
Inter-Client Exchange (ICE) Protocol

X Consortium Standard

Robert Scheifler, X Consortium
Jordan Brown

Quarterdeck Office Systems

Inter-Client Exchange (ICE) Protocol: X Consortium Standard
by Robert Scheifler
Jordan Brown
Quarterdeck Office Systems
X Version 11, Release 7.7
Version 1.1
Copyright © 1993, 1994 X Consortium

Abstract

There are numerous possible protocols that can be used for communication among clients.
They have many similarities and common needs, including authentication, version negotia-
tion, data typing, and connection management. The Inter-Client Exchange (ICE) protocol is
intended to provide a framework for building such protocols. Using ICE reduces the complex-
ity of designing new protocols and allows the sharing of many aspects of the implementation.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

X Window System is a trademark of The Open Group.

iii

Table of Contents
1. Purpose and Goals .. 1
2. Overview of the Protocol .. 2
3. Data Types .. 4

Primitive Types .. 4
Complex Types ... 4
Message Format ... 4

4. Overall Protocol Description ... 6
5. ICE Control Subprotocol -- Major Opcode 0 ... 7

Generic Error Classes .. 11
ICE Error Classes .. 12

6. State Diagrams .. 15
7. Protocol Encoding ... 18

Primitives ... 18
Enumerations ... 18
Compound Types .. 18
ICE Minor opcodes .. 18
Message Encoding ... 19
Error Class Encoding ... 22

Generic Error Class Encoding .. 22
ICE-specific Error Class Encoding ... 22

A. Modification History ... 23
Release 6 to Release 6.1 ... 23
Release 6.1 to Release 6.3 .. 23

B. ICE X Rendezvous Protocol .. 24
Introduction .. 24
Overview of ICE X Rendezvous ... 24
Registering Known Protocols ... 24
Initiating the Rendezvous .. 24
ICE Subprotocol Versioning ... 27

1

Chapter 1. Purpose and Goals
In discussing a variety of protocols -- existing, under development, and hypotheti-
cal -- it was noted that they have many elements in common. Most protocols need
mechanisms for authentication, for version negotiation, and for setting up and tak-
ing down connections. There are also cases where the same two parties need to talk
to each other using multiple protocols. For example, an embedding relationship be-
tween two parties is likely to require the simultaneous use of session management,
data transfer, focus negotiation, and command notification protocols. While these
are logically separate protocols, it is desirable for them to share as many pieces of
implementation as possible.

The Inter-Client Exchange (ICE) protocol provides a generic framework for build-
ing protocols on top of reliable, byte-stream transport connections. It provides basic
mechanisms for setting up and shutting down connections, for performing authen-
tication, for negotiating versions, and for reporting errors. The protocols running
within an ICE connection are referred to here as subprotocols. ICE provides facili-
ties for each subprotocol to do its own version negotiation, authentication, and er-
ror reporting. In addition, if two parties are communicating using several different
subprotocols, ICE will allow them to share the same transport layer connection.

2

Chapter 2. Overview of the Protocol
Through some mechanism outside ICE, two parties make themselves known to each
other and agree that they would like to communicate using an ICE subprotocol. ICE
assumes that this negotation includes some notion by which the parties will decide
which is the *Qoriginating*U party and which is the *Qanswering*U party. The
negotiation will also need to provide the originating party with a name or address
of the answering party. Examples of mechanisms by which parties can make them-
selves known to each other are the X selection mechanism, environment variables,
and shared files.

The originating party first determines whether there is an existing ICE connection
between the two parties. If there is, it can re-use the existing connection and move
directly to the setup of the subprotocol. If no ICE connection exists, the originating
party will open a transport connection to the answering party and will start ICE
connection setup.

The ICE connection setup dialog consists of three major parts: byte order exchange,
authentication, and connection information exchange. The first message in each di-
rection is a ByteOrder message telling which byte order will be used by the send-
ing party in messages that it sends. After that, the originating party sends a Con-
nectionSetup message giving information about itself (vendor name and release
number) and giving a list of ICE version numbers it is capable of supporting and a
list of authentication schemes it is willing to accept. Authentication is optional. If no
authentication is required, the answering party responds with a ConnectionReply
message giving information about itself, and the connection setup is complete.

If the connection setup is to be authenticated, the answering party will respond
with an AuthenticationRequired message instead of a ConnectionReply message.
The parties then exchange AuthenticationReply and AuthenticationNextPhase
messages until authentication is complete, at which time the answering party finally
sends its ConnectionReply message.

Once an ICE connection is established (or an existing connection reused), the orig-
inating party starts subprotocol negotiation by sending a ProtocolSetup message.
This message gives the name of the subprotocol that the parties have agreed to
use, along with the ICE major opcode that the originating party has assigned to that
subprotocol. Authentication can also occur for the subprotocol, independently of
authentication for the connection. Subprotocol authentication is optional. If there is
no subprotocol authentication, the answering party responds with a ProtocolReply
message, giving the ICE major opcode that it has assigned for the subprotocol.

