
1

The Input Method Protocol
X Consortium Standard

Masahiko Narita, FUJITSU Limited.
Hideki Hiura, SunSoft, Inc.

X Version 11, Release 7.7

Version 1.0

Copyright © 1993, 1994 FUJITSU LIMITED, Oracle and/or its affiliates

Permission to use,copy and distribute this documetation for any purpose and
without fee is hereby granted, provided that the above copyright notice and
this permission notice appear in all copies. Fujitsu and Sun Microsystems
make no representation about the suitability for any purpose of the informa-
tion in this document. This documentation is provided as is without express
implied warranty.

Copyright © 1993, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X
CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILI-
TY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be
used in advertising or otherwise to promote the sale, use or other dealings in
this Software without prior written authorization from the X Consortium.

X Window System is a trademark of The Open Group.

Abstract

This specifies a protocol between IM library and IM (Input Method) Server for internation-
alized text input, which is indepedent from any specific language, any specific input method
and the transport layer used in communication between the IM library and the IM Server,
and uses a client-server model. This protocol allows user to use his/her favorite method for
all applications within the stand-along distrubuted environment.

The Input Method Protocol

2

Table of Contents
Introduction ... 3

Scope .. 3
Background .. 3
Input Method Styles .. 4

Architecture ... 4
Implementation Model ... 4
Structure of IM .. 5
Event Handling Model ... 5
Event Flow Control .. 6

Default Preconnection Convention .. 6
Protocol .. 7

Basic Requests Packet Format .. 7
Data Types ... 7
Error Notification ... 11
Connection Establishment ... 12
Event Flow Control .. 16
Encoding Negotiation .. 17
Query the supported extension protocol list ... 18
Setting IM Values .. 18
Getting IM Values .. 19
Creating an IC ... 19
Destroying the IC ... 20
Setting IC Values ... 20
Getting IC Values ... 21
Setting IC Focus .. 21
Unsetting IC Focus .. 21
Filtering Events ... 21
Synchronizing with the IM Server ... 24
Sending a committed string .. 24
Reset IC ... 25
Callbacks .. 25

Acknowledgements .. 29
References ... 30
A. Common Extensions .. 30
B. Transport List ... 31
C. Protocol Number ... 32
D. Implementation Tips ... 33

The Input Method Protocol

3

Introduction

Scope
The internationalization in the X Window System Version 11, Release 5 (X11R5)
provides a common API which application developers can use to create portable in-
ternationalized programs and to adapt them to the requirements of different native
languages, local customs, and character string encodings (this is called "localiza-
tion"). As one of its internationalization mechanisms X11R5 has defined a functional
interface for internationalized text input, called XIM (X Input Method).

When a client-server model is used with an IM (Input Method) implementation, a
protocol must be established between the client and the server. However, the pro-
tocol used to interface Input Method Servers (IM Servers) with the Input Method
libraries (IM libraries) to which applications are linked was not addressed in X11R5.
This led application developers to depend on vendor-specific input methods, de-
creased the user's choice of available input methods, and made it more difficult for
developers to create portable applications. This paper describes the Input Method
Protocol developed for X11R6 to resolve the above problems and to address the
requirements of existing and future input methods.

The Input Method Protocol is independent from the transport layer used in commu-
nication between the IM library and the IM Server. Thus, the input method protocol
can be built on any inter-process communication mechanism, such as TCP/IP or the
X protocol.

In addition, the protocol provides for future extensions such as differing input model
types.

Background
Text input is much more simple for some languages than others. English, for in-
stance, uses an alphabet of a manageable size, and input consists of pressing the
corresponding key on a keyboard, perhaps in combination with a shift key for cap-
ital letters or special characters.

Some languages have larger alphabets, or modifiers such as accents, which require
the addition of special key combinations in order to enter text. These input meth-
ods may require "dead-keys" or "compose-keys" which, when followed by different
combinations of key strokes, generate different characters.

Text input for ideographic languages is much less simple. In these languages, char-
acters represent actual objects rather than phonetic sounds used in pronouncing
a word, and the number of characters in these languages may continue to grow.
In Japanese, for instance, most text input methods involve entering characters in
a phonetic alphabet, after which the input method searches a dictionary for possi-
ble ideographic equivalents (of which there may be many). The input method then
presents the candidate characters for the user to choose from.

In Japanese, either Kana (phonetic symbols) or Roman letters are typed and then
a region is selected for conversion to Kanji. Several Kanji characters may have the
same phonetic representation. If that is the case with the string entered, a menu
of characters is presented and the user must choose the appropriate one. If no

The Input Method Protocol

4

choice is necessary or a preference has been established, the input method does
the substitution directly.

These complicated input methods must present state information (Status Area), text
entry and edit space (Preedit Area), and menu/choice presentations (Auxiliary Area).
Much of the protocol between the IM library and the IM Server involves managing
these IM areas. Because of the size and complexity of these input methods, and
because of how widely they vary from one language or locale to another, they are
usually implemented as separate processes which can serve many client processes
on the same computer or network.

Input Method Styles
X11 internationalization support includes the following four types of input method:

- on-the-spot: The client application is directed by the IM Server to display all
pre-edit data at the site of text insertion. The client registers
callbacks invoked by the input method during pre-editing.

- off-the-spot: The client application provides display windows for the pre-
edit data to the input method which displays into them directly.

- over-the-spot: The input method displays pre-edit data in a window which it
brings up directly over the text insertion position.

- root-window: The input method displays all pre-edit data in a separate area
of the screen in a window specific to the input method.

Client applications must choose from the available input methods supported by the
IM Server and provide the display areas and callbacks required by the input method.

Architecture
Implementation Model

Within the X Window System environment, the following two typical architectural
models can be used as an input method's implementation model.

- Client/Server model: A separate process, the IM Server, processes input and
handles preediting, converting, and committing. The
IM library within the application, acting as client to the
IM Server, simply receives the committed string from
the IM Server.

- Library model: All input is handled by the IM library within the appli-
cation. The event process is closed within the IM library
and a separate IM Server process may not be required.

Most languages which need complex preediting, such as Asian languages, are im-
plemented using the Client/Server IM model. Other languages which need only dead
key or compose key processing, such as European languages, are implemented us-
ing the Library model.

In this paper, we discuss mainly the Client/Server IM model and the protocol used
in communication between the IM library (client) and the IM Server.

The Input Method Protocol

5

Structure of IM
When the client connects or disconnects to the IM Server, an open or close operation
occurs between the client and the IM Server.

The IM can be specified at the time of XOpenIM() by setting the locale of the client
and a locale modifier. Since the IM remembers the locale at the time of creation
XOpenIM() can be called multiple times (with the setting for the locale and the locale
modifier changed) to support multiple languages.

In addition, the supported IM type can be obtained using XGetIMValues().

The client usually holds multiple input (text) fields. Xlib provides a value type called
the "Input Context" (IC) to manage each individual input field. An IC can be created
by specifying XIM using XCreateIC(), and it can be destroyed using XDestroyIC().

The IC can specify the type of IM which is supported by XIM for each input field, so
each input field can handle a different type of IM.

Most importantly information such as the committed string sent from the IM Server
to the client, is exchanged based on each IC.

Since each IC corresponds to an input field, the focused input field should be an-
nounced to the IM Server using XSetICFocus(). (XUnsetICFocus() can also be used
to change the focus.)

Event Handling Model
Existing input methods support either the FrontEnd method, the BackEnd method,
or both. This protocol specifically supports the BackEnd method as the default
method, but also supports the FrontEnd method as an optional IM Server extension.

The difference between the FrontEnd and BackEnd methods is in how events are
delivered to the IM Server. (Fig. 1)

BackEnd Method

In the BackEnd method, client window input events are always delivered to the IM
library, which then passes them to the IM Server. Events are handled serially in the
order delivered, and therefore there is no synchronization problem between the IM
library and the IM Server.

Using this method, the IM library forwards all KeyPress and KeyRelease events to
the IM Server (as required by the Event Flow Control model described in Event Flow
Control) and synchronizes with the IM Server (as described in Filtering Events).

FrontEnd Method

In the FrontEnd method, client window input events are delivered by the X server
directly to both the IM Server and the IM library. Therefore this method provides
much better interactive performance while preediting (particularly in cases such
as when the IM Server is running locally on the user's workstation and the client
application is running on another workstation over a relatively slow network).

The Input Method Protocol

6

However, the FrontEnd model may have synchronization problems between the key
events handled in the IM Server and other events handled in the client, and these
problems could possibly cause the loss or duplication of key events. For this reason,
the BackEnd method is the core method supported, and the FrontEnd method is
made available as an extension for performance purposes. (Refer to Common Ex-
tensions for more information.)

X Server

Backend Method
(Core)

Frontend Method
(Extension)

IM Server

Library

Application

The flow of events

Event Flow Control
This protocol supports two event flow models for communication between the IM
library and the IM Server (Static and Dynamic).

Static Event Flow requires that input events always be sent to the IM Server from
the client.

Dynamic Event Flow, however, requires only that those input events which need to
be processed (converted) be sent to the IM Server from the client.

For instance, in the case of inputing a combination of ASCII characters and Chinese
characters, ASCII characters do not need to be processed in the IM Server, so their
key events do not have to be sent to the IM Server. On the other hand, key events
necessary for composing Chinese characters must be sent to the IM Server.

