThumb action. Percent_ptr must be cast to a pointer to float before use; i.e.

 float percent = *(float*)percent_ptr;

With the default button bindings, button 2 moves the thumb interactively, and the
jumpProc is called on each new position of the pointer, while the pointer button
remains down. The value specified by percent_ptr is the current location of the
thumb (from the top or left of the Scrollbar) expressed as a percentage of the length
of the Scrollbar.

Convenience Routines
To set the position and length of a Scrollbar thumb, use

void XawScrollbarSetThumb(w, top, shown);

w Specifies the Scrollbar widget.

top Specifies the position of the top of the thumb as a fraction of
the length of the Scrollbar.

shown Specifies the length of the thumb as a fraction of the total
length of the Scrollbar.

XawScrollbarThumb moves the visible thumb to a new position (0.0 \- 1.0) and length
(0.0 \- 1.0). Either the top or shown arguments can be specified as \-1.0, in which
case the current value is left unchanged. Values greater than 1.0 are truncated to
1.0.

If called from jumpProc, XawScrollbarSetThumb has no effect.

Setting Float Resources
The shown and topOfThumb resources are of type float. These resources can be dif-
ficult to get into an argument list. The reason is that C performs an automatic cast
of the float value to an integer value, usually truncating the important information.
The following code fragment is one portable method of getting a float into an argu-
ment list.

 top = 0.5;
 if (sizeof(float) > sizeof(XtArgVal)) {
 /*
 \ * If a float is larger than an XtArgVal then pass this

Simple Widgets

48

 \ * resource value by reference.
 \ */
 XtSetArg(args[0], XtNshown, &top);
 }
 else {
 /*
 \ * Convince C not to perform an automatic conversion, which
 \ * would truncate 0.5 to 0.
 \ */
 XtArgVal * l_top = (XtArgVal *) ⊤
 XtSetArg(args[0], XtNshown, *l_top);
 }

Simple Widget

Application Header file <Xaw/Simple.h>

Class Header file <Xaw/SimpleP.h>

Class simpleWidgetClass

Class Name Simple

Superclass Core

The Simple widget is not very useful by itself, as it has no semantics of its own. It
main purpose is to be used as a common superclass for the other simple Athena
widgets. This widget adds six resources to the resource list provided by the Core
widget and its superclasses.

Resources
When creating a Simple widget instance, the following resources are retrieved from
the argument list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators Accelera-

torTable
 NULL

ances-
torSensitive

Ances-
torSensitive

Boolean D True

background Background Pixel XtDefault-
Background

background-
Pixmap

Pixmap Pixmap XtUnspeci-
fiedPixmap

borderColor BorderColor Pixel XtDefault-
Foreground

Simple Widgets

49

Name Class Type Notes Default Value
borderPixmap Pixmap Pixmap XtUnspeci-

fiedPixmap
borderWidth BorderWidth Dimension 1

colormap Colormap Colormap Parent's
Colormap

cursor Cursor Cursor None
cursorName Cursor String NULL

depth Depth int C Parent's Depth
destroy-
Callback

Callback XtCallbackList NULL

height Height Dimension 0
insensi-

tiveBorder
Insensitive Pixmap GreyPixmap

international International Boolean C False
mappedWhen-

Managed
MappedWhen-

Managed
Boolean True

pointerColor Foreground Pixel XtDefault-
Foreground

pointerColor-
Background

Background Pixel XtDefault-
Background

screen Screen Screen R Parent's
Screen

sensitive Sensitive Boolean True
translations Translations Transla-

tionTable
 NULL

width Width Dimension 0
x Position Position 0
y Position Position 0

StripChart Widget

Application Header file <Xaw/StripChart.h>

Class Header file <Xaw/StripCharP.h>

Class stripChartWidgetClass

Class Name StripChart

Superclass Simple

Simple Widgets

50

The StripChart widget is used to provide a roughly real time graphical chart of a
single value. For example, it is used by the common client program xload to pro-
vide a graph of processor load. The StripChart reads data from an application, and
updates the chart at the update interval specified.

Resources

When creating a StripChart widget instance, the following resources are retrieved
from the argument list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators Accelera-

torTable
 NULL

ances-
torSensitive

Ances-
torSensitive

Boolean D True

background Background Pixel XtDefault-
Background

background-
Pixmap

Pixmap Pixmap XtUnspeci-
fiedPixmap

borderColor BorderColor Pixel XtDefault-
Foreground

borderPixmap Pixmap Pixmap XtUnspeci-
fiedPixmap

borderWidth BorderWidth Dimension 1
colormap Colormap Colormap Parent's

Colormap
cursor Cursor Cursor None

cursorName Cursor String NULL
depth Depth int C Parent's Depth

destroy-
Callback

Callback XtCallbackList NULL

foreground Foreground Pixel XtDefault-
Foreground

getValue Callback XtCallbackList NULL
height Height Dimension 120

highlight Foreground Pixel XtDefault-
Foreground

insensi-
tiveBorder

Insensitive Pixmap GreyPixmap

international International Boolean C False
jumpScroll JumpScroll int A half the width

of the widget
mappedWhen-

Managed
MappedWhen-

Managed
Boolean True

minScale Scale int 1

Simple Widgets

51

Name Class Type Notes Default Value
pointerColor Foreground Pixel XtDefault-

Foreground
pointerColor-
Background

Background Pixel XtDefault-
Background

screen Screen Pointer R Parent's
Screen

sensitive Sensitive Boolean True
translations Translations Transla-

tionTable
 NULL

update Interval int 10
width Width Dimension 120

x Position Position 0
y Position Position 0

foreground A pixel value which indexes the widget's colormap to
derive the color that will be used to draw the graph.

getValue A list of callback functions to call every update seconds.
This list should contain one function, which returns the
value to be graphed by the StripChart widget. The fol-
lowing section describes the procedural interface. Be-
havior when this list has more than one function is un-
defined.

highlight A pixel value which indexes the widget's colormap to
derive the color that will be used to draw the scale lines
on the graph.

jumpScroll When the graph reaches the right edge of the window
it must be scrolled to the left. This resource specifies
the number of pixels it will jump. Smooth scrolling can
be achieved by setting this resource to 1.

minScale The minimum scale for the graph. The number of divi-
sions on the graph will always be greater than or equal
to this value.

update The number of seconds between graph updates. Each
update is represented on the graph as a 1 pixel wide
line. Every update seconds the getValue procedure will
be used to get a new graph point, and this point will be
added to the right end of the StripChart.

Getting the StripChart Value
The StripChart widget will call the application routine passed to it as the getValue
callback function every update seconds to obtain another point for the StripChart
graph.

The calling interface for the getValue callback is:

Simple Widgets

52

void(*getValueProc)(w, client_data, value);

w Specifies the StripChart widget.

client_data Specifies the client data.

value Returns a pointer to a double. The application should
set the address pointed to by this argument to a double
containing the value to be graphed on the StripChart.

This function is used by the StripChart to call an application routine. The routine
will pass the value to be graphed back to the the StripChart in the value field of
this routine.

Toggle Widget

Application Header file <Xaw/Toggle.h>
Class Header file <Xaw/ToggleP.h>
Class toggleWidgetClass
Class Name Toggle
Superclass Command

The Toggle widget is an area, often rectangular, that displays a graphic. The graphic
may be a text string containing multiple lines of characters in an 8 bit or 16 bit
character set (to be displayed with a font), or in a multi-byte encoding (for use with
a fontset). The graphic may also be a bitmap or pixmap.

This widget maintains a Boolean state (e.g. True/False or On/Off) and changes state
whenever it is selected. When the pointer is on the Toggle widget, the Toggle widget
may become highlighted by drawing a rectangle around its perimeter. This high-
lighting indicates that the Toggle widget is ready for selection. When pointer button
1 is pressed and released, the Toggle widget indicates that it has changed state by
reversing its foreground and background colors, and its notify action is invoked,
calling all functions on its callback list. If the pointer is moved off of the widget
before the pointer button is released, the Toggle widget reverts to its previous fore-
ground and background colors, and releasing the pointer button has no effect. This
behavior allows the user to cancel the operation.

Toggle widgets may also be part of a ̀ `radio group.'' A radio group is a list of at least
two Toggle widgets in which no more than one Toggle may be set at any time. A radio
group is identified by the widget ID of any one of its members. The convenience
routine XawToggleGetCurrent will return information about the Toggle widget in
the radio group.

Toggle widget state is preserved across changes in sensitivity.

Resources
When creating a Toggle widget instance, the following resources are retrieved from
the argument list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators Accelera-

torTable
 NULL

Simple Widgets

53

Name Class Type Notes Default Value
ances-

torSensitive
Ances-

torSensitive
Boolean D True

background Background Pixel XtDefault-
Background

background-
Pixmap

Pixmap Pixmap XtUnspeci-
fiedPixmap

bitmap Bitmap Pixmap None
borderColor BorderColor Pixel XtDefault-

Foreground
borderPixmap Pixmap Pixmap XtUnspeci-

fiedPixmap
borderWidth BorderWidth Dimension 1

callback Callback XtCallbackList NULL
colormap Colormap Colormap Parent's

Colormap
cornerRound-

Percent
CornerRound-

Percent
Dimension 25

cursor Cursor Cursor None
cursorName Cursor String NULL

depth Depth int C Parent's Depth
destroy-
Callback

Callback XtCallbackList NULL

encoding Encoding UnsignedChar XawTextEncoding8bit
font Font XFontStruct XtDefaultFont

fontSet FontSet XFontSet XtDefault-
FontSet

foreground Foreground Pixel XtDefault-
Foreground

height Height Dimension A graphic height
+ 2 * inter-
nalHeight

highlight-
Thickness

Thickness Dimension A 2 (0 if Shaped)

insensi-
tiveBorder

Insensitive Pixmap GreyPixmap

internalHeight Height Dimension 2
internalWidth Width Dimension 4
international International Boolean C False

justify Justify Justify XtJustifyCen-
ter (center)

label Label String name of widget
leftBitmap LeftBitmap Bitmap None

Simple Widgets

54

Name Class Type Notes Default Value
mappedWhen-

Managed
MappedWhen-

Managed
Boolean True

pointerColor Foreground Pixel XtDefault-
Foreground

pointerColor-
Background

Background Pixel XtDefault-
Background

radioData RadioData Pointer Name of
widget

radioGroup Widget Widget No radio group
resize Resize Boolean True
screen Screen Screen R Parent's

Screen
sensitive Sensitive Boolean True

shapeStype ShapeStyle ShapeStyle Rectangle
state State Boolean Off

translations Translations Transla-
tionTable

 See below

width Width Dimension A graphic width
+ 2 * inter-
nalWidth

x Position Position 0
y Position Position 0

radioData Specifies the data that will be returned by XawTog-
gleGetCurrent when this is the currently set widget in
the radio group. This value is also used to identify the
Toggle that will be set by a call to XawToggleSetCur-
rent. The value NULL will be returned by XawTog-
gleGetCurrent if no widget in a radio group is current-
ly set. Programmers must not specify NULL (or Zero)
as radioData.

radioGroup Specifies another Toggle widget that is in the radio
group to which this Toggle widget should be added. A
radio group is a group of at least two Toggle widgets,
only one of which may be set at a time. If this value is
NULL (the default) then the Toggle will not be part of
any radio group and can change state without affect-
ing any other Toggle widgets. If the widget specified in
this resource is not already in a radio group then a new
radio group will be created containing these two Tog-
gle widgets. No Toggle widget can be in multiple radio
groups. The behavior of a radio group of one toggle is
undefined. A converter is registered which will convert
widget names to widgets without caching.

state Specifies whether the Toggle widget is set (True) or un-
set (False).

Simple Widgets

55

Toggle Actions
The Toggle widget supports the following actions:

• Switching the Toggle widget between the foreground and background colors with
set and unset and toggle

• Processing application callbacks with notify

• Switching the internal border between highlighted and unhighlighted states with
highlight and unhighlight

The following are the default translation bindings used by the Toggle widget:

 <EnterWindow>: highlight(Always)
 <LeaveWindow>: unhighlight()
 <Btn1Down>,<Btn1Up>: toggle() notify()

Toggle Actions
The full list of actions supported by Toggle is:

highlight(condition) Displays the internal highlight border in the color
(foreground or background) that contrasts with the
interior color of the Toggle widget. The conditions
WhenUnset and Always are understood by this action
procedure. If no argument is passed then WhenUnset
is assumed.

unhighlight() Displays the internal highlight border in the color
(foreground or background) that matches the inte-
rior color of the Toggle widget.

set() Enters the set state, in which notify is possible. This
action causes the Toggle widget to display its interior
in the foreground color. The label or bitmap is dis-
played in the background color.

unset() Cancels the set state and displays the interior of the
Toggle widget in the background color. The label or
bitmap is displayed in the foreground color.

toggle() Changes the current state of the Toggle widget, caus-
ing to be set if it was previously unset, and unset if it
was previously set. If the widget is to be set, and is in
a radio group then this procedure may unset another
Toggle widget causing all routines on its callback list
to be invoked. The callback routines for the Toggle
that is to be unset will be called before the one that
is to be set.

reset() Cancels any set or highlight and displays the in-
terior of the Toggle widget in the background color,
with the label displayed in the foreground color.

Simple Widgets

56

notify() When the Toggle widget is in the set state this action
calls all functions in the callback list named by the
callback resource. The value of the call_data argu-
ment in these callback functions is undefined.

When a bitmap of depth greater that one (1) is specified the set(), unset(), and reset()
actions have no effect, since there are no foreground and background colors used
in a multi-plane pixmap.

Radio Groups
There are typically two types of radio groups desired by applications. The default
translations for the Toggle widget implement a "zero or one of many" radio group.
This means that there may be no more than one Toggle widget active, but there
need not be any Toggle widgets active.

The other type of radio group is "one of many" and has the more strict policy that
there will always be exactly one radio button active. Toggle widgets can be used
to provide this interface with a slight modification to the translation table of each
Toggle in the group.

 <EnterWindow>: highlight(Always)
 <LeaveWindow>: unhighlight()
 <Btn1Down>,<Btn1Up>: set() notify()

This translation table will not allow any Toggle to be unset except as a result of
another Toggle becoming set. It is the application programmer's responsibility to
choose an initial state for the radio group by setting the state resource of one of
its member widgets to True.

Convenience Routines
The following functions allow easy access to the Toggle widget's radio group func-
tionality.

Changing the Toggle's Radio Group.

To enable an application to change the Toggle's radio group, add the Toggle to a
radio group, or remove the Toggle from a radio group, use XawToggleChangeRa-
dioGroup.

void XawToggleChangeRadioGroup(radio_group);

w Specifies the Toggle widget.

radio_group Specifies any Toggle in the new radio group. If NULL
then the Toggle will be removed from any radio group
of which it is a member.

If a Toggle is already set in the new radio group, and the Toggle to be added is
also set then the previously set Toggle in the radio group is unset and its callback
procedures are invoked. Finding the Currently selected Toggle in a radio group of
Toggles

Simple Widgets

57

To find the currently selected Toggle in a radio group of Toggle widgets use Xaw-
ToggleGetCurrent.

XtPointer XawToggleGetCurrent(XawToggleGetCurrent(radio_group),
radio_group);

radio_group Specifies any Toggle widget in the radio group.

The value returned by this function is the radioData of the Toggle in this radio
group that is currently set. The default value for radioData is the name of that
Toggle widget. If no Toggle is set in the radio group specified then NULL is returned.
Changing the Toggle that is set in a radio group.

To change the Toggle that is currently set in a radio group use XawToggleSetCur-
rent.

void XawToggleSetCurrent(radio_data), radio_group, radio_data);

radio_group Specifies any Toggle widget in the radio group.

radio_data Specifies the radioData identifying the Toggle that
should be set in the radio group specified by the
radio_group argument.

XawToggleSetCurrent locates the Toggle widget to be set by matching radio_data
against the radioData for each Toggle in the radio group. If none match, Xaw-
ToggleSetCurrent returns without making any changes. If more than one Toggle
matches, XawToggleSetCurrent will choose a Toggle to set arbitrarily. If this caus-
es any Toggle widgets to change state, all routines in their callback lists will be
invoked. The callback routines for a Toggle that is to be unset will be called before
the one that is to be set. Unsetting all Toggles in a radio group.

To unset all Toggle widgets in a radio group use XawToggleUnsetCurrent.

void XawToggleUnsetCurrent(XawToggleUnsetCurrent(radio_group),
radio_group);

radio_group Specifies any Toggle widget in the radio group.

If this causes a Toggle widget to change state, all routines on its callback list will
be invoked.

58

Chapter 4. Menus
The Athena widget set provides support for single paned non-hierarchical popup
and pulldown menus. Since menus are such a common user interface tool, support
for them must be provided in even the most basic widget sets. In menuing as in
other areas, the Athena Widget Set provides only basic functionality.

Menus in the Athena widget set are implemented as a menu container (the Simple-
Menu widget) and a collection of objects that comprise the menu entries. The Sim-
pleMenu widget is itself a direct subclass of the OverrideShell widget class, so no
other shell is necessary when creating a menu. The managed children of a Simple-
Menu must be subclasses of the Sme (Simple Menu Entry) object.

The Athena widget set provides three classes of Sme objects that may be used to
build menus.

Sme The base class of all menu entries. It may be used as a menu entry itself
to provide blank space in a menu. "Sme" means "Simple Menu Entry."

Sme-
BSB

This menu entry provides a selectable entry containing a text string. A
bitmap may also be placed in the left and right margins. "BSB" means
"Bitmap String Bitmap."

Sme-
Line

This menu entry provides an unselectable entry containing a separator
line.

The SimpleMenu widget informs the window manager that it should ignore its win-
dow by setting the Override Redirect flag. This is the correct behavior for the
press-drag-release style of menu operation. If click-move-click or "pinable" menus
are desired it is the responsibility of the application programmer, using the Simple-
Menu resources, to inform the window manager of the menu.

To allow easy creation of pulldown menus, a MenuButton widget is also provided
as part of the Athena widget set.