Subprotocols are authenticated independently of each other, because they may have
differing security requirements. If there is authentication for this particular sub-
protocol, it takes place before the answering party emits the ProtocolReply mes-
sage, and it uses the AuthenticationRequired AuthenticationReply and Authen-
ticationNextPhase messages, just as for the connection authentication. Only when
subprotocol authentication is complete does the answering party send its Proto-
colReply message.

When a subprotocol has been set up and authenticated, the two parties can commu-
nicate using messages defined by the subprotocol. Each message has two opcodes:
a major opcode and a minor opcode. Each party will send messages using the major
opcode it has assigned in its ProtocolSetup or ProtocolReply message. These op-

Overview of the Protocol

3

codes will, in general, not be the same. For a particular subprotocol, each party will
need to keep track of two major opcodes: the major opcode it uses when it sends
messages, and the major opcode it expects to see in messages it receives. The minor
opcode values and semantics are defined by each individual subprotocol.

Each subprotocol will have one or more messages whose semantics are that the
subprotocol is to be shut down. Whether this is done unilaterally or is performed
through negotiation is defined by each subprotocol. Once a subprotocol is shut
down, its major opcodes are removed from use; no further messages on this sub-
protocol should be sent until the opcode is reestablished with ProtocolSetup

ICE has a facility to negotiate the closing of the connection when there are no longer
any active subprotocols. When either party decides that no subprotocols are active,
it can send a WantToClose message. If the other party agrees to close the connec-
tion, it can simply do so. If the other party wants to keep the connection open, it
can indicate its desire by replying with a NoClose message.

It should be noted that the party that initiates the connection isn't necessarily the
same as the one that initiates setting up a subprotocol. For example, suppose party
A connects to party B. Party A will issue the ConnectionSetup message and par-
ty B will respond with a ConnectionReply message. (The authentication steps are
omitted here for brevity.) Typically, party A will also issue the ProtocolSetup mes-
sage and expect a ProtocolReply from party B. Once the connection is established,
however, either party may initiate the negotiation of a subprotocol. Continuing this
example, party B may decide that it needs to set up a subprotocol for communica-
tion with party A. Party B would issue the ProtocolSetup message and expect a
ProtocolReply from party A.

4

Chapter 3. Data Types
ICE messages contain several types of data. Byte order is negotiated in the initial
connection messages; in general data is sent in the sender's byte order and the
receiver is required to swap it appropriately. In order to support 64-bit machines,
ICE messages are padded to multiples of 8 bytes. All messages are designed so that
fields are *Qnaturally*U aligned on 16-, 32-, and 64-bit boundaries. The following
formula gives the number of bytes necessary to pad E bytes to the next multiple of b:

pad(E, b) = (b - (E mod b)) mod b

Primitive Types
Type Name Description
CARD8 8-bit unsigned integer
CARD16 16-bit unsigned integer
CARD32 32-bit unsigned integer
BOOL False or True
LPCE A character from the X Portable Character Set in Latin

Portable Character Encoding

Complex Types
Type Name Type
VERSION [Major, minor: CARD16]
STRING LISTofLPCE

LISTof<type> denotes a counted collection of <type>. The exact encoding varies
depending on the context; see the encoding section.

Message Format
All ICE messages include the following information:

Field Type Description
CARD8 protocol major opcode
CARD8 protocol minor opcode
CARD32 length of remaining data in 8-byte units

The fields are as follows:

Protocol major opcode This specifies what subprotocol the message is in-
tended for. Major opcode 0 is reserved for ICE con-
trol messages. The major opcodes of other subproto-

Data Types

5

cols are dynamically assigned and exchanged at pro-
tocol negotiation time.

Protocol minor opcode This specifies what protocol-specific operation is to
be performed. Minor opcode 0 is reserved for Errors;
other values are protocol-specific.

Length of data in 8-byte
units

This specifies the length of the information follow-
ing the first 8 bytes. Each message-type has a dif-
ferent format, and will need to be separately length-
checked against this value. As every data item has ei-
ther an explicit length, or an implicit length, this can
be easily accomplished. Messages that have too little
or too much data indicate a serious protocol failure,
and should result in a BadLength error.

6

Chapter 4. Overall Protocol Description
Every message sent in a given direction has an implicit sequence number, start-
ing with 1. Sequence numbers are global to the connection; independent sequence
numbers are not maintained for each protocol.

Messages of a given major-opcode (i.e., of a given protocol) must be responded to
(if a response is called for) in order by the receiving party. Messages from different
protocols can be responded to in arbitrary order.

Minor opcode 0 in every protocol is for reporting errors. At most one error is gen-
erated per request. If more than one error condition is encountered in processing
a request, the choice of which error is returned is implementation-dependent.

Error

offending-minor-opcode: CARD8

severity: {CanContinue, FatalToProtocol FatalToConnection

sequence-number: CARD32

class: CARD16

value(s): <dependent on major/minor opcode and class>

This message is sent to report an error in response to a message from any protocol.
The Error message exists in all protocol major-opcode spaces; it is minor-opcode
zero in every protocol. The minor opcode of the message that caused the error is re-
ported, as well as the sequence number of that message. The severity indicates the
sender's behavior following the identification of the error. CanContinue indicates
the sender is willing to accept additional messages for this protocol. FatalToPro-
cotol indicates the sender is unwilling to accept further messages for this protocol
but that messages for other protocols may be accepted. FatalToConnection indi-
cates the sender is unwilling to accept any further messages for any protocols on
the connection. The sender is required to conform to specified severity conditions
for generic and ICE (major opcode 0) errors; see Generic Error Classes ICE Error
Classes . The class defines the generic class of error. Classes are specified sepa-
rately for each protocol (numeric values can mean different things in different pro-
tocols). The error values, if any, and their types vary with the specific error class
for the protocol.

