
The X Keyboard Extension:

Library Specification

Amber J. Benson
Gary Aitken

Erik Fortune, Silicon Graphics, Inc
Donna Converse, X Consortium, Inc

George Sachs, Hewlett-Packard Company
Will Walker, Digital Equipment Corporation

The X Keyboard Extension:: Library Specification
by Amber J. Benson, Gary Aitken, Erik Fortune, Donna Converse, George Sachs, and Will
Walker
X Version 11, Release 7.7
Copyright © 1995, 1996 X Consortium Inc., Silicon Graphics Inc., Hewlett-Packard Company,
Digital Equipment Corporation

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the names of the X Consortium, Silicon Graphics Inc., Hewlett-Packard Company,
and Digital Equipment Corporation shall not be used in advertising or otherwise to promote the sale, use or other
dealings in this Software without prior written authorization.

iii

Table of Contents
Acknowledgement .. x
1. Overview .. 1

Core X Protocol Support for Keyboards .. 1
Xkb Keyboard Extension Support for Keyboards ... 1
Xkb Extension Components ... 2

Groups and Shift Levels ... 3
Radio Groups .. 3

Client Types ... 4
Compatibility With the Core Protocol .. 4
Additional Protocol Errors ... 4
Extension Library Functions .. 4

Error Indications .. 5
2. Initialization and General Programming Information 6

Extension Header Files .. 6
Extension Name ... 6
Determining Library Compatibility .. 6
Initializing the Keyboard Extension ... 7
Disabling the Keyboard Extension ... 9
Protocol Errors ... 9
Display and Device Specifications in Function Calls 10

3. Data Structures ... 12
Allocating Xkb Data Structures ... 12
Adding Data and Editing Data Structures ... 12
Making Changes to the Server’s Keyboard Description 13
Tracking Keyboard Changes in the Server .. 14
Freeing Data Structures .. 14

4. Xkb Events .. 15
Xkb Event Types .. 15
Xkb Event Data Structures .. 16
Selecting Xkb Events ... 17

Event Masks ... 19
Unified Xkb Event Type ... 19

5. Keyboard State .. 21
Keyboard State Description ... 22
Changing the Keyboard State .. 24

Changing Modifiers .. 24
Changing Groups .. 25

Determining Keyboard State ... 26
Tracking Keyboard State ... 27

6. Complete Keyboard Description .. 30
The XkbDescRec Structure .. 30
Obtaining a Keyboard Description from the Server 31
Tracking Changes to the Keyboard Description in the Server 32
Allocating and Freeing a Keyboard Description .. 32

7. Virtual Modifiers ... 33
Virtual Modifier Names and Masks ... 33
Modifier Definitions ... 33
Binding Virtual Modifiers to Real Modifiers .. 34
Virtual Modifier Key Mapping ... 34

Inactive Modifier Sets .. 35
Conventions .. 35

The X Keyboard Extension:

iv

Example .. 36
8. Indicators .. 37

Indicator Names ... 37
Indicator Data Structures .. 37

XkbIndicatorRec ... 37
XkbIndicatorMapRec .. 38

Getting Information About Indicators .. 43
Getting Indicator State ... 44
Getting Indicator Information by Index ... 44
Getting Indicator Information by Name ... 44

Changing Indicator Maps and State .. 45
Effects of Explicit Changes on Indicators .. 46
Changing Indicator Maps by Index .. 46
Changing Indicator Maps by Name ... 47
The XkbIndicatorChangesRec Structure .. 47

Tracking Changes to Indicator State or Map .. 48
Allocating and Freeing Indicator Maps ... 50

9. Bells ... 51
Bell Names ... 51
Audible Bells .. 52
Bell Functions .. 52

Generating Named Bells .. 53
Generating Named Bell Events .. 54
Forcing a Server-Generated Bell .. 55

Detecting Bells ... 56
10. Keyboard Controls ... 57

Controls that Enable and Disable Other Controls 58
The EnabledControls Control ... 59
The AutoReset Control ... 59

Control for Bell Behavior ... 61
The AudibleBell Control ... 61

Controls for Repeat Key Behavior ... 61
The PerKeyRepeat Control ... 61
The RepeatKeys Control ... 61
The DetectableAutorepeat Control ... 62

Controls for Keyboard Overlays (Overlay1 and Overlay2 Controls) 63
Controls for Using the Mouse from the Keyboard 64

The MouseKeys Control ... 64
The MouseKeysAccel Control ... 64

Controls for Better Keyboard Access by Physically Impaired Persons 67
The AccessXKeys Control ... 68
The AccessXTimeout Control ... 68
The AccessXFeedback Control ... 69
AccessXNotify Events ... 70
StickyKeys, RepeatKeys, and MouseKeys Events 72
The SlowKeys Control .. 72
The BounceKeys Control .. 73
The StickyKeys Control .. 74

Controls for General Keyboard Mapping ... 75
The GroupsWrap Control ... 76
The IgnoreLockMods Control ... 76
The IgnoreGroupLock Control .. 77
The InternalMods Control .. 78

The XkbControlsRec Structure .. 78

The X Keyboard Extension:

v

.. 82
Querying Controls .. 85
Changing Controls ... 86

The XkbControlsChangesRec Structure ... 87
Tracking Changes to Keyboard Controls ... 88
Allocating and Freeing an XkbControlsRec ... 89
The Miscellaneous Per-client Controls .. 90

11. X Library Controls ... 91
Controls Affecting Keycode-to-String Translation 91

ForceLatin1Lookup ... 91
ConsumeLookupMods ... 91
AlwaysConsumeShiftAndLock ... 92

Controls Affecting Compose Processing .. 92
ConsumeKeysOnComposeFail ... 93
ComposeLED .. 93
BeepOnComposeFail ... 93

Controls Effecting Event Delivery ... 94
IgnoreNewKeyboards ... 94

Manipulating the Library Controls .. 94
Determining Which Library Controls are Implemented 94
Determining the State of the Library Controls 94
Changing the State of the Library Controls ... 95

12. Interpreting Key Events .. 96
Effects of Xkb on the Core X Library .. 96

Effects of Xkb on Event State .. 96
Effects of Xkb on MappingNotify Events ... 96
X Library Functions Affected by Xkb ... 97

Xkb Event and Keymap Functions ... 98
13. Keyboard Geometry ... 101

Shapes and Outlines .. 104
Sections .. 104
Rows and Keys ... 105
Doodads .. 106
Overlay Rows and Overlay Keys .. 107
Drawing a Keyboard Representation ... 107
Geometry Data Structures ... 107

DoodadRec Structures .. 113
Getting Keyboard Geometry From the Server ... 115
Using Keyboard Geometry ... 115
Adding Elements to a Keyboard Geometry .. 117
Allocating and Freeing Geometry Components ... 121

14. Xkb Keyboard Mapping ... 128
Notation and Terminology ... 128

Core Implementation .. 129
Xkb Implementation ... 129

Getting Map Components from the Server .. 130
Changing Map Components in the Server ... 132

The XkbMapChangesRec Structure ... 133
Tracking Changes to Map Components ... 135
Allocating and Freeing Client and Server Maps .. 136

Allocating an Empty Client Map .. 136
Freeing a Client Map ... 137
Allocating an Empty Server Map ... 138
Freeing a Server Map .. 138

The X Keyboard Extension:

vi

15. Xkb Client Keyboard Mapping .. 140
The XkbClientMapRec Structure ... 141
Key Types ... 142

The Canonical Key Types ... 145
Getting Key Types from the Server .. 147
Changing the Number of Levels in a Key Type 148
Copying Key Types ... 148

Key Symbol Map .. 149
Per-Key Key Type Indices ... 150
Per-Key Group Information .. 150
Key Width ... 151
Offset in to the Symbol Map .. 152
Getting the Symbol Map for Keys from the Server 153
Changing the Number of Groups and Types Bound to a Key 153
Changing the Number of Symbols Bound to a Key 155

The Per-Key Modifier Map ... 155
Getting the Per-Key Modifier Map from the Server 156

16. Xkb Server Keyboard Mapping ... 157
Key Actions .. 158

The XkbAction Structure .. 159
The XkbAnyAction Structure .. 160
Actions for Changing Modifiers’ State ... 161
Actions for Changing Group State ... 164
Actions for Moving the Pointer .. 166
Actions for Simulating Pointer Button Press and Release 168
Actions for Changing the Pointer Button Simulated 170
Actions for Locking Modifiers and Group .. 171
Actions for Changing the Active Screen .. 174
Actions for Changing Boolean Controls State 175
Actions for Generating Messages .. 177
Actions for Generating a Different Keycode 178
Actions for Generating DeviceButtonPress and DeviceButtonRe-
lease .. 180
Actions for Simulating Events from Device Valuators 182
Obtaining Key Actions for Keys from the Server 183
Changing the Number of Actions Bound to a Key 183

Key Behavior .. 184
Radio Groups .. 184
The XkbBehavior Structure .. 184
Obtaining Key Behaviors for Keys from the Server 185

Explicit Components—Avoiding Automatic Remapping by the Server 186
Obtaining Explicit Components for Keys from the Server 187

Virtual Modifier Mapping .. 188
Obtaining Virtual Modifier Bindings from the Server 189
Obtaining Per-Key Virtual Modifier Mappings from the Server 190

17. The Xkb Compatibility Map .. 191
The XkbCompatMap Structure .. 193

Xkb State to Core Protocol State Transformation 194
Core Keyboard Mapping to Xkb Keyboard Mapping Transformation
... 195
Xkb Keyboard Mapping to Core Keyboard Mapping Transformations
... 198

Getting Compatibility Map Components From the Server 199
Using the Compatibility Map ... 200

The X Keyboard Extension:

vii

Changing the Server’s Compatibility Map ... 202
Tracking Changes to the Compatibility Map ... 203
Allocating and Freeing the Compatibility Map .. 204

18. Symbolic Names .. 205
The XkbNamesRec Structure ... 205
Symbolic Names Masks ... 207
Getting Symbolic Names From the Server .. 208
Changing Symbolic Names on the Server ... 209

.. 209
Tracking Name Changes .. 211
Allocating and Freeing Symbolic Names ... 212

19. Replacing a Keyboard "On the Fly" .. 214
20. Server Database of Keyboard Components ... 217

Component Names ... 218
Listing the Known Keyboard Components ... 218
Component Hints ... 220
Building a Keyboard Description Using the Server Database 221

21. Attaching Xkb Actions to X Input Extension Devices 228
XkbDeviceInfoRec .. 229
Querying Xkb Features for Non-KeyClass Input Extension Devices 232
Allocating, Initializing, and Freeing the XkbDeviceInfoRec Structure 234
Setting Xkb Features for Non-KeyClass Input Extension Devices 236
XkbExtensionDeviceNotify Event ... 238
Tracking Changes to Extension Devices .. 239

22. Debugging Aids ... 242
Glossary ... 244

viii

List of Tables
1.1. Function Error Returns Due to Extension Problems 5
2.1. Xkb Protocol Errors ... 9
2.2. BadKeyboard Protocol Error resource_id Values ... 10
4.1. Xkb Event Types .. 16
4.2. XkbSelectEvents Mask Constants .. 19
5.1. Real Modifier Masks .. 25
5.2. Symbolic Group Names .. 26
5.3. XkbStateNotify Event Detail Masks ... 27
6.1. XkbDescRec Component References .. 31
6.2. Mask Bits for XkbDescRec ... 31
8.1. XkbIndicatorMapRec flags Field .. 39
8.2. XkbIndicatorMapRec which_groups and groups, Keyboard Drives Indica-
tor .. 40
8.3. XkbIndicatorMapRec which_groups and groups, Indicator Drives Key-
board .. 41
8.4. XkbIndicatorMapRec which_mods and mods, Keyboard Drives Indicator
.. 42
8.5. XkbIndicatorMapRec which_mods and mods, Indicator Drives Keyboard
.. 43
9.1. Predefined Bells ... 52
9.2. Bell Sounding and Bell Event Generating .. 53
10.1. Xkb Keyboard Controls .. 58
10.2. MouseKeysAccel Fields .. 65
10.3. AccessXFeedback Masks .. 70
10.4. AccessXNotify Events ... 71
10.5. AccessXNotify Event Details .. 72
10.6. Xkb Controls ... 79
10.7. Controls Mask Bits ... 82
10.8. GroupsWrap options (groups_wrap field) ... 83
10.9. Access X Enable/Disable Bits (ax_options field) ... 84
11.1. Library Control Masks ... 94
13.1. Doodad Types ... 106
14.1. Xkb Mapping Component Masks and Convenience Functions 131
14.2. XkbMapChangesRec Masks ... 134
14.3. XkbAllocClientMap Masks .. 137
14.4. XkbAllocServerMap Masks ... 138
15.1. Example Key Type .. 144
15.2. group_info Range Normalization .. 151
15.3. Group Index Constants ... 154
16.1. Action Types ... 161
16.2. Modifier Action Types .. 162
16.3. Modifier Action Flags ... 163
16.4. Group Action Types .. 165
16.5. Group Action Flags .. 166
16.6. Pointer Action Types .. 167
16.7. Pointer Button Action Types .. 169
16.8. Pointer Button Action Flags ... 170
16.9. Pointer Default Flags ... 170
16.10. ISO Action Flags when XkbSA_ISODfltIsGroup is Set 172
16.11. ISO Action Flags when XkbSA_ISODfltIsGroup is Not Set 173
16.12. ISO Action Affect Field Values ... 174

The X Keyboard Extension:

ix

16.13. Switch Screen Action Flags ... 175
16.14. Controls Action Types .. 176
16.15. Control Action Flags .. 176
16.16. Message Action Flags .. 177
16.17. Device Button Action Types ... 181
16.18. Device Button Action Flags .. 181
16.19. Device Valuator v<n>_what High Bits Values .. 182
16.20. Key Behaviors ... 185
16.21. Explicit Component Masks ... 187
17.1. Symbol Interpretation Match Criteria .. 197
17.2. Compatibility Map Component Masks ... 200
18.1. Symbolic Names Masks ... 208
18.2. XkbNameChanges Fields .. 210
19.1. XkbNewKeyboardNotifyEvent Details .. 216
20.1. Server Database Keyboard Components .. 217
20.2. XkbComponentNameRec Flags Bits ... 221
20.3. Want and Need Mask Bits and Required Names Components 223
20.4. XkbDescRec Components Returned for Values of Want & Needs 226
21.1. XkbDeviceInfoRec Mask Bits ... 231
22.1. Debug Control Masks ... 242

x

Acknowledgement
This document is the result of a great deal of hard work by a great many people.
Without Erik Fortune’s work as Architect of the X Keyboard Extension and the long-
time support of Silicon Graphics Inc. there would not be a keyboard extension.

We gratefully thank Will Walker and George Sachs for their help and expertise in
providing some of the content for this document, and Digital Equipment Corpora-
tion and Hewlett-Packard for allowing them to participate in this project, and we
are deeply indebted to IBM for providing the funding to complete this library spec-
ification.

Most of all, we thank Gary Aitken and Amber J. Benson for their long hours and
late nights as ultimate authors of this specification, and for serving as authors, doc-
ument editors, and XKB protocol and implementation reviewers. Their commitment
to accuracy and completeness, their attention to detail, their keen insight, and their
good natures when working under tremendous pressure are in some measure re-
sponsible not only for the quality of this document, but for the quality of the Key-
board extension itself.

Matt Landau

Manager, X Window System

X Consortium Inc.

1

Chapter 1. Overview
The X Keyboard Extension provides capabilities that are lacking or are cumbersome
in the core X protocol.

Core X Protocol Support for Keyboards
The core X protocol specifies the ways that the Shift, Control, and Lock modifiers
and the modifiers bound to the Mode_switch or Num_Lock keysyms interact to gen-
erate keysyms and characters. The core protocol also allows users to specify that a
key affects one or more modifiers. This behavior is simple and fairly flexible, but it
has a number of limitations that make it difficult or impossible to properly support
many common varieties of keyboard behavior. The limitations of core protocol sup-
port for keyboards include:

• Use of a single, uniform, four-symbol mapping for all keyboard keys makes it dif-
ficult to properly support keyboard overlays, PC-style break keys, or keyboards
that comply with ISO9995, or a host of other national and international standards.

• A second keyboard group may be specified using a modifier, but this has side
effects that wreak havoc with client grabs and X toolkit translations. Furthermore,
this approach limits the number of keyboard groups to two.

• Poorly specified locking key behavior requires X servers to look for a few "magic"
keysyms to determine that keys should lock when pressed. This leads to incom-
patibilities between X servers with no way for clients to detect implementation
differences.

• Poorly specified capitalization and control behavior requires modifications to X
library source code to support new character sets or locales and can lead to in-
compatibilities between system wide and X library capitalization behavior.

• Limited interactions between modifiers specified by the core protocol make many
common keyboard behaviors difficult or impossible to implement. For example,
there is no reliable way to indicate whether or not the shift modifier should "can-
cel" the lock modifier.

• The lack of any explicit descriptions for indicators, most modifiers, and other as-
pects of the keyboard appearance requires clients that wish to clearly describe
the keyboard to a user to resort to a mish-mash of prior knowledge and heuristics.

Xkb Keyboard Extension Support for Key-
boards

The X Keyboard Extension makes it possible to clearly and explicitly specify most
aspects of keyboard behavior on a per-key basis. It adds the notion of a keyboard
group to the global keyboard state and provides mechanisms to more closely track
the logical and physical state of the keyboard. For keyboard-control clients, Xkb
provides descriptions and symbolic names for many aspects of keyboard appearance
and behavior.

Overview

2

In addition, the X Keyboard Extension includes additional keyboard controls de-
signed to make keyboards more accessible to people with movement impairments.

Xkb Extension Components
The Xkb extension is composed of two parts: a server extension, and a client-side X
library extension. These consist of a loadable module that may be activated when
an X server is started and a modified version of Xlib. Both server and Xlib versions
must be at least X11 R6.

Figure 1.1 shows the overall structure of the Xkb extension:

Xkb-aware
User

Application

Xkb-capable
User

Application

Xkb-unaware
User

Application
Keyboard

Core Xlib

Server Database of
Keyboard Components

X Server

Xkb Server Extension

Client Map Server Map Compatibility Map

Controls Indicator Map Names Geometry
Xkb Modifications

to Core Xlib
functions

Xkb
Additions

to Xlib
(Xkb*

functions)

Core Xlib

Xkb Extension

Overall Xkb Structure

The server portion of the Xkb extension encompasses a database of named keyboard
components, in unspecified format, that may be used to configure a keyboard. In-
ternally, the server maintains a keyboard description that includes the keyboard
state and configuration (mapping). By "keyboard" we mean the logical keyboard

Overview

3

device, which includes not only the physical keys, but also potentially a set of up to
32 indicators (usually LEDs) and bells.

The keyboard description is a composite of several different data structures, each of
which may be manipulated separately. When manipulating the server components,
the design allows partial components to be transmitted between the server and a
client. The individual components are shown in Figure 1.1.

Client Map The key mapping information needed to convert arbitrary
keycodes to symbols.

Server Map The key mapping information categorizing keys by function-
ality (which keys are modifiers, how keys behave, and so on).

Controls Client configurable quantities effecting how the keyboard be-
haves, such as repeat behavior and modifications for people
with movement impairments.

Indicators The mapping of behavior to indicators.

Geometry A complete description of the physical keyboard layout, suf-
ficient to draw a representation of the keyboard.

Names A mapping of names to various aspects of the keyboard such
as individual virtual modifiers, indicators, and bells.

Compatibility Map The definition of how to map core protocol keyboard state to
Xkb keyboard state.

A client application interrogates and manipulates the keyboard by reading and writ-
ing portions of the server description for the keyboard. In a typical sequence a client
would fetch the current information it is interested in, modify it, and write it back.
If a client wishes to track some portion of the keyboard state, it typically maintains
a local copy of the portion of the server keyboard description dealing with the items
of interest and updates this local copy from events describing state transitions that
are sent by the server.

A client may request the server to reconfigure the keyboard either by sending ex-
plicit reconfiguration instructions to it, or by telling it to load a new configuration
from its database of named components. Partial reconfiguration and incremental
reconfiguration are both supported.

Groups and Shift Levels
The graphic characters or control functions that may be accessed by one key are
logically arranged in groups and levels. See section 14.1for a complete description
of groups and levels.

Radio Groups
A radio group is a set of keys whose behavior simulates a set of radio buttons. Once
a key in a radio group is pressed, it stays logically depressed until another key in the
group is pressed, at which point the previously depressed key is logically released.
Consequently, at most one key in a radio group can be logically depressed at one
time. A radio group is defined by a radio group index, an optional name, and by

Overview

4

assigning each key in the radio group XkbKB_RadioGroup behavior and the radio
group index.

Client Types
This specification differentiates between three different classes of client applica-
tions:

• Xkb-aware applications

These applications make specific use of Xkb functionality and APIs not present
in the core protocol.

• Xkb-capable applications

These applications make no use of Xkb extended functionality and Application
Programming Interfaces (APIs) directly. However, they are linked with a version
of Xlib that includes Xkb and indirectly benefit from some of Xkb’s features.

• Xkb-unaware applications

These applications make no use of Xkb extended functionality or APIs and require
Xkb’s functionality to be mapped to core Xlib functionality to operate properly.

Compatibility With the Core Protocol
Because the Xkb extension allows a keyboard to be configured in ways not foreseen
by the core protocol, and because Xkb-unaware clients are allowed to connect to
a server using the Xkb extension, there must be a means of converting between
the Xkb domain and the core protocol. The Xkb server extension maintains a com-
patibility map as part of its keyboard description; this map controls the conversion
of Xkb generated events to core protocol events and the results of core protocol
requests to appropriate Xkb state and configuration.

Additional Protocol Errors
The Xkb extension adds a single protocol error, BadKeyboard , to the core protocol
error set. See section 2.6 for a discussion of the BadKeyboard protocol error.

Extension Library Functions
The X Keyboard Extension replaces the core protocol definition of a keyboard with a
more comprehensive one. The X Keyboard Extension library interfaces are included
in Xlib.1

Xlib detects the presence of the X Keyboard server extension and uses Xkb protocol
to replace some standard X library functions related to the keyboard. If an applica-
tion uses only standard X library functions to examine the keyboard or process key
events, it should not need to be modified when linked with an X library containing

1 X11R6.1 is the first release by the X Consortium, Inc.,that includes the X Keyboard Extension in Xlib. X11R6
included work in progress on this extension as nonstandard additions to the library.

Overview

5

the X keyboard extension. All of the keyboard-related X library functions have been
modified to automatically use Xkb protocol when the server extension is present.

The Xkb extension adds library interfaces to allow a client application to directly
manipulate the new capabilities.

Error Indications
Xkb functions that communicate with the X server check to be sure the Xkb exten-
sion has been properly initialized prior to doing any other operations. If the exten-
sion has not been properly initialized or the application, library, and server versions
are incompatible, these functions return an error indication as shown in Table 1.1.
Because of this test, BadAccess and BadMatch (due to incompatible versions) pro-
tocol errors should normally not be generated.

Table 1.1. Function Error Returns Due to Extension Problems

Functions return type Return value
pointer to a structure NULL
Bool False
Status BadAccess

Many Xkb functions do not actually communicate with the X server; they only re-
quire processing in the client-side portion of the library. Furthermore, some appli-
cations may never actually need to communicate with the server; they simply use
the Xkb library capabilities. The functions that do not communicate with the server
return either a pointer to a structure, a Bool, or a Status. These functions check that
the application has queried the Xkb library version and return the values shown in
Table 1.1 if it has not.

6

Chapter 2. Initialization and General
Programming Information
Extension Header Files

The following include files are part of the Xkb standard:

• <X11/XKBlib.h>

XKBlib.h is the main header file for Xkb; it declares constants, types, and func-
tions.

• <X11/extensions/XKBstr.h>

XKBstr.h declares types and constants for Xkb. It is included automatically from
<X11/XKBlib.h> ; you should never need to reference it directly in your applica-
tion code.

• <X11/extensions/XKB.h>

XKB.h defines constants for Xkb. It is included automatically from <X11/
XKBstr.h> ; you should never need to reference it directly in your application code.

• <X11/extensions/XKBgeom.h>

XKBgeom.h declares types, symbolic constants, and functions for manipulating
keyboard geometry descriptions.

Extension Name
The name of the Xkb extension is given in <X11/extensions/Xkb.h>:

#define XkbName "XKEYBOARD"

Most extensions to the X protocol are initialized by calling XInitExtension and pass-
ing the extension name. However, as explained in section 2.4, Xkb requires a more
complex initialization sequence, and a client program should not call XInitExten-
sion directly.

Determining Library Compatibility
If an application is dynamically linked, both the X server and the client-side X library
must contain the Xkb extension in order for the client to use the Xkb extension
capabilities. Therefore a dynamically linked application must check both the library
and the server for compatibility before using Xkb function calls. A properly written
program must check for compatibility between the version of the Xkb library that is
dynamically loaded and the one used when the application was built. It must then
check the server version for compatibility with the version of Xkb in the library.

If your application is statically linked, you must still check for server compatibili-
ty and may check library compatibility. (It is possible to compile against one set

Initialization and General
Programming Information

7

of header files and link against a different, incompatible, version of the library, al-
though this should not normally occur.)

To determine the compatibility of a library at runtime, call XkbLibraryVersion.

Bool XkbLibraryVersion (lib_major_in_out , lib_minor_in_out)
int * lib_major_in_out; /* specifies and returns the major Xkb library version. */
int * lib_minor_in_out; /* specifies and returns the minor Xkb library version. */

Pass the symbolic value XkbMajorVersion in lib_major_in_out and XkbMinorVer-
sion in lib_minor_in_out . These arguments represent the version of the library
used at compile time. The XkbLibraryVersion function backfills the major and
minor version numbers of the library used at run time in lib_major_in_out and
lib_minor_in_out . If the versions of the compile time and run time libraries are com-
patible, XkbLibraryVersion returns True , otherwise, it returns False.

In addition, in order to use the Xkb extension, you must ensure that the extension
is present in the server and that the server supports the version of the extension
expected by the client. Use XkbQueryExtension to do this, as described in the next
section.

Initializing the Keyboard Extension
Call XkbQueryExtension to check for the presence and compatibility of the exten-
sion in the server and to initialize the extension. Because of potential version mis-
matches, you cannot use the generic extension mechanism functions (XQueryEx-
tension and XInitExtension) for checking for the presence of, and initializing the
Xkb extension.

You must call XkbQueryExtension or XkbOpenDisplay before using any other Xkb
library interfaces, unless such usage is explicitly allowed in the interface description
in this document. The exceptions are: XkbIgnoreExtension , XkbLibraryVersion ,
and a handful of audible-bell functions. You should not use any other Xkb functions
if the extension is not present or is uninitialized. In general, calls to Xkb library
functions made prior to initializing the Xkb extension cause BadAccess protocol
errors.

XkbQueryExtension both determines whether a compatible Xkb extension is present
in the X server and initializes the extension when it is present.

Bool XkbQueryExtension (dpy, opcode_rtrn, event_rtrn, error_rtrn,
major_in_out, minor_in_out)
Display * dpy; /* connection to the X server */
int * opcode_rtrn ; /* backfilled with the major extension opcode */
int * event_rtrn ; /* backfilled with the extension base event code */
int * error_rtrn ; /* backfilled with the extension base error code */
int * major_in_out ; /* compile time lib major version in, server major version out
*/
int * minor_in_out; /* compile time lib min version in, server minor version out */

Initialization and General
Programming Information

8

The XkbQueryExtension function determines whether a compatible version of the
X Keyboard Extension is present in the server. If a compatible extension is present,
XkbQueryExtension returns True ; otherwise, it returns False .

If a compatible version of Xkb is present, XkbQueryExtension initializes the exten-
sion. It backfills the major opcode for the keyboard extension in opcode_rtrn , the
base event code in event_rtrn , the base error code in error_rtrn , and the major
and minor version numbers of the extension in major_in_out and minor_in_out .
The major opcode is reported in the req_major fields of some Xkb events. For a
discussion of the base event code, see section 4.1.

As a convenience, you can use the function XkbOpenDisplay to perform these three
tasks at once: open a connection to an X server, check for a compatible version of the
Xkb extension in both the library and the server, and initialize the extension for use.

Display * XkbOpenDisplay (display_name, event_rtrn, error_rtrn, major_in_out,
minor_in_out, reason_rtrn)
char * display_name ; /* hardware display name, which determines the display
and communications domain to be used */
int * event_rtrn ; /* backfilled with the extension base event code */
int * error_rtrn ; /* backfilled with the extension base error code */
int * major_in_out ; /* compile time lib major version in, server major version out
*/
int * minor_in_out ; /* compile time lib minor version in, server minor version out
*/
int * reason_rtrn ; /* backfilled with a status code */

XkbOpenDisplay is a convenience function that opens an X display connection and
initializes the X keyboard extension. In all cases, upon return reason_rtrn con-
tains a status value indicating success or the type of failure. If major_in_out and
minor_in_out are not NULL , XkbOpenDisplay first calls XkbLibraryVersion to de-
termine whether the client library is compatible, passing it the values pointed to
by major_in_out and minor_in_out . If the library is incompatible, XkbOpenDis-
play backfills major_in_out and minor_in_out with the major and minor extension
versions of the library being used and returns NULL . If the library is compatible,
XkbOpenDisplay next calls XOpenDisplay with the display_name . If this fails,
the function returns NULL . If successful, XkbOpenDisplay calls XkbQueryEx-
tension and backfills the major and minor Xkb server extension version numbers
in major_in_out and minor_in_out . If the server extension version is not compati-
ble with the library extension version or if the server extension is not present, Xk-
bOpenDisplay closes the display and returns NULL . When successful, the function
returns the display connection .

The possible values for reason_rtrn are:

• XkbOD_BadLibraryVersion indicates XkbLibraryVersion returned False.

• XkbOD_ConnectionRefused indicates the display could not be opened.

• XkbOD_BadServerVersion indicates the library and the server have incompatible
extension versions.

• XkbOD_NonXkbServer indicates the extension is not present in the X server.

• XkbOD_Success indicates that the function succeeded.

Initialization and General
Programming Information

9

Disabling the Keyboard Extension
If a server supports the Xkb extension, the X library normally implements preXkb
keyboard functions using the Xkb keyboard description and state. The server Xkb
keyboard state may differ from the preXkb keyboard state. This difference does not
affect most clients, but there are exceptions. To allow these clients to work properly,
you may instruct the extension not to use Xkb functionality.

Call XkbIgnoreExtension to prevent core X library keyboard functions from using
the X Keyboard Extension. You must call XkbIgnoreExtension before you open a
server connection; Xkb does not provide a way to enable or disable use of the ex-
tension once a connection is established.

Bool XkbIgnoreExtension (ignore)
Bool ignore ; /* True means ignore the extension */

XkbIgnoreExtension tells the X library whether to use the X Keyboard Extension
on any subsequently opened X display connections. If ignore is True , the library
does not initialize the Xkb extension when it opens a new display. This forces the X
server to use compatibility mode and communicate with the client using only core
protocol requests and events. If ignore is False , the library treats subsequent calls
to XOpenDisplay normally and uses Xkb extension requests, events, and state. Do
not explicitly use Xkb on a connection for which it is disabled. XkbIgnoreExtension
returns False if it was unable to apply the ignore request.

Protocol Errors
Many of the Xkb extension library functions described in this document can cause
the X server to report an error, referred to in this document as a BadXxx protocol
error, where Xxx is some name. These errors are fielded in the normal manner, by
the default Xlib error handler or one replacing it. Note that X protocol errors are not
necessarily reported immediately because of the buffering of X protocol requests
in Xlib and the server.

Table 2.1 lists the protocol errors that can be generated, and their causes.

Table 2.1. Xkb Protocol Errors
Error Cause
BadAccess The Xkb extension has not been properly initialized
BadKeyboard The device specified was not a valid core or input extension

device
BadImplementation Invalid reply from server
BadAlloc Unable to allocate storage
BadMatch A compatible version of Xkb was not available in the server

or an argument has correct type and range, but is otherwise
invalid

BadValue An argument is out of range
BadAtom A name is neither a valid Atom or None
BadDevice Device, Feedback Class, or Feedback ID invalid

Initialization and General
Programming Information

10

The Xkb extension adds a single protocol error, BadKeyboard , to the core protocol
error set. This error code will be reported as the error_rtrn when XkbQueryExten-
sion is called. When a BadKeyboard error is reported in an XErrorEvent , additional
information is reported in the resource_id field. The most significant byte of the
resource_id is a further refinement of the error cause, as defined in Table 2.2. The
least significant byte will contain the device, class, or feedback ID as indicated in
the table.

Table 2.2. BadKeyboard Protocol Error resource_id Values
high-order byte value meaning low-order byte
XkbErr_BadDevice 0xff device not found device ID
XkbErr_BadClass 0xfe device found, but it is of the

wrong class
class ID

XkbErr_BadId 0xfd device found, class ok, but de-
vice does not contain a feed-
back with the indicated ID

feedback ID

Display and Device Specifications in Function
Calls

Where a connection to the server is passed as an argument (Display*) and an Xkb-
DescPtr is also passed as an argument, the Display* argument must match the dpy
field of the XkbDescRec pointed to by the XkbDescPtr argument, or else the dpy
field of the XkbDescRec must be NULL . If they don’t match or the dpy field is
not NULL , a BadMatch error is returned (either in the return value or a backfilled
Status variable). Upon successful return, the dpy field of the XkbDescRec always
contains the Display* value passed in.

The Xkb extension can communicate with the X input extension if it is present.
Consequently, there can potentially be more than one input device connected to the
server. Most Xkb library calls that require communicating with the server involve
both a server connection (Display * dpy) and a device identifier (unsigned int
device_spec). In some cases, the device identifier is implicit and is taken as the
device_spec field of an XkbDescRec structure passed as an argument.

The device identifier can specify any X input extension device with a KeyClass com-
ponent, or it can specify the constant, XkbUseCoreKbd . The use of XkbUseCoreKbd
allows applications to indicate the core keyboard without having to determine its
device identifier.

Where an Xkb device identifier is passed as an argument and an XkbDescPtr is also
passed as an argument, if either the argument or the XkbDescRec device_spec
field is XkbUseCoreKbd , and if the function returns successfully, the XkbDescPtr
device_spec field will have been converted from XkbUseCoreKbd to a real Xkb de-
vice ID. If the function does not complete successfully, the device_spec field remains
unchanged. Subsequently, the device id argument must match the device_spec field
of the XkbDescPtr argument. If they don’t match, a BadMatch error is returned
(either in the return value or a backfilled Status variable).

When the Xkb extension in the server hands an application a device identifier to use
for the keyboard, that ID is the input extension identifier for the device if the server

Initialization and General
Programming Information

11

supports the X Input Extension. If the server does not support the input extension,
the meaning of the identifier is undefined — the only guarantee is that when you
use XkbUseCoreKbd , XkbUseCoreKbd will work and the identifier returned by the
server will refer to the core keyboard device.

12

Chapter 3. Data Structures
An Xkb keyboard description consists of a variety of data structures, each of which
describes some aspect of the keyboard. Although each data structure has its own pe-
culiarities, there are a number of features common to nearly all Xkb structures. This
chapter describes these common features and techniques for manipulating them.

Many Xkb data structures are interdependent; changing a field in one might require
changes to others. As an additional complication, some Xkb library functions allo-
cate related components as a group to reduce fragmentation and allocator over-
head. In these cases, simply allocating and freeing fields of Xkb structures might
corrupt program memory. Creating and destroying such structures or keeping them
properly synchronized during editing is complicated and error prone.

Xkb provides functions and macros to allocate and free all major data structures.
You should use them instead of allocating and freeing the structures yourself.

Allocating Xkb Data Structures
Xkb provides functions, known as allocators, to create and initialize Xkb data struc-
tures. In most situations, the Xkb functions that read a keyboard description from
the server call these allocators automatically. As a result, you will seldom have to
directly allocate or initialize Xkb data structures.

However, if you need to enlarge an existing structure or construct a keyboard de-
finition from scratch, you may need to allocate and initialize Xkb data structures
directly. Each major Xkb data structure has its own unique allocator. The alloca-
tor functions share common features: allocator functions for structures with option-
al components take as an input argument a mask of subcomponents to be allocat-
ed. Allocators for data structures containing variable-length data take an argument
specifying the initial length of the data.

You may call an allocator to change the size of the space allocated for variable-length
data. When you call an allocator with an existing data structure as a parameter,
the allocator does not change the data in any of the fields, with one exception:
variable-length data might be moved. The allocator resizes the allocated memory if
the current size is too small. This normally involves allocating new memory, copying
existing data to the newly allocated memory, and freeing the original memory. This
possible reallocation is important to note because local variables pointing into Xkb
data structures might be invalidated by calls to allocator functions.

Adding Data and Editing Data Structures
You should edit most data structures via the Xkb-supplied helper functions and
macros, although a few data structures can be edited directly. The helper functions
and macros make sure everything is initialized and interdependent values are prop-
erly updated for those Xkb structures that have interdependencies. As a general
rule, if there is a helper function or macro to edit the data structure, use it. For
example, increasing the width of a type requires you to resize every key that uses
that type. This is complicated and ugly, which is why there’s an XkbResizeKeyType
function.

Data Structures

13

Many Xkb data structures have arrays whose size is reported by two fields. The
first field, whose name is usually prefixed by sz_ , represents the total number of
elements that can be stored in the array. The second field, whose name is usually
prefixed by num_ , specifies the number of elements currently stored there. These
arrays typically represent data whose total size cannot always be determined when
the array is created. In these instances, the usual way to allocate space and add
data is as follows:

• Call the allocator function with some arbitrary size, as a hint.

• For those arrays that have an Xkb...Add... function, call it each time you want to
add new data to the array. The function expands the array if necessary.

For example, call:

XkbAllocGeomShapes(geom,4)

to say "I’ll need space for four new shapes in this geometry." This makes sure that
sz_shapes - num_shapes >= 4, and resizes the shapes array if it isn’t. If this function
succeeds, you are guaranteed to have space for the number of shapes you need.

When you call an editing function for a structure, you do not need to check for
space, because the function automatically checks the sz_ and num_ fields of the
array, resizes the array if necessary, adds the entry to the array, and then updates
the num_ field.

Making Changes to the Server’s Keyboard De-
scription

In Xkb, as in the core protocol, the client and server have independent copies of the
data structures that describe the keyboard. The recommended way to change some
aspect of the keyboard mapping in the X server is to edit a local copy of the Xkb
keyboard description and then send only the changes to the X server. This method
helps eliminate the need to transfer the entire keyboard description or even an
entire data structure for only minor changes.

To help you keep track of the changes you make to a local copy of the keyboard
description, Xkb provides separate special changes data structures for each major
Xkb data structure. These data structures do not contain the actual changed values:
they only indicate the changes that have been made to the structures that actually
describe the keyboard.

When you wish to change the keyboard description in the server, you first modify
a local copy of the keyboard description and then flag the modifications in an ap-
propriate changes data structure. When you finish editing the local copy of the key-
board description, you pass your modified version of the keyboard description and
the modified changes data structure to an Xkb function. This function uses the mod-
ified keyboard description and changes structure to pass only the changed informa-
tion to the server. Note that modifying the keyboard description but not setting the
appropriate flags in the changes data structure causes indeterminate behavior.

Data Structures

14

Tracking Keyboard Changes in the Server
The server reports all changes in its keyboard description to any interested clients
via special Xkb events. Just as clients use special changes data structures to change
the keyboard description in the server, the server uses special changes data struc-
tures to tell a client what changed in the server’s keyboard description.

Unlike clients, however, the server does not always pass the new values when it
reports changes to its copy of the keyboard description. Instead, the server only
passes a changes data structure when it reports changes to its keyboard description.
This is done for efficiency reasons — some clients do not always need to update
their copy of the keyboard description with every report from the server.

When your client application receives a report from the server indicating the key-
board description has changed, you can determine the set of changes by passing
the event to an Xkb function that "notes" event information in the corresponding
changes data structure. These "note changes" functions are defined for all major
Xkb components, and their names have the form XkbNote{Component}Changes ,
where Component is the name of a major Xkb component such as Map or Names .
When you want to copy these changes from the server into a local copy of the key-
board description, use the corresponding XkbGet{Component}Changes function
, passing it the changes structure. The function then retrieves only the changed
structures from the server and copies the modified pieces into the local keyboard
description.

Freeing Data Structures
For the same reasons you should not directly use malloc to allocate Xkb data struc-
tures, you should not free Xkb data structures or components directly using free or
Xfree . Xkb provides functions to free the various data structures and their compo-
nents. Always use the free functions supplied by Xkb. There is no guarantee that
any particular field can be safely freed by free or Xfree .

15

Chapter 4. Xkb Events
The primary way the X server communicates with clients is by sending X events to
them. Some events are sent to all clients, while others are sent only to clients that
have requested them. Some of the events that can be requested are associated with
a particular window and are only sent to those clients who have both requested the
event and specified the window in which the event occurred.

The Xkb extension uses events to communicate the keyboard status to interested
clients. These events are not associated with a particular window. Instead, all Xkb
keyboard status events are reported to all interested clients, regardless of which
window currently has the keyboard focus and regardless of the grab state of the
keyboard.1

The X server reports the events defined by the Xkb extension to your client applica-
tion only if you have requested them. You may request Xkb events by calling either
XkbSelectEvents or XkbSelectEventDetails . XkbSelectEvents requests Xkb events
by their event type and causes them to be reported to your client application under
all circumstances. You can specify a finer granularity for event reporting by using
XkbSelectEventDetails ; in this case events are reported only when the specific de-
tail conditions you specify have been met.

Xkb Event Types
The Xkb Extension adds new event types to the X protocol definition. An Xkb event
type is defined by two fields in the X event data structure. One is the type field,
containing the base event code. This base event code is a value the X server assigns
to each X extension at runtime and thatidentifies the extension that generated the
event; thus, the event code in the type field identifies the event as an Xkb extension
event, rather than an event from another extension or a core X protocol event. You
can obtain the base event code via a call to XkbQueryExtension or XkbOpenDisplay
. The second field is the Xkb event type, which contains a value uniquely identifying
each different Xkb event type. Possible values are defined by constants declared in
the header file <X11/extensions/Xkb.h>.

Table 4.1 lists the categories of events defined by Xkb and their associated event
types, as defined in Xkb.h . Each event is described in more detail in the section
referenced for that event.

1The one exception to this rule is the XkbExtensionDeviceNotify event report that is sent when a client attempts to
use an unsupported feature of an X Input Extension device (see section 21.4).

Xkb Events

16

Table 4.1. Xkb Event Types

Event Type Conditions Generating Event Section Page
XkbNewKeyboardNotify Keyboard geometry; keycode range

change
19 187

XkbMapNotify Keyboard mapping change 14.4 122
XkbStateNotify Keyboard state change 5.4 25
XkbControlsNotify Keyboard controls state change 10.11 79
XkbIndicatorStateNotify Keyboard indicators state change 8.5 45
XkbIndicatorMapNotify Keyboard indicators map change 8.5 45
XkbNamesNotify Keyboard name change 18.5 185
XkbCompatMapNotify Keyboard compatibility map

change
17.5 178

XkbBellNotify Keyboard bell generated 9.4 52
XkbActionMessage Keyboard action message 16.1.11 155
XkbAccessXNotify AccessX state change 10.6.4 65
XkbExtensionDeviceNotify Extension device change 21.6 207

Xkb Event Data Structures
Xkb reports each event it generates in a unique structure holding the data values
needed to describe the conditions the event is reporting. However, all Xkb events
have certain things in common. These common features are contained in the same
fields at the beginning of all Xkb event structures and are described in the Xk-
bAnyEvent structure:

typedef struct {
 int type; /* Xkb extension base event code */
 unsigned long serial; /* X server serial number for event */
 Bool send_event; /* True => synthetically generated */
 Display * display; /* server connection where event
generated */
 Time time; /* server time when event generated */
 int xkb_type; /* Xkb minor event code */
 unsigned int device; /* Xkb device ID, will not be
 XkbUseCoreKbd */
} XkbAnyEvent
;

For any Xkb event, the type field is set to the base event code for the Xkb extension,
assigned by the server to all Xkb extension events. The serial , send_event , and
display fields are as described for all X11 events. The time field is set to the time
when the event was generated and is expressed in milliseconds. The xkb_type field
contains the minor extension event code, which is the extension event type, and
is one of the values listed in Table 4.1. The device field contains the keyboard
device identifier associated with the event. This is never XkbUseCoreKbd , even
if the request that generated the event specified a device of XkbUseCoreKbd . If
the request that generated the event specified XkbUseCoreKbd , device contains

Xkb Events

17

a value assigned by the server to specify the core keyboard. If the request that
generated the event specified an X input extension device, device contains that
same identifier.

Other data fields specific to individual Xkb events are described in subsequent chap-
ters where the events are described.

Selecting Xkb Events
Xkb events are selected using an event mask, much the same as normal core X
events are selected. However, unlike selecting core X events, where you must spec-
ify the selection status (on or off) for all possible event types whenever you wish
to change the selection criteria for any one event, Xkb allows you to restrict the
specification to only the event types you wish to change. This means that you do not
need to remember the event selection values for all possible types each time you
want to change one of them.

Many Xkb event types are generated under several different circumstances. When
selecting to receive an Xkb event, you may specify either that you want it delivered
under all circumstances, or that you want it delivered only for a subset of the pos-
sible circumstances.

You can also deselect an event type that was previously selected for, using the same
granularity.

Xkb provides two functions to select and deselect delivery of Xkb events. XkbS-
electEvents allows you to select or deselect delivery of more than one Xkb event
type at once. Events selected using XkbSelectEvents are delivered to your program
under all circumstances that generate the events. To restrict delivery of an event to
a subset of the conditions under which it occurs, use XkbSelectEventDetails . Xk-
bSelectEventDetails only allows you to change the selection conditions for a single
event at a time, but it provides a means of fine-tuning the conditions under which
the event is delivered.

To select and / or deselect for delivery of one or more Xkb events and have them
delivered under all conditions, use XkbSelectEvents .

Bool XkbSelectEvents (display, device_spec, bits_to_change, values_for_bits)
Display * display ; /* connection to the X server */
unsigned int device_spec ; /* device ID, or XkbUseCoreKbd */
unsigned long int bits_to_change; /* determines events to be selected / deselect-
ed */
unsigned long int values_for_bits ; /* 1=>select, 0->deselect; for events in
bits_to_change */

This request changes the Xkb event selection mask for the keyboard specified by
device_spec .

Each Xkb event that can be selected is represented by a bit in the bits_to_change
and values_for_bits masks. Only the event selection bits specified by the
bits_to_change parameter are affected; any unspecified bits are left unchanged. To
turn on event selection for an event, set the bit for the event in the bits_to_change
parameter and set the corresponding bit in the values_for_bits parameter. To turn

Xkb Events

18

off event selection for an event, set the bit for the event in the bits_to_change pa-
rameter and do not set the corresponding bit in the values_for_bits parameter. The
valid values for both of these parameters are an inclusive bitwise OR of the masks
shown in Table 4.2. There is no interface to return your client’s current event selec-
tion mask. Clients cannot set other clients’ event selection masks.

If a bit is not set in the bits_to_change parameter, but the corresponding bit is set in
the values_for_bits parameter, a BadMatch protocol error results. If an undefined
bit is set in either the bits_to_change or the values_for_bits parameter, a BadValue
protocol error results.

All event selection bits are initially zero for clients using the Xkb extension. Once
you set some bits, they remain set for your client until you clear them via another
call to XkbSelectEvents .

XkbSelectEvents returns False if the Xkb extension has not been initilialized and
True otherwise.

To select or deselect for a specific Xkb event and optionally place conditions on
when events of that type are reported to your client, use XkbSelectEventDetails .
This allows you to exercise a finer granularity of control over delivery of Xkb events
with XkbSelectEvents .

Bool XkbSelectEventDetails (display, device_spec, event_type, bits_to_change ,
values_for_bits)
Display * display ; /* connection to the X server */
unsigned int device_spec ; /* device ID, or XkbUseCoreKbd */
unsigned int event_type ; /* Xkb event type of interest */
unsigned long int bits_to_change ; /* event selection details */
unsigned long int values_for_bits ; /* values for bits selected by bits_to_change
*/

While XkbSelectEvents allows multiple events to be selected, XkbSelectEventDe-
tails changes the selection criteria for a single type of Xkb event. The interpreta-
tion of the bits_to_change and values_for_bits masks depends on the event type
in question.

XkbSelectEventDetails changes the Xkb event selection mask for the keyboard spec-
ified by device_spec and the Xkb event specified by event_type . To turn on event
selection for an event detail, set the bit for the detail in the bits_to_change para-
meter and set the corresponding bit in the values_for_bits parameter. To turn off
event detail selection for a detail, set the bit for the detail in the bits_to_change
parameter and do not set the corresponding bit in the values_for_bits parameter.

If an invalid event type is specified, a BadValue protocol error results. If a bit is
not set in the bits_to_change parameter, but the corresponding bit is set in the
values_for_bits parameter, a BadMatch protocol error results. If an undefined bit
is set in either the bits_to_change or the values_for_bits parameter, a BadValue
protocol error results.

For each type of Xkb event, the legal event details that you can specify in the Xk-
bSelectEventDetails request are listed in the chapters that describe each event in
detail.

Xkb Events

19

Event Masks
The X server reports the events defined by Xkb to your client application only if
you have requested them via a call to XkbSelectEvents or XkbSelectEventDetails
. Specify the event types in which you are interested in a mask, as described in
section 4.3.

Table 4.2 lists the event mask constants that can be specified with the XkbS-
electEvents request and the circumstances in which the mask should be specified.

Table 4.2. XkbSelectEvents Mask Constants

Event Mask Value Notification Wanted
XkbNewKeyboardNotifyMask (1L<<0) Keyboard geometry change
XkbMapNotifyMask (1L<<1) Keyboard mapping change
XkbStateNotifyMask (1L<<2) Keyboard state change
XkbControlsNotifyMask (1L<<3) Keyboard control change
XkbIndicatorStateNotifyMask (1L<<4) Keyboard indicator state

change
XkbIndicatorMapNotifyMask (1L<<5) Keyboard indicator map change
XkbNamesNotifyMask (1L<<6) Keyboard name change
XkbCompatMapNotifyMask (1L<<7) Keyboard compat map change
XkbBellNotifyMask (1L<<8) Bell
XkbActionMessageMask (1L<<9) Action message
XkbAccessXNotifyMask (1L<<10) AccessX features
XkbExtensionDeviceNotifyMask (1L<<11) Extension device
XkbAllEventsMask (0xFFF) All Xkb events

Unified Xkb Event Type
The XkbEvent structure is a union of the individual structures declared for each
Xkb event type and for the core protocol XEvent type. Given an XkbEvent structure,
you may use the type field to determine if the event is an Xkb event (type equals
the Xkb base event code; see section 2.4). If the event is an Xkb event, you may
then use the any.xkb_type field to determine the type of Xkb event and thereafter
access the event-dependent components using the union member corresponding to
the particular Xkb event type.

typedef union _XkbEvent {
 int type;
 XkbAnyEvent any;
 XkbStateNotifyEvent state;
 XkbMapNotifyEvent map;
 XkbControlsNotifyEvent ctrls;
 XkbIndicatorNotifyEvent indicators;
 XkbBellNotifyEvent bell;
 XkbAccessXNotifyEvent accessx;

Xkb Events

20

 XkbNamesNotifyEvent names;
 XkbCompatMapNotifyEvent compat;
 XkbActionMessageEvent message;
 XkbExtensionDeviceNotifyEvent device;
 XkbNewKeyboardNotifyEvent new_kbd;
 XEvent core;
} XkbEvent;

This unified Xkb event type includes a normal XEvent as used by the core protocol,
so it is straightforward for applications that use Xkb events to call the X library
event functions without having to cast every reference. For example, to get the next
event, you can simply declare a variable of type XkbEvent and call:

XNextEvent(dpy,&xkbev.core);

21

Chapter 5. Keyboard State
Keyboard state encompasses all of the transitory information necessary to map a
physical key press or release to an appropriate event. The Xkb keyboard state con-
sists of primitive components and additional derived components that are main-
tained for efficiency reasons. Figure 5.1 shows the components of Xkb keyboard
state and their relationships.

Xkb State

Base Modifiers

Base Group

Locked Modifiers

Locked Group

Latched Modifiers

Latched Group

Core Pointer Buttons

Server Internal Modifiers

IgnoreLock Modifiers

IgnoreGroupLock Compatibility Map

Effective Group

Effective Modifiers

Compatibility State

Compatibility Lookup State

Compatibility Grab State

Lookup State

Grab State

Xkb State

Keyboard State

22

Keyboard State Description
The Xkb keyboard state is comprised of the state of all keyboard modifiers, the
keyboard group, and the state of the pointer buttons. These are grouped into the
following components:

• The locked group and locked modifiers

• The latched group and latched modifiers

• The base group and base modifiers

• The effective group and effective modifiers

• The state of the core pointer buttons

The modifiers are Shift , Lock , Control , and Mod1 - Mod5 , as defined by the
core protocol. A modifier can be thought of as a toggle that is either set or unset.
All modifiers are initially unset. When a modifier is locked, it is set and remains set
for all future key events, until it is explicitly unset. A latched modifier is set, but
automatically unsets after the next key event that does not change the keyboard
state. Locked and latched modifier state can be changed by keyboard activity or via
Xkb extension library functions.

The Xkb extension provides support for keysym groups , as defined by ISO9995:

Group A logical state of a keyboard providing access to a collection of characters.
A group usually contains a set of characters that logically belong together
and that may be arranged on several shift levels within that group.

The Xkb extension supports up to four keysym groups. Groups are named beginning
with one and indexed beginning with zero. All group states are indicated using the
group index. At any point in time, there is zero or one locked group, zero or one
latched group, and one base group. When a group is locked, it supersedes any pre-
vious locked group and remains the locked group for all future key events, until a
new group is locked. A latched group applies only to the next key event that does
not change the keyboard state. The locked and latched group can be changed by
keyboard activity or via Xkb extension library functions.

Changing to a different group changes the keyboard state to produce characters
from a different group. Groups are typically used to switch between keysyms of
different languages and locales.

The pointer buttons are Button1 - Button5 , as defined by the core protocol.

The base group and base modifiers represent keys that are physically or logically
down. These and the pointer buttons can be changed by keyboard activity and not
by Xkb requests. It is possible for a key to be logically down, but not physically
down, and neither latched nor locked. 1

The effective modifiers are the bitwise union of the locked, latched, and the base
modifiers.

1 Keys may be logically down when they are physically up because of their electrical properties or because of the
keyboard extension in the X server having filtered the key release, for esoteric reasons.

Keyboard State

23

The effective group is the arithmetic sum of the group indices of the latched group,
locked group, and base group, which is then normalized by some function. The result
is a meaningful group index.

n = number of keyboard groups, 1<= n <= 4
0 <= any of locked, latched, or base group < n
effective group = f(locked group + latched group + base group)

The function f ensures that the effective group is within range. The precise function
is specified for the keyboard and can be retrieved through the keyboard description.
It may wrap around, clamp down, or default. Few applications will actually examine
the effective group, and far fewer still will examine the locked, latched, and base
groups.

There are two circumstances under which groups are normalized:

1. The global locked or effective group changes. In this case, the changed group is
normalized into range according to the settings of the groups_wrap field of the
XkbControlsRec structure for the keyboard (see section 10.7.1).

2. The Xkb library is interpreting an event with an effective group that is legal for
the keyboard as a whole, but not for the key in question. In this case, the group to
use for this event only is determined using the group_info field of the key symbol
mapping (XkbSymMapRec) for the event key.

Each nonmodifier key on a keyboard has zero or more symbols, or keysyms, asso-
ciated with it. These are the logical symbols that the key can generate when it is
pressed. The set of all possible keysyms for a keyboard is divided into groups. Each
key is associated with zero or more groups; each group contains one or more sym-
bols. When a key is pressed, the determination of which symbol for the key is se-
lected is based on the effective group and the shift level, which is determined by
which modifiers are set.

A client that does not explicitly call Xkb functions, but that otherwise makes use of
an X library containing the Xkb extension, will have keyboard state represented in
bits 0 - 14 of the state field of events that report modifier and button state. Such a
client is said to be Xkb-capable . A client that does explicitly call Xkb functions is
an Xkb-aware client. The Xkb keyboard state includes information derived from the
effective state and from two server parameters that can be set through the keyboard
extension. The following components of keyboard state pertain to Xkb-capable and
Xkb-aware clients:

• lookup state: lookup group and lookup modifiers

• grab state: grab group and grab modifiers

The lookup modifiers and lookup group are represented in the state field of core
X events. The modifier state and keycode of a key event are used to determine the
symbols associated with the event. For KeyPress and KeyRelease events, the lookup
modifiers are computed as:

 ((base | latched | locked) & ~ server_internal_modifiers)

Otherwise the lookup modifiers are computed as:

Keyboard State

24

(((base | latched | (locked & ~ ignore_locks)) & ~ server_internal_modifiers)

The lookup group is the same as the effective group.

When an Xkb-capable or Xkb-aware client wishes to map a keycode to a keysym, it
should use the lookup state — the lookup group and the lookup modifiers.

The grab state is the state used when matching events to passive grabs. If the event
activates a grab, the grab modifiers and grab group are represented in the state
field of core X events; otherwise, the lookup state is used. The grab modifiers are
computed as:

(((base | latched | (locked & ~ignore_locks)) & ~server_internal_modifiers)

If the server’s IgnoreGroupLock control (see section 10.7.3) is not set, the grab
group is the same as the effective group. Otherwise, the grab group is computed
from the base group and latched group, ignoring the locked group.

The final three components of Xkb state are applicable to clients that are not linked
with an Xlib containing the X keyboard extension library and therefore are not aware
of the keyboard extension (Xkb-unaware clients):

• The compatibility modifier state

• The compatibility lookup modifier state

• The compatibility grab modifier state

The X11 protocol interpretation of modifiers does not include direct support for
multiple groups. When an Xkb-extended X server connects to an Xkb-unaware client,
the compatibility states remap the keyboard group into a core modifier whenever
possible. The compatibility state corresponds to the effective modifier and effective
group state, with the group remapped to a modifier. The compatibility lookup and
grab states correspond to the lookup and grab states, respectively, with the group
remapped to a modifier. The compatibility lookup state is reported in events that do
not trigger passive grabs; otherwise, the compatibility grab state is reported.

Changing the Keyboard State

Changing Modifiers

The functions in this section that change the use of modifiers use a mask in the
parameter affect . It is a bitwise inclusive OR of the legal modifier masks:

Keyboard State

25

Table 5.1. Real Modifier Masks

Mask
ShiftMask
LockMask
ControlMask
Mod1Mask
Mod2Mask
Mod3Mask
Mod4Mask
Mod5Mask

To lock and unlock any of the eight real keyboard modifiers, use XkbLockModifiers:

Bool XkbLockModifiers (display, device_spec, affect, values)
Display * display ; /* connection to the X server */
unsigned int device_spec ; /* device ID, or XkbUseCoreKbd */
unsigned int affect ; /* mask of real modifiers whose lock state is to change */
unsigned int values ; /* 1 => lock, 0 => unlock; only for modifiers selected by
affect */

XkbLockModifiers sends a request to the server to lock the real modifiers selected
by both affect and values and to unlock the real modifiers selected by affect but
not selected by values . XkbLockModifiers does not wait for a reply from the server.
It returns True if the request was sent, and False otherwise.

To latch and unlatch any of the eight real keyboard modifiers, use XkbLatchMod-
ifiers:

Bool XkbLatchModifiers (d isplay, device_spec, affect, values)
Display * display ; /* connection to the X server */
unsigned int device_spec ; /* device ID, or XkbUseCoreKbd */
unsigned int affect ; /* mask of modifiers whose latch state is to change */
unsigned int values; /* 1 => latch, 0 => unlatch; only for mods selected by af-
fect */

XkbLatchModifiers sends a request to the server to latch the real modifiers selected
by both affect and values and to unlatch the real modifiers selected by affect
but not selected by values . XkbLatchModifiers does not wait for a reply from the
server. It returns True if the request was sent, and False otherwise.

Changing Groups

Reference the keysym group indices with these symbolic constants:

Keyboard State

26

Table 5.2. Symbolic Group Names

Symbolic Name Value
XkbGroup1Index 0
XkbGroup2Index 1
XkbGroup3Index 2
XkbGroup4Index 3

To lock the keysym group, use XkbLockGroup.

Bool XkbLockGroup (display, device_spec, group)
Display * display ; /* connection to the X server */
unsigned int device_spec ; /* device ID, or XkbUseCoreKbd */
unsigned int group ; /* index of the keysym group to lock */

XkbLockGroup sends a request to the server to lock the specified group and does
not wait for a reply. It returns True if the request was sent and False otherwise.

To latch the keysym group, use XkbLatchGroup.

Bool XkbLatchGroup (display, device_spec, group)
Display * display ; /* connection to the X server */
unsigned int device_spec ; /* device ID, or XkbUseCoreKbd */
unsigned int group ; /* index of the keysym group to latch */

XkbLatchGroup sends a request to the server to latch the specified group and does
not wait for a reply. It returns True if the request was sent and False otherwise.

Determining Keyboard State
Xkb keyboard state may be represented in an XkbStateRec structure:

typedef struct {
 unsigned char group; /* effective group index */
 unsigned char base_group; /* base group index */
 unsigned char latched_group; /* latched group index */
 unsigned char locked_group; /* locked group index */
 unsigned char mods; /* effective modifiers */
 unsigned char base_mods; /* base modifiers */
 unsigned char latched_mods; /* latched modifiers */
 unsigned char locked_mods; /* locked modifiers */
 unsigned char compat_state; /* effective group => modifiers */
 unsigned char grab_mods; /* modifiers used for grabs */
 unsigned char compat_grab_mods; /* mods used for compatibility mode grabs */
 unsigned char lookup_mods; /* modifiers used to lookup symbols */
 unsigned char compat_lookup_mods; /* mods used for compatibility lookup */
 unsigned short ptr_buttons; /* 1 bit => corresponding pointer btn is down */
}
XkbStateRec

Keyboard State

27

,*XkbStatePtr;

To obtain the keyboard state, use XkbGetState.

Status XkbGetState (display , device_spec , state_return)
Display * display ; /* connection to the X server */
unsigned int device_spec ; /* device ID, or XkbUseCoreKbd */
XkbStatePtr state_return ; /* backfilled with Xkb state */

The XkbGetState function queries the server for the current keyboard state, waits
for a reply, and then backfills state_return with the results.

All group values are expressed as group indices in the range [0..3]. Modifiers and
the compatibility modifier state values are expressed as the bitwise union of the
core X11 modifier masks. The pointer button state is reported as in the core X11
protocol.

Tracking Keyboard State
The Xkb extension reports XkbStateNotify events to clients wanting notification
whenever the Xkb state changes. The changes reported include changes to any
aspect of the keyboard state: when a modifier is set or unset, when the current
group changes, or when a pointer button is pressed or released. As with all Xkb
events, XkbStateNotify events are reported to all interested clients without regard
to the current keyboard input focus or grab state.

There are many different types of Xkb state changes. Xkb defines an event detail
mask corresponding to each type of change. The event detail masks are listed in
Table 5.3.

Table 5.3. XkbStateNotify Event Detail Masks
Mask Value
XkbModifierStateMask (1L << 0)
XkbModifierBaseMask (1L << 1)
XkbModifierLatchMask (1L << 2)
XkbModifierLockMask (1L << 3)
XkbGroupStateMask (1L << 4)
XkbGroupBaseMask (1L << 5)
XkbGroupLatchMask (1L << 6)
XkbGroupLockMask (1L << 7)
XkbCompatStateMask (1L << 8)
XkbGrabModsMask (1L << 9)
XkbCompatGrabModsMask (1L << 10)
XkbLookupModsMask (1L << 11)
XkbCompatLookupModsMask (1L << 12)
XkbPointerButtonMask (1L << 13)
XkbAllStateComponentsMask (0x3fff)

Keyboard State

28

To track changes in the keyboard state for a particular device, select to receive
XkbStateNotify events by calling either XkbSelectEvents or XkbSelectEventDetails
(see section 4.3).

To receive XkbStateNotify events under all possible conditions, use Xk-
bSelectEvents and pass XkbStateNotifyMask in both bits_to_change and
values_for_bits .

To receive XkbStateNotify events only under certain conditions, use XkbS-
electEventDetails using XkbStateNotify as the event_type and specifying the de-
sired state changes in bits_to_change and values_for_bits using mask bits from
Table 5.3.

