Inter-Client Exchange Library

X Consortium Standard

Ralph Mor, X Consortium

Inter-Client Exchange Library: X Consortium Standard
by Ralph Mor

X Version 11, Release 7.7

Version 1.0
Copyright © 1993, 1994, 1996 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

Table of Contents

1. OVervieW Of ICE ..ot e e s et e e s e s e e e eaans 1
2. The ICE Library - C Language Interface to ICEcccooviviiiiiiiiiiiiiiniiiieeeis 2
3. Intended AUGIEIICEviiiiniiiiiieiiiie e e et e e et e e e e e e et e e eaa e e et e aeaanns 3
4. Header Files and Library NaAmecccccoiiiiiiiiiiiiiiii e 4
5. NOtE 0N PrefiXes .oouiiiiiiiiiiiii ettt e e e aans 5
6. Protocol RegisStrationccoiivuiiiiiiiiiiiie e er e ere e e ea e e eees 6
Callbacks for Processing MESSAQESc.uvivruririuireriineeeiineeeiineerieereneessneernnnns 9
Authentication Methodsc..cviiiiiiiiiiiiii e 11
7. ICE CONNECTIONS .uuiiiiiiniiiiiie ettt et et et e ete et e et e et s et s eaieaanseanseaneenns 14
Opening an ICE CONNECTION ...c.uviiiiiiiiiiiiiieiii e eans 14
Listening for ICE CONNECTIONSccuuiiiiiiiiiiiiiiiieiie et ev e eaeeaans 15
Host Based Authentication for ICE Connectionsccccecevvevieviiniiinnneeinnnnns 17
Accepting ICE CONNECTIONS ...ivuuiiiniiiiiiiiniiineii et eeiie et et e eie et eeieeineeineenanas 17
Closing ICE CONNECLIONS ...uvivveniiiiiiiiiiieeiiieeeiieeeiieeerieeerineernnneeennneeesnneansnnns 19
Connection Watch ProCceduresc.cocivuieiiiiiiiiiiiiiiiien et eein e evineeeieeeees 20
8. Protocol Setup and ShutdOWnc..ceiiiiiiiiiiiiiie e 22
9. ProCesSSINg MESSATES ..euuiiiuiiiiriiiiiiieiieete ettt e eteete et et eetnsetneetieeaineernsernaesns 24
TR 5% o o RO PPR 26
11. Using ICElib Informational Functionsc.ccceeviiiiiniiiiiniiiinieiieeeeiee e 27
12, ICE MESSATES evueruiiuneiineeineetieetinetinetteetieetieetneetnsetneesunsesnsesnsetereunsernsennsernnes 29
Sending ICE MESSAUES ..ccvuueiiiuniieiinietiieetiieretieeeeineeriseerinserresrssneersnneessnnns 29
Reading ICE MESSAUTES ..uuvivruniiriunietiineetiieeerieeerieeetieertiesrsnnseesnnsesmneesnnneeees 32
13, Error Handlingcoueeiiiiiiiiiieiiiie e e et e et e e et e e et e eeanseetneessnnsansnesannnnns 35
14. Multi-Threading SUPPOTLoiiiiiiiiieiiie et e e e e e e eaeeeaaaees 37
15. Miscellaneous FUNCLIONSciivueiiiiieiiiiiiiiii et e e et e et e eeie e eeaeeaaaneees 38
16. ACKNOWIEAGEMENLSivviniiiiiiiiii et e e et e et e e et e e eei e e eaa e eeaan e easaneanennns 39
A. Authentication Utility FUNCLIONSoiiiiiiiiiiiiiiiiie e 40
B. MIT-MAGIC-COOKIE-1 Authenticationccceeviiiiriiiiiniiniineiiiie e eeneenn 43

iii

Chapter 1. Overview of ICE

There are numerous possible inter-client protocols, with many similarities and com-
mon needs - authentication, version negotiation, byte order negotiation, and so on.
The Inter-Client Exchange (ICE) protocol is intended to provide a framework for
building such protocols, allowing them to make use of common negotiation mecha-
nisms and to be multiplexed over a single transport connection.

Chapter 2. The ICE Library - C
Language Interface to ICE

A client that wishes to utilize ICE must first register the protocols it understands
with the ICE library. Each protocol is dynamically assigned a major opcode ranging
from 1-255 (two clients can use different major opcodes for the same protocol). The
next step for the client is either to open a connection with another client or to wait
for connections made by other clients. Authentication may be required. A client can
both initiate connections with other clients and be waiting for clients to connect to
itself (a nested session manager is an example). Once an ICE connection is estab-
lished between the two clients, one of the clients needs to initiate a Pr ot ocol Set -
up in order to "activate" a given protocol. Once the other client accepts the Pr ot o-
col Set up (once again, authentication may be required), the two clients are ready
to start passing messages specific to that protocol to each other. Multiple protocols
may be active on a single ICE connection. Clients are responsible for notifying the
ICE library when a protocol is no longer active on an ICE connection, although ICE
does not define how each subprotocol triggers a protocol shutdown.