7

Chapter 5. ICE Control Subprotocol --
Major Opcode 0

Each of the ICE control opcodes is described below. Most of the messages have
additional information included beyond the description above. The additional infor-
mation is appended to the message header and the length field is computed accord-
ingly.

In the following message descriptions, *QExpected errors*U indicates errors that
may occur in the normal course of events. Other errors (in particular BadMajor Bad-
Minor BadState BadLength BadValue ProtocolDuplicate and MajorOpcodeDupli-
cate might occur, but generally indicate a serious implementation failure on the
part of the errant peer.

ByteOrder

byte-order: {MSBfirst, LSBfirst

Both parties must send this message before sending any other, including errors.
This message specifies the byte order that will be used on subsequent messages
sent by this party.

Note
Note: If the receiver detects an error in this message, it must be sure to send
its own ByteOrder message before sending the Error.

ConnectionSetup

versions: LISTofVERSION

must-authenticate: BOOL

authentication-proto-
col-names:

LISTofSTRING

vendor: STRING

release: STRING

Responses: ConnectionReply, AuthenticationRequired (See
note)

Expected errors: NoVersion, SetupFailed, NoAuthentication, Au-
thenticationRejected, AuthenticationFailed

The party that initiates the connection (the one that does the "connect()") must send
this message as the second message (after ByteOrder on startup.

Versions gives a list, in decreasing order of preference, of the protocol versions
this party is capable of speaking. This document specifies major version 1, minor
version 0.

ICE Control Subproto-
col -- Major Opcode 0

8

If must-authenticate is True the initiating party demands authentication; the ac-
cepting party must pick an authentication scheme and use it. In this case, the only
valid response is AuthenticationRequired

If must-authenticate is False the accepting party may choose an authentication
mechanism, use a host-address-based authentication scheme, or skip authentica-
tion. When must-authenticate is False ConnectionReply and AuthenticationRe-
quired are both valid responses. If a host-address-based authentication scheme is
used, AuthenticationRejected and AuthenticationFailed errors are possible.

Authentication-protocol-names specifies a (possibly null, if must-authenticate is
False list of authentication protocols the party is willing to perform. If must-au-
thenticate is True presumably the party will offer only authentication mechanisms
allowing mutual authentication.

Vendor gives the name of the vendor of this ICE implementation.

Release gives the release identifier of this ICE implementation.

AuthenticationRequired

authentication-protocol-in-
dex:

CARD8

data: <specific to authentication protocol>

Response: AuthenticationReply

Expected errors: AuthenticationRejected, AuthenticationFailed

This message is sent in response to a ConnectionSetup or ProtocolSetup message
to specify that authentication is to be done and what authentication mechanism is
to be used.

The authentication protocol is specified by a 0-based index into the list of names
given in the ConnectionSetup or ProtocolSetup Any protocol-specific data that
might be required is also sent.

AuthenticationReply

data: <specific to authentication protocol>

Responses: AuthenticationNextPhase, ConnectionReply, ProtocolRe-
ply

Expected errors: AuthenticationRejected, AuthenticationFailed, Setup-
Failed

This message is sent in response to an AuthenticationRequired or Authentica-
tionNextPhase message, to supply authentication data as defined by the authenti-
cation protocol being used.

Note that this message is sent by the party that initiated the current negotiation --
the party that sent the ConnectionSetup or ProtocolSetup message.

AuthenticationNextPhase indicates that more is to be done to complete the au-
thentication. If the authentication is complete, ConnectionReply is appropriate if

ICE Control Subproto-
col -- Major Opcode 0

9

the current authentication handshake is the result of a ConnectionSetup and a Pro-
tocolReply is appropriate if it is the result of a ProtocolSetup.

AuthenticationNextPhase

data: <specific to authentication protocol>

Response: AuthenticationReply

Expected errors: AuthenticationRejected, AuthenticationFailed

This message is sent in response to an AuthenticationReply message, to supply
authentication data as defined by the authentication protocol being used.

ConnectionReply

version-index: CARD8

vendor: STRING

release: STRING

This message is sent in response to a ConnectionSetup or AuthenticationReply
message to indicate that the authentication handshake is complete.

Version-index gives a 0-based index into the list of versions offered in the Connec-
tionSetup message; it specifies the version of the ICE protocol that both parties
should speak for the duration of the connection.

Vendor gives the name of the vendor of this ICE implementation.

Release gives the release identifier of this ICE implementation.

ProtocolSetup

protocol-name: STRING

major-opcode: CARD8

versions: LISTofVERSION

vendor: STRING

release: STRING

must-authenticate: BOOL

authentication-proto-
col-names:

LISTofSTRING

Responses: AuthenticationRequired, ProtocolReply

Expected errors: UnknownProtocol, NoVersion, SetupFailed, NoAu-
thentication, AuthenticationRejected, Authen-
ticationFailed

This message is used to initiate negotiation of a protocol and establish any authen-
tication specific to it.