The structure for XkbStateNotify events is:

typedef struct {
 int type; /* Xkb extension base event code */
 unsigned long serial; /* X server serial number for event */
 Bool send_event; /* True => synthetically generated */
 Display * display; /* server connection where event generated */
 Time time; /* server time when event generated */
 int xkb_type; /* XkbStateNotify */
 int device; /* Xkb device ID, will not be XkbUseCoreKbd */
 unsigned int changed; /* bits indicating what has changed */
 int group; /* group index of effective group */
 int base_group; /* group index of base group */
 int latched_group; /* group index of latched group */
 int locked_group; /* group index of locked group */
 unsigned int mods; /* effective modifiers */
 unsigned int base_mods; /* base modifiers */
 unsigned int latched_mods; /* latched modifiers */
 unsigned int locked_mods; /* locked modifiers */
 int compat_state; /* computed compatibility state */
 unsigned char grab_mods; /* modifiers used for grabs */
 unsigned char compat_grab_mods; /* modifiers used for compatibility grabs */
 unsigned char lookup_mods; /* modifiers used to lookup symbols */
 unsigned char compat_lookup_mods; /* mods used for compatibility look up */
 int ptr_buttons; /* core pointer buttons */
 KeyCode keycode; /* keycode causing event, 0 if programmatic */
 char event_type; /* core event if req_major or
 req_minor non zero */
 char req_major; /* major request code if program trigger, else 0 */
 char req_minor; /* minor request code if program trigger, else 0 */
} XkbStateNotifyEvent
;

When you receive an XkbStateNotify event, the changed field indicates which
elements of keyboard state have changed. This will be the bitwise inclusive OR of
one or more of the XkbStateNotify event detail masks shown in Table 5.3. All fields
reported in the event are valid, but only those indicated in changed have changed
values.

The group field is the group index of the effective keysym group. The base_group ,
latched_group , and locked_group fields are set to a group index value representing

Keyboard State

29

the base group, the latched group, and the locked group, respectively. The X server
can set the modifier and compatibility state fields to a union of the core modifier
mask bits; this union represents the corresponding modifier states. The ptr_button
field gives the state of the core pointer buttons as a mask composed of an inclusive
OR of zero or more of the core pointer button masks.

Xkb state changes can occur either in response to keyboard activity or under ap-
plication control. If a key event caused the state change, the keycode field gives
the keycode of the key event, and the event_type field is set to either KeyPress
or KeyRelease . If a pointer button event caused the state change, the keycode
field is zero, and the event_type field is set to either ButtonPress or ButtonRelease
. Otherwise, the major and minor codes of the request that caused the state change
are given in the req_major and req_minor fields, and the keycode field is zero. The
req_major value is the same as the major extension opcode.

30

Chapter 6. Complete Keyboard
Description

The complete Xkb description for a keyboard device is accessed using a single struc-
ture containing pointers to major Xkb components. This chapter describes this sin-
gle structure and provides references to other sections of this document that dis-
cuss the major Xkb components in detail.

The XkbDescRec Structure
The complete description of an Xkb keyboard is given by an XkbDescRec . The
component structures in the XkbDescRec represent the major Xkb components
outlined in Figure 1.1.

typedef struct {
 struct _XDisplay * display; /* connection to
X server */
 unsigned short flags; /* private to Xkb, do
not modify */
 unsigned short device_spec; /* device of
interest */
 KeyCode min_key_code; /* minimum keycode for
device */
 KeyCode max_key_code; /* maximum keycode for
device */
 XkbControlsPtr ctrls; /* controls */
 XkbServerMapPtr server; /* server keymap */
 XkbClientMapPtr map; /* client keymap */
 XkbIndicatorPtr indicators; /* indicator map
*/
 XkbNamesPtr names; /* names for all
components */
 XkbCompatMapPtr compat; /* compatibility map
*/
 XkbGeometryPtr geom; /* physical geometry of
keyboard */
}
XkbDescRec
, *XkbDescPtr;

The display field points to an X display structure. The flags field is private to the li-
brary: modifying flags may yield unpredictable results. The device_spec field spec-
ifies the device identifier of the keyboard input device, or XkbUseCoreKeyboard ,
which specifies the core keyboard device. The min_key_code and max_key_code
fields specify the least and greatest keycode that can be returned by the keyboard.

The other fields specify structure components of the keyboard description and are
described in detail in other sections of this document. Table 6.1 identifies the sub-
sequent sections of this document that discuss the individual components of the
XkbDescRec .

Complete Key-
board Description

31

Table 6.1. XkbDescRec Component References

XkbDescRec Field For more info
ctrls Chapter 10
server Chapter 16
map Chapter 15
indicators Chapter 8
names Chapter 18
compat Chapter 17
geom Chapter 13

Each structure component has a corresponding mask bit that is used in function
calls to indicate that the structure should be manipulated in some manner, such as
allocating it or freeing it. These masks and their relationships to the fields in the
XkbDescRec are shown in Table 6.2.

Table 6.2. Mask Bits for XkbDescRec

Mask Bit XkbDescRec Field Value
XkbControlsMask ctrls (1L<<0)
XkbServerMapMask server (1L<<1)
XkbIClientMapMask map (1L<<2)
XkbIndicatorMapMask indicators (1L<<3)
XkbNamesMask names (1L<<4)
XkbCompatMapMask compat (1L<<5)
XkbGeometryMask geom (1L<<6)
XkbAllComponentsMask All Fields (0x7f)

Obtaining a Keyboard Description from the
Server

To retrieve one or more components of a keyboard device description, use Xk-
bGetKeyboard (see also XkbGetKeyboardbyName).

XkbDescPtr XkbGetKeyboard (display, which, device_spec)
Display * display ; /* connection to X server */
unsigned int which ; /* mask indicating components to return */
unsigned int device_spec ; /* device for which to fetch description, or XkbUseC-
oreKbd */

XkbGetKeyboard allocates and returns a pointer to a keyboard description. It
queries the server for those components specified in the which parameter for device
device_spec and copies the results to the XkbDescRec it allocated. The remaining
fields in the keyboard description are set to NULL . The valid masks for which are
those listed in Table 6.2.

Complete Key-
board Description

32

XkbGetKeyboard can generate BadAlloc protocol errors.

To free the returned keyboard description, use XkbFreeKeyboard (see section 6.4).

Tracking Changes to the Keyboard Description
in the Server

The server can generate events whenever its copy of the keyboard description for a
device changes. Refer to section 14.4 for detailed information on tracking changes
to the keyboard description.

Allocating and Freeing a Keyboard Description
Applications seldom need to directly allocate a keyboard description; calling Xk-
bGetKeyboard usually suffices. In the event you need to create a keyboard descrip-
tion from scratch, however, use XkbAllocKeyboard rather than directly calling mal-
loc or Xmalloc .

XkbDescRec * XkbAllocKeyboard (void)

If XkbAllocKeyboard fails to allocate the keyboard description, it returns NULL
. Otherwise, it returns a pointer to an empty keyboard description structure. The
device_spec field will have been initialized to XkbUseCoreKbd . You may then ei-
ther fill in the structure components or use Xkb functions to obtain values for the
structure components from a keyboard device.

To destroy either an entire an XkbDescRec or just some of its members, use
XkbFreeKeyboard.

void XkbFreeKeyboard (xkb, which, free_all)
XkbDescPtr xkb ; /* keyboard description with components to free */
unsigned int which ; /* mask selecting components to free */
Bool free_all ; /* True => free all components and xkb */

XkbFreeKeyboard frees the components of xkb specified by which and sets the
corresponding values to NULL . If free_all is True , XkbFreeKeyboard frees every
non- NULL component of xkb and then frees the xkb structure itself.

33

Chapter 7. Virtual Modifiers
The core protocol specifies that certain keysyms, when bound to modifiers, affect
the rules of keycode to keysym interpretation for all keys; for example, when the
Num_Lock keysym is bound to some modifier, that modifier is used to select between
shifted and unshifted state for the numeric keypad keys. The core protocol does not
provide a convenient way to determine the mapping of modifier bits (in particular
Mod1 through Mod5) to keysyms such as Num_Lock and Mode_switch . Using the
core protocol only, a client application must retrieve and search the modifier map
to determine the keycodes bound to each modifier, and then retrieve and search the
keyboard mapping to determine the keysyms bound to the keycodes. It must repeat
this process for all modifiers whenever any part of the modifier mapping is changed.

Xkb alleviates these problems by defining virtual modifiers. In addition to the eight
core modifiers, referred to as the real modifiers , Xkb provides a set of sixteen
named virtual modifiers . Each virtual modifier can be bound to any set of the real
modifiers (Shift , Lock , Control, and Mod1 - Mod5).

The separation of function from physical modifier bindings makes it easier to specify
more clearly the intent of a binding. X servers do not all assign modifiers the same
way — for example, Num_Lock might be bound to Mod2 for one vendor and to
Mod4 for another. This makes it cumbersome to automatically remap the keyboard
to a desired configuration without some kind of prior knowledge about the keyboard
layout and bindings. With XKB, applications can use virtual modifiers to specify the
desired behavior, without regard for the actual physical bindings in effect.

Virtual Modifier Names and Masks
Virtual modifiers are named by converting their string name to an X Atom and
storing the Atom in the names.vmods array in an XkbDescRec structure (see sec-
tion 6.1). The position of a name Atom in the names.vmods array defines the bit
position used to represent the virtual modifier and also the index used when ac-
cessing virtual modifier information in arrays: the name in the i-th (0 relative) en-
try of names.vmods is the i-th virtual modifier, represented by the mask (1<<i).
Throughout Xkb, various functions have a parameter that is a mask representing
virtual modifier choices. In each case, the i-th bit (0 relative) of the mask represents
the i-th virtual modifier.

To set the name of a virtual modifier, use XkbSetNames , using XkbVirtualMod-
NamesMask in which and the name in the xkb argument; to retrieve indicator
names, use XkbGetNames . These functions are discussed in Chapter 18.

Modifier Definitions
An Xkb modifier definition enumerates a collection of real and virtual modifiers but
does not in itself bind those modifiers to any particular key or to each other. Modifier
definitions are included in a number of structures in the keyboard description to
define the collection of modifiers that affect or are affected by some other entity. A
modifier definition is relevant only in the context of some other entity such as an
indicator map, a control, or a key type. (See sections 8.2.2, 10.8, and 15.2.)

typedef struct _XkbMods {

Virtual Modifiers

34

 unsigned char mask; /* real_mods | vmods mapped to
real modifiers */
 unsigned char real_mods; /* real modifier bits */
 unsigned short vmods; /* virtual modifier bits */
}
XkbModsRec
,*XkbModsPtr;

An Xkb modifier definition consists of a set of bit masks corresponding to the eight
real modifiers (real_mods); a similar set of bitmasks corresponding to the 16 named
virtual modifiers (vmods); and an effective mask (mask). The effective mask rep-
resents the set of all real modifiers that can logically be set either by setting any of
the real modifiers or by setting any of the virtual modifiers in the definition. mask is
derived from the real and virtual modifiers and should never be explicitly changed
— it contains all of the real modifiers specified in the definition (real_mods) plus
any real modifiers that are bound to the virtual modifiers specified in the definition
(vmods). The binding of the virtual modifiers to real modifiers is exterior to the
modifier definition. Xkb automatically recomputes the mask field of modifier defi-
nitions as necessary. Whenever you access a modifier definition that has been re-
trieved using an Xkb library function, the mask field will be correct for the keyboard
mapping of interest.

Binding Virtual Modifiers to Real Modifiers
The binding of virtual modifiers to real modifiers is defined by the server.vmods
array in an XkbDescRec structure. Each entry contains the real modifier bits that
are bound to the virtual modifier corresponding to the entry. The overall relationship
of fields dealing with virtual modifiers in the server keyboard description are shown
in Figure 16.2.

Virtual Modifier Key Mapping
Xkb maintains a virtual modifier mapping , which lists the virtual modifiers asso-
ciated with, or bound to, each key. The real modifiers bound to a virtual modifier
always include all of the modifiers bound to any of the keys that specify that virtu-
al modifier in their virtual modifier mapping. The server.vmodmap array indicates
which virtual modifiers are bound to each key; each entry is a bitmask for the virtual
modifier bits. The server.vmodmap array is indexed by keycode.

The vmodmap and vmods members of the server map are the "master" virtual
modifier definitions. Xkb automatically propagates any changes to these fields to
all other fields that use virtual modifier mappings (see section 16.4).

For example, if Mod3 is bound to the Num_Lock key by the core protocol modifier
mapping, and the NumLock virtual modifier is bound to they Num_Lock key by
the virtual modifier mapping, Mod3 is added to the set of modifiers associated with
NumLock .

The virtual modifier mapping is normally updated whenever actions are automati-
cally applied to symbols (see section 16.4 for details), and few applications should
need to change the virtual modifier mapping explicitly.

Use XkbGetMap (see section 14.2) to get the virtual modifiers from the server or
use XkbGetVirtualMods (see section 16.4.1) to update a local copy of the virtual

Virtual Modifiers

35

modifiers bindings from the server. To set the binding of a virtual modifier to a real
modifier, use XkbSetMap (see section 14.3).

To determine the mapping of virtual modifiers to core X protocol modifiers, use
XkbVirtualModsToReal .

Bool XkbVirtualModsToReal (xkb, virtual_mask, mask_rtrn)
XkbDescPtr xkb ; /* keyboard description for input device */
unsigned int virtual_mask ; /* virtual modifier mask to translate */
unsigned int * mask_rtrn ; /* backfilled with real modifiers */

If the keyboard description defined by xkb includes bindings for virtual modifiers,
XkbVirtualModsToReal uses those bindings to determine the set of real modifiers
that correspond to the set of virtual modifiers specified in virtual_mask . The
virtual_mask parameter is a mask specifying the virtual modifiers to translate; the
i-th bit (0 relative) of the mask represents the i-th virtual modifier. If mask_rtrn
is non- NULL , XkbVirtualModsToReal backfills it with the resulting real modifier
mask. If the keyboard description in xkb does not include virtual modifier bindings,
XkbVirtualModsToReal returns False ; otherwise, it returns True .

Note
It is possible for a local (client-side) keyboard description (the xkb para-
meter) to not contain any virtual modifier information (simply because the
client has not requested it) while the server’s corresponding definition may
contain virtual modifier information.

Inactive Modifier Sets
An unbound virtual modifier is one that is not bound to any real modifier (server -
> vmods [virtual_modifier_index] is zero).

Some Xkb operations ignore modifier definitions in which the virtual modifiers are
unbound. Consider this example:

if (state matches {Shift}) Do OneThing;
if (state matches {Shift+NumLock}) Do Another;

If the NumLock virtual modifier is not bound to any real modifiers, the effective
masks for these two cases are identical (that is, contain only Shift). When it is
essential to distinguish between OneThing and Another, Xkb considers only those
modifier definitions for which all virtual modifiers are bound.

Conventions
The Xkb extension does not require any specific virtual modifier names. However,
everyone benefits if the same names are used for common modifiers. The following
names are suggested:

 NumLock

Virtual Modifiers

36

 ScrollLock
 Alt
 Meta
 AltGr
 LevelThree

Example
If the second (0-relative) entry in names.vmods contains the Atom for "NumLock",
then 0x4 (1<<2) is the virtual modifier bit for the NumLock virtual modifier. If
server.vmods [2] contains Mod3Mask , then the NumLock virtual modifier is bound
to the Mod3 real modifier.

A virtual modifier definition for this example would have:

 real_mods = 0
 vmods = 0x4 (NumLock named virtual modifier)
 mask = 0x20 (Mod3Mask)

Continuing the example, if the keyboard has a Num_Lock keysym bound to the
key with keycode 14, and the NumLock virtual modifier is bound to this key,
server.vmodmap [14] contains 0x4.

Finally, if the keyboard also used the real Mod1 modifier for numeric lock opera-
tions, the modifier definition below would represent the situation where either the
key bound to Mod1 or the NumLock virtual modifier could be used for this purpose:

 real_mods = 0x8 (Mod1Mask)
 vmods = 0x4 (NumLock named virtual modifier)
 mask = 0x28 (Mod1Mask | Mod3Mask)

37

Chapter 8. Indicators
Although the core X implementation supports up to 32 LEDs on an input device, it
does not provide any linkage between the state of the LEDs and the logical state of
the input device. For example, most keyboards have a CapsLock LED, but X does
not provide a mechanism to make the LED automatically follow the logical state of
the CapsLock key.

Furthermore, the core X implementation does not provide clients with the ability
to determine what bits in the led_mask field of the XKeyboardState map to the
particular LEDs on the keyboard. For example, X does not provide a method for a
client to determine what bit to set in the led_mask field to turn on the Scroll Lock
LED or whether the keyboard even has a Scroll Lock LED.

Xkb provides indicator names and programmable indicators to help solve these
problems. Using Xkb, clients can determine the names of the various indicators,
determine and control the way that the individual indicators should be updated to
reflect keyboard changes, and determine which of the 32 keyboard indicators re-
ported by the protocol are actually present on the keyboard. Clients may also re-
quest immediate notification of changes to the state of any subset of the keyboard
indicators, which makes it straightforward to provide an on-screen "virtual" LED
panel. This chapter describes Xkb indicators and the functions used for manipulat-
ing them.

Indicator Names
Xkb provides the capability of symbolically naming indicators. Xkb itself doesn’t use
these symbolic names for anything; they are there only to help make the keyboard
description comprehensible to humans. To set the names of specific indicators, use
XkbSetNames as discussed in Chapter 18. Then set the map using XkbSetMap (see
section 14.3) or XkbSetNamedIndicator (below). To retrieve indicator names, use
XkbGetNames (Chapter 18).

Indicator Data Structures
Use the indicator description record, XkbIndicatorRec , and its indicator map, Xk-
bIndicatorMapRec , to inquire about and control most indicator properties and be-
haviors.

XkbIndicatorRec

The description for all the Xkb indicators is held in the indicators field of the com-
plete keyboard description (see Chapter 6), which is defined as follows:

#define XkbNumIndicators 32

typedef struct {
 unsigned long phys_indicators; /* LEDs existence */

Indicators

38

 XkbIndicatorMapRec maps[XkbNumIndicators]; /* indicator maps */
} XkbIndicatorRec,*XkbIndicatorPtr;

This structure contains the phys_indicators field, which relates some information
about the correspondence between indicators and physical LEDs on the keyboard,
and an array of indicator maps , one map per indicator.

The phys_indicators field indicates which indicators are bound to physical LEDs on
the keyboard; if a bit is set in phys_indicators , then the associated indicator has
a physical LED associated with it. This field is necessary because some indicators
may not have corresponding physical LEDs on the keyboard. For example, most
keyboards have an LED for indicating the state of CapsLock , but most keyboards
do not have an LED that indicates the current group. Because phys_indicators de-
scribes a physical characteristic of the keyboard, you cannot directly change it un-
der program control. However, if a client program loads a completely new keyboard
description via XkbGetKeyboardByName , or if a new keyboard is attached and the
X implementation notices, phys_indicators changes if the indicators for the new
keyboard are different.

XkbIndicatorMapRec
Each indicator has its own set of attributes that specify whether clients can explicit-
ly set its state and whether it tracks the keyboard state. The attributes of each indi-
cator are held in the maps array, which is an array of XkbIndicatorRec structures:

typedef struct {
 unsigned char flags; /* how the indicator can be changed */
 unsigned char which_groups; /* match criteria for groups */
 unsigned char groups; /* which keyboard groups the indicator watches */
 unsigned char which_mods; /* match criteria for modifiers */
 XkbModsRec mods; /* which modifiers the indicator watches */
 unsigned int ctrls; /* which controls the indicator watches */
} XkbIndicatorMapRec, *XkbIndicatorMapPtr;

This indicator map specifies for each indicator:

• The conditions under which the keyboard modifier state affects the indicator

• The conditions under which the keyboard group state affects the indicator

• The conditions under which the state of the boolean controls affects the indicator

• The effect (if any) of attempts to explicitly change the state of the indicator using
the functions XkbSetControls or XChangeKeyboardControl

For more information on the effects of explicit changes to indicators and the rela-
tionship to the indicator map, see section 8.4.1.

XkbIndicatorMapRec flags field

The flags field specifies the conditions under which the indicator can be changed
and the effects of changing the indicator. The valid values for flags and their effects
are shown in Table 8.1.

Indicators

39

Table 8.1. XkbIndicatorMapRec flags Field

Value Effect
XkbIM_NoExplicit (1L<<7) Client applications cannot change the

state of the indicator.
XkbIM_NoAutomatic (1L<<6) Xkb does not automatically change the

value of the indicator based upon a
change in the keyboard state, regard-
less of the values for the other fields of
the indicator map.

XkbIM_LEDDrivesKB (1L<<5) A client application changing the state
of the indicator causes the state of the
keyboard to change.

Note that if XkbIM_NoAutomatic is not set, by default the indicator follows the
keyboard state.

If XkbIM_LEDDrivesKB is set and XkbIM_NoExplicit is not, and if you call a func-
tion which updates the server’s image of the indicator map (such as XkbSetIndica-
torMap or XkbSetNamedIndicator), Xkb changes the keyboard state and controls
to reflect the other fields of the indicator map, as described in the remainder of
this section. If you attempt to explicitly change the value of an indicator for which
XkbIM_LEDDrivesKB is absent or for which XkbIM_NoExplicit is present, keyboard
state or controls are unaffected.

For example, a keyboard designer may want to make the CapsLock LED control-
lable only by the server, but allow the Scroll Lock LED to be controlled by client
applications. To do so, the keyboard designer could set the XkbIM_NoExplicit flag
for the CapsLock LED, but not set it for the Scroll Lock LED. Or the keyboard
designer may wish to allow the CapsLock LED to be controlled by both the server
and client applications and also have the server to automatically change the Cap-
sLock modifier state whenever a client application changes the CapsLock LED. To
do so, the keyboard designer would not set the XkbIM_NoExplicit flag, but would
instead set the XkbIM_LEDDrivesKB flag.

The remaining fields in the indicator map specify the conditions under which Xkb
automatically turns an indicator on or off (only if XkbIM_NoAutomatic is not set).
If these conditions match the keyboard state, Xkb turns the indicator on. If the
conditions do not match, Xkb turns the indicator off.

XkbIndicatorMapRec which_groups and groups fields

The which_groups and the groups fields of an indicator map determine how the
keyboard group state affects the corresponding indicator. The which_groups field
controls the interpretation of groups and may contain any one of the following
values:

#define XkbIM_UseNone 0
#define XkbIM_UseBase (1L << 0)
#define XkbIM_UseLatched (1L << 1)
#define XkbIM_UseLocked (1L << 2)
#define XkbIM_UseEffective (1L << 3)

Indicators

40

#define XkbIM_UseAnyGroup XkbIM_UseLatched | XkbIM_UseLocked |
 XkbIM_UseEffective

The groups field specifies what keyboard groups an indicator watches and is the
bitwise inclusive OR of the following valid values:

#define XkbGroup1Mask (1<<0)
#define XkbGroup2Mask (1<<1)
#define XkbGroup3Mask (1<<2)
#define XkbGroup4Mask (1<<3)
#define XkbAnyGroupMask (1<<7)
#define XkbAllGroupsMask (0xf)

If XkbIM_NoAutomatic is not set (the keyboard drives the indicator), the effect of
which_groups and groups is shown in Table 8.2.

Table 8.2. XkbIndicatorMapRec which_groups and groups,
Keyboard Drives Indicator

which_groups Effect
XkbIM_UseNone The groups field and the current keyboard group

state are ignored.
XkbIM_UseBase If groups is nonzero, the indicator is lit whenever the

base keyboard group is nonzero. If groups is zero,
the indicator is lit whenever the base keyboard group
is zero.

XkbIM_UseLatched If groups is nonzero, the indicator is lit whenever the
latched keyboard group is nonzero. If groups is ze-
ro, the indicator is lit whenever the latched keyboard
group is zero.

XkbIM_UseLocked The groups field is interpreted as a mask. The indi-
cator is lit when the current locked keyboard group
matches one of the bits that are set in groups.

XkbIM_UseEffective The groups field is interpreted as a mask. The indi-
cator is lit when the current effective keyboard group
matches one of the bits that are set in groups .

The effect of which_groups and groups when you change an indicator for which
XkbIM_LEDDrivesKB is set (the indicator drives the keyboard) is shown in Table
8.3. The "New State" column refers to the new state to which you set the indicator.

Indicators

41

Table 8.3. XkbIndicatorMapRec which_groups and groups,
Indicator Drives Keyboard
which_groups New State Effect on Keyboard Group State
XkbIM_UseNone On or Off No effect
XkbIM_UseBase On or Off No effect
XkbIM_UseLatched On The groups field is treated as a group

mask. The keyboard group latch is
changed to the lowest numbered group
specified in groups ; if groups is empty,
the keyboard group latch is changed to
zero.

XkbIM_UseLatched Off The groups field is treated as a group
mask. If the indicator is explicitly ex-
tinguished, keyboard group latch is
changed to the lowest numbered group
not specified in groups ; if groups is
zero, the keyboard group latch is set to
the index of the highest legal keyboard
group.

XkbIM_UseLocked or
XkbIM_UseEffective

On If the groups mask is empty, group is
not changed; otherwise, the locked key-
board group is changed to the lowest
numbered group specified in groups.

XkbIM_UseLocked or
XkbIM_UseEffective

Off Locked keyboard group is changed to
the lowest numbered group that is not
specified in the groups mask, or to
Group1 if the groups mask contains all
keyboard groups.

XkbIndicatorMapRec which_mods and mods fields

The mods field specifies what modifiers an indicator watches. The mods field is
an Xkb modifier definition, XkbModsRec , as described in section 7.2, which can
specify both real and virtual modifiers. The mods field takes effect even if some
or all of the virtual indicators specified in mods are unbound. To specify the mods
field, in general, assign the modifiers of interest to mods.real_mods and the virtual
modifiers of interest to mods.vmods . You can disregard the mods.mask field unless
your application needs to interpret the indicator map directly (that is, to simulate
automatic indicator behavior on its own). Relatively few applications need to do so,
but if you find it necessary, you can either read the indicator map back from the
server after you update it (the server automatically updates the mask field whenever
any of the real or virtual modifiers are changed in the modifier definition) or you
can use XkbVirtualModsToReal to determine the proper contents for the mask field,
assuming that the XkbDescRec contains the virtual modifier definitions.

which_mods specifies what criteria Xkb uses to determine a match with the corre-
sponding mods field by specifying one or more components of the Xkb keyboard
state. If XkbIM_NoAutomatic is not set (the keyboard drives the indicator), the in-
dicator is lit whenever any of the modifiers specified in the mask field of the mods
modifier definition are also set in any of the current keyboard state components
specified by which_mods . Remember that the mask field is comprised of all of the

Indicators

42

real modifiers specified in the definition plus any real modifiers that are bound to
the virtual modifiers specified in the definition. (See Chapter 5 for more information
on the keyboard state and Chapter 7 for more information on virtual modifiers.) Use
a bitwise inclusive OR of the following values to compose a value for which_mods:

#define XkbIM_UseNone 0
#define XkbIM_UseBase (1L << 0)
#define XkbIM_UseLatched (1L << 1)
#define XkbIM_UseLocked (1L << 2)
#define XkbIM_UseEffective (1L << 3)
#define XkbIM_UseCompat (1L << 4)
#define XkbIM_UseAnyMods XkbIM_UseBase | XkbIM_UseLatched |
 XkbIM_UseLocked | XkbIM_UseEffective |
 XkbIM_UseCompat

If XkbIM_NoAutomatic is not set (the keyboard drives the indicator), the effect of
which_mods and mods is shown in Table 8.4

Table 8.4. XkbIndicatorMapRec which_mods and mods,
Keyboard Drives Indicator

which_mods Effect on Keyboard Modifiers
XkbIM_UseNone The mods field and the current keyboard modifier

state are ignored.
XkbIM_UseBase The indicator is lit when any of the modifiers speci-

fied in the mask field of mods are on in the keyboard
base state. If both mods.real_mods and mods.vmods
are zero, the indicator is lit when the base keyboard
state contains no modifiers.

XkbIM_UseLatched The indicator is lit when any of the modifiers speci-
fied in the mask field of mods are latched. If both
mods.real_mods and mods.vmods are zero, the in-
dicator is lit when none of the modifier keys are
latched.

XkbIM_UseLocked The indicator is lit when any of the modifiers spec-
ified in the mask field of mods are locked. If both
mods.real_mods and mods.vmods are zero, the indi-
cator is lit when none of the modifier keys are locked.

XkbIM_UseEffective The indicator is lit when any of the modifiers spec-
ified in the mask field of mods are in the effec-
tive keyboard state. If both mods.real_mods and
mods.vmods are zero, the indicator is lit when the ef-
fective keyboard state contains no modifiers.

XkbIM_UseCompat The indicator is lit when any of the modifiers speci-
fied in the mask field of mods are in the keyboard
compatibility state. If both mods.real_mods and
mods.vmods are zero, the indicator is lit when the
keyboard compatibility state contains no modifiers.

The effect on the keyboard modifiers of which_mods and mods when you change an
indicator for which XkbIM_LEDDrivesKB is set (the indicator drives the keyboard)

Indicators

43

is shown in Table 8.5. The "New State" column refers to the new state to which you
set the indicator.

Table 8.5. XkbIndicatorMapRec which_mods and mods,
Indicator Drives Keyboard
which_mods New State Effect on Keyboard Modifiers
XkbIM_UseNone or
XkbIM_UseBase

On or Off No Effect

XkbIM_UseLatched On Any modifiers specified in the mask
field of mods are added to the latched
modifiers.

XkbIM_UseLatched Off Any modifiers specified in the mask
field of mods are removed from the
latched modifiers.

XkbIM_UseLocked,
XkbIM_UseCompat, or
XkbIM_UseEffective

On Any modifiers specified in the mask
field of mods are added to the locked
modifiers.

XkbIM_UseLocked Off Any modifiers specified in the mask
field of mods are removed from the
locked modifiers.

XkbIM_UseCompat or
XkbIM_UseEffective

Off Any modifiers specified in the mask
field of mods are removed from both
the locked and latched modifiers.

XkbIndicatorMapRec ctrls field

The ctrls field specifies what controls (see Chapter 10) the indicator watches and
is composed using the bitwise inclusive OR of the following values:

#define XkbRepeatKeysMask (1L << 0)
#define XkbSlowKeysMask (1L << 1)
#define XkbBounceKeysMask (1L << 2)
#define XkbStickyKeysMask (1L << 3)
#define XkbMouseKeysMask (1L << 4)
#define XkbMouseKeysAccelMask (1L << 5)
#define XkbAccessXKeysMask (1L << 6)
#define XkbAccessXTimeoutMask (1L << 7)
#define XkbAccessXFeedbackMask (1L << 8)
#define XkbAudibleBellMask (1L << 9)
#define XkbOverlay1Mask (1L << 10)
#define XkbOverlay2Mask (1L << 11)
#define XkbAllBooleanCtrlsMask (0x00001FFF)

Xkb lights the indicator whenever any of the boolean controls specified in ctrls is
enabled.

Getting Information About Indicators
Xkb allows applications to obtain information about indicators using two different
methods. The first method, which is similar to the core X implementation, uses a

Indicators

44

mask to specify the indicators. The second method, which is more suitable for appli-
cations concerned with interoperability, uses indicator names. The correspondence
between the indicator name and the bit position in masks is as follows: one of the
parameters returned from XkbGetNamedIndicators is an index that is the bit posi-
tion to use in any function call that requires a mask of indicator bits, as well as the
indicator’s index into the XkbIndicatorRec array of indicator maps.

Getting Indicator State
Because the state of the indicators is relatively volatile, the keyboard description
does not hold the current state of the indicators. To obtain the current state of the
keyboard indicators, use XkbGetIndicatorState.

Status XkbGetIndicatorState (display , device_spec , state_return)
Display * display ; /* connection to the X server */
unsigned int device_spec ; /* device ID, or XkbUseCoreKbd */
unsigned int * state_return ; /* backfilled with a mask of the indicator state */

XkbGetIndicatorState queries the display for the state of the indicators on the de-
vice specified by the device_spec . For each indicator that is "turned on" on the
device, the associated bit is set in state_return . If a compatible version of the Xkb
extension is not available in the server, XkbGetIndicatorState returns a BadMatch
error. Otherwise, it sends the request to the X server, places the state of the indi-
cators into state_return, and returns Success . Thus the value reported by Xk-
bGetIndicatorState is identical to the value reported by the core protocol.

Getting Indicator Information by Index
To get the map for one or more indicators, using a mask to specify the indicators,
use XkbGetIndicatorMap.

Status XkbGetIndicatorMap (dpy , which , desc)
Display * dpy ; /* connection to the X server */
unsigned int which ; /* mask of indicators for which maps should be returned */
XkbDescPtr desc ; /* keyboard description to be updated */

XkbGetIndicatorMap obtains the maps from the server for only those indicators
specified by the which mask and copies the values into the keyboard description
specified by desc . If the indicators field of the desc parameter is NULL , Xk-
bGetIndicatorMap allocates and initializes it.

XkbGetIndicatorMap can generate BadAlloc , BadLength , BadMatch , and BadIm-
plementation errors.

To free the indicator maps, use XkbFreeIndicatorMaps (see section 8.6).

Getting Indicator Information by Name
Xkb also allows applications to refer to indicators by name. Use XkbGetNames
to get the indicator names (see Chapter 18). Using names eliminates the need for

Indicators

45

hard-coding bitmask values for particular keyboards. For example, instead of using
vendor-specific constants such as WSKBLed_ScrollLock mask on Digital worksta-
tions or XLED_SCROLL_LOCK on Sun workstations, you can instead use XkbGet-
NamedIndicator to look up information on the indicator named "Scroll Lock."

Use XkbGetNamedIndicator to look up the indicator map and other information for
an indicator by name.

Bool XkbGetNamedIndicator (dpy , dev_spec , name , ndx_rtrn , state_rtrn ,
map_rtrn , real_rtrn)
Display * dpy ; /* connection to the X server */
unsigned int device_spec ; /* keyboard device ID, or XkbUseCoreKbd */
Atom name ; /* name of the indicator to be retrieved */
int * ndx_rtrn ; /* backfilled with the index of the retrieved indicator */
Bool * state_rtrn ; /* backfilled with the current state of the retrieved indicator */
XkbIndicatorMapPtr map_rtrn ; /* backfilled with the mapping for the retrieved
indicator */
Bool * real_rtrn ; /* backfilled with True if the named indicator is real (physical)
*/

If the device specified by device_spec has an indicator named name , XkbGet-
NamedIndicator returns True and populates the rest of the parameters with infor-
mation about the indicator. Otherwise, XkbGetNamedIndicator returns False .

The ndx_rtrn field returns the zero-based index of the named indicator. This index
is the bit position to use in any function call that requires a mask of indicator bits,
as well as the indicator’s index into the XkbIndicatorRec array of indicator maps.
state_rtrn returns the current state of the named indicator (True = on, False =
off). map_rtrn returns the indicator map for the named indicator. In addition, if the
indicator is mapped to a physical LED, the real_rtrn parameter is set to True .

Each of the " _rtrn " arguments is optional; you can pass NULL for any unneeded
" _rtrn " arguments.

XkbGetNamedIndicator can generate BadAtom and BadImplementation errors.

Changing Indicator Maps and State
Just as you can get the indicator map using a mask or using an indicator name, so
you can change it using a mask or a name.

Note
You cannot change the phys_indicators field of the indicators structure. The
only way to change the phys_indicators field is to change the keyboard map.

There are two ways to make changes to indicator maps and state: either change a lo-
cal copy of the indicator maps and use XkbSetIndicatorMap or XkbSetNamedIndi-
cator , or, to reduce network traffic, use an XkbIndicatorChangesRec structure and
use XkbChangeIndicators.

Indicators

46

Effects of Explicit Changes on Indicators
This section discusses the effects of explicitly changing indicators depending upon
different settings in the indicator map. See Tables 8.3 and Table 8.5 for information
on the effects of the indicator map fields when explicit changes are made.

If XkbIM_LEDDrivesKB is set and XkbIM_NoExplicit is not, and if you call a func-
tion that updates the server’s image of the indicator map (such as XkbSetIndica-
torMap or XkbSetNamedIndicator), Xkb changes the keyboard state and controls
to reflect the other fields of the indicator map. If you attempt to explicitly change
the value of an indicator for which XkbIM_LEDDrivesKB is absent or for which
XkbIM_NoExplicit is present, keyboard state or controls are unaffected.

If neither XkbIM_NoAutomatic nor XkbIM_NoExplicit is set in an indicator map,
Xkb honors any request to change the state of the indicator, but the new state might
be immediately superseded by automatic changes to the indicator state if the key-
board state or controls change.

The effects of changing an indicator that drives the keyboard are cumulative; it
is possible for a single change to affect keyboard group, modifiers, and controls
simultaneously.

If you change an indicator for which both the XkbIM_LEDDrivesKB and
XkbIM_NoAutomatic flags are specified, Xkb applies the keyboard changes speci-
fied in the other indicator map fields and changes the indicator to reflect the state
that was explicitly requested. The indicator remains in the new state until it is ex-
plicitly changed again.

If the XkbIM_NoAutomatic flag is not set and XkbIM_LEDDrivesKB is set, Xkb ap-
plies the changes specified in the other indicator map fields and sets the state of the
indicator to the values specified by the indicator map. Note that it is possible in this
case for the indicator to end up in a different state than the one that was explicitly
requested. For example, Xkb does not extinguish an indicator with which_mods of
XkbIM_UseBase and mods of Shift if, at the time Xkb processes the request to
extinguish the indicator, one of the Shift keys is physically depressed.

If you explicitly light an indicator for which XkbIM_LEDDrivesKB is set, Xkb enables
all of the boolean controls specified in the ctrls field of its indicator map. Explicitly
extinguishing such an indicator causes Xkb to disable all of the boolean controls
specified in ctrls .

Changing Indicator Maps by Index
To update the maps for one or more indicators, first modify a local copy of the
keyboard description, then use XkbSetIndicatorMap to download the changes to
the server:

Bool XkbSetIndicatorMap (dpy , which , desc)
Display * dpy ; /* connection to the X server */
unsigned int which ; /* mask of indicators to change */
XkbDescPtr desc ; /* keyboard description from which the maps are taken */

For each bit set in the which parameter, XkbSetIndicatorMap sends the corre-
sponding indicator map from the desc parameter to the server.

Indicators

47

Changing Indicator Maps by Name
XkbSetNamedIndicator can do several related things:

• Name an indicator if it is not already named

• Toggle the state of the indicator

• Set the indicator to a specified state

• Set the indicator map for the indicator

Bool XkbSetNamedIndicator (dpy , device_spec , name , change_state, state ,
create_new , map)
Display * dpy ; /* connection to the X server */
unsigned int device_spec ; /* device ID, or XkbUseCoreKbd */
Atom name ; /* name of the indicator to change */
Bool change_state ; /* whether to change the indicator state or not */
Bool state ; /* desired new state for the indicator */
Bool create_new ; /* whether a new indicator with the specified name should be
created when necessary */
XkbIndicatorMapPtr map ; /* new map for the indicator */

If a compatible version of the Xkb extension is not available in the server, XkbSet-
NamedIndicator returns False . Otherwise, it sends a request to the X server to
change the indicator specified by name and returns True.

If change_state is True , and the optional parameter, state , is not NULL , Xk-
bSetNamedIndicator tells the server to change the state of the named indicator to
the value specified by state.

If an indicator with the name specified by name does not already exist, the
create_new parameter tells the server whether it should create a new named indi-
cator. If create_new is True , the server finds the first indicator that doesn’t have
a name and gives it the name specified by name.

If the optional parameter, map , is not NULL , XkbSetNamedIndicator tells the
server to change the indicator’s map to the values specified in map.

XkbSetNamedIndicator can generate BadAtom and BadImplementation errors. In
addition, it can also generate XkbIndicatorStateNotify (see section 8.5), XkbIndi-
catorMapNotify , and XkbNamesNotify events (see section 18.5).

The XkbIndicatorChangesRec Structure
The XkbIndicatorChangesRec identifies small modifications to the indicator map.
Use it with the function XkbChangeIndicators to reduce the amount of traffic sent
to the server.

typedef struct _XkbIndicatorChanges {
 unsigned int state_changes;

Indicators

48

 unsigned int map_changes;
}
XkbIndicatorChangesRec,*XkbIndicatorChangesPtr;

The state_changes field is a mask that specifies the indicators that have changed
state, and map_changes is a mask that specifies the indicators whose maps have
changed.

To change indicator maps or state without passing the entire keyboard description,
use XkbChangeIndicators .

Bool XkbChangeIndicators (dpy, xkb, changes, state)
Display * dpy ; /* connection to the X server */
XkbDescPtr xkb ; /* keyboard description from which names are to be
taken. */
XkbIndicatorChangesPtr changes ; /* indicators to be updated on the server */
unsigned int state ; /* new state of indicators listed in
changes -> state_changes */

XkbChangeIndicators copies any maps specified by changes from the keyboard
description, xkb , to the server specified by dpy . If any bits are set in the
state_changes field of changes , XkbChangeIndicators also sets the state of those
indicators to the values specified in the state mask. A 1 bit in state turns the cor-
responding indicator on, a 0 bit turns it off.

XkbChangeIndicator s can generate BadAtom and BadImplementation errors. In
addition, it can also generate XkbIndicatorStateNotify and XkbIndicatorMapNotify
events (see section 8.5).

Tracking Changes to Indicator State or Map
Whenever an indicator changes state, the server sends XkbIndicatorStateNotify
events to all interested clients. Similarly, whenever an indicator’s map changes, the
server sends XkbIndicatorMapNotify events to all interested clients.

To receive XkbIndicatorStateNotify events, use XkbSelectEvents (see section 4.3)
with both the bits_to_change and values_for_bits parameters containing Xk-
bIndicatorStateNotifyMask . To receive XkbIndicatorMapNotify events, use XkbS-
electEvents with XkbIndicatorMapNotifyMask .

To receive events for only specific indicators, use XkbSelectEventDetails . Set the
event_type parameter to XkbIndicatorStateNotify or XkbIndicatorMapNotify , and
set both the bits_to_change and values_for_bits detail parameters to a mask where
each bit specifies one indicator, turning on those bits that specify the indicators for
which you want to receive events.

Both types of indicator events use the same structure:

typedef struct _XkbIndicatorNotify {
 int type; /* Xkb extension base event code */
 unsigned long serial; /* X server serial number for event */

Indicators

49

 Bool send_event; /* True => synthetically generated */
 Display * display; /* server connection where event generated */
 Time time; /* server time when event generated */
 int xkb_type; /* specifies state or map notify */
 int device; /* Xkb device ID, will not be XkbUseCoreKbd */
 unsigned int changed; /* mask of indicators with new state or map */
 unsigned int state; /* current state of all indicators */
} XkbIndicatorNotifyEvent;

xkb_type is either XkbIndicatorStateNotify or XkbIndicatorMapNotify , depending
on whether the event is a kbIndicatorStateNotify event or kbIndicatorMapNotify
event.

The changed parameter is a mask that is the bitwise inclusive OR of the indicators
that have changed. If the event is of type XkbIndicatorMapNotify , changed reports
the maps that changed. If the event is of type XkbIndicatorStateNotify , changed
reports the indicators that have changed state. state is a mask that specifies the
current state of all indicators, whether they have changed or not, for both XkbIndi-
catorStateNotify and IndicatorMapNotify events.

When your client application receives either a XkbIndicatorStateNotify event or
XkbIndicatorMapNotify event, you can note the changes in a changes structure by
calling XkbNoteIndicatorChanges.

void XkbNoteIndicatorChanges (old , new , wanted)
XkbIndicatorChangesPtr old ; /* XkbIndicatorChanges structure to be updated */
XkbIndicatorNotifyEvent * new ; /* event from which changes are to be copied */
unsigned int wanted ; /* which changes are to be noted */

The wanted parameter is the bitwise inclusive OR of XkbIndicatorMapMask and
XkbIndicatorStateMask . XkbNoteIndicatorChanges copies any changes reported
in new and specified in wanted into the changes record specified by old.

To update a local copy of the keyboard description with the actual values, pass
the results of one or more calls to XkbNoteIndicatorChanges to XkbGetIndicator-
Changes:

Status XkbGetIndicatorChanges (dpy , xkb , changes , state)
Display * dpy ; /* connection to the X server */
XkbDescPtr xkb ; /* keyboard description to hold the new values */
XkbIndicatorChangesPtr changes ; /* indicator maps/state to be obtained from
the server */
unsigned int * state ; /* backfilled with the state of the indicators */

XkbGetIndicatorChanges examines the changes parameter, pulls over the neces-
sary information from the server, and copies the results into the xkb keyboard de-
scription. If any bits are set in the state_changes field of changes , XkbGetIndica-
torChanges also places the state of those indicators in state . If the indicators field
of xkb is NULL , XkbGetIndicatorChanges allocates and initializes it. To free the
indicators field, use XkbFreeIndicators (see section 8.6).

XkbGetIndicatorChanges can generate BadAlloc , BadImplementation, and Bad-
Match errors.

Indicators

50

Allocating and Freeing Indicator Maps
Most applications do not need to directly allocate the indicators member of the
keyboard description record (the keyboard description record is described in Chap-
ter 6). If the need arises, however, use XkbAllocIndicatorMaps.

Status XkbAllocIndicatorMaps (xkb)
XkbDescPtr xkb ; /* keyboard description structure */

The xkb parameter must point to a valid keyboard description. If it doesn’t, XkbAl-
locIndicatorMaps returns a BadMatch error. Otherwise, XkbAllocIndicatorMaps
allocates and initializes the indicators member of the keyboard description record
and returns Success . If XkbAllocIndicatorMaps was unable to allocate the indica-
tors record, it reports a Bad Alloc error.

To free memory used by the indicators member of an XkbDescRec structure, use
XkbFreeIndicatorMaps.

void XkbFreeIndicatorMaps (xkb)
XkbDescPtr xkb ; /* keyboard description structure */

If the indicators member of the keyboard description record pointed to by xkb is
not NULL , XkbFreeIndicatorMaps frees the memory associated with the indicators
member of xkb.

51

Chapter 9. Bells
The core X protocol allows only applications to explicitly sound the system bell with a
given duration, pitch, and volume. Xkb extends this capability by allowing clients to
attach symbolic names to bells, disable audible bells, and receive an event whenever
the keyboard bell is rung. For the purposes of this document, the audible bell is
defined to be the system bell, or the default keyboard bell, as opposed to any other
audible sound generated elsewhere in the system.

You can ask to receive XkbBellNotify events (see section 9.4) when any client rings
any one of the following:

• The default bell

• Any bell on an input device that can be specified by a bell_class and bell_id pair

• Any bell specified only by an arbitrary name. (This is, from the server’s point
of view, merely a name, and not connected with any physical sound-generating
device. Some client application must generate the sound, or visual feedback, if
any, that is associated with the name.)

You can also ask to receive XkbBellNotify events when the server rings the default
bell or if any client has requested events only (without the bell sounding) for any
of the bell types previously listed.

You can disable audible bells on a global basis (to set the AudibleBell control, see
Chapter 10). For example, a client that replaces the keyboard bell with some other
audible cue might want to turn off the AudibleBell control to prevent the server
from also generating a sound and avoid cacophony. If you disable audible bells and
request to receive XkbBellNotify events, you can generate feedback different from
the default bell.

You can, however, override the AudibleBell control by calling one of the functions
that force the ringing of a bell in spite of the setting of the AudibleBell control
— XkbForceDeviceBell or XkbForceBell (see section 9.3.3). In this case the server
does not generate a bell event.

Just as some keyboards can produce keyclicks to indicate when a key is pressed or
repeating, Xkb can provide feedback for the controls by using special beep codes.
The AccessXFeedback control is used to configure the specific types of operations
that generate feedback. See section 10.6.3 for a discussion on AccessXFeedback
control.

This chapter describes bell names, the functions used to generate named bells, and
the events the server generates for bells.

Bell Names
You can associate a name to an act of ringing a bell by converting the name to an
Atom and then using this name when you call the functions listed in this chapter. If
an event is generated as a result, the name is then passed to all other clients inter-
ested in receiving XkbBellNotify events. Note that these are arbitrary names and
that there is no binding to any sounds. Any sounds or other effects (such as visual

Bells

52

bells on the screen) must be generated by a client application upon receipt of the
bell event containing the name. There is no default name for the default keyboard
bell. The server does generate some predefined bells for the AccessX controls (see
section 10.6.3). These named bells are shown in Table 9.1; the name is included in
any bell event sent to clients that have requested to receive XkbBellNotify events.

Table 9.1. Predefined Bells
Action Named Bell
Indicator turned on AX_IndicatorOn
Indicator turned off AX_IndicatorOff
More than one indicator changed state AX_IndicatorChange
Control turned on AX_FeatureOn
Control turned off AX_FeatureOff
More than one control changed state AX_FeatureChange
SlowKeys and BounceKeys about to be
turned on or off

AX_SlowKeysWarning

SlowKeys key pressed AX_SlowKeyPress
SlowKeys key accepted AX_SlowKeyAccept
SlowKeys key rejected AX_SlowKeyReject
Accepted SlowKeys key released AX_SlowKeyRelease
BounceKeys key rejected AX_BounceKeyReject
StickyKeys key latched AX_StickyLatch
StickyKeys key locked AX_StickyLock
StickyKeys key unlocked AX_StickyUnlock

Audible Bells
Using Xkb you can generate bell events that do not necessarily ring the system bell.
This is useful if you need to use an audio server instead of the system beep. For
example, when an audio client starts, it could disable the audible bell (the system
bell) and then listen for XkbBellNotify events (see section 9.4). When it receives a
XkbBellNotify event, the audio client could then send a request to an audio server
to play a sound.

You can control the audible bells feature by passing the XkbAudibleBellMask to
XkbChangeEnabledControls (see section 10.1.1). If you set XkbAudibleBellMask
on, the server rings the system bell when a bell event occurs. This is the default. If
you set XkbAudibleBellMask off and a bell event occurs, the server does not ring
the system bell unless you call XkbForceDeviceBell or XkbForceBell (see section
9.3.3).

Audible bells are also part of the per-client auto-reset controls. For more information
on auto-reset controls, see section 10.1.2.

Bell Functions
Use the functions described in this section to ring bells and to generate bell events.

Bells

53

The input extension has two types of feedbacks that can generate bells — bell feed-
back and keyboard feedback. Some of the functions in this section have bell_class
and bell_id parameters; set them as follows: Set bell_class to BellFeedbackClass
or KbdFeedbackClass . A device can have more than one feedback of each type; set
bell_id to the particular bell feedback of bell_class type.

Table 9.2 shows the conditions that cause a bell to sound or an XkbBellNotifyEvent
to be generated when a bell function is called.

Table 9.2. Bell Sounding and Bell Event Generating

Function called AudibleBell Server sounds a
bell

Server sends an
XkbBellNoti-
fyEvent

XkbDeviceBell On Yes Yes
XkbDeviceBell Off No Yes
XkbBell On Yes Yes
XkbBell Off No Yes
XkbDevice-
BellEvent

On or Off No Yes

XkbBellEvent On or Off No Yes
XkbDeviceForce-
Bell

On or Off Yes No

XkbForceBell On or Off Yes No

Generating Named Bells
To ring the bell on an X input extension device or the default keyboard, use Xkb-
DeviceBell.

Bool XkbDeviceBell (display, window, device_id, bell_class, bell_id, percent,
name)
Display * display ; /* connection to the X server */
Window window ; /* window for which the bell is generated, or None */
unsigned int device_spec ; /* device ID, or XkbUseCoreKbd */
unsigned int bell_class ; /* X input extension bell class of the bell to be rung */
unsigned int bell_id ; /* X input extension bell ID of the bell to be rung */
int percent ; /* bell volume, from -100 to 100 inclusive */
Atom name ; /* a name for the bell, or NULL */

Set percent to be the volume relative to the base volume for the keyboard as de-
scribed for XBell.

Note that bell_class and bell_id indicate the bell to physically ring. name is simply
an arbitrary moniker for the client application’s use.

To determine the current feedback settings of an extension input device, use XGet-
FeedbackControl . See the X input extension documentation for more information
on XGetFeedbackControl and related data structures.

Bells

54

If a compatible keyboard extension is not present in the X server, XkbDeviceBell
immediately returns False . Otherwise, XkbDeviceBell rings the bell as specified
for the display and keyboard device and returns True . If you have disabled the
audible bell, the server does not ring the system bell, although it does generate a
XkbBellNotify event.

You can call XkbDeviceBell without first initializing the keyboard extension.

As a convenience function, Xkb provides a function to ring the bell on the default
keyboard: XkbBell.

Bool XkbBell (display, window, percent, name)
Display * display ; /* connection to the X server */
Window window ; /* event window, or None*/
int percent ; /* relative volume, which can range from -100 to 100 inclusive */
Atom name ; /* a bell name, or NULL */

If a compatible keyboard extension isn’t present in the X server, XkbBell calls XBell
with the specified display and percent , and returns False . Otherwise, XkbBell
calls XkbDeviceBell with the specified display, window, percent, and name , a
device_spec of XkbUseCoreKbd , a bell_class of XkbDfltXIClass , and a bell_id
of XkbDfltXIId, and returns True.

If you have disabled the audible bell, the server does not ring the system bell, al-
though it does generate a XkbBellNotify event.

You can call XkbBell without first initializing the keyboard extension.

Generating Named Bell Events
Using Xkb, you can also generate a named bell event that does not ring any bell.
This allows you to do things such as generate events when your application starts.

For example, if an audio client listens for these types of bells, it can produce a
"whoosh" sound when it receives a named bell event to indicate a client just started.
In this manner, applications can generate start-up feedback and not worry about
producing annoying beeps if an audio server is not running.

To cause a bell event for an X input extension device or for the keyboard, without
ringing the corresponding bell, use XkbDeviceBellEvent.

Bool XkbDeviceBellEvent (display, window, device_spec, bell_class, bell_id, per-
cent, name)
Display * display ; /* connection to the X server */
Window window ; /* event window, or None*/
unsigned int device_spec ; /* device ID, or XkbUseCoreKbd */
unsigned int bell_class; /* input extension bell class for the event */
unsigned int bell_id ; /* input extension bell ID for the event */
int percent ; /* volume for the bell, which can range from -100 to 100 inclusive */
Atom name ; /* a bell name, or NULL */

Bells

55

If a compatible keyboard extension isn’t present in the X server, XkbDevice-
BellEvent immediately returns False . Otherwise, XkbDeviceBellEvent causes an
XkbBellNotify event to be sent to all interested clients and returns True . Set per-
cent to be the volume relative to the base volume for the keyboard as described
for XBell.

In addition, XkbDeviceBellEvent may generate Atom protocol errors as well as
XkbBellNotify events. You can call XkbBell without first initializing the keyboard
extension.

As a convenience function, Xkb provides a function to cause a bell event for the
keyboard without ringing the bell: XkbBellEvent.

Bool XkbBellEvent (display, window, percent, name)
Display * display ; /* connection to the X server */
Window window ; /* the event window, or None */
int percent ; /* relative volume, which can range from -100 to 100 inclusive */
Atom name ; /* a bell name, or NULL */

If a compatible keyboard extension isn’t present in the X server, XkbBellEvent im-
mediately returns False . Otherwise, XkbBellEvent calls XkbDeviceBellEvent with
the specified display, window, percent, and name , a device_spec of XkbUseC-
oreKbd , a bell_class of XkbDfltXIClass , and a bell_id of XkbDfltXIId, and returns
what XkbDeviceBellEvent returns.

XkbBellEvent generates a XkbBellNotify event.

You can call XkbBellEvent without first initializing the keyboard extension.

Forcing a Server-Generated Bell
To ring the bell on any keyboard, overriding user preference settings for audible
bells, use XkbForceDeviceBell.

Bool XkbForceDeviceBell (display, window, device_spec, bell_class, bell_id, per-
cent)
Display * display ; /* connection to the X server */
Window window ; /* event window, or None */
unsigned int device_spec ; /* device ID, or XkbUseCoreKbd */
unsigned int bell_class ; /* input extension class of the bell to be rung */
unsigned int bell_id ; /* input extension ID of the bell to be rung */
int percent ; /* relative volume, which can range from -100 to 100 inclusive */

If a compatible keyboard extension isn’t present in the X server, XkbForceDevice-
Bell immediately returns False . Otherwise, XkbForceDeviceBell rings the bell as
specified for the display and keyboard device and returns True . Set percent to
be the volume relative to the base volume for the keyboard as described for XBell
. There is no name parameter because XkbForceDeviceBell does not cause an
XkbBellNotify event.

You can call XkbBell without first initializing the keyboard extension.

Bells

56

To ring the bell on the default keyboard, overriding user preference settings for
audible bells, use XkbForceBell.

Bool XkbForceBell (display, percent)
Display * display ; /* connection to the X server */
int percent ; /* volume for the bell, which can range from -100 to 100 inclusive */

If a compatible keyboard extension isn’t present in the X server, XkbForceBell
calls XBell with the specified display and percent and returns False . Otherwise,
XkbForceBell calls XkbForceDeviceBell with the specified display and percent ,
device_spec = XkbUseCoreKbd , bell_class = XkbDfltXIClass , bell_id = XkbD-
fltXIId, window = None, and name = NULL , and returns what XkbForceDevice-
Bell returns.

XkbForceBell does not cause an XkbBellNotify event.

You can call XkbBell without first initializing the keyboard extension.

Detecting Bells
Xkb generates XkbBellNotify events for all bells except for those resulting from
calls to XkbForceDeviceBell and XkbForceBell . To receive XkbBellNotify events
under all possible conditions, pass XkbBellNotifyMask in both the bits_to_change
and values_for_bits parameters to XkbSelectEvents (see section 4.3).

The XkbBellNotify event has no event details. It is either selected or it is not. How-
ever, you can call XkbSelectEventDetails using XkbBellNotify as the event_type
and specifying XkbAllBellNotifyMask in bits_to_change and values_for_bits. This
has the same effect as a call to XkbSelectEvents.

The structure for the XkbBellNotify event type contains:

typedef struct _XkbBellNotify {
 int type; /* Xkb extension base event code */
 unsigned long serial; /* X server serial number for event */
 Bool send_event; /* True => synthetically generated */
 Display * display; /* server connection where event generated */
 Time time; /* server time when event generated */
 int xkb_type; /* XkbBellNotify */
 unsigned int device; /* Xkb device ID, will not be XkbUseCoreKbd */
 int percent; /* requested volume as % of max */
 int pitch; /* requested pitch in Hz */
 int duration; /* requested duration in microseconds */
 unsigned int bell_class; /* X input extension feedback class */
 unsigned int bell_id; /* X input extension feedback ID */
 Atom name; /* "name" of requested bell */
 Window window; /* window associated with event */
 Bool event_only; /* False -> the server did not produce a beep */
} XkbBellNotifyEvent;

If your application needs to generate visual bell feedback on the screen when it
receives a bell event, use the window ID in the XkbBellNotifyEvent , if present.

57

Chapter 10. Keyboard Controls
The Xkb extension is composed of two parts: a server extension, and a client-side X
library extension. This chapter discusses functions used to modify controls effect-
ing the behavior of the server portion of the Xkb extension. Chapter 11 discusses
functions used to modify controls that affect only the behavior of the client portion
of the extension; those controls are known as Library Controls.

Xkb contains control features that affect the entire keyboard, known as global key-
board controls. Some of the controls may be selectively enabled and disabled; these
controls are known as the Boolean Controls . Boolean Controls can be turned on
or off under program control and can also be automatically set to an on or off con-
dition when a client program exits. The remaining controls, known as the Non-
Boolean Controls , are always active. The XkbControlsRec structure describes the
current state of most of the global controls and the attributes effecting the behavior
of each of these Xkb features. This chapter describes the Xkb controls and how to
manipulate them.

There are two possible components for each of the Boolean Controls: attributes de-
scribing how the control should work, and a state describing whether the behavior
as a whole is enabled or disabled. The attributes and state for most of these controls
are held in the XkbControlsRec structure (see section 10.8).

You can manipulate the Xkb controls individually, via convenience functions, or as
a whole. To treat them as a group, modify an XkbControlsRec structure to describe
all of the changes to be made, and then pass that structure and appropriate flags
to an Xkb library function, or use a XkbControlsChangesRec (see section 10.10.1)
to reduce network traffic. When using a convenience function to manipulate one
control individually, you do not use an XkbControlsRec structure directly.

The Xkb controls are grouped as shown in Table 10.1.

Keyboard Controls

58

Table 10.1. Xkb Keyboard Controls
Type of Control Control Name Boolean Control?
Controls for enabling and dis-
abling other controls

EnabledControls No

 AutoReset No
Control for bell behavior AudibleBell Boolean
Controls for repeat key be-
havior

PerKeyRepeat No

 RepeatKeys Boolean
 DetectableAutorepeat Boolean
Controls for keyboard over-
lays

Overlay1 Boolean

 Overlay2 Boolean
Controls for using the mouse
from the keyboard

MouseKeys Boolean

 MouseKeysAccel Boolean
Controls for better keyboard
access by

AccessXFeedback Boolean

physically impaired persons AccessXKeys Boolean
 AccessXTimeout Boolean
 BounceKeys Boolean
 SlowKeys Boolean
 StickyKeys Boolean
Controls for general keyboard
mapping

GroupsWrap No

 IgnoreGroupLock Boolean
 IgnoreLockMods No
 InternalMods No
Miscellaneous per-client con-
trols

GrabsUseXKBState Boolean

 LookupStateWhenGrabbed Boolean
 SendEventUsesXKBState Boolean

The individual categories and controls are described first, together with functions
for manipulating them. A description of the XkbControlsRec structure and the gen-
eral functions for dealing with all of the controls at once follow at the end of the
chapter.

Controls that Enable and Disable Other Con-
trols

Enable and disable the boolean controls under program control by using the En-
abledControls control; enable and disable them upon program exit by configuring
the AutoReset control.

Keyboard Controls

59

The EnabledControls Control
The EnabledControls control is a bit mask where each bit that is turned on means
the corresponding control is enabled, and when turned off, disabled. It corresponds
to the enabled_ctrls field of an XkbControlsRec structure (see section 10.8). The
bits describing which controls are turned on or off are defined in Table 10.7.

Use XkbChangeEnabledControls to manipulate the EnabledControls control.

Bool XkbChangeEnabledControls (dpy , device_spec , mask , values)
Display * dpy ; /* connection to X server */
unsigned int device_spec ; /* keyboard device to modify */
unsigned int mask ; /* 1 bit -> controls to enable / disable */
unsigned int values ; /* 1 bit => enable, 0 bit => disable */

The mask parameter specifies the boolean controls to be enabled or disabled, and
the values mask specifies the new state for those controls. Valid values for both
of these masks are composed of a bitwise inclusive OR of bits taken from the set
of mask bits in Table 10.7, using only those masks with "ok" in the enabled_ctrls
column.

If the X server does not support a compatible version of Xkb or the Xkb extension
has not been properly initialized, XkbChangeEnabledControls returns False ; oth-
erwise, it sends the request to the X server and returns True .

Note that the EnabledControls control only enables and disables controls; it does
not configure them. Some controls, such as the AudibleBell control, have no config-
uration attributes and are therefore manipulated solely by enabling and disabling
them. Others, however, have additional attributes to configure their behavior. For
example, the RepeatControl control uses repeat_delay and repeat_interval fields
to describe the timing behavior of keys that repeat. The RepeatControl behavior
is turned on or off depending on the value of the XkbRepeatKeysMask bit, but you
must use other means, as described in this chapter, to configure its behavior in de-
tail.

The AutoReset Control
You can configure the boolean controls to automatically be enabled or disabled when
a program exits. This capability is controlled via two masks maintained in the X serv-
er on a per-client basis. There is no client-side Xkb data structure corresponding to
these masks. Whenever the client exits for any reason, any boolean controls speci-
fied in the auto-reset mask are set to the corresponding value from the auto-reset
values mask. This makes it possible for clients to "clean up after themselves" auto-
matically, even if abnormally terminated. The bits used in the masks correspond to
the EnabledControls control bits.

For example, a client that replaces the keyboard bell with some other audible cue
might want to turn off the AudibleBell control to prevent the server from also gen-
erating a sound and avoid cacophony. If the client were to exit without resetting
the AudibleBell control, the user would be left without any feedback at all. Setting
AudibleBell in both the auto-reset mask and auto-reset values guarantees that the
audible bell will be turned back on when the client exits.

Keyboard Controls

60

To get the current values of the auto-reset controls, use XkbGetAutoResetControls .

Bool XkbGetAutoResetControls (dpy , auto_ctrls , auto_values)
Display * dpy ; /* connection to X server */
unsigned int * auto_ctrls ; /* specifies which bits in auto_values are relevant */
unsigned int * auto_values ; /* 1 bit => corresponding control has auto-reset on
*/

XkbGetAutoResetControls backfills auto_ctrls and auto_values with the AutoReset
control attributes for this particular client. It returns True if successful, and False
otherwise.