The ICE library utilizes callbacks to process incoming messages. Using callbacks
allows Pr ot ocol Set up messages and authentication to happen behind the scenes.
An additional benefit is that messages never need to be buffered up by the library
when the client blocks waiting for a particular message.

Chapter 3. Intended Audience

This document is intended primarily for implementors of protocol libraries layered
on top of ICE. Typically, applications that wish to utilize ICE will make calls into
individual protocol libraries rather than directly make calls into the ICE library.
However, some applications will have to make some initial calls into the ICE library
in order to accept ICE connections (for example, a session manager accepting con-
nections from clients). But in general, protocol libraries should be designed to hide
the inner details of ICE from applications.

Chapter 4. Header Files and Library
Name

The header file <X11/ICE/ICElib.h> defines all of the ICElib data structures and
function prototypes. | CEl i b. h includes the header file <X11/ICE/ICE.h>, which de-
fines all of the ICElib constants. Protocol libraries that need to read and write mes-
sages should include the header file <X11/ICE/ICEmsg.h>.

Applications should link against ICElib using -1ICE.

Chapter 5. Note on Prefixes

The following name prefixes are used in the library to distinguish between a client
that initiates a Pr ot ocol Set up and a client that responds with a Pr ot ocol Repl y

* | cePo - Ice Protocol Originator

* | cePa - Ice Protocol Acceptor

Chapter 6. Protocol Registration

In order for two clients to exchange messages for a given protocol, each side must
register the protocol with the ICE library. The purpose of registration is for each side
to obtain a major opcode for the protocol and to provide callbacks for processing
messages and handling authentication. There are two separate registration func-
tions:

* One to handle the side that does a Pr ot ocol Set up
* One to handle the side that responds with a Pr ot ocol Repl y

It is recommended that protocol registration occur before the two clients establish
an ICE connection. If protocol registration occurs after an ICE connection is created,
there can be a brief interval of time in which a Prot ocol Set up is received, but
the protocol is not registered. If it is not possible to register a protocol before the
creation of an ICE connection, proper precautions should be taken to avoid the
above race condition.

The | ceRegi st er For Prot ocol Set up function should be called for the client that
initiates a Pr ot ocol Set up

i nt |ceRegisterForProtocol Setup(*protocol nane, *vendor, *release,
versi on_count, *version_recs, auth _count, **auth_nanmes, *auth_procs,
io_error_proc);

protocol name A string specifying the name of the protocol to register.
vendor A vendor string with semantics specified by the protocol.
release A release string with semantics specified by the protocol.

version _count The number of different versions of the protocol supported.

version_recs List of versions and associated callbacks.

auth count The number of authentication methods supported.

auth_names The list of authentication methods supported.

auth_procs Thehlis:l: of authentication callbacks, one for each authentication
method.

io_error_proc IO error handler, or NULL.

| ceRegi st er For Pr ot ocol Set up returns the major opcode reserved or -1 if an error
occurred. In order to actually activate the protocol, the | cePr ot ocol Set up function
needs to be called with this major opcode. Once the protocol is activated, all mes-
sages for the protocol should be sent using this major opcode.

A protocol library may support multiple versions of the same protocol. The
version recs argument specifies a list of supported versions of the protocol, which
are prioritized in decreasing order of preference. Each version record consists of
a major and minor version of the protocol as well as a callback to be used for pro-
cessing incoming messages.

Protocol Registration

typedef struct {

int major version;

int minor version;

IcePoProcessMsgProc process msg proc;
} IcePoVersionRec;

The | cePoProcessMsgPr oc callback is responsible for processing the set of mes-
sages that can be received by the client that initiated the Pr ot ocol Set up For further
information, see Callbacks for Processing Messages

Authentication may be required before the protocol can become active. The proto-
col library must register the authentication methods that it supports with the ICE li-
brary. The auth names and auth procs arguments are a list of authentication names
and callbacks that are prioritized in decreasing order of preference. For information
on the | cePoAut hPr oc callback, see Authentication Methods

The Icel CErrorProc callback is invoked if the ICE connection unexpectedly
breaks. You should pass NULL for io_error proc if not interested in being notified.
For further information, Error Handling

The | ceRegi st er For Prot ocol Repl y function should be called for the client that
responds to a Pr ot ocol Set up with a Pr ot ocol Repl y

Bool 1ceRegi st erFor Protocol Repl y(*protocol _nane,
version_count, *version_recs,
host _based_aut h_proc,
io_error_proc);

*vendor, *release,
aut h_count, **auth_nanmes, *auth_procs,
pr ot ocol _setup_proc, prot ocol _activate_proc,

protocol name A string specifying the name of the protocol to register.

vendor A vendor string with semantics specified by the proto-
col.
release A release string with semantics specified by the proto-

col.

version_count

version_recs
auth_count
auth names

auth_procs

host based auth proc

protocol setup proc

protocol activate proc

The number of different versions of the protocol sup-
ported.