ICE Control Subproto-
col -- Major Opcode 0

10

Protocol-name gives the name of the protocol the party wishes to speak.

Major-opcode gives the opcode that the party will use in messages it sends.

Versions gives a list of version numbers, in decreasing order of preference, that the
party is willing to speak.

Vendor and release are identification strings with semantics defined by the specific
protocol being negotiated.

If must-authenticate is True, the initiating party demands authentication; the ac-
cepting party must pick an authentication scheme and use it. In this case, the only
valid response is AuthenticationRequired

If must-authenticate is False, the accepting party may choose an authentication
mechanism, use a host-address-based authentication scheme, or skip authentica-
tion. When must-authenticate is False, ProtocolReply and AuthenticationRe-
quired are both valid responses. If a host-address-based authentication scheme is
used, AuthenticationRejected and AuthenticationFailed errors are possible.

Authentication-protocol-names specifies a (possibly null, if must-authenticate is
False list of authentication protocols the party is willing to perform. If must-au-
thenticate is True presumably the party will offer only authentication mechanisms
allowing mutual authentication.

ProtocolReply

major-opcode: CARD8

version-index: CARD8

vendor: STRING

release: STRING

This message is sent in response to a ProtocolSetup or AuthenticationReply mes-
sage to indicate that the authentication handshake is complete.

Major-opcode gives the opcode that this party will use in messages that it sends.

Version-index gives a 0-based index into the list of versions offered in the Proto-
colSetup message; it specifies the version of the protocol that both parties should
speak for the duration of the connection.

Vendor and release are identification strings with semantics defined by the specific
protocol being negotiated.

Ping

Response: PingReply

This message is used to test if the connection is still functioning.

PingReply

This message is sent in response to a Ping message, indicating that the connection
is still functioning.

ICE Control Subproto-
col -- Major Opcode 0

11

WantToClose

Responses: WantToClose, NoClose, ProtocolSetup

This message is used to initiate a possible close of the connection. The sending party
has noticed that, as a result of mechanisms specific to each protocol, there are no
active protocols left. There are four possible scenarios arising from this request:

1. The receiving side noticed too, and has already sent a WantToClose On receiving
a WantToClose while already attempting to shut down, each party should simply
close the connection.

2. The receiving side hasn't noticed, but agrees. It closes the connection.

3. The receiving side has a ProtocolSetup "in flight," in which case it is to ignore
WantToClose and the party sending WantToClose is to abandon the shutdown
attempt when it receives the ProtocolSetup

4. The receiving side wants the connection kept open for some reason not specified
by the ICE protocol, in which case it sends NoClose

See the state transition diagram for additional information.

NoClose

This message is sent in response to a WantToClose message to indicate that the
responding party does not want the connection closed at this time. The receiving
party should not close the connection. Either party may again initiate WantToClose
at some future time.

Generic Error Classes
These errors should be used by all protocols, as applicable. For ICE (major opcode
0), FatalToProtocol should be interpreted as FatalToConnection.

BadMinor

offending-minor-opcode: <any>

severity: FatalToProtocol or CanContinue (protocol's discre-
tion)

values: (none)

Received a message with an unknown minor opcode.

BadState

offending-minor-opcode: <any>

severity: FatalToProtocol or CanContinue (protocol's discre-
tion)

values: (none)

Received a message with a valid minor opcode which is not appropriate for the
current state of the protocol.

ICE Control Subproto-
col -- Major Opcode 0

12

BadLength

offending-minor-opcode: <any>

severity: FatalToProtocol or CanContinue (protocol's discre-
tion)

values: (none)

Received a message with a bad length. The length of the message is longer or short-
er than required to contain the data.

BadValue

offending-minor-opcode: <any>

severity: CanContinue

values: CARD32 Byte offset to offending value in offend-
ing message. CARD32 Length of offending value.
<varies> Offending value

Received a message with a bad value specified.

ICE Error Classes
These errors are all major opcode 0 errors.

BadMajor

offending-minor-opcode: <any>

severity: CanContinue

values: CARD8 Opcode

The opcode given is not one that has been registered.

NoAuthentication

offending-minor-opcode: ConnectionSetup, ProtocolSetup

severity: ConnectionSetup \(-> FatalToConnection Proto-
colSetup \(-> FatalToProtocol

values: (none)

None of the authentication protocols offered are available.

NoVersion

offending-minor-opcode: ConnectionSetup, ProtocolSetup

severity: ConnectionSetup \(-> FatalToConnection Proto-
colSetup \(-> FatalToProtocol

values: (none)

ICE Control Subproto-
col -- Major Opcode 0

13

None of the protocol versions offered are available.

SetupFailed

offending-minor-opcode: ConnectionSetup, ProtocolSetup, Authentication-
Reply

severity: ConnectionSetup \(-> FatalToConnection Proto-
colSetup \(-> FatalToProtocol AuthenticationRe-
ply \(-> FatalToConnection if authenticating a con-
nection, otherwise FatalToProtocol

values: STRING reason

The sending side is unable to accept the new connection or new protocol for a reason
other than authentication failure. Typically this error will be a result of inability
to allocate additional resources on the sending side. The reason field will give a
human-interpretable message providing further detail on the type of failure.