Thus, by adopting the Dynamic Event Flow, the number of requests among the X
Server, the client, and the IM Server is significantly reduced, and the number of
context switches is also reduced, resulting in improved performance. The IM Server
can send XIM_REGISTER_TRIGGERKEYS message in order to switch the event flow
in the Dynamic Event Flow.

The protocol for this process is described in Event Flow Control.

Default Preconnection Convention
IM Servers are strongly encouraged to register their symbolic names as the ATOM
names into the IM Server directory property, XIM_SERVERS, on the root window

The Input Method Protocol

7

of the screen_number 0. This property can contain a list of ATOMs, and the each
ATOM represents each possible IM Server. IM Server names are restricted to POSIX
Portable Filename Character Set. To discover if the IM Server is active, see if there
is an owner for the selection with that atom name. To learn the address of that IM
Server, convert the selection target TRANSPORT, which will return a string form of
the transport address(es). To learn the supported locales of that IM Server, convert
the selection target LOCALES, which will return a set of names of the supported
locales in the syntax X/Open defines.

The basic semantics to determine the IM Server if there are multiple ATOMs are
found in XIM_SERVERS property, is first fit if the IM Server name is not given as a
X modifier's category im.

The address information retrievable from the TRANSPORT target is a transport-specif-
ic name. The preregistered formats for transport-specific names are listed in Trans-
port List. Additional transport-specific names may be registered with X Consortium.

For environments that lack X connections, or for IM Servers which do not use the X
Window System, the preconnection convention with IM Server may be given outside
the X Window system (e.g. using a Name Service).

Protocol
The protocol described below uses the bi-directional synchronous/asynchronous re-
quest/reply/error model and is specified using the same conventions outlined in
Section 2 of the core X Window System protocol [1]:

Basic Requests Packet Format

This section describes the requests that may be exchanged between the client and
the IM Server.

The basic request packet header format is as follows.

 major-opcode: CARD8
 minor-opcode: CARD8
 length: CARD16

The MAJOR-OPCODE specifies which core request or extension package this packet
represents. If the MAJOR-OPCODE corresponds to a core request, the MINOR-OP-
CODE contains 8 bits of request-specific data. (If the MINOR-OPCODE is not used,
it is 0.) Otherwise, the MAJOR-OPCODE and the MINOR-OPCODE are specified by
XIM_QUERY_EXTENSION message. (Refer to 4.7. Query the supported extension pro-
tocol list.) The LENGTH field specifies the number of 4 bytes elements following the
header. If no additional data is followed by the header, the LENGTH field will be 0.

Data Types

The following data types are used in the core X IM Server protocol:

The Input Method Protocol

8

BITMASK16
 CARD16
BITMASK32
 CARD32
PADDING FORMAT
 Where N is some expression, and Pad(N) is the number of bytes needed to round N up to a

 Pad(N) = (4 - (N mod 4)) mod 4

LPCE
 1 A character from the4 X Portable Character Set in Latin Portable
 Character Encoding

STRING
 2 n length of string in bytes
 n LISTofLPCE string
 p unused, p=Pad(2+n)

STR
 1 n length of name in bytes
 n STRING8 name

XIMATTR
 2 CARD16 attribute ID (*1)
 2 CARD16 type of the value (*2)
 2 n length of im-attribute
 n STRING8 im-attribute
 p unused, p = Pad(2+n)

The im-attribute argument specifies XIM values such as XNQueryInputStyle.

XICATTR
 2 CARD16 attribute ID (*1)
 2 CARD16 type of the value (*2)
 2 n length of ic-attribute
 n STRING8 ic-attribute
 p unused, p = Pad(2+n)

(*1) XIMATTR and XICATTR are used during the setup stage and XIMATTRIBUTE and
 XICATTRIBUTE are used after each attribute ID has been recognized by
 the IM Server and the IM library.

(*2) The value types are defined as follows:

val-
ues

data format

#0 Separator of
NestedList

-----(*3)

#1 byte data CARD8
#2 word data CARD16
#3 long data CARD32
#4 char data STRING8

The Input Method Protocol

9

val-
ues

data format

#5 Window CARD32
#10 XIMStyles 2 n number of

XIMStyle list
 2 unused
 n CARD32 XIMStyle list
#11 XRectangle 2 INT16 X
 2 INT16 Y
 2 CARD16 width
 2 CARD16 height
#12 XPoint 2 INT16 X
 2 INT16 Y
#13 XFontSet 2 n length of Base

font name
 n STRING8 Base font name

list
 p unused, p =

Pad(2+n)
#15 XIMHotKeyTrig-

gers
4 n number of

XIMTRIG-
GERKEY list (*4)

 n XIMTRIG-
GERKEY

XIMHotkeyTrig-
ger list

 n XIMHOTKEYS-
TATE

HotKey process-
ing state

#17 XIMStringConver-
sion

XIMSTRCONV-
TEXT

#18 XIMPreeditState XIMPREEDITS-
TATE

#19 XIMResetState XIMRESETSTATE
#x7fffNestedList -----

(*3) The IC value for the separator of NestedList is defined as follows,
 #define XNSeparatorofNestedList "separatorofNestedList"
 , which is registered in X Consortium and cannot be used for any other purpose.

(*4) LISTofFOO
 A Type name of the form LISTof FOO means a counted list of elements of type FOO.
 The size of the length field may vary (it is not necessarily the same
 size as a FOO), and in some cases, it may be implicit.
XIMTRIGGERKEY
 4 CARD32 keysym
 4 CARD32 modifier
 4 CARD32 modifier mask

The Input Method Protocol

10

ENCODINGINFO
 2 n length of encoding info
 n STRING8 encoding info
 p unused, p=Pad(2+n)

 1 CARD8 extension major-opcode
 1 CARD8 extension minor-opcode
 2 n length of extension name
 n STRING8 extension name
 p unused, p = Pad(n)

XIMATTRIBUTE
 2 CARD16 attribute ID
 2 n value length
 n value
 p unused, p = Pad(n)

XICATTRIBUTE
 2 CARD16 attribute ID
 2 n value length
 n value
 p unused, p = Pad(n)

XIMSTRCONVTEXT
 2 CARD16 XIMStringConversionFeedback
 #x0000001 XIMStringConversionLeftEdge
 #x0000002 XIMStringConversionRightEdge
 #x0000004 XIMStringConversionTopEdge
 #x0000008 XIMStringConversionBottomEdge
 #x0000010 XIMStringConversionConvealed
 #x0000020 XIMStringConversionWrapped
 2 n byte length of the retrieved string
 n STRING8 retrieved string
 p unused, p = Pad(n)
 2 m byte length of feedback array
 2 unused
 m LISTofXIMSTRCONVFEEDBACK feedback array(*1)

(*1) This field is reserved for future use.

XIMFEEDBACK
 4 CARD32 XIMFeedback
 #x000001 XIMReverse
 #x000002 XIMUnderline
 #x000004 XIMHighlight
 #x000008 XIMPrimary
 #x000010 XIMSecondary
 #x000020 XIMTertiary
 #x000040 XIMVisibleToForward
 #x000080 XIMVisibleToBackward
 #x000100 XIMVisibleCenter

The Input Method Protocol

11

XIMHOTKEYSTATE
 4 CARD32 XIMHotKeyState
 #x0000001 XIMHotKeyStateON
 #x0000002 XIMHotKeyStateOFF

XIMPREEDITSTATE
 4 CARD32 XIMPreeditState
 #x0000001 XIMPreeditEnable
 #x0000002 XIMPreeditDisable

XIMRESETSTATE
 4 CARD32 XIMResetState
 #x0000001 XIMInitialState
 #x0000002 XIMPreserveState

Error Notification
Both the IM Server and the IM library return XIM_ERROR messages instead of the
corresponding reply messages if any errors occur during data processing.

At most one error is generated per request. If more than one error condition is en-
countered in processing a request, the choice of which error is returned is imple-
mentation-dependent.

XIM_ERROR (IM Server <--> IM library)

 2 CARD16 input-method-ID
 2 CARD16 input-context-ID
 2 BITMASK16 flag (*1)
 #0000 Both Input-Method-ID and Input-Context-ID are invalid
 #0001 Input-Method-ID is valid
 #0002 Input-Context-ID is valid
 2 CARD16 Error Code
 #1 BadAlloc
 #2 BadStyle
 #3 BadClientWindow
 #4 BadFocusWindow
 #5 BadArea
 #6 BadSpotLocation
 #7 BadColormap
 #8 BadAtom
 #9 BadPixel
 #10 BadPixmap
 #11 BadName
 #12 BadCursor
 #13 BadProtocol
 #14 BadForeground
 #15 BadBackground
 #16 LocaleNotSupported
 #999 BadSomething (*2)
 2 n byte length of error detail.
 2 CARD16 type of error detail (*3)

The Input Method Protocol

12

 n STRING8 error detail (*4)
 p unused, p = Pad(n)

(*1) Before an IM is created, both Input-Method-ID and
 Input-Context-ID are invalid.
 Before an IC is created, only Input-Method-ID is valid.
 After that, both of Input-Method-ID and Input-Context-ID are valid.

(*2) Unspecific error, for example "language engine died"

(*3) This field is reserved for future use.