List of versions and associated callbacks.
The number of authentication methods supported.
The list of authentication methods supported.

The list of authentication callbacks, one for each au-
thentication method.

Host based authentication callback.

A callback to be invoked when authentication has suc-
ceeded for a Pr ot ocol Set up but before the Prot ocol -
Repl y is sent.

A callback to be invoked after the Protocol Reply is
sent.

Protocol Registration

io_error proc IO error handler, or NULL.

| ceRegi st er For Pr ot ocol Repl y returns the major opcode reserved or -1 if an error
occurred. The major opcode should be used in all subsequent messages sent for
this protocol.

A protocol library may support multiple versions of the same protocol. The
version recs argument specifies a list of supported versions of the protocol, which
are prioritized in decreasing order of preference. Each version record consists of
a major and minor version of the protocol as well as a callback to be used for pro-
cessing incoming messages.

typedef struct {

int major version;

int minor version;

IcePaProcessMsgProc process msg proc;
} IcePaVersionRec;

The | cePaProcessMsgPr oc callback is responsible for processing the set of mes-
sages that can be received by the client that accepted the Pr ot ocol Set up For fur-
ther information, see Callbacks for Processing Messages

Authentication may be required before the protocol can become active. The proto-
col library must register the authentication methods that it supports with the ICE li-
brary. The auth names and auth procs arguments are a list of authentication names
and callbacks that are prioritized in decreasing order of preference. For information
on the | cePaAut hProc, See Authentication Methods

If authentication fails and the client attempting to initiate the Pr ot ocol Set up has
not required authentication, the | ceHost BasedAut hPr oc callback is invoked with
the host name of the originating client. If the callback returns True the Prot o-
col Set up will succeed, even though the original authentication failed. Note that
authentication can effectively be disabled by registering an | ceHost BasedAut hPr oc
which always returns Tr ue If no host based authentication is allowed, you should
pass NULL for host based auth proc.

Bool Host BasedAut hProc(*host nane);
protocol name The host name of the client that sent the Pr ot ocol Set up

The host name argument is a string of the form protocol/hostname, where protocol
is one of {tcp, decnet, local}.

Because Prot ocol Set up messages and authentication happen behind the scenes
via callbacks, the protocol library needs some way of being notified when the Pr o-
t ocol Set up has completed. This occurs in two phases. In the first phase, the | ce-
Pr ot ocol Set upPr oc callback is invoked after authentication has successfully com-
pleted but before the ICE library sends a Pr ot ocol Repl y Any resources required for
this protocol should be allocated at this time. If the | cePr ot ocol Set upPr oc returns
a successful status, the ICE library will send the Pr ot ocol Repl y and then invoke the
| ceProtocol Acti vat eProc callback. Otherwise, an error will be sent to the other
client in response to the Pr ot ocol Set up

The | ceProt ocol Acti vat eProc is an optional callback and should be registered
only if the protocol library intends to generate a message immediately following the

Protocol Registration

Pr ot ocol Repl y You should pass NULL for protocol activate proc if not interested
in this callback.

Status Protocol SetupProc(ice_conn, maj or _ver si on, nmi nor _ver si on,
*vendor, *release, *client_data ret, **failure_reason_ret);

protocol name The ICE connection object.

major version The major version of the protocol.

minor _version The minor version of the protocol.

vendor The vendor string registered by the protocol originator.
release The release string registered by the protocol originator.
client data ret Client data to be set by callback.

failure reason_ret Failure reason returned.

The pointer stored in the client data ret argument will be passed to the | cePa-
ProcessMsgPr oc callback whenever a message has arrived for this protocol on the
ICE connection.

The vendor and release strings should be freed with f r ee when they are no longer
needed.

If a failure occurs, the | cePr ot ocol Set upPr oc should return a zero status as well
as allocate and return a failure reason string in failure reason ret. The ICE library
will be responsible for freeing this memory.

The I ceProt ocol Acti vat ePr oc callback is defined as follows:

voi d Protocol ActivateProc(ice_conn, client_data);

ice_conn The ICE connection object.

client data The client data set in the | cePr ot ocol Set upPr oc callback.

The Icel CErrorProc callback is invoked if the ICE connection unexpectedly
breaks. You should pass NULL for io_error proc if not interested in being notified.
For further information, see Error Handling

Callbacks for Processing Messages

When an application detects that there is new data to read on an ICE connection
(via sel ect it calls the | ceProcessMessages function Processing Messages When
| ceProcessMessages reads an ICE message header with a major opcode other than
zero (reserved for the ICE protocol), it needs to call a function that will read the
rest of the message, unpack it, and process it accordingly.