AuthenticationRejected

offending-minor-opcode: AuthenticationReply, AuthenticationRequired,
AuthenticationNextPhase

severity: FatalToProtocol

values: STRING reason

Authentication rejected. The peer has failed to properly authenticate itself. The rea-
son field will give a human-interpretable message providing further detail.

AuthenticationFailed

offending-minor-opcode: AuthenticationReply, AuthenticationRequired,
AuthenticationNextPhase

severity: FatalToProtocol

values: STRING reason

Authentication failed. AuthenticationFailed does not imply that the authentica-
tion was rejected, as AuthenticationRejected does. Instead it means that the
sender was unable to complete the authentication for some other reason. (For in-
stance, it may have been unable to contact an authentication server.) The reason
field will give a human-interpretable message providing further detail.

ProtocolDuplicate

offending-minor-opcode: ProtocolSetup

severity: FatalToProtocol (but see note)

values: STRING protocol name

The protocol name was already registered. This is fatal to the "new" protocol being
set up by ProtocolSetup but it does not affect the existing registration.

MajorOpcodeDuplicate

ICE Control Subproto-
col -- Major Opcode 0

14

offending-minor-opcode: ProtocolSetup

severity: FatalToProtocol (but see note)

values: CARD8 opcode

The major opcode specified was already registered. This is fatal to the *Qnew*U
protocol being set up by ProtocolSetup but it does not affect the existing registra-
tion.

UnknownProtocol

offending-minor-opcode: ProtocolSetup

severity: FatalToProtocol

values: STRING protocol name

The protocol specified is not supported.

15

Chapter 6. State Diagrams
Here are the state diagrams for the party that initiates the connection:

start:
 connect to other end, send ByteOrder ConnectionSetup -> conn_wait

conn_wait:
 receive ConnectionReply -> stasis
 receive AuthenticationRequired -> conn_auth1
 receive Error -> quit
 receive <other>, send Error -> quit

conn_auth1:
 if good auth data, send AuthenticationReply -> conn_auth2
 if bad auth data, send Error -> quit

conn_auth2:
 receive ConnectionReply -> stasis
 receive AuthenticationNextPhase -> conn_auth1
 receive Error -> quit
 receive <other>, send Error -> quit

Here are top-level state transitions for the party that accepts connections.

listener:
 accept connection -> init_wait

init_wait:
 receive ByteOrder ConnectionSetup -> auth_ask
 receive <other>, send Error -> quit

auth_ask:
 send ByteOrder ConnectionReply
-> stasis

 send AuthenticationRequired -> auth_wait

 send Error -> quit

auth_wait:
 receive AuthenticationReply -> auth_check

 receive <other>, send Error -> quit

auth_check:
 if no more auth needed, send ConnectionReply -> stasis
 if good auth data, send AuthenticationNextPhase -> auth_wait
 if bad auth data, send Error -> quit

Here are the top-level state transitions for all parties after the initial connection
establishment subprotocol.

State Diagrams

16

Note
Note: this is not quite the truth for branches out from stasis, in that multiple
conversations can be interleaved on the connection.

stasis:
 send ProtocolSetup -> proto_wait
 receive ProtocolSetup -> proto_reply
 send Ping -> ping_wait
 receive Ping send PingReply -> stasis
 receive WantToClose -> shutdown_attempt
 receive <other>, send Error -> stasis
 all protocols shut down, send WantToClose -> close_wait

proto_wait:
 receive ProtocolReply -> stasis
 receive AuthenticationRequired -> give_auth1
 receive Error give up on this protocol -> stasis
 receive WantToClose -> proto_wait

give_auth1:
 if good auth data, send AuthenticationReply -> give_auth2
 if bad auth data, send Error give up on this protocol -> stasis
 receive WantToClose -> give_auth1

give_auth2:
 receive ProtocolReply -> stasis
 receive AuthenticationNextPhase -> give_auth1
 receive Error give up on this protocol -> stasis
 receive WantToClose -> give_auth2

proto_reply:
 send ProtocolReply -> stasis
 send AuthenticationRequired -> take_auth1
 send Error give up on this protocol -> stasis

take_auth1:
 receive AuthenticationReply -> take_auth2
 receive Error give up on this protocol -> stasis

take_auth2:
 if good auth data \(-> take_auth3
 if bad auth data, send Error give up on this protocol -> stasis

take_auth3:
 if no more auth needed, send ProtocolReply -> stasis
 if good auth data, send AuthenticationNextPhase -> take_auth1
 if bad auth data, send Error give up on this protocol -> stasis

ping_wait:
 receive PingReply -> stasis

quit:

State Diagrams

17

 -> close connection

Here are the state transitions for shutting down the connection:

shutdown_attempt:
 if want to stay alive anyway, send NoClose -> stasis
 else -> quit

close_wait:
 receive ProtocolSetup -> proto_reply
 receive NoClose -> stasis
 receive WantToClose -> quit
 connection close -> quit

18

Chapter 7. Protocol Encoding
In the encodings below, the first column is the number of bytes occupied. The second
column is either the type (if the value is variable) or the actual value. The third
column is the description of the value (e.g., the parameter name). Receivers must
ignore bytes that are designated as unused or pad bytes.