(*4) Vendor defined detail error message

Connection Establishment
XIM_CONNECT message requests to establish a connection over a mutually-under-
stood virtual stream.

XIM_CONNECT (IM library -> IM Server)
 1 byte order
 #x42 MSB first
 #x6c LSB first
 1 unused
 2 CARD16 client-major-protocol-version (*1)
 2 CARD16 client-minor-protocol-version (*1)
 2 CARD16 number of client-auth-protocol-names
 n LISTofSTRING client-auth-protocol-names

(*1) Specify the version of IM Protocol that the client supports.

A client must send XIM_CONNECT message as the first message on the connection.
The list specifies the names of authentication protocols the sending IM Server is
willing to perform. (If the client need not authenticate, the list may be omited.)

XIM_AUTH_REQUIRED message is used to send the authentication protocol name and
protocol-specific data.

XIM_AUTH_REQUIRED (IM library <--> IM Server)

 1 CARD8 auth-protocol-index
 3 unused
 2 n length of authentication data
 2 unused
 n <varies> data
 p unused, p = Pad(n)

The auth-protocol is specified by an index into the list of names given in the
XIM_CONNECT or XIM_AUTH_SETUP message. Any protocol-specific data that might be
required is also sent.

The IM library sends XIM_AUTH_REPLY message as the reply to XIM_AUTH_REQUIRED
message, if the IM Server is authenticated.

The Input Method Protocol

13

XIM_AUTH_REPLY (IM library -> IM Server)
 2 n length of authentication data
 2 unused
 2 n length of authentication data
 2 unused
 n <varies> data
 p unused, p = Pad(n)

The auth data is specific to the authentication protocol in use.

XIM_AUTH_NEXT message requests to send more auth data.

XIM_AUTH_NEXT (IM library <--> IM Server)
 2 n length of authentication data
 2 unused
 n <varies> data
 p unused, p = Pad(n)

The auth data is specific to the authentication protocol in use.

The IM Server sends XIM_AUTH_SETUP message to authenticate the client.

XIM_AUTH_SETUP (IM Server -> IM library)
 2 CARD16 number of client-auth-protocol-names
 2 unused
 n LISTofSTRING server-auth-protocol-names

The list specifies the names of authentication protocols the client is willing to per-
form.

XIM_AUTH_NG message requests to give up the connection.

XIM_AUTH_NG (IM library <--> IM Server)

The IM Server sends XIM_CONNECT_REPLY message as the reply to XIM_CONNECT or
XIM_AUTH_REQUIRED message.

XIM_CONNECT_REPLY (IM Server -> IM library)
 2 CARD16 server-major-protocol-version (*1)
 2 CARD16 server-minor-protocol-version (*1)

(*1) Specify the version of IM Protocol that the IM Server supports.
This document specifies major version one, minor version zero.

Here are the state diagrams for the client and the IM Server.

State transitions for the client

init_status: Use authorization function -> client_ask

Not use authorization function -> client_no_check

start: Send XIM_CONNECT

The Input Method Protocol

14

If client_ask -> client_wait1

If client_no_check, client-auth-protocol-names may be omited ->
client_wait2

client_wait1: Receive XIM_AUTH_REQUIRED -> client_check

Receive <other> -> client_NG

client_check: If no more auth needed, send XIM_AUTH_REPLY -> client_wait2

If good auth data, send XIM_AUTH_NEXT -> client_wait1

If bad auth data, send XIM_AUTH_NG -> give up on this protocol

client_wait2: Receive XIM_CONNECT_REPLY -> connect Receive XIM_AUTH_SETUP
-> client_more

Receive XIM_AUTH_NEXT -> client_more

Receive XIM_AUTH_NG -> give up on this protocol

Receive <other> -> client_NG

client_more: Send XIM_AUTH_REQUIRED -> client_wait2

client_NG: Send XIM_AUTH_NG -> give up on this protocol

State transitions for the IM Server

init_status: Use authorization function -> server_ask

Not use authorization function -> server_no_check

start: Receive XIM_CONNECT

-> start2 Receive <other> -> server_NG

start2: If client_ask, send XIM_AUTH_REQUIRED -> server_wait1

If client_no_check and server_ask, send XIM_AUTH_SETUP ->
server_wait2

If client_no_check and server_no_check, send XIM_CONNECT_REPLY
-> connect

server_wait1: Receive XIM_AUTH_REPLY -> server2

Receive XIM_AUTH_NEXT -> server_more

Receive <other> -> server_NG

server_more Send XIM_AUTH_REQUIRED -> server_wait1

server2 If server_ask, send XIM_AUTH_SETUP -> server_wait2

If server_no_check, send XIM_CONNECT_REPLY -> connect

The Input Method Protocol

15

server_wait2 Receive XIM_AUTH_REQUIRED -> server_check

Receive <other> -> server_NG

server_check If no more auth data, send XIM_CONNECT_REPLY -> connect

If bad auth data, send XIM_AUTH_NG -> give up on this protocol

If good auth data, send XIM_AUTH_NEXT -> server_wait2

server_NG Send XIM_AUTH_NG -> give up on this protocol

XIM_DISCONNECT message requests to shutdown the connection over a mutually-un-
derstood virtual stream.

XIM_DISCONNECT (IM library -> IM Server)

XIM_DISCONNECT is a synchronous request. The IM library should wait until it re-
ceives either an XIM_DISCONNECT_REPLY packet or an XIM_ERROR packet.

XIM_DISCONNECT_REPLY (IM Server -> IM library)

XIM_OPEN requests to establish a logical connection between the IM library and the
IM Server.

XIM_OPEN (IM library -> IM Server)
 n STR locale name
 p unused, p = Pad(n)

XIM_OPEN is a synchronous request. The IM library should wait until receiving either
an XIM_OPEN_REPLY packet or an XIM_ERROR packet.

XIM_OPEN_REPLY (IM Server -> IM library)
 2 CARD16 input-method-ID
 2 n byte length of IM attributes supported
 n LISTofXIMATTR IM attributes supported
 2 m byte length of IC attributes supported
 2 CARD16 unused
 m LISTofXICATTR IC attributes supported

XIM_OPEN_REPLY message returns all supported IM and IC attributes in LISTofXI-
MATTR and LISTofXICATTR. These IM and IC attribute IDs are used to reduce the
amount of data which must be transferred via the network. In addition, this indi-
cates to the IM library what kinds of IM/IC attributes can be used in this session,
and what types of data will be exchanged. This allows the IM Server provider and
application writer to support IM system enhancements with new IM/IC attributes,
without modifying Xlib. The IC value for the separator of NestedList must be includ-
ed in the LISTofXICATTR.

XIM_CLOSE message requests to shutdown the logical connection between the IM
library and the IM Server.

XIM_CLOSE (IM library -> IM Server)

The Input Method Protocol

16

 2 CARD16 input-method-ID
 2 unused

XIM_CLOSE is a synchronous request. The IM library should wait until receiving ei-
ther an XIM_CLOSE_REPLY packet or an XIM_ERROR packet.

XIM_CLOSE_REPLY (IM Server -> IM library)
 2 CARD16 input-method-ID
 2 unused

Event Flow Control
An IM Server must send XIM_SET_EVENT_MASK message to the IM library in order
for events to be forwarded to the IM Server, since the IM library initially doesn't
forward any events to the IM Server. In the protocol, the IM Server will specify
masks of X events to be forwarded and which need to be synchronized by the IM
library.

XIM_SET_EVENT_MASK (IM Server -> IM library)
 2 CARD16 input-method-ID
 2 CARD16 input-context-ID
 4 EVENTMASK forward-event-mask (*1)
 4 EVENTMASK synchronous-event-mask (*2)

(*1) Specify all the events to be forwarded to the IM Server by the IM library.
(*2) Specify the events to be forwarded with synchronous flag on by the IM library.

XIM_SET_EVENT_MASK is an asynchronous request. The event masks are valid imme-
diately after they are set until changed by another XIM_SET_EVENT_MASK message.
If input-context-ID is set to zero, the default value of the input-method-ID will be
changed to the event masks specified in the request. That value will be used for the
IC's which have no individual values.

Using the Dynamic Event Flow model, an IM Server sends
XIM_REGISTER_TRIGGERKEYS message to the IM library before sending
XIM_OPEN_REPLY message. Or the IM library may suppose that the IM Server uses
the Static Event Flow model.

XIM_REGISTER_TRIGGERKEYS (IM Server -> IM library)

 2 CARD16 input-method-ID
 2 unused
 4 n byte length of on-keys
 n LISTofXIMTRIGGERKEY on-keys list
 4 m byte length of off-keys
 m LISTofXIMTRIGGERKEY off-keys list

XIM_REGISTER_TRIGGERKEYS is an asynchronous request. The IM Server notifys the
IM library of on-keys and off-keys lists with this message.

The IM library notifys the IM Server with XIM_TRIGGER_NOTIFY message that a key
event matching either on-keys or off-keys has been occurred.

The Input Method Protocol

17

XIM_TRIGGER_NOTIFY (IM library -> IM Server)
 2 CARD16 input-method-ID
 2 CARD16 input-context-ID
 4 CARD32 flag
 #0 on-keys list
 #1 off-keys list
 4 CARD32 index of keys list
 4 EVENTMASK client-select-event-mask (*1)

(*1) Specify the events currently selected by the IM library with XSelectInput.