If the message arrives at the client that initiated the Prot ocol Setup the Ice-
PoPr ocessMsgPr oc callback is invoked.

voi d PoProcessMsgProc(ice_conn, client_data, opcode, |length, swap,
*reply wait, *reply_ready ret);

Protocol Registration

ice_conn The ICE connection object.

client data Client data associated with this protocol on the ICE connection.

opcode The minor opcode of the message.

length The length (in 8-byte units) of the message beyond the ICE head-
er.

swap A flag that indicates if byte swapping is necessary.

reply wait Indicates if the invoking client is waiting for a reply.

reply ready ret If set to Tr ue a reply is ready.

If the message arrives at the client that accepted the Prot ocol Set up the | cePa-
Pr ocessMsgPr oc callback is invoked.

void | cePaProcessMsgProc(ice_conn, client_data, opcode, | engt h,
swap) ;
ice_conn The ICE connection object.

client data Client data associated with this protocol on the ICE connection.

opcode The minor opcode of the message.
length The length (in 8-byte units) of the message beyond the ICE header.
swap A flag that indicates if byte swapping is necessary.

In order to read the message, both of these callbacks should use the macros defined
for this purpose (see Reading ICE Messages.). Note that byte swapping may be
necessary. As a convenience, the length field in the ICE header will be swapped by
ICElib if necessary.

In both of these callbacks, the client data argument is a pointer to client data that
was registered at Prot ocol Set up time. In the case of | cePoProcessMsgProc the
client data was set in the call to | cePr ot ocol Set up In the case of | cePaPr ocessMs-
gPr oc the client data was set in the | cePr ot ocol Set upPr oc callback.

The | cePoProcessMsgProc callback needs to check the reply wait argument. If
reply wait is NULL, the ICE library expects the function to pass the message to the
client via a callback. For example, if this is a Session Management "Save Yourself"
message, this function should notify the client of the "Save Yourself" via a callback.
The details of how such a callback would be defined are implementation-dependent.

However, if reply wait is not NULL , then the client is waiting for a reply or an error
for a message it previously sent. The reply wait is of type | ceRepl yWai t | nf o

typedef struct {

unsigned long sequence of request;
int major opcode of request;

int minor opcode of request;
IcePointer reply;

} IceReplyWaitInfo;

10

Protocol Registration

| ceRepl yWii t | nf o contains the major/minor opcodes and sequence number of the
message for which a reply is being awaited. It also contains a pointer to the reply
message to be filled in (the protocol library should cast this | cePoi nt er to the ap-
propriate reply type). In most cases, the reply will have some fixed-size part, and
the client waiting for the reply will have provided a pointer to a structure to hold
this fixed-size data. If there is variable-length data, it would be expected that the
| cePoPr ocessMsgPr oc callback will have to allocate additional memory and store
pointer(s) to that memory in the fixed-size structure. If the entire data is variable
length (for example., a single variable-length string), then the client waiting for the
reply would probably just pass a pointer to fixed-size space to hold a pointer, and the
| cePoPr ocessMsgPr oc callback would allocate the storage and store the pointer. It
is the responsibility of the client receiving the reply to free any memory allocated
on its behalf.

If reply wait is not NULL and | cePoPr ocessMsgProc has a reply or error to re-
turn in response to this reply wait (that is, no callback was generated), then the
reply ready ret argument should be set to True Note that an error should only
be returned if it corresponds to the reply being waited for. Otherwise, the | ce-
PoPr ocessMsgPr oc should either handle the error internally or invoke an error han-
dler for its library.

If reply wait is NULL, then care must be taken not to store any value in
reply ready ret, because this pointer may also be NULL.

The | cePaPr ocessMsgPr oc callback, on the other hand, should always pass the mes-
sage to the client via a callback. For example, if this is a Session Management "In-
teract Request" message, this function should notify the client of the "Interact Re-
quest" via a callback.

The reason the | cePaPr ocessMsgPr oc callback does not have a reply wait, like | ce-
PoPr ocessMsgPr oc does, is because a process that is acting as a server should never
block for a reply (infinite blocking can occur if the connecting client does not act
properly, denying access to other clients).

Authentication Methods

As already stated, a protocol library must register the authentication methods that
it supports with the ICE library. For each authentication method, there are two
callbacks that may be registered:

* One to handle the side that initiates a Pr ot ocol Set up
* One to handle the side that accepts or rejects this request

| cePoAut hPr oc is the callback invoked for the client that initiated the Pr ot ocol Set -
up This callback must be able to respond to the initial "Authentication Required"
message or subsequent "Authentication Next Phase" messages sent by the other
client.

| cePoAut hSt at us | cePoAut hStatus (ice_conn, client_data, opcode);

ice conn The ICE connection object.
auth_state ptr A pointer to state for use by the authentication callback pro-
cedure.

11

Protocol Registration

clean up If Tr ue authentication is over, and the function should clean
up any state it was maintaining. The last 6 arguments should
be ignored.

swap If Tr ue the auth data may have to be byte swapped (depend-
ing on its contents).

auth _datalen The length (in bytes) of the authenticator data.

auth_data The data from the authenticator.

reply datalen ret The length (in bytes) of the reply data returned.
reply data ret The reply data returned.

error _string ret If the authentication procedure encounters an error during
authentication, it should allocate and return an error string.