Using the Menus
The default configuration for the menus is press-drag-release. The menus will typi-
cally be activated by clicking a pointer button while the pointer is over a MenuBut-
ton, causing the menu to appear in a fixed location relative to that button; this is
a pulldown menu. Menus may also be activated when a specific pointer and/or key
sequence is used anywhere in the application; this is a popup menu (e.g. clicking
Ctrl-<pointer button 1> in the common application xterm). In this case the menu
should be positioned under the cursor. Typically menus will be placed so the pointer
cursor is on the first menu entry, or the last entry selected by the user.

The menu remains on the screen as long as the pointer button is held down. Moving
the pointer will highlight different menu items. If the pointer leaves the menu, or
moves over an entry that cannot be selected then no menu entry will highlighted.
When the desired menu entry has been highlighted, releasing the pointer button
removes the menu, and causes any mechanism associated with this entry to be in-
voked.

Menus

59

Sme Object

Application Header file <X11/Xaw/Sme.h>

Class Header file <X11/Xaw/SmeP.h>

Class smeObjectClass

Class Name Sme

Superclass RectObj

The Sme object is the base class for all menu entries. While this object is mainly
intended to be subclassed, it may be used in a menu to add blank space between
menu entries.

Resources
The resources associated with the SmeLine object are defined in this section, and af-
fect only the single menu entry specified by this object. There are no new resources
added for this class, as it picks up all its resources from the RectObj class.

Name Class Type Notes Default Value
ances-

torSensitive
Ances-

torSensitive
Boolean True

callback Callback XtCallbackList NULL
destroy-
Callback

Callback XtCallbackList NULL

height Height Dimension 0
international International Boolean C False

sensitive Sensitive Boolean True
width Width Dimension 1

Keep in mind that the SimpleMenu widget will force all menu items to be the width
of the widest entry.

Subclassing the Sme Object
To Create a new Sme object class you will need to define three class methods. These
methods allow the SimpleMenu to highlight and unhighlight the menu entry as the
pointer cursor moves over it, as well as notify the entry when the user has selected
it. All of these methods may be inherited from the Sme object, although the default
semantics are not very interesting.

Highlight(\|) Called to put the menu entry into the highlighted
state.

Unhighlight(\|) Called to return the widget to its normal (unhigh-
lighted) state.

Menus

60

Notify(\|) Called when the user selects this menu entry.

Other then these methods, creating a new object is straight forward. Here is some
information that may help you avoid some common mistakes.

1. Objects can be zero pixels high.

2. Objects draw on their parent's window, therefore the Drawing dimensions are dif-
ferent from those of widgets. For instance, y locations vary from y to y + height,
not 0 to height.

3. XtSetValues calls may come from the application while the Sme is highlighted,
and if the SetValues method returns True, will result in an expose event. The
SimpleMenu may later call the menu entry's unhighlight procedure. However,
due to the asynchronous nature of X, the expose event generated by XtSetValues
will come after this unhighlight.

4. Remember that your subclass of the Sme does not own the window. Share the
space with other menu entries, and refrain from drawing outside the subclass's
own section of the menu.

SmeBSB Object

Application Header file <X11/Xaw/SmeBSB.h>

Class Header file <X11/Xaw/SmeBSBP.h>

Class smeBSBObjectClass

Class Name SmeBSB

Superclass Sme

The SmeBSB object is used to create a menu entry that contains a string, and op-
tional bitmaps in its left and right margins. Since each menu entry is an independent
object, the application is able to change the font, color, height, and other attributes
of the menu entries, on an entry by entry basis. The format of the string may either
be the encoding of the 8 bit font utilized, or in a multi-byte encoding for use with
a fontSet.

Resources
The resources associated with the SmeBSB object are defined in this section, and
affect only the single menu entry specified by this object.

Name Class Type Notes Default Value
ances-

torSensitive
Ances-

torSensitive
Boolean D True

callback Callback Callback NULL

Menus

61

Name Class Type Notes Default Value
destroy-
Callback

Callback XtCallbackList NULL

font Font FontStruct XtDefaultFont
fontSet FontSet XFontSet XtDefault-

FontSet
foreground Foreground Pixel XtDefault-

Foreground
height Height Dimension A Font height

+ vertSpace
international International Boolean C False

justify Justify Justify XtjustifyLeft
label Label String NULL

leftBitmap LeftBitmap Pixmap XtUnspeci-
fiedPixmap

leftMargin leftMargin Dimension 4
rightBitmap RightBitmap Pixmap XtUnspeci-

fiedPixmap
rightMargin rightMargin Dimension 4

sensitive Sensitive Boolean True
vertSpace VertSpace int 25

width Width Dimension A TextWidth
+ margins

callback All callback functions on this list are called when the SimpleMenu
notifies this entry that the user has selected it.

font The text font to use when displaying the label, when the interna-
tional resource is false.

fontSet The text font set to use when displaying the label, when the inter-
national resource is true.

foreground A pixel value which indexes the SimpleMenu's colormap to derive
the foreground color of the menu entry's window. This color is also
used to render all 1's in the left and right bitmaps. Keep in mind that
the SimpleMenu widget will force the width of all menu entries to be
the width of the longest entry.

justify How the label is to be rendered between the left and right margins
when the space is wider than the actual text. This resource may
be specified with the values XtJustifyLeft, XtJustifyCenter, or
XtJustifyRight. When specifying the justification from a resource
file the values left, center, or right may be used.

label This is a the string that will be displayed in the menu entry. The ex-
act location of this string within the bounds of the menu entry is
controlled by the leftMargin, rightMargin, vertSpace, and justi-
fy resources.

Menus

62

leftBitmap

rightBitmap This is a name of a bitmap to display in the left or right margin of the
menu entry. All 1's in the bitmap will be rendered in the foreground
color, and all 0's will be drawn in the background color of the Sim-
pleMenu widget. It is the programmers' responsibility to make sure
that the menu entry is tall enough, and the appropriate margin wide
enough to accept the bitmap. If care is not taken the bitmap may
extend into another menu entry, or into this entry's label.

leftMargin

rightMargin This is the amount of space (in pixels) that will be left between the
edge of the menu entry and the label string.

vertSpace This is the amount of vertical padding, expressed as a percentage of
the height of the font, that is to be placed around the label of a menu
entry.. The label and bitmaps are always centered vertically within
the menu. The default value for this resource (25) causes the default
height to be 125% of the height of the font.

SmeLine Object

Application Header file <X11/Xaw/SmeLine.h>

Class Header file <X11/Xaw/SmeLineP.h>

Class smeLineObjectClass

Class Name SmeLine

Superclass Sme

The SmeLine object is used to add a horizontal line or menu separator to a menu.
Since each SmeLine is an independent object, the application is able to change the
color, height, and other attributes of the SmeLine objects on an entry by entry basis.
This object is not selectable, and will not highlight when the pointer cursor is over it.

Resources
The resources associated with the SmeLine object are defined in this section, and
affect only the single menu entry specified by this object.

Name Class Type Notes Default Value
destroy-
Callback

Callback XtCallbackList NULL

foreground Foreground Pixel XtDefault-
Foreground

height Height Dimension lineWidth

Menus

63

Name Class Type Notes Default Value
international International Boolean C False

lineWidth LineWidth Dimension 1
stipple Stipple Pixmap XtUnspeci-

fiedPixmap
width Width Dimension 1

foreground A pixel value which indexes the SimpleMenu's colormap to derive the
foreground color used to draw the separator line. Keep in mind that
the SimpleMenu widget will force all menu items to be the width of the
widest entry. Thus, setting the width is generally not very important.

lineWidth The width of the horizontal line that is to be displayed.

stipple If a bitmap is specified for this resource, the line will be stippled
through it. This allows the menu separator to be rendered as some-
thing more exciting than just a line. For instance, if you define a stipple
that is a chain link, then your menu separators will look like chains.

64

Chapter 5. Text Widgets
The Text widget provides a window that will allow an application to display and edit
one or more lines of text. Options are provided to allow the user to add Scrollbars
to its window, search for a specific string, and modify the text in the buffer.

The Text widget is made up of a number of pieces; it was modularized to ease cus-
tomization. The AsciiText widget class (actually not limited to ASCII but so named
for compatibility) is be general enough to most needs. If more flexibility, special
features, or extra functionality is needed, they can be added by implementing a new
TextSource or TextSink, or by subclassing the Text Widget (See Section 5.8 for cus-
tomization details.)

The words insertion point are used in this chapter to refer to the text caret. This is
the symbol that is displayed between two characters in the file. The insertion point
marks the location where any new characters will be added to the file. To avoid
confusion the pointer cursor will always be referred to as the pointer.

The text widget supports three edit modes, controlling the types of modifications
a user is allowed to make:

• Append-only

• Editable

• Read-only

Read-only mode does not allow the user or the programmer to modify the text in the
widget. While the entire string may be reset in read-only mode with XtSetValues,
it cannot be modified via with XawTextReplace. Append-only and editable modes
allow the text at the insertion point to be modified. The only difference is that text
may only be added to or removed from the end of a buffer in append-only mode.

Text Widget for Users
The Text widget provides many of the common keyboard editing commands. These
commands allow users to move around and edit the buffer. If an illegal operation
is attempted, (such as deleting characters in a read-only text widget), the X server
will beep.

Default Key Bindings
The default key bindings are patterned after those in the EMACS text editor:

Ctrl-a Beginning Of Line Meta-b Backward Word
Ctrl-b Backward Character Meta-f Forward Word
Ctrl-d Delete Next Character Meta-i Insert File
Ctrl-e End Of Line Meta-k Kill To End Of Paragraph
Ctrl-f Forward Character Meta-q Form Paragraph
Ctrl-g Multiply Reset Meta-v Previous Page

Text Widgets

65

Ctrl-h Delete Previous Character Meta-y Insert Current Selection
Ctrl-j Newline And Indent Meta-z Scroll One Line Down
Ctrl-k Kill To End Of Line Meta-d Delete Next Word
Ctrl-l Redraw Display Meta-D Kill Word
Ctrl-m Newline Meta-h Delete Previous Word
Ctrl-n Next Line Meta-H Backward Kill Word
Ctrl-o Newline And Backup Meta-< Beginning Of File
Ctrl-p Previous Line Meta-> End Of File
Ctrl-r Search/Replace Backward Meta-] Forward Paragraph
Ctrl-s Search/Replace Forward Meta-[Backward Paragraph
Ctrl-t Transpose Characters
Ctrl-u Multiply by 4 Meta-Delete Delete Previous Word
Ctrl-v Next Page Meta-Shift Delete Kill Previous Word
Ctrl-w Kill Selection Meta-Backspace Delete Previous Word
Ctrl-y Unkill Meta-Shift Backspace Kill Previous Word
Ctrl-z Scroll One Line Up
Ctrl-\\ Reconnect to input method
Kanji Reconnect to input method

In addition, the pointer may be used to cut and paste text:

 Button 1 Down Start Selection
 Button 1 Motion Adjust Selection
 Button 1 Up End Selection (cut)

 Button 2 Down Insert Current Selection (paste)

 Button 3 Down Extend Current Selection
 Button 3 Motion Adjust Selection
 Button 3 Up End Selection (cut)

Since all of these key and pointer bindings are set through the translations and
resource manager, the user and the application programmer can modify them by
changing the Text widget's translations resource.

Search and Replace
The Text widget provides a search popup that can be used to search for a string
within the current Text widget. The popup can be activated by typing either Con-
trol-r or Control-s. If Control-s is used the search will be forward in the file from the
current location of the insertion point; if Control-r is used the search will be back-
ward. The activated popup is placed under the pointer. It has a number of buttons
that allow both text searches and text replacements to be performed.

At the top of the search popup are two toggle buttons labeled backward and forward.
One of these buttons will always be highlighted; this is the direction in which the
search will be performed. The user can change the direction at any time by clicking
on the appropriate button.

Directly under the buttons there are two text areas, one labeled Search for: and the
other labeled Replace with:. If this is a read-only Text widget the Replace with: field

Text Widgets

66

will be insensitive and no replacements will be allowed. After each of these labels
will be a text field. This field will allow the user to enter a string to search for and
the string to replace it with. Only one of these text fields will have a window border
around it; this is the active text field. Any key presses that occur when the focus in
in the search popup will be directed to the active text field. There are also a few
special key sequences:

Carriage Return: Execute the action, and pop down the search widget.
Tab: Execute the action, then move to the next field.
Shift Carriage Return: Execute the action, then move to the next field.
Control-q Tab: Enter a Tab into a text field.
Control-c: Pop down the search popup.

Using these special key sequences should allow simple searches without ever re-
moving one's hands from the keyboard.

Near the bottom of the search popup is a row of buttons. These buttons allow the
same actions to to be performed as the key sequences, but the buttons will leave
the popup active. This can be quite useful if many searches are being performed, as
the popup will be left on the display. Since the search popup is a transient window,
it may be picked up with the window manager and pulled off to the side for use at
a later time.

Search Search for the specified string.

Replace Replace the currently highlighted string with the string in the Replace
with text field, and move onto the next occurrence of the Search for
text field. The functionality is commonly referred to as query-replace.

ReplaceAll Replace all occurrences of the search string with the replace string
from the current insertion point position to the end (or beginning) of
the file. There is no key sequence to perform this action.

ReplaceAll Remove the search popup from the screen.

Finally, when international resource is true, there may be a pre-edit buffer below
the button row, for composing input. Its presence is determined by the X locale in
use and the VendorShell's preeditType resource.

The widget hierarchy for the search popup is show below, all widgets are listed by
class and instance name.

Text <name of Text widget>
 TransientShell search
 Form form
 Label label1
 Label label2
 Toggle backwards
 Toggle forwards
 Label searchLabel
 Text searchText
 Label replaceLabel

Text Widgets

67

 Text replaceText
 Command search
 Command replaceOne
 Command replaceAll
 Command cancel

File Insertion
To insert a file into a text widget, type the key sequence Meta-i, which will activate
the file insert popup. This popup will appear under the pointer, and any text typed
while the focus is in this popup will be redirected to the text field used for the
filename. When the desired filename has been entered, click on Insert File, or type
Carriage Return. The named file will then be inserted in the text widget beginning
at the insertion point position. If an error occurs when opening the file, an error
message will be printed, prompting the user to enter the filename again. The file
insert may be aborted by clicking on Cancel. If Meta-i is typed at a text widget that
is read-only, it will beep, as no file insertion is allowed.

The widget hierarchy for the file insert popup is show below; all widgets are listed
by class and instance name.

Text <name of Text widget>
 TransientShell insertFile
 Form form
 Label label
 Text text
 Command insert
 Command cancel

Text Selections for Users
The text widgets have a text selection mechanism that allows the user to copy pieces
of the text into the PRIMARY selection, and paste into the text widget some text that
another application (or text widget) has put in the PRIMARY selection.

One method of selecting text is to press pointer button 1 on the beginning of the
text to be selected, drag the pointer until all of the desired text is highlighted, and
then release the button to activate the selection. Another method is to click pointer
button 1 at one end of the text to be selected, then click pointer button 3 at the
other end.

To modify a currently active selection, press pointer button 3 near either the end of
the selection that you want to adjust. This end of the selection may be moved while
holding down pointer button 3. When the proper area has been highlighted release
the pointer button to activate the selection.

The selected text may now be pasted into another application, and will remain active
until some other client makes a selection. To paste text that some other application
has put into the PRIMARY selection use pointer button 2. First place the insertion
point where you would like the text to be inserted, then click and release pointer
button 2.

Rapidly clicking pointer button 1 the following number of times will adjust the se-
lection as described.

Text Widgets

68

Two Select the word under the pointer. A word boundary is defined
by the Text widget to be a Space, Tab, or Carriage Return.

Three Select the line under the pointer.

Four Select the paragraph under the pointer. A paragraph bound-
ary is defined by the text widget as two Carriage Returns in
a row with only Spaces or Tabs between them.

Five Select the entire text buffer.

To unset the text selection, click pointer button 1 without moving it.

Text Widget Actions
All editing functions are performed by translation manager actions that may be
specified through the translations resource in the Text widget.

Insert Point Movement Delete
 forward-character delete-next-character
 backward-character delete-previous-character
 forward-word delete-next-word
 backward-word delete-previous-word
 forward-paragraph delete-selection
 backward-paragraph
 beginning-of-line
 end-of-line Selection
 next-line select-word
 previous-line select-all
 next-page select-start
 previous-page select-adjust
 beginning-of-file select-end
 end-of-file extend-start
 scroll-one-line-up extend-adjust
 scroll-one-line-down extend-end
 insert-selection

Miscellaneous New Line
 redraw-display newline-and-indent
 insert-file newline-and-backup
 insert-char newline
 insert-string
 display-caret
 focus-in Kill
 focus-in kill-word
 search backward-kill-word
 multiply kill-selection
 form-paragraph kill-to-end-of-line
 transpose-characters kill-paragraph
 no-op kill-to-end-of-paragraph

Text Widgets

69

 XawWMProtocols
 reconnect-im

Most of the actions take no arguments, and unless otherwise noted you may assume
this to be the case.

Cursor Movement Actions\fP
forward-character()

backward-character() These actions move the insert point forward or back-
ward one character in the buffer. If the insert point is
at the end or beginning of a line this action will move
the insert point to the next (or previous) line.

forward-word()

backward-word() These actions move the insert point to the next or
previous word boundary. A word boundary is defined
as a Space, Tab or Carriage Return.

forward-paragraph()

backward-paragraph() These actions move the insert point to the next or
previous paragraph boundary. A paragraph boundary
is defined as two Carriage Returns in a row with only
Spaces or Tabs between them.

beginning-of-line()

end-of-line() These actions move to the beginning or end of the
current line. If the insert point is already at the end
or beginning of the line then no action is taken.

next-line()

previous-line() These actions move the insert point up or down one
line. If the insert point is currently N characters from
the beginning of the line then it will be N characters
from the beginning of the next or previous line. If N
is past the end of the line, the insert point is placed
at the end of the line.

next-page()

previous-page() These actions move the insert point up or down one
page in the file. One page is defined as the current
height of the text widget. The insert point is always
placed at the first character of the top line by this
action.

beginning-of-file()

end-of-file() These actions place the insert point at the beginning
or end of the current text buffer. The text widget
is then scrolled the minimum amount necessary to
make the new insert point location visible.

Text Widgets

70

scroll-one-line-up()

scroll-one-line-down() These actions scroll the current text field up or down
by one line. They do not move the insert point. Oth-
er than the scrollbars this is the only way that the
insert point may be moved off of the visible text area.
The widget will be scrolled so that the insert point is
back on the screen as soon as some other action is
executed.