To change the current values of the AutoReset control attributes, use XkbSetAu-
toResetControls.

Bool XkbSetAutoResetControls (dpy , changes , auto_ctrls , auto_values)
Display * dpy ; /* connection to X server */
unsigned int changes ; /* controls for which to change auto-reset values */
unsigned int * auto_ctrls ; /* controls from changes that should auto reset */
unsigned int * auto_values ; /* 1 bit => auto-reset on */

XkbSetAutoResetControls changes the auto-reset status and associated auto-reset
values for the controls selected by changes . For any control selected by changes
, if the corresponding bit is set in auto_ctrls , the control is configured to auto-reset
when the client exits. If the corresponding bit in auto_values is on, the control
is turned on when the client exits; if zero, the control is turned off when the client
exits. For any control selected by changes , if the corresponding bit is not set in
auto_ctrls , the control is configured to not reset when the client exits. For example:

To leave the auto-reset controls for StickyKeys the way they are:

ok = XkbSetAutoResetControls(dpy, 0, 0, 0);

To change the auto-reset controls so that StickyKeys are unaffected when the
client exits:

ok = XkbSetAutoResetControls(dpy, XkbStickyKeysMask, 0, 0);

To change the auto-reset controls so that StickyKeys are turned off when the client
exits:

ok = XkbSetAutoResetControls(dpy, XkbStickyKeysMask, XkbStickyKeysMask, 0);

To change the auto-reset controls so that StickyKeys are turned on when the client
exits:

ok = XkbSetAutoResetControls(dpy, XkbStickyKeysMask, XkbStickyKeysMask,

Keyboard Controls

61

XkbStickyKeysMask);

XkbSetAutoResetControls backfills auto_ctrls and auto_values with the auto-reset
controls for this particular client. Note that all of the bits are valid in the returned
values, not just the ones selected in the changes mask.

Control for Bell Behavior
The X server’s generation of sounds is controlled by the AudibleBell control. Con-
figuration of different bell sounds is discussed in Chapter 9.

The AudibleBell Control
The AudibleBell control is a boolean control that has no attributes. As such, you
may enable and disable it using either the EnabledControls control or the AutoRe-
set control discussed in section 10.1.1. When enabled, protocol requests to gener-
ate a sound result in the X server actually producing a real sound; when disabled,
requests to the server to generate a sound are ignored unless the sound is forced.
See section 9.2.

Controls for Repeat Key Behavior
The repeating behavior of keyboard keys is governed by three controls, the
PerKeyRepeat control, which is always active, and the RepeatKeys and De-
tectableAutorepeat controls, which are boolean controls that may be enabled and
disabled. PerKeyRepeat determines which keys are allowed to repeat. RepeatKeys
governs the behavior of an individual key when it is repeating. DetectableAutore-
peat allows a client to detect when a key is repeating as a result of being held down.

The PerKeyRepeat Control
The PerKeyRepeat control is a bitmask long enough to contain a bit for each key
on the device; it determines which individual keys are allowed to repeat. The Xkb
PerKeyRepeat control provides no functionality different from that available via the
core X protocol. There are no convenience functions in Xkb for manipulating this
control. The PerKeyRepeat control settings are carried in the per_key_repeat field
of an XkbControlsRec structure, discussed in section 10.8.

The RepeatKeys Control
The core protocol allows only control over whether or not the entire keyboard or
individual keys should auto-repeat when held down. RepeatKeys is a boolean con-
trol that extends this capability by adding control over the delay until a key begins
to repeat and the rate at which it repeats. RepeatKeys is coupled with the core
auto-repeat control: when RepeatKeys is enabled or disabled, the core auto-repeat
is enabled or disabled and vice versa.

Auto-repeating keys are controlled by two attributes. The first, timeout , is the delay
after the initial press of an auto-repeating key and the first generated repeat event.
The second, interval , is the delay between all subsequent generated repeat events.
As with all boolean controls, configuring the attributes that determine how the con-
trol operates does not automatically enable the control as a whole; see section 10.1.

Keyboard Controls

62

To get the current attributes of the RepeatKeys control for a keyboard device, use
XkbGetAutoRepeatRate .

Bool XkbGetAutoRepeatRate (display, device_spec, timeout_rtrn, interval_rtrn)
Display * display ; /* connection to X server */
unsigned int device_spec ; /* desired device ID, or XkbUseCoreKbd */
unsigned int * timeout_rtrn ; /* backfilled with initial repeat delay, ms */
unsigned int * interval_rtrn ; /* backfilled with subsequent repeat delay, ms */

XkbGetAutoRepeatRate queries the server for the current values of the Repeat-
Controls control attributes, backfills timeout_rtrn and interval_rtrn with them, and
returns True . If a compatible version of the Xkb extension is not available in the
server XkbGetAutoRepeatRate returns False .

To set the attributes of the RepeatKeys control for a keyboard device, use XkbSe-
tAutoRepeatRate .

Bool XkbSetAutoRepeatRate (display, device_spec, timeout, interval)
Display * display ; /* connection to X server */
unsigned int device_spec ; /* device to configure, or XkbUseCoreKbd */
unsigned int timeout ; /* initial delay, ms */
unsigned int interval ; /* delay between repeats, ms */

XkbSetAutoRepeatRate sends a request to the X server to configure the AutoRepeat
control attributes to the values specified in timeout and interval .

XkbSetAutoRepeatRate does not wait for a reply; it normally returns True . Spec-
ifying a zero value for either timeout or interval causes the server to generate a
BadValue protocol error. If a compatible version of the Xkb extension is not available
in the server, XkbSetAutoRepeatRate returns False .

The DetectableAutorepeat Control
Auto-repeat is the generation of multiple key events by a keyboard when the user
presses a key and holds it down. Keyboard hardware and device-dependent X server
software often implement auto-repeat by generating multiple KeyPress events with
no intervening KeyRelease event. The standard behavior of the X server is to gen-
erate a KeyRelease event for every KeyPress event. If the keyboard hardware and
device-dependent software of the X server implement auto-repeat by generating
multiple KeyPress events, the device-independent part of the X server by default
synthetically generates a KeyRelease event after each KeyPress event. This pro-
vides predictable behavior for X clients, but does not allow those clients to detect
the fact that a key is auto-repeating.

Xkb allows clients to request detectable auto-repeat . If a client requests and the
server supports DetectableAutorepeat , Xkb generates KeyRelease events only
when the key is physically released. If DetectableAutorepeat is not supported or has
not been requested, the server synthesizes a KeyRelease event for each repeating
KeyPress event it generates.

DetectableAutorepeat , unlike the other controls in this chapter, is not contained in
the XkbControlsRec structure, nor can it be enabled or disabled via the Enabled-

Keyboard Controls

63

Controls control. Instead, query and set DetectableAutorepeat using XkbGetDe-
tectableAutorepeat and XkbSetDetectableAutorepeat .

DetectableAutorepeat is a condition that applies to all keyboard devices for a client’s
connection to a given X server; it cannot be selectively set for some devices and
not for others. For this reason, none of the Xkb library functions involving De-
tectableAutorepeat involve a device specifier.

To determine whether or not the server supports DetectableAutorepeat , use Xk-
bGetDetectableAutorepeat .

Bool XkbGetDetectableAutorepeat (display, supported_rtrn)
Display * display ; /* connection to X server */
Bool * supported_rtrn ; /* backfilled True if DetectableAutorepeat supported */

XkbGetDetectableAutorepeat queries the server for the current state of De-
tectableAutorepeat and waits for a reply. If supported_rtrn is not NULL , it backfills
supported_rtrn with True if the server supports DetectableAutorepeat , and False
otherwise. XkbGetDetectableAutorepeat returns the current state of DetectableAu-
torepeat for the requesting client: True if DetectableAutorepeat is set, and False
otherwise.

To set DetectableAutorepeat , use XkbSetDetectableAutorepeat . This request af-
fects all keyboard activity for the requesting client only; other clients still see the ex-
pected nondetectable auto-repeat behavior, unless they have requested otherwise.

Bool XkbSetDetectableAutorepeat (display, detectable, supported_rtrn)
Display * display ; /* connection to X server */
Bool detectable ; /* True => set DetectableAutorepeat */
Bool * supported_rtrn ; /* backfilled True if DetectableAutorepeat supported */

XkbSetDetectableAutorepeat sends a request to the server to set DetectableAutore-
peat on for the current client if detectable is True , and off it detectable is False ; it
then waits for a reply. If supported_rtrn is not NULL , XkbSetDetectableAutorepeat
backfills supported_rtrn with True if the server supports DetectableAutorepeat
, and False if it does not. XkbSetDetectableAutorepeat returns the current state
of DetectableAutorepeat for the requesting client: True if DetectableAutorepeat
is set, and False otherwise.

Controls for Keyboard Overlays (Overlay1 and
Overlay2 Controls)

A keyboard overlay allows some subset of the keyboard to report alternate keycodes
when the overlay is enabled. For example, a keyboard overlay can be used to simu-
late a numeric or editing keypad on a keyboard that does not actually have one by
reusing some portion of the keyboard as an overlay. This technique is very common
on portable computers and embedded systems with small keyboards.

Xkb includes direct support for two keyboard overlays, using the Overlay1 and
Overlay2 controls. When Overlay1 is enabled, all of the keys that are members of the

Keyboard Controls

64

first keyboard overlay generate an alternate keycode. When Overlay2 is enabled, all
of the keys that are members of the second keyboard overlay generate an alternate
keycode. The two overlays are mutually exclusive; any particular key may be in at
most one overlay. Overlay1 and Overlay2 are boolean controls. As such, you may
enable and disable them using either the EnabledControls control or the AutoReset
control discussed in section 10.1.1.

To specify the overlay to which a key belongs and the alternate keycode it should
generate when that overlay is enabled, assign it either the XkbKB_Overlay1 or
XkbKB_Overlay2 key behaviors, as described in section 16.2.

Controls for Using the Mouse from the Key-
board

Using Xkb, it is possible to configure the keyboard to allow simulation of the X point-
er device. This simulation includes both movement of the pointer itself and press
and release events associated with the buttons on the pointer. Two controls affect
this behavior: the MouseKeys control determines whether or not simulation of the
pointer device is active, as well as configuring the default button; the MouseKeysAc-
cel control determines the movement characteristics of the pointer when simulated
via the keyboard. Both of them are boolean controls; as such, you may enable and
disable them using either the EnabledControls control or the AutoReset control
discussed in section 10.1.1. The individual keys that simulate different aspects of the
pointer device are determined by the keyboard mapping, discussed in Chapter 16.

The MouseKeys Control
The MouseKeys control allows a user to control all the mouse functions from the
keyboard. When MouseKeys are enabled, all keys with MouseKeys actions bound
to them generate core pointer events instead of normal KeyPress and KeyRelease
events.

The MouseKeys control has a single attribute, mk_dflt_btn that specifies the core
button number to be used by mouse keys actions that do not explicitly specify a
button. There is no convenience function for getting or setting the attribute; instead
use XkbGetControls and XkbSetControls (see sections 10.9 and 10.10).

Note
MouseKeys can also be turned on and off by pressing the key combination
necessary to produce an XK_Pointer_EnableKeys keysym. The de facto de-
fault standard for this is Shift+Alt+NumLock , but this may vary depending
on the keymap.

The MouseKeysAccel Control
When the MouseKeysAccel control is enabled, the effect of a key-activated pointer
motion action changes as a key is held down. If the control is disabled, pressing
a mouse-pointer key yields one mouse event. When MouseKeysAccel is enabled,
mouse movement is defined by an initial distance specified in the XkbSA_MovePtr
action and the following fields in the XkbControlsRec structure (see section 10.8).

Keyboard Controls

65

Table 10.2. MouseKeysAccel Fields

Field Function
mk_delay Time (ms) between the initial key press and the first

repeated motion event
mk_interval Time (ms) between repeated motion events
mk_time_to_max Number of events (count) before the pointer reaches

maximum speed
mk_max_speed The maximum speed (in pixels per event) the pointer

reaches
mk_curve The ramp used to reach maximum pointer speed

There are no convenience functions to query or change the attributes of the
MouseKeysAccel control; instead use XkbGetControls and XkbSetControls (see
sections 10.9 and 10.10).

The effects of the attributes of the MouseKeysAccel control depend on whether
the XkbSA_MovePtr action (see section 16.1) specifies relative or absolute pointer
motion.

Absolute Pointer Motion

If an XkbSA_MovePtr action specifies an absolute position for one of the coordi-
nates but still allows acceleration, all repeated events contain any absolute coordi-
nates specified in the action. For example, if the XkbSA_MovePtr action specifies
an absolute position for the X direction, but a relative motion for the Y direction,
the pointer accelerates in the Y direction, but stays at the same X position.

Relative Pointer Motion

If the XkbSA_MovePtr action specifies relative motion, the initial event always
moves the cursor the distance specified in the action. After mk_delay milliseconds,
a second motion event is generated, and another occurs every mk_interval millisec-
onds until the user releases the key.

Between the time of the second motion event and mk_time_to_max intervals,
the change in pointer distance per interval increases with each interval. After
mk_time_to_max intervals have elapsed, the change in pointer distance per interval
remains the same and is calculated by multiplying the original distance specified in
the action by mk_max_speed .

For example, if the XkbSA_MovePtr action specifies a relative motion in the X
direction of 5, mk_delay =160, mk_interval =40, mk_time_to_max =30, and
mk_max_speed =30, the following happens when the user presses the key:

• The pointer immediately moves 5 pixels in the X direction when the key is pressed.

• After 160 milliseconds (mk_delay), and every 40 milliseconds thereafter (
mk_interval), the pointer moves in the X direction.

• The distance in the X direction increases with each interval until 30 intervals (
mk_time_to_max) have elapsed.

Keyboard Controls

66

• After 30 intervals, the pointer stops accelerating, and moves 150 pixels (
mk_max_speed * the original distance) every interval thereafter, until the key is
released.

The increase in pointer difference for each interval is a function of mk_curve. Events
after the first but before maximum acceleration has been achieved are accelerated
according to the formula:

Where action_delta is the relative motion specified by the XkbSA_MovePtr action,
mk_max_speed and mk_time_to_max are parameters to the MouseKeysAccel con-
trol, and the curveFactor is computed using the MouseKeysAccel mk_curve para-
meter as follows:

With the result that a mk_curve of zero causes the distance moved to increase
linearly from action_delta to

. A negative mk_curve causes an initial sharp increase in acceleration that tapers
off, and a positive curve yields a slower initial increase in acceleration followed by a
sharp increase as the number of pointer events generated by the action approaches
mk_time_to_max . The legal values for mk_curve are between -1000 and 1000.

A distance vs. time graph of the pointer motion is shown in Figure 10.1.

Keyboard Controls

67

mk_curve = 0
mk_curve < 0
mk_curve > 0

mk_max_speed * Action delta

distance
Action delta

mk_delay
(msec)

mk_time_to_max
(count)

mk_interval
(msec)

MouseKeys Acceleration

Controls for Better Keyboard Access by Physi-
cally Impaired Persons

The Xkb extension includes several controls specifically aimed at making keyboard
use more effective for physically impaired people. All of these controls are boolean
controls and may be individually enabled and disabled, as well as configured to tune

Keyboard Controls

68

their specific behavior. The behavior of these controls is based on the AccessDOS
package 1.

The AccessXKeys Control

Enabling or disabling the keyboard controls through a graphical user interface may
be impossible for people who need to use the controls. For example, a user who
needs SlowKeys (see section 10.6.6) may not even be able to start the graphical ap-
plication, let alone use it, if SlowKeys is not enabled. To allow easier access to some
of the controls, the AccessXKeys control provides a set of special key sequences
similar to those available in AccessDOS.

When the AccessXKeys control is enabled, the user can turn controls on or off from
the keyboard by entering the following standard key sequences:

• Holding down a shift key by itself for eight seconds toggles the SlowKeys control.

• Pressing and releasing the left or right Shift key five times in a row, without any
intervening key events and with less than 30 seconds delay between consecutive
presses, toggles the state of the StickyKeys control.

• Simultaneously operating two or more modifier keys deactivates the StickyKeys
control.

When the AccessXKeys control is disabled, Xkb does not look for the above special
key sequences.

Some of these key sequences optionally generate audible feedback of the change
in state, as described in section 10.6.3, or XkbControlsNotify events, described in
section 10.11.

The AccessXTimeout Control

In environments where computers are shared, features such as SlowKeys present
a problem: if SlowKeys is on, the keyboard can appear to be unresponsive because
keys are not accepted until they are held for a certain period of time. To help solve
this problem, Xkb provides an AccessXTimeout control to automatically change
the enabled/disabled state of any boolean controls and to change the value of the
AccessXKeys and AccessXFeedback control attributes if the keyboard is idle for a
specified period of time.

When a timeout as specified by AccessXTimeout occurs and a control is consequent-
ly modified, Xkb generates an XkbControlsNotify event. For more information on
XkbControlsNotify events, refer to section 10.11.

Use XkbGetAccessXTimeout to query the current AccessXTimeout options for a
keyboard device.

1 AccessDOS provides access to the DOS operating system for people with physical impairments and was developed
by the Trace R&D Center at the University of Wisconsin. For more information on AccessDOS, contact the Trace R&D
Center, Waisman Center and Department of Industrial Engineering, University of Wisconsin-Madison WI 53705-2280.
Phone: 608-262-6966. e-mail: info@trace.wisc.edu.

Keyboard Controls

69

Bool XkbGetAccessXTimeout (display , device_spec , timeout_rtrn ,
ctrls_mask_rtrn , ctrls_values_rtrn , options_mask_rtrn, options_values_rtrn)
Display * display ; /* connection to X server */
unsigned int device_spec ; /* device to query, or XkbUseCoreKbd */
unsigned short * timeout_rtrn ; /* delay until AccessXTimeout, seconds */
unsigned int * ctrls_mask_rtrn ; /* backfilled with controls to modify */
unsigned int * ctrls_values_rtrn ; /* backfilled with on/off status for controls */
unsigned short * opts_mask_rtrn ; /* backfilled with ax_options to modify */
unsigned short * opts_values_rtrn ; /* backfilled with values for ax_options */

XkbGetAccessXTimeout sends a request to the X server to obtain the current values
for the AccessXTimeout attributes, waits for a reply, and backfills the values into
the appropriate arguments. The parameters opts_mask_rtrn and opts_values_rtrn
are backfilled with the options to modify and the values for ax_options , which is
a field in the XkbControlsRec structure (see section 10.8). XkbGetAccessXTimeout
returns True if successful; if a compatible version of the Xkb extension is not
available in the server, XkbGetAccessXTimeout returns False .

To configure the AccessXTimeout options for a keyboard device, use XkbSetAc-
cessXTimeout .

Bool XkbSetAccessXTimeout (display , device_spec, timeout, ctrls_mask,
ctrls_values, opts_mask, opts_values)
Display * display ; /* connection to X server */
unsigned int device_spec ; /* device to configure, or XkbUseCoreKbd */
unsigned short timeout ; /* seconds idle until AccessXTimeout occurs */
unsigned int ctrls_mask ; /* boolean controls to modify */
unsigned int ctrls_values ; /* new bits for controls selected by ctrls_mask */
unsigned short opts_mask ; /* ax_options to change */
unsigned short opts_values ; /* new bits for ax_options selected by opts_mask */

timeout specifies the number of seconds the keyboard must be idle before the con-
trols are modified. ctrls_mask specifies what controls are to be enabled or disabled,
and ctrls_values specifies whether those controls are to be enabled or disabled.
The bit values correspond to those for enabling and disabling boolean controls (see
section 10.1.1). The opts_mask field specifies which attributes of the AccessXKeys
and AccessXFeedback controls are to be changed, and opts_values specifies the
new values for those options. The bit values correspond to those for the ax_options
field of an XkbDescRec (see section 10.8).

XkbSetAccessXTimeout sends a request to configure the AccessXTimeout control
to the server. It does not wait for a reply, and normally returns True . If a compatible
version of the Xkb extension is not available in the server, XkbSetAccessXTimeout
returns False .

The AccessXFeedback Control
Just as some keyboards can produce keyclicks to indicate when a key is pressed or
repeating, Xkb can provide feedback for the controls by using special beep codes.

Keyboard Controls

70

Use the AccessXFeedback control to configure the specific types of operations that
generate feedback.

There is no convenience function for modifying the AccessXFeedback control, al-
though the feedback as a whole can be enabled or disabled just as other boolean
controls are (see section 10.1). Individual beep codes are turned on or off by modi-
fying the following bits in the ax_options field of an XkbControlsRec structure and
using XkbSetControls (see section 10.10):

Table 10.3. AccessXFeedback Masks

Action Beep Code ax_options bit
LED turned on High-pitched beep XkbAX_IndicatorFBMask
LED turned off Low-pitched beep XkbAX_IndicatorFBMask
More than one LED
changed state

Two high-pitched beeps XkbAX_IndicatorFBMask

Control turned on Rising tone XkbAX_FeatureFBMask
Control turned off Falling tone XkbAX_FeatureFBMask
More than one control
changed state

Two high-pitched beeps XkbAX_FeatureFBMask

SlowKeys and BounceKeys
about to be turned on or
off

Three high-pitched beeps XkbAX_SlowWarnFBMask

SlowKeys key pressed Medium-pitched beep XkbAX_SKPressFBMask
SlowKeys key accepted Medium-pitched beep XkbAX_SKAcceptFBMask
SlowKeys key rejected Low-pitched beep XkbAX_SKRejectFBMask
Accepted SlowKeys key
released

Medium-pitched beep XkbAX_SKReleaseFBMask

BounceKeys key rejected Low-pitched beep XkbAX_BKRejectFBMask
StickyKeys key latched Low-pitched beep fol-

lowed by high-pitched
beep

XkbAX_StickyKeysFBMask

StickyKeys key locked High-pitched beep XkbAX_StickyKeysFBMask
StickyKeys key unlocked Low-pitched beep XkbAX_StickyKeysFBMask

Implementations that cannot generate continuous tones may generate multiple
beeps instead of falling and rising tones; for example, they can generate a high-
pitched beep followed by a low-pitched beep instead of a continuous falling tone.
Other implementations can only ring the bell with one fixed pitch. In these cases,
use the XkbAX_DumbBellFBMask bit of ax_options to indicate that the bell can
only ring with a fixed pitch.

When any of the above feedbacks occur, Xkb may generate a XkbBellNotify event
(see section 9.4).

AccessXNotify Events
The server can generate XkbAccessXNotify events for some of the global keyboard
controls. The structure for the XkbAccessXNotify event type is as follows:

Keyboard Controls

71

typedef struct {
 int type; /* Xkb extension base event code */
 unsigned long serial; /* X server serial number for event */
 Bool send_event; /* True => synthetically generated */
 Display * display; /* server connection where event generated */
 Time time; /* server time when event generated */
 int xkb_type; /* XkbAccessXNotify */
 int device; /* Xkb device ID, will not be XkbUseCoreKbd */
 int detail; /* XkbAXN_* */
 KeyCode keycode; /* key of event */
 int slowKeysDelay; /* current SlowKeys delay */
 int debounceDelay; /* current debounce delay */
} XkbAccessXNotifyEvent;

The detail field describes what AccessX event just occurred and can be any of the
values in Table 10.4.

Table 10.4. AccessXNotify Events

detail Reason
XkbAXN_SKPress A key was pressed when SlowKeys was enabled.
XkbAXN_SKAccept A key was accepted (held longer than the SlowKeys

delay).
XkbAXN_SKRelease An accepted SlowKeys key was released.
XkbAXN_SKReject A key was rejected (released before the SlowKeys de-

lay expired).
XkbAXN_BKAccept A key was accepted by BounceKeys.
XkbAXN_BKReject A key was rejected (pressed before the BounceKeys

delay expired).
XkbAXN_AXKWarning AccessXKeys is about to turn on/off StickyKeys or

BounceKeys.

The keycode field reports the keycode of the key for which the event occurred.
If the action is related to SlowKeys , the slowKeysDelay field contains the cur-
rent SlowKeys acceptance delay. If the action is related to BounceKeys , the de-
bounceDelay field contains the current BounceKeys debounce delay.

Selecting for AccessX Events

To receive XkbAccessXNotify events under all possible conditions, use Xk-
bSelectEvents (see section 4.3) and pass XkbAccesXNotifyMask in both
bits_to_change and values_for_bits .

To receive XkbStateNotify events only under certain conditions, use XkbS-
electEventDetails using XkbAccessXNotify as the event_type and specifying the
desired state changes in bits_to_change and values_for_bits using mask bits from
Table 10.5.

Keyboard Controls

72

Table 10.5. AccessXNotify Event Details

XkbAccessXNotify
Event Details

Value Circumstances

XkbAXN_SKPressMask (1<<0) Slow key press notification wanted
XkbAXN_SKAcceptMask (1<<1) Slow key accept notification want-

ed
XkbAXN_SKRejectMask (1<<2) Slow key reject notification wanted
XkbAXN_SKReleaseMask (1<<3) Slow key release notification want-

ed
XkbAXN_BKAcceptMask (1<<4) Bounce key accept notification

wanted
XkbAXN_BKRejectMask (1<<5) Bounce key reject notification

wanted
XkbAXN_AXKWarningMask(1<<6) AccessX warning notification want-

ed
XkbAXN_AllEventsMask (0x7f) All AccessX features notifications

wanted

StickyKeys, RepeatKeys, and MouseKeys Events

The StickyKeys , RepeatKeys , and MouseKeys controls do not generate specific
events. Instead, the latching, unlatching, locking, or unlocking of modifiers using
StickyKeys generates XkbStateNotify events as described in section 5.4. Repeating
keys generate normal KeyPress and KeyRelease events, though the auto-repeat can
be detected using DetectableAutorepeat (see section 10.3.3). Finally, MouseKeys
generates pointer events identical to those of the core pointer device.

The SlowKeys Control

Some users may accidentally bump keys while moving a hand or typing stick toward
the key they want. Usually, the keys that are accidentally bumped are just hit for a
very short period of time. The SlowKeys control helps filter these accidental bumps
by telling the server to wait a specified period, called the SlowKeys acceptance
delay , before delivering key events. If the key is released before this period elapses,
no key events are generated. Users can then bump any number of keys on their
way to the one they want without accidentally getting those characters. Once they
have reached the key they want, they can then hold the desired key long enough
for the computer to accept it. SlowKeys is a boolean control with one configurable
attribute.

When the SlowKeys control is active, the server reports the initial key press, subse-
quent acceptance or rejection, and release of any key to interested clients by send-
ing an appropriate AccessXNotify event (see section 10.6.4).

To get the SlowKeys acceptance delay for a keyboard device, use XkbGetSlowKeys-
Delay .

Keyboard Controls

73

Bool XkbGetSlowKeysDelay (display , device_spec , delay_rtrn)
Display * display ; /* connection to X server */
unsigned int device_spec ; /* device ID, or XkbUseCoreKbd */
unsigned int * delay_rtrn ; /* backfilled with SlowKeys delay, ms */

XkbGetSlowKeysDelay requests the attributes of the SlowKeys control from the
server, waits for a reply and backfills delay_rtrn with the SlowKeys delay attribute.
XkbGetSlowKeysDelay returns True if successful; if a compatible version of the
Xkb extension is not available in the server, XkbGetSlowKeysDelay returns False .

To set the SlowKeys acceptance delay for a keyboard device, use XkbSetSlowKeys-
Delay .

Bool XkbSetSlowKeysDelay (display , device_spec , delay)
Display * display ; /* connection to X server */
unsigned int device_spec ; /* device to configure, or XkbUseCoreKbd */
unsigned int delay ; /* SlowKeys delay, ms */

XkbSetSlowKeysDelay sends a request to configure the SlowKeys control to the
server. It does not wait for a reply, and normally returns True . Specifying a value
of 0 for the delay parameter causes XkbSetSlowKeys to generate a BadValue
protocol error. If a compatible version of the Xkb extension is not available in the
server XkbSetSlowKeysDelay returns False .

The BounceKeys Control
Some users may accidentally "bounce" on a key when they release it. They press it
once, then accidentally press it again after they release it. The BounceKeys control
temporarily disables a key after it has been pressed, effectively "debouncing" the
keyboard. The period of time the key is disabled after it is released is known as the
BounceKeys delay . BounceKeys is a boolean control.

When the BounceKeys control is active, the server reports acceptance or rejection
of any key to interested clients by sending an appropriate AccessXNotify event (see
section 10.6.4).

Use XkbGetBounceKeysDelay to query the current BounceKeys delay for a key-
board device.

Bool XkbGetBounceKeysDelay (display , device_spec , delay_rtrn)
Display * display ; /* connection to X server */
unsigned int device_spec ; /* device ID, or XkbUseCoreKbd */
unsigned int * delay_rtrn ; /* backfilled with bounce keys delay, ms */

XkbGetBounceKeysDelay requests the attributes of the BounceKeys control from
the server, waits for a reply, and backfills delay_rtrn with the BounceKeys delay
attribute. XkbGetBounceKeysDelay returns True if successful; if a compatible
version of the Xkb extension is not available in the server XkbGetSlowKeysDelay
returns False .

To set the BounceKeys delay for a keyboard device, use XkbSetBounceKeysDelay .

Keyboard Controls

74

Bool XkbSetBounceKeysDelay (display , device_spec , delay)
Display * display ; /* connection to X server */
unsigned int device_spec ; /* device to configure, or XkbUseCoreKbd */
unsigned int delay ; /* bounce keys delay, ms */

XkbSetBounceKeysDelay sends a request to configure the BounceKeys control to
the server. It does not wait for a reply and normally returns True . Specifying a value
of zero for the delay parameter causes XkbSetBounceKeysDelay to generate a
BadValue protocol error. If a compatible version of the Xkb extension is not available
in the server, XkbSetBounceKeysDelay returns False .

The StickyKeys Control
Some people find it difficult or even impossible to press two keys at once. For ex-
ample, a one-fingered typist or someone using a mouth stick cannot press the Shift
and 1 keys at the same time. The StickyKeys control solves this problem by chang-
ing the behavior of the modifier keys. With StickyKeys , the user can first press
a modifier, release it, then press another key. For example, to get an exclamation
point on a PC-style keyboard, the user can press the Shift key, release it, and then
press the 1 key.

StickyKeys also allows users to lock modifier keys without requiring special locking
keys. When StickyKeys is enabled, a modifier is latched when the user presses it
just once. The user can press a modifier twice in a row to lock it, and then unlock
it by pressing it one more time.

When a modifier is latched, it becomes unlatched when the user presses a nonmod-
ifier key or a pointer button. For instance, to enter the sequence Shift + Control +
Z the user could press and release the Shift key to latch it, then press and release
the Control key to latch it, and finally press and release the Z key. Because the
Control key is a modifier key, pressing it does not unlatch the Shift key. Thus, after
the user presses the Control key, both the Shift and Control modifiers are latched.
When the user presses the Z key, the effect is as though the user had pressed Shift
+ Control + Z . In addition, because the Z key is not a modifier key, the Shift and
Control modifiers are unlatched.

Locking a modifier key means that the modifier affects any key or pointer button
the user presses until the user unlocks it or it is unlocked programmatically. For
example, to enter the sequence ("XKB") on a keyboard where ‘(’ is a shifted ‘9’, ‘)’
is a shifted ‘0’, and ‘"’ is a shifted single quote, the user could press and release the
Shift key twice to lock the Shift modifier. Then, when the user presses the 9 , ‘ ,
x , k , b , ‘ , and 0 keys in sequence, it generates ("XKB"). To unlock the Shift
modifier, the user can press and release the Shift key.

StickyKeys is a boolean control with two separate attributes that may be individually
configured: one to automatically disable it, and one to control the latching behavior
of modifier keys.

StickyKeys Options

The StickyKeys control has two options that can be accessed via the ax_options of
an XkbControlsRec structure (see section 10.8). The first option, TwoKeys , spec-
ifies whether StickyKeys should automatically turn off when two keys are pressed
at the same time. This feature is useful for shared computers so people who do not

Keyboard Controls

75

want them do not need to turn StickyKeys off if a previous user left StickyKeys
on. The second option, LatchToLock , specifies whether or not StickyKeys locks a
modifier when pressed twice in a row.

Use XkbGetStickyKeysOptions to query the current StickyKeys attributes for a
keyboard device.

Bool XkbGetStickyKeysOptions (display , device_spec , options_rtrn)
Display * display ; /* connection to X server */
unsigned int device_spec ; /* device ID, or XkbUseCoreKbd */
unsigned int * options_rtrn ; /* backfilled with StickyKeys option mask */

XkbGetStickyKeysOptions requests the attributes of the StickyKeys control from
the server, waits for a reply, and backfills options_rtrn with a mask indicating
whether the individual StickyKeys options are on or off. Valid bits in options_rtrn
are:

 XkbAX_TwoKeysMask
 XkbAX_LatchToLockMask

XkbGetStickyKeysOptions returns True if successful; if a compatible version of
the Xkb extension is not available in the server XkbGetStickyKeysOptions returns
False .

To set the StickyKeys attributes for a keyboard device, use XkbSetStickyKeysOp-
tions .

Bool XkbSetStickyKeysOptions (display , device_spec, mask, values)
Display * display ; /* connection to X server */
unsigned int device_spec ; /* device to configure, or XkbUseCoreKbd */
unsigned int mask ; /* selects StickyKeys attributes to modify */
unsigned int values; /* values for selected attributes */

XkbSetStickyKeysOptions sends a request to configure the StickyKeys control to
the server. It does not wait for a reply and normally returns True . The valid bits
to use for both the mask and values parameters are:

 XkbAX_TwoKeysMask
 XkbAX_LatchToLockMask

If a compatible version of the Xkb extension is not available in the server, Xk-
bSetStickyKeysOptions returns False .

Controls for General Keyboard Mapping
There are several controls that apply to the keyboard mapping in general. They
control handling of out-of-range group indices and how modifiers are processed and
consumed in the server. These are:

 GroupsWrap
 IgnoreGroupLock

Keyboard Controls

76

 IgnoreLockMods
 InternalMods

IgnoreGroupLock is a boolean control; the rest are always active.

Without the modifier processing options provided by Xkb, passive grabs set via
translations in a client (for example, Alt<KeyPress>space) do not trigger if any
modifiers other than those specified by the translation are set. This results in prob-
lems in the user interface when either NumLock or a secondary keyboard group
is active. The IgnoreLockMods and IgnoreGroupLock controls make it possible to
avoid this behavior without exhaustively specifying a grab for every possible mod-
ifier combination.

The GroupsWrap Control
The GroupsWrap control determines how illegal groups are handled on a global
basis. There are a number of valid keyboard sequences that can cause the effective
group number to go out of range. When this happens, the group must be normalized
back to a valid number. The GroupsWrap control specifies how this is done.

When dealing with group numbers, all computations are done using the group index,
which is the group number minus one. There are three different algorithms; the
GroupsWrap control specifies which one is used:

• XkbRedirectIntoRange

All invalid group numbers are converted to a valid group number by taking the
last four bits of the GroupsWrap control and using them as the group index. If
the result is still out of range, Group one is used.

• XkbClampIntoRange

All invalid group numbers are converted to the nearest valid group number. Group
numbers larger than the highest supported group number are mapped to the high-
est supported group; those less than one are mapped to group one.

• XkbWrapIntoRange

All invalid group numbers are converted to a valid group number using integer
modulus applied to the group index.

There are no convenience functions for manipulating the GroupsWrap control. Ma-
nipulate the GroupsWrap control via the groups_wrap field in the XkbControlsRec
structure, then use XkbSetControls and XkbGetControls (see section 10.9 and sec-
tion 10.10) to query and change this control.

Note
See also section 15.3.2 or a discussion of the related field, group_info , which
also normalizes a group under certain circumstances.

The IgnoreLockMods Control
The core protocol does not provide a way to exclude specific modifiers from grab
calculations, with the result that locking modifiers sometimes have unanticipated
side effects.

Keyboard Controls

77

The IgnoreLockMods control specifies modifiers that should be excluded from grab
calculations. These modifiers are also not reported in any core events except Key-
Press and KeyRelease events that do not activate a passive grab and that do not
occur while a grab is active.

Manipulate the IgnoreLockMods control via the ignore_lock field in the XkbCon-
trolsRec structure, then use XkbSetControls and XkbGetControls (see sections
10.9 and 10.10) to query and change this control. Alternatively, use XkbSetIgnore-
LockMods .

To set the modifiers that, if locked, are not to be reported in matching events to
passive grabs, use XkbSetIgnoreLockMods.

Bool XkbSetIgnoreLockMods (display, device_spec, affect_real, real_values,
affect_virtual, virtual_values)
Display * display ; /* connection to the X server */
unsigned int device_spec ; /* device ID, or XkbUseCoreKbd */
unsigned int affect_real ; /* mask of real modifiers affected by this call */
unsigned int real_values ; /* values for affected real modifiers (1=>set, 0=>un-
set) */
unsigned int affect_virtual ; /* mask of virtual modifiers affected by this call */
unsigned int virtual_values ; /* values for affected virtual modifiers (1=>set,
0=>unset) */

XkbSetIgnoreLockMods sends a request to the server to change the server’s Ig-
noreLockMods control. affect_real and real_values are masks of real modifier bits
indicating which real modifiers are to be added and removed from the server’s Ig-
noreLockMods control. Modifiers selected by both affect_real and real_values are
added to the server’s IgnoreLockMods control; those selected by affect_real but
not by real_values are removed from the server’s IgnoreLockMods control. Valid
values for affect_real and real_values consist of any combination of the eight core
modifier bits: ShiftMask , LockMask , ControlMask , Mod1Mask - Mod5Mask .
affect_virtual and virtual_values are masks of virtual modifier bits indicating which
virtual modifiers are to be added and removed from the server’s IgnoreLockMods
control. Modifiers selected by both affect_virtual and virtual_values are added
to the server’s IgnoreLockMods control; those selected by affect_virtual but not
by virtual_values are removed from the server’s IgnoreLockMods control. See
section 7.1 for a discussion of virtual modifier masks to use in affect_virtual and
virtual_values . XkbSetIgnoreLockMods does not wait for a reply from the server.
It returns True if the request was sent, and False otherwise.

The IgnoreGroupLock Control

The IgnoreGroupLock control is a boolean control with no attributes. If enabled,
it specifies that the locked state of the keyboard group should not be considered
when activating passive grabs.

Because IgnoreGroupLock is a boolean control with no attributes, use the general
boolean controls functions (see section 10.1) to change its state.

Keyboard Controls

78

The InternalMods Control
The core protocol does not provide any means to prevent a modifier from being
reported in events sent to clients; Xkb, however makes this possible via the Inter-
nalMods control. It specifies modifiers that should be consumed by the server and
not reported to clients. When a key is pressed and a modifier that has its bit set
in the InternalMods control is reported to the server, the server uses the modifier
when determining the actions to apply for the key. The server then clears the bit,
so it is not actually reported to the client. In addition, modifiers specified in the
InternalMods control are not used to determine grabs and are not used to calculate
core protocol compatibility state.

Manipulate the InternalMods control via the internal field in the XkbControlsRec
structure, using XkbSetControls and XkbGetControls (see sections10.9 and 10.10).
Alternatively, use XkbSetServerInternalMods .

To set the modifiers that are consumed by the server before events are delivered to
the client, use XkbSetServerInternalMods.

Bool XkbSetServerInternalMods (display, device_spec, affect_real, real_values,
affect_virtual, virtual_values)
Display * display ; /* connection to the X server */
unsigned int device_spec ;‘ /* device ID, or XkbUseCoreKbd */
unsigned int affect_real ; /* mask of real modifiers affected by this call */
unsigned int real_values ; /* values for affected real modifiers (1=>set, 0=>un-
set) */
unsigned int affect_virtual ; /* mask of virtual modifiers affected by this call */
unsigned int virtual_values ; /* values for affected virtual modifiers (1=>set,
0=>unset) */

XkbSetServerInternalMods sends a request to the server to change the internal
modifiers consumed by the server. affect_real and real_values are masks of real
modifier bits indicating which real modifiers are to be added and removed from
the server’s internal modifiers control. Modifiers selected by both affect_real and
real_values are added to the server’s internal modifiers control; those selected by
affect_real but not by real_values are removed from the server’s internal modifiers
mask. Valid values for affect_real and real_values consist of any combination of
the eight core modifier bits: ShiftMask , LockMask , ControlMask , Mod1Mask -
Mod5Mask . affect_virtual and virtual_values are masks of virtual modifier bits indi-
cating which virtual modifiers are to be added and removed from the server’s inter-
nal modifiers control. Modifiers selected by both affect_virtual and virtual_values
are added to the server’s internal modifiers control; those selected by affect_virtual
but not by virtual_values are removed from the server’s internal modifiers control.
See section 7.1 for a discussion of virtual modifier masks to use in affect_virtual
and virtual_values . XkbSetServerInternalMods does not wait for a reply from the
server. It returns True if the request was sent and False otherwise.

The XkbControlsRec Structure
Many of the individual controls described in sections 10.1 through 10.7 may be ma-
nipulated via convenience functions discussed in those sections. Some of them, how-

Keyboard Controls

79

ever, have no convenience functions. The XkbControlsRec structure allows the ma-
nipulation of one or more of the controls in a single operation and to track changes
to any of them in conjunction with the XkbGetControls and XkbSetControls func-
tions. This is the only way to manipulate those controls that have no convenience
functions.

The XkbControlsRec structure is defined as follows:

#define XkbMaxLegalKeyCode 255
#define XkbPerKeyBitArraySize ((XkbMaxLegalKeyCode+1)/8)

typedef struct {
 unsigned char mk_dflt_btn; /* default button for keyboard driven mouse */
 unsigned char num_groups; /* number of keyboard groups */
 unsigned char groups_wrap; /* how to wrap out-of-bounds groups */
 XkbModsRec internal; /* defines server internal modifiers */
 XkbModsRec ignore_lock; /* modifiers to ignore when checking for grab */
 unsigned int enabled_ctrls; /* 1 bit => corresponding boolean control enabled */
 unsigned short repeat_delay; /* ms delay until first repeat */
 unsigned short repeat_interval; /* ms delay between repeats */
 unsigned short slow_keys_delay; /* ms minimum time key must be down to be ok */
 unsigned short debounce_delay; /* ms delay before key reactivated */
 unsigned short mk_delay; /* ms delay to second mouse motion event */
 unsigned short mk_interval; /* ms delay between repeat mouse events */
 unsigned short mk_time_to_max; /* # intervals until constant mouse move */
 unsigned short mk_max_speed; /* multiplier for maximum mouse speed */
 short mk_curve; /* determines mouse move curve type */
 unsigned short ax_options; /* 1 bit => Access X option enabled */
 unsigned short ax_timeout; /* seconds until Access X disabled */
 unsigned short axt_opts_mask; /* 1 bit => options to reset on Access X timeout */
 unsigned short axt_opts_values; /* 1 bit => turn option on, 0=> off */
 unsigned int axt_ctrls_mask; /* which bits in enabled_ctrls to modify */
 unsigned int axt_ctrls_values; /* values for new bits in enabled_ctrls */
 unsigned char per_key_repeat[XkbPerKeyBitArraySize]; /* per key auto repeat */
} XkbControlsRec, *XkbControlsPtr;

The general-purpose functions that work with the XkbControlsRec structure use a
mask to specify which controls are to be manipulated. Table 10.6 lists these controls,
the masks used to select them in the general function calls (which parameter), and
the data fields in the XkbControlsRec structure that comprise each of the individual
controls. Also listed are the bit used to turn boolean controls on and off and the
section where each control is described in more detail.

Table 10.6. Xkb Controls
Control Control Selection

Mask (which para-
meter)

Relevant Xk-
bControlsRec
Data Fields

Boolean Control
enabled_ctrls bit

Sec-
tion

AccessXFeed-
back

XkbAccessXFeedback-
Mask

ax_options:
XkbAX_*FBMask

XkbAccessXFeed-
backMask

10.6.3

AccessXKeys XkbAc-
cessXKeysMask

10.6.1

Keyboard Controls

80

Control Control Selection
Mask (which para-
meter)

Relevant Xk-
bControlsRec
Data Fields

Boolean Control
enabled_ctrls bit

Sec-
tion

AccessXTime-
out

XkbAccessXTimeout-
Mask

ax_timeout

axt_opts_mask

axt_opts_values

axt_ctrls_mask

axt_ctrls_values

XkbAccessXTime-
outMask

10.6.2

AudibleBell XkbAudibleBell-
Mask

9.2

AutoReset 10.1.2
BounceKeys XkbBounceKeysMask debounce_delay Xkb-

BounceKeysMask
10.6.7

De-
tectable-Au-
torepeat

 10.3.3

EnabledCon-
trols

XkbControlsEnabled-
Mask

enabled_ctrls Non-Boolean Con-
trol

10.1.1

GroupsWrap XkbGroupsWrapMask groups_wrap Non-Boolean Con-
trol

10.7.1

IgnoreGrou-
pLock

 XkbIgnoreGrou-
pLockMask

10.7.3

IgnoreLock-
Mods

XkbIgnoreLockMods-
Mask

ignore_lock Non-Boolean Con-
trol

5.1

InternalMods XkbInternalModsMask internal Non-Boolean Con-
trol

5.1

MouseKeys XkbMouseKeysMask mk_dflt_btn Xkb-
MouseKeysMask

10.5.1

MouseKeysAc-
cel

XkbMouseKeysAccel-
Mask

mk_delay

mk_interval

mk_time_to_max

mk_max_speed

mk_curve

XkbMouseKeysAc-
celMask

10.5.2

Overlay1 XkbOverlay1Mask 10.4
Overlay2 XkbOverlay2Mask 10.4
PerKeyRepeat XkbPerKeyRepeat-

Mask
per_key_repeat Non-Boolean Con-

trol
10.3.1

RepeatKeys XkbRepeatKeysMask repeat_delay

repeat_interval

XkbRe-
peatKeysMask

10.3

SlowKeys XkbSlowKeysMask slow_keys_delay XkbSlowKeysMask 10.6.6

Keyboard Controls

81

Control Control Selection
Mask (which para-
meter)

Relevant Xk-
bControlsRec
Data Fields

Boolean Control
enabled_ctrls bit

Sec-
tion

StickyKeys XkbStickyKeysMask ax_options:

XkbAX_Two-
KeysMask

XkbAX_Latch-
ToLockMask

XkbStick-
yKeysMask

10.6.8

Table 10.7 shows the actual values for the individual mask bits used to select con-
trols for modification and to enable and disable the control. Note that the same
mask bit is used to specify general modifications to the parameters used to config-
ure the control (which), and to enable and disable the control (enabled_ctrls). The
anomalies in the table (no "ok" in column) are for controls that have no configurable
attributes; and for controls that are not boolean controls and therefore cannot be
enabled or disabled.

Keyboard Controls

82

Table 10.7. Controls Mask Bits

Mask Bit which or
changed_ctrls

enabled_ctrlsValue

XkbRepeatKeysMask ok ok (1L<<0)
XkbSlowKeysMask ok ok (1L<<1)
XkbBounceKeysMask ok ok (1L<<2)
XkbStickyKeysMask ok ok (1L<<3)
XkbMouseKeysMask ok ok (1L<<4)
XkbMouseKeysAccelMask ok ok (1L<<5)
XkbAccessXKeysMask ok ok (1L<<6)
XkbAccessXTimeoutMask ok ok (1L<<7)
XkbAccessXFeedback-
Mask

ok ok (1L<<8)

XkbAudibleBellMask ok (1L<<9)
XkbOverlay1Mask ok (1L<<10)
XkbOverlay2Mask ok (1L<<11)
XkbIgnoreGroupLock-
Mask

 ok (1L<<12)

XkbGroupsWrapMask ok (1L<<27)
XkbInternalModsMask ok (1L<<28)
XkbIgnoreLockModsMask ok (1L<<29)
XkbPerKeyRepeatMask ok (1L<<30)
XkbControlsEnabledMask ok (1L<<31)
XkbAccessXOptionsMask ok ok (XkbStick-

yKeysMask | Xk-
bAccessXFeedback-
Mask)

XkbAllBooleanCtrlsMask ok (0x00001FFF)
XkbAllControlsMask ok (0xF8001FFF)

The individual fields of the XkbControlsRec structure are defined as follows.

mk_dflt_btn

mk_dflt_btn is an attribute of the MouseKeys control (see section 10.5). It specifies
the mouse button number to use for keyboard simulated mouse button operations.
Its value should be one of the core symbols Button1 - Button5 .

num_groups

num_groups is not a part of any control, but is reported in the XkbControlsRec
structure whenever any of its components are fetched from the server. It reports
the number of groups the particular keyboard configuration uses and is computed
automatically by the server whenever the keyboard mapping changes.

Keyboard Controls

83

groups_wrap

groups_wrap is an attribute of the GroupsWrap control (see section 10.7.1). It spec-
ifies the handling of illegal groups on a global basis. Valid values for groups_wrap
are shown in Table 10.8.

Table 10.8. GroupsWrap options (groups_wrap field)

groups_wrap symbolic name value
XkbWrapIntoRange (0x00)
XkbClampIntoRange (0x40)
XkbRedirectIntoRange (0x80)

When groups_wrap is set to XkbRedirectIntoRange , its four low-order bits specify
the index of the group to use.

internal

internal is an attribute of the InternalMods control (see section 10.7.4). It specifies
modifiers to be consumed in the server and not passed on to clients when events
are reported. Valid values consist of any combination of the eight core modifier bits:
ShiftMask , LockMask , ControlMask , Mod1Mask - Mod5Mask .

ignore_lock

ignore_lock is an attribute of the IgnoreLockMods control (see section 10.7.2). It
specifies modifiers to be ignored in grab calculations. Valid values consist of any
combination of the eight core modifier bits: ShiftMask , LockMask , ControlMask
, Mod1Mask - Mod5Mask .

enabled_ctrls

enabled_ctrls is an attribute of the EnabledControls control (see section 10.1.1). It
contains one bit per boolean control. Each bit determines whether the correspond-
ing control is enabled or disabled; a one bit means the control is enabled. The mask
bits used to enable these controls are listed in Table 10.7, using only those masks
with "ok" in the enabled_ctrls column.

repeat_delay and repeat_interval

repeat_delay and repeat_interval are attributes of the RepeatKeys control (see
section 10.3.2). repeat_delay is the initial delay before a key begins repeating,
in milliseconds; repeat_interval is the delay between subsequent key events, in
milliseconds.

slow_keys_delay

slow_keys_delay is an attribute of the SlowKeys control (see section 10.6.6). Its
value specifies the SlowKeys acceptance delay period in milliseconds before a key
press is accepted by the server.

Keyboard Controls

84

debounce_delay

debounce_delay is an attribute of the BounceKeys control (see section 10.6.7). Its
value specifies the BounceKeys delay period in milliseconds for which the key is
disabled after having been pressed before another press of the same key is accepted
by the server.

mk_delay, mk_interval, mk_time_to_max, mk_max_speed, and
mk_curve

mk_delay , mk_interval , mk_time_to_max , mk_max_speed , and mk_curve are
attributes of the MouseKeysAccel control. Refer to section 10.5.2 for a description
of these fields and the units involved.

ax_options

The ax_options field contains attributes used to configure two different controls,
the StickyKeys control (see section 10.6.8) and the AccessXFeedback control (see
section 10.6.3). The ax_options field is a bitmask and may include any combination
of the bits defined in Table 10.9.

Table 10.9. Access X Enable/Disable Bits (ax_options field)

Access X Control ax_options bit value
AccessXFeedback XkbAX_SKPressFBMask (1L<<0)
 XkbAX_SKAcceptFBMask (1L << 1)
 XkbAX_FeatureFBMask (1L << 2)
 XkbAX_SlowWarnFBMask (1L << 3)
 XkbAX_IndicatorFBMask (1L << 4)
 XkbAX_StickyKeysFBMask (1L << 5)
 XkbAX_SKReleaseFBMask (1L << 8)
 XkbAX_SKRejectFBMask (1L << 9)
 XkbAX_BKRejectFBMask (1L << 10)
 XkbAX_DumbBellFBMask (1L << 11)
StickyKeys XkbAX_TwoKeysMask (1L << 6)
 XkbAX_LatchToLockMask (1L << 7)
 XkbAX_AllOptionsMask (0xFFF)

The fields pertaining to each control are relevant only when the control is en-
abled (XkbAccessXFeedbackMask or XkbStickyKeysMask bit is turned on in the
enabled_cntrls field).

Xkb provides a set of convenience macros for working with the ax_options field of
an XkbControlsRec structure:

#define XkbAX_NeedOption
(c,w) ((c)->ax_options&(w))

Keyboard Controls

85

The XkbAX_NeedOption macro is useful for determining whether a particular Ac-
cessX option is enabled or not. It accepts a pointer to an XkbControlsRec structure
and a valid mask bit from Table 10.9. If the specified mask bit in the ax_options
field of the controls structure is set, the macro returns the mask bit. Otherwise, it
returns zero. Thus,

XkbAX_NeedOption(ctlrec, XkbAX_LatchToLockMask)

is nonzero if the latch to lock transition for latching keys is enabled, and zero if
it is disabled. Note that XkbAX_NeedOption only determines whether or not the
particular capability is configured to operate; the XkbAccessXFeedbackMask bit
must also be turned on in enabled_ctrls for the capability to actually be functioning.

#define XkbAX_AnyFeedback
(c) ((c)->enabled_ctrls&XkbAccessXFeedbackMask)

The XkbAX_AnyFeeback macro accepts a pointer to an XkbControlsRec struc-
ture and tells whether the AccessXFeedback control is enabled or not. If the Ac-
cessXFeedback control is enabled, the macro returns XkbAccessXFeedbackMask .
Otherwise, it returns zero.

#define XkbAX_NeedFeedback
(c,w) (XkbAX_AnyFeedback(c)&&XkbAX_NeedOption(c,w))

The XkbAX_NeedFeedback macro is useful for determining if both the Ac-
cessXFeedback control and a particular AccessX feedback option are enabled. The
macro accepts a pointer to an XkbControlsRec structure and a feedback option
from the table above. If both the AccessXFeedback control and the specified feed-
back option are enabled, the macro returns True . Otherwise it returns False .

ax_timeout, axt_opts_mask, axt_opts_values, axt_ctrls_mask, and
axt_ctrls_values

ax_timeout , act_opts_mask , axt_opts_values , axt_ctrls_mask , and
axt_ctrls_values are attributes of the AccessXTimeout control. Refer to section
10.6.2 for a description of these fields and the units involved.

per_key_repeat

The per_key_repeat field mirrors the auto_repeats field of the core protocol
XKeyboardState structure: changing the auto_repeats field automatically changes
per_key_repeat and vice versa. It is provided for convenience and to reduce pro-
tocol traffic. For example, to obtain the individual repeat key behavior as well as
the repeat delay and rate, use XkbGetControls . If the per_key_repeat were not in
this structure, you would have to call both XGetKeyboardControl and XkbGetCon-
trols to get this information. The bits correspond to keycodes. The first seven keys
(keycodes 1-7) are indicated in per_key_repeat [0], with bit position 0 (low order)
corresponding to the fictitious keycode 0. Following array elements correspond to
8 keycodes per element. A 1 bit indicates that the key is a repeating key.

Querying Controls
Use XkbGetControls to find the current state of Xkb server controls.

Keyboard Controls

86

Status XkbGetControls (display, which, xkb)
Display * display ; /* connection to X server */
unsigned long which ; /* mask of controls requested */
XkbDescPtr xkb ; /* keyboard description for controls information*/

XkbGetControls queries the server for the requested control information, waits for
a reply, and then copies the server’s values for the requested information into the
ctrls structure of the xkb argument. Only those components specified by the which
parameter are copied. Valid values for which are any combination of the masks
listed in Table 10.7 that have "ok" in the which column.

If xkb -> ctrls is NULL , XkbGetControls allocates and initializes it before obtaining
the values specified by which . If xkb -> ctrls is not NULL , XkbGetControls
modifies only those portions of xkb -> ctrls corresponding to the values specified
by which .

XkbGetControls returns Success if successful; otherwise, it returns BadAlloc if it
cannot obtain sufficient storage, BadMatch if xkb is NULL or which is empty, or
BadImplementation .

To free the ctrls member of a keyboard description, use XkbFreeControls (see
section 10.12)

The num_groups field in the ctrls structure is always filled in by XkbGetControls
, regardless of which bits are selected by which .

Changing Controls
There are two ways to make changes to controls: either change a local copy key-
board description and call XkbSetControls , or, to reduce network traffic, use an
XkbControlsChangesRec structure and call XkbChangeControls .

To change the state of one or more controls, first modify the ctrls structure in a
local copy of the keyboard description and then use XkbSetControls to copy those
changes to the X server.

Bool XkbSetControls (display, which, xkb)
Display * display ; /* connection to X server */
unsigned long which ; /* mask of controls to change */
XkbDescPtr xkb ; /* ctrls field contains new values to be set */

For each bit that is set in the which parameter, XkbSetControls sends the corre-
sponding values from the xkb -> ctrls field to the server. Valid values for which
are any combination of the masks listed in Table 10.7 that have "ok" in the which
column.

If xkb -> ctrls is NULL , the server does not support a compatible version of Xkb, or
the Xkb extension has not been properly initialized, XkbSetControls returns False
. Otherwise, it sends the request to the X server and returns True .

Note that changes to attributes of controls in the XkbControlsRec structure are
apparent only when the associated control is enabled, although the correspond-
ing values are still updated in the X server. For example, the repeat_delay and

Keyboard Controls

87

repeat_interval fields are ignored unless the RepeatKeys control is enabled (that is,
the X server’s equivalent of xkb->ctrls has XkbRepeatKeyMask set in enabled_ctrls
). It is permissible to modify the attributes of a control in one call to XkbSetControls
and enable the control in a subsequent call. See section 10.1.1 for more information
on enabling and disabling controls.

Note that the enabled_ctrls field is itself a control — the EnabledControls control.
As such, to set a specific configuration of enabled and disabled boolean controls,
you must set enabled_ctrls to the appropriate bits to enable only the controls you
want and disable all others, then specify the XkbControlsEnabledMask in a call to
XkbSetControls . Because this is somewhat awkward if all you want to do is enable
and disable controls, and not modify any of their attributes, a convenience function
is also provided for this purpose (XkbChangeEnabledControls , section 10.1.1).

The XkbControlsChangesRec Structure
The XkbControlsChangesRec structure allows applications to track modifications
to an XkbControlsRec structure and thereby reduce the amount of traffic sent to
the server. The same XkbControlsChangesRec structure may be used in several
successive modifications to the same XkbControlsRec structure, then subsequently
used to cause all of the changes, and only the changes, to be propagated to the
server. The XkbControlsChangesRec structure is defined as follows:

typedef struct _XkbControlsChanges {
 unsigned int changed_ctrls; /* bits indicating changed control data */
 unsigned int enabled_ctrls_changes; /* bits indicating enabled/disabled controls */
 Bool num_groups_changed; /* True if
 number of keyboard groups changed */
} XkbControlsChangesRec,*XkbControlsChangesPtr;

The changed_ctrls field is a mask specifying which logical sets of data in the con-
trols structure have been modified. In this context, modified means set , that is, if
a value is set to the same value it previously contained, it has still been modified,
and is noted as changed. Valid values for changed_ctrls are any combination of the
masks listed in Table 10.7 that have "ok" in the changed_ctrls column. Setting a
bit implies the corresponding data fields from the "Relevant XkbControlsRec Data
Fields" column in Table 10.6 have been modified. The enabled_ctrls_changes field
specifies which bits in the enabled_ctrls field have changed. If the number of key-
board groups has changed, the num_groups_changed field is set to True.

If you have an Xkb description with controls that have been modified and an Xk-
bControlsChangesRec that describes the changes that have been made, the Xk-
bChangeControls function provides a flexible method for updating the controls in a
server to match those in the changed keyboard description.

Bool XkbChangeControls (dpy, xkb, changes)
Display * dpy ; /* connection to X server */
XkbDescPtr xkb ; /* keyboard description with changed xkb->ctrls */
XkbControlsChangesPtr changes ; /* which parts of xkb->ctrls have changed */

XkbChangeControls copies any controls fields specified by changes from the key-
board description controls structure, xkb -> ctrls , to the server specified by dpy .

Keyboard Controls

88

Tracking Changes to Keyboard Controls
Whenever a field in the controls structure changes in the server’s keyboard descrip-
tion, the server sends an XkbControlsNotify event to all interested clients.To re-
ceive XkbControlsNotify events under all possible conditions, use XkbSelectEvents
(see section 4.3) and pass XkbControlsNotifyMask in both bits_to_change and
values_for_bits .

To receive XkbControlsNotify events only under certain conditions, use XkbS-
electEventDetails using XkbControlsNotify as the event_type and specifying the
desired state changes in bits_to_change and values_for_bits using mask bits from
Table 10.7.

The structure for the XkbControlsNotify event is defined as follows:

typedef struct {
 int type; /* Xkb extension base event code */
 unsigned long serial; /* X server serial number for event */
 Bool send_event; /* True => synthetically generated */
 Display * display; /* server connection where event generated */
 Time time; /* server time when event generated */
 int xkb_type; /* XkbCompatMapNotify */
 int device; /* Xkb device ID, will not be XkbUseCoreKbd */
 unsigned int changed_ctrls; /* bits indicating which controls data have changed*/
 unsigned int enabled_ctrls; /* controls currently enabled in server */
 unsigned int enabled_ctrl_changes; /* bits indicating enabled/disabled controls */
 int num_groups; /* current number of keyboard groups */
 KeyCode keycode; /* != 0 => keycode of key causing change */
 char event_type; /* Type of event causing change */
 char req_major; /* major event code of event causing change */
 char req_minor; /* minor event code of event causing change */
} XkbControlsNotifyEvent;

The changed_ctrls field specifies the controls components that have changed
and consists of bits taken from the masks defined in Table 10.7 with "ok" in the
changed_ctrls column.

The controls currently enabled in the server are reported in the enabled_ctrls
field. If any controls were just enabled or disabled (that is, the contents of the
enabled_ctrls field changed), they are flagged in the enabled_ctrl_changes field.
The valid bits for these fields are the masks listed in Table 10.7 with "ok" in the
enabled_ctrls column. The num_groups field reports the number of groups bound
to the key belonging to the most number of groups and is automatically updated
when the keyboard mapping changes.

If the change was caused by a request from a client, the keycode and event_type
fields are set to zero and the req_major and req_minor fields identify the re-
quest. The req_major value is the same as the major extension opcode. Otherwise,
event_type is set to the type of event that caused the change (one of KeyPress ,
KeyRelease , DeviceKeyPress , DeviceKeyRelease , ButtonPress or ButtonRelease
), and req_major and req_minor are undefined. If event_type is KeyPress , KeyRe-
lease , DeviceKeyPress , or DeviceKeyRelease , the keycode field is set to the key
that caused the change. If event_type is ButtonPress or ButtonRelease , keycode
contains the button number.

Keyboard Controls

89

When a client receives an XkbControlsNotify event, it can note the changes in a
changes structure using XkbNoteControlsChanges .

void XkbNoteControlsChanges (changes , new , wanted)
XkbControlsChangesPtr changes ; /* records changes indicated by new */
XkbControlsNotifyEvent * new ; /* tells which things have changed */
unsigned int wanted ; /* tells which parts of new to record in changes */

The wanted parameter is a bitwise inclusive OR of bits taken from the set of
masks specified in Table 10.7 with "ok" in the changed_ctrls column. XkbNoteCon-
trolsChanges copies any changes reported in new and specified in wanted into the
changes record specified by old .

Use XkbGetControlsChanges to update a local copy of a keyboard description with
the changes previously noted by one or more calls to XkbNoteControlsChanges.

Status XkbGetControlsChanges (dpy , xkb , changes)
Display * dpy ; /* connection to X server */
XkbDescPtr xkb ; /* xkb->ctrls will be updated */
XkbNameChangesPtr changes ; /* indicates which parts of xkb->ctrls to update
*/

XkbGetControlsChanges examines the changes parameter, queries the server for
the necessary information, and copies the results into the xkb -> ctrls keyboard
description. If the ctrls field of xkb is NULL , XkbGetControlsChanges allocates
and initializes it. To free the ctrls field, use XkbFreeControls (see section 10.12).

XkbGetControlsChanges returns Success if successful and can generate BadAlloc
, BadImplementation, and BadMatch errors.

Allocating and Freeing an XkbControlsRec
The need to allocate an XkbControlsRec structure seldom arises; Xkb creates one
when an application calls XkbGetControls or a related function. For those situations
where there is not an XkbControlsRec structure allocated in the XkbDescRec ,
allocate one by calling XkbAllocControls .