This document describes major version 1, minor version 0 of the ICE protocol.

LISTof<type> indicates some number of repetitions of <type>, with no additional
padding. The number of repetitions must be specified elsewhere in the message.

Primitives
Type Name Length

(bytes)
Description

CARD8 1 8-bit unsigned integer
CARD16 2 16-bit unsigned integer
CARD32 4 32-bit unsigned integer
LPCE 1 A character from the X Portable Character Set

in Latin Portable Character Encoding

Enumerations
Type Name Value Description
BOOL 0 False
 1 True

Compound Types
Type Name Length

(bytes)
Type Description

VERSION
 2 CARD16 Major version number
 2 CARD16 Minor version number
STRING
 2 CARD16 length of string in bytes
 n LISTofLPCE string
 p unused, p = pad(n+2, 4)

ICE Minor opcodes
Message Name Encoding
Error 0

Protocol Encoding

19

Message Name Encoding
ByteOrder 1
ConnectionSetup 2
AuthenticationRequired 3
AuthenticationReply 4
AuthenticationNextPhase 5
ConnectionReply 6
ProtocolSetup 7
ProtocolReply 8
Ping 9
PingReply 10
WantToClose 11
NoClose 12

Message Encoding

Error
 1 CARD8 major-opcode
 1 0 Error
 2 CARD16 class
 4 (n+p)/8+1 length
 1 CARD8 offending-minor-opcode
 1 severity:
 0 CanContinue
 1 FatalToProtocol
 2 FatalToConnection
 2 unused
 4 CARD32 sequence number of erroneous message
 n <varies> value(s)
 p pad, p = pad(n,8)

ByteOrder
 1 0 ICE
 1 1 ByteOrder
 1 byte-order:
 0 LSBfirst
 1 MSBfirst
 1 unused
 4 0 length

ConnectionSetup
 1 0 ICE
 1 2 ConnectionSetup
 1 CARD8 Number of versions offered
 1 CARD8 Number of authentication protocol names offered
 4 (i+j+k+m+p)/8+1 length

Protocol Encoding

20

 1 BOOL must-authenticate
 7 unused
 i STRING vendor
 j STRING release
 k LISTofSTRING authentication-protocol-names
 m LISTofVERSION version-list
 p unused, p = pad(i+j+k+m,8)

AuthenticationRequired
 1 0 ICE
 1 3 AuthenticationRequired
 1 CARD8 authentication-protocol-index
 1 unused
 4 (n+p)/8+1 length
 2 n length of authentication data
 6 unused
 n <varies> data
 p unused, p = pad(n,8)

AuthenticationReply
 1 0 ICE
 1 4 AuthenticationReply
 2 unused
 4 (n+p)/8+1 length
 2 n length of authentication data
 6 unused
 n <varies> data
 p unused, p = pad(n,8)

AuthenticationNextPhase
 1 0 ICE
 1 5 AuthenticationNextPhase
 2 unused
 4 (n+p)/8+1 length
 2 n length of authentication data
 6 unused
 n <varies> data
 p unused, p = pad(n,8)

ConnectionReply
 1 0 ICE
 1 6 ConnectionReply
 1 CARD8 version-index
 1 unused
 4 (i+j+p)/8 length
 i STRING vendor
 j STRING release
 p unused, p = pad(i+j,8)

Protocol Encoding

21

ProtocolSetup
 1 0 ICE
 1 7 ProtocolSetup
 1 CARD8 major-opcode
 1 BOOL must-authenticate
 4 (i+j+k+m+n+p)/8+1 length
 1 CARD8 Number of versions offered
 1 CARD8 Number of authentication protocol names offered
 6 unused
 i STRING protocol-name
 j STRING vendor
 k STRING release
 m LISTofSTRING authentication-protocol-names
 n LISTofVERSION version-list
 p unused, p = pad(i+j+k+m+n,8)

ProtocolReply
 1 0 ICE
 1 8 ProtocolReply
 1 CARD8 version-index
 1 CARD8 major-opcode
 4 (i+j+p)/8 length
 i STRING vendor
 j STRING release
 p unused, p = pad(i+j, 8)

Ping
 1 0 ICE
 1 9 Ping
 2 0 unused
 4 0 length

PingReply
 1 0 ICE
 1 10 PingReply
 2 0 unused
 4 0 length

WantToClose
 1 0 ICE
 1 11 WantToClose
 2 0 unused
 4 0 length

NoClose
 1 0 ICE
 1 12 NoClose
 2 0 unused
 4 0 length

Protocol Encoding

22

Error Class Encoding
Generic errors have classes in the range 0x8000-0xFFFF, and subprotocol-specific
errors are in the range 0x0000-0x7FFF.

Generic Error Class Encoding

Class Encoding
BadMinor 0x8000
BadState 0x8001
BadLength 0x8002
BadValue 0x8003

ICE-specific Error Class Encoding

Class Encoding
BadMajor 0
NoAuthentication 1
NoVersion 2
SetupFailed 3
AuthenticationRe-
jected

4

Authentication-
Failed

5

ProtocolDuplicate 6
MajorOpcodeDupli-
cate

7

UnknownProtocol 8

23

Appendix A. Modification History
Release 6 to Release 6.1

Release 6.1 added the ICE X rendezvous protocol (Appendix B) and updated the
document version to 1.1.