XIM_TRIGGER_NOTIFY is a synchronous request. The IM library should wait until
receiving either an XIM_TRIGGER_NOTIFY_REPLY packet or an XIM_ERROR packet.

XIM_TRIGGER_NOTIFY_REPLY (IM Server -> IM library)
 2 CARD16 input-method-ID
 2 CARD16 input-context-ID

Encoding Negotiation
XIM_ENCODING_NEGOTIATION message requests to decide which encoding to be sent
across the wire. When the negotiation fails, the fallback default encoding is Portable
Character Encoding.

XIM_ENCODING_NEGOTIATION (IM library -> IM Server).sp 6p
 2 CARD16 input-method-ID
 2 n byte length of encodings listed by name
 n LISTofSTR list of encodings supported in the IM library.
 p unused, p = Pad(n)
 2 m byte length of encodings listed by detailed data
 2 unused
 m LISTofENCODINGINFO list of encordings supported in the IM library

The IM Server must choose one encoding from the list sent by the IM library. If
index of the encording determined is -1 to indicate that the negotiation is failed,
the fallback default encoding is used. The message must be issued after sending
XIM_OPEN message via XOpenIM(). The name of encoding may be registered with
X Consortium.

XIM_ENCODING_NEGOTIATION is a synchronous request. The IM library should
wait until receiving either an XIM_ENCODING_NEGOTIATION_REPLY packet or an
XIM_ERROR packet.

XIM_ENCODING_NEGOTIATION_REPLY (IM Server -> IM library)
 2 CARD16 input-method-ID
 2 CARD16 category of the encoding determined.
 #0 name
 #1 detailed data
 2 INT16 index of the encoding determinated.

The Input Method Protocol

18

 2 unused

Query the supported extension protocol list
XIM_QUERY_EXTENSION message requests to query the IM extensions supported by
the IM Server to which the client is being connected.

XIM_QUERY_EXTENSION (IM library -> IM Server)
 2 CARD16 input-method-ID
 2 n byte length of extensions supported by the IM library
 n LISTofSTR extensions supported by the IM library
 p unused, p = Pad(n)

An example of a supported extension is FrontEnd. The message must be issued after
sending XIM_OPEN message via XOpenIM().

If n is 0, the IM library queries the IM Server for all extensions.

If n is not 0, the IM library queries whether the IM Server supports the contents
specified in the list.

If a client uses an extension request without previously having issued a
XIM_QUERY_EXTENSION message for that extension, the IM Server responds with a
BadProtocol error. If the IM Server encounters a request with an unknown MA-
JOR-OPCODE or MINOR-OPCODE, it responds with a BadProtocol error.

XIM_QUERY_EXTENSION is a synchronous request. The IM library should wait until
receiving either an XIM_QUERY_EXTENSION_REPLY packet or an XIM_ERROR packet.

XIM_QUERY_EXTENSION_REPLY (IM Server -> IM library)
 2 CARD16 input-method-ID
 2 n byte length of extensions supported by both the IM library and the IM Server
 n LISTofEXT list of extensions supported by both the IM library and the IM Server

XIM_QUERY_EXTENSION_REPLY message returns the list of extensions supported by
both the IM library and the IM Server. If the list passed in XIM_QUERY_EXTENSION
message is NULL, the IM Server returns the full list of extensions supported by the
IM Server. If the list is not NULL, the IM Server returns the extensions in the list
that are supported by the IM Server.

A zero-length string is not a valid extension name. The IM library should disregard
any zero-length strings that are returned in the extension list. The IM library does
not use the requests which are not supported by the IM Server.

Setting IM Values
XIM_SET_IM_VALUES requests to set attributes to the IM.

XIM_SET_IM_VALUES (IM library -> IM Server)
 2 CARD16 input-method-ID
 2 n byte length of im-attribute

The Input Method Protocol

19

 n LISTofXIMATTRIBUTE im-attributes

The im-attributes in XIM_SET_IM_VALUES message are specified as a LISTofXIMAT-
TRIBUTE, specifying the attributes to be set. Attributes other than the ones re-
turned by XIM_OPEN_REPLY message should not be specified.

XIM_SET_IM_VALUES is a synchronous request. The IM library should wait until
receiving either an XIM_SET_IM_VALUES_REPLY packet or an XIM_ERROR packet, be-
cause it must receive the error attribute if XIM_ERROR message is returned.

XIM_SET_IM_VALUES_REPLY (IM Server -> IM library)
 2 CARD16 input-method-ID
 2 unused

XIM_SET_IM_VALUES_REPLY message returns the input-method-ID to distinguish
replies from multiple IMs.

Getting IM Values
XIM_GET_IM_VALUES requests to query IM values supported by the IM Server cur-
rently being connected.

XIM_GET_IM_VALUES (IM library -> IM Server)
 2 CARD16 input-method-ID
 2 n byte length of im-attribute-id
 n LISTofCARD16 im-attribute-id
 p unused, p=Pad(n)

XIM_GET_IM_VALUES is a synchronous request. The IM library should wait until it
receives either an XIM_GET_IM_VALUES_REPLY packet or an XIM_ERROR packet.

XIM_GET_IM_VALUES_REPLY (IM Server -> IM library)
 2 CARD16 input-method-ID
 2 n byte length of im-attributes returned
 n LISTofXIMATTRIBUTE im-attributes returned

The IM Server returns IM values with XIM_GET_IM_VALUES_REPLY message. The
order of the returned im-attribute values corresponds directly to that of the list
passed with the XIM_GET_IM_VALUES message.

Creating an IC
XIM_CREATE_IC message requests to create an IC.

XIM_CREATE_IC (IM library -> IM Server)
 2 CARD16 input-method-ID
 2 n byte length of ic-attributes
 n LISTofXICATTRIBUTE ic-attributes

The input-context-id is specified by the IM Server to identify the client (IC). (It is not
specified by the client in XIM_CREATE_IC message.), and it should not be set to zero.

The Input Method Protocol

20

XIM_CREATE_IC is a synchronous request which returns the input-context-ID. The
IM library should wait until it receives either an XIM_CREATE_IC_REPLY packet or
an XIM_ERROR packet.

XIM_CREATE_IC_REPLY (IM Server -> IM library)
 2 CARD16 input-method-ID
 2 CARD16 input-context-ID

Destroying the IC

XIM_DESTROY_IC message requests to destroy the IC.

XIM_DESTROY_IC (IM library -> IM Server)
 2 CARD16 input-method-ID
 2 CARD16 input-context-ID

XIM_DESTROY_IC is a synchronous request. The IM library should not
free its resources until it receives an XIM_DESTROY_IC_REPLY message be-
cause XIM_DESTROY_IC message may result in Callback packets such as
XIM_PREEDIT_DRAW and XIM_PREEDIT_DONE.

XIM_DESTROY_IC_REPLY (IM Server -> IM library)
 2 CARD16 input-method-ID
 2 CARD16 input-context-ID

Setting IC Values

XIM_SET_IC_VALUES messages requests to set attributes to the IC.

XIM_SET_IC_VALUES (IM library -> IM Server)
 2 CARD16 input-method-ID
 2 CARD16 input-context-ID
 2 n byte length of ic-attributes
 2 unused
 n LISTofXICATTRIBUTE ic-attributes

The ic-attributes in XIM_SET_IC_VALUES message are specified as a LISTofXICAT-
TRIBUTE, specifying the attributes to be set. Attributes other than the ones re-
turned by XIM_OPEN_REPLY message should not be specified.

XIM_SET_IC_VALUES is a synchronous request. The IM library should wait until
receiving either an XIM_SET_IC_VALUES_REPLY packet or an XIM_ERROR packet,
because it must receive the error attribute if XIM_ERROR message is returned.

XIM_SET_IC_VALUES_REPLY (IM Server -> IM library)

 2 CARD16 input-method-ID
 2 CARD16 input-context-ID

The Input Method Protocol

21

Getting IC Values
XIM_GET_IC_VALUES message requests to query IC values supported by the IM Serv-
er currently being connected.

XIM_GET_IC_VALUES (IM library -> IM Server)

 2 CARD16 input-method-ID
 2 CARD16 input-context-ID
 2 n byte length of ic-attribute-id
 n LISTofCARD16 ic-attribute-id
 p unused, p=Pad(2+n)

In LISTofCARD16, the appearance of the ic-attribute-id for the separator of Nest-
edList shows the end of the heading nested list.

XIM_GET_IC_VALUES is a synchronous request and returns each attribute with its
values to show the correspondence. The IM library should wait until receiving either
an XIM_GET_IC_VALUES_REPLY packet or an XIM_ERROR packet.

XIM_GET_IC_VALUES_REPLY (IM Server -> IM library)
 2 CARD16 input-method-ID
 2 CARD16 input-context-ID
 2 n byte length of ic-attribute
 2 unused
 n LISTofXICATTRIBUTE ic-attribute

Setting IC Focus
XIM_SET_IC_FOCUS message requests to set the focus to the IC.

XIM_SET_IC_FOCUS (IM library -> IM Server)
 2 CARD16 input-method-ID
 2 CARD16 input-context-ID

XIM_SET_IC_FOCUS is an asynchronous request.