Status XkbAllocControls (xkb, which)
XkbDescPtr xkb ; /* Xkb description in which to allocate ctrls rec */
unsigned int which ; /* mask of components of ctrls to allocate */

XkbAllocControls allocates the ctrls field of the xkb parameter, initializes all fields
to zero, and returns Success . If the ctrls field is not NULL , XkbAllocControls
simply returns Success . If xkb is NULL , XkbAllocControls reports a BadMatch
error. If the ctrls field could not be allocated, it reports a BadAlloc error.

The which mask specifies the individual fields of the ctrls structure to be allocat-
ed and can contain any of the valid masks defined in Table 10.7. Because none of
the currently existing controls have any structures associated with them, which is
currently of little practical value in this call.

Keyboard Controls

90

To free memory used by the ctrls member of an XkbDescRec structure, use
XkbFreeControls:

void XkbFreeControls (xkb, which, free_all)
XkbDescPtr xkb ; /* Xkb description in which to free controls components */
unsigned int which ; /* mask of components of ctrls to free */
Bool free_all ; /* True => free everything + ctrls itself */

XkbFreeControls frees the specified components of the ctrls field in the xkb key-
board description and sets the corresponding structure component values to NULL
or zero . The which mask specifies the fields of ctrls to be freed and can contain
any of the controls components specified in Table 10.7.

If free_all is True , XkbFreeControls frees every non- NULL structure component
in the controls, frees the XkbControlsRec structure referenced by the ctrls member
of xkb , and sets ctrls to NULL.

The Miscellaneous Per-client Controls
You can configure the boolean per-client controls which affect the state reported
in button and key events. See section 12.1.1, 12.3, 12.5, and 16.3.11 of the XKB
Protocol specification for more details.

To get the current values of the per-client controls, use XkbGetPerClientControls .

Bool XkbGetPerClientControls (dpy , ctrls)
Display * dpy ; /* connection to X server */
unsigned int * ctrls ; /* 1 bit => corresponding control is on */

XkbGetPerClientControls backfills ctrls with the per-client control attributes for
this particular client. It returns True if successful, and False otherwise.

To change the current values of the per-client control attributes, use XkbSetPer-
ClientControls.

Bool XkbSetPerClientControls (dpy , ctrls)
Display * dpy ; /* connection to X server */
unsigned int change ; /* 1 bit => change control */
unsigned int * value ; /* 1 bit => control on */

XkbSetPerClientControls changes the per-client values for the controls selected
by change to the corresponding value in value. Legal values for change and
value are: XkbPCF_GrabsUseXKBStateMask, XkbPCF_LookupStateWhenGrabbed,
and XkbPCF_SendEventUsesXKBState. More than one control may be changed at
one time by OR-ing the values together. XkbSetPerClientControls backfills value
with the per-client control attributes for this particular client. It returns True
if successful, and False otherwise.

91

Chapter 11. X Library Controls
The Xkb extension is composed of two parts: a server extension, and a client-side
X library extension. Chapter 10 discusses functions used to modify controls affect-
ing the behavior of the server portion of the Xkb extension. This chapter discusses
functions used to modify controls that affect only the behavior of the client portion
of the extension; these controls are known as Library Controls.

All of the Library Controls are boolean flags that may be enabled and disabled. The
controls can be divided into several categories:

• Controls affecting general string lookups

• Controls affecting compose processing

• Controls affecting event delivery

There are two types of string lookups performed by XLookupString . The first type
involves translating a single keycode into a string; the controls in the first category
affect this type of lookup. The second type involves translating a series of keysyms
into a string; the controls in the second category affect this type of lookup.

An Xkb implementation is required to support the programming interface for all
of the controls. However, an implementation may choose not to support the seman-
tics associated with the controls that deal with compose processing. In this case, a
program that accesses these controls should still function normally; however, the
feedback that would normally occur with the controls enabled may be missing.

Controls Affecting Keycode-to-String Transla-
tion

The first type of string lookups, which are here called simple string lookups , in-
volves translating a single keycode into a string. Because these simple lookups in-
volve only a single keycode, all of the information needed to do the translation is
contained in the keyboard state in a single event. The controls affecting simple
string lookups are:

 ForceLatin1Lookup
 ConsumeLookupMods
 LevelOneUsesShiftAndLock

ForceLatin1Lookup
If the ForceLatin1Lookup control is enabled, XLookupString only returns
strings using the Latin1 character set. If ForceLatin1Lookup is not enabled,
XLookupString can return characters that are not in the Latin1 set. By default, this
control is disabled, allowing characters outside of the Latin1 set to be returned.

ConsumeLookupMods
Simple string lookups in XLookupString involve two different translation phases.
The first phase translates raw device keycodes to individual keysyms. The second

X Library Controls

92

phase attempts to map the resulting keysym into a string of one or more characters.
In the first phase, some of the modifiers are normally used to determine the appro-
priate shift level for a key.

The ConsumeLookupMods control determines whether or not XLookupString con-
sumes the modifiers it uses during the first phase of processing (mapping a keycode
to a keysym). When a modifier is consumed, it is effectively removed from the work-
ing copy of the keyboard state information XLookupString is using and appears to
be unset for the remainder of the processing.

If the ConsumeLookupMods control is enabled, XLookupString does not use the
modifiers used to translate the keycode of the event to a keysym when it is deter-
mining the string associated with a keysym. For example, assume the keymap for
the ‘A’ key only contains the shift modifier and the ConsumeLookupMods control is
enabled. If a user presses the Shift key and the A key while the Num_Lock key is
locked, XLookupString uses the Shift modifier when mapping the keycode for the
‘a’ key to the keysym for ‘A’; subsequently, it only uses the NumLock modifier when
determining the string associated with the keysym ‘A’.

If the ConsumeLookupMods control is not enabled, XLookupString uses all of the
event modifiers to determine the string associated with a keysym. This behavior
mirrors the behavior of XLookupString in the core implementation.

The ConsumeLookupMods control is unset by default. For more information on
modifier consumption, refer to Chapter 12.

AlwaysConsumeShiftAndLock

The AlwaysConsumeShiftAndLock control, if enabled, forces XLookupString to
consume the Shift and Lock modifiers when processing all keys, even if the defi-
nition for the key type does not specify these modifiers. The AlwaysConsumeShif-
tAndLock control is unset by default. See section 15.2 for a discussion of key types.

Controls Affecting Compose Processing
The second type of string lookup performed by XLookupString involves translating
a series of keysyms into a string. Because these lookups can involve more than one
key event, they require XLookupString to retain some state information between
successive calls. The process of mapping a series of keysyms to a string is known
as compose processing . The controls affecting compose processing are:

ConsumeKeysOnComposeFail
ComposeLED
BeepOnComposeFail

Because different vendors have historically used different algorithms to implement
compose processing, and these algorithms may be incompatible with the semantics
required by the Xkb compose processing controls, implementation of the compose
processing controls is optional in an Xkb implementation.

X Library Controls

93

ConsumeKeysOnComposeFail

Some compose processing algorithms signal the start of a compose sequence by a
key event meaning "start compose". 1 The subsequent key events should normally
result in a valid composition yielding a valid translation to a string. If the subsequent
key events do not have a valid translation, some decision must be made about what
to do with the key events that were processed while attempting the compose. The
ConsumeKeysOnComposeFail control allows a client to specify what happens with
the key events XLookupString has been considering when it reaches a dead end
in a compose sequence.

If the ConsumeKeysOnComposeFail control is set, all keys associated with a failed
compose sequence should be consumed (discarded). If the ConsumeKeysOnCom-
poseFail control is not set, the key events associated with a failed compose sequence
should be processed as a normal sequence of key events.

The ConsumeKeysOnComposeFail control is disabled by default.

ComposeLED

The ComposeLED control allows a client to specify whether or not an indicator
should be set and cleared to provide feedback when compose processing is in
progress. The control does not specify which indicator should be used; the mapping
for this is up to the individual implementation. If the ComposeLED control is en-
abled, it specifies that an indicator should be set when a compose sequence is in
progress and cleared when one is not in progress. The ComposeLED control is dis-
abled by default.

While the Xkb extension does not specify the type of type of indicator to be used
when the ComposeLED control is implemented, a consistent convention between
implementations is to everyone’s benefit. If a named indicator is used for this pur-
pose, the recommended name is " Compose ". Note that some implementations may
use an unnamed, custom hardware LED for this purpose.

BeepOnComposeFail

The BeepOnComposeFail control allows a client to specify whether or not a bell
should be activated to provide feedback when a compose sequence fails. The con-
trol does not specify the type of bell that should be used; the mapping for this is up
to the individual implementation. If the BeepOnComposeFail control is enabled, it
specifies that a bell should be activated when a compose sequence fails. The Beep-
OnComposeFail control is disabled by default. If implemented, the bell should be
activated using XkbBell or XkbDeviceBell .

While the Xkb extension does not specify the type of bell to be used when the
BeepOnComposeFail control is implemented, a consistent convention between im-
plementations is to everyone’s benefit. If a named bell is used for this purpose, the
recommended name is " ComposeFail ".

1 Another possibility is to have the compose processing simply be the result of a finite state acceptor; a compose
sequence would never fail for a properly written finite state acceptor.

X Library Controls

94

Controls Effecting Event Delivery
IgnoreNewKeyboards

When Xkb is initialized, it implicitly forces requests for NewKeyboardNotify events.
These events may be used by the Xkb library extension internally; they are normal-
ly translated into core protocol MappingNotify events before being passed to the
client. While delivering the event to the client is appropriate in most cases, it is not
appropriate for some clients that maintain per-key data structures. This is because
once the server has sent a NewKeyboardNotify event, it is free to send the client
events for all keys in the new range and that range may be outside of the per-key
data structures the client is maintaining.

The IgnoreNewKeyboards control, if enabled, prevents Xkb from mapping NewKey-
boardNotify events to core MappingNotify events and passing them to the client.
The control is initially disabled.

Manipulating the Library Controls
The Library Controls are manipulated using functions that deal with bitmasks to
indicate which controls to manipulate. The controls are identified by the masks de-
fined in Table 11.1.

Table 11.1. Library Control Masks
Library Control Mask Value
XkbLC_ForceLatin1Lookup (1 << 0)
XkbLC_ConsumeLookupMods (1 << 1)
XkbLC_AlwaysConsumeShiftAndLock (1 << 2)
XkbLC_IgnoreNewKeyboards (1 << 3)
XkbLC_ConsumeKeysOnComposeFail (1 << 29)
XkbLC_ComposeLED (1 << 30)
XkbLC_BeepOnComposeFail (1 << 31)
XkbLC_AllControls (0xc0000007)

Determining Which Library Controls are Implemented
To determine which Library Controls are actually implemented, use XkbXlibCon-
trolsImplemented.

unsigned int XkbXlibControlsImplemented (display)
Display * display ; /* connection to X server */

XkbXlibControlsImplemented returns a bitmask indicating the controls actually im-
plemented in the Xkb library and is composed of an inclusive OR of bits from Table
11.1.

Determining the State of the Library Controls
To determine the current state of the Library Controls, use XkbGetXlibControls .

X Library Controls

95

unsigned int XkbGetXlibControls (display)
Display * display ; /* connection to X server */

XkbGetXlibControls returns the current state of the Library Controls as a bit mask
that is an inclusive OR of the control masks from Table 11.1 for the controls that
are enabled. For the optional compose processing controls, the fact that a control
is enabled does not imply that it is actually implemented.

Changing the State of the Library Controls
To change the state of the Library Controls, use XkbSetXlibControls.

Bool XkbSetXlibControls (display, bits_to_change, values_for_bits)
Display * display ; /* connection to X server */
unsigned long bits_to_change ; /* selects controls to be modified */
unsigned long values_for_bits ; /* turns selected controls on (1) or off (0) */

XkbSetXlibControls modifies the state of the controls selected by bits_to_change ;
only the controls selected by bits_to_change are modified. If the bit corresponding
to a control is on in bits_to_change and also on in values_for_bits, the control is
enabled. If the bit corresponding to a control is on in bits_to_change but off in
values_for_bits , the control is disabled. bits_to_change should be an inclusive OR
of bits from Table 11.1.

96

Chapter 12. Interpreting Key Events
Xkb provides functions to help developers interpret key events without having to
directly interpret Xkb data structures. Xkb also modifies the behavior of several
core X library functions.

Effects of Xkb on the Core X Library
When support for Xkb is built into the X library, the XOpenDisplay function looks
for a compatible version of Xkb on the server. If it finds a compatible version, it
initializes the extension and enables implicit support for Xkb in a number of X
library functions. This makes it possible for clients to take advantage of nearly all
Xkb features without having to be rewritten or even recompiled, if they are built
with shared libraries. This implicit support is invisible to most clients, but it can
have side effects, so the extension includes ways to control or disable it.

Effects of Xkb on Event State
Because XOpenDisplay initializes Xkb, some events contain an Xkb description of
the keyboard state instead of that normally used by the core protocol. See section
17.1.1 for more information about the differences between Xkb keyboard state and
that reported by the core protocol.

Effects of Xkb on MappingNotify Events
When Xkb is missing or disabled, the X library tracks changes to the keyboard map-
ping using MappingNotify events. Whenever the keyboard mapping is changed, the
server sends all clients a MappingNotify event to report the change. When a client
receives a MappingNotify event, it is supposed to call XRefreshKeyboardMapping
to update the keyboard description used internally by the X library.

The X Keyboard Extension uses XkbMapNotify and XkbNewKeyboardNotify events
to track changes to the keyboard mapping. When an Xkb-aware client receives ei-
ther event, it should call XkbRefreshKeyboardMapping to update the keyboard de-
scription used internally by the X library. To avoid duplicate events, the X server
does not send core protocol MappingNotify events to a client that has selected for
XkbMapNotify events.

The implicit support for Xkb selects for XkbMapNotify events. This means that
clients that do not explicitly use Xkb but that are using a version of the X library that
has implicit support for Xkb do not receive MappingNotify events over the wire.
Clients that were not written with Xkb in mind do not recognize or properly handle
the new Xkb events, so the implicit support converts them to MappingNotify events
that report approximately the same information, unless the client has explicitly se-
lected for the Xkb version of the event.

An Xkb-capable X server does not send events from keys that fall outside the le-
gal range of keycodes expected by that client. Once the server sends a client an
XkbNewKeyboardNotify event, it reports events from all keys because it assumes
that any client that has receieved an XkbNewKeyboardNotify event expects key
events from the new range of keycodes. The implicit support for Xkb asks for Xkb-
NewKeyboardNotify events, so the range of keycodes reported to the client might
vary without the client’s knowledge. Most clients don’t really care about the range

Interpreting Key Events

97

of legal keycodes, but some clients maintain information about each key and might
have problems with events that come from unexpected keys. Such clients can set
the XkbLC_IgnoreNewKeyboards library control (see section 11.3.1) to prevent the
implicit support from requesting notification of changes to the legal range of key-
codes.

X Library Functions Affected by Xkb
The following X library functions are modified by Xkb:

 XKeycodeToKeysym
 XKeysymToKeycode
 XLookupKeysym
 XLookupString
 XRefreshKeyboardMapping
 XRebindKeysym

The implicit support for Xkb replaces a number of X library functions with versions
that understand and use the X Keyboard Extension. In most cases, the semantics of
the new versions are identical to those of the old, but there are occasional visible
differences. This section lists all of the functions that are affected and the differ-
ences in behavior, if any, that are visible to clients.

The XKeycodeToKeysym function reports the keysym associated with a particular
index for a single key. The index specifies a column of symbols in the core keyboard
mapping (that is, as reported by the core protocol GetKeyboardMapping request).
The order of the symbols in the core mapping does not necessarily correspond to
the order of the symbols used by Xkb; section 17.1.3 describes the differences.

The XKeysymToKeycode function reports a keycode to which a particular keysym
is bound. When Xkb is missing or disabled, this function looks in each column of the
core keyboard mapping in turn and returns the lowest numbered key that matches
in the lowest numbered group. When Xkb is present, this function uses the Xkb
ordering for symbols instead.

The XLookupKeysym function reports the symbol in a specific column of the key
associated with an event. Whether or not Xkb is present, the column specifies an
index into the core symbol mapping.

The XLookupString function reports the symbol and string associated with a key
event, taking into account the keycode and keyboard state as reported in the
event. When Xkb is disabled or missing, XLookupString uses the rules specified
by the core protocol and reports only ISO Latin-1 characters. When Xkb is present,
XLookupString uses the explicit keyboard group, key types, and rules specified by
Xkb. When Xkb is present, XLookupString is allowed, but not required, to return
strings in character sets other than ISO Latin-1, depending on the current locale. If
any key bindings are defined, XLookupString does not use any consumed modifiers
(see sections 11.1.2 and 15.2) to determine matching bindings.

The XRefreshKeyboardMapping function updates the X library’s internal represen-
tation of the keyboard to reflect changes reported via MappingNotify events. When
Xkb is missing or disabled, this function reloads the entire modifier map or keyboard
mapping. When Xkb is present, the implicit Xkb support keeps track of the changed
components reported by each XkbMapNotify event and updates only those pieces

Interpreting Key Events

98

of the keyboard description that have changed. If the implicit support has not not-
ed any keyboard mapping changes, XRefreshKeyboardMapping updates the entire
keyboard description.

The XRebindKeysym function associates a string with a keysym and a set of modi-
fiers. Xkb does not directly change this function, but it does affect the way that the
state reported in the event is compared to the state specified to XRebindKeysym
. When Xkb is missing or disabled, XLookupString returns the specified string if
the modifiers in the event exactly match the modifiers from this call. When Xkb is
present, any modifiers used to determine the keysym are consumed and are not
used to look up the string.

Xkb Event and Keymap Functions
To find the keysym bound to a particular key at a specified group and shift level,
use XkbKeycodeToKeysym.

KeySym XkbKeycodeToKeysym (dpy, kc, group, level)
Display * dpy; /* connection to X server */
KeyCode kc; /* key of interest */
unsigned int group; /* group of interest */
unsigned int level; /* shift level of interest */

XkbKeycodeToKeysym returns the keysym bound to a particular group and shift
level for a particular key on the core keyboard. If kc is not a legal keycode for
the core keyboard, or if group or level are out of range for the specified key,
XkbKeycodeToKeysym returns NoSymbol .

To find the set of modifiers bound to a particular keysym on the core keyboard, use
XkbKeysymToModifiers .

unsigned int XkbKeysymToModifiers (dpy , ks)
Display * dpy ; /* connection to X server */
KeySym ks ; /* keysym of interest */

XkbKeysymToModifiers finds the set of modifiers currently bound to the keysym
ks on the core keyboard. The value returned is the mask of modifiers bound to
the keysym ks . If no modifiers are bound to the keysym, XkbKeysymToModifiers
returns zero; otherwise, it returns the inclusive OR of zero or more of the following:
ShiftMask , ControlMask , LockMask , Mod1Mask , Mod2Mask , Mod3Mask ,
Mod4Mask, and Mod5Mask .

Use XkbLookupKeySym to find the symbol associated with a key for a particular
state.

Bool XkbLookupKeySym (dpy , key , state , mods_rtrn , sym_rtrn)
Display * dpy ; /* connection to X server */
KeyCode key ; /* key for which symbols are to be found */
unsigned int state ; /* state for which symbol should be found */
unsigned int * mods_rtrn ; /* backfilled with unconsumed modifiers */
KeySym * sym_rtrn ; /* backfilled with symbol associated with key + state */

Interpreting Key Events

99

XkbLookupKeySym is the equivalent of the core XLookupKeySym function. For the
core keyboard, given a keycode key and an Xkb state state , XkbLookupKeySym
returns the symbol associated with the key in sym_rtrn and the list of modifiers
that should still be applied in mods_rtrn . The state parameter is the state from a
KeyPress or KeyRelease event. XkbLookupKeySym returns True if it succeeds.

Use XkbLookupKeyBinding to find the string bound to a key by XRebindKeySym .
XkbLookupKeyBinding is the equivalent of the core XLookupString function.

int XkbLookupKeyBinding (dpy , sym , state , buf , nbytes , extra_rtrn)
Display * dpy ; /* connection to server */
KeySym sym ; /* symbol to be looked up */
unsigned int state ; /* state for which string is to be looked up */
char * buf ; /* buffer into which returned string is written */
int nbytes ; /* size of buffer in bytes */
int * extra_rtrn ; /* backfilled with number bytes overflow */

XRebindKeysym binds an ASCII string to a specified keysym, so that the string and
keysym are returned when the key is pressed and a specified list of modifiers are
also being held down. XkbLookupKeyBinding returns in buf the string associated
with the keysym sym and modifier state state . buf is NULL terminated unless
there’s an overflow. If the string returned is larger than nbytes , a count of bytes that
does not fit into the buffer is returned in extra_rtrn. XkbTranslateKeySym returns
the number of bytes that it placed into buf .

To find the string and symbol associated with a keysym for a given keyboard state,
use XkbTranslateKeySym .

int XkbTranslateKeySym (dpy , sym_inout , mods , buf , nbytes , extra_rtrn)
Display * dpy ; /* connection to X server */
KeySym * sym_inout ; /* symbol to be translated; result of translation */
unsigned int mods ; /* modifiers to apply to sym_inout */
char * buf ; /* buffer into which returned string is written */
int nbytes ; /* size of buffer in bytes */
int * extra_rtrn ; /* number of bytes overflow*/

XkbTranslateKeySym applies the transformations specified in mods to the symbol
specified by sym_inout . It returns in buf the string, if any, associated with the
keysym for the current locale. If the transformations in mods changes the keysym,
sym_inout is updated accordingly. If the string returned is larger than nbytes , a
count of bytes that does not fit into the buffer is returned in extra_rtrn. XkbTrans-
lateKeySym returns the number of bytes it placed into buf .

To update the keyboard description that is internal to the X library, use XkbRe-
freshKeyboardMapping .

Status XkbRefreshKeyboardMapping (event)
XkbMapNotifyEvent * event ; /* event initiating remapping */

XkbRefreshKeyboardMapping is the Xkb equivalent of the core XRefreshKey-
boardMapping function. It requests that the X server send the current key mapping

Interpreting Key Events

100

information to this client. A client usually invokes XkbRefreshKeyboardMapping af-
ter receiving an XkbMapNotify event. XkbRefreshKeyboardMapping returns Suc-
cess if it succeeds and BadMatch if the event is not an Xkb event.

The XkbMapNotify event can be generated when some client calls XkbSetMap
, XkbChangeMap , XkbGetKeyboardByName , or any of the standard X library
functions that change the keyboard mapping or modifier mapping.

To translate a keycode to a key symbol and modifiers, use XkbTranslateKeyCode .

Booll XkbTranslateKeyCode (xkb, key, mods, mods_rtrn, keysym_rtrn)
XkbDescPtr xkb ; /* keyboard description to use for translation */
KeyCode key ; /* keycode to translate */
unsigned int mods ; /* modifiers to apply when translating key */
unsigned int * mods_rtrn ; /* backfilled with unconsumed modifiers */
KeySym * keysym_rtrn ; /* keysym resulting from translation */

mods_rtrn is backfilled with the modifiers consumed by the translation process.
mods is a bitwise inclusive OR of the legal modifier masks: ShiftMask , LockMask ,
ControlMask , Mod1Mask , Mod2Mask , Mod3Mask , Mod4Mask , Mod5Mask .The
AlwaysConsumeShiftAndLock library control (see section 11.1.3), if enabled, caus-
es XkbTranslateKeyCode to consume shift and lock. XkbTranslateKeyCode returns
True if the translation resulted in a keysym, and False if it resulted in NoSymbol .

101

Chapter 13. Keyboard Geometry
The Xkb description of a keyboard includes an optional keyboard geometry that
describes the physical appearance of the keyboard. Keyboard geometry describes
the shape, location, and color of all keyboard keys or other visible keyboard com-
ponents such as indicators. The information contained in a keyboard geometry is
sufficient to allow a client program to draw an accurate two-dimensional image of
the keyboard.

You can retrieve a keyboard geometry from an X server that supports Xkb, or you can
allocate it from scratch and initialize it in a client program. The keyboard geometry
need not have any correspondence with the physical keyboard that is connected to
the X server.

Geometry measurements are specified in mm/10 units. The origin (0,0) is in the
top left corner of the keyboard image. A component’s own origin is also its upper
left corner. In some cases a component needs to be drawn rotated. For example,
a special keyboard may have a section of keys arranged in rows in a rectangular
area, but the entire rectangle may not be in alignment with the rest of the keyboard,
and instead, it is rotated from horizontal by 30 o . Rotation for a geometry object
is specified in 1/10 o increments about its origin. An example of a keyboard with
rotated sections is shown in Figure 13.1.

Rotated Sections

Rotated Keyboard Sections

Some geometry components include a priority , which indicates the order in which
overlapping objects should be drawn. Objects should be drawn in order from highest
priority (0) to lowest (255).

The keyboard geometry’s top-level description is stored in a XkbGeometryRec
structure. This structure contains three types of information:

1. Lists of items, not used to draw the basic keyboard, but indexed by the geome-
try descriptions that comprise the entire keyboard geometry (colors, geometry
properties, key aliases, shapes)

Keyboard Geometry

102

2. A number of singleton items that describe the keyboard as a whole (keyboard
name, width and height, a color for the keyboard as a whole, and a color for
keyboard key labels)

3. A list of the keyboard’s sections and nonkey doodads

The top-level geometry is described in more detail in the following.

The lists of items used by components of the keyboard geometry description is as
follows:

• The top-level keyboard geometry description includes a list of up to MaxColors
(32) color names . A color name is a string whose interpretation is not specified
by Xkb. The XkbColorRec structure provides a field for this name as well as a
pixel field. The pixel field is a convenient place for an application to store a pixel
value or color definition, if it needs to. All other geometry data structures refer
to colors using their indices in this global list.

• The top-level keyboard geometry description includes a list of geometry proper-
ties . A geometry property associates an arbitrary string with an equally arbitrary
name. Geometry properties can be used to provide hints to programs that display
images of keyboards, but they are not interpreted by Xkb. No other geometry
structures refer to geometry properties. As an example of a possible use of prop-
erties , consider the pause/break key on most PC keyboards: the "break" symbol
is usually on the front of the key and is often a different color. A program might
set a property to:

LBL_PAUS = "{Pause/top/black,Break/front/red}"

and use the property information to draw the key with a front label as well as a
top label.

• The top-level keyboard geometry description includes a list of key aliases (see
Chapter 18). Key aliases allow the keyboard layout designer to assign multiple
key names to a single key.

Note
Key aliases defined in the geometry component of a keyboard mapping
override those defined in the keycodes component of the server database,
which are stored in the XkbNamesRec (xkb->names). Therefore, consider
the key aliases defined by the geometry before considering key aliases
supplied by the keycodes.

• The top-level keyboard geometry description includes a list of shapes ; other key-
board components refer to shapes by their index in this list. A shape consists of an
arbitrary name of type Atom and one or more closed-polygon outlines . All points
in an outline are specified relative to the origin of its enclosing shape, that is,
whichever shape that contains this outline in its list of outlines. One outline is the
primary outline. The primary outline is by default the first outline, or it can be op-
tionally specified by the primary field in the XkbShapeRec structure. A keyboard
display application can generate a simpler but still accurate keyboard image by
displaying only the primary outlines for each shape. Nonrectangular keys must
include a rectangular approximation as one of the outlines associated with the
shape. The approximation is not normally displayed but can be used by very sim-

Keyboard Geometry

103

ple keyboard display applications to generate a recognizable but degraded image
of the keyboard.

The XkbGeometryRec top-level geometry description contains the following infor-
mation that pertains to the keyboard as a whole:

• A keyboard symbolic name of type Atom to help users identify the keyboard.

• The width and height of the keyboard, in mm/10. For nonrectangular keyboards,
the width and height describe the smallest bounding box that encloses the outline
of the keyboard.

• The base color of the keyboard is the predominant color on the keyboard and is
used as the default color for any components whose color is not explicitly speci-
fied.

• The label color is the color used to draw the labels on most of the keyboard keys.

• The label font is a string that describes the font used to draw labels on most keys;
label fonts are arbitrary strings, because Xkb does not specify the format or name
space for font names.

The keyboard is subdivided into named sections of related keys and doodads. The
sections and doodads on the keyboard are listed in the XkbGeometryRec top-level
keyboard geometry description. A section is composed of keys that are physically
together and logically related. Figure 13.2 shows a keyboard that is divided into
four sections. A doodad describes some visible aspect of the keyboard that is not
a key and is not a section.

Editing

Function

Alpha

Keypad

Keyboard with Four Sections

Keyboard Geometry

104

Shapes and Outlines
A shape , used to draw keyboard components and stored in a XkbShapeRec struc-
ture, has:

• An arbitrary name of type Atom.

• Bounds (two x and y coordinates) that describe the corners of a rectangle con-
taining the shape’s top surface outline.

• A list of one or more outlines (described below).

• Optional pointers to a primary and an approximation outline (described below).
If either of these pointers is NULL , the default primary/approximation outline is
the first one in the list of outlines for the shape.

An outline , stored in a XkbOutlineRec structure, is a list of one or more points
that describes a single closed-polygon, as follows:

• A list with a single point describes a rectangle with one corner at the origin of the
shape (0,0) and the opposite corner at the specified point.

• A list of two points describes a rectangle with one corner at the position specified
by the first point and the opposite corner at the position specified by the second
point.

• A list of three or more points describes an arbitrary polygon. If necessary, the
polygon is automatically closed by connecting the last point in the list with the
first.

• A nonzero value for the corner_radius field specifies that the corners of the poly-
gon should be drawn as circles with the specified radius.

All points in an outline are specified relative to the origin of the enclosing shape.
Points in an outline may have negative values for the X and Y coordinate.

One outline is the primary outline; a keyboard display application can generate a
simple but still accurate keyboard image by displaying only the primary outlines for
each shape. The default primary outline is the first in a shape’s list of outlines. If the
primary field of the XkbShapeRec structure is not NULL , it points to the primary
outline. A rectangular approximation must be included for nonrectangular keys as
one of the outlines associated with the shape; the approximation is not normally
displayed but can be used by very simple keyboard display applications to generate
a recognizable but degraded image of the keyboard.

Sections
As previously noted, a keyboard is subdivided into sections of related keys. Each
section has its own coordinate system — if a section is rotated, the coordinates of
any components within the section are interpreted relative to the edges that were
on the top and left before rotation. The components that make up a section, stored
in a XkbSectionRec , include:

• An arbitrary name of type Atom.

• A priority, to indicate drawing order. 0 is the highest priority, 255 the lowest.

Keyboard Geometry

105

• Origin of the section, relative to the origin of the keyboard.

• The width and height and the angle of rotation.

• A list of rows . A row is a list of horizontally or vertically adjacent keys. Horizontal
rows parallel the (prerotation) top of the section, and vertical rows parallel the
(prerotation) left of the section. All keys in a horizontal row share a common top
coordinate; all keys in a vertical row share a left coordinate. Figure 13.3 shows the
alpha section from the keyboard shown in Figure 13.2, divided into rows. Rows
and keys are defined below.

Row 5
Row 4

Row 2
Row 1

Row 3

Rows in a Section

• An optional list of doodads ; any type of doodad can be enclosed within a section.
Position and angle of rotation are relative to the origin and angle of rotation of
the sections that contain them. Priority for doodads in a section is relative to the
other components of the section, not to the keyboard as a whole.

• An optional overlay with a name of type Atom and a list of overlay rows (described
below).

• Bounds (two x and y coordinates) that describe the corners of a rectangle con-
taining the entire section.

Rows and Keys
A row description (XkbRowRec) consists of the coordinates of its origin relative
to its enclosing section, a flag indicating whether the row is horizontal or vertical,
and a list of keys in the row.

A key description (XkbKeyRec) consists of a key name, a shape, a key color, and
a gap. The key name should correspond to one of the keys named in the keyboard
names description, the shape specifies the appearance of the key, and the key color
specifies the color of the key (not the label on the key; the label color is stored in the
XkbGeometryRec). Keys are normally drawn immediately adjacent to one another
from left to right (or top to bottom) within a row. The gap field specifies the distance
between a key and its predecessor.

Keyboard Geometry

106

Doodads
Doodads can be global to the keyboard or part of a section. Doodads have symbolic
names of arbitrary length. The only doodad name whose interpretation is specified
by Xkb is "Edges", which, if present, describes the outline of the entire keyboard.

Each doodad’s origin is stored in fields named left and top , which are the coordi-
nates of the doodad’s origin relative to its enclosing object, whether it be a section
or the top-level keyboard. The priority for doodads that are listed in the top-level
geometry is relative to the other doodads listed in the top-level geometry and the
sections listed in the top-level geometry. The priority for doodads listed in a sec-
tion are relative to the other components of the section. Each doodad is stored in a
structure with a type field, which specifies the type of doodad.

Xkb supports five types of doodads:

• An indicator doodad describes one of the physical keyboard indicators. Indica-
tor doodads specify the shape of the indicator, the indicator color when it is lit (
on_color) and the indicator color when it is dark (off_color).

• An outline doodad describes some aspect of the keyboard to be drawn as one or
more hollow, closed polygons. Outline doodads specify the shape, color, and angle
of rotation about the doodad origin at which they should be drawn.

• A solid doodad describes some aspect of the keyboard to be drawn as one or more
filled polygons. Solid doodads specify the shape, color, and angle of rotation about
the doodad origin at which they should be drawn.

• A text doodad describes a text label somewhere on the keyboard. Text doodads
specify the label string, the font and color to use when drawing the label, and the
angle of rotation of the doodad about its origin.

• A logo doodad is a catch-all, which describes some other visible element of the
keyboard. A logo doodad is essentially an outline doodad with an additional sym-
bolic name that describes the element to be drawn. If a keyboard display pro-
gram recognizes the symbolic name, it can draw something appropriate within
the bounding region of the shape specified in the doodad. If the symbolic name
does not describe a recognizable image, it should draw an outline using the spec-
ified shape, outline, and angle of rotation. The Xkb extension does not specify the
interpretation of logo names.

The structures these doodads are stored in and the values of the type fields are
shown in Table 13.1.

Table 13.1. Doodad Types

Doodad Structure Type
indicator doodad XkbIndicatorDoodadRec XkbIndicatorDoodad
outline doodad XkbShapeDoodadRec XkbOutlineDoodad
solid doodad XkbShapeDoodadRec XkbSolidDoodad
text doodad XkbTextDoodadRec XkbTextDoodad
logo doodad XkbLogoDoodadRec XkbLogoDoodad

Keyboard Geometry

107

Overlay Rows and Overlay Keys
An overlay row (XkbOverlayRowRec) contains a pointer to the row it overlays and
a list of overlay keys .

Each overlay key definition (XkbOverlayKeyRec) indicates a key that can yield
multiple keycodes and consists of a field named under , which specifies the primary
name of the key and a field named over , which specifies the name for the key when
the overlay keycode is selected. The key specified in under must be a member of
the section that contains the overlay key definition, while the key specified in over
must not be.

Drawing a Keyboard Representation
To draw a representation of the keyboard, draw in the following order:

 Draw the top-level keyboard as a rectangle, using its width and height.
 For each component (section or doodad) of the top-level geometry, in priority order:
 If component is a section
 For each row, in the order it appears in the section
 Draw keys in the order they appear in the row
 Draw doodads within the section in priority order.
 Else draw doodad

Geometry Data Structures
In the following figures, a solid arrow denotes a pointer to an array of structures or
a singleton structure. A dotted arrow denotes an index or a pointer into the array.

Keyboard Geometry

108

label_color

base_color

properties

colors

shapes

sections

doodads

key_aliases

. . .

. . .

XkbGeometryRec

XkbKeyAliasRec(s)
(array)

XkbColorRec(s)
(array)

XkbPropertyRec(s)
(array)

(See Figure 13.6)

overlays(s)
(array)

. . .

rows

doodads

bounds

overlays

XkbSectionRec(s)
(array)

(See Figure 13.5)

doodads(s)
(array)

XkbBoundsRec

XkbBoundsRec

. . .

keys

bounds

XkbRowRec(s)
(array)

. . .

shape_ndx

color_ndx

XkbKeyRec(s)
(array)

(See Figure 13.5)

doodads(s)
(array)

XkbBoundsRec

XkbOutlineRec(s)
(array)

outlines
approx

primary

bounds

. . .

XkbShapeRec(s)
(array)

Xkb Geometry Data Structures

Keyboard Geometry

109

XkbGeometryRec,
XkbColorRec, and
XkbShapeRec
repeated from
Figure 16.4

. . .

label_color

base_color

properties

colors

shapes

sections

doodads

key_aliases

XkbGeometryRec

. . .

color_ndx

shape_ndx

. . .

XkbShapeDoodadRec(s)

. . .

color_ndx

XkbTextDoodadRec(s)

doodads array
may contain
any of these
doodad types shape_ndx

on_color_ndx

off_color_ndx

. . .

XkbIndicatorDoodadRec(s)

color_ndx

shape_ndx

. . .

XkbLogoDoodadRec(s)

outlines
approx

primary

bounds

XkbShapeRec(s)
(array)

. . .

XkbColorRec(s)
(array)

Keyboard Geometry

110

Xkb Geometry Data Structures (Doodads)

XkbSelectionRec(s)
(array)

rows

doodads

bounds

overlays

. . .

XkbBoundsRec

. . .

rows

bounds

section_under

XkbOverlayRec(s)
(array)

XkbBoundsRec

XkbOverlayKeyRec(s)
(array)

. . .

keys

row_under

XkbOverlayRowRec(s)
(array)

. . .

bounds

keys

XkbRowRec(s)
(array)

XkbSectionRec and
XkbRowRec
repeated from
Figure 16.4

Xkb Geometry Data Structures (Overlays)

typedef struct _XkbGeometry { /* top-level keyboard geometry structure */
 Atom name; /* keyboard name */
 unsigned short width_mm; /* keyboard width in mm / 10 */
 unsigned short height_mm; /* keyboard height in mm / 10 */

Keyboard Geometry

111

 char * label_font; /* font for key labels */
 XkbColorPtr label_color; /* color for key labels - pointer into colors array */
 XkbColorPtr base_color; /* color for basic keyboard - pointer into colors array */
 unsigned short sz_properties; /* size of properties array */
 unsigned short sz_colors; /* size of colors array */
 unsigned short sz_shapes; /* size of shapes array */
 unsigned short sz_sections; /* size of sections array */
 unsigned short sz_doodads; /* size of doodads array */
 unsigned short sz_key_aliases; /* size of key aliases array */
 unsigned short num_properties; /* number of properties in the properties array */
 unsigned short num_colors; /* number of colors in the colors array */
 unsigned short num_shapes; /* number of shapes in the shapes array */
 unsigned short num_sections; /* number of sections in the sections array */
 unsigned short num_doodads; /* number of doodads in the doodads array */
 unsigned short num_key_aliases; /* number of key aliases in the key */
 XkbPropertyPtr properties; /* properties array */
 XkbColorPtr colors; /* colors array */
 XkbShapePtr shapes; /* shapes array */
 XkbSectionPtr sections; /* sections array */
 XkbDoodadPtr doodads; /* doodads array */
 XkbKeyAliasPtr key_aliases; /* key aliases array */
} XkbGeometryRec*XkbGeometryPtr;

The doodads array is only for doodads not contained in any of the sections that has
its own doodads . The key aliases contained in the key_aliases array take prece-
dence over any defined in the keycodes component of the keyboard description.

typedef struct _XkbProperty {
 char * name; /* property name */
 char * value; /* property value */
} XkbPropertyRec,*XkbPropertyPtr;

typedef struct _XkbColor {
 unsigned int pixel; /* color */
 char * spec; /* color name */
} XkbColorRec,*XkbColorPtr;

typedef struct _XkbKeyAliasRec {
 char real[XkbKeyNameLength]; /* real name of the key */
 char alias[XkbKeyNameLength]; /* alias for the key */
} XkbKeyAliasRec,*XkbKeyAliasPtr;

typedef struct _XkbPoint { /* x,y coordinates */
 short x;
 short y;
} XkbPointRec, *XkbPointPtr;

typedef struct _XkbOutline {
 unsigned short num_points; /* number of points in the outline */
 unsigned short sz_points; /* size of the points array */

Keyboard Geometry

112

 unsigned short corner_radius; /* draw corners as circles with this radius */
 XkbPointPtr points; /* array of points defining the outline */
} XkbOutlineRec, *XkbOutlinePtr;

typedef struct _XkbBounds {
 short x1,y1; /* upper left corner of the bounds,
 in mm/10 */
 short x2,y2; /* lower right corner of the bounds, in
 mm/10 */
} XkbBoundsRec, *XkbBoundsPtr;

typedef struct _XkbShape {
 Atom name; /* shape’s name */
 unsigned short num_outlines; /* number of outlines for the shape */
 unsigned short sz_outlines; /* size of the outlines array */
 XkbOutlinePtr outlines; /* array of outlines for the shape */
 XkbOutlinePtr approx; /* pointer into the array to the approximating outline */
 XkbOutlinePtr primary; /* pointer into the array to the primary outline */
 XkbBoundsRec bounds; /* bounding box for the shape; encompasses all outlines */
} XkbShapeRec, *XkbShapePtr;

If approx and/or primary is NULL , the default value is used. The default primary
outline is the first element in the outlines array, as is the default approximating
outline.

typedef struct _XkbKey { /* key in a row */
 XkbKeyNameRec name; /* key name */
 short gap; /* gap in mm/10 from previous key in row */
 unsigned char shape_ndx; /* index of shape for key */
 unsigned char color_ndx; /* index of color for key body */
} XkbKeyRec, *XkbKeyPtr;

typedef struct _XkbRow { /* row in a section */
 short top; /* top coordinate of row origin, relative to section’s origin */
 short left; /* left coordinate of row origin, relative to section’s origin */
 unsigned short num_keys; /* number of keys in the keys array */
 unsigned short sz_keys; /* size of the keys array */
 int vertical; /* True =>vertical row,
 False =>horizontal row */
 XkbKeyPtr keys; /* array of keys in the row*/
 XkbBoundsRec bounds; /* bounding box for the row */
} XkbRowRec, *XkbRowPtr;

top and left are in mm / 10 .

typedef struct _XkbOverlayRec {
 Atom name; /* overlay name */
 XkbSectionPtr section_under; /* the section under this overlay */
 unsigned short num_rows; /* number of rows in the rows array */
 unsigned short sz_rows; /* size of the rows array */
 XkbOverlayRowPtr rows; /* array of rows in the overlay */

Keyboard Geometry

113

 XkbBoundsPtr bounds; /* bounding box for the overlay */
} XkbOverlayRec,*XkbOverlayPtr;

typedef struct _XkbOverlayRow {
 unsigned short row_under; /* index into the row under this overlay row */
 unsigned short num_keys; /* number of keys in the keys array */
 unsigned short sz_keys; /* size of the keys array */
 XkbOverlayKeyPtr keys; /* array of keys in the overlay row */
} XkbOverlayRowRec,*XkbOverlayRowPtr;

row_under is an index into the array of rows in the section under this overlay. The
section under this overlay row is the one pointed to by section_under in this overlay
row’s XkbOverlayRec .

typedef struct _XkbOverlayKey {
 XkbKeyNameRec over; /* name of this overlay key */
 XkbKeyNameRec under; /* name of the key under this overlay key */
} XkbOverlayKeyRec,*XkbOverlayKeyPtr;

typedef struct _XkbSection {
 Atom name; /* section name */
 unsigned char priority; /* drawing priority, 0=>highest, 255=>lowest */
 short top; /* top coordinate of section origin */
 short left; /* left coordinate of row origin */
 unsigned short width; /* section width, in mm/10 */
 unsigned short height; /* section height, in mm/10 */
 short angle; /* angle of section rotation, counterclockwise */
 unsigned short num_rows; /* number of rows in the rows array */
 unsigned short num_doodads; /* number of doodads in the doodads array */
 unsigned short num_overlays; /* number of overlays in the overlays array */
 unsigned short sz_rows; /* size of the rows array */
 unsigned short sz_doodads; /* size of the doodads array */
 unsigned short sz_overlays; /* size of the overlays array */
 XkbRowPtr rows; /* section rows array */
 XkbDoodadPtr doodads; /* section doodads array */
 XkbBoundsRec bounds; /* bounding box for the section, before rotation*/
 XkbOverlayPtr overlays; /* section overlays array */
} XkbSectionRec, *XkbSectionPtr;

top and left are the origin of the section, relative to the origin of the keyboard, in
mm / 10 . angle is in 1 / 10 degrees.

DoodadRec Structures
The doodad arrays in the XkbGeometryRec and the XkbSectionRec may contain
any of the doodad structures and types shown in Table 13.1.

The doodad structures form a union:

typedef union _XkbDoodad {
 XkbAnyDoodadRec any;
 XkbShapeDoodadRec shape;

Keyboard Geometry

114

 XkbTextDoodadRec text;
 XkbIndicatorDoodadRec indicator;
 XkbLogoDoodadRec logo;
} XkbDoodadRec, *XkbDoodadPtr;

The top and left coordinates of each doodad are the coordinates of the origin of the
doodad relative to the keyboard’s origin if the doodad is in the XkbGeometryRec
doodad array, and with respect to the section’s origin if the doodad is in a XkbSec-
tionRec doodad array. The color_ndx or on_color_ndx and off_color_ndx fields are
color indices into the XkbGeometryRec ’s color array and are the colors to draw the
doodads with. Similarly, the shape_ndx fields are indices into the XkbGeometryRec
’s shape array.

typedef struct _XkbShapeDoodad {
 Atom name; /* doodad name */
 unsigned char type; /* XkbOutlineDoodad
 or XkbSolidDoodad */
 unsigned char priority; /* drawing priority,
 0=>highest, 255=>lowest */
 short top; /* top coordinate, in mm/10 */
 short left; /* left coordinate, in mm/10 */
 short angle; /* angle of rotation, clockwise, in 1/10 degrees */
 unsigned short color_ndx; /* doodad color */
 unsigned short shape_ndx; /* doodad shape */
} XkbShapeDoodadRec, *XkbShapeDoodadPtr;

typedef struct _XkbTextDoodad {
 Atom name; /* doodad name */
 unsigned char type; /* XkbTextDoodad */
 unsigned char priority; /* drawing priority,
 0=>highest, 255=>lowest */
 short top; /* top coordinate, in mm/10 */
 short left; /* left coordinate, in mm/10 */
 short angle; /* angle of rotation, clockwise, in 1/10 degrees */
 short width; /* width in mm/10 */
 short height; /* height in mm/10 */
 unsigned short color_ndx; /* doodad color */
 char * text; /* doodad text */
 char * font; /* arbitrary font name for doodad text */
} XkbTextDoodadRec, *XkbTextDoodadPtr;

typedef struct _XkbIndicatorDoodad {
 Atom name; /* doodad name */
 unsigned char type; /* XkbIndicatorDoodad */
 unsigned char priority; /* drawing priority, 0=>highest, 255=>lowest */
 short top; /* top coordinate, in mm/10 */
 short left; /* left coordinate, in mm/10 */
 short angle; /* angle of rotation, clockwise, in 1/10 degrees */
 unsigned short shape_ndx; /* doodad shape */
 unsigned short on_color_ndx; /* color for doodad if indicator is on */
 unsigned short off_color_ndx; /* color for doodad if indicator is off */
} XkbIndicatorDoodadRec, *XkbIndicatorDoodadPtr;

Keyboard Geometry

115

typedef struct _XkbLogoDoodad {
 Atom name; /* doodad name */
 unsigned char type; /* XkbLogoDoodad */
 unsigned char priority; /* drawing priority, 0=>highest, 255=>lowest */
 short top; /* top coordinate, in mm/10 */
 short left; /* left coordinate, in mm/10 */
 short angle; /* angle of rotation, clockwise, in 1/10 degrees */
 unsigned short color_ndx; /* doodad color */
 unsigned short shape_ndx; /* doodad shape */
 char * logo_name; /* text for logo */
} XkbLogoDoodadRec, *XkbLogoDoodadPtr

Getting Keyboard Geometry From the Server
You can load a keyboard geometry as part of the keyboard description returned by
XkbGetKeyboard . However, if a keyboard description has been previously loaded,
you can instead obtain the geometry by calling the XkbGetGeometry . In this case,
the geometry returned is the one associated with the keyboard whose device ID is
contained in the keyboard description.

To load a keyboard geometry if you already have the keyboard description, use Xk-
bGetGeometry.

Status XkbGetGeometry (dpy , xkb)
Display * dpy ; /* connection to the X server */
XkbDescPtr xkb ; /* keyboard description that contains the ID for the keyboard
and into which the geometry should be loaded */

XkbGetGeometry can return BadValue , BadImplementation , BadName , BadAl-
loc, or BadLength errors or Success if it succeeds.

It is also possible to load a keyboard geometry by name. The X server maintains a
database of keyboard components (see Chapter 20). To load a keyboard geometry
description from this database by name, use XkbGetNamedGeometry.

Status XkbGetNamedGeometry (dpy , xkb , name)
Display * dpy ; /* connection to the X server */
XkbDescPtr xkb ; /* keyboard description into which the geometry should be
loaded */
Atom name ; /* name of the geometry to be loaded */

XkbGetNamedGeometry can return BadName if the name cannot be found.

Using Keyboard Geometry
Xkb provides a number of convenience functions to help use a keyboard geometry.
These include functions to return the bounding box of a shape’s top surface and to
update the bounding box of a shape row or section.

A shape is made up of a number of outlines. Each outline is a polygon made up of a
number of points. The bounding box of a shape is a rectangle that contains all the
outlines of that shape.

Keyboard Geometry

116

actual key
surface

approximate
outline

primary
outline

detailed
outline

bounding
box

outline array

Key Surface, Shape Outlines, and Bounding Box

To determine the bounding box of the top surface of a shape, use XkbCom-
puteShapeTop.

Bool XkbComputeShapeTop (shape , bounds_rtrn)
XkbShapePtr shape ; /* shape to be examined */
XkbBoundsPtr bounds_rtrn /* backfilled with the bounding box for the shape */

XkbComputeShapeTop returns a BoundsRec that contains two x and y coordinates.
These coordinates describe the corners of a rectangle that contains the outline that
describes the top surface of the shape. The top surface is defined to be the approx-
imating outline if the approx field of shape is not NULL . If approx is NULL ,
the top surface is defined as the last outline in the shape ’s array of outlines. Xkb-
ComputeShapeTop returns False if shape is NULL or if there are no outlines for
the shape; otherwise, it returns True.

A ShapeRec contains a BoundsRec that describes the bounds of the shape. If you
add or delete an outline to or from a shape, the bounding box must be updated. To
update the bounding box of a shape, use XkbComputeShapeBounds.

Bool XkbComputeShapeBounds (shape)
XkbShapePtr shape ; /* shape to be examined */

XkbComputeShapeBounds updates the BoundsRec contained in the shape by ex-
amining all the outlines of the shape and setting the BoundsRec to the minimum
x and minimum y, and maximum x and maximum y values found in those outlines.
XkbComputeShapeBounds returns False if shape is NULL or if there are no out-
lines for the shape; otherwise, it returns True .

If you add or delete a key to or from a row, or if you update the shape of one of the
keys in that row, you may need to update the bounding box of that row. To update
the bounding box of a row, use XkbComputeRowBounds.

Bool XkbComputeRowBounds (geom , section , row)
XkbGeometryPtr geom ; /* geometry that contains the section */
XkbSectionPtr section ; /* section that contains the row */
XkbRowPtr row ; /* row to be examined and updated */

Keyboard Geometry

117

XkbComputeRowBounds checks the bounds of all keys in the row and updates the
bounding box of the row if necessary. XkbComputeRowBounds returns False if any
of the arguments is NULL ; otherwise, it returns True .

If you add or delete a row to or from a section, or if you change the geometry of
any of the rows in that section, you may need to update the bounding box for that
section. To update the bounding box of a section, use XkbComputeSectionBounds.

Bool XkbComputeSectionBounds (geom , section)
XkbGeometryPtr geom ; /* geometry that contains the section */
XkbSectionPtr section ; /* section to be examined and updated */

XkbComputeSectionBounds examines all the rows of the section and updates the
bounding box of that section so that it contains all rows. XkbComputeSection-
Bounds returns False if any of the arguments is NULL ; otherwise, it returns True .

Keys that can generate multiple keycodes may be associated with multiple names.
Such keys have a primary name and an alternate name. To find the alternate name
by using the primary name for a key that is part of an overlay, use XkbFindOver-
layForKey.

char * XkbFindOverlayForKey (geom , section , under)
XkbGeometryPtr geom ; /* geometry that contains the section */
XkbSectionPtr section ; /* section to be searched for matching keys */
char * under . /* primary name of the key to be considered */

XkbFindOverlayForKey uses the primary name of the key, under , to look up the
alternate name, which it returns.

Adding Elements to a Keyboard Geometry
Xkb provides functions to add a single new element to the top-level keyboard geom-
etry. In each case the num_ * fields of the corresponding structure is incremented
by 1. These functions do not change sz_ * unless there is no more room in the
array. Some of these functions fill in the values of the element’s structure from the
arguments. For other functions, you must explicitly write code to fill the structure’s
elements.

The top-level geometry description includes a list of geometry properties . A geome-
try property associates an arbitrary string with an equally arbitrary name. Programs
that display images of keyboards can use geometry properties as hints, but they are
not interpreted by Xkb. No other geometry structures refer to geometry properties.

To add one property to an existing keyboard geometry description, use XkbAddGe-
omProperty .

XkbPropertyPtr XkbAddGeomProperty (geom , name , value)
XkbGeometryPtr geom ; /* geometry to be updated */
char * name ; /* name of the new property */
char * value ; /* value for the new property */

Keyboard Geometry

118

XkbAddGeomProperty adds one property with the specified name and value to the
keyboard geometry specified by geom. XkbAddGeomProperty returns NULL if any
of the parameters is empty or if it was not able to allocate space for the property. To
allocate space for an arbitrary number of properties, use the XkbAllocGeomProps
function.

To add one key alias to an existing keyboard geometry description, use XkbAddGe-
omKeyAlias .

XkbKeyAliasPtr XkbAddGeomKeyAlias (geom , alias, real)
XkbGeometryPtr geom ; /* geometry to be updated */
char * alias ; /* alias to be added */
char * real ; /* real name to be bound to the new alias */

XkbAddGeomKeyAlias adds one key alias with the value alias to the geometry ge-
om, and associates it with the key whose real name is real. XkbAddGeomKeyAlias
returns NULL if any of the parameters is empty or if it was not able to allocate
space for the alias. To allocate space for an arbitrary number of aliases, use the
XkbAllocGeomKeyAliases function.

To add one color name to an existing keyboard geometry description, use XkbAd-
dGeomColor .

XkbColorPtr XkbAddGeomColor (geom , spec , pixel)
XkbGeometryPtr geom ; /* geometry to be updated */
char * spec ; /* color to be added */
unsigned int pixel ; /* color to be added */

XkbAddGeomColor adds the specified color name and pixel to the specified geom-
etry geom . The top-level geometry description includes a list of up to MaxColors
(32) color names . A color name is a string whose interpretation is not specified by
Xkb and neither is the pixel value’s interpretation. All other geometry data struc-
tures refer to colors using their indices in this global list or pointers to colors in this
list. XkbAddGeomColor returns NULL if any of the parameters is empty or if it was
not able to allocate space for the color. To allocate space for an arbitrary number of
colors to a geometry, use the XkbAllocGeomColors function.

To add one outline to an existing shape, use XkbAddGeomOutline.

XkbOutlinePtr XkbAddGeomOutline (shape , sz_points)
XkbShapePtr shape ; /* shape to be updated */
int sz_points ; /* number of points to be reserved */

An outline consists of an arbitrary number of points. XkbAddGeomOutline adds an
outline to the specified shape by reserving sz_points points for it. The new outline is
allocated and zeroed. XkbAddGeomOutline returns NULL if any of the parameters
is empty or if it was not able to allocate space. To allocate space for an arbitrary
number of outlines to a shape, use XkbAllocGeomOutlines.

To add a shape to a keyboard geometry, use XkbAddGeomShape .

Keyboard Geometry

119

XkbShapePtr XkbAddGeomShape (geom , name , sz_outlines)
XkbGeometryPtr geom ; /* geometry to be updated */
Atom name ; /* name of the new shape */
int sz_outlines ; /* number of outlines to be reserved */

A geometry contains an arbitrary number of shapes, each of which is made up of an
arbitrary number of outlines. XkbAddGeomShape adds a shape to a geometry geom
by allocating space for sz_outlines outlines for it and giving it the name specified
by name. If a shape with name name already exists in the geometry, a pointer to
the existing shape is returned. XkbAddGeomShape returns NULL if any of the
parameters is empty or if it was not able to allocate space. To allocate space for an
arbitrary number of geometry shapes, use XkbAllocGeomShapes .

To add one key at the end of an existing row of keys, use XkbAddGeomKey .

XkbKeyPtr XkbAddGeomKey (row)
XkbRowPtr row ; /* row to be updated */

Keys are grouped into rows. XkbAddGeomKey adds one key to the end of the spec-
ified row . The key is allocated and zeroed. XkbAddGeomKey returns NULL if row
is empty or if it was not able to allocate space for the key. To allocate space for an
arbitrary number of keys to a row, use XkbAllocGeomKeys.

To add one section to an existing keyboard geometry, use XkbAddGeomSection .

XkbSectionPtr XkbAddGeomSection (geom , name , sz_rows , sz_doodads ,
sz_overlays)
XkbGeometryPtr geom ; /* geometry to be updated */
Atom name ; /* name of the new section */
int sz_rows ; /* number of rows to reserve in the section */
int sz_doodads ; /* number of doodads to reserve in the section */
int sz_overlays ; /* number of overlays to reserve in the section */

A keyboard geometry contains an arbitrary number of sections. XkbAddGeomSec-
tion adds one section to an existing keyboard geometry geom . The new section
contains space for the number of rows, doodads, and overlays specified by sz_rows
, sz_doodads , and sz_overlays . The new section is allocated and zeroed and given
the name specified by name . If a section with name name already exists in the
geometry, a pointer to the existing section is returned. XkbAddGeomSection returns
NULL if any of the parameters is empty or if it was not able to allocate space for
the section. To allocate space for an arbitrary number of sections to a geometry, use
XkbAllocGeomSections.

To add a row to a section, use XkbAddGeomRow .

XkbRowPtr XkbAddGeomRow (section , sz_keys)
XkbSectionPtr section ; /* section to be updated */
int sz_keys ; /* number of keys to be reserved */

One of the components of a keyboard geometry section is one or more rows of keys.
XkbAddGeomRow adds one row to the specified section . The newly created row

Keyboard Geometry

120

contains space for the number of keys specified in sz_keys . They are allocated and
zeroed, but otherwise uninitialized. XkbAddGeomRow returns NULL if any of the
parameters is empty or if it was not able to allocate space for the row. To allocate
space for an arbitrary number of rows to a section, use the XkbAllocGeomRows
function.

To add one doodad to a section of a keyboard geometry or to the top-level geometry,
use XkbAddGeomDoodad .

XkbDoodadPtr XkbAddGeomDoodad (geom , section , name)
XkbGeometryPtr geom ; /* geometry to which the doodad is added */
XkbSectionPtr section ; /* section, if any, to which the doodad is added */
Atom name ; /* name of the new doodad */

A doodad describes some visible aspect of the keyboard that is not a key and is not
a section. XkbAddGeomDoodad adds a doodad with name specified by name to the
geometry geom if section is NULL or to the section of the geometry specified by
section if section is not NULL . XkbAddGeomDoodad returns NULL if any of the
parameters is empty or if it was not able to allocate space for the doodad. If there
is already a doodad with the name name in the doodad array for the geometry (if
section is NULL) or the section (if section is non- NULL), a pointer to that doodad is
returned. To allocate space for an arbitrary number of doodads to a section, use the
XkbAllocGeomSectionDoodads function. To allocate space for an arbitrary number
of doodads to a keyboard geometry, use the XkbAllocGeomDoodads function.

To add one overlay to a section, use XkbAddGeomOverlay .

XkbOverlayPtr XkbAddGeomOverlay (section , name , sz_rows)
XkbSectionPtr section ; /* section to which an overlay will be added */
Atom name ; /* name of the overlay */
int sz_rows ; /* number of rows to reserve in the overlay */

XkbAddGeomOverlay adds an overlay with the specified name to the specified sec-
tion . The new overlay is created with space allocated for sz_rows rows. If an overlay
with name name already exists in the section, a pointer to the existing overlay is
returned. XkbAddGeomOverlay returns NULL if any of the parameters is empty or
if it was not able to allocate space for the overlay. To allocate space for an arbitrary
number of overlays to a section, use the XkbAllocGeomOverlay function.

To add a row to an existing overlay, use XkbAddGeomOverlayRow .

XkbOverlayRowPtr XkbAddGeomOverlayRow (overlay , row_under, sz_keys)
XkbOverlayPtr overlay ; /* overlay to be updated */
XkbRowPtr row_under ; /* row to be overlayed in the section overlay overlays */
int sz_keys ; /* number of keys to reserve in the row */

XkbAddGeomOverlayRow adds one row to the overlay . The new row contains space
for sz_keys keys. If row_under specifies a row that doesn’t exist on the underlying
section, XkbAddGeomOverlayRow returns NULL and doesn’t change the overlay.
XkbAddGeomOverlayRow returns NULL if any of the parameters is empty or if it
was not able to allocate space for the overlay.

To add a key to an existing overlay row, use XkbAddGeomOverlayKey .

Keyboard Geometry

121

XkbOverlayKeyPtr XkbAddGeomOverlayKey (overlay , row, under)
XkbOverlayPtr overlay ; /* overlay to be updated */
XkbRowPtr row ; /* row in overlay to be updated */
char * under ; /* primary name of the key to be considered */

XkbAddGeomOverlayKey adds one key to the row in the overlay . If there is no
key named under in the row of the underlying section, XkbAddGeomOverlayKey
returns NULL .

Allocating and Freeing Geometry Components
Xkb provides a number of functions to allocate and free subcomponents of a key-
board geometry. Use these functions to create or modify keyboard geometries. Note
that these functions merely allocate space for the new element(s), and it is up to
you to fill in the values explicitly in your code. These allocation functions increase
sz_ * but never touch num_ * (unless there is an allocation failure, in which case
they reset both sz_ * and num_ * to zero). These functions return Success if they
succeed, BadAlloc if they are not able to allocate space, or BadValue if a parameter
is not as expected.

To allocate space for an arbitrary number of outlines to a shape, use XkbAllocGeo-
mOutlines.

Status XkbAllocGeomOutlines (shape , num_needed)
XkbShapePtr shape ; /* shape for which outlines should be allocated */
int num_needed ; /* number of new outlines required */

XkbAllocGeomOutlines allocates space for num_needed outlines in the specified
shape . The outlines are not initialized.

To free geometry outlines, use XkbFreeGeomOutlines .

void XkbFreeGeomOutlines (shape , first , count , free_all)
XkbShapePtr shape ; /* shape in which outlines should be freed */
int first ; /* first outline to be freed */
int count ; /* number of outlines to be freed */
Bool free_all; /* True => all outlines are freed */

If free_all is True , all outlines are freed regardless of the value of first or count.
Otherwise, count outlines are freed beginning with the one specified by first.

To allocate space for an arbitrary number of keys to a row, use XkbAllocGeomKeys.

Status XkbAllocGeomKeys (row , num_needed)
XkbRowPtr row ; /* row to which keys should be allocated */
int num_needed ; /* number of new keys required */

XkbAllocGeomKeys allocates num_needed keys and adds them to the row. No ini-
tialization of the keys is done.

To free geometry keys, use XkbFreeGeomKeys .

Keyboard Geometry

122

void XkbFreeGeomKeys (row , first , count , free_all)
XkbRowPtr row ; /* row in which keys should be freed */
int first ; /* first key to be freed */
int count ; /* number of keys to be freed */
Bool free_all; /* True => all keys are freed */

If free_all is True , all keys are freed regardless of the value of first or count. Oth-
erwise, count keys are freed beginning with the one specified by first.

To allocate geometry properties, use XkbAllocGeomProps .

Status XkbAllocGeomProps (geom , num_needed)
XkbGeometryPtr geom ; /* geometry for which properties should be allocated */
int num_needed ; /* number of new properties required */

XkbAllocGeomProps allocates space for num_needed properties and adds them to
the specified geometry geom . No initialization of the properties is done. A geome-
try property associates an arbitrary string with an equally arbitrary name. Geome-
try properties can be used to provide hints to programs that display images of key-
boards, but they are not interpreted by Xkb. No other geometry structures refer to
geometry properties.

To free geometry properties, use XkbFreeGeomProperties .

void XkbFreeGeomProperties (geom , first , count , free_all)
XkbGeometryPtr geom ; /* geometry in which properties should be freed */
int first ; /* first property to be freed */
int count ; /* number of properties to be freed */
Bool free_all; /* True => all properties are freed */

If free_all is True , all properties are freed regardless of the value of first or count.
Otherwise, count properties are freed beginning with the one specified by first.