Release 6.1 to Release 6.3
Release 6.3 added the listen on well known ports feature.

24

Appendix B. ICE X Rendezvous
Protocol
Introduction

The ICE X rendezvous protocol is designed to answer the need posed in Section 2
for one mechanism by which two clients interested in communicating via ICE are
able to exchange the necessary information. This protocol is appropriate for any
two ICE clients who also have X connections to the same X server.

Overview of ICE X Rendezvous
The ICE X Rendezvous Mechanism requires clients willing to act as ICE originating
parties to pre-register the ICE subprotocols they support in an ICE_PROTOCOLS
property on their top-level window. Clients willing to act as ICE answering parties
then send an ICE_PROTOCOLS X ClientMessage event to the ICE originating par-
ties. This ClientMessage event identifies the ICE network IDs of the ICE answering
party as well as the ICE subprotocol it wishes to speak. Upon receipt of this message
the ICE originating party uses the information to establish an ICE connection with
the ICE answering party.

Registering Known Protocols
Clients willing to act as ICE originating parties preregister the ICE subprotocols
they support in a list of atoms held by an ICE_PROTOCOLS property on their top-
level window. The name of each atom listed in ICE_PROTOCOLS must be of the form
ICE_INITIATE_pname where pname is the name of the ICE subprotocol the ICE
originating party is willing to speak, as would be specified in an ICE ProtocolSetup
message.

Clients with an ICE_INITIATE_pname atom in the ICE_PROTOCOLS proper-
ty on their top-level windows must respond to ClientMessage events of type
ICE_PROTOCOLS specifying ICE_INITIATE_ pname. If a client does not want to re-
spond to these client message events, it should remove the ICE_INITIATE_pname
atom from its ICE_PROTOCOLS property or remove the ICE_PROTOCOLS property
entirely.

Initiating the Rendezvous
To initiate the rendezvous a client acting as an ICE answering party sends an X
ClientMessage event of type ICE_PROTOCOLS to an ICE originating party. This
ICE_PROTOCOLS client message contains the information the ICE originating party
needs to identify the ICE subprotocol the two parties will use as well as the ICE
network identification string of the ICE answering party.

Before the ICE answering party sends the client message event it must define a
text property on one of its windows. This text property contains the ICE answering
party's ICE network identification string and will be used by ICE originating parties
to determine the ICE answering party's list of ICE network IDs.

ICE X Rendezvous Protocol

25

The property name will normally be ICE_NETWORK_IDS, but may be any name of
the ICE answering party's choosing. The format for this text property is as follows:

Field Value
type XA_STRING
format 8
value comma-separated list of ICE network IDs

Once the ICE answering party has established this text property on one of its win-
dows, it initiates the rendezvous by sending an ICE_PROTOCOLS ClientMessage
event to an ICE originating party's top-level window. This event has the following
format and must only be sent to windows that have pre-registered the ICE subpro-
tocol in an ICE_PROTOCOLS property on their top-level window.

Field Value
message_type Atom = "ICE_PROTOCOLS"
format 32
data.l[0] Atom identifying the ICE subprotocol to speak
data.l[1] Timestamp
data.l[2] ICE answering party's window ID with ICE network IDs text

property
data.l[3] Atom naming text property containing the ICE answering

party's ICE network IDs
data.l[4] Reserved. Must be 0.

The name of the atom in data.l[0] must be of the form ICE_INITIATE_pname, where
pname is the name of the ICE subprotocol the ICE answering party wishes to speak.

When an ICE originating party receives a ClientMessage event of type
ICE_PROTOCOLS specifying ICE_INITIATE_pname it can initiate an ICE connection
with the ICE answering party. To open this connection the client retrieves the ICE
answering party's ICE network IDs from the window specified in data.l[2] using the
text property specified in data.l[3].

If the connection attempt fails for any reason, the client must respond to the client
message event by sending a return ClientMessage event to the window specified
in data.l[2]. This return event has the following format:

Field Value
message_type Atom = "ICE_INITIATE_FAILED"
format 32
data.l[0] Atom identifying the ICE subprotocol requested
data.l[1] Timestamp
data.l[2] Initiating party's window ID (holding ICE_PROTOCOLS)
data.l[3] int: reason for failure
data.l[4] Reserved, must be 0

The values of data.l[0] and data.l[1] are copied directly from the client message
event the client received.

ICE X Rendezvous Protocol

26

The value in data.l[2] is the id of the window to which the
ICE_PROTOCOLS.ICE_INITIATE_pname client message event was sent.

Data.l[3] has one of the following values:

Value Encoding Description
OpenFailed 1 The client was unable to open the connec-

tion (e.g. a call to IceOpenConnection()
failed). If the client is able to distinguish au-
thentication or authorization errors from
general errors, then the preferred reply is
AuthenticationFailed for authorization
errors.