Unsetting IC Focus
XIM_UNSET_IC_FOCUS message requests to unset the focus to the focused IC.

XIM_UNSET_IC_FOCUS (IM library -> IM Server)
 2 CARD16 input-method-ID
 2 CARD16 input-context-ID

XIM_UNSET_IC_FOCUS is an asynchronous request.

Filtering Events
Event filtering is mainly provided for BackEnd method to allow input method to
capture X events transparently to clients.

The Input Method Protocol

22

X Events are forwarded by XIM_FORWARD_EVENT message. This message can be op-
erated both synchronously and asynchronously. If the requester sets the synchro-
nous flag, the receiver must send XIM_SYNC_REPLY message back to the requester
when all the data processing is done.

Protocol flow of BackEnd model

With BackEnd method, the protocol flow can be classified into two meth-
ods in terms of synchronization, depending on the synchronous-eventmask of
XIM_SET_EVENT_MASK message. One can be called on-demand-synchronous method
and another can be called as full-synchronous method.

In on-demand-synchronous method, the IM library always receives
XIM_FORWARD_EVENT or XIM_COMMIT message as a synchronous request. Also, the IM
Server needs to synchronously process the correspondent reply from the IM library
and the following XIM_FORWARD_EVENT message sent from the IM library when any
of the event causes the IM Server to send XIM_FORWARD_EVENT or XIM_COMMIT mes-
sage to the IM library, so that the input service is consistent. If the IM library gets
the control back from the application after receiving the synchronous request, the
IM library replies for the synchronous request before processing any of the events.
In this time, the IM Server blocks XIM_FORWARD_EVENT message which is sent by the
IM library, and handles it after receiving the reply. However, the IM Server handles
the other protocols at any time.

In full-synchronous method, the IM library always sends XIM_FORWARD_EVENT mes-
sage to the IM Server as a synchronous request. Therefore, the reply to it from
the IM Server will be put between the XIM_FORWARD_EVENT message and its
XIM_SYNC_REPLY message. In case of sending XIM_FORWARD_EVENT or XIM_COMMIT
message, the IM Server should set the synchronous flag off. Because the synchro-
nization can be done by the following XIM_SYNC_REPLY message.

Following chart shows one of the simplest protocol flow which only deals with
keyevents for preediting operation.

Key event

Key event

Xib API IM library

XNextEvent
XFilterEvent

XNextEvent
XFilterEvent

XNextEvent
XFilterEvent(returns False)
XmbLookupString

XIM_FORWARD_EVENT

XIM_FORWARD_EVENT
or XIM_COMMIT
(synchronous)

XIM_FORWARD_EVENT

XIM_SYNC

XIM_SYNC_REPLY

XIM_SET_IC_FOCUS

XIM_SYNC_REPLY as
a reply of the
XIM_FORWARD_EVENT

IM Server

synchronous
request

processed
(The focused
IC is changed)

processed

processed

XSetICFocus

XNextEvent

Application moves
the focus

Pending

Sample Protocol Flow

Following chart shows one of the complex protocol flow, which deals with multiple
focus windows and button press event as well as keyevent, and the focus is moved
by the application triggered by both of keyevent and button press event.

The Input Method Protocol

23

Key event

Key event

Xib API IM library

XNextEvent
XFilterEvent

XNextEvent
XFilterEvent

XNextEvent
XFilterEvent(returns False)
XmbLookupString

XSetICFocus

XIM_FORWARD_EVENT

XIM_FORWARD_EVENT
or XIM_COMMIT
(synchronous)

XIM_FORWARD_EVENT

XIM_SYNC

XIM_SYNC_REPLY

XIM_SET_IC_FOCUS is
pend because another
sync cycle is started
by XIM_COMMIT

XIM_SET_IC_FOCUS

XIM_SYNC_REPLY as
a reply of the
XIM_FORWARD_EVENT

XIM_SET_IC_FOCUS

XIM_FORWARD_EVENT

IM Server

synchronous
request

Pending

processed
(The focused
IC is changed)

processed

processed

processed

XSetICFocus

Pending until
sync cycle is
done

Button press causes
focus change

Key event XNextEvent
XFilterEvent

Application moves
the focus

Pending

Sample Protocol Flow 2

XIM_FORWARD_EVENT (IM library <--> IM Server)
 2 CARD16 input-method-ID
 2 CARD16 input-context-ID
 2 BITMASK16 flag
 #0001 synchronous
 #0002 request filtering (*1)
 #0004 request lookupstring (*2)
 2 CARD16 serial number
 XEVENT X event

(*1) Indicate the receiver should filter events and possible preedit may be invoked.

(*2) Indicate the receiver should only do lookup string. The IM Server is expected
to just do a conversion of the key event to the best candidate. This bit may
affect the state of the preedit state (e.g. compose of dead key sequences).

XEVENT format is same as the X Protocol event format(xEvent). As the value of
xEvent's sequenceNumber is the bottom of 16 bit of XEvent's xany.serial, the top of
16 bit is sent by serial number(INT16).

XIM_FORWARD_EVENT message is used for forwarding the events from the IM library
to the IM Server in order for IM to be able to filter the event. On the other hand,
this message is also used for forwarding the events from the IM Server to the IM
library if the event forwarded from the IM library is not filtered. The IM Server,
which receives XIM_FORWARD_EVENT message without synchronous bit, should set

The Input Method Protocol

24

synchronous bit. If both "request event filtering" and "request lookupstring" flag
are set, then both filtering and lookup should be done for the same event.

Synchronizing with the IM Server
XIM_SYNC message requests to synchronize the IM library and the IM Server.

XIM_SYNC (IM library <--> IM Server)
 2 CARD16 input-method-ID
 2 CARD16 input-context-ID

This synchronization can be started either on the IM library side or on the IM Server
side. The side which receives XIM_SYNC message should process all XIM requests
before replying. The input-context-ID is necessary to distinguish the IC with which
the IM library and the IM Server are synchronized.

XIM_SYNC_REPLY (IM Server <--> IM library)
 2 CARD16 input-method-ID
 2 CARD16 input-context-ID

The side which receives XIM_FORWARD_EVENT, XIM_COMMIT or any other message
with synchronous bit, should process all XIM request before replying, and send
XIM_SYNC_REPLY message as the reply to the previous message.

Sending a committed string
When the IM Server commits a string, the IM Server sends either the committed
string or list of KeySym, or both, by XIM_COMMIT message.

XIM_COMMIT (IM Server -> IM library)

 2 CARD16 input-method-ID
 2 CARD16 input-context-ID
 2 BITMASK16 flag
 #0001 synchronous
 #0002 XLookupChars
 #0004 XLookupKeySym
 #0006 XLookupBoth = XLookupChars | XLookupKeySym

If flag is XLookupKeySym, the arguments continue as follows:

 2 unused
 4 KEYSYM KeySym

If flag is XLookupChars, the arguments continue as follows

 2 m byte length of committed string
 m LISTofBYTE committed string
 p unused, p = Pad(m)

If flag is XLookupBoth, the arguments continue as follows

The Input Method Protocol

25

 2 unused
 4 KEYSYM KeySym
 2 n byte length of committed string
 n LISTofBYTE committed string
 p unused, p = Pad(2+n)

The IM Server which receives XIM_COMMIT message without synchronous bit should
set synchronous bit.

Reset IC
XIM_RESET_IC message requests to reset the status of IC in the IM Server.

XIM_RESET_IC (IM library -> IM Server)
 2 CARD16 input-method-ID
 2 CARD16 input-context-ID

XIM_RESET_IC is a synchronous request. The IM library should wait until receiving
either an XIM_RESET_IC_REPLY packet or an XIM_ERROR packet.

XIM_RESET_IC_REPLY (IM Server -> IM library)

 2 CARD16 input-method-ID
 2 CARD16 input-context-ID
 2 n byte length of preedit string
 n LISTofBYTE preedit string
 p unused, p = Pad(2+n)

XIM_RESET_IC_REPLY message returns the input-context-ID to distinguish replies
from multiple ICs.

Callbacks
If XIMStyle has XIMPreeditArea or XIMStatusArea set, XIMGeometryCallback may
be used, and if XIMPreeditCallback and/or XIMStatusCallback are set, correspond-
ing callbacks may be used.

Any callback request may be sent from an IM Server to an IM client asynchronously
in response to any request previously sent by the IM client to the IM Server.

When an IM Server needs to send a callback request synchronously with the request
previously sent by an IM client, the IM Server sends it before replying to the pre-
vious request.

Negotiating geometry

The IM Server sends XIM_GEOMETRY message to start geometry negotiation, if
XIMStyle has XIMPreeditArea or XIMStatusArea set.

XIM_GEOMETRY (IM Server -> IM library)

The Input Method Protocol

26

 2 CARD16 input-method-ID
 2 CARD16 input-context-ID

There is always a single Focus Window, even if some input fields have only one IC.