Delete Actions
delete-next-character()

delete-previous-character() These actions remove the character immediately be-
fore or after the insert point. If a Carriage Return is
removed then the next line is appended to the end of
the current line.

delete-next-word()

delete-previous-word() These actions remove all characters between the in-
sert point location and the next word boundary. A
word boundary is defined as a Space, Tab or Carriage
Return.

delete-selection() This action removes all characters in the current se-
lection. The selection can be set with the selection
actions.

Selection Actions
select-word() This action selects the word in which the insert point

is currently located. If the insert point is between
words then it will select the previous word.

select-all() This action selects the entire text buffer.

select-start() This action sets the insert point to the current pointer
location (if triggered by a button event) or text cur-
sor location (if triggered by a key event). It will then
begin a selection at this location. If many of these se-
lection actions occur quickly in succession then the
selection count mechanism will be invoked (see the
section titled \fBText Selections for Application Pro-
grammers\fP for details).

select-adjust() This action allows a selection started with the se-
lect-start action to be modified, as described above.

select-end(name[,name,...]) This action ends a text selection that began with
the select-start action, and asserts ownership of
the selection or selections specified. A name can
be a selection (e.g., PRIMARY) or a cut buffer (e.g.,
CUT_BUFFER0). Note that case is important. If no
names are specified, PRIMARY is asserted.

Text Widgets

71

extend-start() This action finds the nearest end of the current selec-
tion, and moves it to the current pointer location (if
triggered by a button event) or text cursor location
(if triggered by a key event).

extend-adjust() This action allows a selection started with an ex-
tend-start action to be modified.

extend-end(name[,name,...]) This action ends a text selection that began with the
extend-start action, and asserts ownership of the se-
lection or selections specified. A name can be a selec-
tion (e.g. PRIMARY) or a cut buffer (e.g CUT_BUFFER0).
Note that case is important. If no names are given,
PRIMARY is asserted.

in-
sert-selection(name[,name,...])

This action retrieves the value of the first (left-most)
named selection that exists or the cut buffer that is
not empty and inserts it into the Text widget at the
current insert point location. A name can be a selec-
tion (e.g. PRIMARY) or a cut buffer (e.g CUT_BUFFER0).
Note that case is important.

The New Line Actions
newline-and-indent() This action inserts a newline into the text and adds

spaces to that line to indent it to match the previous
line.

newline-and-backup() This action inserts a newline into the text after the
insert point.

newline() This action inserts a newline into the text before the
insert point.

Kill and Actions
kill-word()

backward-kill-word() These actions act exactly like the delete-next-
word and delete-previous-word actions, but they
stuff the word that was killed into the kill buffer
(CUT_BUFFER_1).

kill-selection() This action deletes the current selection and stuffs
the deleted text into the kill buffer (CUT_BUFFER_1).

kill-to-end-of-line() This action deletes the entire line to the right of the
insert point position, and stuffs the deleted text into
the kill buffer (CUT_BUFFER_1).

kill-paragraph() This action deletes the current paragraph, if between
paragraphs it deletes the paragraph above the insert
point, and stuffs the deleted text into the kill buffer
(CUT_BUFFER_1).

Text Widgets

72

kill-to-end-of-paragraph() This action deletes everything between the current
insert point location and the next paragraph bound-
ary, and stuffs the deleted text into the kill buffer
(CUT_BUFFER_1).

Miscellaneous Actions
redraw-display() This action recomputes the location of all the text

lines on the display, scrolls the text to vertically cen-
ter the line containing the insert point on the screen,
clears the entire screen, and redisplays it.

insert-file([filename]) This action activates the insert file popup. The file-
name option specifies the default filename to put in
the filename buffer of the popup. If no filename is
specified the buffer is empty at startup.

insert-char() This action may only be attached to a key event.
When the international resource is false, this ac-
tion calls XLookupString to translate the event into
a (rebindable) Latin-1 character (sequence) and in-
serts it into the text at the insert point. When the in-
ternational resource is true, characters are passed
to the input method via XwcLookupString, and any
committed string returned is inserted into the text at
the insert point.

in-
sert-string(string[,string,...])

This action inserts each string into the text at the
insert point location. Any string beginning with the
characters "0x" followed by an even number of hexa-
decimal digits is interpreted as a hexadecimal con-
stant and the corresponding string is inserted in-
stead. This hexadecimal string may represent up
to 50 8-bit characters. When theinternational re-
source is true, a hexadecimal string is intrepeted as
being in a multi-byte encoding, and a hexadecimal or
regular string will result in an error message if it is
not legal in the current locale.

display-caret(state,when) This action allows the insert point to be turned on and
off. The state argument specifies the desired state of
the insert point. This value may be any of the string
values accepted for Boolean resources (e.g. on, True,
off, False, etc.). If no arguments are specified, the
default value is True. The when argument specifies,
for EnterNotify or LeaveNotify events whether or
not the focus field in the event is to be examined.
If the second argument is not specified, or specified
as something other than always then if the action is
bound to an EnterNotify or LeaveNotify event, the
action will be taken only if the focus field is True. An
augmented binding that might be useful is:

Text Widgets

73

 *Text.Translations: #override \\
 <FocusIn>: display-caret(on) \\n\\
 <FocusOut>: display-caret(off)

focus-in()

focus-out() These actions do not currently do anything.

search(direction,[string]) This action activates the search popup. The direction
must be specified as either forward or backward. The
string is optional and is used as an initial value for
the Search for: string. For further explanation of the
search widget see the section on Text Searches.

multiply(value) The multiply action allows the user to multiply the
effects of many of the text actions. Thus the follow-
ing action sequence multiply(10) delete-next-word()
will delete 10 words. It does not matter whether
these actions take place in one event or many events.
Using the default translations the key sequence
\fIControl-u, Control-d\fP will delete 4 characters.
Multiply actions can be chained, thus \fImultiply(5)
multiply(5)\fP is the same as multiply(25). If the
string reset is passed to the multiply action the ef-
fects of all previous multiplies are removed and a
beep is sent to the display.

form-paragraph() This action removes all the Carriage Returns from
the current paragraph and reinserts them so that
each line is as long as possible, while still fitting on
the current screen. Lines are broken at word bound-
aries if at all possible. This action currently works
only on Text widgets that use ASCII text.

transpose-characters() This action will swap the position of the character to
the left of the insert point with the character to the
right of the insert point. The insert point will then be
advanced one character.

no-op([action]) The no-op action makes no change to the text widget,
and is mainly used to override translations. This ac-
tion takes one optional argument. If this argument is
RingBell then a beep is sent to the display.

XawWMProtocols([wm_protocol_name])This action is written specifically for the file inser-
tion and the search and replace dialog boxes. This
action is attached to those shells by the Text wid-
get, in order to handle ClientMessage events with
the WM_PROTOCOLS atom in the detail field. This
action supports WM_DELETE_WINDOW on the Text
widget popups, and may support other window man-
ager protocols if necessary in the future. The pop-
up will be dismissed if the window manager sends
a WM_DELETE_WINDOW request and there are no
parameters in the action call, which is the default.

Text Widgets

74

The popup will also be dismissed if the parameters in-
clude the string ̀ `wm_delete_window,'' and the event
is a ClientMessage event requesting dismissal or is
not a ClientMessage event. This action is not sensi-
tive to the case of the strings passed as parameters.

reconnect-im() When the international resource is true, input
is usually passed to an input method, a separate
process, for composing. Sometimes the connection
to this process gets severed; this action will attempt
to reconnect it. Causes for severage include net-
work trouble, and the user explicitly killing one input
method and starting a new one. This action may al-
so establish first connection when the application is
started before the input method.

Text Selections for Application Programmers
The default behavior of the text selection array is described in the section called
Text Selections for Users. To modify the selections a programmer must con-
struct a XawTextSelectType array (called the selection array), containing the se-
lections desired, and pass this as the new value for the selectionTypes resource.
The selection array may also be modified using the XawTextSetSelectionArray
function. All selection arrays must end with the value XawselectNull. The selec-
tionTypes resource has no converter registered and cannot be modified through
the resource manager.

The array contains a list of entries that will be called when the user attempts to se-
lect text in rapid succession with the select-start action (usually by clicking a point-
er button). The first entry in the selection array will be used when the select-start
action is initially called. The next entry will be used when select-start is called again,
and so on. If a timeout value (1/10 of a second) is exceeded, the the next select-start
action will begin at the top of the selection array. When XawselectNull is reached
the array is recycled beginning with the first element.

XawselectAll Selects the contents of the entire buffer.
XawselectChar Selects text characters as

the pointer moves over them.
XawselectLine Selects the entire line.
XawselectNull Indicates the end of the selection array.

XawselectParagraph Selects the entire paragraph.
XawselectPosition Selects the current pointer position.
XawselectWord Selects whole words as the

pointer moves onto them.

The default selectType array is:

{XawselectPosition, XawselectWord, XawselectLine, XawselectParagraph, XawselectAll, XawselectNull}

The selection array is not copied by the text widgets. The application must allocate
space for the array and cannot deallocate or change it until the text widget is de-
stroyed or until a new selection array is set.

Text Widgets

75

Default Translation Bindings
The following translations are defaults built into every Text widget. They can be
overridden, or replaced by specifying a new value for the Text widget's transla-
tions resource.

 Ctrl<Key>A: beginning-of-line() \\n\\
 Ctrl<Key>B: backward-character() \\n\\
 Ctrl<Key>D: delete-next-character() \\n\\
 Ctrl<Key>E: end-of-line() \\n\\
 Ctrl<Key>F: forward-character() \\n\\
 Ctrl<Key>G: multiply(Reset) \\n\\
 Ctrl<Key>H: delete-previous-character() \\n\\
 Ctrl<Key>J: newline-and-indent() \\n\\
 Ctrl<Key>K: kill-to-end-of-line() \\n\\
 Ctrl<Key>L: redraw-display() \\n\\
 Ctrl<Key>M: newline() \\n\\
 Ctrl<Key>N: next-line() \\n\\
 Ctrl<Key>O: newline-and-backup() \\n\\
 Ctrl<Key>P: previous-line() \\n\\
 Ctrl<Key>R: search(backward) \\n\\
 Ctrl<Key>S: search(forward) \\n\\
 Ctrl<Key>T: transpose-characters() \\n\\
 Ctrl<Key>U: multiply(4) \\n\\
 Ctrl<Key>V: next-page() \\n\\
 Ctrl<Key>W: kill-selection() \\n\\
 Ctrl<Key>Y: insert-selection(CUT_BUFFER1) \\n\\
 Ctrl<Key>Z: scroll-one-line-up() \\n\\
 Ctrl<Key>\\: reconnect-im() \\n\\
 Meta<Key>B: backward-word() \\n\\
 Meta<Key>F: forward-word() \\n\\
 Meta<Key>I: insert-file() \\n\\
 Meta<Key>K: kill-to-end-of-paragraph() \\n\\
 Meta<Key>Q: form-paragraph() \\n\\
 Meta<Key>V: previous-page() \\n\\
 Meta<Key>Y: insert-selection(PRIMARY, CUT_BUFFER0) \\n\\
 Meta<Key>Z: scroll-one-line-down() \\n\\
 :Meta<Key>d: delete-next-word() \\n\\
 :Meta<Key>D: kill-word() \\n\\
 :Meta<Key>h: delete-previous-word() \\n\\
 :Meta<Key>H: backward-kill-word() \\n\\
 :Meta<Key>\\<: beginning-of-file() \\n\\
 :Meta<Key>\\>: end-of-file() \\n\\
 :Meta<Key>]: forward-paragraph() \\n\\
 :Meta<Key>[: backward-paragraph() \\n\\
 ~Shift Meta<Key>Delete: delete-previous-word() \\n\\
 \ Shift Meta<Key>Delete: backward-kill-word() \\n\\
 ~Shift Meta<Key>Backspace: delete-previous-word() \\n\\
 \ Shift Meta<Key>Backspace: backward-kill-word() \\n\\
 <Key>Right: forward-character() \\n\\

Text Widgets

76

 <Key>Left: backward-character() \\n\\
 <Key>Down: next-line() \\n\\
 <Key>Up: previous-line() \\n\\
 <Key>Delete: delete-previous-character() \\n\\
 <Key>BackSpace: delete-previous-character() \\n\\
 <Key>Linefeed: newline-and-indent() \\n\\
 <Key>Return: newline() \\n\\
 <Key>: insert-char() \\n\\
 <Key>Kanji: reconnect-im() \\n\\
 <FocusIn>: focus-in() \\n\\
 <FocusOut>: focus-out() \\n\\
 <Btn1Down>: select-start() \\n\\
 <Btn1Motion>: extend-adjust() \\n\\
 <Btn1Up>: extend-end(PRIMARY, CUT_BUFFER0) \\n\\
 <Btn2Down>: insert-selection(PRIMARY, CUT_BUFFER0) \\n\\
 <Btn3Down>: extend-start() \\n\\
 <Btn3Motion>: extend-adjust() \\n\\
 <Btn3Up>: extend-end(PRIMARY, CUT_BUFFER0) \\n

Text Functions
The following functions are provided as convenience routines for use with the Text
widget. Although many of these actions can be performed by modifying resources,
these interfaces are frequently more efficient.

These data structures are defined in the Text widget's public header file, <X11/
Xaw/Text.h>.

typedef long XawTextPosition;

Character positions in the Text widget begin at 0 and end at n, where n is the number
of characters in the Text source widget.

typedef struct {
 int firstPos;
 int length;
 char *ptr;
 unsigned long format;
} XawTextBlock, *XawTextBlockPtr;

firstPos The first position, or index, to use within the ptr field. The
value is commonly zero.

length The number of characters to be used from the ptr field.
The number of characters used is commonly the number
of characters in ptr, and must not be greater than the
length of the string in ptr.

ptr Contains the string to be referenced by the Text widget.

format This flag indicates whether the data pointed to by
ptr is char or wchar_t. When the associated widget

Text Widgets

77

has international set to false this field must be
XawFmt8Bit. When the associated widget has interna-
tional set to true this field must be either XawFmt8Bit
or XawFmtWide.

Note
Note: Previous versions of Xaw used FMT8BIT , which has been retained
for backwards compatibility. FMT8BIT is deprecated and will eventually be
removed from the implementation.

Selecting Text
To select a piece of text, use XawTextSetSelection :

void XawTextSetSelection(w, right);

w Specifies the Text widget.

left Specifies the character position at which the selection begins.

right Specifies the character position at which the selection ends.

See section 5.4 for a description of XawTextPosition. If redisplay is enabled, this
function highlights the text and makes it the PRIMARY selection. This function does
not have any effect on CUT_BUFFER0.

Unhighlighting Text
To unhighlight previously highlighted text in a widget, use XawTextUnsetSelec-
tion:

void XawTextUnsetSelection(w);

w Specifies the Text widget.

Getting Current Text Selection
To retrieve the text that has been selected by this text widget use XawTextGetS-
electionPos:

void XawTextGetSelectionPos(w, *end_return);

w Specifies the Text widget.

begin_return Returns the beginning of the text selection.

end_return Returns the end of the text selection.

See section 5.4 for a description of XawTextPosition. If the returned values are
equal, no text is currently selected.

Replacing Text
To modify the text in an editable Text widget use XawTextReplace:

Text Widgets

78

int XawTextReplace(w, end, *text);

w Specifies the Text widget.

start Specifies the starting character position of the text replace-
ment.

end Specifies the ending character position of the text replace-
ment.

text Specifies the text to be inserted into the file.

This function will not be able to replace text in read-only text widgets. It will also
only be able to append text to an append-only text widget.

See section 5.4 for a description of XawTextPosition and XawTextBlock.

This function may return the following values:

XawEditDone The text replacement was successful.

XawPositionError The edit mode is XawtextAppend and start is not the
position of the last character of the source.

XawEditError Either the Source was read-only or the range to be
deleted is larger than the length of the Source.

The XawTextReplace arguments start and end represent the text source character
positions for the existing text that is to be replaced by the text in the text block. The
characters from start up to but not including end are deleted, and the characters
specified on the text block are inserted in their place. If start and end are equal, no
text is deleted and the new text is inserted after start.

Searching for Text
To search for a string in the Text widget, use XawTextSearch:

XawTextPosition XawTextSearch(w, dir, text);

w Specifies the Text widget.

dir Specifies the direction to search in. Legal values are Xaws-
dLeft and XawsdRight.

text Specifies a text block structure that contains the text to search
for.

See section 5.4 for a description of XawTextPosition and XawTextBlock. The Xaw-
TextSearch function will begin at the insertion point and search in the direction
specified for a string that matches the one passed in text. If the string is found the
location of the first character in the string is returned. If the string could not be
found then the value XawTextSearchError is returned.

Redisplaying Text
To redisplay a range of characters, use XawTextInvalidate:

Text Widgets

79

void XawTextInvalidate(w, to);

w Specifies the Text widget.

from Specifies the start of the text to redisplay.

to Specifies the end of the text to redisplay.

See section 5.4 for a description of XawTextPosition. The XawTextInvalidate
function causes the specified range of characters to be redisplayed immediately if
redisplay is enabled or the next time that redisplay is enabled.

To enable redisplay, use XawTextEnableRedisplay:

void XawTextEnableRedisplay(w);

w Specifies the Text widget.

The XawTextEnableRedisplay function flushes any changes due to batched up-
dates when XawTextDisableRedisplay was called and allows future changes to
be reflected immediately.

To disable redisplay while making several changes, use XawTextDisableRedis-
play.

void XawTextDisableRedisplay(w);

w Specifies the Text widget.

The XawTextDisableRedisplay function causes all changes to be batched until
either XawTextDisplay or XawTextEnableRedisplay is called.

To display batched updates, use XawTextDisplay:

void XawTextDisplay(w);

w Specifies the Text widget.

The XawTextDisplay function forces any accumulated updates to be displayed.

Resources Convenience Routines
To obtain the character position of the left-most character on the first line displayed
in the widget (the value of the displayPosition resource), use XawTextTopPosi-
tion.

XawTextPosition XawTextTopPosition(w);

w Specifies the Text widget.

To assign a new selection array to a text widget use XawTextSetSelectionArray:

void XawTextSetSelectionArray(w, sarray);

w Specifies the Text widget.

sarray Specifies a selection array as defined in the section called
\fBText Selections for Application Programmers\fP.