To allocate geometry key aliases, use XkbAllocGeomKeyAliases .

Status XkbAllocGeomKeyAliases (geom , num_needed)
XkbGeometryPtr geom ; /* geometry for which key aliases should be allocated */
int num_needed ; /* number of new key aliases required */

XkbAllocGeomKeyAliases allocates space for num_needed key aliases and adds
them to the specified geometry geom . A key alias is a pair of strings that associates
an alternate name for a key with the real name for that key.

To free geometry key aliases, use XkbFreeGeomKeyAliases .

void XkbFreeGeomKeyAliases (geom , first , count , free_all)
XkbGeometryPtr geom ; /* geometry in which key aliases should be freed */
int first ; /* first key alias to be freed */
int count ; /* number of key aliases to be freed */
Bool free_all; /* True => all key aliases are freed */

Keyboard Geometry

123

If free_all is True , all aliases in the top level of the specified geometry geom are
freed regardless of the value of first or count. Otherwise, count aliases in geom are
freed beginning with the one specified by first.

To allocate geometry colors, use XkbAllocGeomColors .

Status XkbAllocGeomColors (geom , num_needed)
XkbGeometryPtr geom ; /* geometry for which colors should be allocated */
int num_needed ; /* number of new colors required. */

XkbAllocGeomColors allocates space for num_needed colors and adds them to the
specified geometry geom . A color name is a string whose interpretation is not
specified by Xkb. All other geometry data structures refer to colors using their in-
dices in this global list or pointers to colors in this list.

To free geometry colors, use XkbFreeGeomColors .

void XkbFreeGeomColors (geom , first , count , free_all)
XkbGeometryPtr geom ; /* geometry in which colors should be freed */
int first ; /* first color to be freed */
int count ; /* number of colors to be freed */
Bool free_all; /* True => all colors are freed */

If free_all is True , all colors are freed regardless of the value of first or count.
Otherwise, count colors are freed beginning with the one specified by first.

To allocate points in an outline, use XkbAllocGeomPoints .

Status XkbAllocGeomPoints (outline , num_needed)
XkbOutlinePtr outline ; /* outline for which points should be allocated */
int num_needed ; /* number of new points required */

XkbAllocGeomPoints allocates space for num_needed points in the specified outline
. The points are not initialized.

To free points in a outline, use XkbFreeGeomPoints .

void XkbFreeGeomPoints (outline , first , count , free_all)
XkbOutlinePtr outline ; /* outline in which points should be freed */
int first ; /* first point to be freed. */
int count ; /* number of points to be freed */
Bool free_all; /* True => all points are freed */

If free_all is True , all points are freed regardless of the value of first and count.
Otherwise, the number of points specified by count are freed, beginning with the
point specified by first in the specified outline.

To allocate space for an arbitrary number of geometry shapes, use XkbAllocGe-
omShapes .

Keyboard Geometry

124

Status XkbAllocGeomShapes (geom , num_needed)
XkbGeometryPtr geom ; /* geometry for which shapes should be allocated */
int num_needed ; /* number of new shapes required */

XkbAllocGeomShapes allocates space for num_needed shapes in the specified
geometry geom . The shapes are not initialized.

To free geometry shapes, use XkbFreeGeomShapes .

void XkbFreeGeomShapes (geom , first , count , f ree_all)
XkbGeometryPtr geom ; /* geometry in which shapes should be freed */
int first ; /* first shape to be freed */
int count ; /* number of shapes to be freed */
Bool free_all; /* True => all shapes are freed */

If free_all is True , all shapes in the geometry are freed regardless of the values
of first and count. Otherwise, count shapes are freed, beginning with the shape
specified by first.

To allocate geometry sections, use XkbAllocGeomSections .

Status XkbAllocGeomSections (geom , num_needed)
XkbGeometryPtr geom ; /*geometry for which sections should be allocated */
int num_needed ; /* number of new sections required */

XkbAllocGeomSections allocates num_needed sections and adds them to the geom-
etry geom. No initialization of the sections is done.

To free geometry sections, use XkbFreeGeomSections .

void XkbFreeGeomSections (geom , first , count , free_all)
XkbGeometryPtr geom ; /* geometry in which sections should be freed */
int first ; /* first section to be freed. */
int count ; /* number of sections to be freed */
Bool free_all; /* True => all sections are freed */

If free_all is True , all sections are freed regardless of the value of first and count.
Otherwise, the number of sections specified by count are freed, beginning with the
section specified by first in the specified geometry.

To allocate rows in a section, use XkbAllocGeomRows .

Status XkbAllocGeomRows (section , num_needed)
XkbSectionPtr section ; /* section for which rows should be allocated */
int num_needed ; /* number of new rows required */

XkbAllocGeomRows allocates num_needed rows and adds them to the section. No
initialization of the rows is done.

Keyboard Geometry

125

To free rows in a section, use XkbFreeGeomRows .

void XkbFreeGeomRows (section , first , count , free_all)
XkbSectionPtr section ; /* section in which rows should be freed */
int first ; /* first row to be freed. */
int count ; /* number of rows to be freed */
Bool free_all; /* True => all rows are freed */

If free_all is True , all rows are freed regardless of the value of first and count.
Otherwise, the number of rows specified by count are freed, beginning with the row
specified by first in the specified section.

To allocate overlays in a section, use XkbAllocGeomOverlays .

Status XkbAllocGeomOverlays (section , num_needed)
XkbSectionPtr section ; /* section for which overlays should be allocated */
int num_needed ; /* number of new overlays required */

XkbAllocGeomRows allocates num_needed overlays and adds them to the section.
No initialization of the overlays is done.

To free rows in an section, use XkbFreeGeomOverlays .

void XkbFreeGeomOverlays (section , first , count , free_all)
XkbSectionPtr section ; /* section in which overlays should be freed */
int first ; /* first overlay to be freed. */
int count ; /* number of overlays to be freed */
Bool free_all; /* True => all overlays are freed */

If free_all is True , all overlays are freed regardless of the value of first and count.
Otherwise, the number of overlays specified by count are freed, beginning with the
overlay specified by first in the specified section.

To allocate rows in a overlay, use XkbAllocGeomOverlayRows .

Status XkbAllocGeomOverlayRows (overlay , num_needed)
XkbSectionPtr overlay ; /* section for which rows should be allocated */
int num_needed ; /* number of new rows required */

XkbAllocGeomOverlayRows allocates num_needed rows and adds them to the over-
lay. No initialization of the rows is done.

To free rows in an overlay, use XkbFreeGeomOverlayRows .

void XkbFreeGeomOverlayRows (overlay , first , count , free_all)
XkbSectionPtr overlay ; /* section in which rows should be freed */
int first ; /* first row to be freed. */
int count ; /* number of rows to be freed */
Bool free_all; /* True => all rows are freed */

Keyboard Geometry

126

If free_all is True , all rows are freed regardless of the value of first and count.
Otherwise, the number of rows specified by count are freed, beginning with the row
specified by first in the specified overlay.

To allocate keys in an overlay row, use XkbAllocGeomOverlayKeys .

Status XkbAllocGeomOverlayKeys (row , num_needed)
XkbRowPtr row ; /* section for which rows should be allocated */
int num_needed ; /* number of new rows required */

XkbAllocGeomOverlayKeys allocates num_needed keys and adds them to the row.
No initialization of the keys is done.

To free keys in an overlay row, use XkbFreeGeomOverlayKeys .

void XkbFreeGeomOverlayKeys (row , first , count , free_all)
XkbRowPtr row ; /* row in which keys should be freed */
int first ; /* first key to be freed. */
int count ; /* number of keys to be freed */
Bool free_all; /* True => all keys are freed */

If free_all is True , all keys are freed regardless of the value of first and count.
Otherwise, the number of keys specified by count are freed, beginning with the key
specified by first in the specified row.

To allocate doodads that are global to a keyboard geometry, use XkbAllocGeom-
Doodads .

Status XkbAllocGeomDoodads (geom , num_needed)
XkbGeometryPtr geom ; /* geometry for which doodads should be allocated */
int num_needed ; /* number of new doodads required */

XkbAllocGeomDoodads allocates num_needed doodads and adds them to the spec-
ified geometry geom . No initialization of the doodads is done.

To allocate doodads that are specific to a section, use XkbAllocGeomSectionDoo-
dads .

Status XkbAllocGeomSectionDoodads (section , num_needed)
XkbSectionPtr section ; /* section for which doodads should be allocated */
int num_needed ; /* number of new doodads required */

XkbAllocGeomSectionDoodads allocates num_needed doodads and adds them to the
specified section . No initialization of the doodads is done.

To free geometry doodads, use XkbFreeGeomDoodads .

void XkbFreeGeomDoodads (doodads , count , free_all)
XkbDoodadPtr doodads ; /* doodads to be freed */
int count ; /* number of doodads to be freed */
Bool free_all; /* True => all doodads are freed */

Keyboard Geometry

127

If free_all is True , all doodads in the array are freed, regardless of the value of
count. Otherwise, count doodads are freed.

To allocate an entire geometry, use XkbAllocGeometry .

Status XkbAllocGeometry (xkb , sizes)
XkbDescPtr xkb ; /* keyboard description for which geometry is to be allocated
*/
XkbGeometrySizesPtr sizes ; /* initial sizes for all geometry components */

XkbAllocGeometry allocates a keyboard geometry and adds it to the keyboard de-
scription specified by xkb. The keyboard description should be obtained via the
XkbGetKeyboard or XkbAllockeyboard functions. The sizes parameter specifies the
number of elements to be reserved for the subcomponents of the keyboard geome-
try and can be zero or more. These subcomponents include the properties, colors,
shapes, sections, and doodads.

To free an entire geometry, use XkbFreeGeometry .

void XkbFreeGeometry (geom , which , free_all)
XkbGeometryPtr geom ; /* geometry to be freed */
unsigned int which ; /* mask of geometry components to be freed */
Bool free_all; /* True => the entire geometry is freed. */

The values of which and free_all determine how much of the specified geometry is
freed. The valid values for which are:

#define XkbGeomPropertiesMask (1<<0)
#define XkbGeomColorsMask (1<<1)
#define XkbGeomShapesMask (1<<2)
#define XkbGeomSectionsMask (1<<3)
#define XkbGeomDoodadsMask (1<<4)
#define XkbGeomAllMask (0x1f)

If free_all is True , the entire geometry is freed regardless of the value of which.
Otherwise, the portions of the geometry specified by which are freed.

128

Chapter 14. Xkb Keyboard Mapping
The Xkb keyboard mapping contains all the information the server and clients need
to interpret key events. This chapter provides an overview of the terminology used
to describe an Xkb keyboard mapping and introduces common utilities for manipu-
lating the keyboard mapping.

The mapping consists of two components, a server map and a client map. The client
map is the collection of information a client needs to interpret key events from the
keyboard. It contains a global list of key types and an array of key symbol maps,
each of which describes the symbols bound to a key and the rules to be used to
interpret those symbols. The server map contains the information the server needs
to interpret key events. This includes actions and behaviors for each key, explicit
components for a key, and the virtual modifiers and the per-key virtual modifier
mapping.

For detailed information on particular components of the keyboard map, refer to
Chapter 15, "Xkb Client Keyboard Mapping" and Chapter 16, "Xkb Server Keyboard
Mapping."

Notation and Terminology
The graphic characters or control functions that may be accessed by one key are
logically arranged in groups and levels, where group and level are defined as in
the ISO9995 standard:

Group: A logical state of a keyboard providing access to a collection of graphic
characters. Usually these graphic characters logically belong together and
may be arranged on several levels within a group.

Level: One of several states (normally 2 or 3) governing which graphic character
is produced when a graphic key is actuated. In certain cases the level may
also affect function keys.

These definitions, taken from the ISO standard, refer to graphic keys and charac-
ters. In the context of Xkb, Group and Level are not constrained to graphic keys
and characters; they may be used with any key to access any character the key is
capable of generating.

Level is often referred to as "Shift Level". Levels are numbered sequentially starting
at one.

Note
Shift level is derived from the modifier state, but not necessarily in the same
way for all keys. For example, the Shift modifier selects shift level 2 on
most keys, but for keypad keys the modifier bound to Num_Lock (that is,
the NumLock virtual modifier) also selects shift level 2.

For example, consider the following key (the gray characters indicate symbols that
are implied or expected but are not actually engraved on the key):

Xkb Keyboard Mapping

129

Core Symbols

Aa
L1 L2 L1 L2

G1 G2

Xkb Symbols

Aa
L1 L2

G1

G2

Symbols

aG1L1 =
AG1L2 =

G2L1 =
G2L2 =

Physical Key
Sh

ift
 L

ev
el

Group

a
A

Shift Levels and Groups

This key has two groups, indicated by the columns, and each group has two shift
levels. For the first group (Group1), the symbol shift level one is a , and the symbol
for shift level two is A . For the second group, the symbol for shift level one is æ
, and the symbol for shift level two is Æ .

Core Implementation
The standard interpretation rules for the core X keymap only allow clients to access
keys such as the one shown in Figure 14.1. That is, clients using the standard inter-
pretation rules can only access one of four keysyms for any given KeyPress event
— two different symbols in two different groups.

In general, the Shift modifier, the Lock modifier, and the modifier bound to
the Num_Lock key are used to change between shift level 1 and shift level 2. To
switch between groups, the core implementation uses the modifier bound to the
Mode_switch key. When the Mode_switch modifier is set, the keyboard is logically
in Group 2. When the Mode_switch modifier is not set, the keyboard is logically
in Group 1.

The core implementation does not clearly specify the behavior of keys. For example,
the locking behavior of the CapsLock and Num_Lock keys depends on the vendor.

Xkb Implementation
Xkb extends the core implementation by providing access to up to four keyboard
groups with up to 63 shift levels per key 1. In addition, Xkb provides precise spec-
ifications regarding the behavior of keys. In Xkb, modifier state and the current
group are independent (with the exception of compatibility mapping, discussed in
Chapter 17).

Xkb handles switching between groups via key actions, independent of any modifier
state information. Key actions are in the server map component and are described
in detail in section 16.1.4.

Xkb handles shift levels by associating a key type with each group on each key. Each
key type defines the shift levels available for the groups on keys of its type and
specifies the modifier combinations necessary to access each level.

1 The core implementation restricts the number of symbols per key to 255. With four groups, this allows for up to
63 symbols (or shift levels) per group. Most keys will only have a few shift levels.

Xkb Keyboard Mapping

130

For example, Xkb allows key types where the Control modifier can be used to access
the shift level two of a key. Key types are in the client map component and are
described in detail in section 15.2.

Xkb provides precise specification of the behavior of a key using key behaviors. Key
behaviors are in the server map component and are described in detail in section
16.2.

Getting Map Components from the Server
Xkb provides two functions to obtain the keyboard mapping components from the
server. The first function, XkbGetMap , allocates an XkbDescRec structure, re-
trieves mapping components from the server, and stores them in the XkbDescRec
structure it just allocated. The second function, XkbGetUpdatedMap , retrieves
mapping components from the server and stores them in an XkbDescRec structure
that has previously been allocated.

To allocate an XkbDescRec structure and populate it with the server’s keyboard
client map and server map, use XkbGetMap. XkbGetMap is similar to XkbGetKey-
board (see section 6.2), but is used only for obtaining the address of an XkbDe-
scRec structure that is populated with keyboard mapping components. It allows
finer control over which substructures of the keyboard mapping components are to
be populated. XkbGetKeyboard always returns fully populated components, while
XkbGetMap can be instructed to return a partially populated component.

XkbDescPtr XkbGetMap (display, which, device_spec)
Display * display ; /* connection to X server */
unsigned int which ; /* mask selecting subcomponents to populate */
unsigned int device_spec ; /* device_id, or XkbUseCoreKbd */

The which mask is a bitwise inclusive OR of the masks defined in Table 14.1. Only
those portions of the keyboard server map and the keyboard client maps that are
specified in which are allocated and populated.

In addition to allocating and obtaining the server map and the client map, Xk-
bGetMap also sets the device_spec , the min_key_code , and max_key_code fields
of the keyboard description.

XkbGetMap is synchronous; it queries the server for the desired information, waits
for a reply, and then returns. If successful , XkbGetMap returns a pointer to the
XkbDescRec structure it allocated. If unsuccessful, XkbGetMap returns NULL .
When unsuccessful, one of the following protocol errors is also generated: BadAlloc
(unable to allocate the XkbDescRec structure), BadValue (some mask bits in which
are undefined) , or BadImplementation (a compatible version of the Xkb extension
is not available in the server). To free the returned data, use XkbFreeClientMap .

Xkb also provides convenience functions to get partial component definitions from
the server. These functions are specified in the "convenience functions" column in
Table 14.1. Refer to the sections listed in the table for more information on these
functions.

Xkb Keyboard Mapping

131

Table 14.1. Xkb Mapping Component Masks and Convenience
Functions
Mask Value Map Fields Convenience

Functions
Sec-
tion

XkbKeyTypesMask (1<<0) client types

size_types

num_types

XkbGetKeyTypes

XkbResizeKey-
Type

XkbCopyKeyType

XkbCopyKey-
Types

15.2

XkbKeySymsMask (1<<1) client syms

size_syms

num_syms

key_sym_map

XkbGetKeySyms

XkbRe-
sizeKeySyms

Xk-
bChangeTypesOfKey

15.3

XkbModifierMapMask (1<<2) client modmap XkbGetKeyModi-
fierMap

15.4

XkbExplicitComponents-
Mask

(1<<3) server explicit XkbGetKeyEx-
plicitComponents

16.3

XkbKeyActionsMask (1<<4) server key_acts

acts

num_acts

size_acts

XkbGetKeyAc-
tions

XkbResizeKeyAc-
tions

16.1

XkbKeyBehaviorsMask (1<<5) server behaviors XkbGetKeyBe-
haviors

16.2

XkbVirtualModsMask (1<<6) server vmods XkbGetVir-
tualMods

16.4

XkbVirtualModMapMask (1<<7) server vmodmap XkbGetVir-
tualModMap

16.4

Xkb defines combinations of these masks for convenience:

#define XkbResizableInfoMask (XkbKeyTypesMask)
#define XkbAllClientInfoMask (XkbKeyTypesMask | XkbKeySymsMask |
 XkbModifierMapMask)
#define XkbAllServerInfoMask (XkbExplicitComponentsMask |
 XkbKeyActionsMask| XkbKeyBehaviorsMask |
 XkbVirtualModsMask | XkbVirtualModMapMask)
#define XkbAllMapComponentsMask (XkbAllClientInfoMask|XkbAllServerInfoMask)

Key types, symbol maps, and actions are all interrelated: changes in one require
changes in the others. The convenience functions make it easier to edit these com-
ponents and handle the interdependencies.

Xkb Keyboard Mapping

132

To update the client or server map information in an existing keyboard description,
use XkbGetUpdatedMap.

Status XkbGetUpdatedMap (display, which, xkb)
Display * display ; /* connection to X server */
unsigned int which ; /* mask selecting subcomponents to populate */
XkbDescPtr xkb ; /* keyboard description to be updated */

The which parameter is a bitwise inclusive OR of the masks in Table 14.1. If the
needed components of the xkb structure are not already allocated, XkbGetUpdat-
edMap allocates them. XkbGetUpdatedMap fetches the requested information for
the device specified in the XkbDescRec passed in the xkb parameter.

XkbGetUpdatedMap is synchronous; it queries the server for the desired informa-
tion, waits for a reply, and then returns. If successful , XkbGetUpdatedMap returns
Success . If unsuccessful, XkbGetUpdatedMap returns one of the following: BadAl-
loc (unable to allocate a component in the XkbDescRec structure), BadValue (some
mask bits in which are undefined), BadImplementation (a compatible version of the
Xkb extension is not available in the server or the reply from the server was invalid).

Changing Map Components in the Server
There are two ways to make changes to map components: either change a local
copy of the keyboard map and call XkbSetMap to send the modified map to the
server, or, to reduce network traffic, use an XkbMapChangesRec structure and call
XkbChangeMap.

Bool XkbSetMap (dpy , which , xkb)
Display * dpy ; /* connection to X server */
unsigned int which ; /* mask selecting subcomponents to update */
XkbDescPtr xkb ; /* description from which new values are taken */

Use XkbSetMap to send a complete new set of values for entire components (for
example, all symbols, all actions, and so on) to the server. The which parameter
specifies the components to be sent to the server, and is a bitwise inclusive OR of
the masks listed in Table 14.1. The xkb parameter is a pointer to an XkbDescRec
structure and contains the information to be copied to the server. For each bit set in
the which parameter, XkbSetMap takes the corresponding structure values from
the xkb parameter and sends it to the server specified by dpy.

If any components specified by which are not present in the xkb parameter, Xk-
bSetMap returns False . Otherwise, it sends the update request to the server and
returns True . XkbSetMap can generate BadAlloc , BadLength , and BadValue
protocol errors.

Key types, symbol maps, and actions are all interrelated; changes in one require
changes in the others. Xkb provides functions to make it easier to edit these com-
ponents and handle the interdependencies. Table 14.1 lists these helper functions
and provides a pointer to where they are defined.

Xkb Keyboard Mapping

133

The XkbMapChangesRec Structure

Use the XkbMapChangesRec structure to identify and track partial modifications
to the mapping components and to reduce the amount of traffic between the server
and clients.

typedef struct _XkbMapChanges {
 unsigned short changed; /* identifies valid components
 in structure */
 KeyCode min_key_code; /* lowest numbered keycode for
 device */
 KeyCode max_key_code; /* highest numbered keycode for
 device */
 unsigned char first_type; /* index of first key type
 modified */
 unsigned char num_types; /* # types modified */
 KeyCode first_key_sym; /* first key whose key_sym_map
 changed */
 unsigned char num_key_syms; /* # key_sym_map
 entries changed */
 KeyCode first_key_act; /* first key whose key_acts
 entry changed */
 unsigned char num_key_acts; /* # key_acts
 entries changed */
 KeyCode first_key_behavior; /* first key whose behaviors
 changed */
 unsigned char num_key_behaviors; /* # behaviors
 entries changed */
 KeyCode first_key_explicit; /* first key whose explicit
 entry changed */
 unsigned char num_key_explicit; /* # explicit
 entries changed */
 KeyCode first_modmap_key; /* first key whose modmap
 entry changed */
 unsigned char num_modmap_keys; /* # modmap
 entries changed */
 KeyCode first_vmodmap_key; /* first key whose vmodmap
 changed */
 unsigned char num_vmodmap_keys; /* # vmodmap
 entries changed */
 unsigned char pad1; /* reserved */
 unsigned short vmods; /* mask indicating which vmods
 changed */
} XkbMapChangesRec,*XkbMapChangesPtr;

The changed field identifies the map components that have changed in an Xkb-
DescRec structure and may contain any of the bits in Table 14.1, which are also
shown in Table 14.2. Every 1 bit in changed also identifies which other fields in the
XkbMapChangesRec structure contain valid values, as indicated in Table 14.2. The
min_key_code and max_key_code fields are for reference only; they are ignored on
any requests sent to the server and are always updated by the server whenever it
returns the data for an XkbMapChangesRec .

Xkb Keyboard Mapping

134

Table 14.2. XkbMapChangesRec Masks

Mask Valid XkbMapChanges-
Rec Fields

XkbDescRec Field Con-
taining Changed Data

XkbKeyTypesMask first_type
,

num_types

map->type[first_type] ..

map->type[first_type +
num_types - 1]

XkbKeySymsMask first_key_sym
,

num_key_syms

map-
>key_sym_map[first_key_sym] ..

map-
>key_sym_map[first_key_sym
+ num_key_syms - 1]

XkbModifierMapMask first_modmap_key
,

num_modmap_keys

map-
>modmap[first_modmap_key] ..

map-
>modmap[first_modmap_key
+ num_modmap_keys-1]

XkbExplicitComponents-
Mask

first_key_explicit
,

num_key_explicit

serv-
er->explicit[first_key_explicit] ..

serv-
er->explicit[first_key_explicit
+ num_key_explicit - 1]

XkbKeyActionsMask first_key_act,

num_key_acts

serv-
er->key_acts[first_key_act] ..

serv-
er->key_acts[first_key_act
+ num_key_acts - 1]

XkbKeyBehaviorsMask first_key_behavior,

num_key_behaviors

serv-
er->behaviors[first_key_behavior] ..

serv-
er->behaviors[first_key_behavior
+ num_key_behaviors - 1]

XkbVirtuawModsMask vmods server->vmods[*]
XkbVirtualModMapMask first_vmodmap_key,

num_vmodmap_keys

serv-
er->vmodmap[first_vmodmap_key] ..

serv-
er->vmodmap[first_vmodmap_key
+ num_vmodmap_keys - 1]

To update only partial components of a keyboard description, modify the appropri-
ate fields in the server and map components of a local copy of the keyboard descrip-
tion, then call XkbChangeMap with an XkbMapChangesRec structure indicating
which components have changed.

Xkb Keyboard Mapping

135

Bool XkbChangeMap (dpy , xkb , changes)
Display * dpy ; /* connection to X server */
XkbDescPtr xkb ; /* description from which new values are taken */
XkbMapChangesPtr changes ; /*identifies component parts to update */

XkbChangeMap copies any components specified by the changes structure from
the keyboard description, xkb , to the X server specified by dpy .

If any components specified by changes are not present in the xkb parameter,
XkbChangeMap returns False . Otherwise, it sends a request to the server and
returns True .

XkbChangeMap can generate BadAlloc , BadLength , and BadValue protocol er-
rors.

Tracking Changes to Map Components
The Xkb extension reports XkbMapNotify events to clients wanting notification
whenever a map component of the Xkb description for a device changes. There are
many different types of Xkb keyboard map changes. Xkb uses an event detail mask
to identify each type of change. The event detail masks are identical to the masks
listed in Table 14.1.

To receive XkbMapNotify events under all possible conditions, use XkbS-
electEvents (see section 4.3) and pass XkbMapNotifyMask in both bits_to_change
and values_for_bits .

To receive XkbMapNotify events only under certain conditions, use XkbS-
electEventDetails using XkbMapNotify as the event_type and specifying the de-
sired map changes in bits_to_change and values_for_bits using mask bits from Ta-
ble 14.1.

The structure for XkbMapNotify events is:

typedef struct {
 int type; /* Xkb extension base event code */
 unsigned long serial; /* X server serial number for event */
 Bool send_event; /* True => synthetically generated */
 Display * display; /* server connection where event generated */
 Time time; /* server time when event generated */
 int xkb_type; /* XkbMapNotify */
 int device; /* Xkb device ID, will not be XkbUseCoreKbd */
 unsigned int changed; /* identifies valid fields in rest of event */
 unsigned int resized; /* reserved */
 int first_type; /* index of first key type modified */
 int num_types /* # types modified */
 KeyCode min_key_code; /* minimum keycode for device */
 KeyCode max_key_code; /* maximum keycode for device */
 KeyCode first_key_sym; /* first key whose key_sym_map changed */
 KeyCode first_key_act; /* first key whose key_acts entry changed */
 KeyCode first_key_behavior; /* first key whose behaviors changed */

Xkb Keyboard Mapping

136

 KeyCode first_key_explicit; /* first key whose explicit entry changed */
 KeyCode first_modmap_key; /* first key whose modmap entry changed */
 KeyCode first_vmodmap_key; /* # modmap entries changed */
 int num_key_syms; /* # key_sym_map entries changed */
 int num_key_acts; /* # key_acts entries changed */
 int num_key_behaviors; /* # behaviors entries changed */
 int num_key_explicit; /* # explicit entries changed */
 int num_modmap_keys; /* # modmap entries changed */
 int num_vmodmap_keys; /* # vmodmap entries changed */
 unsigned in t vmods; /* mask indicating which vmods changed */
} XkbMapNotifyEvent;

The changed field specifies the map components that have changed and is the bit-
wise inclusive OR of the mask bits defined in Table 14.1. The other fields in this
event are interpreted as the like-named fields in an XkbMapChangesRec (see sec-
tion 14.3.1). The XkbMapNotifyEvent structure also has an additional resized field
that is reserved for future use.

Allocating and Freeing Client and Server Maps
Calling XkbGetMap (see section 14.2) should be sufficient for most applications to
get client and server maps. As a result, most applications do not need to directly
allocate client and server maps.

If you change the number of key types or construct map components without load-
ing the necessary components from the X server, do not allocate any map compo-
nents directly using malloc or Xmalloc . Instead, use the Xkb allocators, XkbAlloc-
ClientMap, and XkbAllocServerMap .

Similarly, use the Xkb destructors, XkbFreeClientMap, and XkbFreeServerMap
instead of free or Xfree .

Allocating an Empty Client Map

To allocate and initialize an empty client map description record, use XkbAlloc-
ClientMap.

Status XkbAllocClientMap (xkb, which, type_count)
XkbDescPtr xkb ; /* keyboard description in which to allocate client map */
unsigned int which ; /* mask selecting map components to allocate */
unsigned int type_count ; /* value of num_types field in map to be allocated */

XkbAllocClientMap allocates and initializes an empty client map in the map field
of the keyboard description specified by xkb . The which parameter specifies the
particular components of the client map structure to allocate and is a mask com-
posed by a bitwise inclusive OR of one or more of the masks shown in Table 14.3.

Xkb Keyboard Mapping

137

Table 14.3. XkbAllocClientMap Masks

Mask Effect
XkbKeyTypesMask The type_count field specifies the number of entries

to preallocate for the types field of the client map. If
the type_count field is less than XkbNumRequired-
Types (see section 15.2.1), returns BadValue.

XkbKeySymsMask The min_key_code and max_key_code fields of the
xkb parameter are used to allocate the syms and
key_sym_map fields of the client map. The fields are
allocated to contain the maximum number of entries
necessary for max_key_code - min_key_code + 1
keys.

XkbModifierMapMask The min_key_code and max_key_code fields of the
xkb parameter are used to allocate the modmap
field of the client map. The field is allocated to con-
tain the maximum number of entries necessary for
max_key_code - min_key_code + 1 keys.

Note
The min_key_code and max_key_code fields of the xkb parameter must be
legal values if the XkbKeySymsMask or XkbModifierMapMask masks are
set in the which parameter. If they are not valid, XkbAllocClientMap returns
BadValue .

If the client map of the keyboard description is not NULL , and any fields are already
allocated in the client map, XkbAllocClientMap does not overwrite the existing val-
ues; it simply ignores that part of the request. The only exception is the types array.
If type_count is greater than the current num_types field of the client map, XkbAl-
locClientMap resizes the types array and resets the num_types field accordingly.

If XkbAllocClientMap is successful, it returns Success . Otherwise, it can return
either BadMatch , BadAlloc , or BadValue errors.

Freeing a Client Map
To free memory used by the client map member of an XkbDescRec structure, use
XkbFreeClientMap.

void XkbFreeClientMap (xkb, which, free_all)
XkbDescPtr xkb ; /* keyboard description containing client map to free */
unsigned int which ; /* mask identifying components of map to free */
Bool free_all ; /* True => free all client components and map itself */

XkbFreeClientMap frees the components of client map specified by which in the
XkbDescRec structure specified by the xkb parameter and sets the corresponding
structure component values to NULL . The which parameter specifies a combina-
tion of the client map masks shown in Table 14.3.

If free_all is True , which is ignored; XkbFreeClientMap frees every non- NULL
structure component in the client map, frees the XkbClientMapRec structure ref-

Xkb Keyboard Mapping

138

erenced by the map member of the xkb parameter, and sets the map member
to NULL.

Allocating an Empty Server Map
To allocate and initialize an empty server map description record, use XkbAl-
locServerMap.

Status XkbAllocServerMap (xkb, which, count_acts)
XkbDescPtr xkb ; /* keyboard description in which to allocate server map */
unsigned int which ; /* mask selecting map components to allocate */
unsigned int count_acts ; /* value of num_acts field in map to be allocated */

XkbAllocServerMap allocates and initializes an empty server map in the server
field of the keyboard description specified by xkb . The which parameter specifies
the particular components of the server map structure to allocate, as specified in
Table 14.4.

Table 14.4. XkbAllocServerMap Masks
Mask Effect
XkbExplicitComponents-
Mask

The min_key_code and max_key_code fields of the
xkb parameter are used to allocate the explicit field
of the server map.

XkbKeyActionsMask The min_key_code and max_key_code fields of the
xkb parameter are used to allocate the key_acts field
of the server map. The count_acts parameter is used
to allocate the acts field of the server map.

XkbKeyBehaviorsMask The min_key_code and max_key_code fields of the
xkb parameter are used to allocate the behaviors
field of the server map.

XkbVirtualModMapMask The min_key_code and max_key_code fields of the
xkb parameter are used to allocate the vmodmap
field of the server map.

Note
The min_key_code and max_key_code fields of the xkb parameter must be
legal values. If they are not valid, XkbAllocServerMap returns BadValue .

If the server map of the keyboard description is not NULL and any fields are already
allocated in the server map, XkbAllocServerMap does not overwrite the existing
values. The only exception is with the acts array. If the count_acts parameter is
greater than the current num_acts field of the server map, XkbAllocServerMap
resizes the acts array and resets the num_acts field accordingly.

If XkbAllocServerMap is successful, it returns Success . Otherwise, it can return
either BadMatch or BadAlloc errors.

Freeing a Server Map
To free memory used by the server member of an XkbDescRec structure, use
XkbFreeServerMap.

Xkb Keyboard Mapping

139

void XkbFreeServerMap (xkb, which, free_all)
XkbDescPtr xkb ; /* keyboard description containing server map to free */
unsigned int which ; /* mask identifying components of map to free */
Bool free_all ; /* True => free all server map components and server itself */

The XkbFreeServerMap function frees the specified components of server map in
the XkbDescRec structure specified by the xkb parameter and sets the correspond-
ing structure component values to NULL . The which parameter specifies a com-
bination of the server map masks and is a bitwise inclusive OR of the masks listed in
Table 14.4. If free_all is True , which is ignored and XkbFreeServerMap frees every
non- NULL structure component in the server map, frees the XkbServerMapRec
structure referenced by the server member of the xkb parameter, and sets the
server member to NULL.

140

Chapter 15. Xkb Client Keyboard
Mapping

The Xkb client map for a keyboard is the collection of information a client needs to
interpret key events from the keyboard. It contains a global list of key types and an
array of key symbol maps, each of which describes the symbols bound to a key and
the rules to be used to interpret those symbols.

Figure 15.1 shows the relationships between elements in the client map:

Xkb Client Keyboard Mapping

141

XkbClientMapRec

size_types

num_types

types

size_syms

num_syms

syms

key_sym_map

mod_map

unsigned char
(array)

KeySym(s)
(array)

Atom(s)
(array)

XkbKTMapEntryRec(s)
(array)

kt_index[0]

kt_index[1]

kt_index[2]

kt_index[3]

group_info

width

offset

XkbSymMapRec(s)
(array)

mods

num_levels

map_count

map

preserve

name

level_names

XkbKeyTypeRec(s)
(array)

Key Code

Xkb Client Map

The XkbClientMapRec Structure
The map field of the complete Xkb keyboard description (see section 6.1) is a
pointer to the Xkb client map, which is of type XkbClientMapRec :

typedef struct { /* Client Map */
 unsigned char size_types; /* # occupied entries in types */

Xkb Client Keyboard Mapping

142

 unsigned char num_types; /* # entries in types */
 XkbKeyTypePtr types; /* vector of key types used by this keymap */
 unsigned short size_syms; /* length of the syms array */
 unsigned short num_syms; /* # entries in syms */
 KeySym * syms; /* linear 2d tables of keysyms, 1 per key */
 XkbSymMapPtr key_sym_map; /* 1 per keycode, maps keycode to syms */
 unsigned char * modmap; /* 1 per keycode, real mods bound to key */
} XkbClientMapRec, *XkbClientMapPtr;

The following sections describe each of the elements of the XkbClientMapRec struc-
ture in more detail.

Key Types
Key types are used to determine the shift level of a key given the current state of
the keyboard. The set of all possible key types for the Xkb keyboard description are
held in the types field of the client map, whose total size is stored in size_types
, and whose total number of valid entries is stored in num_types . Key types are
defined using the following structures:

typedef struct { /* Key Type */
 XkbModsRec mods; /* modifiers used to compute shift
 level */
 unsigned char num_levels; /* total # shift levels, do not
 modify directly */
 unsigned char map_count; /* # entries in map,
 preserve
 (if non- NULL) */
 XkbKTMapEntryPtr map; /* vector of modifiers for each
 shift level */
 XkbModsPtr preserve; /* mods to preserve for corresponding
 map entry */
 Atom name; /* name of key type */
 Atom * level_names; /* array of names of each shift level */
} XkbKeyTypeRec, *XkbKeyTypePtr;

typedef struct { /* Modifiers for a key type */
 Bool active; /* True => entry
 active when determining shift level */
 unsigned char level; /* shift level if modifiers match mods */
 XkbModsRec mods; /* mods needed for this level to be
 selected */
} XkbKTMapEntryRec,*XkbKTMapEntryPtr;

The mods field of a key type is an XkbModsRec (see section 7.2) specifying the
modifiers the key type uses when calculating the shift level, and can be composed of
both the core modifiers and virtual modifiers. To set the modifiers associated with
a key type, modify the real_mods and vmods fields of the mods XkbModsRec
accordingly. The mask field of the XkbModsRec is reserved for use by Xkb and is
calculated from the real_mods and vmods fields.

The num_levels field holds the total number of shift levels for the key type. Xkb
uses num_levels to ensure the array of symbols bound to a key is large enough. Do

Xkb Client Keyboard Mapping

143

not modify num_levels directly to change the number if shift levels for a key type.
Instead, use XkbResizeKeyType (see section 15.2.3).

The map field is a vector of XkbKTMapEntryRec structures, with map_count en-
tries, that specify the modifier combinations for each possible shift level. Each map
entry contains an active field, a mods field, and a level field. The active field
determines whether the modifier combination listed in the mods field should be
considered when determining shift level. If active is False , this map entry is ig-
nored. If active is True , the level field of the map entry specifies the shift level
to use when the current modifier combination matches the combination specified
in the mods field of the map entry.

Any combination of modifiers not explicitly listed somewhere in the map yields shift
level one. In addition, map entries specifying unbound virtual modifiers are not
considered.

Any modifiers specified in mods are normally consumed by XkbTranslateKeyCode
(see section 12.1.3). For those rare occasions a modifier should be considered de-
spite having been used to look up a symbol, key types include an optional preserve
field. If a preserve member of a key type is not NULL , it represents a list of mod-
ifiers where each entry corresponds directly to one of the key type’s map . Each
entry lists the modifiers that should not be consumed if the matching map entry
is used to determine shift level.

Each shift level has a name and these names are held in the level_names array,
whose length is num_levels . The type itself also has a name, which is held in the
name field.

For example, consider how the server handles the following possible symbolic de-
scription of a possible key type (note that the format used to specify keyboard map-
pings in the server database is not specified by the Xkb extension, although this
format is one possible example):

Xkb Client Keyboard Mapping

144

Table 15.1. Example Key Type

Symbolic Description Key Type Data Structure
type "ALPHATHREE" { Xkb->map->types[i].name
modifiers = Shift+Lock+LevelThree; Xkb->map->types[i].mods
map[None]= Level1; Xkb->map->types[i].map[0]
map[Lock]= Level1; Xkb->map->types[i].map[1]
map[Shift]= Level2; Xkb->map->types[i].map[2]
map[LevelThree]= Level3; Xkb->map->types[i].map[3]
map[Shift+LevelThree]= Level3; Xkb->map->types[i].map[4]
preserve[None]= None; Xkb->map->types[i].perserve[0]
preserve[Lock]= Lock; Xkb->map->types[i].preserve[1]
preserve[Shift]= None; Xkb->map->types[i].preserve[2]
preserve[LevelThree]= None; Xkb->map->types[i].preserve[3]
preserve[Shift+Level3]= None; Xkb->map->types[i].preserve[4]
level_name[Level1]= "Base"; Xkb->map->types[i].level_names[0]
level_name[Level2]= "Caps"; Xkb->map->types[i].level_names[1]
level_name[Level3]= "Level3"; Xkb->map->types[i].level_names[2]
};

The name of the example key type is "ALPHATHREE," and the modifiers it pays
attention to are Shift , Lock , and the virtual modifier LevelThree . There are
three shift levels. The name of shift level one is "Base," the name of shift level two
is "Caps," and the name of shift level three is "Level3."

Given the combination of the map and preserve specifications, there are five map
entries. The first map entry specifies that shift level one is to be used if no modifiers
are set. The second entry specifies the Lock modifier alone also yields shift level
one. The third entry specifies the Shift modifier alone yields shift level two. The
fourth and fifth entries specify that the virtual LevelThree modifier alone, or in
combination with the Shift modifier, yields shift level three.

Note
Shift level three can be reached only if the virtual modifier LevelThree is
bound to a real modifier (see section 16.4). If LevelThree is not bound to a
real modifier, the map entries associated with it are ignored.

Because the Lock modifier is to be preserved for further event processing, the pre-
serve list is not NULL and parallels the map list. All preserve entries, except for
the one corresponding to the map entry that specifies the Lock modifier, do not list
any modifiers. For the map entry that specifies the Lock modifier, the correspond-
ing preserve list entry lists the Lock modifier, meaning do not consume the Lock
modifier. In this particular case, the preserved modifier is passed to Xlib translation
functions and causes them to notice that the Lock modifier is set; consequently, the
Xlib functions apply the appropriate capitalization rules to the symbol. Because this
preserve entry is set only for a modifier that yields shift level one, the capitalization
occurs only for level-one symbols.

Xkb Client Keyboard Mapping

145

The Canonical Key Types
Xkb allows up to XkbMaxKeyTypes (255) key types to be defined, but requires
at least XkbNumRequiredTypes (4) predefined types to be in a key map. These
predefined key types are referred to as the canonical key types and describe the
types of keys available on most keyboards. The definitions for the canonical key
types are held in the first XkbNumRequiredTypes entries of the types field of the
client map and are indexed using the following constants:

 XkbOneLevelIndex
 XkbTwoLevelIndex
 XkbAlphabeticIndex
 XkbKeypadIndex

ONE_LEVEL

The ONE_LEVEL key type describes groups that have only one symbol. The default
ONE_LEVEL key type has no map entries and does not pay attention to any modi-
fiers. A symbolic representation of this key type could look like the following:

type "ONE_LEVEL" {
 modifiers = None;
 map[None]= Level1;
 level_name[Level1]= "Any";
};

The description of the ONE_LEVEL key type is stored in the types [XkbOneLevelIn-
dex] entry of the client key map.

TWO_LEVEL

The TWO_LEVEL key type describes groups that consist of two symbols but are
neither alphabetic nor numeric keypad keys. The default TWO_LEVEL type uses
only the Shift modifier. It returns shift level two if Shift is set, and level one if it is
not. A symbolic representation of this key type could look like the following:

type "TWO_LEVEL" {
 modifiers = Shift;
 map[Shift]= Level2;
 level_name[Level1]= "Base";
 level_name[Level2]= "Shift";
};

The description of the TWO_LEVEL key type is stored in the types [XkbTwoLevelIn-
dex] entry of the client key map.

ALPHABETIC

The ALPHABETIC key type describes groups consisting of two symbols: the lower-
case form of a symbol followed by the uppercase form of the same symbol. The de-

Xkb Client Keyboard Mapping

146

fault ALPHABETIC type implements locale-sensitive "Shift cancels CapsLock" be-
havior using both the Shift and Lock modifiers as follows:

• If Shift and Lock are both set, the default ALPHABETIC type yields level one.

• If Shift alone is set, it yields level two.

• If Lock alone is set, it yields level one, but preserves the Lock modifier so Xlib
notices and applies the appropriate capitalization rules. The Xlib functions are
locale-sensitive and apply different capitalization rules for different locales.

• If neither Shift nor Lock is set, it yields level one.

A symbolic representation of this key type could look like the following:

type "ALPHABETIC" {
 modifiers = Shift+Lock;
 map[Shift]= Level2;
 preserve[Lock]= Lock;
 level_name[Level1]= "Base";
 level_name[Level2]= "Caps";
};

The description of the ALPHABETIC key type is stored in the types [XkbAlphabet-
icIndex] entry of the client key map.

KEYPAD

The KEYPAD key type describes groups that consist of two symbols, at least one of
which is a numeric keypad symbol. The numeric keypad symbol is assumed to reside
at level two. The default KEYPAD key type implements "Shift cancels NumLock"
behavior using the Shift modifier and the real modifier bound to the virtual modifier
named "NumLock," known as the NumLock modifier, as follows:

• If Shift and NumLock are both set, the default KEYPAD type yields level one.

• If Shift alone is set, it yields level two.

• If NumLock alone is set, it yields level two.

• If neither Shift nor NumLock is set, it yields level one.

A symbolic representation of this key type could look like the following:

type "KEYPAD" {
 modifiers = Shift+NumLock;
 map[None]= Level1;
 map[Shift]= Level2;
 map[NumLock]= Level2;
 map[Shift+NumLock]= Level1;
 level_name[Level1]= "Base";
 level_name[Level2]= "Caps";
};

Xkb Client Keyboard Mapping

147

The description of the KEYPAD key type is stored in the types [XkbKeypadIndex
] entry of the client key map.

Initializing the Canonical Key Types in a New Client Map

To set the definitions of the canonical key types in a client map to their default
values, use XkbInitCanonicalKeyTypes.

Status XkbInitCanonicalKeyTypes (xkb, which, keypadVMod)
XkbDescPtr xkb ; /* keyboard description containing client map to initialize */
unsigned int which ; /* mask of types to initialize */
int keypadVMod ; /* index of NumLock virtual modifier */

XkbInitCanonicalKeyTypes initializes the first XkbNumRequiredTypes key types of
the keyboard specified by the xkb parameter to their default values. The which
parameter specifies what canonical key types to initialize and is a bitwise inclusive
OR of the following masks: XkbOneLevelMask , XkbTwoLevelMask , XkbAlphabet-
icMask , and XkbKeypadMask . Only those canonical types specified by the which
mask are initialized.

If XkbKeypadMask is set in the which parameter, XkbInitCanonicalKeyTypes looks
up the NumLock named virtual modifier to determine which virtual modifier to use
when initializing the KEYPAD key type. If the NumLock virtual modifier does not
exist, XkbInitCanonicalKeyTypes creates it.

XkbInitCanonicalKeyTypes normally returns Success. It returns BadAccess if the
Xkb extension has not been properly initialized, and BadAccess if the xkb parame-
ter is not valid.

Getting Key Types from the Server

To obtain the list of available key types in the server’s keyboard mapping, use Xk-
bGetKeyTypes .

Status XkbGetKeyTypes (dpy , first , num , xkb)
Display * dpy ; /* connection to X server */
unsigned int first ; /* index to first type to get, 0 => 1st type */
unsigned int num ; /* number of key types to be returned */
XkbDescPtr xkb ; /* keyboard description containing client map to update */

Note
XkbGetKeyTypes is used to obtain descriptions of the key types themselves,
not the key types bound to individual keys. To obtain the key types bound
to an individual key, refer to the key_sym_map field of the client map (see
section 15.3.1).

XkbGetKeyTypes queries the server for the desired types, waits for a reply, and
returns the desired types in the xkb->map->types . If successful, it returns Success.

Xkb Client Keyboard Mapping

148

XkbGetKeyTypes returns BadAccess if the Xkb extension has not been properly
initialized and BadValue if the combination of first and num results in numbers
out of valid range.

Changing the Number of Levels in a Key Type
To change the number of levels in a key type, use XkbResizeKeyType .

Status XkbResizeKeyType (xkb , type_ndx , map_count , want_preserve ,
new_num_lvls)
XkbDescPtr xkb ; /* keyboard description containing client map to update */
int type_ndx ; /* index in xkb->map->types of type to change */
int map_count ; /* total # of map entries needed for the type */
Bool want_preserve ; /* True => list of preserved modifiers is necessary */
int new_num_lvls ; /* new max # of levels for type */

XkbResizeKeyType changes the type specified by xkb -> map->types [type_ndx
], and reallocates the symbols and actions bound to all keys that use the type, if
necessary. XkbResizeKeyType updates only the local copy of the types in xkb ; to
update the server’s copy for the physical device, use XkbSetMap or XkbChangeMap
after calling XkbResizeKeyType .

The map_count parameter specifies the total number of map entries needed for the
type, and can be zero or greater. If map_count is zero, XkbResizeKeyType frees the
existing map and preserve entries for the type if they exist and sets them to NULL .

The want_preserve parameter specifies whether a preserve list for the key should
be created. If want_preserve is True , the preserve list with map_count entries is
allocated or reallocated if it already exists. Otherwise, if want_preserve is False ,
the preserve field is freed if necessary and set to NULL .

The new_num_lvls parameter specifies the new maximum number of shift levels
for the type and is used to calculate and resize the symbols and actions bound to
all keys that use the type.

If type_ndx does not specify a legal type, new_num_lvls is less than 1, or the
map_count is less than zero, XkbResizeKeyType returns BadValue . If XkbRe-
sizeKeyType encounters any problems with allocation, it returns BadAlloc . Other-
wise, it returns Success .

Copying Key Types
Use XkbCopyKeyType and XkbCopyKeyTypes to copy one or more XkbKeyTypeRec
structures.

Status XkbCopyKeyType (from , into)
XkbKeyTypePtr from ; /* pointer to XkbKeyTypeRec to be copied */
XkbKeyTypePtr into ; /* pointer to XkbKeyTypeRec to be changed */

XkbCopyKeyType copies the key type specified by from to the key type specified by
into . Both must point to legal XkbKeyTypeRec structures. Xkb assumes from and

Xkb Client Keyboard Mapping

149

into point to different places. As a result, overlaps can be fatal. XkbCopyKeyType
frees any existing map , preserve , and level_names in into prior to copying. If
any allocation errors occur while copying from to into , XkbCopyKeyType returns
BadAlloc . Otherwise, XkbCopyKeyType copies from to into and returns Success .

Status XkbCopyKeyTypes (from , into , num_types)
XkbKeyTypePtr from ; /* pointer to array of XkbKeyTypeRecs to copy */
XkbKeyTypePtr into ; /* pointer to array of XkbKeyTypeRecs to change */
int num_types ; /* number of types to copy */

XkbCopyKeyTypes copies num_types XkbKeyTypeRec structures from the array
specified by from into the array specified by into . It is intended for copying be-
tween, rather than within, keyboard descriptions, so it doesn’t check for overlaps.
The same rules that apply to the from and into parameters in XkbCopyKeyType
apply to each entry of the from and into arrays of XkbCopyKeyTypes . If any alloca-
tion errors occur while copying from to into , XkbCopyKeyTypes returns BadAlloc
. Otherwise, XkbCopyKeyTypes copies from to into and returns Success .

Key Symbol Map
The entire list of key symbols for the keyboard mapping is held in the syms field of
the client map. Whereas the core keyboard mapping is a two-dimensional array of
KeySyms whose rows are indexed by keycode, the syms field of Xkb is a linear list
of KeySyms that needs to be indexed uniquely for each key. This section describes
the key symbol map and the methods for determining the symbols bound to a key.

The reason the syms field is a linear list of KeySyms is to reduce the memory
consumption associated with a keymap; because Xkb allows individual keys to have
multiple shift levels and a different number of groups per key, a single two-dimen-
sional array of KeySyms would potentially be very large and sparse. Instead, Xkb
provides a small two-dimensional array of KeySyms for each key. To store all of
these individual arrays, Xkb concatenates each array together in the syms field of
the client map.

In order to determine which KeySyms in the syms field are associated with each
keycode, the client map contains an array of key symbol mappings, held in the
key_sym_map field. The key_sym_map field is an array of XkbSymMapRec struc-
tures indexed by keycode. The key_sym_map array has min_key_code unused en-
tries at the start to allow direct indexing using a keycode. All keycodes falling be-
tween the minimum and maximum legal keycodes, inclusive, have key_sym_map
arrays, whether or not any key actually yields that code. The KeySymMapRec struc-
ture is defined as follows:

#define XkbNumKbdGroups 4
#define XkbMaxKbdGroup (XkbNumKbdGroups-1)

typedef struct { /* map to keysyms for a single keycode */
 unsigned char kt_index[XkbNumKbdGroups]; /* key type index for each group */
 unsigned char group_info; /* # of groups and out of range group handling */
 unsigned char width; /* max # of shift levels for key */
 unsigned short offset; /* index to keysym table in syms array */

Xkb Client Keyboard Mapping

150

} XkbSymMapRec, *XkbSymMapPtr;

These fields are described in detail in the following sections.

Per-Key Key Type Indices
The kt_index array of the XkbSymMapRec structure contains the indices of the
key types (see section 15.2) for each possible group of symbols associated with the
key. To obtain the index of a key type or the pointer to a key type, Xkb provides the
following macros, to access the key types:

Note
The array of key types is of fixed width and is large enough to hold key types
for the maximum legal number of groups (XkbNumKbdGroups , currently
four); if a key has fewer than XkbNumKbdGroups groups, the extra key types
are reported but ignored.

int XkbKeyTypeIndex (xkb, keycode, group) /* macro*/
XkbDescPtr xkb ; /* Xkb description of interest */
KeyCode keycode ; /* keycode of interest */
int group ; /* group index */

XkbKeyTypeIndex computes an index into the types vector of the client map in xkb
from the given keycode and group index.

XkbKeyTypePtr XkbKeyType (xkb, keycode, group) /* macro */
XkbDescPtr xkb ; /* Xkb description of interest */
KeyCode keycode ; /* keycode of interest */
int group ; /* group index */

XkbKeyType returns a pointer to the key type in the types vector of the client map
in xkb corresponding to the given keycode and group index.

Per-Key Group Information
The group_info field of an XkbSymMapRec is an encoded value containing the
number of groups of symbols bound to the key as well as the specification of the
treatment of out-of-range groups. It is legal for a key to have zero groups, in which
case it also has zero symbols and all events from that key yield NoSymbol . To
obtain the number of groups of symbols bound to the key, use XkbKeyNumGroups
. To change the number of groups bound to a key, use XkbChangeTypesOfKey (see
section 15.3.6). To obtain a mask that determines the treatment of out-of-range
groups, use XkbKeyGroupInfo and XkbOutOfRangeGroupInfo .

The keyboard controls (see Chapter 10) contain a groups_wrap field specifying the
handling of illegal groups on a global basis. That is, when the user performs an
action causing the effective group to go out of the legal range, the groups_wrap
field specifies how to normalize the effective keyboard group to a group that is legal
for the keyboard as a whole, but there is no guarantee that the normalized group will
be within the range of legal groups for any individual key. The per-key group_info

Xkb Client Keyboard Mapping

151

field specifies how a key treats a legal effective group if the key does not have a
type specified for the group of concern. For example, the Enter key usually has
just one group defined. If the user performs an action causing the global keyboard
group to change to Group2 , the group_info field for the Enter key describes how
to handle this situation.

Out-of-range groups for individual keys are mapped to a legal group using the same
options as are used for the overall keyboard group. The particular type of mapping
used is controlled by the bits set in the group_info flag, as shown in Table 15.2. See
section 10.7.1 for more details on the normalization methods in this table.

Table 15.2. group_info Range Normalization

Bits set in group_info Normalization method
XkbRedirectIntoRange XkbRedirectIntoRange
XkbClampIntoRange XkbClampIntoRange
none of the above XkbWrapIntoRange

Xkb provides the following macros to access group information:

int XkbKeyNumGroups (xkb, keycode) /* macro */
XkbDescPtr xkb ; /* Xkb description of interest */
KeyCode keycode ; /* keycode of interest */

XkbKeyNumGroups returns the number of groups of symbols bound to the key cor-
responding to keycode .

unsigned char XkbKeyGroupInfo (xkb, keycode) /*macro */
XkbDescPtr xkb ; /* Xkb description of interest */
KeyCode keycode ; /* keycode of interest */

XkbKeyGroupInfo returns the group_info field from the XkbSymMapRec structure
associated with the key corresponding to keycode .

unsigned char XkbOutOfRangeGroupInfo (grp_inf) /* macro */
unsigned char grp_inf ; /* group_info field of XkbSymMapRec */

XkbOutOfRangeGroupInfo returns only the out-of-range processing information
from the group_info field of an XkbSymMapRec structure.

unsigned char XkbOutOfRangeGroupNumber (grp_inf) /* macro */
unsigned char grp_inf ; /* group_info field of XkbSymMapRec */

XkbOutOfRangeGroupNumber returns the out-of-range group number, represented
as a group index, from the group_info field of an XkbSymMapRec structure.

Key Width
The maximum number of shift levels for a type is also referred to as the width of a
key type. The width field of the key_sym_map entry for a key contains the width

Xkb Client Keyboard Mapping

152

of the widest type associated with the key. The width field cannot be explicitly
changed; it is updated automatically whenever the symbols or set of types bound
to a key are changed.

Offset in to the Symbol Map

The key width and number of groups associated with a key are used to form a small
two-dimensional array of KeySyms for a key. This array may be different sizes for
different keys. The array for a single key is stored as a linear list, in row-major order.
The arrays for all of the keys are stored in the syms field of the client map. There
is one row for each group associated with a key and one column for each level. The
index corresponding to a given group and shift level is computed as:

 idx = group_index * key_width + shift_level

The offset field of the key_sym_map entry for a key is used to access the beginning
of the array.

Xkb provides the following macros for accessing the width and offset for individual
keys, as well as macros for accessing the two-dimensional array of symbols bound
to the key:

int XkbKeyGroupsWidth (xkb, keycode) /* macro */
XkbDescPtr xkb ; /* Xkb description of interest */
KeyCode keycode ; /* keycode of interest */

XkbKeyGroupsWidth computes the maximum width associated with the key corre-
sponding to keycode .

int XkbKeyGroupWidth (xkb, keycode, grp) /* macro */
XkbDescPtr xkb ; /* Xkb description of interest */
KeyCode keycode ; /* keycode of interest */
int grp ; /* group of interest */

XkbKeyGroupWidth computes the width of the type associated with the group grp
for the key corresponding to keycode .

int XkbKeySymsOffset (xkb, keycode) /* macro */
XkbDescPtr xkb ; /* Xkb description of interest */
KeyCode keycode ; /* keycode of interest */

XkbKeySymsOffset returns the offset of the two-dimensional array of keysyms for
the key corresponding to keycode .

int XkbKeyNumSyms (xkb, keycode) /* macro */
XkbDescPtr xkb ; /* Xkb description of interest */
KeyCode keycode ; /* keycode of interest */

Xkb Client Keyboard Mapping

153

XkbKeyNumSyms returns the total number of keysyms for the key corresponding
to keycode .

KeySym * XkbKeySymsPtr (xkb, keycode) /* macro */
XkbDescPtr xkb ; /* Xkb description of interest */
KeyCode keycode ; /* keycode of interest */

XkbKeySymsPtr returns the pointer to the two-dimensional array of keysyms for the
key corresponding to keycode .

KeySym XkbKeySymEntry (xkb, keycode, shift, grp) /* macro */
XkbDescPtr xkb ; /* Xkb description of interest */
KeyCode keycode ; /* keycode of interest */
int shift ; /* shift level of interest */
int grp ; /* group of interest */

XkbKeySymEntry returns the keysym corresponding to shift level shift and group
grp from the two-dimensional array of keysyms for the key corresponding to key-
code

Getting the Symbol Map for Keys from the Server
To obtain the symbols for a subset of the keys in a keyboard description, use Xk-
bGetKeySyms :

Status XkbGetKeySyms (dpy , first , num , xkb)
Display * dpy ; /* connection to X server */
unsigned int first ; /* keycode of first key to get */
unsigned int num ; /* number of keycodes for which syms desired */
XkbDescPtr xkb ; /* Xkb description to be updated */

XkbGetKeySyms sends a request to the server to obtain the set of keysyms bound
to num keys starting with the key whose keycode is first . It waits for a reply and
returns the keysyms in the map.syms field of xkb . If successful, XkbGetKeySyms
returns Success . The xkb parameter must be a pointer to a valid Xkb keyboard
description.

If the client map in the xkb parameter has not been allocated, XkbGetKeySyms
allocates and initializes it before obtaining the symbols.

If a compatible version of Xkb is not available in the server or the Xkb extension has
not been properly initialized, XkbGetKeySyms returns BadAccess . If num is less
than 1 or greater than XkbMaxKeyCount , XkbGetKeySyms returns BadValue . If
any allocation errors occur, XkbGetKeySyms returns BadAlloc .

Changing the Number of Groups and Types Bound to a
Key

To change the number of groups and the types bound to a key, use XkbChangeType-
sOfKey .

Xkb Client Keyboard Mapping

154

Status XkbChangeTypesOfKey (xkb , key , n_groups , groups , new_types_in ,
p_changes)

XkbDescPtr xkb ; /* keyboard description to be changed */
int key ; /* keycode for key of interest */
int n_groups ; /* new number of groups for key */
unsigned int groups ; /* mask indicating groups to change */
int * new_types_in ; /* indices for new groups specified in groups */
XkbMapChangesPtr p_changes ; /* notes changes made to xkb */

XkbChangeTypesOfKey reallocates the symbols and actions bound to the key, if nec-
essary, and initializes any new symbols or actions to NoSymbol or NoAction , as
appropriate. If the p_changes parameter is not NULL , XkbChangeTypesOfKey
adds the XkbKeySymsMask to the changes field of p_changes and modifies the
first_key_sym and num_key_syms fields of p_changes to include the key that was
changed. See section 14.3.1 for more information on the XkbMapChangesPtr struc-
ture. If successful, XkbChangeTypesOfKey returns Success .

The n_groups parameter specifies the new number of groups for the key. The
groups parameter is a mask specifying the groups for which new types are sup-
plied and is a bitwise inclusive OR of the following masks: XkbGroup1Mask ,
XkbGroup2Mask , XkbGroup3Mask , and XkbGroup4Mask .

The new_types_in parameter is an integer array of length n_groups . Each entry
represents the type to use for the associated group and is an index into xkb -> map-
>types . The new_types_in array is indexed by group index; if n_groups is four and
groups only has Group1Mask and Group3Mask set, new_types_in looks like this:

 new_types_in[0] = type for Group1
 new_types_in[1] = ignored
 new_types_in[2] = type for Group3
 new_types_in[3] = ignored

For convenience, Xkb provides the following constants to use as indices to the
groups:

Table 15.3. Group Index Constants

Constant Name Value
XkbGroup1Index 0
XkbGroup2Index 1
XkbGroup3Index 2
XkbGroup4Index 3

If the Xkb extension has not been properly initialized, XkbChangeTypesOfKey re-
turns BadAccess . If the xkb parameter it not valid (that is, it is NULL or it does
not contain a valid client map), XkbChangeTypesOfKey returns Bad Match. If the
key is not a valid keycode, n_groups is greater than XkbNumKbdGroups , or the
groups mask does not contain any of the valid group mask bits, XkbChangeType-

Xkb Client Keyboard Mapping

155

sOfKey returns BadValue . If it is necessary to resize the key symbols or key actions
arrays and any allocation errors occur, XkbChangeTypesOfKey returns BadAlloc .

Changing the Number of Symbols Bound to a Key
To change the number of symbols bound to a key, use XkbResizeKeySyms .

KeySym * XkbResizeKeySyms (xkb , key , needed)
XkbDescRec * xkb ; /* keyboard description to be changed */
int key ; /* keycode for key to modify */
int needed ; /* new number of keysyms required for key */

XkbResizeKeySyms reserves the space needed for needed keysyms and returns a
pointer to the beginning of the new array that holds the keysyms. It adjusts the
offset field of the key_sym_map entry for the key if necessary and can also change
the syms , num_syms , and size_syms fields of xkb - >map if it is necessary to
reallocate the syms array. XkbResizeKeySyms does not modify either the width or
number of groups associated with the key.

If needed is greater than the current number of keysyms for the key, XkbRe-
sizeKeySyms initializes all new keysyms in the array to NoSymbol .

Because the number of symbols needed by a key is normally computed as width *
number of groups, and XkbResizeKeySyms does not modify either the width or num-
ber of groups for the key, a discrepancy exists upon return from XkbResizeKeySyms
between the space allocated for the keysyms and the number required. The unused
entries in the list of symbols returned by XkbResizeKeySyms are not preserved
across future calls to any of the map editing functions, so you must update the key
symbol mapping (which updates the width and number of groups for the key) before
calling another allocator function. A call to XkbChangeTypesOfKey will update the
mapping.

If any allocation errors occur while resizing the number of symbols bound to the
key, XkbResizeKeySyms returns NULL .

Note
A change to the number of symbols bound to a key should be accompanied
by a change in the number of actions bound to a key. Refer to section 16.1.16
for more information on changing the number of actions bound to a key.