AuthenticationFailed 2 Authentication or authorization of the con-
nection or protocol setup was refused. This
reply will be given only if the client is able
to distinguish it from OpenFailed otherwise
OpenFailed will be returned.

SetupFailed 3 The client was unable to initiate the speci-
fied protocol on the connection (e.g. a call
to IceProtocolSetup() failed).

UnknownProtocol 4 The client does not recognize the requested
protocol. (This represents a semantic error
on the part of the answering party.)

Refused 5 The client was in the process of re-
moving ICE_INITIATE_pname from its
ICE_PROTOCOLS list when the client mes-
sage was sent; the client no longer is will-
ing to establish the specified ICE communi-
cation.

Note
Clients willing to act as ICE originating parties must update the
ICE_PROTOCOLS property on their top-level windows to include the
ICE_INITIATE_pname atom(s) identifying the ICE subprotocols they speak.
The method a client uses to update the ICE_PROTOCOLS property to include
ICE_INITIATE_pname atoms is implementation dependent, but the client
must ensure the integrity of the list to prevent the accidental omission of
any atoms previously in the list.

When setting up the ICE network IDs text property on one of its windows, the
ICE answering party can determine its comma-separated list of ICE network
IDs by calling IceComposeNetworkIdList() after making a call to IceListen-
ForConnections(). The method an ICE answering party uses to find the top-
level windows of clients willing to act as ICE originating parties is dependent
upon the nature of the answering party. Some may wish to use the approach
of requiring the user to click on a client's window. Others wishing to find ex-
isting clients without requiring user interaction might use something similar
to the XQueryTree() method used by several freely-available applications. In
order for the ICE answering party to become automatically aware of new
clients willing to originate ICE connections, the ICE answering party might

ICE X Rendezvous Protocol

27

register for SubstructureNotify events on the root window of the display.
When it receives a SubstructureNotify event, the ICE answering party can
check to see if it was the result of the creation of a new client top-level win-
dow with an ICE_PROTOCOLS property.

In any case, before attempting to use this ICE X Rendezvous Mecha-
nism ICE answering parties wishing to speak ICE subprotocol pname
should check for the ICE_INITIATE_pname atom in the ICE_PROTOCOLS
property on a client's top-level window. A client that does not include
an ICE_INITIATE_pname atom in a ICE_PROTOCOLS property on some
top-level window should be assumed to ignore ClientMessage events of
type ICE_PROTOCOLS specifying ICE_INITIATE_pname for ICE subprotocol
pname.

ICE Subprotocol Versioning
Although the version of the ICE subprotocol could be passed in the client message
event, ICE provides more a flexible version negotiation mechanism than will fit with-
in a single ClientMessage event. Because of this, ICE subprotocol versioning is
handled within the ICE protocol setup phase.

Note
Clients wish to communicate with each other via an ICE subprotocol known
as "RAP V1.0". In RAP terminology one party, the "agent", communicates
with other RAP-enabled applications on demand. The user may direct the
agent to establish communication with a specific application by clicking on
the application's window, or the agent may watch for new application win-
dows to be created and automatically establish communication.

During startup the ICE answering party (the agent) first calls IceRegister-
ForProtocolReply() with a list of the versions (i.e., 1.0) of RAP the agent can
speak. The answering party then calls IceListenForConnections() followed by
IceComposeNetworkIdList() and stores the resulting ICE network IDs string
in a text property on one of its windows.

When the answering party (agent) finds a client with which it wish-
es to speak, it checks to see if the ICE_INITIATE_RAP atom is in the
ICE_PROTOCOLS property on the client's top-level window. If it is present
the agent sends the client's top-level window an ICE_PROTOCOLS client
message event as described above. When the client receives the client mes-
sage event and is willing to originate an ICE connection using RAP, it per-
forms an IceRegisterForProtocolSetup() with a list of the versions of RAP the
client can speak. The client then retrieves the agent's ICE network ID from
the property and window specified by the agent in the client message event
and calls IceOpenConnection(). After this call succeeds the client calls Ice-
ProtocolSetup() specifying the RAP protocol. During this process, ICE calls
the RAP protocol routines that handle the version negotiation.

Note that it is not necessary for purposes of this rendezvous that the client
application call any ICElib functions prior to receipt of the client message
event.

	Inter-Client Exchange (ICE) Protocol
	Table of Contents
	Chapter 1. Purpose and Goals
	Chapter 2. Overview of the Protocol
	Chapter 3. Data Types
	Primitive Types
	Complex Types
	Message Format

	Chapter 4. Overall Protocol Description
	Chapter 5. ICE Control Subprotocol -- Major Opcode 0
	Generic Error Classes
	ICE Error Classes

	Chapter 6. State Diagrams
	Chapter 7. Protocol Encoding
	Primitives
	Enumerations
	Compound Types
	ICE Minor opcodes
	Message Encoding
	Error Class Encoding
	Generic Error Class Encoding
	ICE-specific Error Class Encoding

	Appendix A. Modification History
	Release 6 to Release 6.1
	Release 6.1 to Release 6.3

	Appendix B. ICE X Rendezvous Protocol
	Introduction
	Overview of ICE X Rendezvous
	Registering Known Protocols
	Initiating the Rendezvous
	ICE Subprotocol Versioning