Text Widgets

80

Calling this function is equivalent to setting the value of the selectionTypes re-
source.

To move the insertion point to the specified source position, use XawTextSetInser-
tionPoint:

void XawTextSetInsertionPoint(w, position);

w Specifies the Text widget.

position Specifies the new position for the insertion point.

See section 5.4 for a description of XawTextPosition. The text will be scrolled ver-
tically if necessary to make the line containing the insertion point visible. Calling
this function is equivalent to setting the insertPosition resource.

To obtain the current position of the insertion point, use XawTextGetInsertion-
Point:

XawTextPosition XawTextGetInsertionPoint(w);

w Specifies the Text widget.

See section 5.4 for a description of XawTextPosition. The result is equivalent to
retrieving the value of the insertPosition resource.

To replace the text source in the specified widget, use XawTextSetSource:

void XawTextSetSource(w, source, position);

w Specifies the Text widget.

source Specifies the text source object.

position Specifies character position that will become the upper
left hand corner of the displayed text. This is usually set
to zero.

See section 5.4 for a description of XawTextPosition. A display update will be per-
formed if redisplay is enabled.

To obtain the current text source for the specified widget, use XawTextGetSource:

Widget XawTextGetSource(w);

w Specifies the Text widget.

This function returns the text source that this Text widget is currently using.

To enable and disable the insertion point, use XawTextDisplayCaret:

void XawTextDisplayCaret(w, visible);

w Specifies the Text widget.

visible Specifies whether or not the caret should be displayed.

If visible is False the insertion point will be disabled. The marker is re-enabled
either by setting visible to True, by calling XtSetValues, or by executing the
display-caret action routine.

Text Widgets

81

Customizing the Text Widget

The remainder of this chapter will describe customizing the Text widget. The Text
widget may be customized by subclassing, or by creating new sources and sinks.
Subclassing is described in detail in Chapter 7; this section will describe only those
things that are specific to the Text widget. Attributes of the Text widget base class
and creating new sources and sinks will be discussed.

The Text widget is made up of a number of different pieces, with the Text widget as
the base widget class. It and the AsciiText widget are the only true "widgets" in the
Text widget family. The other pieces (sources and sinks) are X Toolkit objects and
have no window associated with them. No source or sink is useful unless assigned
to a Text widget.

Each of the following pieces of the Text widget has a specific purpose, and will be,
or has been, discussed in detail in this chapter:

Text This is the glue that binds everything else together. This widget reads
the text data from the source, and displays the information in the sink.
All translations and actions are handled in the Text widget itself.

TextSink This object is responsible for displaying and clearing the drawing area.
It also reports the configuration of the window that contains the draw-
ing area. The TextSink does not have its own window; instead it does
its drawing on the Text widget's window.

TextSrc This object is responsible for reading, editing and searching through
the text buffer.

AsciiSink This object is a subclass of the TextSink and knows how to display ASCII
text. Support has been added to display any 8-bit character set, given
the font.

MultiSink This object is a subclass of the TextSink and knows how to display font
sets.

AsciiSrc This object is a subclass of the TextSrc and knows how to read strings
and files.

MultiSrc This object is a subclass of the TextSrc and knows how to read strings
and multibyte files, converting them to wide characters based on lo-
cale.

AsciiText This widget is a subclass of the Text widget. When created, the Asci-
iText automatically creates and attaches either an AsciiSrc and Asci-
iSink, or a MultiSrc and MultiSink, to itself. The AsciiText provides the
simplest interface to the Athena Text widgets.

Text Widget

Application Header file <X11/Xaw/Text.h>

Text Widgets

82

Class Header file <X11/Xaw/TextP.h>
Class textWidgetClass
Class Name Text
Superclass Simple

The Text widget is the glue that binds all the other pieces together, it maintains
the internal state of the displayed text, and acts as a mediator between the source
and sink.

This section lists the resources that are actually part of the Text widget, and explains
the functionality provided by each.

Resources
When creating a Text widget instance, the following resources are retrieved from
the argument list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators Accelera-

torTable
 NULL

ances-
torSensitive

Ances-
torSensitive

Boolean D True

autoFill AutoFill Boolean False
background Background Pixel XtDefault-

Background
background-

Pixmap
Pixmap Pixmap XtUnspeci-

fiedPixmap
borderColor BorderColor Pixel XtDefault-

Foreground
borderPixmap Pixmap Pixmap XtUnspeci-

fiedPixmap
borderWidth BorderWidth Dimension 1

bottomMargin Margin Position 2
colormap Colormap Colormap Parent's

Colormap
cursor Cursor Cursor XC_xterm

cursorName Cursor String NULL
depth Depth int C Parent's Depth

destroy-
Callback

Callback XtCallbackList NULL

displayCaret Output Boolean True
displayPosition TextPosition XawTextPo-

sition
 0

height Height Dimension A Font height
+ margins

insensi-
tiveBorder

Insensitive Pixmap GreyPixmap

Text Widgets

83

Name Class Type Notes Default Value
insertPosition TextPosition int 0

leftMargin Margin Position 2
mappedWhen-

Managed
MappedWhen-

Managed
Boolean True

pointerColor Foreground Pixel XtDefault-
Foreground

pointerColor-
Background

Background Pixel XtDefault-
Background

resize Resize XawTextRe-
sizeMode

 XawtextRe-
sizeNever

rightMargin Margin Position 4
screen Screen Pointer R Parent's

Screen
scrollHor-

izontal
Scroll ScrollMode Xawtex-

tScrollNever
scrollVertical Scroll XawTex-

tScrollMode
 Xawtex-

tScrollNever
selectTypes SelectTypes XawTextS-

electType*
 See above

sensitive Sensitive Boolean True
textSink TextSink Widget NULL

textSource TextSource Widget NULL
topMargin Margin Position 2

translations Translations Transla-
tionTable

 See above

unrealize-
Callback

Callback XtCallbackList NULL

width Width Dimension 100
wrap Wrap WrapMode Xawtex-

tWrapNever
x Position Position 0
y Position Position 0

TextSink Object

Application Header file <X11/Xaw/TextSink.h>

Class Header file <X11/Xaw/TextSinkP.h>

Class textSinkObjectClass

Text Widgets

84

Class Name TextSink

Superclass Object

The TextSink object is the root object for all text sinks. Any new text sink objects
should be subclasses of the TextSink Object. The TextSink Class contains all meth-
ods that the Text widget expects a text sink to export.

Since all text sinks will have some resources in common, the TextSink defines a few
new resources.

Resources
When creating an TextSink object instance, the following resources are retrieved
from the argument list or from the resource database:

Name Class Type Notes Default Value
background Background Pixel XtDefault-

Background
destroy-
Callback

Callback XtCallbackList NULL

foreground Foreground Pixel XtDefault-
Foreground

_

Subclassing the TextSink
The only purpose of the TextSink Object is to be subclassed. It contains the minimum
set of class methods that all text sinks must have. While all may be inherited, the
direct descendant of TextSink must specify some of them as TextSink does contain
enough information to be a valid text sink by itself. Do not try to use the TextSink
as a valid sink for the Text widget; it is not intended to be used as a sink by itself.

Function Inherit with Public Interface must specify
DisplayText XtInherit-

DisplayText
XawTextSinkDis-

playText
yes

InsertCursor XtInher-
itInsertCursor

XawTex-
tSinkInsertCursor

yes

ClearTo-
Background

XtInheritClearTo-
Background

XawTex-
tSinkClearTo-
Background

no

FindPosition XtInher-
itFindPosition

XawTextSink-
FindPosition

yes

FindDistance XtInheritFind-
Distance

XawTextSink-
FindDistance

yes

Resolve XtInheritResolve XawTex-
tSinkResolve

yes

MaxLines XtInheritMaxLines XawTex-
tSinkMaxLines

no

Text Widgets

85

Function Inherit with Public Interface must specify
MaxHeight XtInherit-

MaxHeight
XawTex-

tSinkMaxHeight
no

SetTabs XtInheritSetTabs XawTex-
tSinkSetTabs

no

GetCursorBounds XtInheritGetCur-
sorBounds

XawTex-
tSinkGetCur-

sorBounds

yes

Displaying Text

To display a section of the text buffer contained in the text source use the function
DisplayText:

void DisplayText(w, y, pos2, highlight);

w Specifies the TextSink object.

x Specifies the x location to start drawing the text.

y Specifies the y location to start drawing text.

pos1 Specifies the location within the text source of the first
character to be printed.

pos2 Specifies the location within the text source of the last
character to be printed.

highlight Specifies whether or not to paint the text region high-
lighted.

The Text widget will only pass one line at a time to the text sink, so this function
does not need to know how to line feed the text. It is acceptable for this function
to just ignore Carriage Returns. x and y denote the upper left hand corner of the
first character to be displayed.

Displaying the Insert Point

The function that controls the display of the text cursor is InsertCursor. This
function will be called whenever the text widget desires to change the state of, or
move the insert point.

void InsertCursor(w, y, state);

w Specifies the TextSink object.

x Specifies the x location of the cursor in Pixels.

y Specifies the y location of the cursor in Pixels.

state Specifies the state of the cursor, may be one of XawisOn or
XawisOff.

X and y denote the upper left hand corner of the insert point.

Text Widgets

86

Clearing Portions of the Text window

To clear a portion of the Text window to its background color, the Text widget will
call ClearToBackground. The TextSink object already defines this function as call-
ing XClearArea on the region passed. This behavior will be used if you specify XtIn-
heritClearToBackground for this method.

void ClearToBackground(w, y, height);

w Specifies the TextSink object.

x Specifies the x location, in pixels, of the Region to clear.

y Specifies the y location, in pixels, of the Region to clear.

width Specifies the width, in pixels, of the Region to clear.

height Specifies the height, in pixels, of the Region to clear.

X and y denote the upper left hand corner of region to clear.

Finding a Text Position Given Pixel Values

To find the text character position that will be rendered at a given x location the
Text widget uses the function FindPosition:

void FindPosition(w, fromPos, width, stopAtWordBreak, *pos_return,
*height_return);

w Specifies the TextSink object.

fromPos Specifies a reference position, usually the first char-
acter in this line. This character is always to the left
of the desired character location.

fromX Specifies the distance that the left edge of fromPos is
from the left edge of the window. This is the reference
x location for the reference position.

width Specifies the distance, in pixels, from the reference
position to the desired character position.

stopAtWordBreak Specifies whether or not the position that is returned
should be forced to be on a word boundary.

pos_return Returns the character position that corresponds to
the location that has been specified, or the work
break immediately to the left of the position if stopAt-
WordBreak is True.

width_return Returns the actual distance between fromPos and
pos_return.

height_return Returns the maximum height of the text between
fromPos and pos_return.

This function need make no attempt to deal with line feeds. The text widget will
only call it one line at a time.

Text Widgets

87

Another means of finding a text position is provided by the Resolve function:

void Resolve(w, fromPos, width, *pos_return);

w Specifies the TextSink object.

fromPos Specifies a reference position, usually the first charac-
ter in this line. This character is always to the left of the
desired character location.

fromX Specifies the distance that the left edge of fromPos is
from the left edge of the window. This is the reference
x location for the reference position.

width Specifies the distance, in pixels, from the reference po-
sition to the desired character position.

pos_return Returns the character position that corresponds to the
location that has been specified, or the word break im-
mediately to the left if stopAtWordBreak is True.

This function need make no attempt to deal with line feeds. The text widget will only
call it one line at a time. This is a more convenient interface to the FindPosition
function, and provides a subset of its functionality.

Finding the Distance Between two Text Positions

To find the distance in pixels between two text positions on the same line use the
function FindDistance.

void FindDistance(w, toPos, fromX, *pos_return, *height_return);

w Specifies the TextSink object.

fromPos Specifies the text buffer position, in characters, of
the first position.

fromX Specifies the distance that the left edge of fromPos is
from the left edge of the window. This is the reference
x location for the reference position.

toPos Specifies the text buffer position, in characters, of
the second position.

resWidth Return the actual distance between fromPos and
pos_return.

resPos Returns the character position that corresponds to
the actual character position used for toPos in the
calculations. This may be different than toPos, for ex-
ample if fromPos and toPos are on different lines in
the file.

height_return Returns the maximum height of the text between
fromPos and pos_return.

This function need make no attempt to deal with line feeds. The Text widget will
only call it one line at a time.

Text Widgets

88

Finding the Size of the Drawing area

To find the maximum number of lines that will fit into the current Text widget, use
the function MaxLines. The TextSink already defines this function to compute the
maximum number of lines by using the height of font.

int MaxLines(w, height);

w Specifies the TextSink object.

height Specifies the height of the current drawing area.

Returns the maximum number of lines that will fit in height.

To find the height required for a given number of text lines, use the function Max-
Height. The TextSink already defines this function to compute the maximum height
of the window by using the height of font.

int MaxHeight(w, lines);

w Specifies the TextSink object.

height Specifies the height of the current drawing area.

Returns the height that will be taken up by the number of lines passed.

Setting the Tab Stops

To set the tab stops for a text sink use the SetTabs function. The TextSink already
defines this function to set the tab x location in pixels to be the number of characters
times the figure width of font.

void SetTabs(w, *tabs);

w Specifies the TextSink object.

tab_count Specifies the number of tabs passed in tabs.

tabs Specifies the position, in characters, of the tab stops.

This function is responsible for the converting character positions passed to it into
whatever internal positions the TextSink uses for tab placement.

Getting the Insert Point's Size and Location

To get the size and location of the insert point use the GetCursorBounds function.

void GetCursorBounds(w, *rect_return);

w Specifies the TextSinkObject.

rect_return Returns the location and size of the insert point.

Rect will be filled with the current size and location of the insert point.

TextSrc Object

Text Widgets

89

Application Header file <X11/Xaw/TextSrc.h>
Class Header file <X11/Xaw/TextSrcP.h>
Class textSrcObjectClass
Class Name TextSrc
Superclass Object

The TextSrc object is the root object for all text sources. Any new text source objects
should be subclasses of the TextSrc Object. The TextSrc Class contains all methods
the Text widget expects a text source to export.

Since all text sources will have some resources in common the TextSrc defines a
few new resources.

Resources
When creating an TextSrc object instance, the following resources are retrieved
from the argument list or from the resource database:

Name Class Type Notes Default Value
destroy-
Callback

Callback XtCallbackList NULL

editType EditType EditMode NULL

Subclassing the TextSrc
The only purpose of the TextSrc Object is to be subclassed. It contains the minimum
set of class methods that all text sources must have. All class methods of the TextSrc
must be defined, as the Text widget uses them all. While all may be inherited, the
direct descendant of TextSrc must specify some of them as TextSrc does not contain
enough information to be a valid text source by itself. Do not try to use the TextSrc
as a valid source for the Text widget; it is not intended to be used as a source by
itself and bad things will probably happen.

Function Inherit with Public Interface must specify
Read XtInheritRead XawTex-

tSourceRead
yes

Replace XtInheritReplace XawTex-
tSourceReplace

no

Scan XtInheritScan XawTex-
tSourceScan

yes

Search XtInheritSearch XawTex-
tSourceSearch

no

SetSelection XtInher-
itSetSelection

XawTex-
tSourceSetS-

election

no

ConvertSelection XtInheritCon-
vertSelection

XawTextSource-
ConvertSelection

no

Reading Text.

To read the text in a text source use the Read function:

Text Widgets

90

XawTextPosition Read(w, pos, *text_return, length);

w Specifies the TextSrc object.

pos Specifies the position of the first character to be read from
the text buffer.

text Returns the text read from the source.

length Specifies the maximum number of characters the TextSrc
should return to the application in text_return.

This function returns the text position immediately after the characters read from
the text buffer. The function is not required to read length characters if that many
characters are in the file, it may break at any point that is convenient to the internal
structure of the source. It may take several calls to Read before the desired portion
of the text buffer is fully retrieved.

Replacing Text.

To replace or edit the text in a text buffer use the Replace function:

XawTextPosition Replace(w, end, *text);

w Specifies the TextSrc object.

start Specifies the position of the first character to be removed from the text
buffer. This is also the location to begin inserting the new text.

end Specifies the position immediately after the last character to be removed
from the text buffer.

text Specifies the text to be added to the text source.

This function can return any of the following values:

XawEditDone The text replacement was successful.

XawPositionError The edit mode is XawtextAppend and start is not the last char-
acter of the source.

XawEditError Either the Source was read-only or the range to be deleted is
larger than the length of the Source.

The Replace arguments start and end represent the text source character posi-
tions for the existing text that is to be replaced by the text in the text block. The
characters from start up to but not including end are deleted, and the buffer spec-
ified by the text block is inserted in their place. If start and end are equal, no text
is deleted and the new text is inserted after start.

Scanning the TextSrc

To search the text source for one of the predefined boundary types use the Scan
function:

XawTextPosition Scan(w, position, type, dir, count, include);

w Specifies the TextSrc object.

Text Widgets

91

position Specifies the position to begin scanning the source.

type Specifies the type of boundary to scan for, may be one of: XawstPosi-
tion, XawstWhiteSpace, XawstEOL, XawstParagraph, XawstAll. The ex-
act meaning of these boundaries is left up to the individual text source.

dir Specifies the direction to scan, may be either XawsdLeft to search back-
ward, or XawsdRight to search forward.

count Specifies the number of boundaries to scan for.

include Specifies whether the boundary itself should be included in the scan.

The Scan function returns the position in the text source of the desired boundary.
It is expected to return a valid address for all calls made to it, thus if a particular
request is made that would take the text widget beyond the end of the source it
must return the position of that end.

Searching through a TextSrc

To search for a particular string use the Search function.

XawTextPosition Search(w, position, dir, *text);

w Specifies the TextSrc object.

position Specifies the position to begin the search.

dir Specifies the direction to search, may be either XawsdLeft to search
backward, or XawsdRight to search forward.

text Specifies a text block containing the text to search for.

This function will search through the text buffer attempting to find a match for
the string in the text block. If a match is found in the direction specified, then the
character location of the first character in the string is returned. If no text was
found then XawTextSearchError is returned.

Text Selections

While many selection types are handled by the Text widget, text sources may have
selection types unknown to the Text widget. When a selection conversion is request-
ed by the X server the Text widget will first call the ConvertSelection function, to
attempt the selection conversion.