The Per-Key Modifier Map
The modmap entry of the client map is an array, indexed by keycode, specifying the
real modifiers bound to a key. Each entry is a mask composed of a bitwise inclusive
OR of the legal real modifiers: ShiftMask , LockMask , ControlMask , Mod1Mask ,
Mod2Mask , Mod3Mask , Mod4Mask , and Mod5Mask . If a bit is set in a modmap
entry, the corresponding key is bound to that modifier.

Pressing or releasing the key bound to a modifier changes the modifier set and unset
state. The particular manner in which the modifier set and unset state changes is
determined by the behavior and actions assigned to the key (see Chapter 16).

Xkb Client Keyboard Mapping

156

Getting the Per-Key Modifier Map from the Server
To update the modifier map for one or more of the keys in a keyboard description,
use XkbGetKeyModifierMap .

Status XkbGetKeyModifierMap (dpy , first , num , xkb)
Display * dpy ; /* connection to X server */
unsigned int first ; /* keycode of first key to get */
unsigned int num ; /* number of keys for which information is desired */
XkbDescPtr xkb ; /* keyboard description to update */

XkbGetKeyModifierMap sends a request to the server for the modifier mappings for
num keys starting with the key whose keycode is first . It waits for a reply and places
the results in the xkb ->map->modmap array. If successful, XkbGetKeyModifier
returns Success .

If the map component of the xkb parameter has not been allocated, XkbGetKey-
ModifierMap allocates and initializes it.

If a compatible version of Xkb is not available in the server or the Xkb extension has
not been properly initialized, XkbGetKeySyms returns BadAccess . If any allocation
errors occur while obtaining the modifier map, XkbGetKeyModifierMap returns
BadAlloc .

157

Chapter 16. Xkb Server Keyboard
Mapping

The server field of the complete Xkb keyboard description (see section 6.1) is a
pointer to the Xkb server map.

Figure 16.1 shows the relationships between elements in the server map:

unsigned char(s)
(array)

unsigned short(s)
(array)

unsigned short(s)
(array)

XkbBehaviors(s)
(array)

XkbActions(s)
(array)

KeyCode

XkbServerMapRec

num_acts

size_acts

acts

behaviors

key_acts

explicit

vmods[16]

vmodmap

Server Map Relationships

The Xkb server map contains the information the server needs to interpret key
events and is of type XkbServerMapRec :

#define XkbNumVirtualMods 16

typedef struct { /* Server Map */
 unsigned short num_acts; /* # of occupied entries in acts */
 unsigned short size_acts; /* # of entries in acts */
 XkbAction * acts; /* linear 2d tables of key actions, 1 per keycode */

Xkb Server Key-
board Mapping

158

 XkbBehavior * behaviors; /* key behaviors,1 per keycode */
 unsigned short * key_acts; /* index into acts , 1 per keycode */
 unsigned char * explicit; /* explicit overrides of core remapping, 1 per key */
 unsigned char vmods[XkbNumVirtualMods]; /* real mods bound to virtual mods */
 unsigned short * vmodmap; /* virtual mods bound to key, 1 per keycode*/
} XkbServerMapRec, *XkbServerMapPtr;

The num_acts , size_acts , acts , and key_acts fields specify the key actions,
defined in section 16.1. The behaviors field describes the behavior for each key and
is defined in section 16.2. The explicit field describes the explicit components for
a key and is defined in section 16.3. The vmods and the vmodmap fields describe
the virtual modifiers and the per-key virtual modifier mapping and are defined in
section 16.4.

Key Actions
A key action defines the effect key presses and releases have on the internal state
of the server. For example, the expected key action associated with pressing the
Shift key is to set the Shift modifier. There is zero or one key action associated with
each keysym bound to each key.

Just as the entire list of key symbols for the keyboard mapping is held in the syms
field of the client map, the entire list of key actions for the keyboard mapping is held
in the acts array of the server map. The total size of acts is specified by size_acts
, and the number of entries is specified by num_acts.

The key_acts array, indexed by keycode, describes the actions associated with a key.
The key_acts array has min_key_code unused entries at the start to allow direct
indexing using a keycode. If a key_acts entry is zero , it means the key does not have
any actions associated with it. If an entry is not zero , the entry represents an index
into the acts field of the server map, much as the offset field of a KeySymMapRec
structure is an index into the syms field of the client map.

The reason the acts field is a linear list of XkbAction s is to reduce the memory
consumption associated with a keymap. Because Xkb allows individual keys to have
multiple shift levels and a different number of groups per key, a single two-dimen-
sional array of KeySyms would potentially be very large and sparse. Instead, Xkb
provides a small two-dimensional array of XkbAction s for each key. To store all of
these individual arrays, Xkb concatenates each array together in the acts field of
the server map.

The key action structures consist only of fields of type char or unsigned char. This
is done to optimize data transfer when the server sends bytes over the wire. If the
fields are anything but bytes, the server has to sift through all of the actions and
swap any nonbyte fields. Because they consist of nothing but bytes, it can just copy
them out.

Xkb provides the following macros, to simplify accessing information pertaining to
key actions:

Bool XkbKeyHasActions (xkb, keycode) /* macro */
XkbDescPtr xkb ; /* Xkb description of interest */
KeyCode keycode ; /* keycode of interest */

Xkb Server Key-
board Mapping

159

XkbKeyHasActions returns True if the key corresponding to keycode has any ac-
tions associated with it; otherwise, it returns False .

int XkbKeyNumActions (xkb, keycode) /* macro */
XkbDescPtr xkb ; /* Xkb description of interest */
KeyCode keycode ; /* keycode of interest */

XkbKeyNumActions computes the number of actions associated with the key cor-
responding to keycode . This should be the same value as the result of Xk-
bKeyNumSyms (see section 15.3.3).

XkbKeyActionPtr XkbKeyActionsPtr (xkb, keycode) /* macro */
XkbDescPtr xkb ; /* Xkb description of interest */
KeyCode keycode ; /* keycode of interest */

XkbKeyActionsPtr returns a pointer to the two-dimensional array of key actions as-
sociated with the key corresponding to keycode . Use XkbKeyActionsPtr only if the
key actually has some actions associated with it, that is, XkbKeyNumActions (xkb,
keycode) returns something greater than zero.

XkbAction XkbKeyAction (xkb, keycode, idx) /* macro */
XkbDescPtr xkb ; /* Xkb description of interest */
KeyCode keycode ; /* keycode of interest */
int idx ; /* index for group and shift level */

XkbKeyAction returns the key action indexed by idx in the two-dimensional array
of key actions associated with the key corresponding to keycode . idx may be
computed from the group and shift level of interest as follows:

 idx = group_index * key_width + shift_level

XkbAction XkbKeyActionEntry (xkb, keycode, shift, grp) /* macro */
XkbDescPtr xkb ; /* Xkb description of interest */
KeyCode keycode ; /* keycode of interest */
int shift ; /* shift level within group */
int grp ; /* group index for group of interest */

XkbKeyActionEntry returns the key action corresponding to group grp and shift
level lvl from the two-dimensional table of key actions associated with the key cor-
responding to keycode .

The XkbAction Structure
The description for an action is held in an XkbAction structure, which is a union
of all possible Xkb action types:

Xkb Server Key-
board Mapping

160

typedef union _XkbAction {
 XkbAnyAction any;
 XkbModAction mods;
 XkbGroupAction group;
 XkbISOAction iso;
 XkbPtrAction ptr;
 XkbPtrBtnAction btn;
 XkbPtrDfltAction dflt;
 XkbSwitchScreenAction screen;
 XkbCtrlsAction ctrls;
 XkbMessageAction msg;
 XkbRedirectKeyAction redirect;
 XkbDeviceBtnAction devbtn;
 XkbDeviceValuatorAction devval;
 unsigned char type;
} XkbAction;

The type field is provided for convenience and is the same as the type field in the
individual structures. The following sections describe the individual structures for
each action in detail.

The XkbAnyAction Structure

The XkbAnyAction structure is a convenience structure that refers to any of the
actions:

#define XkbAnyActionDataSize 7

typedef struct _XkbAnyAction {
 unsigned char type; /* type of action; determines interpretation for data */
 unsigned char data[XkbAnyActionDataSize];
} XkbAnyAction;

The data field represents a structure for an action, and its interpretation depends on
the type field. The valid values for the type field, and the data structures associated
with them are shown in Table 16.1:

Xkb Server Key-
board Mapping

161

Table 16.1. Action Types
Type Structure for Data XkbAction Union

Member
Section

XkbSA_NoAction XkbSA_NoAction means
the server does not per-
form an action for the
key; this action does not
have an associated data
structure.

any

XkbSA_SetMods

XkbSA_LatchMods

XkbSA_LockMods

XkbModAction mods 16.1.3

XkbSA_SetGroup

XkbSA_LatchGroup

XkbSA_LockGroup

XkbGroupAction group 16.1.4

XkbSA_MovePtr XkbPtrAction ptr 16.1.5
XKbSA_PtrBtn

XkbSA_LockPtrBtn

XkbPtrBtnAction btn 16.1.6

XkbSA_SetPtrDflt XkbPtrDfltAction dflt 16.1.7
XkbSA_ISOLock XkbISOAction iso 16.1.8
XkbSA_SwitchScreen XkbSwitchScreenAction screen 16.1.9
XkbSA_SetControls

XkbSA_LockControls

XkbCtrlsAction ctrls 16.1.10

XkbSA_ActionMessage XkbMessgeAction msg 16.1.11
XkbSA_RedirectKey XkbRedirectKeyAction redirect 16.1.12
XkbSA_DeviceBtn

XKbSA_LockDeviceBtn

XkbDeviceBtnAction devbtn 16.1.13

XkbSA_DeviceValuator XkbDeviceValuatorAction devval 16.1.14

Actions for Changing Modifiers’ State
Actions associated with the XkbModAction structure change the state of the mod-
ifiers when keys are pressed and released (see Chapter 7 for a discussion of mod-
ifiers):

typedef struct _XkbModAction {
 unsigned char type; /* XkbSA_{Set|Latch|Lock}Mods */
 unsigned char flags; /* with type , controls the effect on modifiers */
 unsigned char mask; /* same as mask field of a modifier description */
 unsigned char real_mods; /* same as real_mods field of a modifier description */
 unsigned char vmods1; /* derived from vmods field of a modifier description */
 unsigned char vmods2; /* derived from vmods field of a modifier description */

Xkb Server Key-
board Mapping

162

} XkbModAction;

In the following description, the term action modifiers means the real modifier bits
associated with this action. Depending on the value of flags (see Table 16.3), these
are designated either in the mask field of the XkbModAction structure itself or the
real modifiers bound to the key for which the action is being used. In the latter case,
this is the client map -> modmap [keycode] field.

The type field can have any of the values shown in Table 16.2.

Table 16.2. Modifier Action Types
Type Effect
XkbSA_SetMods • A key press adds any action modifiers to the

keyboard’s base modifiers.

• A key release clears any action modifiers in the
keyboard’s base modifiers, provided no other key
affecting the same modifiers is logically down.

• If no other keys are physically depressed when this
key is released, and XkbSA_ClearLocks is set in the
flags field, the key release unlocks any action modi-
fiers.

XkbSA_LatchMods • Key press and key release events have the same ef-
fect as for XkbSA_SetMods ; if no keys are physi-
cally depressed when this key is released, key re-
lease events have the following additional effects:

• Modifiers unlocked due to XkbSA_ClearLocks have
no further effect.

• If XkbSA_LatchToLock is set in the flags field, a
key release locks and then unlatches any remaining
action modifiers that are already latched.

• A key release latches any action modifiers not used
by the XkbSA_ClearLocks and XkbSA_LatchToLock
flags.

XkbSA_LockMods • A key press sets the base state of any action mod-
ifiers. If XkbSA_LockNoLock is set in the flags
field, a key press also sets the locked state of any
action modifiers.

• A key release clears any action modifiers in the
keyboard’s base modifiers, provided no other
key that affects the same modifiers is down. If
XkbSA_LockNoUnlock is not set in the flags field,
and any of the action modifiers were locked before
the corresponding key press occurred, a key re-
lease unlocks them.

The flags field is composed of the bitwise inclusive OR of the masks shown in Table
16.3. A general meaning is given in the table, but the exact meaning depends on
the action type.

Xkb Server Key-
board Mapping

163

Table 16.3. Modifier Action Flags

Flag Meaning
XkbSA_UseModMapMods If set, the action modifiers are determined by the

modifiers bound by the modifier mapping of the key.
Otherwise, the action modifiers are set to the mod-
ifiers specified by the mask , real_mods , vmod1 ,
and vmod2 fields.

XkbSA_ClearLocks If set and no keys are physically depressed when this
key transition occurs, the server unlocks any action
modifiers.

XkbSA_LatchToLock If set, and the action type is XkbSA_LatchMods , the
server locks the action modifiers if they are already
latched.

XkbSA_LockNoLock If set, and the action type is XkbSA_LockMods , the
server only unlocks the action modifiers.

XkbSA_LockNoUnlock If set, and the action is XkbSA_LockMods , the server
only locks the action modifiers.

If XkbSA_UseModMapMods is not set in the flags field, the mask , real_mods ,
vmods1 , and vmods2 fields are used to determine the action modifiers. Otherwise
they are ignored and the modifiers bound to the key (client map -> modmap [
keycode]) are used instead.

The mask , real_mods , vmods1 , and vmods2 fields represent the components
of an Xkb modifier description (see section 7.2). While the mask and real_mods
fields correspond directly to the mask and real_mods fields of an Xkb modifier
description, the vmods1 and vmods2 fields are combined to correspond to the
vmods field of an Xkb modifier description. Xkb provides the following macros, to
convert between the two formats:

unsigned short XkbModActionVMods (act) /* macro */
XkbAction act ; /* action from which to extract virtual mods */

XkbModActionVMods returns the vmods1 and vmods2 fields of act converted to
the vmods format of an Xkb modifier description.

void XkbSetModActionVMods (act, vmods) /* macro */
XkbAction act ; /* action in which to set vmods */
unsigned short vmods ; /* virtual mods to set */

XkbSetModActionVMods sets the vmods1 and vmods2 fields of act using the
vmods format of an Xkb modifier description.

Note
Despite the fact that the first parameter of these two macros is of type Xk-
bAction, these macros may be used only with Actions of type XkbModAction
and XkbISOAction .

Xkb Server Key-
board Mapping

164

Actions for Changing Group State

Actions associated with the XkbGroupAction structure change the current group
state when keys are pressed and released (see Chapter 5 for a description of groups
and keyboard state):

typedef struct _XkbGroupAction {
 unsigned char type; /* XkbSA_{Set|Latch|Lock}Group */
 unsigned char flags; /* with type , controls the effect on groups */
 char group_XXX; /* represents a group index or delta */
} XkbGroupAction;

The type field can have any of the following values:

Xkb Server Key-
board Mapping

165

Table 16.4. Group Action Types

Type Effect
XkbSA_SetGroup • If the XkbSA_GroupAbsolute bit is set in the flags

field, key press events change the base keyboard
group to the group specified by the group_XXX
field. Otherwise, key press events change the base
keyboard group by adding the group_XXX field to
the base keyboard group. In either case, the result-
ing effective keyboard group is brought back into
range depending on the value of the groups_wrap
field of the controls structure (see section 10.7.1).

• If a key with an XkbSA_ISOLock action (see section
16.1.8) is pressed while this key is down, the key re-
lease of this key has no effect. Otherwise, the key
release cancels the effects of the key press.

• If the XkbSA_ClearLocks bit is set in the flags field,
and no keys are physically depressed when this key
is released, the key release also sets the locked key-
board group to Group1 .

XkbSA_LatchGroup • Key press and key release events have the same ef-
fect as for XkbSA_SetGroup ; if no keys are phys-
ically depressed when this key is released, key re-
lease events have the following additional effects.

• If the XkbSA_LatchToLock bit is set in the flags
field and the latched keyboard group index is
nonzero, the key release adds the delta applied by
the corresponding key press to the locked keyboard
group and subtracts it from the latched keyboard
group. The locked and effective keyboard group are
brought back into range according to the value of
the groups_wrap field of the controls structure.

• Otherwise, the key press adds the key press delta to
the latched keyboard group.

XkbSA_LockGroup • If the XkbSA_GroupAbsolute is set in the flags
field, key press events set the locked keyboard
group to the group specified by the group_XXX
field. Otherwise, key press events add the group
specified by the group_XXX field to the locked
keyboard group. In either case, the resulting
locked and effective keyboard groups are brought
back into range depending on the value of the
groups_wrap field of the controls structure.

• A key release has no effect.

The flags field is composed of the bitwise inclusive OR of the masks shown in Table
16.5. A general meaning is given in the table, but the exact meaning depends on
the action type .

Xkb Server Key-
board Mapping

166

Table 16.5. Group Action Flags

Flag Meaning
XkbSA_ClearLocks If set and no keys are physically depressed when this

key transition occurs, the server sets the locked key-
board group to Group1 on a key release.

XkbSA_LatchToLock If set, and the action type is SA_LatchGroup , the
server locks the action group if it is already latched.

XkbSA_GroupAbsolute If set, the group_XXX field represents an absolute
group number. Otherwise, it represents a group delta
to be added to the current group to determine the
new group number.

The group_XXX field represents a signed character. Xkb provides the following
macros to convert between a signed integer value and a signed character:

int XkbSAGroup (act) /* macro */
XkbAction act ; /* action from which to extract group */

XkbSAGroup returns the group_XXX field of act converted to a signed int.

void XkbSASetGroup (act, grp) /* macro */
XkbAction act ; /* action from which to set group */
int grp ; /* group index to set in group_XXX */

XkbSASetGroup sets the group_XXX field of act from the group index grp .

Note
Despite the fact that the first parameter of these two macros is of type XkbAc-
tion, these macros may only be used with Actions of type XkbGroupAction
and XkbISOAction .

Actions for Moving the Pointer
Actions associated with the XkbPtrAction structure move the pointer when keys
are pressed and released:

typedef struct _XkbPtrAction {
 unsigned char type; /* XkbSA_MovePtr */
 unsigned char flags; /* determines type of pointer motion */
 unsigned char high_XXX; /* x coordinate, high bits*/
 unsigned char low_XXX; /* y coordinate, low bits */
 unsigned char high_YYY; /* x coordinate, high bits */
 unsigned char low_YYY; /* y coordinate, low bits */
} XkbPtrAction;

If the MouseKeys control is not enabled (see section 10.5.1), KeyPress and KeyRe-
lease events are treated as though the action is XkbSA_NoAction.

Xkb Server Key-
board Mapping

167

If the MouseKeys control is enabled, a server action of type XkbSA_MovePtr in-
structs the server to generate core pointer MotionNotify events rather than the
usual KeyPress event, and the corresponding KeyRelease event disables any mouse
keys timers that were created as a result of handling the XkbSA_MovePtr action.

The type field of the XkbPtrAction structure is always XkbSA_MovePtr .

The flags field is a bitwise inclusive OR of the masks shown in Table 16.6.

Table 16.6. Pointer Action Types

Action Type Meaning
XkbSA_NoAcceleration If not set, and the MouseKeysAccel control is enabled

(see section 10.5.2), the KeyPress initiates a mouse
keys timer for this key; every time the timer expires,
the cursor moves.

XkbSA_MoveAbsoluteX If set, the X portion of the structure specifies the
new pointer X coordinate. Otherwise, the X portion
is added to the current pointer X coordinate to deter-
mine the new pointer X coordinate.

XkbSA_MoveAbsoluteY If set, the Y portion of the structure specifies the
new pointer Y coordinate. Otherwise, the Y portion
is added to the current pointer Y coordinate to deter-
mine the new pointer Y coordinate.

Each of the X and Y coordinantes of the XkbPtrAction structure is composed of
two signed 16-bit values, that is, the X coordinate is composed of high_XXX and
low_XXX , and similarly for the Y coordinate. Xkb provides the following macros,
to convert between a signed integer and two signed 16-bit values in XkbPtrAction
structures:

int XkbPtrActionX (act) /* macro */
XkbPtrAction act ; /* action from which to extract X */

XkbPtrActionX returns the high_XXX and low_XXX fields of act converted to a
signed int.

int XkbPtrActionY (act) /* macro */
XkbPtrAction act ; /* action from which to extract Y */

XkbPtrActionY returns the high_YYY and low_YYY fields of act converted to a
signed int.

void XkbSetPtrActionX (act , x) /* macro */
XkbPtrAction act ; /* action in which to set X */
int x; /* new value to set */

XkbSetPtrActionX sets the high_XXX and low_XXX fields of act from the signed
integer value x .

Xkb Server Key-
board Mapping

168

void XkbSetPtrActionY (act, y) /* macro */
XkbPtrAction act ; /* action in which to set Y */
int y ; /* new value to set */

XkbSetPtrActionX sets the high_YYY and low_YYY fields of act from the signed
integer value y .

Actions for Simulating Pointer Button Press and Release

Actions associated with the XkbPtrBtnAction structure simulate the press and re-
lease of pointer buttons when keys are pressed and released:

typedef struct _XkbPtrBtnAction {
 unsigned char type; /* XkbSA_PtrBtn, XkbSA_LockPtrBtn */
 unsigned char flags; /* with type , controls the effect on pointer buttons*/
 unsigned char count; /* controls number of ButtonPress and ButtonRelease events */
 unsigned char button; /* pointer button to simulate */
} XkbPtrBtnAction;

If the MouseKeys (see section 10.5.1) control is not enabled, KeyPress and KeyRe-
lease events are treated as though the action is XkbSA_NoAction .

The type field can have any one of the values shown in Table 16.7.

Xkb Server Key-
board Mapping

169

Table 16.7. Pointer Button Action Types

Type Effect
XkbSA_PtrBtn • If XkbSA_UseDfltButton is set in the flags field,

the event is generated for the pointer button speci-
fied by the mk_dflt_btn attribute of the MouseKeys
control (see section 10.5.1). Otherwise, the event
is generated for the button specified by the button
field.

• If the mouse button specified for this action is log-
ically down, the key press and corresponding key
release are ignored and have no effect. Otherwise,
a key press causes one or more core pointer but-
ton events instead of the usual KeyPress event. If
count is zero , a key press generates a single But-
tonPress event; if count is greater than zero , a
key press generates count pairs of ButtonPress
and ButtonRelease events.

• If count is zero , a key release generates a core
pointer ButtonRelease that matches the event gen-
erated by the corresponding KeyPress ; if count is
nonzero, a key release does not cause a ButtonRe-
lease event. A key release never generates a key
KeyRelease event.

XkbSA_LockPtrBtn • If the button specified by the MouseKeys default
button or button is not locked, a key press causes
a ButtonPress event instead of a KeyPress event
and locks the button. If the button is already locked
or if XkbSA_LockNoUnlock is set in the flags field,
a key press is ignored and has no effect.

• If the corresponding key press was ignored, and if
XkbSA_LockNoLock is not set in the flags field, a
key release generates a ButtonRelease event in-
stead of a KeyRelease event and unlocks the speci-
fied button. If the corresponding key press locked a
button, the key release is ignored and has no effect.

The flags field is composed of the bitwise inclusive OR of the masks shown in Table
16.8. A general meaning is given in the table, but the exact meaning depends on
the action type. :

Xkb Server Key-
board Mapping

170

Table 16.8. Pointer Button Action Flags

Flag Meaning
XkbSA_UseDfltButton If set, the action uses the pointer button specified by

the mk_dflt_btn attribute of the MouseKeys control
(see section 10.5.1). Otherwise, the action uses the
pointer button specified by the button field.

XkbSA_LockNoLock If set, and the action type is XkbSA_LockPtrBtn , the
server only unlocks the pointer button.

XkbSA_LockNoUnlock If set, and the action type is XkbSA_LockPtrBtn , the
server only locks the pointer button.

Actions for Changing the Pointer Button Simulated
Actions associated with the XkbPtrDfltAction structure change the mk_dflt_btn
attribute of the MouseKeys control (see section 10.5.1):

typedef struct _XkbPtrDfltAction {
 unsigned char type; /* XkbSA_SetPtrDflt */
 unsigned char flags; /* controls the pointer button number */
 unsigned char affect; /* XkbSA_AffectDfltBtn */
 char valueXXX; /* new default button member */
} XkbPtrDfltAction;

If the MouseKeys control is not enabled, KeyPress and KeyRelease events are
treated as though the action is XkbSA_NoAction . Otherwise, this action changes
the mk_dflt_btn attribute of the MouseKeys control.

The type field of the XkbPtrDfltAction structure should always be
XkbSA_SetPtrDflt .

The flags field is composed of the bitwise inclusive OR of the values shown in Table
16.9 (currently there is only one value defined).

Table 16.9. Pointer Default Flags

Flag Meaning
XkbSA_DfltBtnAbsolute If set, the value field represents an absolute point-

er button. Otherwise, the value field represents the
amount to be added to the current default button.

The affect field specifies what changes as a result of this action. The only valid
value for the affect field is XkbSA_AffectDfltBtn.

The valueXXX field is a signed character that represents the new button value
for the mk_dflt_btn attribute of the MouseKeys control (see section 10.5.1). If
XkbSA_DfltBtnAbsolute is set in flags , valueXXX specifies the button to be used;
otherwise, valueXXX specifies the amount to be added to the current default but-
ton. In either case, illegal button choices are wrapped back around into range. Xkb
provides the following macros, to convert between the integer and signed character
values in XkbPtrDfltAction structures:

Xkb Server Key-
board Mapping

171

int XkbSAPtrDfltValue (act) /* macro */
XkbAction act ; /* action from which to extract group */

XkbSAPtrDfltValue returns the valueXXX field of act converted to a signed int.

void XkbSASetPtrDfltValue (act, val) /* macro */
XkbPtrDfltAction act ; /* action in which to set valueXXX */
int val ; /* value to set in valueXXX */

XkbSASetPtrDfltValue sets the valueXXX field of act from val .

Actions for Locking Modifiers and Group
Actions associated with the XkbISOAction structure lock modifiers and the group
according to the ISO9995 specification.

Operated by itself, the XkbISOAction is just a caps lock. Operated simultaneously
with another modifier key, it transforms the other key into a locking key. For exam-
ple, press ISO_Lock , press and release Control_L , release ISO_Lock ends up
locking the Control modifier.

The default behavior is to convert:

 {Set,Latch}Mods to: LockMods
 {Set,Latch}Group to: LockGroup
 SetPtrBtn to: LockPtrBtn
 SetControls to: LockControls

The affects field allows you to turn those effects on or off individually. Set
XkbSA_ISONoAffectMods to disable the first, XkbSA_ISONoAffectGroup to disable
the second, and so forth.

typedef struct _XkbISOAction {
 unsigned char type; /* XkbSA_ISOLock */
 unsigned char flags; /* controls changes to group or modifier state */
 unsigned char mask; /* same as mask field of a modifier description */
 unsigned char real_mods; /* same as real_mods field of a modifier description */
 char group_XXX; /* group index or delta group */
 unsigned char affect; /* specifies whether to affect mods, group, ptrbtn, or controls*/
 unsigned char vmods1; /* derived from vmods field of a modifier description */
 unsigned char vmods2; /* derived from vmods field of a modifier description */
} XkbISOAction;

The type field of the XkbISOAction structure should always be XkbSA_ISOLock .

The interpretation of the flags field depends on whether the XkbSA_ISODfltIsGroup
is set in the flags field or not.

If the XkbSA_ISODfltIsGroup is set in the flags field, the action is used to change
the group state. The remaining valid bits of the flags field are composed of a bitwise
inclusive OR using the masks shown in Table 16.10.

Xkb Server Key-
board Mapping

172

Table 16.10. ISO Action Flags when XkbSA_ISODfltIsGroup is
Set

Flag Meaning
XkbSA_ISODfltIsGroup If set, the action is used to change the base group

state. Must be set for the remaining bits in this table
to carry their interpretations.

A key press sets the base group as specified by the
group_XXX field and the XkbSA_GroupAbsolute bit
of the flags field (see section Note). If no other ac-
tions are transformed by the XkbISO_Lock action, a
key release locks the group. Otherwise, a key release
clears group set by the key press.

XkbSA_GroupAbsolute If set, the group_XXX field represents an absolute
group number. Otherwise, it represents a group delta
to be added to the current group to determine the
new group number.

XkbSA_ISONoAffectMods If not set, any XkbSA_SetMods or XkbSA_LatchMods
actions that occur simultaneously with
the XkbSA_ISOLock action are treated as
XkbSA_LockMod actions instead.

XkbSA_ISONoAffectGroup If not set, any XkbSA_SetGroup or
XkbSA_LatchGroup actions that occur simultaneous-
ly with the XkbSA_ISOLock action are treated as
XkbSA_LockGroup actions instead.

XkbSA_ISONoAffectPtr If not set, any XkbSA_PtrBtn actions that occur si-
multaneously with the XkbSA_ISOLock action are
treated as XkbSA_LockPtrBtn actions instead.

XkbSA_ISONoAffectCtrls If not set, any XkbSA_SetControls actions that occur
simultaneously with the XkbSA_ISOLock action are
treated as XkbSA_LockControls actions instead.

If the XkbSA_ISODfltIsGroup is not set in the flags field, the action is used to change
the modifier state and the remaining valid bits of the flags field are composed of a
bitwise inclusive OR using the masks shown in Table 16.11.

Xkb Server Key-
board Mapping

173

Table 16.11. ISO Action Flags when XkbSA_ISODfltIsGroup is
Not Set

Flag Meaning
XkbSA_ISODfltIsGroup If not set, action is used to change the base modifier

state. Must not be set for the remaining bits in this ta-
ble to carry their interpretations.

A key press sets the action modifiers in the
keyboard’s base modifiers using the mask ,
real_mods , vmods1 , and vmods2 fields (see section
16.1.3). If no other actions are transformed by the
XkbISO_Lock action, a key release locks the action
modifiers. Otherwise, a key release clears the base
modifiers set by the key press.

XkbSA_UseModMapMods If set, the action modifiers are determined by the
modifiers bound by the modifier mapping of the key.
Otherwise, the action modifiers are set to the mod-
ifiers specified by the mask , real_mods , vmod1 ,
and vmod2 fields.

XkbSA_LockNoLock If set, the server only unlocks the action modifiers.
XkbSA_LockNoUnlock If set, the server only locks the action modifiers.
XkbSA_ISONoAffectMods If not set, any XkbSA_SetMods or XkbSA_LatchMods

actions that occur simultaneously with
the XkbSA_ISOLock action are treated as
XkbSA_LockMod actions instead.

XkbSA_ISONoAffectGroup If not set, any XkbSA_SetGroup or
XkbSA_LatchGroup actions that occur simultaneous-
ly with the XkbSA_ISOLock action are treated as
XkbSA_LockGroup actions instead.

XkbSA_ISONoAffectPtr If not set, any XkbSA_PtrBtn actions that occur si-
multaneously with the XkbSA_ISOLock action are
treated as XkbSA_LockPtrBtn actions instead.

XkbSA_ISONoAffectCtrls If not set, any XkbSA_SetControls actions that occur
simultaneously with the XkbSA_ISOLock action are
treated as XkbSA_LockControls actions instead.

The group_XXX field represents a signed character. Xkb provides macros to convert
between a signed integer value and a signed character as shown in section Note.

The mask , real_mods , vmods1 , and vmods2 fields represent the components
of an Xkb modifier description (see section 7.2). While the mask and real_mods
fields correspond directly to the mask and real_mods fields of an Xkb modifier
description, the vmods1 and vmods2 fields are combined to correspond to the
vmods field of an Xkb modifier description. Xkb provides macros to convert between
the two formats as shown in section 16.1.3.

The affect field is composed of a bitwise inclusive OR using the masks shown in
Table 16.11.

Xkb Server Key-
board Mapping

174

Table 16.12. ISO Action Affect Field Values

Affect Meaning
XkbSA_ISODNoAffectMods If XkbSA_ISONoAffectMods is not set, any

SA_SetMods or SA_LatchMods actions occurring si-
multaneously with the XkbISOAction are treated as
SA_LockMods instead.

XkbSA_ISONoAffectGroup If XkbSA_ISONoAffectGroup is not set, any
SA_SetGroup or SA_LatchGroup actions occurring si-
multaneously with the XkbISOAction are treated as
SA_LockGroup instead.

XkbSA_ISONoAffectPtr If XkbSA_ISONoAffectPtr is not set, any SA_PtrBtn
actions occurring simultaneously with the XkbISOAc-
tion are treated as SA_LockPtrBtn instead.

XkbSA_ISONoAffectCtrls If XkbSA_ISONoAffectCtrls is not set, any
SA_SetControls actions occurring simultaneously with
the XkbISOAction are treated as SA_LockControls
instead.

Actions for Changing the Active Screen

Actions associated with the XkbSwitchScreen action structure change the active
screen on a multiscreen display:

Note
This action is optional. Servers are free to ignore the action or any of its
flags if they do not support the requested behavior. If the action is ignored, it
behaves like XkbSA_NoAction . Otherwise, key press and key release events
do not generate an event.

typedef struct _XkbSwitchScreenAction {
 unsigned char type; /* XkbSA_SwitchScreen */
 unsigned char flags; /* controls screen switching */
 char screenXXX; /* screen number or delta */
} XkbSwitchScreenAction;

The type field of the XkbSwitchScreenAction structure should always be
XkbSA_SwitchScreen.

The flags field is composed of the bitwise inclusive OR of the masks shown in Table
16.13.

Xkb Server Key-
board Mapping

175

Table 16.13. Switch Screen Action Flags

Flag Meaning
XkbSA_SwitchAbsolute If set, the screenXXX field represents the index of the

new screen. Otherwise, it represents an offset from
the current screen to the new screen.

XkbSA_SwitchApplication If not set, the action should switch to another screen
on the same server. Otherwise, it should switch to an-
other X server or application that shares the same
physical display.

The screenXXX field is a signed character value that represents either the relative
or absolute screen index, depending on the state of the XkbSA_SwitchAbsolute
bit in the flags field. Xkb provides the following macros to convert between the
integer and signed character value for screen numbers in XkbSwitchScreenAction
structures:

int XkbSAScreen (act) /* macro */
XkbSwitchScreenAction act ; /* action from which to extract screen */

XkbSAScreen returns the screenXXX field of act converted to a signed int.

void XkbSASetScreen (act, s) /* macro */
XkbSwitchScreenAction act ; /* action in which to set screenXXX */
int s ; /* value to set in screenXXX */

XkbSASetScreen sets the screenXXX field of act from s .

Actions for Changing Boolean Controls State

Actions associated with the XkbCtrlsAction structure change the state of the
boolean controls (see section 10.1):

typedef struct _XkbCtrlsAction {
 unsigned char type; /* XkbSA_SetControls,
 XkbSA_LockControls */
 unsigned char flags; /* with type,
 controls enabling and disabling of controls */
 unsigned char ctrls3; /* ctrls0 through
 ctrls3 represent the boolean controls */
 unsigned char ctrls2; /* ctrls0 through
 ctrls3 represent the boolean controls */
 unsigned char ctrls1; /* ctrls0 through
 ctrls3 represent the boolean controls */
 unsigned char ctrls0; /* ctrls0 through
 ctrls3 represent the boolean controls */
} XkbCtrlsAction;

The type field can have any one of the values shown in Table 16.14.

Xkb Server Key-
board Mapping

176

Table 16.14. Controls Action Types
Type Effect
XkbSA_SetControls • A key press enables any boolean controls specified

in the ctrls fields that were not already enabled at
the time of the key press.

• A key release disables any controls enabled by the
key press.

• This action can cause XkbControlsNotify events
(see section 10.1).

XkbSA_LockControls • If the XkbSA_LockNoLock bit is not set in the flags
field, a key press enables any controls specified in
the ctrls fields that were not already enabled at the
time of the key press.

• If the XkbSA_LockNoUnlock bit is not set in the
flags field, a key release disables any controls spec-
ified in the ctrls fields that were not already dis-
abled at the time of the key press.

• This action can cause XkbControlsNotify events
(see section 10.1).

The flags field is composed of the bitwise inclusive OR of the masks shown in Table
16.15.

Table 16.15. Control Action Flags
Flag Meaning
XkbSA_LockNoLock If set, and the action type is XkbSA_LockControls ,

the server only disables controls.
XkbSA_LockNoUnlock If set, and the action type is XkbSA_LockControls ,

the server only enables controls.

The XkbSA_SetControls action implements a key that enables a boolean control
when pressed and disables it when released. The XkbSA_LockControls action is
used to implement a key that toggles the state of a boolean control each time it is
pressed and released. The XkbSA_LockNoLock and XkbSA_LockNoUnlock flags al-
low modifying the toggling behavior to only unlock or only lock the boolean control.

The ctrls0 , ctrls1 , ctrls2 , and ctrls3 fields represent the boolean controls in
the enabled_ctrls field of the controls structure (see section 10.1). Xkb provides
the following macros, to convert between the two formats:

unsigned int XkbActionCtrls (act) /* macro */
XkbCtrlsAction act ; /* action from which to extract controls */

XkbActionCtrls returns the ctrls fields of act converted to an unsigned int.

void XkbSAActionSetCtrls (act, ctrls) /* macro */
XkbCtrlsAction act ; /* action in which to set ctrls0-ctrls3 */
unsigned int ctrls ; /* value to set in ctrls0-ctrls3 */

Xkb Server Key-
board Mapping

177

XkbSAActionSetCtrls sets the ctrls0 through ctrls3 fields of act from ctrls .

Actions for Generating Messages
Actions associated with the XkbMessageAction structure generate XkbActionMes-
sage events:

#define XkbActionMessageLength 6

typedef struct _XkbMessageAction {
 unsigned char type; /* XkbSA_ActionMessage */
 unsigned char flags; /* controls event generation via key presses and releases */
 unsigned char message[XkbActionMessageLength]; /* message */
} XkbMessageAction;

The type field of the XkbMessageAction structure should always be
XkbSA_ActionMessage .

The flags field is composed of the bitwise inclusive OR of the masks shown in Table
16.16.

Table 16.16. Message Action Flags
Flag Meaning
XkbSA_MessageOnPress If set, key press events generate an XkbActionMes-

sage event that reports the keycode, event type, and
contents of the message field.

XkbSA_MessageOnRelease If set, key release events generate an XkbActionMes-
sage event that reports the keycode, event type, and
contents of the message field.

XkbSA_MessageGenKeyEventIf set, key press and key release events generate
KeyPress and KeyRelease events, regardless of
whether they generate XkbActionMessage events.

The message field is an array of XkbActionMessageLength unsigned characters
and may be set to anything the keymap designer wishes.

Detecting Key Action Messages

To receive XkbActionMessage events by calling either XkbSelectEvents or XkbS-
electEventDetails (see section 4.3).

To receive XkbActionMessage events under all possible conditions, use Xk-
bSelectEvents and pass XkbActionMessageMask in both bits_to_change and
values_for_bits .

The XkbActionMessage event has no event details. However, you can call XkbS-
electEventDetails using XkbActionMessage as the event_type and specifying Xk-
bAllActionMessageMask in bits_to_change and values_for_bits. This has the same
effect as a call to XkbSelectEvents.

The structure for the XkbActionMessage event is defined as follows:

Xkb Server Key-
board Mapping

178

typedef struct _XkbActionMessage {
 int type; /* Xkb extension base event code */
 unsigned long serial; /* X server serial number for event */
 Bool send_event; /* True => synthetically generated */
 Display * display; /* server connection where event generated */
 Time time; /* server time when event generated */
 int xkb_type; /* XkbActionMessage */
 int device; /* Xkb device ID, will not be XkbUseCoreKbd */
 KeyCode keycode; /* keycode of key triggering event */
 Bool press; /* True => key press,
 False => release */
 Bool key_event_follows; /* True => KeyPress/KeyRelease follows */
 char message[XkbActionMessageLength+1]; /* message text */
} XkbActionMessageEvent;

The keycode is the keycode of the key that was pressed or released. The press field
specifies whether the event was the result of a key press or key release.

The key_event_follows specifies whether a KeyPress (if press is True) or KeyRe-
lease (if press is False) event is also sent to the client. As with all other Xkb events,
XkbActionMessageEvent s are delivered to all clients requesting them, regardless
of the current keyboard focus. However, the KeyPress or KeyRelease event that
conditionally follows an XkbActionMessageEvent is sent only to the client selected
by the current keyboard focus. key_event_follows is True only for the client that is
actually sent the following KeyPress or KeyRelease event.

The message field is set to the message specified in the action and is guaranteed
to be NULL -terminated; the Xkb extension forces a NULL into message [XkbAc-
tionMessageLength].

Actions for Generating a Different Keycode
Actions associated with the XkbRedirectKeyAction structure generate KeyPress
and KeyRelease events containing a keycode different from the key that was
pressed or released:

typedef struct _XkbRedirectKeyAction {
 unsigned char type; /* XkbSA_RedirectKey */
 unsigned char new_key; /* keycode to be put in event */
 unsigned char mods_mask; /* mask of real mods to be reset */
 unsigned char mods; /* mask of real mods to take values from */
 unsigned char vmods_mask0; /* first half of mask of virtual mods to be reset */
 unsigned char vmods_mask1; /* other half of mask of virtual mods to be reset */
 unsigned char vmods0; /* first half of mask of virtual mods to take values from */
 unsigned char vmods1; /* other half of mask of virtual mods to take values from */
} XkbRedirectKeyAction;

The type field for the XkbRedirectKeyAction structure should always be
XkbSA_RedirectKey .

Key presses cause a KeyPress event for the key specified by the new_key field in-
stead of the actual key. The state reported in this event reports the current effective

Xkb Server Key-
board Mapping

179

modifiers changed as follows: any real modifiers selected by the mods_mask field
are set to corresponding values from the mods field. Any real modifiers bound to
the virtual modifiers specified by the vmods_mask0 and vmods_mask1 fields are
either set or cleared, depending on the corresponding values in the vmods0 and
vmods1 fields. If the real and virtual modifier definitions specify conflicting values
for a single modifier, the real modifier definition has priority.

Key releases cause a KeyRelease event for the key specified by the new_key field
instead of the actual key. The state for this event consists of the effective keyboard
modifiers at the time of the release, changed as described previously.

The XkbSA_RedirectKey action normally redirects to another key on the same de-
vice as the key that caused the event, unless that device does not belong to the
input extension KeyClass , in which case this action causes an event on the core
keyboard device. (The input extension categorizes devices by breaking them into
classes. Keyboards, and other input devices with keys, are classified as KeyClass
devices by the input extension.)

The vmods_mask0 and vmods_mask1 fields actually represent one vmods_mask
value, as described in Chapter 7. Xkb provides the following macros, to convert
between the two formats:

unsigned int XkbSARedirectVModsMask (act) /* macro */
XkbRedirectKeyAction act ; /* action from which to extract vmods */

XkbSARedirectVModsMask returns the vmods_mask0 and vmods_mask1 fields of
act converted to an unsigned int.

void XkbSARedirectSetVModsMask (act, vm) /* macro */
XkbRedirectKeyAction act ; /* action in which to set vmods */
unsigned int vm ; /* new value for virtual modifier mask */

XkbSARedirectSetVModsMask sets the vmods_mask0 and vmods_mask1 fields of
act from vm .

Similarly, the vmods0 and vmods1 fields actually represent one vmods value,
as described in Chapter 7. To convert between the two formats, Xkb provides the
following convenience macros:

unsigned int XkbSARedirectVMods (act) /* macro */
XkbRedirectKeyAction act ; /* action from which to extract vmods */

 XkbSARedirectVModsMask returns the vmods0
 and vmods1 fields of act
 converted to an unsigned int.

void XkbSARedirectSetVMods (act, vm) /* macro */
XkbRedirectKeyAction act ; /* action in which to set vmods */
unsigned int v ; /* new value for virtual modifiers */

Xkb Server Key-
board Mapping

180

 XkbSARedirectSetVModsMask sets the vmods0
 and vmods1 of act from v.

Actions for Generating DeviceButtonPress and Device-
ButtonRelease

Actions associated with XkbDeviceBtnAction structures generate DeviceButton-
Press and DeviceButtonRelease events instead of normal KeyPress and KeyRe-
lease events:

typedef struct _XkbDeviceBtnAction {
 unsigned char type; /* XkbSA_DeviceBtn, XkbSA_LockDeviceBtn */
 unsigned char flags; /* with type , specifies locking or unlocking */
 unsigned char count; /* controls number of DeviceButtonPress and Release events */
 unsigned char button; /* index of button on device */
 unsigned char device; /* device ID of an X input extension device */
} XkbDeviceBtnAction;

The type field can have any one of the values shown in Table 16.17.

Xkb Server Key-
board Mapping

181

Table 16.17. Device Button Action Types

Type Effect
XkbSA_DeviceBtn • If the button specified by this action is logically

down, the key press and corresponding release are
ignored and have no effect. If the device or button
specified by this action are illegal, this action be-
haves like XkbSA_NoAction.

• Otherwise, key presses cause one or more input ex-
tension device events instead of the usual key press
event. If the count field is zero, a key press gen-
erates a single DeviceButtonPress event. If count
is greater than zero, a key press event generates
count pairs of DeviceButtonPress and DeviceBut-
tonRelease events.

• If count is zero, a key release generates an input
extension DeviceButtonRelease event that match-
es the event generated by the corresponding key
press. If count is nonzero, a key release does not
cause a DeviceButtonRelease event. Key releases
never cause KeyRelease events.

XkbSA_LockDeviceBtn • If the device or button specified by this action are
illegal, this action behaves like XkbSA_NoAction.

• Otherwise, if the specified button is not locked and
the XkbSA_LockNoLock bit is not set in the flags
field, a key press generates an input extension De-
viceButtonPress event instead of a KeyPress event
and locks the button. If the button is already locked
or if XkbSA_LockNoLock bit is set in the flags
field, the key press is ignored and has no effect.

• If the corresponding key press was ignored, and if
the XkbSA_LockNoUnlock bit is not set in the flags
field, a key release generates an input extension
DeviceButtonRelease event instead of a KeyRelease
event and unlocks the button. If the correspond-
ing key press locked a button, the key release is ig-
nored and has no effect.

The flags field is composed of the bitwise inclusive OR of the masks shown in Table
16.18.

Table 16.18. Device Button Action Flags

Flag Meaning
XkbSA_LockNoLock If set, and the action type is XkbSA_LockDeviceBtn ,

the server only unlocks the button.
XkbSA_LockNoUnlock If set, and the action type is XkbSA_LockDeviceBtn ,

the server only locks the button.

Xkb Server Key-
board Mapping

182

Actions for Simulating Events from Device Valuators
A valuator manipulates a range of values for some entity, like a mouse axis, a slider
or a dial. Actions associated with XkbDeviceValuatorAction structures are used to
simulate events from one or two input extension device valuators.

typedef struct _XkbDeviceValuatorAction {
 unsigned char type; /* XkbSA_DeviceValuator */
 unsigned char device; /* device ID */
 unsigned char v1_what; /* determines how valuator is to behave for valuator 1 */
 unsigned char v1_ndx; /* specifies a real valuator */
 unsigned char v1_value; /* the value for valuator 1 */
 unsigned char v2_what; /* determines how valuator is to behave for valuator 2 */
 unsigned char v2_ndx; /* specifies a real valuator */
 unsigned char v2_value; /* the value for valuator 1 */
} XkbDeviceValuatorAction;

If device is illegal or if neither v1_ndx nor v2_ndx specifies a legal valuator, this
action behaves like XkbSA_NoAction.

The low four bits of v1_what and v2_what specify the corresponding scale value
(denoted val<n>Scale in Table 16.17), if needed. The high four bits of v1_what
and v2_what specify the operation to perform to set the values. The high four bits
of v1_what and v2_what can have the values shown in Table 16.17; the use of
val<n>Scale is shown in that table also.

Table 16.19. Device Valuator v<n>_what High Bits Values
Value of high bits Effect
XkbSA_IgnoreVal No action
XkbSA_SetValMin v<n>_value is set to its minimum legal value.
XkbSA_SetValCenter v<n>_valueis centered (to (max-min)/2).
XkbSA_SetValMax v<n>_value is set to its maximum legal value.
XkbSA_SetValRelative v<n>_value * (2 val<n>Scale) is added to

v<n>_value.
XkbSA_SetValAbsolute v<n>_value is set to (2 val<n>Scale).

Illegal values for XkbSA_SetValRelative or XkbSA_SetValAbsolute are clamped into
range. Note that all of these possibilities are legal for absolute valuators. For rela-
tive valuators, only XkbSA_SetValRelative is permitted. Part of the input extension
description of a device is the range of legal values for all absolute valuators, whence
the maximum and minimum legal values shown in Table 16.17.

The following two masks are provided as a convenience to select either portion of
v1_what or v2_what :

 #define XkbSA_ValOpMask (0x70)
 #define XkbSA_ValScaleMask (0x07)

v1_ndx and v2_ndx specify valuators that actually exists. For example, most mice
have two valuators (x and y axes) so the only legal values for a mouse would be 0
and 1. For a dial box with eight dials, any value in the range 0..7 would be correct.

Xkb Server Key-
board Mapping

183

Obtaining Key Actions for Keys from the Server
To update the actions (the key_acts array) for a subset of the keys in a keyboard
description, use XkbGetKeyActions .

Status XkbGetKeyActions (dpy , first , num , xkb)
Display * dpy ; /* connection to X server */
unsigned int first ; /* keycode of first key of interest */
unsigned int num ; /* number of keys desired */
XkbDescPtr xkb ; /* pointer to keyboard description where result is stored */

XkbGetKeyActions sends a request to the server to obtain the actions for num keys
on the keyboard starting with key first . It waits for a reply and returns the actions
in the server -> key_acts field of xkb . If successful, XkbGetKeyActions returns
Success . The xkb parameter must be a pointer to a valid Xkb keyboard description.

If the server map in the xkb parameter has not been allocated, XkbGetKeyActions
allocates and initializes it before obtaining the actions.

If the server does not have a compatible version of Xkb, or the Xkb extension has
not been properly initialized, XkbGetKeyActions returns BadAccess . If num is less
than 1 or greater than XkbMaxKeyCount , XkbGetKeyActions returns BadValue .
If any allocation errors occur, XkbGetKeyActions returns BadAlloc .

Changing the Number of Actions Bound to a Key
To change the number of actions bound to a key, use XkbResizeKeyAction .

XkbAction * XkbResizeKeyActions (xkb , key , needed)
XkbDescRec * xkb ; /* keyboard description to change */
int key ; /* keycode of key to change */
int needed ; /* new number of actions required */

The xkb parameter points to the keyboard description containing the key whose
number of actions is to be changed. The key parameter is the keycode of the key
to change, and needed specifies the new number of actions required for the key.

XkbResizeKeyActions reserves the space needed for the actions and returns a point-
er to the beginning of the new array that holds the actions. It can change the acts
, num_acts , and size_acts fields of xkb -> server if it is necessary to reallocate
the acts array.

If needed is greater than the current number of keysyms for the key, XkbResizeKey-
Actions initializes all new actions in the array to NoAction .

Because the number of actions needed by a key is normally computed as width *
number of groups, and XkbResizeKeyActions does not modify either the width or
number of groups for the key, a discrepancy exists on return from XkbResizeKey-
Actions between the space allocated for the actions and the number required. The
unused entries in the list of actions returned by XkbResizeKeyActions are not pre-
served across future calls to any of the map editing functions, so you must update

Xkb Server Key-
board Mapping

184

the key actions (which updates the width and number of groups for the key) before
calling another allocator function. A call to XkbChangeTypesOfKey updates these.

If any allocation errors occur while resizing the number of actions bound to the key,
XkbResizeKeyActions returns NULL .

Note
A change to the number of actions bound to a key should be accompanied by
a change in the number of symbols bound to a key. Refer to section 15.3.7
for more information on changing the number of symbols bound to a key.

Key Behavior
Key behavior refers to the demeanor of a key. For example, the expected behavior of
the CapsLock key is that it logically locks when pressed, and then logically unlocks
when pressed again.

Radio Groups
Keys that belong to the same radio group have the XkbKB_RadioGroup type in the
type field and the radio group index specified in the data field in the XkbBehavior
structure. If the radio group has a name in the XkbNamesRec structure, the radio
group index is the index into the radio_group array in the XkbNamesRec structure.
A radio group key when pressed stays logically down until another key in the radio
group is pressed, when the first key becomes logically up and the new key becomes
logically down. Setting the XkbKB_RGAllowNone bit in the behavior for all of the
keys of the radio group means that pressing the logically down member of the radio
group causes it to logically release, in which case none of the keys of the radio
group would be logically down. If XkbKB_RGAllowNone is not set, there is no way
to release the logically down member of the group.

The low five bits of the data field of the XkbBehavior structure are the group
number, the high three bits are flags. The only flag currently defined is:

#define XkbRG_AllowNone 0x80

The XkbBehavior Structure
The behaviors field of the server map is an array of XkbBehavior structures, in-
dexed by keycode, and contains the behavior for each key. The XkbBehavior struc-
ture is defined as follows:

typedef struct _XkbBehavior {
 unsigned char type; /* behavior type + optional
 XkbKB_Permanent bit */
 unsigned char data;
} XkbBehavior;

The type field specifies the Xkb behavior, and the value of the data field depends
on the type . Xkb supports the key behaviors shown in Table 16.20.

Xkb Server Key-
board Mapping

185

Table 16.20. Key Behaviors

Type Effect
XkbKB_Default Press and release events are processed normally. The

data field is unused.
XkbKB_Lock If a key is logically up (that is, the corresponding bit

of the core key map is cleared) when it is pressed, the
key press is processed normally and the correspond-
ing release is ignored. If the key is logically down
when pressed, the key press is ignored but the cor-
responding release is processed normally. The data
field is unused.

XkbKB_RadioGroup If another member of the radio group is logically
down (all members of the radio group have the same
index, specified in data) when a key is pressed, the
server synthesizes a key release for the member that
is logically down and then processes the new key
press event normally.

If the key itself is logically down when pressed, the
key press event is ignored, but the processing of the
corresponding key release depends on the value of
the Xkb_RGAllowNone bit in flags . If it is set, the
key release is processed normally; otherwise, the key
release is also ignored.

All other key release events are ignored.
XkbKB_Overlay1 If the Overlay1 control is enabled (see section 10.4),

data is interpreted as a keycode, and events from
this key are reported as if they came from data ’s
keycode. Otherwise, press and release events are
processed normally.

XkbKB_Overlay2 If the Overlay2 control is enabled (see section 10.4),
data is interpreted as a keycode, and events from
this key are reported as if they came from data ’s
keycode. Otherwise, press and release events are
processed normally.

Xkb also provides the mask, XkbKB_Permanent to specify whether the key be-
havior type should be simulated by Xkb or whether the key behavior describes
an unalterable physical, electrical, or software aspect of the keyboard. If the
XkbKB_Permanent bit is not set in the type field, Xkb simulates the behavior in
software. Otherwise, Xkb relies upon the keyboard to implement the behavior.

Obtaining Key Behaviors for Keys from the Server

To obtain the behaviors (the behaviors array) for a subset of the keys in a keyboard
description from the server, use XkbGetKeyBehaviors :

Xkb Server Key-
board Mapping

186

Status XkbGetKeyBehaviors (dpy , first , num , xkb)
Display * dpy ; /* connection to server */
unsigned int first ; /* keycode of first key to get */
unsigned int num ; /* number of keys for which behaviors are desired */
XkbDescPtr xkb ; /* Xkb description to contain the result */

XkbGetKeyBehaviors sends a request to the server to obtain the behaviors for num
keys on the keyboard starting with the key whose keycode is first . It waits for a
reply and returns the behaviors in the server -> behaviors field of xkb . If successful,
XkbGetKeyBehaviors returns Success .

If the server map in the xkb parameter has not been allocated, XkbGetKeyBehav-
iors allocates and initializes it before obtaining the actions.

If the server does not have a compatible version of Xkb, or the Xkb extension has not
been properly initialized, XkbGetKeyBehaviors returns BadAccess . If num is less
than 1 or greater than XkbMaxKeyCount , XkbGetKeyBehaviors returns BadValue
. If any allocation errors occur, XkbGetKeyBehaviors returns BadAlloc .

Explicit Components—Avoiding Automatic
Remapping by the Server

Whenever a client remaps the keyboard using core protocol requests, Xkb examines
the map to determine likely default values for the components that cannot be spec-
ified using the core protocol (see section 17.1.2 for more information on how Xkb
chooses the default values).

This automatic remapping might replace definitions explicitly requested by an ap-
plication, so the Xkb keyboard description defines an explicit components mask for
each key. Any aspects of the automatic remapping listed in the explicit components
mask for a key are not changed by the automatic keyboard mapping.

The explicit components masks are held in the explicit field of the server map,
which is an array indexed by keycode. Each entry in this array is a mask that is a
bitwise inclusive OR of the values shown in Table 16.21.

Xkb Server Key-
board Mapping

187

Table 16.21. Explicit Component Masks

Bit in Explicit
Mask

Value Protects Against

ExplicitKeyType1 (1<<0) Automatic determination of the key type
associated with Group1.

ExplicitKeyType2 (1<<1) Automatic determination of the key type
associated with Group2.

ExplicitKeyType3 (1<<2) Automatic determination of the key type
associated with Group3.

ExplicitKeyType4 (1<<3) Automatic determination of the key type
associated with Group4.

ExplicitInterpret (1<<4) Application of any of the fields of a sym-
bol interpretation to the key in ques-
tion.

ExplicitAutoRepeat (1<<5) Automatic determination of auto-repeat
status for the key, as specified in a sym-
bol interpretation.

ExplicitBehavior (1<<6) Automatic assignment of the
XkbKB_Lock behavior to the key, if the
XkbSI_LockingKey flag is set in a sym-
bol interpretation.

ExplicitVModMap (1<<7) Automatic determination of the virtual
modifier map for the key based on the
actions assigned to the key and the sym-
bol interpretations that match the key.

Obtaining Explicit Components for Keys from the Server
To obtain the explicit components (the explicit array) for a subset of the keys in a
keyboard description, use XkbGetKeyExplicitComponents.

Status XkbGetKeyExplicitComponents (dpy , first , num , xkb)
Display * dpy ; /* connection to server */
unsigned int first ; /* keycode of first key to fetch */
unsigned int num ; /* number of keys for which to get explicit info */
XkbDescPtr xkb ; /* Xkb description in which to put results */

XkbGetKeyExplicitComponents sends a request to the server to obtain the explicit
components for num keys on the keyboard starting with key first . It waits for a
reply and returns the explicit components in the server -> explicit array of xkb . If
successful, XkbGetKeyExplicitComponents returns Success . The xkb parameter
must be a pointer to a valid Xkb keyboard description.

If the server map in the xkb parameter has not been allocated, XkbGetKeyExplic-
itComponents allocates and initializes it before obtaining the actions.

If the server does not have a compatible version of Xkb, or the Xkb extension has
not been properly initialized, XkbGetKeyExplicitComponents returns BadMatch .

Xkb Server Key-
board Mapping

188

If num is less than 1 or greater than XkbMaxKeyCount , XkbGetKeyExplicitCom-
ponents returns BadValue . If any allocation errors occur, XkbGetKeyExplicitCom-
ponents returns BadAlloc .

Virtual Modifier Mapping
The vmods member of the server map is a fixed-length array containing Xkb-
NumVirtualMods entries. Each entry corresponds to a virtual modifier and provides
the binding of the virtual modifier to the real modifier bits. Each entry in the vmods
array is a bitwise inclusive OR of the legal modifier masks:

 ShiftMask
 LockMask
 ControlMask
 Mod1Mask
 Mod2Mask
 Mod3Mask
 Mod4Mask
 Mod5Mask

The vmodmap member of the server map is similar to the modmap array of the
client map (see section 15.4), but is used to define the virtual modifier mapping for
each key. Like the modmap member, it is indexed by keycode, and each entry is a
mask representing the virtual modifiers bound to the corresponding key:

• Each of the bits in a vmodmap entry represents an index into the vmods member.
That is, bit 0 of a vmodmap entry refers to index 0 of the vmods array, bit 1 refers
to index 1, and so on.

• If a bit is set in the vmodmap entry for a key, that key is bound to the correspond-
ing virtual modifier in the vmods array.

The vmodmap and vmods members of the server map are the "master" virtual
modifier definitions. Xkb automatically propagates any changes to these fields to
all other fields that use virtual modifier mappings.

The overall relationship of fields dealing with virtual modifiers in an Xkb keyboard
description are shown in Figure 16.2.

Xkb Server Key-
board Mapping

189

Define real
modifiers bound

to virtual
modifier

Define virtual modifiers
for each key

KeyCode

XkbDescRec

. . .

. . .

. . .

server

names . . .

. . .

. . .

vmods[0]

vmods[1]

vmods[2]

vmods[15]

XkbNamesRec

XkbServerMapRec

vmods[0]

vmods[1]

vmods[2]

vmods[15]

vmodmap

. . .

. . .
unsigned short
(one per key)

Virtual Modifier Relationships

Obtaining Virtual Modifier Bindings from the Server
To obtain a subset of the virtual modifier bindings (the vmods array) in a keyboard
description, use XkbGetVirtualMods :

Status XkbGetVirtualMods (dpy , which , xkb)
Display * dpy ; /* connection to server */
unsigned int which ; /* mask indicating virtual modifier bindings to get */
XkbDescPtr xkb ; /* Xkb description where results will be placed */

XkbGetVirtualMods sends a request to the server to obtain the vmods entries for the
virtual modifiers specified in the mask, which , and waits for a reply. See section 7.1
for a description of how to determine the virtual modifier mask. For each bit set in
which , XkbGetVirtualMods updates the corresponding virtual modifier definition
in the server->vmods array of xkb . The xkb parameter must be a pointer to a valid
Xkb keyboard description. If successful, XkbGetVirtualMods returns Success .

If the server map has not been allocated in the xkb parameter, XkbGetVirtualMods
allocates and initializes it before obtaining the virtual modifier bindings.

Xkb Server Key-
board Mapping

190

If the server does not have a compatible version of Xkb, or the Xkb extension has
not been properly initialized, XkbGetVirtualMods returns BadMatch . Any errors
in allocation cause XkbGetVirtualMods to return BadAlloc.

Obtaining Per-Key Virtual Modifier Mappings from the
Server

To obtain the virtual modifier map (the vmodmap array) for a subset of the keys in
a keyboard description, use XkbGetKeyVirtualModMap :

Status XkbGetKeyVirtualModMap (dpy , first , num , xkb)
Display * dpy ; /* connection to server */
unsigned int first ; /* keycode of first key to fetch */
unsigned int num ; /* # keys for which virtual mod maps are desired */
XkbDescPtr xkb ; /* Xkb description where results will be placed */

XkbGetKeyVirutalModmap sends a request to the server to obtain the virtual mod-
ifier mappings for num keys on the keyboard starting with key first . It waits for a
reply and returns the virtual modifier mappings in the server -> vmodmap array of
xkb . If successful, XkbGetKeyVirtualModMap returns Success . The xkb parame-
ter must be a pointer to a valid Xkb keyboard description

If the server map in the xkb parameter has not been allocated, XkbGetKeyVir-
tualModMap allocates and initializes it before obtaining the virtual modifier map-
pings.

If the server does not have a compatible version of Xkb, or the Xkb extension has not
been properly initialized, XkbGetKeyVirtualModMap returns BadMatch . If num
is less than 1 or greater than XkbMaxKeyCount , XkbGetKeyVirtualModMap re-
turns BadValue . If any allocation errors occur, XkbGetKeyVirtualModMap returns
BadAlloc .

191

Chapter 17. The Xkb Compatibility Map
As shown in Figure 17.1, the X server is normally dealing with more than one client,
each of which may be receiving events from the keyboard, and each of which may
issue requests to modify the keyboard in some manner. Each client may be either
Xkb-unaware, Xkb-capable, or Xkb-aware. The server itself may be either Xkb-aware
or Xkb-unaware. If the server is Xkb-unaware, Xkb state and keyboard mappings
are not involved in any manner, and Xkb-aware clients may not issue Xkb requests
to the server. If the server is Xkb-aware, the server must be able to deliver events
and accept requests in which the keyboard state and mapping are compatible with
the mode in which the client is operating. Consequently, for some situations, con-
versions must be made between Xkb state / keyboard mappings and core protocol
state / keyboard mappings, and vice versa.

Xkb-capable
Client

Xkb-aware Xlib
Xkb-unaware App

Xkb-unaware
Client

Core kb Xlib
Xkb-unaware App

Xkb-aware
Client

Xkb-aware Xlib
Xkb-aware App

state
config

kb
mapping

Xkb-aware
Server

Maintains Xkb State and Mapping,
core kb mapping, but not core kb state

Xkb

kb
mapping

Xkb

state

Xkb

Keycode

Xkb

Core protocol

Xkb protocol
Keyboard

config

config

state

kb
mapping

config

Xkb

Server Interaction with Types of Clients

In addition to these situations involving a single server, there are cases where a
client that deals with multiple servers may need to configure keyboards on different

The Xkb Compatibility Map

192

servers to be similar and the different servers may not all be Xkb-aware. Finally,
a client may be dealing with descriptions of keyboards (files, and so on) that are
based on core protocol and therefore may need to be able to map these descriptions
to Xkb descriptions.