Converting a string

XIM_STR_CONVERSION (IM Server -> IM library)

 2 CARD16 input-method-ID
 2 CARD16 input-context-ID
 2 CARD16 XIMStringConversionPosition
 2 unused
 4 CARD32 XIMCaretDirection
 #0 XIMForwardChar
 #1 XIMBackwardChar
 #2 XIMForwardWord
 #3 XIMBackwardWord
 #4 XIMCaretUp
 #5 XIMCaretDown
 #6 XIMNextLine
 #7 XIMCPreviousLine
 #8 XIMLineStart
 #9 XIMLineEnd
 #10 XIMAbsolutePosition
 #11 XIMDontChange
 2 CARD16 factor
 2 CARD16 XIMStringConversionOperation
 #0001 XIMStringConversionSubstitution
 #0002 XIMStringConversionRetrieval
 2 INT16 byte length to multiply the XIMStringConversionType

XIM_STR_CONVERSION message may be used to start the string conversion from the
IM Server.

XIM_STR_CONVERSION_REPLY (IM library -> IM Server)

 2 CARD16 input-method-ID
 2 CARD16 input-context-ID
 4 CARD32 XIMStringConversionFeedback
 XIMSTRCONVTEXT XIMStringConversionText

XIM_STR_CONVERSION_REPLY message returns the string to be converted and the
feedback information array.

Preedit Callbacks

The IM Server sends XIM_PREEDIT_START message to call the XIMPreeditStart-
Callback function.

XIM_PREEDIT_START (IM Server -> IM library)

The Input Method Protocol

27

 2 CARD16 input-method-ID
 2 CARD16 input-context-ID

The reply to this message must be sent synchronously. The reply forwards the return
value from the callback function to the IM Server.

XIM_PREEDIT_START_REPLY (IM library -> IM Server)

 2 CARD16 input-method-ID
 2 CARD16 input-context-ID
 4 INT32 return value

XIM_PREEDIT_START_REPLY message returns the input-context-ID to distinguish
replies from multiple IC's. The return value contains the return value of the function
XIMPreeditStartCallback.

The IM Server sends XIM_PREEDIT_DRAW message to call the XIMPreeditDrawCall-
back function.

XIM_PREEDIT_DRAW (IM Server -> IM library)

 2 CARD16 input-method-ID
 2 CARD16 input-context-ID
 4 INT32 caret
 4 INT32 chg_first
 4 INT32 chg_length
 4 BITMASK32 status
 #x0000001 no string
 #x0000002 no feedback
 2 n length of preedit string
 n STRING8 preedit string
 p unused, p = Pad(2+n)
 2 m byte length of feedback array
 2 unused
 m LISTofXIMFEEDBACK feedback array

The fields "caret", "chg_first" and "chg_length" correspond to the fields of XIM-
PreeditDrawCallbackStruct. When the "no string" bit of the status field is set, the
text field of XIMPreeditDrawCallbackStruct is NULL. When the "no feedback" bit of
the status field is set, the text feedback field of XIMPreeditDrawCallbackStruct is
NULL. When the above bits are not set, "preedit string" contains the preedit string
to be displayed, and the feedback array contains feedback information.

The IM Server sends XIM_PREEDIT_CARET message to call the PreeditCaretCallback
function.

XIM_PREEDIT_CARET (IM Server -> IM library)

 2 CARD16 input-method-ID
 2 CARD16 input-context-ID
 4 INT32 position
 4 CARD32 direction
 #0 XIMForwardChar

The Input Method Protocol

28

 #1 XIMBackwardChar
 #2 XIMForwardWord
 #3 XIMBackwardWord
 #4 XIMCaretUp
 #5 XIMCaretDown
 #6 XIMNextLine
 #7 XIMCPreviousLine
 #8 XIMLineStart
 #9 XIMLineEnd
 #10 XIMAbsolutePosition
 #11 XIMDontChange
 4 CARD32 style
 #0 XIMInvisible
 #1 XIMCPrimary
 #2 XIMSecondary

Each entry corresponds to a field of XIMPreeditCaretCallbackStruct. Since this call-
back sets the caret position, its reply must be sent synchronously.

XIM_PREEDIT_CARET_REPLY (IM library -> IM Server)

 2 CARD16 input-method-ID
 2 CARD16 input-context-ID
 4 CARD32 position

The position is the value returned by the callback function after it has been called.

The IM Server sends XIM_PREEDIT_DONE message to call the XIMPreeditDoneCall-
back function.

XIM_PREEDIT_DONE (IM Server -> IM library)

 2 CARD16 input-method-ID
 2 CARD16 input-context-ID

Preedit state notify

XIM_PREEDITSTATE (IM Server -> IM Library)
 2 CARD16 input-method-ID
 2 CARD16 input-context-ID
 4 BITMASK32 XIMPreeditState
 #x0000000 XIMPreeditUnknown
 #x0000001 XIMPreeditEnable
 #x0000002 XIMPreeditDisable

XIM_PREEDITSTATE message is used to call the XIMPreeditStateNotifyCallback func-
tion.

Status Callbacks

The IM Server sends XIM_STATUS_START message to call the XIMStatusStartCall-
back function.

The Input Method Protocol

29

XIM_STATUS_START (IM Server -> IM library)

 2 CARD16 input-method-ID
 2 CARD16 input-context-ID

The IM Server sends XIM_STATUS_DRAW message to call the XIMStatusDrawCall-
back function.

XIM_STATUS_DRAW (IM Server -> IM library)

 2 CARD16 input-method-ID
 2 CARD16 input-context-ID
 4 CARD32 type
 #0 XIMTextType
 #1 XIMBitmapType

If type is XIMTextType, the arguments continue as follows.

 4 BITMASK32 status
 #x0000001 no string
 #x0000002 no feedback
 2 n length of status string
 n STRING8 status string
 p unused, p = Pad(2+n)
 2 m byte length of feedback array
 2 unused
 m LISTofXIMFEEDBACK feedback array

If type is XIMBitmapType, the arguments continue as follows.

 4 PIXMAP pixmap data

The field "type" corresponds to the field in XIMStatusDrawCallbackStruct.

The IM Server sends XIM_STATUS_DONE message to call the XIMStatusDoneCall-
back function.

XIM_STATUS_DONE (IM Server -> IM library)

 2 CARD16 input-method-ID
 2 CARD16 input-context-ID

Acknowledgements
This document represents the culmination of several years of debate and experi-
ments done under the auspices of the MIT X Consortium i18n working group. Al-
though this was a group effort, the author remains responsible for any errors or
omissions.

We would like to thank to all members of this group. And we would like to make
special thanks to the following people (in alphabetical order) for their participa-

The Input Method Protocol

30

tion in the IM Protocol design, Hector Chan, Takashi Fujiwara, Yoshio Horiuchi,
Makoto Inada, Hiromu Inukai, Mickael Kung, Seiji Kuwari, Franky Ling, Hiroyuki
Machida, Hiroyuki Miyamoto, Frank Rojas, Bob Scheifler, Makiko Shimamura, Shoji
Sugiyama, Hidetoshi Tajima, Masaki Takeuchi, Makoto Wakamatsu, Masaki Wakao,
Nobuyuki Tanaka, Shigeru Yamada, Katsuhisa Yano, Jinsoo Yoon.

References
X Window System Protocol Version 11. Robert W. Scheifler.

Xlib - C Language X Interface". Robert W. Scheifler.

A. Common Extensions
Extension opcodes and packet names (e.g. XIM_EXT_SET_EVENT_MASK) for additional
extensions may be registered with X Consortium. The following is a commonly well-
known extended packet.

(1) Extension to manipulate the event handling\fP

XIM_EXT_SET_EVENT_MASK message specifies the set of event masks that the IM
library should manipulate.

XIM_EXT_SET_EVENT_MASK (IM Server -> IM library)

 2 CARD16 input-method-ID
 2 CARD16 input-context-ID
 4 EVENTMASK filter-event-mask (*1)
 4 EVENTMASK intercept-event-mask (*2)
 4 EVENTMASK select-event-mask (*3)
 4 EVENTMASK forward-event-mask (*4)
 4 EVENTMASK synchronous-event-mask (*5)

 (*1) Specify the events to be neglected by the IM library via XFilterEvent.
 (*2) Specify the events to be deselected by the IM library with XSelectInput.
 (*3) Specify the events to be selected by the IM library with XSelectInput.
 (*4) Specify all the events to be forwarded to the IM Server by the IM library.
 (*5) Specify the events to be forwarded with synchronous flag on by the IM library.

The IM library must reply XIM_SYNC_REPLY message to the IM Server. This request
is valid after the ic is created.

(2) Extension for improvement of performance.

The following requests may be used for improvement of performance.

XIM_EXT_FORWARD_KEYEVENT message may be used instead of XIM_FORWARD_EVENT
message.

XIM_EXT_FORWARD_KEYEVENT (IM Server <--> IM library)
 2 CARD16 input-method-ID
 2 CARD16 input-context-ID

The Input Method Protocol

31

 2 BITMASK16 flag
 #0001 synchronous
 2 CARD16 sequence number
 1 BYTE xEvent.u.u.type
 1 BYTE keycode
 2 CARD16 state
 4 CARD32 time
 4 CARD32 window

XIM_EXT_MOVE message may be used to change the spot location instead of
XIM_SET_IC_VALUES message. It is effective only if the client specified XIMPreed-
itPosition.

XIM_EXT_MOVE (IM library -> IM Server)

 2 CARD16 input-method-ID
 2 CARD16 input-context-ID
 2 INT16 X
 2 INT16 Y

XIM_EXT_MOVE message is a asynchronous request.