Authentication may require several phases, depending on the authentication
method. As a result, the | cePoAut hPr oc may be called more than once when au-
thenticating a client, and some state will have to be maintained between each invo-
cation. At the start of each Pr ot ocol Set up *auth _state ptr is NULL, and the func-
tion should initialize its state and set this pointer. In subsequent invocations of the
callback, the pointer should be used to get at any state previously stored by the
callback.

If needed, the network ID of the client accepting the Pr ot ocol Set up can be obtained
by calling the | ceConnecti onStri ng function.

ICElib will be responsible for freeing the reply data ret and error string ret point-
ers with free

The auth data pointer may point to a volatile block of memory. If the data must be
kept beyond this invocation of the callback, be sure to make a copy of it.

The | cePoAut hPr oc should return one of four values:

* | cePoAut hHaveRepl y - a reply is available.

| cePoAut hRej ect ed - authentication rejected.

* | cePoAut hFai | ed - authentication failed.

| cePoAut hDoneC eanup - done cleaning up.

| cePaAut hPr oc is the callback invoked for the client that received the Pr ot ocol Set -
up

| cePoAut hSt at us PoAut hStatus (ice_conn, *auth_state ptr, swap,
aut h_dat al en, aut h_dat a, *reply_datal en_ret, *reply_data_ret,
**error_string_ret);

ice_conn The ICE connection object.
auth_state ptr A pointer to state for use by the authentication callback pro-
cedure.

12

Protocol Registration

swap If True auth data may have to be byte swapped (depending
on its contents).

auth datalen The length (in bytes) of the protocol originator authentication
data.

auth_data The authentication data from the protocol originator.

reply datalen ret The length of the authentication data returned.

reply data ret The authentication data returned.

error _string ret If authentication is rejected or fails, an error string is re-
turned.

Authentication may require several phases, depending on the authentication
method. As a result, the | cePaAut hProc may be called more than once when au-
thenticating a client, and some state will have to be maintained between each invo-
cation. At the start of each Prot ocol Set up auth datalen is zero, *auth state ptr is
NULL, and the function should initialize its state and set this pointer. In subsequent
invocations of the callback, the pointer should be used to get at any state previously
stored by the callback.

If needed, the network ID of the client accepting the Pr ot ocol Set up can be obtained
by calling the | ceConnecti onStri ng function.

The auth data pointer may point to a volatile block of memory. If the data must be
kept beyond this invocation of the callback, be sure to make a copy of it.

ICElib will be responsible for transmitting and freeing the reply data ret and
error string ret pointers with free

The | cePaAut hPr oc should return one of four values:

| cePaAut hCont i nue - continue (or start) authentication.

* | cePaAut hAccept ed - authentication accepted.

| cePaAut hRej ect ed - authentication rejected.

* | cePaAut hFai | ed - authentication failed.

13

Chapter 7. ICE Connections

In order for two clients to establish an ICE connection, one client has to be waiting
for connections, and the other client has to initiate the connection. Most clients will
initiate connections, so we discuss that first.

Opening an ICE Connection

To open an ICE connection with another client (that is, waiting for connections),
use | ceOpenConnecti on

| ceConn | ceCpenConnecti on(*network_ids_list, cont ext ,
nmust _aut henti cat e, maj or _opcode_check, error_| ength,
*error_string_ret);

network_ids_list Specifies the network ID(s) of the other client.

context A pointer to an opaque object or NULL. Used to determine
if an ICE connection can be shared (see below).

must_authenticate If Tr ue the other client may not bypass authentication.

major opcode check Used to force a new ICE connection to be created (see be-

low).
error length Length of the error string ret argument passed in.
error string ret Returns a null-terminated error message, if any. The

error_string ret argument points to user supplied memory.
No more than error length bytes are used.

| ceOpenConnect i on returns an opaque ICE connection object if it succeeds; other-
wise, it returns NULL.

The network ids list argument contains a list of network IDs separated by commas.
An attempt will be made to use the first network ID. If that fails, an attempt will be
made using the second network ID, and so on. Each network ID has the following
format:

tcp/ or
<hostname>:<portnumber>

dec- or
net/<hostname>::<objname>

lo-
cal/<hostname>:<path>

Most protocol libraries will have some sort of open function that should internally
make a call into | ceOpenConnecti on When | ceQpenConnect i on is called, it may be
possible to use a previously opened ICE connection (if the target client is the same).
However, there are cases in which shared ICE connections are not desired.

The context argument is used to determine if an ICE connection can be shared. If
context is NULL, then the caller is always willing to share the connection. If context

14

ICE Connections

is not NULL, then the caller is not willing to use a previously opened ICE connection
that has a different non-NULL context associated with it.

In addition, if major opcode check contains a nonzero major opcode value, a pre-
viously created ICE connection will be used only if the major opcode is not active
on the connection. This can be used to force multiple ICE connections between two
clients for the same protocol.