Boolean ConvertSelections(w, *type, *value_return, *length_return,
*format_return);

w Specifies the TextSrc object.

selection Specifies the type of selection that was requested
(e.g. PRIMARY).

target Specifies the type of the selection that has been
requested, which indicates the desired information
about the selection (e.g. Filename, Text, Window).

Text Widgets

92

type Specifies a pointer to the atom into which the prop-
erty type of the converted value of the selection is to
be stored. For instance, either file name or text might
have property type XA_STRING.

value_return Returns a pointer into which a pointer to the convert-
ed value of the selection is to be stored. The selection
owner is responsible for allocating this storage. The
memory is considered owned by the toolkit, and is
freed by XtFree when the Intrinsics selection mech-
anism is done with it.

length_return Returns a pointer into which the number of elements
in value is to be stored. The size of each element is
determined by format.

format_return Returns a pointer into which the size in bits of the
data elements of the selection value is to be stored.

If this function returns True then the Text widget will assume that the source has
taken care of converting the selection, Otherwise the Text widget will attempt to
convert the selection itself.

If the source needs to know when the text selection is modified it should define a
SetSelection procedure:

void SetSelection(w, end, selection);

w Specifies the TextSrc object.

start Specifies the character position of the beginning of the new text selec-
tion.

end Specifies the character position of the end of the new text selection.

selection Specifies the type of selection that was requested (e.g. PRIMARY).

Ascii Sink Object and Multi Sink Object

Application Header file <X11/Xaw/AsciiSink.h>

Class Header file <X11/Xaw/AsciiSinkP.h>

Class asciiSinkObjectClass

Class Name AsciiSink

Superclass TextSink

The AsciiSink or MultiSink object is used by a text widget to render the text. De-
pending on its international resource, a AsciiText widget will create one or the

Text Widgets

93

other of these when the AsciiText itself is created. Both types are nearly identical;
the following discussion applies to both, with MultiSink differences noted only as
they occur. The AsciiSink will display all printing characters in an 8 bit font, along
with handling Tab and Carriage Return. The name has been left as ``AsciiSink'' for
compatibility. \fIThe MultiSink will display all printing characters in a font set, along
with handling Tab and Carriage Return.\fP The source object also reports the text
window metrics to the text widgets.

Resources
When creating an AsciiSink object instance, the following resources are retrieved
from the argument list or from the resource database:

Name Class Type Notes Default Value
background Background Pixel XtDefault-

Background
destroy-
Callback

Callback XtCallbackList NULL

displayNon-
printing

Output Boolean True

echo Output Boolean True
font Font XFontStruct* XtDefaultFont

fontSet FontSet XFontSet XtDefault-
FontSet

foreground Foreground Pixel XtDefault-
Foreground

_

This resource is retrieved by the AsciiSink instead of being copied from the Text
widget.

The text font to use when displaying the string. (This resource is present in the
AsciiSink, but not the MultiSink.)

The text font set to use when displaying the string. (This resource is present in the
MultiSink, but not the AsciiSink.)

Ascii Source Object and Multi Source Object

Application Header file <X11/Xaw/AsciiSrc.h> or <X11/Xaw/MultiSrc.h>

Class Header file <X11/Xaw/AsciiSrcP.h> or <X11/Xaw/MultiSrcP.h>

Class asciiSrcObjectClass or multiSrcObjectClass

Class Name AsciiSrc or MultiSrc

Text Widgets

94

Superclass TextSource

The AsciiSrc or MultiSrc object is used by a text widget to read the text from a
file or string in memory. Depending on its international resource, an AsciiText
widget will create one or the other of these when the AsciiText itself is created. Both
types are nearly identical; the following discussion applies to both, with MultiSrc
differences noted only as they occur.

The AsciiSrc understands all Latin1 characters plus Tab and Carriage Return.
\fIThe MultiSrc understands any set of character sets that the underlying X
implementation's internationalization handles.\fP

The AsciiSrc can be either of two types: XawAsciiFile or XawAsciiString.

AsciiSrc objects of type XawAsciiFile read the text from a file and store it into an
internal buffer. This buffer may then be modified, provided the text widget is in the
correct edit mode, just as if it were a source of type XawAsciiString. Unlike R3 and
earlier versions of the AsciiSrc, it is now possible to specify an editable disk source.
The file is not updated, however, until a call to XawAsciiSave is made. When the
source is in this mode the useStringInPlace resource is ignored.

AsciiSrc objects of type XawAsciiString have the text buffer implemented as a
string. \fIMultiSrc objects of type XawAsciiString have the text buffer implement-
ed as a wide character string.\fP The string owner is responsible for allocating and
managing storage for the string.

In the default case for AsciiSrc objects of type XawAsciiString, the resource
useStringInPlace is false, and the widget owns the string. The initial value of the
string resource, and any update made by the application programmer to the string
resource with XtSetValues, is copied into memory private to the widget, and man-
aged internally by the widget. The application writer does not need to worry about
running out of buffer space (subject to the total memory available to the applica-
tion). The performance does not decay linearly as the buffer grows large, as is nec-
essarily the case when the text buffer is used in place. The application writer must
use XtGetValues to determine the contents of the text buffer, which will return a
copy of the widget's text buffer as it existed at the time of the XtGetValues call.
This copy is not affected by subsequent updates to the text buffer, i.e., it is not up-
dated as the user types input into the text buffer. This copy is freed upon the next
call to XtGetValues to retrieve the string resource; however, to conserve memory,
there is a convenience routine, XawAsciiSourceFreeString, allowing the applica-
tion programmer to direct the widget to free the copy.

When the resource useStringInPlace is true and the AsciiSrc object is of type
XawAsciiString, the application is the string owner. The widget will take the value
of the string resource as its own text buffer, and the length resource indicates the
buffer size. In this case the buffer contents change as the user types at the widget;
it is not necessary to call XtGetValues on the string resource to determine the
contents of the buffer-it will simply return the address of the application's imple-
mentation of the text buffer.

Resources
When creating an AsciiSrc object instance, the following resources are retrieved
from the argument list or from the resource database:

Text Widgets

95

Name Class Type Notes Default Value
callback Callback XtCallbackList NULL

dataCom-
pression

DataCom-
pression

Boolean True

destroy-
Callback

Callback Callback NULL

editType EditType EditMode XawtextRead
length Length Int A length of

string

pieceSize PieceSize Int BUFSIZ
string String String NULL
type Type AsciiType XawAsciiString

useStringIn-
Place

UseStringIn-
Place

Boolean False

_

Convenience Routines
The AsciiSrc has a few convenience routines that allow the application programmer
quicker or easier access to some of the commonly used functionality of the AsciiSrc.

Conserving Memory

When the AsciiSrc widget is not in useStringInPlace mode space must be allocated
whenever the file is saved, or the string is requested with a call to XtGetValues.
This memory is allocated on the fly, and remains valid until the next time a string
needs to be allocated. You may save memory by freeing this string as soon as you
are done with it by calling XawAsciiSourceFreeString.

void XawAsciiSourceFreeString(w);

w Specifies the AsciiSrc object.

This function will free the memory that contains the string pointer returned by
XtGetValues. This will normally happen automatically when the next call to XtGet-
Values occurs, or when the widget is destroyed.

Saving Files

To save the changes made in the current text source into a file use XawAsciiSave.

Boolean XawAsciiSave(w);

w Specifies the AsciiSrc object.

XawAsciiSave returns True if the save was successful. It will update the file named
in the string resource. If the buffer has not been changed, no action will be taken.
This function only works on an AsciiSrc of type XawAsciiFile.

To save the contents of the current text buffer into a named file use XawAsci-
iSaveAsFile.

Text Widgets

96

Boolean XawAsciiSaveAsFile(w, name);

w Specifies the AsciiSrc object.

name The name of the file to save the current buffer into.

This function returns True if the save was successful. XawAsciiSaveAsFile will
work with a buffer of either type XawAsciiString or type XawAsciiFile.

Seeing if the Source has Changed

To find out if the text buffer in an AsciiSrc object has changed since the last time it
was saved with XawAsciiSave or queried use XawAsciiSourceChanged.

Boolean XawAsciiSourceChanged(w);

w Specifies the AsciiSrc object.

This function will return True if the source has changed since the last time it was
saved or queried. The internal change flag is reset whenever the string is queried
via XtGetValues or the buffer is saved via XawAsciiSave.

Ascii Text Widget

Application Header file <X11/Xaw/AsciiText.h>

ClassHeader file <X11/Xaw/AsciiTextP.h>

Class asciiTextWidgetClass

Class Name Text

Superclass Text
Sink Name textSink
Source Name textSource

For the ease of internationalization, the AsciiText widget class name has not been
changed, although it is actually able to support non-ASCII locales. The AsciiText
widget is really a collection of smaller parts. It includes the Text widget itself, a
``Source'' (which supports memory management), and a ``Sink'' (which handles
the display). There are currently two supported sources, the AsciiSrc and Multi-
Src, and two supported sinks, the AsciiSink and MultiSink. Some of the resources
listed below are not actually resources of the AsciiText, but belong to the associ-
ated source or sink. This is is noted in the explanation of each resource where it
applies. When specifying these resources in a resource file it is necessary to use
*AsciiText*resource_name instead of *AsciiText.resource_name, since they actually
belong to the children of the AsciiText widget, and not the AsciiText widget itself.
However, these resources may be set directly on the AsciiText widget at widget cre-
ation time, or via XtSetValues.

Text Widgets

97

Resources

When creating an AsciiText widget instance, the following resources are retrieved
from the argument list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators Accelera-

torTable
 NULL

ances-
torSensitive

Ances-
torSensitive

Boolean D True

autoFill AutoFill Boolean False
background Background Pixel XtDefault-

Background
background-

Pixmap
Pixmap Pixmap XtUnspeci-

fiedPixmap
borderColor BorderColor Pixel XtDefault-

Foreground
borderPixmap Pixmap Pixmap XtUnspeci-

fiedPixmap
borderWidth BorderWidth Dimension 1

bottomMargin Margin Position 2
callback Callback XtCallbackList NULL
colormap Colormap Colormap Parent's

Colormap
cursor Cursor Cursor XC_xterm

cursorName Cursor String NULL
dataCom-
pression

DataCom-
pression

Boolean True

depth Depth int C Parent's Depth
destroy-
Callback

Callback XtCallbackList NULL

displayCaret Output Boolean True
displayNon-

printing
Output Boolean True

displayPosition TextPosition XawTextPo-
sition

 0

echo Output Boolean True
editType EditType XawTextE-

ditType
 XawtextRead

font Font XFontStruct* XtDefaultFont
fontSet FontSet XFontSet XtDefault-

FontSet
foreground Foreground Pixel XtDefault-

Foreground

Text Widgets

98

Name Class Type Notes Default Value
height Height Dimension A Font height

+ margins
insensi-

tiveBorder
Insensitive Pixmap GreyPixmap

insertPosition TextPosition int 0
international International Boolean C False
leftMargin Margin Dimension 2

length Length int A length of
string

mappedWhen-
Managed

MappedWhen-
Managed

Boolean True

pieceSize PieceSize XawTextPo-
sition

 BUFSIZ

pointerColor Foreground Pixel XtDefault-
Foreground

pointerColor-
Background

Background Pixel XtDefault-
Background

resize Resize XawTextRe-
sizeMode

 XawtextRe-
sizeNever

rightMargin Margin Position 2
screen Screen Screen R Parent's

Screen
scrollHor-

izontal
Scroll XawTex-

tScrollMode
 Xawtex-

tScrollNever
scrollVertical Scroll XawTex-

tScrollMode
 Xawtex-

tScrollNever
selectTypes SelectTypes XawTextS-

electType*
 See above

sensitive Sensitive Boolean True
string String String NULL

textSink TextSink Widget An AsciiSink
textSource TextSource Widget An AsciiSrc
topMargin Margin Position 2

translations Translations Transla-
tionTable

 See above

type Type XawAsciiType XawAsciiString
useStringIn-

Place
UseStringIn-

Place
Boolean False

width Width Dimension 100
wrap Wrap WrapMode Xawtex-

tWrapNever
x Position Position 0

Text Widgets

99

Name Class Type Notes Default Value
y Position Position 0

100

Chapter 6. Composite and Constraint
Widgets

These widgets may contain arbitrary widget children. They implement a policy for
the size and location of their children.

Box This widget will pack its children as tightly as possible in non-overlap-
ping rows.

Dialog An implementation of a commonly used interaction semantic to prompt
for auxiliary input from the user, such as a filename.

Form A more sophisticated layout widget that allows the children to specify
their positions relative to the other children, or to the edges of the Form.

Paned Allows children to be tiled vertically or horizontally. Controls are also
provided to allow the user to dynamically resize the individual panes.

Porthole Allows viewing of a managed child which is as large as, or larger than
its parent, typically under control of a Panner widget.

Tree Provides geometry management of widgets arranged in a directed,
acyclic graph.

Viewport Consists of a frame, one or two scrollbars, and an inner window. The
inner window can contain all the data that is to be displayed. This in-
ner window will be clipped by the frame with the scrollbars controlling
which section of the inner window is currently visible.

Note
The geometry management semantics provided by the X Toolkit give full con-
trol of the size and position of a widget to the parent of that widget. While
the children are allowed to request a certain size or location, it is the parent
who makes the final decision. Many of the composite widgets here will deny
any geometry request from their children by default. If a child widget is not
getting the expected size or location, it is most likely the parent disallowing
a request, or implementing semantics slightly different than those expected
by the application programmer.

If the application wishes to change the size or location of any widget it should
make a call to XtSetValues. This will allow the widget to ask its parent for
the new size or location. As noted above the parent is allowed to refuse this
request, and the child must live with the result. If the application is unable to
achieve the desired semantics, then perhaps it should use a different com-
posite widget. Under no circumstances should an application programmer
resort to XtMoveWidget or XtResizeWidget; these functions are exclusively
for the use of Composite widget implementors.

For more information on geometry management consult the X Toolkit Intrin-
sics - C Language Interface.

Composite and Con-
straint Widgets

101

Box Widget

Application Header file <X11/Xaw/Box.h>

Class Header file <X11/Xaw/BoxP.h>

Class boxWidgetClass

Class Name Box

Superclass Composite

The Box widget provides geometry management of arbitrary widgets in a box of a
specified dimension. The children are rearranged when resizing events occur either
on the Box or its children, or when children are managed or unmanaged. The Box
widget always attempts to pack its children as tightly as possible within the geom-
etry allowed by its parent.

Box widgets are commonly used to manage a related set of buttons and are often
called ButtonBox widgets, but the children are not limited to buttons. The Box's
children are arranged on a background that has its own specified dimensions and
color.

Resources
When creating a Box widget instance, the following resources are retrieved from
the argument list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators Accelera-

torTable
 NULL

ances-
torSensitive

Ances-
torSensitive

Boolean D True

background Background Pixel XtDefault-
Background

background-
Pixmap

Pixmap Pixmap XtUnspeci-
fiedPixmap

borderColor BorderColor Pixel XtDefault-
Foreground

borderPixmap Pixmap Pixmap XtUnspeci-
fiedPixmap

borderWidth BorderWidth Dimension 1
children ReadOnly WidgetList R NULL
colormap Colormap Colormap Parent's

Colormap

Composite and Con-
straint Widgets

102

Name Class Type Notes Default Value
depth Depth int C Parent's Depth

destroy-
Callback

Callback XtCallbackList NULL

height Height Dimension A see Layout
Semantics

hSpace HSpace Dimension 4
mappedWhen-

Managed
MappedWhen-

Managed
Boolean True

numChildren ReadOnly Cardinal R 0
orientation Orientation Orientation Xtori-

entVertical
screen Screen Screen R Parent's

Screen
sensitive Sensitive Boolean True
vSpace VSpace Dimension 4

translations Translations Transla-
tionTable

 NULL

width Width Dimension A see Layout
Semantics

x Position Position 0
y Position Position 0
_

hSpace

vSpace The amount of space, in pixels, to leave between the
children. This resource specifies the amount of space
left between the outermost children and the edge of
the box.

orientation Specifies whether the preferred shape of the box
(i.e. the result returned by the query_geometry class
method) is tall and narrow XtorientVertical or short
and wide XtorientHorizontal. When the Box is a
child of a parent which enforces width constraints, it
is usually better to specify XtorientVertical (the de-
fault). When the parent enforces height constraints, it
is usually better to specify XtorientHorizontal.

Layout Semantics
Each time a child is managed or unmanaged, the Box widget will attempt to reposi-
tion the remaining children to compact the box. Children are positioned in order left
to right, top to bottom. The packing algorithm used depends on the orientation
of the Box.

XtorientVertical When the next child does not fit on the current row, a
new row is started. If a child is wider than the width

Composite and Con-
straint Widgets

103

of the box, the box will request a larger width from
its parent and will begin the layout process from the
beginning if a new width is granted.

XtorientHorizontal When the next child does not fit on the current row,
the Box widens if possible (so as to keep children on
a single row); otherwise a new row is started.

After positioning all children, the Box widget attempts to shrink its own size to the
minimum dimensions required for the layout.

Dialog Widget

Application Header file <X11/Xaw/Dialog.h>

Class Header file <X11/Xaw/DialogP.h>

Class dialogWidgetClass

Class Name Dialog

Superclass Form

The Dialog widget implements a commonly used interaction semantic to prompt
for auxiliary input from a user. For example, you can use a Dialog widget when
an application requires a small piece of information, such as a filename, from the
user. A Dialog widget, which is simply a special case of the Form widget, provides
a convenient way to create a preconfigured form.

The typical Dialog widget contains three areas. The first line contains a description
of the function of the Dialog widget, for example, the string Filename:. The second
line contains an area into which the user types input. The third line can contain
buttons that let the user confirm or cancel the Dialog input. Any of these areas may
be omitted by the application.