An Xkb-aware server maintains keyboard state and mapping as an Xkb keyboard
state and an Xkb keyboard mapping plus a compatibility map used to convert from
Xkb components to core components and vice versa. In addition, the server also
maintains a core keyboard mapping that approximates the Xkb keyboard mapping.
The core keyboard mapping may be updated piecemeal, on a per-key basis. When
the server receives a core protocol ChangeKeyboardMapping or SetModifierMap-
ping request, it updates its core keyboard mapping, then uses the compatibility
map to update its Xkb keyboard mapping. When the server receives an XkbSetMap
request, it updates those portions of its Xkb keyboard mapping specified by the
request, then uses its compatibility map to update the corresponding parts of its
core keyboard map. Consequently, the server’s Xkb keyboard map and also its core
keyboard map may contain components that were set directly and others that were
computed. Figure 17.2 illustrates these relationships.

Note
The core keyboard map is contained only in the server, not in any client-side
data structures.

Xkb State
Base Modifiers and Group

Locked Modifiers and Group
Latched Modifiers and Group

Core Pointer Button State

ServerInternalModifiers
IgnoreLocksModifiers

IgnoreGroupLock

Compatibility Map
Explicit Override Controls

Xkb Keyboard Map Core Keyboard Map

Compatibility State
Compatibility Lookup State
Compatibility Grab StateLookupState

Grab State

Effective
Modifiers

and Group

Server Derivation of State and Keyboard Mapping Components

The Xkb Compatibility Map

193

There are three kinds of compatibility transformations made by the server:

1. Xkb State to Core State

Keyboard state information reported to a client in the state field of various core
events may be translated from the Xkb keyboard state maintained by the server,
which includes a group number, to core protocol state, which does not.

In addition, whenever the Xkb state is retrieved, the compat_state ,
compat_grab_mods , and compat_lookup_mods fields of the XkbStateRec re-
turned indicate the result of applying the compatibility map to the current Xkb
state in the server.

2. Core Keyboard Mapping to Xkb Keyboard Mapping

After core protocol requests received by the server to change the keyboard map-
ping (ChangeKeyboardMapping and SetModifierMapping) have been applied
to the server’s core keyboard map, the results must be transformed to achieve
an equivalent change of the Xkb keyboard mapping maintained by the server.

3. Xkb Keyboard Mapping to Core Keyboard Mapping

After Xkb protocol requests received by the server to change the keyboard map-
ping (XkbSetMap) have been applied to the server’s Xkb keyboard map, the re-
sults are transformed to achieve an approximately equivalent change to the core
keyboard mapping maintained by the server.

This chapter discusses how a client may modify the compatibility map so that sub-
sequent transformations have a particular result.

The XkbCompatMap Structure
All configurable aspects of mapping Xkb state and configuration to and from core
protocol state and configuration are defined by a compatibility map, contained in an
XkbCompatMap structure; plus a set of explicit override controls used to prevent
particular components of type 2 (core-to-Xkb keyboard mapping) transformations
from automatically occurring. These explicit override controls are maintained in a
separate data structure discussed in section 16.3.

The compat member of an Xkb keyboard description (XkbDescRec) points to the
XkbCompatMap structure:

typedef struct _XkbCompatMapRec {
 XkbSymInterpretPtr sym_interpret; /* symbol based key semantics*/
 XkbModsRec groups[XkbNumKbdGroups]; /* group => modifier map */
 unsigned short num_si; /* # structures used in
 sym_interpret */
 unsigned short size_si; /* # structures allocated in
 sym_interpret */
} XkbCompatMapRec, *XkbCompatMapPtr;

The Xkb Compatibility Map

194

XkbDescRec

compat

XkbCompMapRec

sym_interpret

groups[0]

groups[1]

groups[2]

groups[3]

num_si

size_si

XkbSymInterpretRec(s)

num_si - 1

size_si - 1

0
Group

compatibility
maps

Xkb Compatibility Data Structures

The subsections that follow discuss how the compatibility map and explicit override
controls are used in each of the three cases where compatibility transformations
are made.

Xkb State to Core Protocol State Transformation
As shown in Figure 17.3, there are four group compatibility maps (contained in
groups [0..3]) in the XkbCompatMapRec structure, one per possible Xkb group.
Each group compatibility map is a modifier definition (see section 7.2 for a descrip-
tion of modifier definitions). The mask component of the definition specifies which
real modifiers should be set in the core protocol state field when the corresponding
group is active. Because only one group is active at any one time, only one of the
four possible transformations is ever applied at any one point in time. If the device
described by the XkbDescRec does not support four groups, the extra groups fields
are present, but undefined.

Normally, the Xkb-aware server reports keyboard state in the state member of
events such as a KeyPress event and ButtonPress event, encoded as follows:

bits meaning
15 0
13-14 Group index
8-12 Pointer Buttons
0-7 Modifiers

The Xkb Compatibility Map

195

For Xkb-unaware clients, only core protocol keyboard information may be reported.
Because core protocol does not define the group index, the group index is mapped
to modifier bits as specified by the groups [group index] field of the compatibility
map (the bits set in the compatibility map are ORed into bits 0-7 of the state), and
bits 13-14 are reported in the event as zero.

Core Keyboard Mapping to Xkb Keyboard Mapping
Transformation

When a core protocol keyboard mapping request is received by the server, the
server’s core keyboard map is updated, and then the Xkb map maintained by the
server is updated. Because a client may have explicitly configured some of the Xkb
keyboard mapping in the server, this automatic regeneration of the Xkb keyboard
mapping from the core protocol keyboard mapping should not modify any compo-
nents of the Xkb keyboard mapping that were explicitly set by a client. The client
must set explicit override controls to prevent this from happening (see section 16.3).
The core-to-Xkb mapping is done as follows:

1. Map the symbols from the keys in the core keyboard map to groups and symbols
on keys in the Xkb keyboard map. The core keyboard mapping is of fixed width,
so each key in the core mapping has the same number of symbols associated with
it. The Xkb mapping allows a different number of symbols to be associated with
each key; those symbols may be divided into a different number of groups (1-4)
for each key. For each key, this process therefore involves partitioning the fixed
number of symbols from the core mapping into a set of variable-length groups
with a variable number of symbols in each group. For example, if the core protocol
map is of width five, the partition for one key might result in one group with
two symbols and another with three symbols. A different key might result in two
groups with two symbols plus a third group with one symbol. The core protocol
map requires at least two symbols in each of the first two groups.

a. For each changed key, determine the number of groups represented in the new
core keyboard map. This results in a tentative group count for each key in the
Xkb map.

b. For each changed key, determine the number of symbols in each of the groups
found in step 1a. There is one explicit override control associated with each of
the four possible groups for each Xkb key, ExplicitKeyType1 through Explic-
itKeyType4 . If no explicit override control is set for a group, the number of
symbols used for that group from the core map is two. If the explicit override
control is set for a group on the key, the number of symbols used for that Xkb
group from the core map is the width of the Xkb group with one exception:
because of the core protocol requirement for at least two symbols in each of
groups one and two, the number of symbols used for groups one and two is the
maximum of 2 or the width of the Xkb group.

c. For each changed key, assign the symbols in the core map to the appropriate
group on the key. If the total number of symbols required by the Xkb map for
a particular key needs more symbols than the core protocol map contains, the
additional symbols are taken to be NoSymbol keysyms appended to the end
of the core set. If the core map contains more symbols than are needed by the
Xkb map, trailing symbols in the core map are discarded. In the absence of an
explicit override for group one or two, symbols are assigned in order by group;
the first symbols in the core map are assigned to group one, in order, followed

The Xkb Compatibility Map

196

by group two, and so on. For example, if the core map contained eight symbols
per key, and a particular Xkb map contained 2 symbols for G1 and G2 and three
for G3, the symbols would be assigned as (G is group, L is shift level):

 G1L1 G1L2 G2L1 G2L2 G3L1 G3L2 G3L3

If an explicit override control is set for group one or two, the symbols are taken
from the core set in a somewhat different order. The first four symbols from the
core set are assigned to G1L1, G1L2, G2L1, G2L2, respectively. If group one
requires more symbols, they are taken next, and then any additional symbols
needed by group two. Group three and four symbols are taken in complete se-
quence after group two. For example, a key with four groups and three symbols
in each group would take symbols from the core set in the following order:

G1L1 G1L2 G2L1 G2L2 G1L3 G2L3 G3L1 G3L2 G3L3 G4L1 G4L2 G4L3

As previously noted, the core protocol map requires at lease two symbols in
groups one and two. Because of this, if an explicit override control for an Xkb
key is set and group one and / or group two is of width one, it is not possible to
generate the symbols taken from the core protocol set and assigned to position
G1L2 and / or G2L2.

d. For each group on each changed key, assign a key type appropriate for the
symbols in the group.

e. For each changed key, remove any empty or redundant groups.

2. At this point, the groups and their associated symbols have been assigned to the
corresponding key definitions in the Xkb map.

3. Apply symbol interpretations to modify key operation. This phase is completely
skipped if the ExplicitInterpret override control bit is set in the explicit controls
mask for the Xkb key (see section 16.3).

a. For each symbol on each changed key, attempt to match the symbol and mod-
ifiers from the Xkb map to a symbol interpretation describing how to generate
the symbol.

b. When a match is found in step 2a, apply the symbol interpretation to change
the semantics associated with the symbol in the Xkb key map. If no match is
found, apply a default interpretation.

The symbol interpretations used in step 2 are configurable and may be specified
using XkbSymInterpretRec structures referenced by the sym_interpret field of an
XkbCompatMapRec (see Figure 17.3).

Symbol Interpretations — the XkbSymInterpretRec Structure

Symbol interpretations are used to guide the X server when it modifies the Xkb
keymap in step 2. An initial set of symbol interpretations is loaded by the server
when it starts. A client may add new ones using XkbSetCompatMap (see section
17.4).

The Xkb Compatibility Map

197

Symbol interpretations result in key semantics being set. When a symbol interpre-
tation is applied, the following components of server key event processing may be
modified for the particular key involved:

 Virtual modifier map
 Auto repeat
 Key behavior (may be set to XkbKB_Lock)
 Key action (see section 16.1)

The XkbSymInterpretRec structure specifies a symbol interpretation:

typedef struct {
 KeySym sym; /* keysym of interest or NULL */
 unsigned char flags; /* XkbSI_AutoRepeat, XkbSI_LockingKey */
 unsigned char match; /* specifies how mods is interpreted */
 unsigned char mods; /* modifier bits, correspond to eight real modifiers */
 unsigned char virtual_mod; /* 1 modifier to add to key virtual mod map */
 XkbAnyAction act; /* action to bind to symbol position on key */
} XkbSymInterpretRec,*XkbSymInterpretPtr;

If sym is not NULL , it limits the symbol interpretation to keys on which that
particular keysym is selected by the modifiers matching the criteria specified by
mods and match . If sym is NULL , the interpretation may be applied to any symbol
selected on a key when the modifiers match the criteria specified by mods and
match .

match must be one of the values shown in Table 17.1 and specifies how the real
modifiers specified in mods are to be interpreted.

Table 17.1. Symbol Interpretation Match Criteria

Match Criteria Value Effect
XkbSI_NoneOf (0) None of the bits that are on in mods can

be set, but other bits can be.
XkbSI_AnyOfOrNone (1) Zero or more of the bits that are on in

mods can be set, as well as others.
XkbSI_AnyOf (2) One or more of the bits that are on in

mods can be set, as well as any others.
XkbSI_AllOf (3) All of the bits that are on in mods must

be set, but others may be set as well.
XkbSI_Exactly (4) All of the bits that are on in mods must

be set, and no other bits may be set.

In addition to the above bits, match may contain the XkbSI_LevelOneOnly bit, in
which case the modifier match criteria specified by mods and match applies only
if sym is in level one of its group; otherwise, mods and match are ignored and the
symbol matches a condition where no modifiers are set.

#define XkbSI_LevelOneOnly (0x80)

The Xkb Compatibility Map

198

/* use mods + match only if sym is level 1 */

If no matching symbol interpretation is found, the server uses a default interpreta-
tion where:

sym = 0
flags = XkbSI_AutoRepeat
match = XkbSI_AnyOfOrNone
mods = 0
virtual_mod = XkbNoModifier
act = SA_NoAction

When a matching symbol interpretation is found in step 2a, the interpretation is
applied to modify the Xkb map as follows.

The act field specifies a single action to be bound to the symbol position; any key
event that selects the symbol causes the action to be taken. Valid actions are defined
in section 16.1.

If the Xkb keyboard map for the key does not have its ExplicitVModMap con-
trol set, the XkbSI_LevelOneOnly bit and symbol position are examined. If the
XkbSI_LevelOneOnly bit is not set in match or the symbol is in position G1L1, the
virtual_mod field is examined. If virtual_mod is not XkbNoModifier , virtual_mod
specifies a single virtual modifier to be added to the virtual modifier map for the
key. virtual_mod is specified as an index in the range [0..15].

If the matching symbol is in position G1L1 of the key, two bits in the flags field
potentially specify additional behavior modifications:

#define XkbSI_AutoRepeat (1<<0)
 /* key repeats if sym is in position G1L1 */
#define XkbSI_LockingKey (1<<1)
 /* set KB_Lock
 behavior if sym is in psn G1L1 */

If the Xkb keyboard map for the key does not have its ExplicitAutoRepeat control
set, its auto repeat behavior is set based on the value of the XkbSI_AutoRepeat bit.
If the XkbSI_AutoRepeat bit is set, the auto-repeat behavior of the key is turned
on; otherwise, it is turned off.

If the Xkb keyboard map for the key does not have its ExplicitBehavior control
set, its locking behavior is set based on the value of the XkbSI_LockingKey bit. If
XkbSI_LockingKey is set, the key behavior is set to KB_Lock ; otherwise, it is turned
off (see section 16.3).

Xkb Keyboard Mapping to Core Keyboard Mapping
Transformations

Whenever the server processes Xkb requests to change the keyboard mapping, it
discards the affected portion of its core keyboard mapping and regenerates it based
on the new Xkb mapping.

The Xkb Compatibility Map

199

When the Xkb mapping for a key is transformed to a core protocol mapping, the
symbols for the core map are taken in the following order from the Xkb map:

G1L1 G1L2 G2L1 G2L2 G1L3-n G2L3-n G3L1-n G4L1-n

If group one is of width one in the Xkb map, G1L2 is taken to be NoSymbol; similarly,
if group two is of width one in the Xkb map, G2L2 is taken to be NoSymbol.

If the Xkb key map for a particular key has fewer groups than the core keyboard,
the symbols for group one are repeated to fill in the missing core components. For
example, an Xkb key with a single width-three group would be mapped to a core
mapping counting three groups as:

G1L1 G1L2 G1L1 G1L2 G1L3 G1L3 G1L1 G1L2 G1L3

When a core keyboard map entry is generated from an Xkb keyboard map entry,
a modifier mapping is generated as well. The modifier mapping contains all of the
modifiers affected by any of the actions associated with the key combined with all
of the real modifiers associated with any of the virtual modifiers bound to the key.
In addition, if any of the actions associated with the key affect any component of the
keyboard group, all of the modifiers in the mask field of all of the group compati-
bility maps are added to the modifier mapping as well. While an XkbSA_ISOLock
action can theoretically affect any modifier, if the Xkb mapping for a key specifies
an XkbSA_ISOLock action, only the modifiers or group that are set by default are
added to the modifier mapping.

Getting Compatibility Map Components From
the Server

Use XkbGetCompatMap to fetch any combination of the current compatibility map
components from the server. When another client modifies the compatibility map,
you are notified if you have selected for XkbCompatMapNotify events (see section
17.5). XkbGetCompatMap is particularly useful when you receive an event of this
type, as it allows you to update your program’s version of the compatibility map
to match the modified version now in the server. If your program is dealing with
multiple servers and needs to configure them all in a similar manner, the updated
compatibility map may be used to reconfigure other servers.

Note
To make a complete matching configuration you must also update the explicit
override components of the server state.

Status XkbGetCompatMap (display, which, xkb)
Display * display ; /* connection to server */
unsigned int which ; /* mask of compatibility map components to fetch */
XkbDescRec * xkb ; /* keyboard description where results placed */

XkbGetCompatMap fetches the components of the compatibility map specified in
which from the server specified by display and places them in the compat structure
of the keyboard description xkb . Valid values for which are an inclusive OR of the
values shown in Table 17.2.

The Xkb Compatibility Map

200

Table 17.2. Compatibility Map Component Masks
Mask Value Affecting
XkbSymInterpMask (1<<0) Symbol interpretations
XkbGroupCompatMask (1<<1) Group maps
XkbAllCompatMask (0x3) All compatibility map components

If no compatibility map structure is allocated in xkb upon entry, XkbGetCompatMap
allocates one. If one already exists, its contents are overwritten with the returned
results.

XkbGetCompatMap fetches compatibility map information for the device specified
by the device_spec field of xkb . Unless you have specifically modified this field, it
is the default keyboard device. XkbGetCompatMap returns Success if successful,
BadAlloc if it is unable to obtain necessary storage for either the return values or
work space, BadMatch if the dpy field of the xkb argument is non- NULL and does
not match the display argument, and BadLength under certain conditions caused
by server or Xkb implementation errors.

Using the Compatibility Map
Xkb provides several functions that make it easier to apply the compatibility map to
configure a client-side Xkb keyboard mapping, given a core protocol representation
of part or all of a keyboard mapping. Obtain a core protocol representation of a
keyboard mapping from an actual server (by using XGetKeyboardMapping , for
example), a data file, or some other source.

To update a local Xkb keyboard map to reflect the mapping expressed by a core
format mapping by calling the function XkbUpdateMapFromCore .

Bool XkbUpdateMapFromCore (xkb , first_key , num_keys , map_width ,
core_keysyms , changes)
XkbDescPtr xkb ; /* keyboard description to update */
KeyCode first_key ; /* keycode of first key description to update */
int num_keys ; /* number of key descriptions to update */
int map_width ; /* width of core protocol keymap */
KeySym * core_keysyms ; /* symbols in core protocol keymap */
XkbChangesPtr changes ; /* backfilled with changes made to Xkb */

XkbUpdateMapFromCore interprets input argument information representing a
keyboard map in core format to update the Xkb keyboard description passed in xkb
. Only a portion of the Xkb map is updated — the portion corresponding to keys
with keycodes in the range first_key through first_key + num_keys - 1. If XkbUp-
dateMapFromCore is being called in response to a MappingNotify event , first_key
and num_keys are reported in the MappingNotify event. core_keysyms contains
the keysyms corresponding to the keycode range being updated, in core keyboard
description order. map_width is the number of keysyms per key in core_keysyms
. Thus, the first map_width entries in core_keysyms are for the key with keycode
first_key , the next map_width entries are for key first_key + 1, and so on.

In addition to modifying the Xkb keyboard mapping in xkb , XkbUpdateMapFrom-
Core backfills the changes structure whose address is passed in changes to indicate

The Xkb Compatibility Map

201

the modifications that were made. You may then use changes in subsequent calls
such as XkbSetMap , to propagate the local modifications to a server.

When dealing with core keyboard mappings or descriptions, it is sometimes neces-
sary to determine the Xkb key types appropriate for the symbols bound to a key in
a core keyboard mapping. Use XkbKeyTypesForCoreSymbols for this purpose:

int XkbKeyTypesForCoreSymbols (map_width , core_syms , protected,
types_inout, xkb_syms_rtrn)
XkbDescPtr xkb ; /* keyboard description in which to place symbols*/
int map_width ; /* width of core protocol keymap in xkb_syms_rtrn */
KeySym * core_syms ; /* core protocol format array of KeySyms */
unsigned int protected ; /* explicit key types */
int * types_inout; /* backfilled with the canonical types bound to groups one and
two for the key */
KeySym * xkb_syms_rtrn ; /* backfilled with symbols bound to the key in the Xkb
mapping */

XkbKeyTypesForCoreSymbols expands the symbols in core_syms and types in
types_inout according to the rules specified in section 12 of the core protocol, then
chooses canonical key types (canonical key types are defined in section 15.2.1) for
groups 1 and 2 using the rules specified by the Xkb protocol and places them in
xkb_syms_rtrn , which will be non- NULL .

A core keymap is a two-dimensional array of keysyms. It has map_width columns
and max_key_code rows. XkbKeyTypesForCoreSymbols takes a single row from
a core keymap, determines the number of groups associated with it, the type of
each group, and the symbols bound to each group. The return value is the number
of groups, types_inout has the types for each group, and xkb_syms_rtrn has the
symbols in Xkb order (that is, groups are contiguous, regardless of size).

protected contains the explicitly protected key types. There is one explicit override
control associated with each of the four possible groups for each Xkb key, Explic-
itKeyType1 through ExplicitKeyType4 ; protected is an inclusive OR of these con-
trols. map_width is the width of the core keymap and is not dependent on any Xkb
definitions. types_inout is an array of four type indices. On input, types_inout con-
tains the indices of any types already assigned to the key, in case they are explicitly
protected from change.

Upon return, types_inout contains any automatically selected (that is, canonical)
types plus any protected types. Canonical types are assigned to all four groups if
there are enough symbols to do so. The four entries in types_inout correspond to
the four groups for the key in question.

If the groups mapping does not change, but the symbols assigned to an Xkb key-
board compatibility map do change, the semantics of the key may be modified. To
apply the new compatibility mapping to an individual key to get its semantics up-
dated, use XkbApplyCompatMapToKey .

Bool XkbApplyCompatMapToKey (xkb , key , changes)
XkbDescPtr xkb; /* keyboard description to be updated */
KeyCode key ; /* key to be updated */
XkbChangesPtr changes ; /* notes changes to the Xkb keyboard description */

The Xkb Compatibility Map

202

XkbApplyCompatMapToKey essentially performs the operation described in section
17.1.2 to a specific key. This updates the behavior, actions, repeat status, and virtual
modifier bindings of the key.

Changing the Server’s Compatibility Map
To modify the server’s compatibility map, first modify a local copy of the Xkb com-
patibility map, then call XkbSetCompatMap . You may allocate a new compatibil-
ity map for this purpose using XkbAllocCompatMap (see section 17.6). You may
also use a compatibility map from another server, although you need to adjust the
device_spec field in the XkbDescRec accordingly. Note that symbol interpretations
in a compatibility map (sym_interpret , the vector of XkbSymInterpretRec struc-
tures) are also allocated using this same function.

Bool XkbSetCompatMap (display, which, xkb, update_actions)
Display * display ; /* connection to server */
unsigned int which ; /* mask of compat map components to set */
XkbDescPtr xkb ; /* source for compat map components */
Bool update_actions ; /* True => apply to server’s keyboard map */

XkbSetCompatMap copies compatibility map information from the keyboard de-
scription in xkb to the server specified in display ’s compatibility map for the device
specified by the device_spec field of xkb . Unless you have specifically modified
this field, it is the default keyboard device. which specifies the compatibility map
components to be set, and is an inclusive OR of the bits shown in Table 17.2.

After updating its compatibility map for the specified device, if update_actions is
True, the server applies the new compatibility map to its entire keyboard for the
device to generate a new set of key semantics, compatibility state, and a new core
keyboard map. If update_actions is False , the new compatibility map is not used to
generate any modifications to the current device semantics, state, or core keyboard
map. One reason for not applying the compatibility map immediately would be if
one server was being configured to match another on a piecemeal basis; the map
should not be applied until everything is updated. To force an update at a later time,
use XkbSetCompatMap specifying which as zero and update_actions as True .

XkbSetCompatMap returns True if successful and False if unsuccessful. The server
may report problems it encounters when processing the request subsequently via
protocol errors.

To add a symbol interpretation to the list of symbol interpretations in an XkbCom-
patRec , use XkbAddSymInterpret .

XkbSymInterpretPtr XkbAddSymInterpret (xkb, si, updateMap, changes)
XkbDescPtr xkb ; /* keyboard description to be updated */
XkbSymInterpretPtr si ; /* symbol interpretation to be added */
Bool updateMap ; /* True =>apply compatibility map to keys */
XkbChangesPtr changes ; /* changes are put here */

XkbAddSymInterpret adds si to the list of symbol interpretations in xkb . If up-
dateMap is True , it (re)applies the compatibility map to all of the keys on the key-

The Xkb Compatibility Map

203

board. If changes is non- NULL , it reports the parts of the keyboard that were
affected (unless updateMap is True , not much changes). XkbAddSymInterpret
returns a pointer to the actual new symbol interpretation in the list or NULL if it
failed.

Tracking Changes to the Compatibility Map
The server automatically generates MappingNotify events when the keyboard map-
ping changes. If you wish to be notified of changes to the compatibility map, you
should select for XkbCompatMapNotify events. If you select for XkbMapNotify
events, you no longer receive the automatically generated MappingNotify events.
If you subsequently deselect XkbMapNotifyEvent delivery, you again receive Map-
pingNotify events.

To receive XkbCompatMapNotify events under all possible conditions, use Xk-
bSelectEvents (see section 4.3) and pass XkbCompatMapNotifyMask in both
bits_to_change and values_for_bits .

To receive XkbCompatMapNotify events only under certain conditions, use XkbS-
electEventDetails using XkbCompatMapNotify as the event_type and specifying
the desired map changes in bits_to_change and values_for_bits using mask bits
from Table 17.2.

Note that you are notified of changes you make yourself, as well as changes made
by other clients.

The structure for the XkbCompatMapNotifyEvent is:

typedef struct {
 int type; /* Xkb extension base event code */
 unsigned long serial; /* X server serial number for event */
 Bool send_event; /* True =>
 synthetically generated */
 Display * display; /* server connection where event generated */
 Time time; /* server time when event generated */
 int xkb_type; /* XkbCompatMapNotify */
 int device; /* Xkb device ID, will not be
 XkbUseCoreKbd */
 unsigned int changed_groups;/* number of group maps changed */
 int first_si; /* index to 1st changed symbol
 interpretation */
 int num_si; /* number of changed symbol
 interpretations */
 int num_total_si; /* total number of valid symbol
 interpretations */
} XkbCompatMapNotifyEvent;

changed_groups is the number of group compatibility maps that have changed.
If you are maintaining a corresponding copy of the compatibility map, or get a
fresh copy from the server using XkbGetCompatMap , changed_groups references
groups [0.. changed_groups -1] in the XkbCompatMapRec structure.

first_si is the index of the first changed symbol interpretation, num_si is the number
of changed symbol interpretations, and num_total_si is the total number of valid

The Xkb Compatibility Map

204

symbol interpretations. If you are maintaining a corresponding copy of the compat-
ibility map, or get a fresh copy from the server using XkbGetCompatMap , first_si ,
num_si , and num_total_si are appropriate for use with the compat.sym_interpret
vector in this structure.

Allocating and Freeing the Compatibility Map
If you are modifying the compatibility map, you need to allocate a new compatibility
map if you do not already have one available. To do so, use XkbAllocCompatMap .

Status XkbAllocCompatMap (xkb, which, num_si)
XkbDescPtr xkb ; /* keyboard description in which to allocate compat map */
unsigned int which ; /* mask of compatibility map components to allocate */
unsigned int num_si ; /* number of symbol interpretations to allocate */

xkb specifies the keyboard description for which compatibility maps are to be allo-
cated. The compatibility map is the compat field in this structure.

which specifies the compatibility map components to be allocated (see XkbGetCom-
patMap , in section 17.2). which is an inclusive OR of the bits shown in Table 17.2.

num_si specifies the total number of entries to allocate in the symbol interpretation
vector (xkb.compat.sym_interpret).

Note that symbol interpretations in a compatibility map (the sym_interpret vector
of XkbSymInterpretRec structures) are also allocated using this same function. To
ensure that there is sufficient space in the symbol interpretation vector for entries
to be added, use XkbAllocCompatMap specifying which as XkbSymInterpretMask
and the number of free symbol interpretations needed in num_si .

XkbAllocCompatMap returns Success if successful, BadMatch if xkb is NULL , or
BadAlloc if errors are encountered when attempting to allocate storage.

To free an entire compatibility map or selected portions of one, use XkbFreeCom-
patMap .

void XkbFreeCompatMap (xkb, which, free_map)
XkbDescPtr xkb ; /* Xkb description in which to free compatibility map */
unsigned int which ; /* mask of compatibility map components to free */
Bool free_map ; /* True => free XkbCompatMap structure itself */

which specifies the compatibility map components to be freed (see XkbGetCom-
patMap , in section 17.2). which is an inclusive OR of the bits shown in Table 17.2

free_map indicates whether the XkbCompatMap structure itself should be freed. If
free_map is True , which is ignored, all non- NULL compatibility map components
are freed, and the compat field in the XkbDescRec referenced by xkb is set to
NULL .

205

Chapter 18. Symbolic Names
The core protocol does not provide any information to clients other than that ac-
tually used to interpret events. This makes it difficult to write an application that
presents the keyboard to a user in an easy-to-understand way. Such applications
have to examine the vendor string and keycodes to determine the type of keyboard
connected to the server and then examine keysyms and modifier mappings to de-
termine the effects of most modifiers (the Shift , Lock and Control modifiers are
defined by the core protocol but no semantics are implied for any other modifiers).

To make it easier for applications to present a keyboard to the user, Xkb supports
symbolic names for most components of the keyboard extension. Most of these sym-
bolic names are grouped into the names component of the keyboard description.

The XkbNamesRec Structure
The names component of the keyboard description is defined as follows:

#define XkbKeyNameLength 4
#define XkbKeyNumVirtualMods 16
#define XkbKeyNumIndicators 32
#define XkbKeyNumKbdGroups 4
#define XkbMaxRadioGroups 32

typedef struct {
 char name[XkbKeyNameLength]; /* symbolic key names */
} XkbKeyNameRec,*XkbKeyNamePtr;

typedef struct {
 char real[XkbKeyNameLength];
 /* this key name must be in the keys array */
 char alias[XkbKeyNameLength];
 /* symbolic key name as alias for the key */
} XkbKeyAliasRec,*XkbKeyAliasPtr;

typedef struct _XkbNamesRec {
 Atom keycodes; /* identifies range and meaning of keycodes */
 Atom geometry; /* identifies physical location, size, and shape of keys */
 Atom symbols; /* identifies the symbols logically bound to the keys */
 Atom types; /* identifies the set of key types */
 Atom compat; /* identifies actions for keys using core protocol */
 Atom vmods[XkbNumVirtualMods]; /* symbolic names for virtual modifiers */
 Atom indicators[XkbNumIndicators]; /* symbolic names for indicators */
 Atom groups[XkbNumKbdGroups]; /* symbolic names for keyboard groups */
 XkbKeyNamePtr keys; /* symbolic key name array */
 XkbKeyAliasPtr key_aliases; /* real/alias symbolic name pairs array */
 Atom * radio_groups; /* radio group name array */
 Atom phys_symbols; /* identifies the symbols engraved on the keyboard */

Symbolic Names

206

 unsigned char num_keys; /* number of keys in the keys array */
 unsigned char num_key_aliases; /* number of keys in the
 key_aliases array */
 unsigned short num_rg; /* number of radio groups */
} XkbNamesRec,*XkbNamesPtr; /*

The keycodes name identifies the range and meaning of the keycodes returned by
the keyboard in question. The geometry name, on the other hand, identifies the
physical location, size and shape of the various keys on the keyboard. As an example
to distinguish between these two names, consider function keys on PC-compatible
keyboards. Function keys are sometimes above the main keyboard and sometimes
to the left of the main keyboard, but the same keycode is used for the key that
is logically F1 regardless of physical position. Thus, all PC-compatible keyboards
share a similar keycodes name but may have different geometry names.

Note
The keycodes name is intended to be a very general description of the key-
codes returned by a keyboard; a single keycodes name might cover key-
boards with differing numbers of keys provided all keys have the same se-
mantics when present. For example, 101 and 102 key PC keyboards might
use the same name. In these cases, applications can use the keyboard geom-
etry name to determine which subset of the named keycodes is in use.

The symbols name identifies the symbols logically bound to the keys. The symbols
name is a human or application-readable description of the intended locale or usage
of the keyboard with these symbols. The phys_symbols name, on the other hand,
identifies the symbols actually engraved on the keyboard. Given this, the symbols
name and phys_symbols names might be different. For example, the description for
a keyboard that has English US engravings, but that is using Swiss German symbols
might have a phys_symbols name of "en_US" and a symbols name of "de_CH."

The types name provides some information about the set of key types (see section
15.2) that can be associated with the keyboard. In addition, each key type can have
a name, and each shift level of a type can have a name. Although these names are
stored in the map description with each of the types, they are accessed using the
same methods as the other symbolic names.

The compat name provides some information about the rules used to bind actions
to keys that are changed using core protocol requests.

Xkb provides symbolic names for each of the 4 keyboard groups, 16 virtual modi-
fiers, 32 keyboard indicators, and 4 keyboard groups. These names are held in the
vmods , indicators , and groups fixed-length arrays.

Each key has a four-byte symbolic name. All of the symbolic key names are held in
the keys array, and num_keys reports the number of entries that are in the keys
array. For each key, the key name links keys with similar functions or in similar
positions on keyboards that report different keycodes. For example, the F1 key
may emit keycode 23 on one keyboard and keycode 86 on another. By naming this
key "FK01" on both keyboards, the keyboard layout designer can reuse parts of
keyboard descriptions for different keyboards.

Key aliases allow the keyboard layout designer to assign multiple key names to a
single key. This allows the keyboard layout designer to refer to keys using either

Symbolic Names

207

their position or their "function." For example, a keyboard layout designer may wish
to refer to the left arrow key on a PC keyboard using the ISO9995-5 positional
specification of A31 or using the functional specification of LEFT. The key_aliases
field holds a variable-length array of real and alias key name pairs, and the total
number of entries in the key_aliases array is held in num_key_aliases . For each
real and alias key name pair, the real field refers to the a name in the keys array,
and the alias field refers to the alias for that key. Using the previous example, the
keyboard designer may use the name A31 in the keys array, but also define the name
LEFT as an alias for A31 in the key_aliases array.

Note
Key aliases defined in the geometry component of a keyboard mapping (see
Chapter 13) override those defined in the keycodes component of the serv-
er database, which are stored in the XkbNamesRec (xkb->names). There-
fore, consider the key aliases defined by the geometry before considering
key aliases supplied by the XkbNamesRec .

A radio group is a set of keys whose behavior simulates a set of radio buttons. Once
a key in a radio group is pressed, it stays logically depressed until another key in the
group is pressed, at which point the previously depressed key is logically released.
Consequently, at most one key in a radio group can be logically depressed at one
time.

Each radio group in the keyboard description can have a name. These names are
held in the variable-length array radio_groups , and num_rg tells how many ele-
ments are in the radio_groups array.

Symbolic Names Masks
Xkb provides several functions that work with symbolic names. Each of these func-
tions uses a mask to specify individual fields of the structures described above.
These masks and their relationships to the fields in a keyboard description are
shown in Table 18.1.

Symbolic Names

208

Table 18.1. Symbolic Names Masks

Mask Bit Value Keyboard
Component

Field

XkbKeycodesNameMask (1<<0) Xkb->names keycodes
XkbGeometryNameMask (1<<1) Xkb->names geometry
XkbSymbolsNameMask (1<<2) Xkb->names symbols
XkbPhysSymbolsNameMask (1<<3) Xkb->names phys_symbols
XkbTypesNameMask (1<<4) Xkb->names type
XkbCompatNameMask (1<<5) Xkb->names compat
XkbKeyTypeNamesMask (1<<6) Xkb->map type[*].name
XkbKTLevelNamesMask (1<<7) Xkb->map type[*].lvl_names[*]
XkbIndicatorNamesMask (1<<8) Xkb->names indicators[*]
XkbKeyNamesMask (1<<9) Xkb->names keys[*], num_keys
XkbKeyAliasesMask (1<<10) Xkb->names key_aliases[*],

num_key_aliases
XkbVirtualModNamesMask (1<<11) Xkb->names vmods[*]
XkbGroupNamesMask (1<<12) Xkb->names groups[*]
XkbRGNamesMask (1<<13) Xkb->names radio_groups[*],

num_rg
XkbComponentNamesMask (0x3f) Xkb->names keycodes,

geometry,

symbols,

physical symbols,

types, and

compatibility map
XkbAllNamesMask (0x3fff) Xkb->names all name components

Getting Symbolic Names From the Server
To obtain symbolic names from the server, use XkbGetNames .

Status XkbGetNames (dpy, which, Xkb)
Display * dpy ; /* connection to the X server */
unsigned int which ; /* mask of names or map components to be updated */
XkbDescPtr xkb /* keyboard description to be updated */

XkbGetNames retrieves symbolic names for the components of the keyboard exten-
sion from the X server. The which parameter specifies the name components to be
updated in the xkb parameter, and is the bitwise inclusive OR of the valid names
mask bits defined in Table 18.1.

Symbolic Names

209

If the names field of the keyboard description xkb is NULL , XkbGetNames al-
locates and initializes the names component of the keyboard description before
obtaining the values specified by which . If the names field of xkb is not NULL
, XkbGetNames obtains the values specified by which and copies them into the
keyboard description Xkb .

If the map component of the xkb parameter is NULL , XkbGetNames does not
retrieve type or shift level names, even if XkbKeyTypeNamesMask or XkbKTLevel-
NamesMask are set in which .

XkbGetNames can return Success , or BadAlloc , BadLength , BadMatch , and
BadImplementation errors.

To free symbolic names, use XkbFreeNames (see section 18.6)

Changing Symbolic Names on the Server
To change the symbolic names in the server, first modify a local copy of the key-
board description and then use either XkbSetNames, or, to save network traffic,
use a XkbNameChangesRec structure and call XkbChangeNames to download the
changes to the server. XkbSetNames and XkbChangeNames can generate BadAl-
loc , BadAtom , BadLength , BadMatch, and BadImplementation errors.

Bool XkbSetNames (dpy, which, first_type, num_types, xkb)
Display * dpy ; /* connection to the X server */
unsigned int which ; /* mask of names or map components to be changed */
unsigned int first_type ; /* first type whose name is to be changed */
unsigned int num_types ; /* number of types for which names are to be changed
*/
XkbDescPtr xkb ; /* keyboard description from which names are to be taken */

Use XkbSetNames to change many names at the same time. For each bit set in
which , XkbSetNames takes the corresponding value (or values in the case of ar-
rays) from the keyboard description xkb and sends it to the server.

The first_type and num_types arguments are used only if XkbKeyTypeNamesMask
or XkbKTLevelNamesMask is set in which and specify a subset of the types for
which the corresponding names are to be changed. If either or both of these mask
bits are set but the specified types are illegal, XkbSetNames returns False and
does not update any of the names specified in which . The specified types are illegal
if xkb does not include a map component or if first_type and num_types specify
types that are not defined in the keyboard description.

The XkbNameChangesRec Structure

The XkbNameChangesRec allows applications to identify small modifications to the
symbolic names and effectively reduces the amount of traffic sent to the server:

Symbolic Names

210

typedef struct _XkbNameChanges {
 unsigned int changed; /* name components that have
 changed */
 unsigned char first_type; /* first key type with a new
 name */
 unsigned char num_types; /* number of types with new
 names */
 unsigned char first_lvl; /* first key type with new level
 names */
 unsigned char num_lvls; /* number of key types with new
 level names */
 unsigned char num_aliases; /* if key aliases changed,
 total number of key aliases */
 unsigned char num_rg; /* if radio groups changed, total
 number of radio groups */
 unsigned char first_key; /* first key with a new name */
 unsigned char num_keys; /* number of keys with new names
 */
 unsigned short changed_vmods; /* mask of virtual
 modifiers for which names have changed */
 unsigned long changed_indicators; /* mask of indicators
 for which names were changed */
 unsigned char changed_groups; /* mask of groups for
 which names were changed */
} XkbNameChangesRec, *XkbNameChangesPtr

The changed field specifies the name components that have changed and is the
bitwise inclusive OR of the valid names mask bits defined in Table 18.1. The rest
of the fields in the structure specify the ranges that have changed for the various
kinds of symbolic names, as shown in Table 18.2.

Table 18.2. XkbNameChanges Fields

Mask Fields Component Field
XkbKeyTypeNamesMask first_type,

num_types

Xkb->map type[*].name

XkbKTLevelNamesMask first_lvl,

num_lvls

Xkb->map type[*].lvl_names[*]

XkbKeyAliasesMask num_aliases Xkb->names key_aliases[*]
XkbRGNamesMask num_rg Xkb->names radio_groups[*]
XkbKeyNamesMask first_key,

num_keys

Xkb->names keys[*]

XkbVirtualModNames-
Mask

changed_vmodsXkb->names vmods[*]

XkbIndicatorNamesMask changed_indicatorsXkb->names indicators[*]
XkbGroupNamesMask changed_groupsXkb->names groups[*]

XkbChangeNames provides a more flexible method for changing symbolic names
than XkbSetNames and requires the use of an XkbNameChangesRec structure.

Symbolic Names

211

Bool XkbChangeNames (dpy, xkb, changes)
Display * dpy ; /* connection to the X server */
XkbDescPtr xkb ; /* keyboard description from which names are to be taken */
XkbNameChangesPtr changes ; /* names map components to be updated on the
server */

XkbChangeNames copies any names specified by changes from the keyboard de-
scription, xkb , to the X server specified by dpy . XkbChangeNames aborts and
returns False if any illegal type names or type shift level names are specified by
changes .

Tracking Name Changes
Whenever a symbolic name changes in the server’s keyboard description, the server
sends a XkbNamesNotify event to all interested clients. To receive name notify
events, use XkbSelectEvents (see section 4.3) with XkbNamesNotifyMask in both
the bits_to_change and values_for_bits parameters.

To receive events for only specific names, use XkbSelectEventDetails . Set the
event_type parameter to XkbNamesNotify , and set both the bits_to_change and
values_for_bits detail parameter to a mask composed of a bitwise OR of masks in
Table 18.1.

The structure for the XkbNamesNotify event is defined as follows:

typedef struct {
 int type; /* Xkb extension base event code */
 unsigned long serial; /* X server serial number for
 event */
 Bool send_event; /* True
 => synthetically generated */
 Display * display; /* server connection where event
 generated */
 Time time; /* server time when event generated */
 int xkb_type; /* XkbNamesNotify */
 int device; /* Xkb device ID, will not be
 XkbUseCoreKbd */
 unsigned int changed; /* mask of name components
that have changed */
 int first_type; /* first key type with a new name */
 int num_types; /* number of types with new names */
 int first_lvl; /* first key type with new level names */
 int num_lvls; /* number of key types with new level names */
 int num_aliases; /* if key aliases changed, total number
 of key aliases */
 int num_radio_groups; /* if radio groups changed,
 total number of radio groups */
 unsigned int changed_vmods; /* mask of virtual modifiers for
 which names have changed */
 unsigned int changed_groups; /* mask of groups for
 which names were changed */
 unsigned int changed_indicators; /* mask of indicators for which

Symbolic Names

212

 names were changed */
 int first_key; /* first key with a new name */
 int num_keys; /* number of keys with new names */
} XkbNamesNotifyEvent;

The changed field specifies the name components that have changed and is the
bitwise inclusive OR of the valid names mask bits defined in Table 18.1. The other
fields in this event are interpreted as the like-named fields in an XkbNameChanges-
Rec , as previously defined.

When your application receives a X kbNamesNotify event, you can note the changed
names in a changes structure using XkbNoteNameChanges .

void XkbNoteNameChanges (old , new , wanted)
XkbNameChangesPtr old ; /* XkbNameChanges structure to be updated */
XkbNamesNotifyEvent * new ; /* event from which changes are to be copied */
unsigned int wanted ; /* types of names for which changes are to be noted */

The wanted parameter is the bitwise inclusive OR of the valid names mask bits
shown in Table 18.1. XkbNoteNameChanges copies any changes that are reported
in new and specified in wanted into the changes record specified by old .

To update the local copy of the keyboard description with the actual values, pass to
XkbGetNameChanges the results of one or more calls to XkbNoteNameChanges .

Status XkbGetNameChanges (dpy , xkb , changes)
Display * dpy ; /* connection to the X server */
XkbDescPtr xkb ; /* keyboard description to which names are copied */
XkbNameChangesPtr changes ; /* names components to be obtained from the
server */

XkbGetNameChanges examines the changes parameter, retrieves the necessary in-
formation from the server, and places the results into the xkb keyboard description.

XkbGetNamesChanges can generate BadAlloc , BadImplementation, and Bad-
Match errors.

Allocating and Freeing Symbolic Names
Most applications do not need to directly allocate symbolic names structures. Do
not allocate a names structure directly using malloc or Xmalloc if your application
changes the number of key aliases or radio groups or constructs a symbolic names
structure without loading the necessary components from the X server. Instead use
XkbAllocNames .

Status XkbAllocNames (xkb, which, num_rg, num_key_aliases)
XkbDescPtr xkb; /* keyboard description for which names are to be allocated */
unsigned int which; /* mask of names to be allocated */
int num_rg; /* total number of radio group names needed */
int num_key_aliases; /* total number of key aliases needed */

Symbolic Names

213

XkbAllocNames can return BadAlloc , BadMatch, and BadValue errors. The which
parameter is the bitwise inclusive OR of the valid names mask bits defined in Table
18.1.

Do not free symbolic names structures directly using free or XFree . Use
XkbFreeNames instead.

void XkbFreeNames (xkb, which, free_map)
XkbDescPtr xkb ; /* keyboard description for which names are to be freed */
unsigned int which ; /* mask of names components to be freed */
Bool free_map ; /* True => XkbNamesRec structure itself should be freed */

The which parameter is the bitwise inclusive OR of the valid names mask bits de-
fined in Table 18.1.

214

Chapter 19. Replacing a Keyboard "On
the Fly"

Some operating system and X server implementations allow "hot plugging" of input
devices. When using these implementations, input devices can be unplugged and
new ones plugged in without restarting the software that is using those devices.
There is no provision in the standard X server for notification of client programs
if input devices are unplugged and/or new ones plugged in. In the case of the X
keyboard, this could result in the X server having a keymap that does not match
the new keyboard.

If the X server implementation supports the X input device extension, a client pro-
gram may also change the X keyboard programmatically. The XChangeKeyboard-
Device input extension request allows a client to designate an input extension key-
board device as the X keyboard, in which case the old X keyboard device becomes
inaccessible except via the input device extension. In this case, core protocol XMap-
pingNotify and input extension XChangeDeviceNotify events are generated to no-
tify all clients that a new keyboard with a new keymap has been designated.

When a client opens a connection to the X server, the server reports the minimum
and maximum keycodes. The server keeps track of the minimum and maximum key-
codes last reported to each client. When delivering events to a particular client, the
server filters out any events that fall outside of the valid range for the client.

Xkb provides an XkbNewKeyboardNotify event that reports a change in keyboard
geometry and/or the range of supported keycodes. The server can generate an Xkb-
NewKeyboardNotify event when it detects a new keyboard or in response to an Xk-
bGetKeyboardByName request that loads a new keyboard description. Selecting for
XkbNewKeyboardNotify events allows Xkb-aware clients to be notified whenever a
keyboard change occurs that may affect the keymap.

When a client requests XkbNewKeyboardNotify events, the server compares the
range of keycodes for the current keyboard to the range of keycodes that are valid
for the client. If they are not the same, the server immediately sends the client an
XkbNewKeyboardNotify event. Even if the "new" keyboard is not new to the server,
it is new to this particular client.

When the server sends an XkbNewKeyboardNotify event to a client to inform it of a
new keycode range, it resets the stored range of legal keycodes for the client to the
keycode range reported in the event; it does not reset this range for the client if it
does not sent an XkbNewKeyboardNotify event to a client. Because Xkb-unaware
clients and Xkb-aware clients that do not request XkbNewKeyboardNotify events
are never sent these events, the server’s notion of the legal keycode range never
changes, and these clients never receive events from keys that fall outside of their
notion of the legal keycode range.

Clients that have not selected to receive XkbNewKeyboardNotify events do, how-
ever, receive the XkbNewKeyboardNotify event when a keyboard change occurs.
Clients that have not selected to receive this event also receive numerous other
events detailing the individual changes that occur when a keyboard change occurs.

Clients wishing to track changes in min_key_code and max_key_code must watch
for both XkbNewKeyboardNotify and XkbMapNotify events, because a simple map-

Replacing a Key-
board "On the Fly"

215

ping change causes an XkbMapNotify event and may change the range of valid
keycodes, but does not cause an XkbNewKeyboardNotify event. If a client does
not select for XkbNewKeyboardNotify events, the server restricts the range of key-
codes reported to the client.

In addition to filtering out-of-range key events, Xkb:

• Adjusts core protocol MappingNotify events to refer only to keys that match the
stored legal range.

• Reports keyboard mappings for keys that match the stored legal range to clients
that issue a core protocol GetKeyboardMapping request.

• Reports modifier mappings only for keys that match the stored legal range to
clients that issue a core protocol GetModifierMapping request.

• Restricts the core protocol ChangeKeyboardMapping and SetModifierMapping
requests to keys that fall inside the stored legal range.

In short, Xkb does everything possible to hide from Xkb-unaware clients the fact that
the range of legal keycodes has changed, because such clients cannot be expected
to deal with them. Xkb events and requests are not modified in this manner; all
Xkb events report the full range of legal keycodes. No requested Xkb events are
discarded, and no Xkb requests have their keycode range clamped.

The structure for the XkbNewKeyboardNotify event is defined as follows:

typedef struct _XkbNewKeyboardNotify {
 int type; /* Xkb extension base event code */
 unsigned long serial; /* X server serial number for event*/
 Bool send_event; /* True
 => synthetically generated */
 Display * display; /* server connection where event generated */
 Time time; /* server time when event generated */
 int xkb_type; /* XkbNewKeyboardNotify */
 int device; /* device ID of new keyboard */
 int old_device; /* device ID of old keyboard */
 int min_key_code; /* min keycode of new keyboard */
 int max_key_code; /* max keycode of new keyboard */
 int old_min_key_code; /* min keycode of old keyboard */
 int old_max_key_code; /* max keycode of old keyboard */
 unsigned int changed; /* changed aspects - see masks below */
 char req_major; /* major request that caused change */
 char req_minor; /* minor request that caused change */
} XkbNewKeyboardNotifyEvent;

To receive name notify events, use XkbSelectEvents (see section 4.3) with Xkb-
NewKeyboardNotifyMask in both the bits_to_change and values_for_bits parame-
ters. To receive events for only specific names, use XkbSelectEventDetails . Set the
event_type parameter to XkbNewKeyboardNotify , and set both the bits_to_change
and values_for_bits detail parameter to a mask composed of a bitwise OR of masks
in Table 19.1.

Replacing a Key-
board "On the Fly"

216

Table 19.1. XkbNewKeyboardNotifyEvent Details

XkbNewKeyboardNotify
Event Details

Value Circumstances

XkbNKN_KeycodesMask (1L<<0) Notification of keycode range
changes wanted

XkbNKN_GeometryMask (1L<<1) Notification of geometry
changes wanted

XkbNKN_DeviceIDMask (1L<<2) Notification of device ID
changes wanted

XkbNKN_AllChangesMask (0x7) Includes all of the above masks

The req_major and req_minor fields indicate what type of keyboard change has
occurred.

If req_major and req_minor are zero, the device change was not caused by a soft-
ware request to the server — a spontaneous change has occurred, such as hot-plug-
ging a new device. In this case, device is the device identifier for the new, current X
keyboard device, but no implementation-independent guarantee can be made about
old_device . old_device may be identical to device (an implementor is permitted to
reuse the device specifier when the device changes); or it may be different. Note
that req_major and req_minor being zero do not necessarily mean that the physical
keyboard device has changed; rather, they only imply a spontaneous change outside
of software control (some systems have keyboards that can change personality at
the press of a key).

If the keyboard change is the result of an X Input Extension ChangeKeyboardDe-
vice request, req_major contains the input extension major opcode, and req_minor
contains the input extension request number for X_ChangeKeyboardDevice . In this
case, device and old_device are different, with device being the identifier for the
new, current X keyboard device, and old_device being the identifier for the former
device.

If the keyboard change is the result of an XkbGetKeyboardByName function call,
which generates an X_kbGetKbdByName request, req_major contains the Xkb ex-
tension base event code (see section 2.4), and req_minor contains the event code
for the Xkb extension request X_kbGetKbdByName . device contains the device
identifier for the new device, but nothing definitive can be said for old_device ; it
may be identical to device , or it may be different, depending on the implementation.

217

Chapter 20. Server Database of
Keyboard Components

The X server maintains a database of keyboard components, identified by compo-
nent type. The database contains all the information necessary to build a complete
keyboard description for a particular device, as well as to assemble partial descrip-
tions. Table 20.1 identifies the component types and the type of information they
contain.

Table 20.1. Server Database Keyboard Components

Component Type Component Primary
Contents

May also contain

Keymap Complete keyboard
description

Normally assembled
using a complete com-
ponent from each of
the other types

Keycodes Symbolic name for
each key

Minimum and maxi-
mum legal keycodes

Aliases for some keys

Symbolic names for indicators

Description of indicators physical-
ly present

Types Key types Real modifier bindings and sym-
bolic names for some virtual mod-
ifiers

Compatibility Rules used to assign
actions to keysyms

Maps for some indicators

Real modifier bindings and sym-
bolic names for some virtual mod-
ifiers

Symbols Symbol mapping for
keyboard keys

Modifier mapping

Symbolic names for
groups

Explicit actions and behaviors for
some keys

Real modifier bindings and sym-
bolic names for some virtual mod-
ifiers

Geometry Layout of the key-
board

Aliases for some keys; overrides
keycodes component aliases

Symbolic names for some indica-
tors

Description of indicators physical-
ly present

Server Database of
Keyboard Components

218

While a keymap is a database entry for a complete keyboard description, and there-
fore logically different from the individual component database entries, the rules for
processing keymap entries are identical to those for the individual components. In
the discussion that follows, the term component is used to refer to either individual
components or a keymap.

There may be multiple entries for each of the component types. An entry may be
either complete or partial . Partial entries describe only a piece of the correspond-
ing keyboard component and are designed to be combined with other entries of the
same type to form a complete entry.

For example, a partial symbols map might describe the differences between a com-
mon ASCII keyboard and some national layout. Such a partial map is not useful on
its own because it does not include those symbols that are the same on both the
ASCII and national layouts (such as function keys). On the other hand, this partial
map can be used to configure any ASCII keyboard to use a national layout.

When a keyboard description is built, the components are processed in the order in
which they appear in Table 20.1; later definitions override earlier ones.

Component Names
Component names have the form " class(member) " where class describes a subset
of the available components for a particular type and the optional member identi-
fies a specific component from that subset. For example, the name "atlantis(acme)"
for a symbols component might specify the symbols used for the atlantis national
keyboard layout by the vendor "acme." Each class has an optional default member
— references that specify a class but not a member refer to the default member of
the class, if one exists. Xkb places no constraints on the interpretation of the class
and member names used in component names.

The class and member names are both specified using characters from the Latin-1
character set. Xkb implementations must accept all alphanumeric characters, mi-
nus (‘-’) and underscore (‘_’) in class or member names, and must not accept paren-
theses, plus, vertical bar, percent sign, asterisk, question mark, or white space. The
use of other characters is implementation-dependent.

Listing the Known Keyboard Components
You may ask the server for a list of components for one or more component types.
The request takes the form of a set of patterns, one pattern for each of the compo-
nent types, including a pattern for the complete keyboard description. To obtain
this list, use XkbListComponents .

XkbComponentListPtr XkbListComponents (dpy , device_spec , ptrns ,
max_inout)
Display * dpy ; /* connection to X server */
unsigned int device_spec ; /* device ID, or XkbUseCoreKbd */
XkbComponentNamesPtr ptrns ; /* namelist for components of interest */
int * max_inout ; /* max # returned names, # left over */

Server Database of
Keyboard Components

219

XkbListComponents queries the server for a list of component names matching the
patterns specified in ptrns . It waits for a reply and returns the matching compo-
nent names in an XkbComponentListRec structure. When you are done using the
structure, you should free it using XkbFreeComponentList . device_spec indicates
a particular device in which the caller is interested. A server is allowed (but not
required) to restrict its reply to portions of the database that are relevant for that
particular device.

ptrns is a pointer to an XkbComponentNamesRec , described below. Each of the
fields in ptrns contains a pattern naming the components of interest. Each of the
patterns is composed of characters from the ISO Latin1 encoding, but can contain
only parentheses, the wildcard characters ‘ ? ’ and ‘ * ’, and characters permitted in
a component class or member name (see section 20.1). A pattern may be NULL , in
which case no components for that type is returned. Pattern matches with compo-
nent names are case sensitive. The ‘ ? ’ wildcard matches any single character, ex-
cept a left or right parenthesis; the ‘ * ’ wildcard matches any number of characters,
except a left or right parenthesis. If an implementation allows additional characters
in a component class or member name other than those required by the Xkb exten-
sion (see section 20.1), the result of comparing one of the additional characters to
either of the wildcard characters is implementation-dependent.

If a pattern contains illegal characters, the illegal characters are ignored. The
matching process is carried out as if the illegal characters were omitted from the
pattern.

max_inout is used to throttle the amount of data passed to and from the server. On
input, it specifies the maximum number of names to be returned (the total number
of names in all component categories). Upon return from XkbListComponents ,
max_inout contains the number of names that matched the request but were not
returned because of the limit.

The component name patterns used to describe the request are passed to XkbList-
Components using an XkbComponentNamesRec structure. This structure has no
special allocation constraints or interrelationships with other structures; allocate
and free this structure using standard malloc and free calls or their equivalent:

typedef struct _XkbComponentNames {
 char * keymap; /* keymap names */
 char * keycodes; /* keycode names */
 char * types; /* type names */
 char * compat; /* compatibility map names */
 char * symbols; /* symbol names */
 char * geometry; /* geometry names */
} XkbComponentNamesRec, *XkbComponentNamesPtr;

XkbListComponents returns a pointer to an XkbComponentListRec :

typedef struct _XkbComponentList {
 int num_keymaps; /* number of entries in keymap */
 int num_keycodes; /* number of entries in keycodes */
 int num_types; /* number of entries in types */
 int num_compat; /* number of entries in compat */

Server Database of
Keyboard Components

220

 int num_symbols; /* number of entries in symbols */
 int num_geometry; /* number of entries in geometry;
 XkbComponentNamePtr keymap; /* keymap names */
 XkbComponentNamePtr keycodes; /* keycode names */
 XkbComponentNamePtr types; /* type names */
 XkbComponentNamePtr compat; /* compatibility map names */
 XkbComponentNamePtr symbols; /* symbol names */
 XkbComponentNamePtr geometry; /* geometry names */
} XkbComponentListRec, *XkbComponentListPtr;

typedef struct _XkbComponentName {
 unsigned short flags; /* hints regarding component name */
 char * name; /* name of component */
} XkbComponentNameRec, *XkbComponentNamePtr;

Note that the structure used to specify patterns on input is an XkbComponent-
NamesRec , and that used to hold the individual component names upon return is
an XkbComponentNameRec (no trailing ‘s’ in Name).

When you are done using the structure returned by XkbListComponents , free it
using XkbFreeComponentList .

void XkbFreeComponentList (list)
XkbComponentListPtr list; /* pointer to XkbComponentListRec to free */

Component Hints
A set of flags is associated with each component; these flags provide additional hints
about the component’s use. These hints are designated by bit masks in the flags field
of the XkbComponentNameRec structures contained in the XkbComponentListRec
returned from XkbListComponents . The least significant byte of the flags field
has the same meaning for all types of keyboard components; the interpretation of
the most significant byte is dependent on the type of component. The flags bits
are defined in Table 20.2. The symbols hints in Table 20.2 apply only to partial
symbols components (those with XkbLC_Partial also set); full symbols components
are assumed to specify all of the pieces.

The alphanumeric, modifier, keypad or function keys symbols hints should describe
the primary intent of the component designer and should not be simply an exhaus-
tive list of the kinds of keys that are affected. For example, national keyboard lay-
outs affect primarily alphanumeric keys, but many affect a few modifier keys as
well; such mappings should set only the XkbLC_AlphanumericKeys hint. In general,
symbols components should set only one of the four flags (XkbLC_AlternateGroup
may be combined with any of the other flags).

Server Database of
Keyboard Components

221

Table 20.2. XkbComponentNameRec Flags Bits

Component
Type

Component Hints (flags) Meaning Value

All Compo-
nents

XkbLC_Hidden Do not present to
user

(1L<<0)

 XkbLC_Default Default member of
class

(1L<<1)

 XkbLC_Partial Partial component (1L<<2)
Keymap none
Keycodes none
Types none
Compatibility none
Symbols XkbLC_AlphanumericKeys Bindings primari-

ly for alphanumeric
keyboard section

(1L<<8)

 XkbLC_ModifierKeys Bindings primarily
for modifier keys

(1L<<9)

 XkbLC_KeypadKeys Bindings primarily
for numeric keypad
keys

(1L<<10)

 XkbLC_FunctionKeys Bindings primarily
for function keys

(1L<<11)

 XkbLC_AlternateGroup Bindings for an al-
ternate group

(1L<<12)

Geometry none

Building a Keyboard Description Using the
Server Database

A client may request that the server fetch one or more components from its database
and use those components to build a new server keyboard description. The new
keyboard description may be built from scratch, or it may be built starting with the
current keyboard description for a particular device. Once the keyboard description
is built, all or part of it may be returned to the client. The parts returned to the
client need not include all of the parts used to build the description. At the time it
requests the server to build a new keyboard description, a client may also request
that the server use the new description internally to replace the current keyboard
description for a specific device, in which case the behavior of the device changes
accordingly.

To build a new keyboard description from a set of named components, and to op-
tionally have the server use the resulting description to replace an active one, use
XkbGetKeyboardByName .

Server Database of
Keyboard Components

222

XkbDescPtr XkbGetKeyboardByName (dpy , device_spec , names , want ,
need , load)
Display * dpy ; /* connection to X server */
unsigned int device_spec ; /* device ID, or XkbUseCoreKbd */
XkbComponentNamesPtr names ; /* names of components to fetch */
unsigned int want ; /* desired structures in returned record */
unsigned int need ; /* mandatory structures in returned record */
Bool load ; /* True => load into device_spec */

names contains a set of expressions describing the keyboard components the server
should use to build the new keyboard description. want and need are bit fields
describing the parts of the resulting keyboard description that should be present
in the returned XkbDescRec .

The individual fields in names are component expressions composed of keyboard
component names (no wildcarding as may be used in XkbListComponents), the
special component name symbol ‘%’, and the special operator characters ‘ + ’ and
‘ | ’. A component expression is parsed left to right, as follows:

• The special component name " computed " may be used in keycodes component
expressions and refers to a component consisting of a set of keycodes computed
automatically by the server as needed.

• The special component name " canonical " may be used in types component ex-
pressions and refers to a partial component defining the four standard key types:
ALPHABETIC , ONE_LEVEL , TWO_LEVEL , and KEYPAD .

• The special component name ‘ % ’ refers to the keyboard description for the device
specified in device_spec or the keymap names component. If a keymap names
component is specified that does not begin with ‘+’ or ‘|’ and does not contain ‘ %
’, then ‘ % ’ refers to the description generated by the keymap names component.
Otherwise, it refers to the keyboard description for device_spec .

• The ‘ + ’ operator specifies that the following component should override the
currently assembled description; any definitions that are present in both compo-
nents are taken from the second.

• The ‘ | ’ operator specifies that the next specified component should augment the
currently assembled description; any definitions that are present in both compo-
nents are taken from the first.

• If the component expression begins with an operator, a leading ‘ % ’ is implied.

• If any unknown or illegal characters appear anywhere in the expression, the entire
expression is invalid and is ignored.

For example, if names->symbols contained the expression "+de", it specifies that
the default member of the "de" class of symbols should be applied to the current
keyboard mapping, overriding any existing definitions (it could also be written
"+de(default)").

Here is a slightly more involved example: the expression "acme(ascii)+de(basic)|
iso9995-3" constructs a German (de) mapping for the ASCII keyboard supplied by

Server Database of
Keyboard Components

223

the "acme" vendor. The new definition begins with the symbols for the ASCII key-
board for Acme (acme(ascii)), overrides them with definitions for the basic German
keyboard (de(basic)), and then applies the definitions from the default iso9995-3
keyboard (iso9995-3) to any undefined keys or groups of keys (part three of the
iso9995 standard defines a common set of bindings for the secondary group, but
allows national layouts to override those definitions where necessary).

Note
The interpretation of the above expression components (acme, ascii, de, ba-
sic, iso9995-3) is not defined by Xkb; only the operations and their ordering
are.