Any authentication requirements are handled internally by the ICE library. The
method by which the authentication data is obtained is implementation-dependent.

After | ceQpenConnect i on is called, the client is ready to send a Pr ot ocol Set up (pro-
vided that | ceRegi st er For Pr ot ocol Set up was called) or receive a Pr ot ocol Set up
(provided that | ceRegi st er For Pr ot ocol Repl y was called).

Listening for ICE Connections

Clients wishing to accept ICE connections must first call | ceLi st enFor Connect i ons
or | ceLi st enFor Wl | KnownConnect i ons so that they can listen for connections. A
list of opaque "listen" objects are returned, one for each type of transport method
that is available (for example, Unix Domain, TCP, DECnet, and so on).

Normally clients will let ICElib allocate an available name in each transport and
return listen objects. Such a client will then use | ceConposeNet wor ki dLi st to ex-
tract the chosen names and make them available to other clients for opening the
connection. In certain cases it may be necessary for a client to listen for connections
on pre-arranged transport object names. Such a client may use | ceLi st enFor W\l | -
KnownConnect i ons to specify the names for the listen objects.

St at us | ceLi st enFor Connecti ons(*count _ret, **|jisten_objs_ret,
error_length, *error_string_ret);

count ret Returns the number of listen objects created.

listen _objs ret Returns a list of pointers to opaque listen objects.

error _length The length of the error string ret argument passed in.

error string ret Returns a null-terminated error message, if any. The

error string ret points to user supplied memory. No more than
error length bytes are used.

The return value of | ceLi st enFor Connecti ons is zero for failure and a positive
value for success.

St at us | ceLi st enFor V&l | KnownConnect i ons(*port _id, *count _ret,
**|isten_objs ret, error_length, *error_string_ ret);

port_id Specifies the port identification for the address(es) to be
opened. The value must not contain the slash ("/"> or comma
(".") character; thse are reserved for future use.

count ret Returns the number of listen objects created.

The X Consortium's ICElib implementation uses an .ICEauthority file (see Appendix A).

15

ICE Connections

listen objs ret Returns a list of pointers to opaque listen objects.

listen _objs ret Returns a list of pointers to opaque listen objects.

error _length The length of the error string ret argument passed in.

error _string ret Returns a null-terminated error message, if any. The

error string ret points to user supplied memory. No more than
error_length bytes are used.

I ceLi st enFor I | KnownConnect i ons constructs a list of network IDs by prepend-
ing each known transport to port id and then attempts to create listen objects for
the result. Port id is the portnumber, objname, or path portion of the ICE network
ID. If a listen object for a particular network ID cannot be created the network ID
is ignored. If no listen objects are created | ceLi st enFor W\l | KnownConnect i ons re-
turns failure.

The return value of | ceLi st enFor W&l | KnownConnect i ons is zero for failure and a
positive value for success.

To close and free the listen objects, use | ceFr eeLi st en(hj s
voi d | ceFreelListenObjs(count, *listen_objs);
count The number of listen objects.

listen_objs The listen objects.

To detect a new connection on a listen object, use sel ect on the descriptor associ-
ated with the listen object.

To obtain the descriptor, use | ceGet Li st enConnect i onNunber
i nt |ceCetListenConnecti onNunber(*listen_objs);
listen obj The listen objects.

To obtain the network ID string associated with a listen object, use | ceGet Li st en-
ConnectionString

char | ceCetListenConnectionString(|isten_obj);
listen_obj The listen objects.

A network ID has the following format:

tep/ or
<hostname>:<portnumber>

dec- or
net/<hostname>::<objname>
lo-

cal/<hostname>:<path>

To compose a string containing a list of network IDs separated by commas (the
format recognized by | ceQpenConnect i on use | ceConposeNet wor ki dLi st

16

ICE Connections

char | ceConposeNet wor kI dLi st (count, *listen_objs);
count The number of listen objects.

listen_objs The listen objects.

Host Based Authentication for ICE Connec-
tions

If authentication fails when a client attempts to open an ICE connection and the
initiating client has not required authentication, a host based authentication pro-
cedure may be invoked to provide a last chance for the client to connect. Each lis-
ten object has such a callback associated with it, and this callback is set using the

| ceSet Host BasedAut hPr oc function.
voi d | ceSet Host BasedAut hProc(|isten_obj, host_based_auth_proc);
IceListenObj The listen object.

host based auth proc The host based authentication procedure.

By default, each listen object has no host based authentication procedure associated
with it. Passing NULL for host based auth proc turns off host based authentication

if it was previously set.

Bool Host BasedAut hProc(*host nane);

host name The host name of the client that tried to open an ICE connection.

The host name argument is a string in the form protocol/ hostname, where protocol

is one of {tcp, decnet, local}.