Resources
When creating a Dialog widget instance, the following resources are retrieved from
the argument list or the resource database:

Name Class Type Notes Default Value
accelerators Accelerators Accelera-

torTable
 NULL

ances-
torSensitive

Ances-
torSensitive

Boolean D True

background Background Pixel XtDefault-
Background

Composite and Con-
straint Widgets

104

Name Class Type Notes Default Value
background-

Pixmap
Pixmap Pixmap XtUnspeci-

fiedPixmap
borderColor BorderColor Pixel XtDefault-

Foreground
borderPixmap Pixmap Pixmap XtUnspeci-

fiedPixmap
borderWidth BorderWidth Dimension 1

children ReadOnly WidgetList R NULL
colormap Colormap Colormap Parent's

Colormap
default-
Distance

Thickness int 4

depth Depth int C Parent's Depth
destroy-
Callback

Callback XtCallbackList NULL

height Height Dimension A Enough space
to contain

all children
icon Icon Bitmap None
label Label String "label"

mappedWhen-
Managed

MappedWhen-
Managed

Boolean True

numChildren ReadOnly Cardinal R 0
screen Screen Screen R Parent's

Screen
sensitive Sensitive Boolean True

translations Translations Transla-
tionTable

 NULL

value Value String no val-
ue widget

width Width Dimension A Enough space
to contain

all children
x Position Position 0
y Position Position 0
_

icon A pixmap image to be displayed immediately to the left of the
Dialog widget's label.

label A string to be displayed at the top of the Dialog widget.

value An initial value for the string field that the user will enter text
into. By default, no text entry field is available to the user.
Specifying an initial value for value activates the text entry

Composite and Con-
straint Widgets

105

field. If string input is desired, but no initial value is to be
specified then set this resource to "" (empty string).

Constraint Resources

Each child of the Dialog widget may request special layout resources be applied to it.
These constraint resources allow the Dialog widget's children to specify individual
layout requirements.

Name Class Type Notes Default Value
bottom Edge XawEdgeType XawRubber

fromHoriz Widget Widget NULL (left
edge of Dialog)

fromVert Widget Widget NULL (top
edge of Dialog)

horizDistance Thickness int defaultDis-
tance resource

left Edge XawEdgeType XawRubber
resizable Boolean Boolean FALSE

right Edge XawEdgeType XawRubber
top Edge XawEdgeType XawRubber

vertDistance Thickness int defaultDis-
tance resource

bottom
left
right
top What to do with this edge of the child when
 the parent is resized. This resource may be
 any edgeType. See Layout Semantics for
 details.

fromHoriz
fromVert Which widget this child should be placed
 underneath (or to the right of). If a value
 of NULL is specified then this widget will be
 positioned relative to the edge of the par-
 ent.

horizDistance
vertDistance The amount of space, in pixels, between this
 child and its left or upper neighbor.

resizable If this resource is False then the parent
 widget will ignore all geometry request made
 by this child. The parent may still resize
 this child itself, however.

Composite and Con-
straint Widgets

106

Layout Semantics

The Dialog widget uses two different sets of layout seman- tics. One is used when
initially laying out the children. The other is used when the Dialog is resized.

The first layout method uses the fromVert mand fromHoriz resources to place the
children of the Dialog. A single pass is made through the Dialog widget's children
in the order that they were created. Each child is then placed in the Dialog widget
below or to the right of the widget speci- fied by the fromVert mand fromHoriz
mresources. The distance the new child is placed from its left or upper neighbor
is determined by the horizDistance mand vertDistance mresources. This implies
some things about how the order of creation affects the possible placement of the
children. The Form widget registers a string to widget converter which does not
postpone conversion and does not cache conversion results.

The second layout method is used when the Dialog is resized. It does not matter
what causes this resize, and it is possi- ble for a resize to happen before the widget
becomes visible (due to constraints imposed by the parent of the Dialog). This layout
method uses the bottom , top , left , and right resources. These resources are used
to determine what will happen to each edge of the child when the Dialog is resized. If
a value of XawChain <something> is specified, the the edge of the child will remain
a fixed distance from the chain edge of the Dialog. For example if XawChainLeft
mis specified for the right mresource of a child then the right edge of that child
will remain a fixed distance from the left edge of the Dialog widget. If a value of
XawRubber mis spec- ified, that edge will grow by the same percentage that the
Dialog grew. For instance if the Dialog grows by 50% the left edge of the child (if
specified as XawRubber mwill be 50% farther from the left edge of the Dialog). One
must be very careful when specifying these resources, for when they are specified
incorrectly children may overlap or completely occlude other children when the
Dialog widget is resized.

Edge Type Resource Name Description
XawChainBottom ChainBottom Edge remains a

fixed distance from
bottom of Dialog

XawChainLeft ChainLeft Edge remains a fixed dis-
tance from left of Dialog

XawChainRight ChainRight Edge remains a fixed dis-
tance from right of Dialog

XawChainTop ChainTop Edge remains a fixed dis-
tance from top of Dialog

XawRubber Rubber Edges will move a pro-
portional distance

Example

If you wish to force the Dialog to never resize one or more of its children then set
left and right to XawChainLeft and top and bottom to XawChainTop. This will
cause the child to remain a fixed distance from the top and left edges of the Dialog,
and to never resize.

Composite and Con-
straint Widgets

107

Special Considerations

The Dialog widget automatically sets the top and bottom resources for all Children
that are subclasses of the Command widget, as well as the widget children that are
used to contain the label, value, and icon. This policy allows the buttons at the
bottom of the Dialog to interact correctly with the predefined children, and makes
it possible for a client to simply create and manage a new Command button without
having to specify its constraints.

The Dialog will also set fromLeft to the last button in the Dialog for each new button
added to the Dialog widget.

The automatically added constraints cannot be overridden, as they are policy deci-
sions of the Dialog widget. If a more flexible Dialog is desired, the application is
free to use the Form widget to create its own Dialog policy.

Automatically Created Children.
The Dialog uses Label widgets to contain the label and icon. These widgets are
named label and icon respectively. The Dialog value is contained in an AsciiText
widget whose name is value. Using XtNameToWidget the application can change
those resources associated with each of these widgets that are not available through
the Dialog widget itself.

Convenience Routines
To return the character string in the text field, use

String XawDialogGetValueString(w);

w Specifies the Dialog widget.

This function returns a copy of the value string of the Dialog widget. This string is
allocated by the AsciiText widget and will remain valid and unchanged until another
call to XawDialogGetValueString or an XtGetValues call on the value widget,
when the string will be automatically freed, and a new string is returned. This string
may be freed earlier by calling the function XawAsciiSourceFreeString.

To add a new button to the Dialog widget use XawDialogAddButton.

void XawDialogAddButton(w, name, func, client_data);

w Specifies the Dialog widget.

name Specifies the name of the new Command button to be
added to the Dialog.

func Specifies a callback function to be called when this
button is activated. If NULL is specified then no call-
back is added.

client_data Specifies the client_data to be passed to the func.

This function is merely a shorthand for the code sequence:

Composite and Con-
straint Widgets

108

{
 Widget button = XtCreateManagedWidget(name, commandWidgetClass, w, NULL, ZERO);
 XtAddCallback(button, XtNcallback, func, client_data);
}

Form Widget

Application Header file <X11/Xaw/Form.h>

Class Header file <X11/Xaw/FormP.h>

Class formWidgetClass

Class Name Form

Superclass Constraint

The Form widget can contain an arbitrary number of children or subwidgets. The
Form provides geometry management for its children, which allows individual con-
trol of the position of each child. Any combination of children can be added to a
Form. The initial positions of the children may be computed relative to the positions
of previously created children. When the Form is resized, it computes new positions
and sizes for its children. This computation is based upon information provided
when a child is added to the Form.

The default width of the Form is the minimum width needed to enclose the children
after computing their initial layout, with a margin of defaultDistance at the right
and bottom edges. If a width and height is assigned to the Form that is too small for
the layout, the children will be clipped by the right and bottom edges of the Form.

Resources
When creating a Form widget instance, the following resources are retrieved from
the argument list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators Accelera-

torTable
 NULL

ances-
torSensitive

Ances-
torSensitive

Boolean D True

background Background Pixel XtDefault-
Background

background-
Pixmap

Pixmap Pixmap XtUnspeci-
fiedPixmap

Composite and Con-
straint Widgets

109

Name Class Type Notes Default Value
borderColor BorderColor Pixel XtDefault-

Foreground
borderPixmap Pixmap Pixmap XtUnspeci-

fiedPixmap
borderWidth BorderWidth Dimension 1

children ReadOnly WidgetList R NULL
colormap Colormap Colormap Parent's

Colormap
default-
Distance

Thickness int 4

depth Depth int C Parent's Depth
destroy-
Callback

Callback XtCallbackList NULL

height Height Dimension A Enough space
to contain

all children
mappedWhen-

Managed
MappedWhen-

Managed
Boolean True

numChildren ReadOnly Cardinal R 0
screen Screen Screen R Parent's

Screen
sensitive Sensitive Boolean True

translations Translations Transla-
tionTable

 NULL

width Width Dimension A Enough space
to contain

all children
x Position Position 0
y Position Position 0
_

Constraint Resources
Each child of the Form widget may request special layout resources be applied to it.
These constraint resources allow the Form widget's children to specify individual
layout requirements.

Name Class Type Notes Default Value
bottom Edge XawEdgeType XawRubber

fromHoriz Widget Widget NULL (left
edge of Form)

fromVert Widget Widget NULL (top
edge of Form)

Composite and Con-
straint Widgets

110

Name Class Type Notes Default Value
horizDistance Thickness int defaultDis-

tance resource
left Edge XawEdgeType XawRubber

resizable Boolean Boolean FALSE
right Edge XawEdgeType XawRubber
top Edge XawEdgeType XawRubber

vertDistance Thickness int defaultDis-
tance resource

bottom
left
right
top What to do with this edge of the child when
 the parent is resized. This resource may be
 any edgeType. See Layout Semantics for
 details.

fromHoriz
fromVert Which widget this child should be placed
 underneath (or to the right of). If a value
 of NULL is specified then this widget will be
 positioned relative to the edge of the par-
 ent.

horizDistance
vertDistance The amount of space, in pixels, between this
 child and its left or upper neighbor.

resizable If this resource is False then the parent
 widget will ignore all geometry request made
 by this child. The parent may still resize
 this child itself, however.

Layout Semantics
The Form widget uses two different sets of layout semantics. One is used when
initially laying out the children. The other is used when the Form is resized.

The first layout method uses the fromVert and fromHoriz resources to place the
children of the Form. A single pass is made through the Form widget's children in
the order that they were created. Each child is then placed in the Form widget below
or to the right of the widget specified by the fromVert and fromHoriz resources.
The distance the new child is placed from its left or upper neighbor is deter- mined
by the horizDistance and vertDistance resources. This implies some things about
how the order of creation affects the possible placement of the children. The Form
widget registers a string to widget converter which does not post- pone conversion
and does not cache conversion results.

The second layout method is used when the Form is resized. It does not matter what
causes this resize, and it is possi- ble for a resize to happen before the widget be-

Composite and Con-
straint Widgets

111

comes visible (due to constraints imposed by the parent of the Form). This layout
method uses the bottom, top, left, and right resources. These resources are used
to determine what will happen to each edge of the child when the Form is resized. If
a value of XawChain <something> is specified, the the edge of the child will remain
a fixed distance from the chain edge of the Form. For example if XawChainLeft is
specified for the right resource of a child then the right edge of that child will re-
main a fixed distance from the left edge of the Form widget. If a value of XawRubber
is specified, that edge will grow by the same percentage that the Form grew. For
instance if the Form grows by 50% the left edge of the child (if specified as XawRub-
ber will be 50% farther from the left edge of the Form). One must be very careful
when specifying these resources, for when they are specified incorrectly children
may overlap or completely occlude other children when the Form widget is resized.

Edge Type Resource Name Description
XawChainBottom ChainBottom Edge remains a

fixed distance from
bottom of Form

XawChainLeft ChainLeft Edge remains a fixed dis-
tance from left of Form

XawChainRight ChainRight Edge remains a fixed dis-
tance from right of Form

XawChainTop ChainTop Edge remains a fixed dis-
tance from top of Form

XawRubber Rubber Edges will move a pro-
portional distance

Example

If you wish to force the Form to never resize one or more of its children, then set
left and right to XawChainLeft and top and bottom to XawChainTop. This will
cause the child to remain a fixed distance from the top and left edges of the Form,
and never to resize.

Convenience Routines
To force or defer a re-layout of the Form, use

void XawFormDoLayout(w, do_layout);

w Specifies the Form widget.

do_layout Specifies whether the layout of the Form widget is en-
abled (True) or disabled (False).

When making several changes to the children of a Form widget after the Form has
been realized, it is a good idea to disable relayout until after all changes have been
made.

Paned Widget

Composite and Con-
straint Widgets

112

Application Header file <X11/Xaw/Paned.h>

Class Header file <X11/Xaw/PanedP.h>

Class panedWidgetClass

Class Name Paned

Superclass Constraint

The Paned widget manages children in a vertically or horizontally tiled fashion. The
panes may be dynamically resized by the user by using the grips that appear near
the right or bottom edge of the border between two panes.

The Paned widget may accept any widget class as a pane except Grip. Grip widgets
have a special meaning for the Paned widget, and adding a Grip as its own pane
will confuse the Paned widget.

Using the Paned Widget
The grips allow the panes to be resized by the user. The semantics of how these
panes resize is somewhat complicated, and warrants further explanation here.
When the mouse pointer is positioned on a grip and pressed, an arrow is displayed
that indicates the pane that is to be to be resized. While keeping the mouse button
down, the user can move the grip up and down (or left and right). This, in turn,
changes the size of the pane. The size of the Paned widget will not change. Instead,
it chooses another pane (or panes) to resize. For more details on which pane it
chooses to resize, see Layout Semantics.

One pointer binding allows the border between two panes to be moved, without
affecting any of the other panes. When this occurs the pointer will change to an
arrow that points along the pane border.

The default bindings for the Paned widget's grips are:

Mouse button Pane to Re-
size - Vertical

Pane to Resize
- Horizontal

1 (left) above the grip left of the grip
2 (middle) adjust border adjust border
3 (right) below the grip right of the grip

_

Resources
When creating a Paned widget instance, the following resources are retrieved from
the argument list or the resource database:

Name Class Type Notes Default Value
accelerators Accelerators Accelera-

torTable
 NULL

Composite and Con-
straint Widgets

113

Name Class Type Notes Default Value
ances-

torSensitive
Ances-

torSensitive
Boolean D True

background Background Pixel XtDefault-
Background

background-
Pixmap

Pixmap Pixmap XtUnspeci-
fiedPixmap

betweenCursor Cursor Cursor A Depends on
orientation

borderColor BorderColor Pixel XtDefault-
Foreground

borderPixmap Pixmap Pixmap XtUnspeci-
fiedPixmap

borderWidth BorderWidth Dimension 1
children ReadOnly WidgetList R NULL
colormap Colormap Colormap Parent's

Colormap
cursor Cursor Cursor None
depth Depth int C Parent's Depth

destroy-
Callback

Callback XtCallbackList NULL

gripCursor Cursor Cursor A Depends on
orientation

gripIndent GripIndent Position 10
gripTrans-

lations
Translations Transla-

tionTable
 see below

height Height Dimension A Depends on
orientation

horizontalBe-
tweenCursor

Cursor Cursor sb_up_arrow

horizontal-
GripCursor

Cursor Cursor sb_h_double_arrow

internalBor-
derColor

BorderColor Pixel XtDefault-
Foreground

internalBor-
derWidth

BorderWidth Dimension 1

leftCursor Cursor Cursor sb_left_arrow
lowerCursor Cursor Cursor sb_down_arrow

mappedWhen-
Managed

MappedWhen-
Managed

Boolean True

numChildren ReadOnly Cardinal R 0
orientation Orientation Orientation Xtori-

entVertical

Composite and Con-
straint Widgets

114

Name Class Type Notes Default Value
refigureMode Boolean Boolean True
rightCursor Cursor Cursor sb_right_arrow

screen Screen Screen R Parent's
Screen

sensitive Sensitive Boolean True
translations Translations Transla-

tionTable
 NULL

upperCursor Cursor Cursor sb_up_arrow
verticalBe-

tweenCursor
Cursor Cursor sb_left_arrow

vertical-
GripCursor

Cursor Cursor sb_v_double_arrow

width Width Dimension A Depends on
orientation

x Paned Position 0
y Paned Position 0
_

cursor The cursor to use when the mouse pointer is over the
Paned widget, but not in any of its children (children
may also inherit this cursor). It should be noted that
the internal borders are actually part of the Paned
widget, not the children.

gripCursor The cursor to use when the grips are not active.
The default value is verticalGripCursor or hori-
zontalGripCursor depending on the orientation of
the Paned widget.

gripIndent The amount of space left between the right (or bot-
tom) edge of the Paned widget and all the grips.

gripTranslation Translation table that will be applied to all grips.

horizontalBetweenCursor

verticalBetweenCursor The cursor to be used for the grip when changing
the boundary between two panes. These resources
allow the cursors to be different depending on the
orientation of the Paned widget.

horizontalGripCursor

verticalGripCursor The cursor to be used for the grips when they are
not active. These resources allow the cursors to be
different depending on the orientation of the Paned
widget.

internalBorderColor A pixel value which indexes the widget's colormap
to derive the internal border color of the widget's

Composite and Con-
straint Widgets

115

window. The class name of this resource allows
Paned*BorderColor: blue to set the internal border
color for the Paned widget. An optimization is in-
voked if internalBorderColor and background are
the same, and the internal borders are not drawn.
internalBorderWidth is still left between the panes,
however.

internalBorderWidth The width of the internal borders. This is the amount
of space left between the panes. The class name of
this resource allows Paned*BorderWidth: 3 to set the
internal border width for the Paned widget.

leftCursor

rightCursor The cursor used to indicate which is the important
pane to resize when the Paned widget is oriented hor-
izontally.

lowerCursor

upperCursor The cursor used to indicate which is the important
pane to resize when the Paned widget is oriented ver-
tically. This is not the same as the number of panes,
since this also contains a grip for some of the panes,
use XawPanedGetNumSub to retrieve the number of
panes.

orientation The orientation to stack the panes. This value can be
either XtorientVertical or XtorientHorizontal.

refigureMode This resource allows pane layout to be suspended.
If this value is False, then no layout actions will be
taken. This may improve efficiency when adding or
removing more than one pane from the Paned widget.

Constraint Resources
Each child of the Paned widget may request special layout resources be applied to it.
These constraint resources allow the Paned widget's children to specify individual
layout requirements.