Note that the presence of a keymap names component that does not contain ‘ %
’ (either explicit or implied by virtue of an expression starting with an operator) in-
dicates a description that is independent of the keyboard description for the device
specified in device_spec . The same is true of requests in which the keymap names
component is empty and all five other names components contain expressions void
of references to ‘ % ’. Requests of this form allow you to deal with keyboard defin-
itions independent of any actual device.

The server parses all non- NULL fields in names and uses them to build a keyboard
description. However, before parsing the expressions in names , the server ORs
the bits in want and need together and examines the result in relationship to the
expressions in names . Table 20.3 identifies the components that are required for
each of the possible bits in want or need . If a required component has not been
specified in the names structure (the corresponding field is NULL), the server
substitutes the expression " % ", resulting in the component values being taken from
device_spec . In addition, if load is True , the server modifies names if necessary
(again using a " % " entry) to ensure all of the following fields are non- NULL : types
, keycodes , symbols , and compat .

Table 20.3. Want and Need Mask Bits and Required Names
Components
want or need mask bit Required names Components value
XkbGBN_TypesMask Types (1L<<0)
XkbGBN_CompatMapMask Compat (1L<<1)
XkbGBN_ClientSymbolsMask Types + Symbols + Keycodes (1L<<2)
XkbGBN_ServerSymbolsMask Types + Symbols + Keycodes (1L<<3)
XkbGBN_SymbolsMask Symbols (1L<<1)
XkbGBN_IndicatorMapMask Compat (1L<<4)
XkbGBN_KeyNamesMask Keycodes (1L<<5)
XkbGBN_GeometryMask Geometry (1L<<6)
XkbGBN_OtherNamesMask Types + Symbols + Keycodes +

Compat + Geometry
(1L<<7)

XkbGBN_AllComponentsMask (0xff)

need specifies a set of keyboard components that the server must be able to resolve
in order for XkbGetKeyboardByName to succeed; if any of the components specified
in need cannot be successfully resolved, XkbGetKeyboardByName fails.

Server Database of
Keyboard Components

224

want specifies a set of keyboard components that the server should attempt to re-
solve, but that are not mandatory. If the server is unable to resolve any of these
components, XkbGetKeyboardByName still succeeds. Bits specified in want that
are also specified in need have no effect in the context of want .

If load is True , the server updates its keyboard description for device_spec to
match the result of the keyboard description just built. If load is False , the server’s
description for device device_spec is not updated. In all cases, the parts specified
by want and need from the just-built keyboard description are returned.

The names structure in an XkbDescRec keyboard description record (see Chapter
18) contains one field for each of the five component types used to build a keyboard
description. When a keyboard description is built from a set of database compo-
nents, the corresponding fields in this names structure are set to match the expres-
sions used to build the component.

The entire process of building a new keyboard description from the server database
of components and returning all or part of it is diagrammed in Figure 20.1:

Server Database of
Keyboard Components

225

Augment names to
supply component
names required by

want and need but not
supplied in request

Augment names to
supply required com-

ponent names not sup-
plied in request

Keyboard
Component
Database

False

True

True

False

Build keyboard
description from
expressions in

names

New Keyboard
Description
(Temporary)

load

load

Keyboard Description
for device_spec

Keyboard
Description
returned to

Client

Build keyboard
description for client
by extracting struc-

tures specified in want
and need

Replace device_spec
active keyboard

description with newly
built description

Initial Request:
device_spec

names
want
need
load

Server Database of
Keyboard Components

226

Building a New Keyboard Description from the Server Database

The information returned to the client in the XkbDescRec is essentially the result
of a series of calls to extract information from a fictitious device whose description
matches the one just built. The calls corresponding to each of the mask bits are
summarized in Table 20.4, together with the XkbDescRec components that are
filled in.

Table 20.4. XkbDescRec Components Returned for Values of
Want & Needs

Request (want+need) Fills in Xkb components Equivalent Function
Call

XkbGBN_TypesMask map.types XkbGetUpdatedMap(dpy,
XkbTypesMask, Xkb)

XkbGBN_ServerSymbolsMaskserver XkbGetUpdatedMap(dpy,
XkbAllClientInfoMask,
Xkb)

XkbGBN_ClientSymbolsMaskmap, including map.types XkbGetUpdatedMap(dpy,
XkbAllServerInfoMask,
Xkb)

XkbGBN_IndicatorMaps indicators XkbGetIndicatorMap(dpy,
XkbAllIndicators, Xkb)

XkbGBN_CompatMapMask compat XkbGetCompatMap(dpy,
XkbAllCompatMask, Xkb)

XkbGBN_GeometryMask geom XkbGetGeometry(dpy,
Xkb)

XkbGBN_KeyNamesMask names.keys

names.key_aliases

XkbGetNames(dpy, Xk-
bKeyNamesMask | Xk-
bKeyAliasesMask, Xkb)

XkbGBN_OtherNamesMasknames.keycodes

names.geometry

names.symbols

names.types

map.types[*].lvl_names[*]

names.compat

names.vmods

names.indicators

names.groups

names.radio_groups

names.phys_symbols

XkbGetNames(dpy, Xk-
bAllNamesMask &

~(XkbKeyNamesMask |
XkbKeyAliasesMask),

Xkb)

Server Database of
Keyboard Components

227

There is no way to determine which components specified in want (but not in need
) were actually fetched, other than breaking the call into successive calls to Xk-
bGetKeyboardByName and specifying individual components.

XkbGetKeyboardByName always sets min_key_code and max_key_code in the re-
turned XkbDescRec structure.

XkbGetKeyboardByName is synchronous; it sends the request to the server to build
a new keyboard description and waits for the reply. If successful, the return value is
non-NULL. XkbGetKeyboardByName generates a BadMatch protocol error if errors
are encountered when building the keyboard description.

If you simply want to obtain information about the current keyboard device, rather
than generating a new keyboard description from elements in the server database,
use XkbGetKeyboard (see section 6.2).

XkbDescPtr XkbGetKeyboard (dpy , which , device_spec)
Display * dpy ; /* connection to X server */
unsigned int which ; /* mask of components of XkbDescRec of interest */
unsigned int device_spec ; /* device ID */

XkbGetKeyboard is used to read the current description for one or more components
of a keyboard device. It calls XkbGetKeyboardByName as follows:

XkbGetKeyboardByName (dpy , device_spec , NULL , which , which , False).

228

Chapter 21. Attaching Xkb Actions to X
Input Extension Devices

The X input extension allows an X server to support multiple keyboards, as well
as other input devices, in addition to the core X keyboard and pointer. The input
extension categorizes devices by grouping them into classes. Keyboards and other
input devices with keys are classified as KeyClass devices by the input extension.
Other types of devices supported by the input extension include, but are not limited
to: mice, tablets, touchscreens, barcode readers, button boxes, trackballs, identifier
devices, data gloves, and eye trackers. Xkb provides additional control over all X
input extension devices, whether they are KeyClass devices or not, as well as the
core keyboard and pointer.

If an X server implements support for both the input extension and Xkb, the server
implementor determines whether interaction between Xkb and the input extension
is allowed. Implementors are free to restrict the effects of Xkb to only the core X
keyboard device or allow interaction between Xkb and the input extension.

Several types of interaction between Xkb and the input extension are defined by
Xkb. Some or all may be allowed by the X server implementation.

Regardless of whether the server allows interaction between Xkb and the input
extension, the following access is provided:

• Xkb functionality for the core X keyboard device and its mapping is accessed via
the functions described in the other chapters of this specification.

• Xkb functionality for the core X pointer device is accessed via the XkbGetDeviceIn-
fo and XkbSetDeviceInfo functions described in this chapter.

If all types of interaction are allowed between Xkb and the input extension, the
following additional access is provided:

• If allowed, Xkb functionality for additional KeyClass devices supported by the
input extension is accessed via those same functions.

• If allowed, Xkb functionality for non- KeyClass devices supported by the input
extension is also accessed via the XkbGetDeviceInfo and XkbSetDeviceInfo func-
tions described in this chapter.

Each device has an X Input Extension device ID. Each device may have several
classes of feedback. For example, there are two types of feedbacks that can gener-
ate bells: bell feedback and keyboard feedback (BellFeedbackClass and KbdFeed-
backClass). A device can have more than one feedback of each type; the feedback
ID identifies the particular feedback within its class.

A keyboard feedback has:

• Auto-repeat status (global and per key)

• 32 LEDs

• A bell

Attaching Xkb Actions to
X Input Extension Devices

229

An indicator feedback has:

• Up to 32 LEDs

If the input extension is present and the server allows interaction between the input
extension and Xkb, then the core keyboard, the core keyboard indicators, and the
core keyboard bells may each be addressed using an appropriate device spec, class,
and ID. The constant XkbXIDfltID may be used as the device ID to specify the
core keyboard indicators for the core indicator feedback. The particular device ID
corresponding to the core keyboard feedback and the core indicator feedback may
be obtained by calling XkbGetDeviceInfo and specifying XkbUseCoreKbd as the
device_spec ; the values will be returned in dflt_kbd_id and dflt_led_id .

If the server does not allow Xkb access to input extension KeyClass devices, at-
tempts to use Xkb requests with those devices fail with a Bad Keyboard error. At-
tempts to access non- KeyClass input extension devices via XkbGetDeviceInfo and
XkbSetDeviceInfo fail silently if Xkb access to those devices is not supported by the
X server.

XkbDeviceInfoRec
Information about X Input Extension devices is transferred between a client pro-
gram and the Xkb extension in an XkbDeviceInfoRec structure:

typedef struct {
 char * name; /* name for device */
 Atom type; /* name for class of devices */
 unsigned short device_spec; /* device of interest */
 Bool has_own_state; /* True =>this
 device has its own state */
 unsigned short supported; /* bits indicating supported capabilities */
 unsigned short unsupported; /* bits indicating unsupported capabilities */
 unsigned short num_btns; /* number of entries in btn_acts */
 XkbAction * btn_acts; /* button actions */
 unsigned short sz_leds; /* total number of entries in LEDs vector */
 unsigned short num_leds; /* number of valid entries in LEDs vector */
 unsigned short dflt_kbd_fb; /* input extension ID of default (core kbd) indicator */
 unsigned short dflt_led_fb; /* input extension ID of default indicator feedback */
 XkbDeviceLedInfoPtr leds; /* LED descriptions */
} XkbDeviceInfoRec, *XkbDeviceInfoPtr;

typedef struct {
 unsigned short led_class; /* class for this LED device*/
 unsigned short led_id; /* ID for this LED device */
 unsigned int phys_indicators; /* bits for which LEDs physically
 present */
 unsigned int maps_present; /* bits for which LEDs have maps in
 maps */
 unsigned int names_present; /* bits for which LEDs are in
 names */
 unsigned int state; /* 1 bit => corresponding LED is on */

Attaching Xkb Actions to
X Input Extension Devices

230

 Atom names[XkbNumIndicators]; /* names for LEDs */
 XkbIndicatorMapRec maps; /* indicator maps for each LED */
} XkbDeviceLedInfoRec, *XkbDeviceLedInfoPtr;

The type field is a registered symbolic name for a class of devices (for example,
"TABLET"). If a device is a keyboard (that is, is a member of KeyClass), it has
its own state, and has_own_state is True . If has_own_state is False , the state
of the core keyboard is used. The supported and unsupported fields are masks
where each bit indicates a capability. The meaning of the mask bits is listed in Table
21.1, together with the fields in the XkbDeviceInfoRec structure that are associated
with the capability represented by each bit. The same bits are used to indicate the
specific information desired in many of the functions described subsequently in this
section.

Attaching Xkb Actions to
X Input Extension Devices

231

Table 21.1. XkbDeviceInfoRec Mask Bits

Name XkbDeviceInfoRec
Fields Effected

Value Capability If Set

XkbXI_KeyboardsMask (1L <<
0)

Clients can use all
Xkb requests and
events with Key-
Class devices sup-
ported by the input
device extension.

XkbXI_ButtonActionsMask num_btns

btn_acts

(1L
<<1)

Clients can assign
key actions to but-
tons on non- Key-
Class input exten-
sion devices.

XkbXI_IndicatorNamesMask leds->names (1L
<<2)

Clients can assign
names to indicators
on non- KeyClass in-
put extension de-
vices.

XkbXI_IndicatorMapsMask leds->maps (1L
<<3)

Clients can assign
indicator maps to
indicators on non-
KeyClass input ex-
tension devices.

XkbXI_IndicatorStateMask leds->state (1L
<<4)

Clients can request
the status of indi-
cators on non- Key-
Class input exten-
sion devices.

XkbXI_IndicatorsMask sz_leds

num_leds

leds->*

(0x1c) XkbXI_IndicatorNames-
Mask |

XkbXI_IndicatorMaps-
Mask |

XkbXI_IndicatorState-
Mask

XkbXI_UnsupportedFeaturesMaskunsupported (1L
<<15)

XkbXI_AllDeviceFeaturesMaskThose selected by
Value column masks

(0x1e) XkbXI_Indicators-
Mask |

XkbSI_ButtonActions-
Mask

XkbXI_AllFeaturesMask Those selected by
Value column masks

(0x1f) XkbSI_AllDevice-
FeaturesMask |

XkbSI_Keyboards-
Mask

XkbXI_AllDetailsMask Those selected by
Value column masks

(0x801f) XkbXI_AllFeatures-
Mask |

XkbXI_Unsupported-
FeaturesMask

Attaching Xkb Actions to
X Input Extension Devices

232

The name , type , has_own_state , supported , and unsupported fields are always
filled in when a valid reply is returned from the server involving an XkbDeviceIn-
foRec . All of the other fields are modified only if the particular function asks for
them.

Querying Xkb Features for Non-KeyClass Input
Extension Devices

To determine whether the X server allows Xkb access to particular capabilities of
input devices other than the core X keyboard, or to determine the status of indicator
maps, indicator names or button actions on a non- KeyClass extension device, use
XkbGetDeviceInfo.

XkbDeviceInfoPtr XkbGetDeviceInfo (dpy , which, device_spec, ind_class,
ind_id)
Display * dpy ; /* connection to X server */
unsigned int which; /* mask indicating information to return */
unsigned int device_spec ; /* device ID, or XkbUseCoreKbd */
unsigned int ind_class ; /* feedback class for indicator requests */
unsigned int ind_id ; /* feedback ID for indicator requests */

XkbGetDeviceInfo returns information about the input device specified by
device_spec . Unlike the device_spec parameter of most Xkb functions, device_spec
does not need to be a keyboard device. It must, however, indicate either the core
keyboard or a valid X Input Extension device.

The which parameter is a mask specifying optional information to be returned.
It is an inclusive OR of one or more of the values from Table 21.1 and causes the
returned XkbDeviceInfoRec to contain values for the corresponding fields specified
in the table.

The XkbDeviceInfoRec returned by XkbGetDeviceInfo always has values for name
(may be a null string, ""), type , supported , unsupported , has_own_state ,
dflt_kbd_fd , and dflt_kbd_fb . Other fields are filled in as specified by which .

Upon return, the supported field will be set to the inclusive OR of zero or more
bits from Table 21.1; each bit set indicates an optional Xkb extension device feature
supported by the server implementation, and a client may modify the associated
behavior.

If the XkbButtonActionsMask bit is set in which , the XkbDeviceInfoRec returned
will have the button actions (btn_acts field) filled in for all buttons.

If which includes one of the bits in XkbXI_IndicatorsMask, the feedback class of
the indicators must be specified in ind_class, and the feedback ID of the indica-
tors must be specified in ind_id. If the request does not include any of the bits in
XkbXI_IndicatorsMask, the ind_class and ind_id parameters are ignored. The class
and ID can be obtained via the input device extension XListInputDevices request.

If any of the XkbXI_IndicatorsMask bits are set in which , the XkbDeviceIn-
foRec returned will have filled in the portions of the leds structure correspond-

Attaching Xkb Actions to
X Input Extension Devices

233

ing to the indicator feedback identified by ind_class and ind_id . The leds vec-
tor of the XkbDeviceInfoRec is allocated if necessary and sz_leds and num_leds
filled in. The led_class , led_id and phys_indicators fields of the leds entry
corresponding to ind_class and ind_id are always filled in. If which contains
XkbXI_IndicatorNamesMask , the names_present and names fields of the leds
structure corresponding to ind_class and ind_id are returned. If which contains
XkbXI_IndicatorStateMask , the corresponding state field is updated. If which con-
tains XkbXI_IndicatorMapsMask , the maps_present and maps fields are updated.

Xkb provides convenience functions to request subsets of the information available
via XkbGetDeviceInfo . These convenience functions mirror some of the mask bits.
The functions all take an XkbDeviceInfoPtr as an input argument and operate on the
X Input Extension device specified by the device_spec field of the structure. Only
the parts of the structure indicated in the function description are updated. The
XkbDeviceInfo Rec structure used in the function call can be obtained by calling
XkbGetDeviceInfo or can be allocated by calling XkbAllocDeviceInfo (see section
21.3).

These convenience functions are described as follows.

To query the button actions associated with an X Input Extension device, use Xk-
bGetDeviceButtonActions.

Status XkbGetDeviceButtonActions (dpy, device_info, all_buttons, first_button,
num_buttons)
Display * dpy ; /* connection to X server */
XkbDeviceInfoPtr device_info; /* structure to update with results */
Bool all_buttons ; /* True => get information for all buttons */
unsigned int first_button; /* number of first button for which info is desired */
unsigned int num_buttons; /* number of buttons for which info is desired */

XkbGetDeviceButtonActions queries the server for the desired button information
for the device indicated by the device_spec field of device_info and waits for a re-
ply. If successful, XkbGetDeviceButtonActions backfills the button actions (btn_acts
field of device_info) for only the requested buttons, updates the name , type ,
supported , and unsupported fields, and returns Success .

all_buttons , first_button and num_buttons specify the device buttons for which
actions should be returned. Setting all_buttons to True requests actions for all
device buttons; if all_buttons is False , first_button and num_buttons specify a
range of buttons for which actions are requested.

If a compatible version of Xkb is not available in the server or the Xkb extension
has not been properly initialized, XkbGetDeviceButtonActions returns BadAccess
. If allocation errors occur, a BadAlloc status is returned. If the specified device (
device_info -> device_spec) is invalid, a BadKeyboard status is returned. If the de-
vice has no buttons, a Bad Match status is returned. If first_button and num_buttons
specify illegal buttons, a Bad Value status is returned.

To query the indicator names, maps, and state associated with an LED feedback of
an input extension device, use XkbGetDeviceLedInfo.

Attaching Xkb Actions to
X Input Extension Devices

234

Status XkbGetDeviceLedInfo (dpy, device_i nfo, led_class, led_id, which)
Display * dpy ; /* connection to X server */
XkbDeviceInfoPtr device_info; /* structure to update with results */
unsigned int led_class ; /* LED feedback class assigned by input extension */
unsigned int led_id; /* LED feedback ID assigned by input extension */
unsigned int which; /* mask indicating desired information */

XkbGetDeviceLedInfo queries the server for the desired LED information for the
feedback specified by led_class and led_id for the X input extension device in-
dicated by device_spec -> device_info and waits for a reply. If successful, Xk-
bGetDeviceLedInfo backfills the relevant fields of device_info as determined by
which with the results and returns Success . Valid values for which are the inclu-
sive OR of any of XkbXI_IndicatorNamesMask , XkbXI_IndicatorMapsMask , and
XkbXI_IndicatorStateMask .

The fields of device_info that are filled in when this request succeeds are name,
type, supported , and unsupported , and portions of the leds structure correspond-
ing to led_class and led_id as indicated by the bits set in which . The device_info-
>leds vector is allocated if necessary and sz_leds and num_leds filled in. The
led_class , led_id and phys_indicators fields of the device_info -> leds entry cor-
responding to led_class and led_id are always filled in.

If which contains XkbXI_IndicatorNamesMask , the names_present and names
fields of the device_info -> leds structure corresponding to led_class and led_id
are updated, if which contains XkbXI_IndicatorStateMask , the corresponding
state field is updated, and if which contains XkbXI_IndicatorMapsMask , the
maps_present and maps fields are updated.

If a compatible version of Xkb is not available in the server or the Xkb extension has
not been properly initialized, XkbGetDeviceLedInfo returns BadAccess . If alloca-
tion errors occur, a BadAlloc status is returned. If the device has no indicators, a
BadMatch error is returned. If ledClass or ledID have illegal values, a Bad Value er-
ror is returned. If they have legal values but do not specify a feedback that contains
LEDs and is associated with the specified device, a Bad Match error is returned.

Allocating, Initializing, and Freeing the XkbDe-
viceInfoRec Structure

To obtain an XkbDeviceInfoRec structure, use XkbGetDeviceInfo or XkbAllocDe-
viceInfo.

XkbDeviceInfoPtr XkbAllocDeviceInfo (device_spec, n_buttons, sz_leds)
unsigned int device_spec; /* device ID with which structure will be used */
unsigned int n_buttons ; /* number of button actions to allocate space for*/
unsigned int sz_leds ; /* number of LED feedbacks to allocate space for */

XkbAllocDeviceInfo allocates space for an XkbDeviceInfoRec structure and initial-
izes that structure’s device_spec field with the device ID specified by device_spec. If
n_buttons is nonzero, n_buttons XkbActions are linked into the XkbDeviceInfoRec
structure and initialized to zero. If sz_leds is nonzero, sz_leds XkbDeviceLedIn-

Attaching Xkb Actions to
X Input Extension Devices

235

foRec structures are also allocated and linked into the XkbDeviceInfoRec structure.
If you request XkbDeviceLedInfoRec structures be allocated using this request, you
must initialize them explicitly.

To obtain an XkbDeviceLedInfoRec structure, use XkbAllocDeviceLedInfo.

Status XkbAllocDeviceLedInfo (devi, num_needed)
XkbDeviceInfoPtr device_info ; /* structure in which to allocate LED space */
int num_needed ; /* number of indicators to allocate space for */

XkbAllocDeviceLedInfo allocates space for an XkbDeviceLedInfoRec and places it in
device_info . If num_needed is nonzero, num_needed XkbIndicatorMapRec struc-
tures are also allocated and linked into the XkbDeviceLedInfoRec structure. If you
request XkbIndicatorMapRec structures be allocated using this request, you must
initialize them explicitly. All other fields are initialized to zero.

To initialize an XkbDeviceLedInfoRec structure, use XkbAddDeviceLedInfo.

XkbDeviceLedInfoPtr XkbAddDeviceLedInfo (device_info, led_class, led_id)
XkbDeviceInfoPtr device_info; /* structure in which to add LED info */
unsigned int led_class ; /* input extension class for LED device of interest */
unsigned int led_id ; /* input extension ID for LED device of interest */

XkbAddDeviceLedInfo first checks to see whether an entry matching led_class and
led_id already exists in the device_info->leds array. If it finds a matching entry, it
returns a pointer to that entry. Otherwise, it checks to be sure there is at least one
empty entry in device_info -> leds and extends it if there is not enough room. It
then increments device_info -> num_leds and fills in the next available entry in
device_info -> leds with led_class and led_id .

If successful, XkbAddDeviceLedInfo returns a pointer to the XkbDeviceLedIn-
foRec structure that was initialized. If unable to allocate sufficient storage, or if
device_info points to an invalid XkbDeviceInfoRec structure, or if led_class or
led_id are inappropriate, XkbAddDeviceLedInfo returns NULL .

To allocate additional space for button actions in an XkbDeviceInfoRec structure,
use XkbResizeDeviceButtonActions.

Status XkbResizeDeviceButtonActions (device_info, new_total)
XkbDeviceInfoPtr device_info; /* structure in which to allocate button actions */
unsigned int new_total ; /* new total number of button actions needed */

XkbResizeDeviceButton reallocates space, if necessary, to make sure there is room
for a total of new_total button actions in the device_info structure. Any new en-
tries allocated are zeroed. If successful, XkbResizeDeviceButton returns Success.
If new_total is zero, all button actions are deleted, device_info -> num_btns is set
to zero, and device_info -> btn_acts is set to NULL . If device_info is invalid or
new_total is greater than 255, BadValue is returned. If a memory allocation failure
occurs, a BadAlloc is returned.

To free an XkbDeviceInfoRec structure, use XkbFreeDeviceInfo.

Attaching Xkb Actions to
X Input Extension Devices

236

void XkbFreeDeviceInfo (device_info, which, free_all)
XkbDeviceInfoPtr device_info; /* pointer to XkbDeviceInfoRec in which to free
items */
unsigned int which ; /* mask of components of device_info to free */
Bool free_all ; /* True => free everything, including device_info */

If free_all is True , the XkbFreeDeviceInfo frees all components of device_info
and the XkbDeviceInfoRec structure pointed to by device_info itself. If free_all is
False , the value of which determines which subcomponents are freed. which is
an inclusive OR of one or more of the values from Table 21.1. If which contains
XkbXI_ButtonActionsMask, all button actions associated with device_info are freed,
device_info -> btn_acts is set to NULL , and device_info -> num_btns is set to zero.
If which contains all bits in XkbXI_IndicatorsMask, all XkbDeviceLedInfoRec struc-
tures associated with device_info are freed, device_info -> leds is set to NULL ,
and device_info -> sz_leds and device_info -> num_leds are set to zero. If which
contains XkbXI_IndicatorMapsMask, all indicator maps associated with device_info
are cleared, but the number of LEDs and the leds structures themselves are pre-
served. If which contains XkbXI_IndicatorNamesMask, all indicator names associ-
ated with device_info are cleared, but the number of LEDs and the leds structures
themselves are preserved. If which contains XkbXI_IndicatorStateMask, the indica-
tor state associated with the device_info leds are set to zeros but the number of
LEDs and the leds structures themselves are preserved.

Setting Xkb Features for Non-KeyClass Input
Extension Devices

The Xkb extension allows clients to assign any key action to either core pointer or
input extension device buttons. This makes it possible to control the keyboard or
generate keyboard key events from extension devices or from the core pointer.

Key actions assigned to core X pointer buttons or input extension device buttons
cause key events to be generated as if they had originated from the core X keyboard.

Xkb implementations are required to support key actions for the buttons of the core
pointer device, but support for actions on extension devices is optional. Implemen-
tations that do not support button actions for extension devices must not set the
XkbXI_ButtonActionsMask bit in the supported field of an XkbDeviceInfoRec struc-
ture.

If a client attempts to modify valid characteristics of a device using an implementa-
tion that does not support modification of those characteristics, no protocol error
is generated. Instead, the server reports a failure for the request; it also sends an
XkbExtensionDeviceNotify event to the client that issued the request if the client
has selected to receive these events.

To change characteristics of an X Input Extension device in the server, first modify a
local copy of the device structure and then use either XkbSetDeviceInfo, or, to save
network traffic, use an XkbDeviceChangesRec structure (see section 21.6) and call
XkbChangeDeviceInfo to download the changes to the server.

To modify some or all of the characteristics of an X Input Extension device, use
XkbSetDeviceInfo.

Attaching Xkb Actions to
X Input Extension Devices

237

Bool XkbSetDeviceInfo (dpy , which, device_info)
Display * dpy ; /* connection to X server */
unsigned int which ; /* mask indicating characteristics to modify */
XkbDeviceInfoPtr device_info; /* structure defining the device and modifications
*/

XkbSetDeviceInfo sends a request to the server to modify the characteristics of the
device specified in the device_info structure. The particular characteristics modi-
fied are identified by the bits set in which and take their values from the relevant
fields in device_info (see Table 21.1). XkbSetDeviceInfo returns True if the request
was successfully sent to the server. If the X server implementation does not allow
interaction between the X input extension and the Xkb Extension, the function does
nothing and returns False .

The which parameter specifies which aspects of the device should be
changed and is a bitmask composed of an inclusive OR or one or more of
the following bits: XkbXI_ButtonActionsMask , XkbXI_IndicatorNamesMask ,
XkbXI_IndicatorMapsMask . If the features requested to be manipulated in which
are valid for the device, but the server does not support assignment of one or more
of them, that particular portion of the request is ignored.

If the device specified in device_info -> device_spec does not contain buttons and
a request affecting buttons is made, or the device does not contain indicators and
a request affecting indicators is made, a BadMatch protocol error results.

If the XkbXI_ButtonActionsMask bit is set in the supported mask returned by
XkbGetDeviceInfo, the Xkb extension allows applications to assign key actions to
buttons on input extension devices other than the core keyboard device. If the
XkbXI_ButtonActionsMask is set in which , the actions for all buttons specified in
device_info are set to the XkbAction s specified in device_info -> btn_acts . If the
number of buttons requested to be updated is not valid for the device, XkbSetDe-
viceInfo returns False and a BadValue protocol error results.

If the XkbXI_IndicatorMaps and / or XkbXI_IndicatorNamesMask bit is set in the
supported mask returned by XkbGetDeviceInfo, the Xkb extension allows applica-
tions to assign maps and / or names to the indicators of nonkeyboard extension de-
vices. If supported, maps and / or names can be assigned to all extension device
indicators, whether they are part of a keyboard feedback or part of an indicator
feedback.

If the XkbXI_IndicatorMapsMask and / or XkbXI_IndicatorNamesMask flag is set in
which , the indicator maps and / or names for all device_info -> num_leds indicator
devices specified in device_info -> leds are set to the maps and / or names specified
in device_info -> leds . device_info -> leds -> led_class and led_id specify the input
extension class and device ID for each indicator device to modify; if they have invalid
values, a BadValue protocol error results and XkbSetDeviceInfo returns False . If
they have legal values but do not specify a keyboard or indicator class feedback for
the device in question, a BadMatch error results. If any of the values in device_info
-> leds -> names are not a valid Atom or None , a BadAtom protocol error results.

Xkb provides convenience functions to modify subsets of the information accessible
via XkbSetDeviceInfo . Only the parts of the structure indicated in the function
description are modified. These convenience functions are described as follows.

Attaching Xkb Actions to
X Input Extension Devices

238

To change only the button actions for an input extension device, use XkbSetDevice-
ButtonActions.

Bool XkbSetDeviceButtonActions (dpy , device, first_button, num_buttons, ac-
tions)
Display * dpy ; /* connection to X server */
XkbDeviceInfoPtr device_info; /* structure defining the device and modifications
*/
unsigned int first_button; /* number of first button to update, 0 relative */
unsigned int num_buttons; /* number of buttons to update */

XkbSetDeviceButtonActions assigns actions to the buttons of the device specified in
device_info-> device_spec . Actions are assigned to num_buttons buttons beginning
with first_button and are taken from the actions specified in device_info -> btn_acts
.

If the server does not support assignment of Xkb actions to extension device buttons,
XkbSetDeviceButtonActions has no effect and returns False . If the device has no
buttons or if first_button or num_buttons specify buttons outside of the valid range
as determined by device_info -> num_btns , the function has no effect and returns
False . Otherwise, XkbSetDeviceButtonActions sends a request to the server to
change the actions for the specified buttons and returns True .

If the actual request sent to the server involved illegal button numbers, a BadValue
protocol error is generated. If an invalid device identifier is specified in device_info-
> device_spec , a BadKeyboard protocol error results. If the actual device specified
in device_info -> device_spec does not contain buttons and a request affecting
buttons is made, a BadMatch protocol error is generated.

XkbExtensionDeviceNotify Event
The Xkb extension generates XkbExtensionDeviceNotify events when the status of
an input extension device changes or when an attempt is made to use an Xkb feature
that is not supported by a particular device.

Note
Events indicating an attempt to use an unsupported feature are delivered
only to the client requesting the event.

To track changes to the status of input extension devices or attempts to use unsup-
ported features of a device, select to receive XkbExtensionDeviceNotify events by
calling either XkbSelectEvents or XkbSelectEventDetails (see section 4.3).

To receive XkbExtensionDeviceNotify events under all possible conditions, call Xk-
bSelectEvents and pass XkbExtensionDeviceNotifyMask in both bits_to_change
and values_for_bits .

The XkbExtensionDeviceNotify event has no event details. However, you can call
XkbSelectEventDetails using XkbExtensionDeviceNotify as the event_type and
specifying XkbAllExtensionDeviceMask in bits_to_change and values_for_bits. This
has the same effect as a call to XkbSelectEvents .

Attaching Xkb Actions to
X Input Extension Devices

239

The structure for XkbExtensionDeviceNotify events is:

typedef struct {
 int type; /* Xkb extension base event code */
 unsigned long serial; /* X server serial number for event */
 Bool send_event; /* True
 => synthetically generated*/
 Display * display; /* server connection where event generated */
 Time time; /* server time when event generated */
 int xkb_type; /* XkbExtensionDeviceNotifyEvent */
 int device; /* Xkb device ID, will not be
 XkbUseCoreKbd */
 unsigned int reason; /* reason for the event */
 unsigned int supported; /* mask of supported features */
 unsigned int unsupported; /* unsupported features this client
 attempted to use */
 int first_btn; /* first button that changed */
 int num_btns; /* number of buttons that changed */
 unsigned int leds_defined; /* indicators with names or maps */
 unsigned int led_state; /* current state of the indicators */
 int led_class; /* feedback class for LED changes */
 int led_id; /* feedback ID for LED changes */
} XkbExtensionDeviceNotifyEvent;

The XkbExtensionDeviceNotify event has fields enabling it to report changes in
the state (on/off) of all of the buttons for a device, but only for one LED feedback
associated with a device. You will get multiple events when more than one LED
feedback changes state or configuration.

Tracking Changes to Extension Devices
Changes to an Xkb extension device may be tracked by listening to XkbDeviceEx-
tensionNotify events and accumulating the changes in an XkbDeviceChangesRec
structure. The changes noted in the structure may then be used in subsequent op-
erations to update either a server configuration or a local copy of an Xkb extension
device configuration. The changes structure is defined as follows:

typedef struct _XkbDeviceChanges {
 unsigned int changed; /* bits indicating what has changed */
 unsigned short first_btn; /* number of first button which changed,
 if any */
 unsigned short num_btns; /* number of buttons that have changed */
 XkbDeviceLedChangesRec leds;
} XkbDeviceChangesRec,*XkbDeviceChangesPtr;

typedef struct _XkbDeviceLedChanges {
 unsigned short led_class; /* class of this indicator feedback bundle */
 unsigned short led_id; /* ID of this indicator feedback bundle */
 unsigned int names; /* bits indicating which names have changed */
 unsigned int maps; /* bits indicating which maps have changed */
 struct _XkbDeviceLedChanges *next; /* link to indicator change record

Attaching Xkb Actions to
X Input Extension Devices

240

 for next set */
} XkbDeviceLedChangesRec,*XkbDeviceLedChangesPtr;

A local description of the configuration and state of a device may be kept in an Xkb-
DeviceInfoRec structure. The actual state or configuration of the device may change
because of XkbSetDeviceInfo and XkbSetButtonActions requests made by clients or
by user interaction with the device. The X server sends an XkbExtensionDeviceNo-
tify event to all interested clients when the state of any buttons or indicators or the
configuration of the buttons or indicators on the core keyboard or any input exten-
sion device changes. The event reports the state of indicators for a single indicator
feedback, and the state of up to 128 buttons. If more than 128 buttons or more than
one indicator feedback are changed, the additional buttons and indicator feedbacks
are reported in subsequent events. Xkb provides functions with which you can track
changes to input extension devices by noting the changes that were made and then
requesting the changed information from the server.

To note device changes reported in an XkbExtensionDeviceNotify event, use Xkb-
NoteDeviceChanges.

void XkbNoteDeviceChanges (old, new, wanted)
XkbDeviceChangesPtr old ; /* structure tracking state changes */
XkbExtensionDeviceNotifyEvent * new ; /* event indicating state changes */
unsigned int wanted ; /* mask indicating changes to note */

The wanted field specifies the changes that should be noted in old , and is composed
of the bitwise inclusive OR of one or more of the masks from Table 21.1 . The reason
field of the event in new indicates the types of changes the event is reporting.
XkbNoteDeviceChanges updates the XkbDeviceChangesRec specified by old with
the changes that are both specified in wanted and contained in new -> reason .

To update a local copy of the state and configuration of an X input extension device
with the changes previously noted in an XkbDeviceChangesRec structure, use Xk-
bGetDeviceInfoChanges.

To query the changes that have occurred in the button actions or indicator names
and indicator maps associated with an input extension device, use XkbGetDeviceIn-
foChanges.

Status XkbGetDeviceInfoChanges (dpy , device_info , changes)
Display * dpy ; /* connection to X server */
XkbDeviceInfoPtr device_info; /* structure to update with results */
XkbDeviceChangesPtr changes ; /* contains notes of changes that have occurred
*/

The changes->changed field indicates which attributes of the device specified in
changes -> device have changed. The parameters describing the changes are con-
tained in the other fields of changes . XkbGetDeviceInfoChanges uses that infor-
mation to call XkbGetDeviceInfo to obtain the current status of those attributes that
have changed. It then updates the local description of the device in device_info
with the new information.

To update the server’s description of a device with the changes noted in an XkbDe-
viceChangesRec, use XkbChangeDeviceInfo.

Attaching Xkb Actions to
X Input Extension Devices

241

Bool XkbChangeDeviceInfo (dpy, device_info, changes)
Display * dpy ; /* connection to X server */
XkbDeviceInfoPtr device_info ; /* local copy of device state and configuration */
XkbDeviceChangesPtr changes ; /* note specifying changes in device_info */

XkbChangeDeviceInfo updates the server’s description of the device specified in
device_info -> device_spec with the changes specified in changes and contained in
device_info . The update is made by an XkbSetDeviceInfo request.

242

Chapter 22. Debugging Aids
The debugging aids are intended for use primarily by Xkb implementors and are
optional in any implementation.

There are two bitmasks that may be used to control debugging. One bitmask con-
trols the output of debugging information, and the other controls behavior. Both
bitmasks are initially all zeros.

To change the values of any of the debug controls, use XkbSetDebuggingFlags .

Bool XkbSetDebuggingFlags (display, mask, flags, msg, ctrls_mask, ctrls,
ret_flags, ret_ctrls)
Display * display ; /* connection to X server */
unsigned int mask ; /* mask selecting debug output flags to change */
unsigned int flags ; /* values for debug output flags selected by mask */
char * msg ; /* message to print right now */
unsigned int ctrls_mask ; /* mask selecting debug controls to change */
unsigned int ctrls ; /* values for debug controls selected by ctrls_mask */
unsigned int * ret_flags ; /* resulting state of all debug output flags */
unsigned int * ret_ctrls ; /* resulting state of all debug controls */

XkbSetDebuggingFlags modifies the debug output flags as specified by mask and
flags , modifies the debug controls flags as specified by ctrls_mask and ctrls , prints
the message msg , and backfills ret_flags and ret_ctrls with the resulting debug
output and debug controls flags.

When bits are set in the debug output masks, mask and flags , Xkb prints debug
information corresponding to each bit at appropriate points during its processing.
The device to which the output is written is implementation-dependent, but is nor-
mally the same device to which X server error messages are directed; thus the bits
that can be set in mask and flags is implementation-specific. To turn on a debug
output selection, set the bit for the output in the mask parameter and set the cor-
responding bit in the flags parameter. To turn off event selection for an event, set
the bit for the output in the mask parameter and do not set the corresponding bit
in the flags parameter.

When bits are set in the debug controls masks, ctrls_mask and ctrls , Xkb modifies
its behavior according to each controls bit. ctrls_mask and ctrls are related in the
same way that mask and flags are. The valid controls bits are defined in Table 22.1.

Table 22.1. Debug Control Masks

Debug Control Mask Value Meaning
XkbDF_DisableLocks (1 << 0) Disable actions that lock modifiers

XkbSetDebuggingFlags returns True if successful and False otherwise. The only
protocol error it may generate is BadAlloc , if for some reason it is unable to allocate
storage.

Debugging Aids

243

XkbSetDebuggingFlags is intended for developer use and may be disabled in pro-
duction X servers. If it is disabled, XkbSetDebuggingFlags has no effect and does
not generate any protocol errors.

The message in msg is written immediately. The device to which it is written is
implementation dependent but is normally the same device where X server error
messages are directed.

244

Glossary
Allocator Xkb provides functions, known as allocators, to create and ini-

tialize Xkb data structures.

Audible Bell An audible bell is the sound generated by whatever bell is asso-
ciated with the keyboard or input extension device, as opposed
to any other audible sound generated elsewhere in the system.

Autoreset Controls The autoreset controls configure the boolean controls to auto-
matically be enabled or disabled at the time a program exits.

Base Group The group in effect as a result of all actions other than a previous
lock or latch request; the base group is transient. For example,
the user pressing and holding a group shift key that shifts to
Group2 would result in the base group being group 2 at that
point in time. Initially, base group is always Group1.

Base Modifiers Modifiers that are turned on as a result of some actions other
than previous lock or latch requests; base modifiers are tran-
sient. For example, the user pressing and holding a key bound
to the Shift modifier would result in Shift being a base modifier
at that point in time.

Base Event Code A number assigned by the X server at run time that is assigned
to the extension to identify events from that extension.

Base State The base group and base modifiers represent keys that are phys-
ically or logically down; these constitute the base state.

Boolean Controls Global keyboard controls that may be selectively enabled and
disabled under program control and that may be automatically
set to an on or off condition upon client program exit.

Canonical Key Types The canonical key types are predefined key types that describe
the types of keys available on most keyboards. The definitions for
the canonical key types are held in the first XkbNumRequired-
Types entries of the types field of the client map and are indexed
using the following constants:

• XkbOneLevelIndex

• XkbTwoLevelIndex

• XkbAlphabeticIndex

• XkbKeypadIndex

Client Map The key mapping information needed to convert arbitrary key-
codes to symbols.

Compat Name The compat name is a string that provides some information
about the rules used to bind actions to keys that are changed
using core protocol requests.

Glossary

245

Compatibility State When an Xkb-extended X server connects to an Xkb-unaware
client, the compatibility state remaps the keyboard group into a
core modifier whenever possible.

Compatibility Grab State The grab state that results from applying the compatibility map
to the Xkb grab state.

Compatibility Map The definition of how to map core protocol keyboard state to Xkb
keyboard state.

Component Expression An expression used to describe server keyboard database com-
ponents to be loaded. It describes the order in which the compo-
nents should be loaded and the rules by which duplicate attrib-
utes should be resolved.

Compose Processing The process of mapping a series of keysyms to a string is known
as compose processing.

Consumed Modifier Xkb normally consumes modifiers in determining the appropri-
ate symbol for an event, that is, the modifiers are not considered
during any of the later stages of event processing. For those rare
occasions when a modifier should be considered despite having
been used to look up a symbol, key types include an optional
preserve field.

Core Event An event created from the core X server.

Detectable Auto-Repeat Detectable auto-repeat allows a client to detect an auto-repeat-
ing key. If a client requests and the server supports detectable
auto-repeat, Xkb generates KeyRelease events only when the
key is physically released. Thus the client receives a number of
KeyPress events for that key without intervening KeyRelease
events until the key is finally released, when a KeyRelease event
is received.

Effective Group The effective group is the arithmetic sum of the locked, latched,
and base groups. The effective keyboard group is always brought
back into range depending on the value of the GroupsWrap con-
trol for the keyboard. If an event occurs with an effective group
that is legal for the keyboard as a whole, but not for the key in
question, the group for that event only is normalized using the
algorithm specified by the group_info member of the key symbol
map (XkbSymMapRec).

Effective Mask An Xkb modifier definition consists of a set of bit masks corre-
sponding to the eight real modifiers; a similar set of bitmasks
corresponding to the 16 named virtual modifiers; and an effec-
tive mask. The effective mask represents the set of all real mod-
ifiers that can logically be set either by setting any of the real
modifiers or by setting any of the virtual modifiers in the defin-
ition.

Effective Modifier The effective modifiers are the bitwise union of the base, latched
and locked modifiers.

Extension Device Any keyboard or other input device recognized by the X input
extension.

Glossary

246

Global Keyboard Con-
trols

Controls that affect the way Xkb generates key events. The con-
trols affect all keys, as opposed to per-key controls that are for
a single key. Global controls include

• RepeatKeys Control

• DetectableAuto-repeat

• SlowKeys

• BounceKeys

• StickyKeys

• MouseKeys

• MouseKeysAccel

• AccessXKeys

• AccessXTimeout

• AccessXFeedback

• Overlay1

• Overlay2

• EnabledControls

Grab State The grab state is the state used when matching events to passive
grabs. It consists of the grab group and the grab modifiers.

Group See Keysym Group

Group Index A number used as the internal representation for a group num-
ber. Group1 through Group 4 have indices of 0 through 3.

Groups Wrap Control If a group index exceeds the maximum number of groups permit-
ted for the specified keyboard, it is wrapped or truncated back in-
to range as specified by the global GroupsWrap control. Group-
sWrap can have the following values:

 WrapIntoRange
 ClampIntoRange
 RedirectIntoRange

Key Type An attribute of a key that identifies which modifiers affect the
shift level of a key and the number of groups on the key.

Key Width The maximum number of shift levels in any group for the key
type associated with a key.

Keysym Group A keysym group is a logical state of the keyboard providing ac-
cess to a collection of characters. A group usually contains a
set of characters that logically belong together and that may

Glossary

247

be arranged on several shift levels within that group. For exam-
ple, Group1 could be the English alphabet, and Group2 could be
Greek. Xkb supports up to four different groups for an input de-
vice or keyboard. Groups are in the range 1-4 (Group1 - Group4),
and are often referred to as G1 - G4 and indexed as 0 - 3.

Indicator An indicator is a feedback mechanism such as an LED on an in-
put device. Using Xkb, a client application can determine the
names of the various indicators, determine and control the way
that the individual indicators should be updated to reflect key-
board changes, and determine which of the 32 keyboard indi-
cators reported by the protocol are actually present on the key-
board.

Indicator Feedback An indicator feedback describes the state of a bank of up to 32
lights. It has a mask where each bit corresponds to a light and an
associated value mask that specifies which lights are on or off.

Indicator Map An indicator has its own set of attributes that specify whether
clients can explicitly set its state and whether it tracks the key-
board state. The indicator map is the collection of these attrib-
utes for each indicator and is held in the maps array, which is
an array of XkbIndicatorRec structures.

Input Extension An extension to the core X protocol that allows an X server to
support multiple keyboards, as well as other input devices, in
addition to the core X keyboard and pointer. Other types of de-
vices supported by the input extension include, but are not limit-
ed to: mice, tablets, touchscreens, barcode readers, button box-
es, trackballs, identifier devices, data gloves, and eye trackers.

Key Action A key action consists of an operator and some optional data.
Once the server has applied the global controls and per-key be-
havior and has decided to process a key event, it applies key ac-
tions to determine the effects of the key on the internal state of
the server. Xkb supports actions that do the following:

• Change base, latched, or locked modifiers or group

• Move the core pointer or simulate core pointer button events

• Change most aspects of keyboard behavior

• Terminate or suspend the server

• Send a message to interested clients

• Simulate events on other keys

Key Alias A key alias is a symbolic name for a specific physical key. Key
aliases allow the keyboard layout designer to assign multiple key
names to a single key. This allows the keyboard layout designer
to refer to keys using either their position or their "function." Key
aliases can be specified both in the symbolic names component
and in the keyboard geometry. Both sets of aliases are always
valid, but key alias definitions in the keyboard geometry have

Glossary

248

priority; if both symbolic names and geometry include aliases,
you should consider the definitions from the geometry before
considering the definitions from the symbolic names section.

Key Behavior The behaviors field of the server map is an array of XkbBehavior
, indexed by keycode, and contains the behavior for each key.
The X server uses key behavior to determine whether to process
or filter out any given key event; key behavior is independent
of keyboard modifier or group state. Each key has exactly one
behavior.

Key behaviors include:

• XkbKB_Default

• XkbKB_Lock

• XkbKB_RadioGroup

• XkbKB_Overlay1

• XkbKB_Overlay2

Key Symbol Map A key symbol map describes the symbols bound to a key and
the rules to be used to interpret those symbols. It is an array of
XkbSymMapRec structures indexed by keycode.

Key Type Key types are used to determine the shift level of a key given
the current state of the keyboard. There is one key type for each
group for a key. Key types are defined using the XkbKeyTypeR-
ec and XkbKTMapEntryRec structures. Xkb allows up to Xkb-
MaxKeyTypes (255) key types to be defined, but requires at least
XkbNumRequiredTypes (4) predefined types to be in a key map.

Keyboard Bells The sound the default bell makes when rung is the system bell
or the default keyboard bell. Some input devices may have more
than one bell, identified by bell_class and bell_id.

Keyboard Components There are five types of components stored in the X server data-
base of keyboard components. They correspond to the symbols,
geometry, keycodes, compat, and types symbolic names associ-
ated with a keyboard.

Keyboard Feedback A keyboard feedback includes the following:

 Keyclick volume
 Bell volume
 Bell pitch
 Bell duration
 Global auto-repeat
 Per key auto-repeat
 32 LEDs

Key Width, Key Type
Width

The maximum number of shift levels for a type is referred to as
the width of a key type.

Glossary

249

Keyboard Geometry Keyboard geometry describes the physical appearance of the
keyboard, including the shape, location, and color of all keyboard
keys or other visible keyboard components such as indicators
and is stored in a XkbGeometryRec structure. The information
contained in a keyboard geometry is sufficient to allow a client
program to draw an accurate two-dimensional image of the key-
board.

Keyboard Geometry
Name

The keyboard geometry name describes the physical location,
size, and shape of the various keys on the keyboard and is part
of the XkbNamesRec structure.

Keyboard State Keyboard state encompasses all of the transitory information
necessary to map a physical key press or release to an appropri-
ate event.

Keycode A numeric value returned to the X server when a key on a key-
board is pressed or released, indicating which key is being mod-
ulated. Keycode numbers are in the range 1 <= keycode <= max,
where max is the number of physical keys on the device.

Keycode Name The keycode name describes the range and meaning of the key-
codes returned by the keyboard and is part of the XkbNamesRec
structure.

Latched Group A latched group is a group index that is combined with the base
and locked group to form the effective group. It applies only to
the next key event that does not change the keyboard state. The
latched group can be changed by keyboard activity or via Xkb
extension library functions.

Latched Modifier Latched modifiers are the set of modifiers that are combined
with the base modifiers and the locked modifiers to form the ef-
fective modifiers. It applies only to the next key event that does
not change the keyboard state.

LED A light emitting diode. However, for the purposes of the X key-
board extension specification, a LED is any form of visual two-
state indicator that is either on or off.

Locked Group A locked group is a group index that is combined with the base
and latched group to form the effective group. When a group
is locked, it supersedes any previous locked group and remains
the locked group for all future key events, until a new group is
locked. The locked group can be changed by keyboard activity
or via Xkb extension library functions.

Locked Modifiers Locked modifiers are the set of modifiers that are combined with
the base modifiers and the latched modifiers to form the effective
modifiers. A locked modifier applies to all future key events until
it is explicitly unlocked.

Lookup State The lookup state is composed of the lookup group and the lookup
modifiers, and it is the state an Xkb-capable or Xkb-aware client
should use to map a keycode to a keysym.

Glossary

250

Modifier A modifier is a logical condition that is either set or unset. The
modifiers control the Shift Level selected when a key event oc-
curs. Xkb supports the core protocol eight modifiers (Shift ,
Lock , Control , and Mod1 through Mod5), called the real
modifiers. In addition, Xkb extends modifier flexibility by provid-
ing a set of sixteen named virtual modifiers, each of which can
be bound to any set of the eight real modifiers.

Modifier Key A modifier key is a key whose operation has no immediate effect,
but that, for as long as it is held down, modifies the effect of
other keys. A modifier key may be, for example, a shift key or a
control key.

Modifier Definition An Xkb modifier definition, held in an XkbModsRec , consists of
a set of real modifiers, a set of virtual modifiers, and an effective
mask. The mask is the union of the real modifiers and the set
of real modifiers to which the virtual modifiers map; the mask
cannot be explicitly changed.

Nonkeyboard Extension
Device

An input extension device that is not a keyboard. Other types
of devices supported by the input extension include, but are not
limited to: mice, tablets, touchscreens, barcode readers, button
boxes, trackballs, identifier devices, data gloves, and eye track-
ers.

Outlines An outline is a list of one or more points that describes a sin-
gle closed polygon, used in the geometry specification for a key-
board.

Physical Indicator Mask The physical indicator mask is a field in the XkbIndicatorRec
that indicates which indicators are bound to physical LEDs on
the keyboard; if a bit is set in phys_indicators , then the associ-
ated indicator has a physical LED associated with it. This field is
necessary because some indicators may not have corresponding
physical LEDs on the keyboard.

Physical Symbol Key-
board Name

The symbols keyboard name identifies the symbols logically
bound to the keys. The symbols name is a human or appli-
cation-readable description of the intended locale or usage of
the keyboard with these symbols. The phys_symbols keyboard
name, on the other hand, identifies the symbols actually en-
graved on the keyboard.

Preserved Modifier Xkb normally consumes modifiers in determining the appropri-
ate symbol for an event, that is, the modifiers are not considered
during any of the later stages of event processing. For those rare
occasions when a modifier should be considered despite having
been used to look up a symbol, key types include an optional
preserve field. If a modifier is present in the preserve list, it is
a preserved modifier.

Radio Group A radio group is a set of keys whose behavior simulates a set of
radio buttons. Once a key in a radio group is pressed, it stays
logically depressed until another key in the group is pressed, at
which point the previously depressed key is logically released.

Glossary

251

Consequently, at most one key in a radio group can be logically
depressed at one time.

Real Modifier Xkb supports the eight core protocol modifiers (Shift , Lock
, Control , and Mod1 through Mod5); these are called the
real modifiers, as opposed to the set of sixteen named virtual
modifiers that can be bound to any set of the eight real modifiers.

Server Internal Modi-
fiers

Modifiers that the server uses to determine the appropriate sym-
bol for an event; internal modifiers are normally consumed by
the server.

Shift Level One of several states (normally 2 or 3) governing which graphic
character is produced when a key is actuated.

Symbol Keyboard Name The symbols keyboard name identifies the symbols logically
bound to the keys. The symbols name is a human or appli-
cation-readable description of the intended locale or usage of
the keyboard with these symbols. The phys_symbols keyboard
name, on the other hand, identifies the symbols actually en-
graved on the keyboard.

Symbolic Name Xkb supports symbolic names for most components of the key-
board extension. Most of these symbolic names are grouped into
the names component of the keyboard description.

State Field The portion of a client-side core protocol event that holds the
modifier, group, and button state information pertaining to the
event.

Types Name The types name provides some information about the set of key
types that can be associated with the keyboard. In addition, each
key type can have a name, and each shift level of a type can have
a name.

Valuator A valuator reports a range of values for some entity, like a mouse
axis, a slider, or a dial.

Virtual Modifier Xkb provides a set of sixteen named virtual modifiers that can be
bound to any set of the eight real modifiers. Each virtual modifier
can be bound to any set of the real modifiers (Shift , Lock ,
Control, and Mod1 - Mod5).

Virtual Modifier Map-
ping

Xkb maintains a virtual modifier mapping, which lists the virtual
modifiers associated with each key.

Xkb-aware Client A client application that initializes Xkb extension and is conse-
quently bound to an Xlib that includes the Xkb extension.

Xkb-capable Client A client application that makes no Xkb extension Xlib calls but is
bound to an Xlib that includes the Xkb extension.

Xkb-unaware Client A client application that makes no Xkb extension Xlib calls and
is bound to an Xlib that does not include the Xkb extension.

	The X Keyboard Extension:
	Table of Contents
	Acknowledgement
	Chapter 1. Overview
	Core X Protocol Support for Keyboards
	Xkb Keyboard Extension Support for Keyboards
	Xkb Extension Components
	Groups and Shift Levels
	Radio Groups

	Client Types
	Compatibility With the Core Protocol
	Additional Protocol Errors
	Extension Library Functions
	Error Indications

	Chapter 2. Initialization and General Programming Information
	Extension Header Files
	Extension Name
	Determining Library Compatibility
	Initializing the Keyboard Extension
	Disabling the Keyboard Extension
	Protocol Errors
	Display and Device Specifications in Function Calls

	Chapter 3. Data Structures
	Allocating Xkb Data Structures
	Adding Data and Editing Data Structures
	Making Changes to the Server’s Keyboard Description
	Tracking Keyboard Changes in the Server
	Freeing Data Structures

	Chapter 4. Xkb Events
	Xkb Event Types
	Xkb Event Data Structures
	Selecting Xkb Events
	Event Masks

	Unified Xkb Event Type

	Chapter 5. Keyboard State
	Keyboard State Description
	Changing the Keyboard State
	Changing Modifiers
	Changing Groups

	Determining Keyboard State
	Tracking Keyboard State

	Chapter 6. Complete Keyboard Description
	The XkbDescRec Structure
	Obtaining a Keyboard Description from the Server
	Tracking Changes to the Keyboard Description in the Server
	Allocating and Freeing a Keyboard Description

	Chapter 7. Virtual Modifiers
	Virtual Modifier Names and Masks
	Modifier Definitions
	Binding Virtual Modifiers to Real Modifiers
	Virtual Modifier Key Mapping
	Inactive Modifier Sets

	Conventions
	Example

	Chapter 8. Indicators
	Indicator Names
	Indicator Data Structures
	XkbIndicatorRec
	XkbIndicatorMapRec
	XkbIndicatorMapRec flags field
	XkbIndicatorMapRec which_groups and groups fields
	XkbIndicatorMapRec which_mods and mods fields
	XkbIndicatorMapRec ctrls field

	Getting Information About Indicators
	Getting Indicator State
	Getting Indicator Information by Index
	Getting Indicator Information by Name

	Changing Indicator Maps and State
	Effects of Explicit Changes on Indicators
	Changing Indicator Maps by Index
	Changing Indicator Maps by Name
	The XkbIndicatorChangesRec Structure

	Tracking Changes to Indicator State or Map
	Allocating and Freeing Indicator Maps

	Chapter 9. Bells
	Bell Names
	Audible Bells
	Bell Functions
	Generating Named Bells
	Generating Named Bell Events
	Forcing a Server-Generated Bell

	Detecting Bells

	Chapter 10. Keyboard Controls
	Controls that Enable and Disable Other Controls
	The EnabledControls Control
	The AutoReset Control

	Control for Bell Behavior
	The AudibleBell Control

	Controls for Repeat Key Behavior
	The PerKeyRepeat Control
	The RepeatKeys Control
	The DetectableAutorepeat Control

	Controls for Keyboard Overlays (Overlay1 and Overlay2 Controls)
	Controls for Using the Mouse from the Keyboard
	The MouseKeys Control
	The MouseKeysAccel Control
	Absolute Pointer Motion
	Relative Pointer Motion

	Controls for Better Keyboard Access by Physically Impaired Persons
	The AccessXKeys Control
	The AccessXTimeout Control
	The AccessXFeedback Control
	AccessXNotify Events
	Selecting for AccessX Events

	StickyKeys, RepeatKeys, and MouseKeys Events
	The SlowKeys Control
	The BounceKeys Control
	The StickyKeys Control
	StickyKeys Options

	Controls for General Keyboard Mapping
	The GroupsWrap Control
	The IgnoreLockMods Control
	The IgnoreGroupLock Control
	The InternalMods Control

	The XkbControlsRec Structure
	
	mk_dflt_btn
	num_groups
	groups_wrap
	internal
	ignore_lock
	enabled_ctrls
	repeat_delay and repeat_interval
	slow_keys_delay
	debounce_delay
	mk_delay, mk_interval, mk_time_to_max, mk_max_speed, and mk_curve
	ax_options
	ax_timeout, axt_opts_mask, axt_opts_values, axt_ctrls_mask, and axt_ctrls_values
	per_key_repeat

	Querying Controls
	Changing Controls
	The XkbControlsChangesRec Structure

	Tracking Changes to Keyboard Controls
	Allocating and Freeing an XkbControlsRec
	The Miscellaneous Per-client Controls

	Chapter 11. X Library Controls
	Controls Affecting Keycode-to-String Translation
	ForceLatin1Lookup
	ConsumeLookupMods
	AlwaysConsumeShiftAndLock

	Controls Affecting Compose Processing
	ConsumeKeysOnComposeFail
	ComposeLED
	BeepOnComposeFail

	Controls Effecting Event Delivery
	IgnoreNewKeyboards

	Manipulating the Library Controls
	Determining Which Library Controls are Implemented
	Determining the State of the Library Controls
	Changing the State of the Library Controls

	Chapter 12. Interpreting Key Events
	Effects of Xkb on the Core X Library
	Effects of Xkb on Event State
	Effects of Xkb on MappingNotify Events
	X Library Functions Affected by Xkb

	Xkb Event and Keymap Functions

	Chapter 13. Keyboard Geometry
	Shapes and Outlines
	Sections
	Rows and Keys
	Doodads
	Overlay Rows and Overlay Keys
	Drawing a Keyboard Representation
	Geometry Data Structures
	DoodadRec Structures

	Getting Keyboard Geometry From the Server
	Using Keyboard Geometry
	Adding Elements to a Keyboard Geometry
	Allocating and Freeing Geometry Components

	Chapter 14. Xkb Keyboard Mapping
	Notation and Terminology
	Core Implementation
	Xkb Implementation

	Getting Map Components from the Server
	Changing Map Components in the Server
	The XkbMapChangesRec Structure

	Tracking Changes to Map Components
	Allocating and Freeing Client and Server Maps
	Allocating an Empty Client Map
	Freeing a Client Map
	Allocating an Empty Server Map
	Freeing a Server Map

	Chapter 15. Xkb Client Keyboard Mapping
	The XkbClientMapRec Structure
	Key Types
	The Canonical Key Types
	ONE_LEVEL
	TWO_LEVEL
	ALPHABETIC
	KEYPAD
	Initializing the Canonical Key Types in a New Client Map

	Getting Key Types from the Server
	Changing the Number of Levels in a Key Type
	Copying Key Types

	Key Symbol Map
	Per-Key Key Type Indices
	Per-Key Group Information
	Key Width
	Offset in to the Symbol Map
	Getting the Symbol Map for Keys from the Server
	Changing the Number of Groups and Types Bound to a Key
	Changing the Number of Symbols Bound to a Key

	The Per-Key Modifier Map
	Getting the Per-Key Modifier Map from the Server

	Chapter 16. Xkb Server Keyboard Mapping
	Key Actions
	The XkbAction Structure
	The XkbAnyAction Structure
	Actions for Changing Modifiers’ State
	Actions for Changing Group State
	Actions for Moving the Pointer
	Actions for Simulating Pointer Button Press and Release
	Actions for Changing the Pointer Button Simulated
	Actions for Locking Modifiers and Group
	Actions for Changing the Active Screen
	Actions for Changing Boolean Controls State
	Actions for Generating Messages
	Detecting Key Action Messages

	Actions for Generating a Different Keycode
	Actions for Generating DeviceButtonPress and DeviceButtonRelease
	Actions for Simulating Events from Device Valuators
	Obtaining Key Actions for Keys from the Server
	Changing the Number of Actions Bound to a Key

	Key Behavior
	Radio Groups
	The XkbBehavior Structure
	Obtaining Key Behaviors for Keys from the Server

	Explicit Components—Avoiding Automatic Remapping by the Server
	Obtaining Explicit Components for Keys from the Server

	Virtual Modifier Mapping
	Obtaining Virtual Modifier Bindings from the Server
	Obtaining Per-Key Virtual Modifier Mappings from the Server

	Chapter 17. The Xkb Compatibility Map
	The XkbCompatMap Structure
	Xkb State to Core Protocol State Transformation
	Core Keyboard Mapping to Xkb Keyboard Mapping Transformation
	Symbol Interpretations — the XkbSymInterpretRec Structure

	Xkb Keyboard Mapping to Core Keyboard Mapping Transformations

	Getting Compatibility Map Components From the Server
	Using the Compatibility Map
	Changing the Server’s Compatibility Map
	Tracking Changes to the Compatibility Map
	Allocating and Freeing the Compatibility Map

	Chapter 18. Symbolic Names
	The XkbNamesRec Structure
	Symbolic Names Masks
	Getting Symbolic Names From the Server
	Changing Symbolic Names on the Server
	
	The XkbNameChangesRec Structure

	Tracking Name Changes
	Allocating and Freeing Symbolic Names

	Chapter 19. Replacing a Keyboard "On the Fly"
	Chapter 20. Server Database of Keyboard Components
	Component Names
	Listing the Known Keyboard Components
	Component Hints
	Building a Keyboard Description Using the Server Database

	Chapter 21. Attaching Xkb Actions to X Input Extension Devices
	XkbDeviceInfoRec
	Querying Xkb Features for Non-KeyClass Input Extension Devices
	Allocating, Initializing, and Freeing the XkbDeviceInfoRec Structure
	Setting Xkb Features for Non-KeyClass Input Extension Devices
	XkbExtensionDeviceNotify Event
	Tracking Changes to Extension Devices

	Chapter 22. Debugging Aids
	Glossary