If | ceHost BasedAut hPr oc returns Tr ue access will be granted, even though the orig-
inal authentication failed. Note that authentication can effectively be disabled by

registering an | ceHost BasedAut hPr oc which always returns Tr ue

Host based authentication is also allowed at Prot ocol Set up time. The callback
is specified in the | ceRegi st er For Pr ot ocol Repl y function (see Protocol Registra-

tion).

Accepting ICE Connections

After a connection attempt is detected on a listen object returned by | ceLi st en-
For Connect i ons you should call | ceAccept Connect i on This returns a new opaque

ICE connection object.

| ceConn | ceAccept Connection(|isten_obj, *status ret);

listen obj The listen object on which a new connection was detected.
status_ret Return status information.

The status ret argument is set to one of the following values:

17

ICE Connections

* | ceAccept Success - the accept operation succeeded, and the function returns a
new connection object.

* | ceAccept Fai | ur e - the accept operation failed, and the function returns NULL.
* | ceAccept BadMal | oc - a memory allocation failed, and the function returns NULL.

In general, to detect new connections, you should call sel ect on the file descriptors
associated with the listen objects. When a new connection is detected, the | ceAc-
cept Connect i on function should be called. | ceAccept Connect i on may return a new
ICE connection that is in a pending state. This is because before the connection
can become valid, authentication may be necessary. Because the ICE library cannot
block and wait for the connection to become valid (infinite blocking can occur if the
connecting client does not act properly), the application must wait for the connec-
tion status to become valid.

The following pseudo-code demonstrates how connections are accepted:

new_i ce_conn = | ceAccept Connection (listen_obj, &accept_status);
if (accept_status != |ceAccept Success)

{
}

status = I ceConnectionStatus (new_ice_conn);
time_start = time_now,

close the file descriptor and return

whil e (status == | ceConnect Pendi ng)

{

select() on {new_.ice_conn, all open connections}

for (each ice_conn in the list of open connections)
if (data ready on ice_conn)

{
status = | ceProcessMessages (ice_conn, NULL, NULL);
if (status == |ceProcessMessagesl| Cerror)
| ceCl oseConnection(ice_conn);
}
if data ready on new_ice_conn
{
/*
* | ceProcessMessages is called until the connection
* is non-pending. Doing so handles the connection
* setup request and any authentication requirenents.
*/
| ceProcessMessages (new_i ce_conn, NULL, NULL);
status = IceConnectionStatus (new_ice_conn);
}
el se
{
if (time_now - tinme_start > MAX_WAI T_TI ME)
status = | ceConnect Rej ect ed;
}

18

ICE Connections

}
if (status == | ceConnect Accept ed)
{
Add new_ice_conn to the Iist of open connections
}
el se
{
| ceCl oseConnecti on
new i ce_conn
}

After | ceAccept Connecti on is called and the connection has been validated, the
client is ready to receive a Pr ot ocol Set up (provided that | ceRegi st er For Pr ot o-
col Repl y was called) or send a Pr ot ocol Set up (provided that | ceRegi st er For Pr o-
t ocol Set up was called).

Closing ICE Connections

To close an ICE connection created with | ceOpenConnect i on or | ceAccept Connec-
tion use |l ceC oseConnection

| ceCl oseStat us | ced oseConnection(ice_conn);
ice_conn The ICE connection to close.
To actually close an ICE connection, the following conditions must be met:

e The open reference count must have reached zero on this ICE connection. When
| ceOpenConnecti on is called, it tries to use a previously opened ICE connection.
If it is able to use an existing connection, it increments the open reference count
on the connection by one. So, to close an ICE connection, each call to | ceOpen-
Connect i on must be matched with a call to | ceCl oseConnect i on The connection
can be closed only on the last call to | ceCl oseConnecti on

e The active protocol count must have reached zero. Each time a Pr ot ocol Set -
up succeeds on the connection, the active protocol count is incremented by one.
When the client no longer expects to use the protocol on the connection, the | ce-
Pr ot ocol Shut down function should be called, which decrements the active proto-
col count by one (see Protocol Setup and Shutdown).

 If shutdown negotiation is enabled on the connection, the client on the other side
of the ICE connection must agree to have the connection closed.

| ced oseConnect i on returns one of the following values:

* | ced osedNow- the ICE connection was closed at this time. The watch procedures
were invoked and the connection was freed.

* | ced 0sedASAP - an IO error had occurred on the connection, but | ceCl oseCon-
necti on is being called within a nested | cePr ocessMessages The watch proce-
dures have been invoked at this time, but the connection will be freed as soon as
possible (when the nesting level reaches zero and | cePr ocessMessages returns
a status of | ceProcessMessagesConnect i onC osed

19

ICE Connections

e | ceConnectionl nUse - the connection was not closed at this time, because it is
being used by other active protocols.

e | ceSt art edShut downNegoti ati on - the connection was not closed at this time
and shutdown negotiation started with the client on the other side of the ICE con-
nection. When the connection is actually closed, | cePr ocessMessages will return
a status of | cePr ocessMessagesConnect i onCl osed

When it is known that the client on the other side of the ICE connection has ter-
minated the connection without initiating shutdown negotiation, the | ceSet Shut -
downNegot i ati on function should be called to turn off shutdown negotiation. This
will prevent | ceCl oseConnect i on from writing to a broken connection.

voi d | ceSet Shut downNegoti ati on(ice_conn, negotiate);
ice_conn A valid ICE connection object.
negotiate If Fal se shutdown negotiating will be turned off.