Name Class Type Notes Default Value
allowResize Boolean Boolean False

max Max Dimension Infinity
min Min Dimension Height of Grips

preferred-
PaneSize

Preferred-
PaneSize

Dimension ask child

resizeTo-
Preferred

Boolean Boolean False

showGrip ShowGrip Boolean True
skipAdjust Boolean Boolean False

Composite and Con-
straint Widgets

116

Name Class Type Notes Default Value
_

allowResize If this value is False the the Paned widget will disal-
low all geometry requests from this child.

max

min The absolute maximum or minimum size for this
pane. These values will never be overridden by the
Paned widget. This may cause some panes to be
pushed off the bottom (or right) edge of the paned
widget.

preferredPaneSize Normally the paned widget makes a QueryGeometry
call on a child to determine the preferred size of the
child's pane. There are times when the application
programmer or the user has a better idea of the pre-
ferred size of a pane. Setting this resource causes the
value passed to be interpreted as the preferred size,
in pixels, of this pane.

resizeToPreferred Determines whether or not to resize each pane to its
preferred size when the Paned widget is resized. See
Layout Semantics for details.

showGrip If True then a grip will be shown for this pane. The
grip associated with a pane is either below or to the
right of the pane. No grip is ever shown for the last
pane.

skipAdjust This resource is used to determine which pane is
forced to be resized. Setting this value to True makes
this pane less likely to be forced to be resized. See
Layout Semantics for details.

Layout Semantics
In order to make effective use of the Paned widget it is helpful to know the rules
it uses to determine which child will be resized in any given situation. There are
three rules used to determine which child is resized. While these rules are always
the same, the panes that are searched can change depending upon what caused
the relayout.

Layout Rules

1 Do not let a pane grow larger than its max or smaller than its min.

2 Do not adjust panes with skipAdjust set.

3 Do not adjust panes away from their preferred size, although mov-
ing one closer to its preferred size is fine.

When searching the children the Paned widget looks for panes that satisfy all the
rules, and if unsuccessful then it eliminates rule 3 and then 2. Rule 1 is always
enforced.

Composite and Con-
straint Widgets

117

If the relayout is due to a resize or change in management then the panes are
searched from bottom to top. If the relayout is due to grip movement then they are
searched from the grip selected in the direction opposite the pane selected.

Resizing Panes from a Grip Action

The pane above the grip is resized by invoking the GripAction with UpLeftPane
specified. The panes below the grip are each checked against all rules, then rules
2 and 1 and finally against rule 1 only. No pane above the chosen pane will ever
be resized.

The pane below the grip is resized by invoking the GripAction with LowRightPane
specified. The panes above the grip are each checked in this case. No pane below
the chosen pane will ever be resized.

Invoking GripAction with ThisBorderOnly specified just moves the border between
the panes. No other panes are ever resized.

Resizing Panes after the Paned widget is resized.

When the Pane widget is resized it must determine a new size for each pane. There
are two methods of doing this. The Paned widget can either give each pane its
preferred size and then resize the panes to fit, or it can use the current sizes and
then resize the panes to fit. The resizeToPreferred resource allows the application
to tell the Paned widget whether to query the child about its preferred size (subject
to the the preferredPaneSize) or to use the current size when refiguring the pane
locations after the pane has been resized.

There is one special case. All panes assume they should resize to their preferred
size until the Paned widget becomes visible to the user.

Managing Children and Geometry Management

The Paned widget always resizes its children to their preferred sizes when a new
child is managed, or a geometry management request is honored. The Paned widget
will first attempt to resize itself to contain its panes exactly. If this is not possible
then it will hunt through the children, from bottom to top (right to left), for a pane
to resize.

Special Considerations

When a user resizes a pane with the grips, the Paned widget assumes that this new
size is the preferred size of the pane.

Grip Translations
The Paned widget has no action routines of its own, as all actions are handled
through the grips. The grips are each assigned a default Translation table.

 <Btn1Down>: GripAction(Start, UpLeftPane)

Composite and Con-
straint Widgets

118

 <Btn2Down>: GripAction(Start, ThisBorderOnly)
 <Btn3Down>: GripAction(Start, LowRightPane)
 <Btn1Motion>: GripAction(Move, UpLeftPane)
 <Btn2Motion>: GripAction(Move, ThisBorderOnly)
 <Btn3Motion>: GripAction(Move, LowRightPane)
 Any<BtnUp>: GripAction(Commit)

The Paned widget interprets the GripAction as taking two arguments. The first
argument may be any of the following:

Start Sets up the Paned widget for resizing and changes the cur-
sor of the grip. The second argument determines which pane
will be resized, and can take on any of the three values
shown above.

Move The internal borders are drawn over the current pane loca-
tions to animate where the borders would actually be placed
if you were to move this border as shown. The second ar-
gument must match the second argument that was passed
to the Start action, that began this process. If these argu-
ments are not passed, the behavior is undefined.

Commit This argument causes the Paned widget to commit the
changes selected by the previously started action. The cur-
sor is changed back to the grip's inactive cursor. No second
argument is needed in this case.

Convenience Routines
To enable or disable a child's request for pane resizing, use XawPanedAllowResize :

void XawPanedAllowResize(w, allow_resize);

w Specifies the child pane.

allow_resize Specifies whether or not resizing requests for this
child will be granted by the Paned widget.

If allow_resize is True, the Paned widget allows geometry requests from the child to
change the pane's height. If allow_resize is False, the Paned widget ignores geom-
etry requests from the child to change the pane's height. The default state is True
before the Pane is realized and False after it is realized. This procedure is equiva-
lent to changing the allowResize constraint resource for the child.

To change the minimum and maximum height settings for a pane, use XawPanedSet-
MinMax :

void XawPanedSetMinMax(w, max);

w Specifies the child pane.

min Specifies the new minimum height of the child, expressed in
pixels.

max Specifies new maximum height of the child, expressed in pixels.

Composite and Con-
straint Widgets

119

This procedure is equivalent to setting the min and max constraint resources for the
child.

To retrieve the minimum and maximum height settings for a pane, use XawPaned-
GetMinMax :

void XawPanedGetMinMax(w, *max_return);

w Specifies the child pane.

min_return Returns the minimum height of the child, expressed in
pixels.

max_return Returns the maximum height of the child, expressed in
pixels.

This procedure is equivalent to getting the min and max resources for this child child.

To enable or disable automatic recalculation of pane sizes and positions, use Xaw-
PanedSetRefigureMode :

void XawPanedSetRefigureMode(w, mode);

w Specifies the Paned widget.

mode Specifies whether the layout of the Paned widget is enabled
(True) or disabled (False).

When making several changes to the children of a Paned widget after the Paned
has been realized, it is a good idea to disable relayout until after all changes have
been made.

To retrieve the number of panes in a paned widget use XawPanedGetNumSub:

int XawPanedGetNumSub(w);

w Specifies the Paned widget.

This function returns the number of panes in the Paned widget. This is not the same
as the number of children, since the grips are also children of the Paned widget.

Porthole Widget

Application Header file <X11/Xaw/Porthole.h>

Class Header file <X11/Xaw/PortholeP.h>

Class portholeWidgetClass

Class Name Porthole

Superclass Composite

Composite and Con-
straint Widgets

120

The Porthole widget provides geometry management of a list of arbitrary widgets,
only one of which may be managed at any particular time. The managed child widget
is reparented within the porthole and is moved around by the application (typically
under the control of a Panner widget).

Resources
When creating a Porthole widget instance, the following resources are retrieved
from the argument list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators Accelera-

torTable
 NULL

ances-
torSensitive

Ances-
torSensitive

Boolean D True

background Background Pixel XtDefault-
Background

background-
Pixmap

Pixmap Pixmap XtUnspeci-
fiedPixmap

borderColor BorderColor Pixel XtDefault-
Foreground

borderPixmap Pixmap Pixmap XtUnspeci-
fiedPixmap

borderWidth BorderWidth Dimension 1
children ReadOnly WidgetList R NULL
colormap Colormap Colormap Parent's

Colormap
depth Depth int C Parent's Depth

destroy-
Callback

Callback XtCallbackList NULL

height Height Dimension A see Layout
Semantics

mappedWhen-
Managed

MappedWhen-
Managed

Boolean True

numChildren ReadOnly Cardinal R 0
reportCallback ReportCallback Callback NULL

screen Screen Screen R Parent's
Screen

sensitive Sensitive Boolean True
translations Translations Transla-

tionTable
 NULL

width Width Dimension A see Layout
Semantics

x Position Position 0

Composite and Con-
straint Widgets

121

Name Class Type Notes Default Value
y Position Position 0
_

reportCallback A list of functions to invoke whenever the managed
child widget changes size or position.

Layout Semantics
The Porthole widget allows its managed child to request any size that is as large or
larger than the Porthole itself and any location so long as the child still obscures all
of the Porthole. This widget typically is used with a Panner widget.

Porthole Callbacks
The functions registered on the reportCallback list are invoked whenever the man-
aged child changes size or position:

void ReportProc(porthole, client_data, report);

porthole Specifies the Porthole widget.

client_data Specifies the client data.

report Specifies a pointer to an XawPannerReport structure containing the
location and size of the slider and the size of the canvas.

Tree Widget

Application Header file <X11/Xaw/Tree.h>
Class Header file <X11/Xaw/TreeP.h>
Class treeWidgetClass
Class Name Tree
Superclass Constraint

The Tree widget provides geometry management of arbitrary widgets arranged in
a directed, acyclic graph (i.e., a tree). The hierarchy is constructed by attaching a
constraint resource called treeParent to each widget indicating which other node
in the tree should be treated as the widget's superior. The structure of the tree is
shown by laying out the nodes in the standard format for tree diagrams with lines
drawn connecting each node with its children.

The Tree sizes itself according to the needs of its children and is not intended to be
resized by its parent. Instead, it should be placed inside another composite widget
(such as the Porthole or Viewport) that can be used to scroll around in the tree.

Resources
When creating a Tree widget instance, the following resources are retrieved from
the argument list or from the resource database:

Composite and Con-
straint Widgets

122

Name Class Type Notes Default Value
accelerators Accelerators Accelera-

torTable
 NULL

ances-
torSensitive

Ances-
torSensitive

Boolean D True

autoRe-
configure

AutoRe-
configure

Boolean False

background Background Pixel XtDefault-
Background

background-
Pixmap

Pixmap Pixmap XtUnspeci-
fiedPixmap

borderColor BorderColor Pixel XtDefault-
Foreground

borderPixmap Pixmap Pixmap XtUnspeci-
fiedPixmap

borderWidth BorderWidth Dimension 1
children ReadOnly WidgetList R NULL
colormap Colormap Colormap Parent's

Colormap
depth Depth int C Parent's Depth

destroy-
Callback

Callback XtCallbackList NULL

foreground Foreground Pixel XtDefault-
Foreground

gravity Gravity XtGravity WestGravity
height Height Dimension A see Layout

Semantics

hSpace HSpace Dimension 4
lineWidth LineWidth Dimension 0

mappedWhen-
Managed

MappedWhen-
Managed

Boolean True

numChildren ReadOnly Cardinal R 0
screen Screen Screen R Parent's

Screen
sensitive Sensitive Boolean True
vSpace VSpace Dimension 4

translations Translations Transla-
tionTable

 NULL

width Width Dimension A see Layout
Semantics

x Position Position 0
y Position Position 0

Composite and Con-
straint Widgets

123

autoReconfigure Whether or not to layout the tree every time a node is added
or removed.

gravity Specifies the side of the widget from which the tree should grow.
Valid values include WestGravity, NorthGravity, EastGravity,
and SouthGravity.

hSpace

vSpace The amount of space, in pixels, to leave between the children.
This resource specifies the amount of space left between the
outermost children and the edge of the box.

lineWidth The width of the lines from nodes that do not have a treeGC
constraint resource to their children.

Constraint Resources
Each child of the Tree widget must specify its superior node in the tree. In addition,
it may specify a GC to use when drawing a line between it and its inferior nodes.

Name Class Type Notes Default Value
treeGC TreeGC GC NULL

treeParent TreeParent Widget NULL

treeGC This specifies the GC to use when drawing lines between this widget
and its inferiors in the tree. If this resource is not specified, the Tree's
foreground and lineWidth will be used.

treeParent This specifies the superior node in the tree for this widget. The default
is for the node to have no superior (and to therefore be at the top of
the tree).

Layout Semantics
Each time a child is managed or unmanaged, the Tree widget will attempt to reposi-
tion the remaining children to fix the shape of the tree if the resource is set. Children
at the top (most superior) of the tree are drawn at the side specified by the resource.

After positioning all children, the Tree widget attempts to shrink its own size to the
minimum dimensions required for the layout.

Convenience Routines
The most efficient way to layout a tree is to set autoReconfigure to False and then
use the XawTreeForceLayout routine to arrange the children.

void XawTreeForceLayout(w);

w Specifies the Tree widget.

Viewport Widget

Composite and Con-
straint Widgets

124

Application Header file <X11/Xaw/Viewport.h>

Class Header file <X11/Xaw/ViewportP.h>

Class viewportWidgetClass

Class Name Viewport

Superclass Form

The Viewport widget consists of a frame window, one or two Scrollbars, and an inner
window. The size of the frame window is determined by the viewing size of the data
that is to be displayed and the dimensions to which the Viewport is created. The
inner window is the full size of the data that is to be displayed and is clipped by the
frame window. The Viewport widget controls the scrolling of the data directly. No
application callbacks are required for scrolling.

When the geometry of the frame window is equal in size to the inner window, or
when the data does not require scrolling, the Viewport widget automatically re-
moves any scrollbars. The forceBars option causes the Viewport widget to display
all scrollbars permanently.

Resources
When creating a Viewport widget instance, the following resources are retrieved
from the argument list or the resource database:

Name Class Type Notes Default Value
accelerators Accelerators Accelera-

torTable
 NULL

allowHoriz Boolean Boolean False
allowVert Boolean Boolean False

ances-
torSensitive

Ances-
torSensitive

Boolean D True

background Background Pixel XtDefault-
Background

background-
Pixmap

Pixmap Pixmap XtUnspeci-
fiedPixmap

borderColor BorderColor Pixel XtDefault-
Foreground

borderPixmap Pixmap Pixmap XtUnspeci-
fiedPixmap

borderWidth BorderWidth Dimension 1
children ReadOnly WidgetList R NULL
colormap Colormap Colormap Parent's

Colormap

Composite and Con-
straint Widgets

125

Name Class Type Notes Default Value
depth Depth int C Parent's Depth

destroy-
Callback

Callback XtCallbackList NULL

forceBars Boolean Boolean False
height Height Dimension height of

the child
mappedWhen-

Managed
MappedWhen-

Managed
Boolean True

numChildren ReadOnly Cardinal R 0
reportCallback ReportCallback XtCallbackList NULL

screen Screen Screen R Parent's
Screen

sensitive Sensitive Boolean True
translations Translations Transla-

tionTable
 NULL

useBottom Boolean Boolean False
useRight Boolean Boolean False

width Width Dimension width of
the child

x Position Position 0
y Position Position 0
_

allowHoriz

allowVert If these resources are False then the Viewport will
never create a scrollbar in this direction. If it is True
then the scrollbar will only appear when it is needed,
unless forceBars is True.

forceBars When True the scrollbars that have been allowed will
always be visible on the screen. If False the scroll-
bars will be visible only when the inner window is
larger than the frame.

reportCallback These callbacks will be executed whenever the View-
port adjusts the viewed area of the child. The
call_data parameter is a pointer to an XawPannerRe-
port structure.

useBottom

useRight By default the scrollbars appear on the left and top of
the screen. These resources allow the vertical scroll-
bar to be placed on the right edge of the Viewport,
and the horizontal scrollbar on the bottom edge of
the Viewport.

Composite and Con-
straint Widgets

126

Layout Semantics
The Viewport widget manages a single child widget. When the size of the child is
larger than the size of the Viewport, the user can interactively move the child within
the Viewport by repositioning the scrollbars.

The default size of the Viewport before it is realized is the width and/or height of the
child. After it is realized, the Viewport will allow its child to grow vertically or hori-
zontally if allowVert or allowHoriz are set, respectively. If the corresponding ver-
tical or horizontal scrollbar is not enabled, the Viewport will propagate the geom-
etry request to its own parent and the child will be allowed to change size only if
the Viewport's parent allows it. Regardless of whether or not scrollbars are enabled
in the corresponding direction, if the child requests a new size smaller than the
Viewport size, the change will be allowed only if the parent of the Viewport allows
the Viewport to shrink to the appropriate dimension.

The scrollbar children of the Viewport are named horizontal and vertical. By us-
ing these names the programmer can specify resources for the individual scrollbars.
XtSetValues can be used to modify the resources dynamically once the widget ID
has been obtained with XtNameToWidget.

Note
Although the Viewport is a Subclass of the Form, no resources for the Form
may be supplied for any of the children of the Viewport. These constraints
are managed internally and are not meant for public consumption.

127

Chapter 7. Creating New Widgets
(Subclassing)

Although the task of creating a new widget may at first appear a little daunting,
there is a basic simple pattern that all widgets follow. The Athena Widget library
contains a special widget called the Template widget that is intended to assist the
novice widget programmer in writing a custom widget.

Reasons for wishing to write a custom widget include:

• Providing a graphical interface not currently supported by any existing widget set.

• Convenient access to resource management procedures to obtain fonts, colors,
etc., even if user customization is not desired.

• Convenient access to user input dispatch and translation management proce-
dures.

• Access to callback mechanism for building higher-level application libraries.

• Customizing the interface or behavior of an existing widget to suit a special ap-
plication need.

• Desire to allow user customization of resources such as fonts, colors, etc., or to
allow convenient re-binding of keys and buttons to internal functions.

• Converting a non-Toolkit application to use the Toolkit.

In each of these cases, the operation needed to create a new widget is to "subclass"
an existing one. If the desired semantics of the new widget are similar to an existing
one, then the implementation of the existing widget should be examined to see how
much work would be required to create a subclass that will then be able to share
the existing class methods. Much time will be saved in writing the new widget if
an existing widget class Expose, Resize and/or GeometryManager method can be
used by the subclass.

Note that some trivial uses of a ``bare-bones'' widget may be achieved by simply
creating an instance of the Core widget. The class variable to use when creating a
Core widget is widgetClass. The geometry of the Core widget is determined entirely
by the parent widget.