B. Transport List
The list of transport specific IM Server address format registered

The following format represents the ATOM contained in XIM_SERVERS property and
the string returned from the request converting selection target LOCALES and
TRANSPORT.

 "{category=[value,...]}..."

The following categories are currently registered.

server;: IM Server name (used for XIM_SERVERS)
locale;: XPG4 locale name (LOCALES)
transport;: transport-specific name (TRANSPORT)

The preregistered formats for transport-specific names are as follows:

TCP/IP Names

The following syntax should be used for system internal domain names:

<local name> ::= "local/"<hostname>":"<pathname>

Where <pathname> is a path name of socket address.

IM Server's name should be set to <pathname> to run multiple IM Server at the
same time

The following syntax should be used for Internet domain names:

The Input Method Protocol

32

<TCP name> ::= "tcp/"<hostname>":"<ipportnumber>

where <hostname> is either symbolic (such as expo.lcs.mit.edu) or numeric decimal
(such as 18.30.0.212). The <ipportnumber> is the port on which the IM Server is
listening for connections. For example:

tcp/expo.lcs.mit.edu:8012
tcp/18.30.0.212:7890

DECnet Names

The following syntax should be used for DECnet names:

<DECnet name> ::= "decnet/"<nodename>"::IMSERVER$"<objname>

where <nodename> is either symbolic (such as SRVNOD) or the numeric decimal
form of the DECnet address (such as 44.70). The <objname> is normal, case-insen-
sitive DECnet object name. For example:

DECNET/SRVNOD::IMSERVER$DEFAULT
decnet/44.70::IMSERVER$other

X Names

The following syntax should be used for X names:

<X name> ::= "X/"

If a given category has multiple values, the value is evaluated in order of setting.

C. Protocol Number
Major Protocol number

XIM_CONNECT #001
XIM_CONNECT_REPLY #002
XIM_DISCONNECT #003
XIM_DISCONNECT_REPLY #004

XIM_AUTH_REQUIRED #010
XIM_AUTH_REPLY #011
XIM_AUTH_NEXT #012
XIM_AUTH_SETUP #013
XIM_AUTH_NG #014

XIM_ERROR #020

XIM_OPEN #030
XIM_OPEN_REPLY #031
XIM_CLOSE #032

The Input Method Protocol

33

XIM_CLOSE_REPLY #033
XIM_REGISTER_TRIGGERKEYS #034
XIM_TRIGGER_NOTIFY #035
XIM_TRIGGER_NOTIFY_REPLY #036
XIM_SET_EVENT_MASK #037
XIM_ENCODING_NEGOTIATION #038
XIM_ENCODING_NEGOTIATION_REPLY #039
XIM_QUERY_EXTENSION #040
XIM_QUERY_EXTENSION_REPLY #041
XIM_SET_IM_VALUES #042
XIM_SET_IM_VALUES_REPLY #043
XIM_GET_IM_VALUES #044
XIM_GET_IM_VALUES_REPLY #045

XIM_CREATE_IC #050
XIM_CREATE_IC_REPLY #051
XIM_DESTROY_IC #052
XIM_DESTROY_IC_REPLY #053
XIM_SET_IC_VALUES #054
XIM_SET_IC_VALUES_REPLY #055
XIM_GET_IC_VALUES #056
XIM_GET_IC_VALUES_REPLY #057
XIM_SET_IC_FOCUS #058
XIM_UNSET_IC_FOCUS #059
XIM_FORWARD_EVENT #060
XIM_SYNC #061
XIM_SYNC_REPLY #062
XIM_COMMIT #063
XIM_RESET_IC #064
XIM_RESET_IC_REPLY #065

XIM_GEOMETRY #070
XIM_STR_CONVERSION #071
XIM_STR_CONVERSION_REPLY #072
XIM_PREEDIT_START #073
XIM_PREEDIT_START_REPLY #074
XIM_PREEDIT_DRAW #075
XIM_PREEDIT_CARET #076
XIM_PREEDIT_CARET_REPLY #077
XIM_PREEDIT_DONE #078
XIM_STATUS_START #079
XIM_STATUS_DRAW #080
XIM_STATUS_DONE #081
XIM_PREEDITSTATE #082

(*) The IM Server's extension protocol number should be more than #128.

D. Implementation Tips
(1) FrontEnd Method

FrontEnd method is recognized as a performance acceleration by the trade off of
the variety of the reliability.

The Input Method Protocol

34

In order to use the FrontEnd method, the IM library must query the IM Serv-
er to see if the FrontEnd extension is available. The query is made by using the
XIM_QUERY_EXTENSION message. The IM Server may send XIM_EXT_SET_EVENT_MASK
message with intercept-event-mask, forward-event-mask, and synchronous-event-
mask values set after replying XIM_QUERY_EXTENSION_REPLY message.

FrontEnd method can be implemented in a couple of ways depending on how the
IM Server utilize XIM_EXT_SET_EVENT_MASK message.

One approach is to update both of the input mask and the filter-event-mask depend-
ing on the preeidting state. The sample protocol sequence using the static event
flow is as follows:

IM Library IM Server

Keys in the on-key-list

event mask is changed
to deselect the event

event mask is changed
to select the event

XIM_FORWARD_EVENT

XIM_EXT_SET_EVENT_MASK
intercept-event-mask is set

XIM_EXT_SET_EVENT_MASK
select-event-mask is set

event mask is changed
to select the event

X events directly come
to the IM Server

when preediting is turned off

event mask is changed
to deselect the event

The flow of events

To pursuit a maximum performance regardless of the preediting mode, the IM Serv-
er may use the dynamic event flow with the following sample protocol sequence.

IM Library IM Server

Keys in the on-key-list

event mask is changed
to deselect the event

event mask is changed
to select the event

XIM_EXT_SET_EVENT_MASK
intercept-event-mask is set

XIM_EXT_SET_EVENT_MASK
select-event-mask is set

event mask is changed
to select the event

X events directly come
to the IM Server

when preediting is turned off

event mask is changed
to deselect the event

XIM_TRIGGER_NOTIFY

XIM_TRIGGER_NOTIFY_REPLY

The flow of events

This method can reduce the XIM protocol traffic dramatically by updating inter-
cept-event-mask and select-event-mask accordingly. The tradeoff of this perfor-

The Input Method Protocol

35

mance improvement is that the key events may be lost or disordered in some par-
ticular situation, such as when the user types the keyboard in following sequence
really fast:

<preediting on key>"some strings"<preediting off key>"another string"

Since this method requires the input mask updates to the both the IM Server and
Xlib when turning on and off the preediting, and there is a time lag till the requests
take effect when two client issues the input mask updates simultaneously.

Another approach of the FrontEnd method is to update the filter-event-mask
depending on the preediting state and not to update the input mask. The IM
Server must register both of the preediting on key list and off key list by
XIM_REGISTER_TRIGGERKEYS message. In this method, Both the IM Server and the
IM client select the same events on the same client's window, so that the events are
delivered to both of the IM Server and the client. The preediting on and off states
are expressed by whether the key events are filtered or not. The sample protocol
sequence are as follows:

<<Using static event flow>>
IM Library IM Server

Keys in the on-key-list

XIM_EXT_SET_EVENT_MASK
intercept-event-mask is set

XIM_EXT_SET_EVENT_MASK
select-event-mask is set

XIM_FORWARD_EVENT

the specified events
are being filtered

Keys in the off-key-list

the specified events
are being processed

Keys in the on-key-list

the specified events
are being processed

Keys in the off-key-list

the specified events
are being discarded

The flow of events

<<Using the dynamic event flow>>

The Input Method Protocol

36

IM Library IM Server

Keys in the on-key-list

XIM_EXT_SET_EVENT_MASK
intercept-event-mask is set

XIM_EXT_SET_EVENT_MASK
select-event-mask is set

XIM_TRIGGER_NOTIFY

the specified events
are being filtered

Keys in the off-key-list

the specified events
are being processed

Keys in the on-key-list

the specified events
are being processed

Keys in the off-key-list

the specified events
are being discarded

XIM_TRIGGER_NOTIFY_REPLY

The flow of events

This method does not have the problem of the time lag when going across the preed-
iting on and off mode, however, the amount of the performance acceleration is not
as good as the method described above.

In general, the FrontEnd method requires some synchronization to some of the X
protocols, such as the ChangeWindowAttribute protocol for the event mask change
or the GrabKey protocol, since it relies on the X's principal event dispatching mech-
anism. Any X protocol bindings do not consider the synchronization might cause
some mis-synchronization between the IM clients and the IM Server.

(2) Transport Layer

The Xlib XIM implementation is layered into three functions, a protocol layer, an
interface layer and a transport layer. The purpose of this layering is to make the
protocol independent of transport implementation. Each function of these layers
are:

The protocol layer implements overall function of XIM and calls the interface
layer functions when it needs to communicate to IM Server.

The interface layer separates the implementation of the transport layer from
the protocol layer, in other words, it provides implementa-
tion independent hook for the transport layer functions.

The transport layer handles actual data communication with IM Server. It is
done by a set of several functions named transporters.

The interface layer and the transport layer make various communication channels
usable such as X Protocol, TCP/IP, DECnet or STREAM. The following is a sample
implementation for the transporter using the X connection. Refer to "xtrans" for the
transporter using Socket Transport.

At the beginning of the X Transport connection for the XIM transport mechanism,
two different windows must be created either in an Xlib XIM or in an IM Server,
with which the Xlib and the IM Server exchange the XIM transports by using the

The Input Method Protocol

37

ClientMessage events and Window Properties. In the following, the window created
by the Xlib is referred as the "client communication window", and on the other
hand, the window created by the IM Server is referred as the "IMS communication
window".

Connection

In order to establish a connection, a communication window is created. A ClientMes-
sage in the following event's format is sent to the owner window of XIM_SERVER
selection, which the IM Server has created.

Refer to "The Input Method Protocol" for the XIM_SERVER atom.

Table D.1. The ClientMessage sent to the IMS window.
Structure Member Contents

int type ClientMessage
u_long serial Set by the X Window System
Bool send_event Set by the X Window System
Display *display The display to which connects
Window window IMS Window ID
Atom message_type XInternAtom(display, "_XIM_XCONNECT", False)
int format 32
long data.l[0] client communication window ID
long data.l[1] client-major-transport-version (*1)
long data.l[2] client-major-transport-version (*1)

In order to establish the connection (to notify the IM Server communication win-
dow), the IM Server sends a ClientMessage in the following event's format to the
client communication window.

Table D.2. The ClientMessage sent by the IM Server.
Structure Member Contents

int type ClientMessage
u_long serial Set by the X Window System
Bool send_event Set by the X Window System
Display *display The display to which connects
Window window client communication window ID
Atom message_type XInternAtom(display, "_XIM_XCONNECT", False)
int format 32
long data.l[0] IMS communication window ID
long data.l[1] server-major-transport-version (*1)
long data.l[2] server-minor-transport-version (*1)
long data.l[3] dividing size between ClientMessage and Property

(*2)

(*1) major/minor-transport-version

The Input Method Protocol

38

The read/write method is decided by the combination of major/minor-transport-ver-
sion, as follows:

Table D.3. The read/write method and the major/minor-
transport-version

Transport-version read/write
major minor

0 only-CM & Property-with-CM
1 only-CM & multi-CM

0

2 only-CM & multi-CM & Property-with-CM
1 0 PropertyNotify

0 only-CM & PropertyNotify2
1 only-CM & multi-CM & PropertyNotify

only-CM : data is sent via a ClientMessage
multi-CM : data is sent via multiple ClientMessages
Property-with-CM : data is written in Property, and its Atom
 is send via ClientMessage
PropertyNotify : data is written in Property, and its Atom
 is send via PropertyNotify

The method to decide major/minor-transport-version is as follows:

• The client sends 0 as major/minor-transport-version to the IM Server. The client
must support all methods in Table D-3. The client may send another number as
major/minor-transport-version to use other method than the above in the future.

• The IM Server sends its major/minor-transport-version number to the client. The
client sends data using the method specified by the IM Server.

• If major/minor-transport-version number is not available, it is regarded as 0.

(*2) dividing size between ClientMessage and Property

If data is sent via both of multi-CM and Property, specify the dividing size between
ClientMessage and Property. The data, which is smaller than this size, is sent via
multi-CM (or only-CM), and the data, which is lager than this size, is sent via Prop-
erty.

read/write

The data is transferred via either ClientMessage or Window Property in the X Win-
dow System.

Format for the data from the Client to the IM Server

ClientMessage

If data is sent via ClientMessage event, the format is as follows:

The Input Method Protocol

39

Table D.4. The ClientMessage event's format (first or middle)

Structure Member Contents
int type ClientMessage
u_long serial Set by the X Window System
Bool send_event Set by the X Window System
Display *display The display to which connects
Window window IMS communication window ID
Atom message_type XInternAtom(display, "_XIM_MOREDATA", False)
int format 8
char data.b[20] (read/write DATA : 20 byte)

Table D.5. The ClientMessage event's format (only or last)

Structure Member Contents
int type ClientMessage
u_long serial Set by the X Window System
Bool send_event Set by the X Window System
Display *display The display to which connects
Window window IMS communication window ID
Atom message_type XInternAtom(display, "_XIM_PROTOCOL", False)
int format 8
char data.b[20] (read/write DATA : MAX 20 byte) (*1)

(*1) If the data is smaller than 20 byte, all data other than available data must be 0.

Property

In the case of large data, data will be sent via the Window Property for the efficiency.
There are the following two methods to notify Property, and transport-version is
decided which method is used.

• The XChangeProperty function is used to store data in the client communication
window, and Atom of the stored data is notified to the IM Server via ClientMessage
event.

• The XChangeProperty function is used to store data in the client communication
window, and Atom of the stored data is notified to the IM Server via PropertyNotify
event.

The arguments of the XChangeProperty are as follows:

The Input Method Protocol

40

Table D.6. The XChangeProperty event's format

Argument Contents
Display *display The display to which connects
Window window IMS communication window ID
Atom property read/write property Atom (*1)
Atom type XA_STRING
int format 8
int mode PropModeAppend
u_char *data read/write DATA
int nelements length of DATA

The read/write property ATOM allocates the following strings by XInternAtom.

"_clientXXX"

The client changes the property with the mode of PropModeAppend and the IM
Server will read it with the delete mode i.e. (delete = True).

If Atom is notified via ClientMessage event, the format of the ClientMessage is as
follows:

Table D.7. The ClientMessage event's format to send Atom of
property

Structure Members Contents
int type ClientMessage
u_long serial Set by the X Window System
Bool send_event Set by the X Window System
Display *display The display to which connects
Window window IMS communication window ID
Atom message_type XInternAtom(display, "_XIM_PROTOCOL", False)
int format 32
long data.l[0] length of read/write property Atom
long data.l[1] read/write property Atom

Format for the data from the IM Server to the Client

ClientMessage

The format of the ClientMessage is as follows:

The Input Method Protocol

41

Table D.8. The ClientMessage event's format (first or middle)

Structure Members Contents
int type ClientMessage
u_long serial Set by the X Window System
Bool send_event Set by the X Window System
Display *display The display to which connects
Window window client communication window ID
Atom message_type XInternAtom(display, "_XIM_MOREDATA", False)
int format 8
char data.b[20] (read/write DATA : 20 byte)

Table D.9. The ClientMessage event's format (only or last)

Structure Members Contents
int type ClientMessage
u_long serial Set by the X Window System
Bool send_event Set by the X Window System
Display *display The display to which connects
Window window client communication window ID
Atom message_type XInternAtom(display, "_XIM_PROTOCOL", False)
int format 8
char data.b[20] (read/write DATA : MAX 20 byte) (*1)

(*1) If the data size is smaller than 20 bytes, all data other than available data must
be 0.

Property

In the case of large data, data will be sent via the Window Property for the efficiency.
There are the following two methods to notify Property, and transport-version is
decided which method is used.

• The XChangeProperty function is used to store data in the IMS communication
window, and Atom of the property is sent via the ClientMessage event.

• The XChangeProperty function is used to store data in the IMS communication
window, and Atom of the property is sent via PropertyNotify event.

The arguments of the XChangeProperty are as follows:

The Input Method Protocol

42

Table D.10. The XChangeProperty event's format

Argument Contents
Display *display The display which to connects
Window window client communication window ID
Atom property read/write property Atom (*1)
Atom type XA_STRING
int format 8
int mode PropModeAppend
u_char *data read/write DATA
int nelements length of DATA

(*1) The read/write property ATOM allocates some strings, which are not allocated
by the client, by XInternAtom.

The IM Server changes the property with the mode of PropModeAppend and the
client reads it with the delete mode, i.e. (delete = True).

If Atom is notified via ClientMessage event, the format of the ClientMessage is as
follows:

Table D.11. The ClientMessage event's format to send Atom of
property

Structure Member Contents
int type ClientMessage
u_long serial Set by the X Window System
Bool send_event Set by the X Window System
Display *display The display to which connects
Window window client communication window ID
Atom message_type XInternAtom(display, "_XIM_PROTOCOL", False)
int format 32
long data.l[0] length of read/write property ATOM
long data.l[1] read/write property ATOM

Closing Connection

If the client disconnect with the IM Server, shutdown function should free the com-
munication window properties and etc..

	The Input Method Protocol
	Table of Contents
	Introduction
	Scope
	Background
	Input Method Styles

	Architecture
	Implementation Model
	Structure of IM
	Event Handling Model
	BackEnd Method
	FrontEnd Method

	Event Flow Control

	Default Preconnection Convention
	Protocol
	Basic Requests Packet Format
	Data Types
	Error Notification
	Connection Establishment
	Event Flow Control
	Encoding Negotiation
	Query the supported extension protocol list
	Setting IM Values
	Getting IM Values
	Creating an IC
	Destroying the IC
	Setting IC Values
	Getting IC Values
	Setting IC Focus
	Unsetting IC Focus
	Filtering Events
	Synchronizing with the IM Server
	Sending a committed string
	Reset IC
	Callbacks
	Negotiating geometry
	Converting a string
	Preedit Callbacks
	Preedit state notify
	Status Callbacks

	Acknowledgements
	References
	A. Common Extensions
	B. Transport List
	C. Protocol Number
	D. Implementation Tips