It is very often the case than an application will have a special need for a certain set
of functions and that many copies of these functions will be needed. For example,
when converting an older application to use the Toolkit, it may be desirable to have
a "Window Widget" class that might have the following semantics:

• Allocate 2 drawing colors in addition to a background color.

• Allocate a text font.

• Execute an application-supplied function to handle exposure events.

• Execute an application-supplied function to handle user input events.

Creating New Wid-
gets (Subclassing)

128

It is obvious that a completely general-purpose WindowWidgetClass could be con-
structed that would export all class methods as callbacks lists, but such a widget
would be very large and would have to choose some arbitrary number of resources
such as colors to allocate. An application that used many instances of the gener-
al-purpose widget would therefore un-necessarily waste many resources.

In this section, an outline will be given of the procedure to follow to construct a
special-purpose widget to address the items listed above. The reader should refer
to the appropriate sections of the X Toolkit Intrinsics - C Language Interface for
complete details of the material outlined here. Section 1.4 of the Intrinsics should
be read in conjunction with this section.

All Athena widgets have three separate files associated with them:

• A "public" header file containing declarations needed by applications program-
mers

• A "private" header file containing additional declarations needed by the widget
and any subclasses

• A source code file containing the implementation of the widget

This separation of functions into three files is suggested for all widgets, but nothing
in the Toolkit actually requires this format. In particular, a private widget created for
a single application may easily combine the "public" and "private" header files into
a single file, or merge the contents into another application header file. Similarly,
the widget implementation can be merged into other application code.

In the following example, the public header file < X11/Xaw/Template.h >, the pri-
vate header file < X11/Xaw/TemplateP.h > and the source code file < X11/Xaw/
Template.c > will be modified to produce the "WindowWidget" described above.
In each case, the files have been designed so that a global string replacement of
"Template" and "template" with the name of your new widget, using the appropriate
case, can be done.

Public Header File
The public header file contains declarations that will be required by any application
module that needs to refer to the widget; whether to create an instance of the class,
to perform an XtSetValues operation, or to call a public routine implemented by
the widget class.

The contents of the Template public header file, < X11/Xaw/Template.h >, are:

..

/* Copyright (c) X Consortium 1987, 1988 */

#ifndef _Template_h
#define _Template_h

/**
 *

Creating New Wid-
gets (Subclassing)

129

 * Template widget
 *
 **/

/* Resources:

 Name Class RepType Default Value
 ---- ----- ------- -------------
 background Background Pixel XtDefaultBackground
 border BorderColor Pixel XtDefaultForeground
 borderWidth BorderWidth Dimension 1
 destroyCallback Callback Pointer NULL
 height Height Dimension 0
 mappedWhenManaged MappedWhenManaged Boolean True
 sensitive Sensitive Boolean True
 width Width Dimension 0
 x Position Position 0
 y Position Position 0

*/

/* define any special resource names here that are not in <X11/StringDefs.h> */

#define XtNtemplateResource "templateResource"

#define XtCTemplateResource "TemplateResource"

/* declare specific TemplateWidget class and instance datatypes */

typedef struct _TemplateClassRec* TemplateWidgetClass;
typedef struct _TemplateRec* TemplateWidget;

/* declare the class constant */

extern WidgetClass templateWidgetClass;

#endif /* _Template_h */

You will notice that most of this file is documentation. The crucial parts are the last
8 lines where macros for any private resource names and classes are defined and
where the widget class datatypes and class record pointer are declared.

For the "WindowWidget", we want 2 drawing colors, a callback list for user input and
an exposeCallback callback list, and we will declare three convenience procedures,
so we need to add

/* Resources:
 ...
 callback Callback Callback NULL

Creating New Wid-
gets (Subclassing)

130

 drawingColor1 Color Pixel XtDefaultForeground
 drawingColor2 Color Pixel XtDefaultForeground
 exposeCallback Callback Callback NULL
 font Font XFontStruct* XtDefaultFont
 ...
 */

#define XtNdrawingColor1 "drawingColor1"
#define XtNdrawingColor2 "drawingColor2"
#define XtNexposeCallback "exposeCallback"

extern Pixel WindowColor1(\|/* Widget */\|);
extern Pixel WindowColor2(\|/* Widget */\|);
extern Font\ \ WindowFont(\|/* Widget */\|);

Note that we have chosen to call the input callback list by the generic name, call-
back, rather than a specific name. If widgets that define a single user-input action
all choose the same resource name then there is greater possibility for an applica-
tion to switch between widgets of different types.

Private Header File
The private header file contains the complete declaration of the class and instance
structures for the widget and any additional private data that will be required by
anticipated subclasses of the widget. Information in the private header file is nor-
mally hidden from the application and is designed to be accessed only through other
public procedures; e.g. XtSetValues .

The contents of the Template private header file, < X11/Xaw/TemplateP.h >, are:

/* Copyright (c) X Consortium 1987, 1988
 */

#ifndef _TemplateP_h
#define _TemplateP_h

#include <X11/Xaw/Template.h>
/* include superclass private header file */
#include <X11/CoreP.h>

/* define unique representation types not found in <X11/StringDefs.h> */

#define XtRTemplateResource "TemplateResource"

typedef struct {
 int empty;
} TemplateClassPart;

typedef struct _TemplateClassRec {
 CoreClassPart core_class;
 TemplateClassPart template_class;
} TemplateClassRec;

Creating New Wid-
gets (Subclassing)

131

extern TemplateClassRec templateClassRec;

typedef struct {
 /* resources */
 char* resource;
 /* private state */
} TemplatePart;

typedef struct _TemplateRec {
 CorePart core;
 TemplatePart template;
} TemplateRec;

#endif /* _TemplateP_h */

The private header file includes the private header file of its superclass, thereby
exposing the entire internal structure of the widget. It may not always be advanta-
geous to do this; your own project development style will dictate the appropriate
level of detail to expose in each module.

The "WindowWidget" needs to declare two fields in its instance structure to hold
the drawing colors, a resource field for the font and a field for the expose and user
input callback lists:

typedef struct {
 /* resources */
 Pixel color_1;
 Pixel color_2;
 XFontStruct* font;
 XtCallbackList expose_callback;
 XtCallbackList input_callback;
 /* private state */
 /* (none) */
} WindowPart;

Widget Source File
The source code file implements the widget class itself. The unique part of this file
is the declaration and initialization of the widget class record structure and the
declaration of all resources and action routines added by the widget class.

The contents of the Template implementation file, < X11/Xaw/Template.c >, are:

/* Copyright (c) X Consortium 1987, 1988
 */

#include <X11/IntrinsicP.h>
#include <X11/StringDefs.h>
#include "TemplateP.h"

Creating New Wid-
gets (Subclassing)

132

static XtResource resources[] = {
#define offset(field) XtOffsetOf(TemplateRec, template.field)
 /* {name, class, type, size, offset, default_type, default_addr}, */
 { XtNtemplateResource, XtCTemplateResource, XtRTemplateResource,
 sizeof(char*), offset(resource), XtRString, (XtPointer) "default" },
#undef offset
};

static void TemplateAction(/* Widget, XEvent*, String*, Cardinal* */);

static XtActionsRec actions[] =
{
 /* {name, procedure}, */
 {"template", TemplateAction},
};

static char translations[] =
" <Key>: template(\|) \\n\\
";

TemplateClassRec templateClassRec = {
 { /* core fields */
 /* superclass */ (WidgetClass) &widgetClassRec,
 /* class_name */ "Template",
 /* widget_size */ sizeof(TemplateRec),
 /* class_initialize */ NULL,
 /* class_part_initialize */ NULL,
 /* class_inited */ FALSE,
 /* initialize */ NULL,
 /* initialize_hook */ NULL,
 /* realize */ XtInheritRealize,
 /* actions */ actions,
 /* num_actions */ XtNumber(actions),
 /* resources */ resources,
 /* num_resources */ XtNumber(resources),
 /* xrm_class */ NULLQUARK,
 /* compress_motion */ TRUE,
 /* compress_exposure */ TRUE,
 /* compress_enterleave */ TRUE,
 /* visible_interest */ FALSE,
 /* destroy */ NULL,
 /* resize */ NULL,
 /* expose */ NULL,
 /* set_values */ NULL,
 /* set_values_hook */ NULL,
 /* set_values_almost */ XtInheritSetValuesAlmost,
 /* get_values_hook */ NULL,
 /* accept_focus */ NULL,
 /* version */ XtVersion,
 /* callback_private */ NULL,
 /* tm_table */ translations,
 /* query_geometry */ XtInheritQueryGeometry,
 /* display_accelerator */ XtInheritDisplayAccelerator,
 /* extension */ NULL

Creating New Wid-
gets (Subclassing)

133

 },
 { /* template fields */
 /* empty */ 0
 }
};

WidgetClass templateWidgetClass = (WidgetClass)&templateClassRec;

The resource list for the "WindowWidget" might look like the following:

static XtResource resources[] = {
#define offset(field) XtOffsetOf(WindowWidgetRec, window.field)
 /* {name, class, type, size, offset, default_type, default_addr}, */
 { XtNdrawingColor1, XtCColor, XtRPixel, sizeof(Pixel),
 offset(color_1), XtRString, XtDefaultForeground },
 { XtNdrawingColor2, XtCColor, XtRPixel, sizeof(Pixel),
 offset(color_2), XtRString, XtDefaultForeground },
 { XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct*),
 offset(font), XtRString, XtDefaultFont },
 { XtNexposeCallback, XtCCallback, XtRCallback, sizeof(XtCallbackList),
 offset(expose_callback), XtRCallback, NULL },
 { XtNcallback, XtCCallback, XtRCallback, sizeof(XtCallbackList),
 offset(input_callback), XtRCallback, NULL },
#undef offset
};

The user input callback will be implemented by an action procedure which passes
the event pointer as call_data. The action procedure is declared as:

/* ARGSUSED */
static void InputAction(w, event, params, num_params)
 Widget w;
 XEvent *event;
 String *params; /* unused */
 Cardinal *num_params; /* unused */
{
 XtCallCallbacks(w, XtNcallback, (XtPointer)event);
}

static XtActionsRec actions[] =
{
 /* {name, procedure}, */
 {"input", InputAction},
};

and the default input binding will be to execute the input callbacks on KeyPress
and ButtonPress :

static char translations[] =
" <Key>: input(\|) \\n\\
 <BtnDown>: input(\|) \\
";

Creating New Wid-
gets (Subclassing)

134

In the class record declaration and initialization, the only field that is different from
the Template is the expose procedure:

/* ARGSUSED */
static void Redisplay(w, event, region)
 Widget w;
 XEvent *event; /* unused */
 Region region;
{
 XtCallCallbacks(w, XtNexposeCallback, (XtPointer)region);
}

WindowClassRec windowClassRec = {

 ...

 /* expose */ Redisplay,

The "WindowWidget" will also declare three public procedures to return the draw-
ing colors and the font id, saving the application the effort of constructing an argu-
ment list for a call to XtGetValues :

Pixel WindowColor1(w)
 Widget w;
{
 return ((WindowWidget)w)->window.color_1;
}

Pixel WindowColor2(w)
 Widget w;
{
 return ((WindowWidget)w)->window.color_2;
}

Font WindowFont(w)
 Widget w;
{
 return ((WindowWidget)w)->window.font->fid;
}

The "WindowWidget" is now complete. The application can retrieve the two drawing
colors from the widget instance by calling either XtGetValues , or the WindowColor
functions. The actual window created for the "WindowWidget" is available by calling
the XtWindow function.

135

Chapter 8. Acknowledgments
Many thanks go to Ralph Swick (Project Athena / Digital) who has contributed much
time and effort to this widget set. Previous versions of the widget set are largely
due to his time and effort. Many of the improvements that I have been able to make
are because he provided a solid foundation to build upon. While much of the effort
has been Ralph's, many other people have contributed to the code.

Mark Ackerman (formerly Project Athena)
Donna Converse (MIT X Consortium)
Jim Fulton (formerly MIT X Consortium)
Loretta Guarino-Reid (Digital WSL)
Charles Haynes (Digital WSL)
Rich Hyde (Digital WSL)
Mary Larson (Digital UEG)
Joel McCormack (Digital WSL)
Ron Newman (formerly Project Athena)
Jeanne Rich (Digital WSL)
Terry Weissman (formerly Digital WSL)

While not much remains of the X10 toolkit, many of the ideas for this widget set
come from that original version. The design and implementation of the X10 toolkit
were done by:

Mike Gancarz (formerly Digital UEG)
Charles Haynes (Digital WSL)
Phil Karlton (formerly Digital WSL)
Kathleen Langone (Digital UEG)
Mary Larson (Digital UEG)
Ram Rao (Digital UEG)
Smokey Wallace (formerly Digital WSL)
Terry Weissman (formerly Digital WSL)

I have used the formatting ideas, and some of the words from previous versions of
this document. The X11R3 Athena widget document was written by:

Ralph R. Swick (Project Athena/ Digital)
Terry Weissman (formerly Digital WSL)
Al Mento (Digital UEG)

Putting this manual together was a major task in and of itself. I would like to thank
Ralph Swick, Donna Converse, and Jim Fulton for taking the time to help convert
my technical knowledge into legible text. A special thanks to Jean Diaz (O'Reilly
and Associates) for spending nearly a month with me working out all the annoying
little details.

Chris D. Peterson
MIT X Consortium 1989

The R5 edition of this document has been edited by the research staff of the MIT X
Consortium, with significant contributions by Jim Fulton (NCD).

Acknowledgments

136

Donna Converse
MIT X Consortium 1991

The R6 edition of this document has been edited to reflect changes brought about by
research staff of the Omron Corporation, with special recognition to Li Yuhong, Seiji
Kuwari, and Hiroshi Kuribayashi for the X11R5/contrib/lib/Xaw internationalization
that inspired this version.

Frank Sheeran
Omron Corporation 1994

	Athena Widget Set - C Language Interface
	Table of Contents
	Chapter 1. Athena Widgets and The Intrinsics
	Introduction to the X Toolkit
	Terminology
	Underlying Model
	Conventions Used in this Manual
	Format of the Widget Reference Chapters
	Input Focus

	Chapter 2. Using Widgets
	Using Widgets
	Setting the Locale
	Initializing the Toolkit
	Creating a Widget
	Common Resources
	Resource Conversions
	Cursor Conversion
	Pixel Conversion
	Bitmap Conversion

	Realizing a Widget
	Processing Events
	Standard Widget Manipulation Functions
	Mapping Widgets
	Destroying Widgets
	Retrieving Widget Resource Values
	Modifying Widget Resource Values

	Using the Client Callback Interface
	Programming Considerations
	Writing Applications
	Changing Resource Values
	Specifying Resources
	Creating Argument Lists

	Example Programs

	Chapter 3. Simple Widgets
	Command Widget
	Resources
	Command Actions

	Grip Widget
	Resources
	Grip Actions

	Label Widget
	Resources

	List Widget
	Resources
	List Actions
	List Callbacks
	Changing the List
	Highlighting an Item
	Unhighlighting an Item
	Retrieving the Currently Selected Item
	Restrictions

	Panner Widget
	Resources
	Panner Actions
	Panner Callbacks

	Repeater Widget
	Resources
	Repeater Actions

	Scrollbar Widget
	Resources
	Scrollbar Actions
	Scrollbar Callbacks
	Convenience Routines
	Setting Float Resources

	Simple Widget
	Resources

	StripChart Widget
	Resources
	Getting the StripChart Value

	Toggle Widget
	Resources
	Toggle Actions
	Toggle Actions
	Radio Groups
	Convenience Routines
	Changing the Toggle's Radio Group.

	Chapter 4. Menus
	Using the Menus
	Sme Object
	Resources
	Subclassing the Sme Object

	SmeBSB Object
	Resources

	SmeLine Object
	Resources

	Chapter 5. Text Widgets
	Text Widget for Users
	Default Key Bindings
	Search and Replace
	File Insertion
	Text Selections for Users

	Text Widget Actions
	Cursor Movement Actions\fP
	Delete Actions
	Selection Actions
	The New Line Actions
	Kill and Actions
	Miscellaneous Actions
	Text Selections for Application Programmers

	Default Translation Bindings
	Text Functions
	Selecting Text
	Unhighlighting Text
	Getting Current Text Selection
	Replacing Text
	Searching for Text
	Redisplaying Text
	Resources Convenience Routines

	Customizing the Text Widget
	Text Widget
	Resources

	TextSink Object
	Resources
	Subclassing the TextSink
	Displaying Text
	Displaying the Insert Point
	Clearing Portions of the Text window
	Finding a Text Position Given Pixel Values
	Finding the Distance Between two Text Positions
	Finding the Size of the Drawing area
	Setting the Tab Stops
	Getting the Insert Point's Size and Location

	TextSrc Object
	Resources
	Subclassing the TextSrc
	Reading Text.
	Replacing Text.
	Scanning the TextSrc
	Searching through a TextSrc
	Text Selections

	Ascii Sink Object and Multi Sink Object
	Resources

	Ascii Source Object and Multi Source Object
	Resources
	Convenience Routines
	Conserving Memory
	Saving Files
	Seeing if the Source has Changed

	Ascii Text Widget
	Resources

	Chapter 6. Composite and Constraint Widgets
	Box Widget
	Resources
	Layout Semantics

	Dialog Widget
	Resources
	Constraint Resources
	Layout Semantics
	Example
	Special Considerations

	Automatically Created Children.
	Convenience Routines

	Form Widget
	Resources
	Constraint Resources
	Layout Semantics
	Example

	Convenience Routines

	Paned Widget
	Using the Paned Widget
	Resources
	Constraint Resources
	Layout Semantics
	Resizing Panes from a Grip Action
	Resizing Panes after the Paned widget is resized.
	Managing Children and Geometry Management
	Special Considerations

	Grip Translations
	Convenience Routines

	Porthole Widget
	Resources
	Layout Semantics
	Porthole Callbacks

	Tree Widget
	Resources
	Constraint Resources
	Layout Semantics
	Convenience Routines

	Viewport Widget
	Resources
	Layout Semantics

	Chapter 7. Creating New Widgets (Subclassing)
	Public Header File
	Private Header File
	Widget Source File

	Chapter 8. Acknowledgments