To check the shutdown negotiation status of an ICE connection, use | ceCheckShut -
downNegoti ati on

Bool | ceCheckShut downNegoti ation(ice_conn);
ice conn A valid ICE connection object.

| ceCheckShut downNegoti ati on returns True if shutdown negotiation will take
place on the connection; otherwise, it returns Fal se Negotiation is on by default for
a connection. It can only be changed with the | ceSet Shut downNegoti ati on func-
tion.

Connection Watch Procedures

To add a watch procedure that will be called each time ICElib opens a new connec-
tion via | ceOpenConnecti on or | ceAccept Connecti on or closes a connection via
| ceC oseConnecti on use | ceAddConnect i onWat ch

St at us | ceAddConnecti onVat ch(watch_proc, client_data);

watch proc The watch procedure to invoke when ICElib opens or closes a con-
nection.

client data This pointer will be passed to the watch procedure.

The return value of | ceAddConnect i onWat ch is zero for failure, and a positive value
for success.

Note that several calls to | ceCpenConnect i on might share the same ICE connection.
In such a case, the watch procedure is only invoked when the connection is first
created (after authentication succeeds). Similarly, because connections might be
shared, the watch procedure is called only if | ced oseConnecti on actually closes
the connection (right before the IceConn is freed).

The watch procedures are very useful for applications that need to add a file de-
scriptor to a select mask when a new connection is created and remove the file de-
scriptor when the connection is destroyed. Because connections are shared, know-

20

ICE Connections

ing when to add and remove the file descriptor from the select mask would be dif-
ficult without the watch procedures.

Multiple watch procedures may be registered with the ICE library. No assumptions
should be made about their order of invocation.

If one or more ICE connections were already created by the ICE library at the time
the watch procedure is registered, the watch procedure will instantly be invoked
for each of these ICE connections (with the opening argument set to Tr ue

The watch procedure is of type | ceVat chPr oc
void WatchProc(ice_conn, «client_data, opening, *watch_data);

ice_conn The opened or closed ICE connection. Call | ceConnect i onNunber to
get the file descriptor associated with this connection.

client data Client data specified in the call to | ceAddConnect i onWat ch

opening If True the connection is being opened. If Fal se the connection is
being closed.

watch_data Can be used to save a pointer to client data.

If opening is Tr ue the client should set the *watch data pointer to any data it may
need to save until the connection is closed and the watch procedure is invoked again
with opening set to Fal se

To remove a watch procedure, use | ceRenoveConnect i onWat ch
voi d | ceRenobveConnecti onWat ch(watch_proc, client_data);
watch proc The watch procedure that was passed to | ceAddConnect i onWat ch

client data The client data pointer that was passed to | ceAddConnect i onWat ch

21

Chapter 8. Protocol Setup and
Shutdown

To activate a protocol on a given ICE connection, use | cePr ot ocol Set up

| cePr ot ocol Set upSt at us | cePr ot ocol Set up(i ce_conn, nmy_opcode,
client data, must _aut henti cat e, *maj or _version_ret,
*m nor_version_ret, **vendor _ret, **rel ease_ret, error_| ength,

*error_string_ret);
ice_conn A valid ICE connection object.

my opcode The major opcode of the protocol to be set up, as returned by
| ceRegi st er For Pr ot ocol Set up

client data The client data stored in this pointer will be passed to the
| cePoPr ocessMsgPr oc callback.

must_authenticate If Tr ue the other client may not bypass authentication.
major version ret The major version of the protocol to be used is returned.

minor version ret The minor version of the protocol to be used is returned.

vendor ret The vendor string specified by the protocol acceptor.

release ret The release string specified by the protocol acceptor.

error length Specifies the length of the error string ret argument passed
in.

error string ret Returns a null-terminated error message, if any. The

error_string ret argument points to user supplied memory.
No more than error length bytes are used.

The vendor ret and release ret strings should be freed with free when no longer
needed.

| cePr ot ocol Set up returns one of the following values:

* | ceProtocol SetupSuccess - the major version ret, minor version ret,
vendor ret, release ret are set.

* | ceProtocol Set upFai l ure or | ceProt ocol Set upl OError - check
error string ret for failure reason. The major version ret, minor version ret,
vendor ret, release ret are not set.

* | ceProtocol Al readyActi ve - this protocol is already active on this connection.
The major version ret, minor version ret, vendor ret, release ret are not set.

To notify the ICE library when a given protocol will no longer be used on an ICE
connection, use | cePr ot ocol Shut down

Status |ceProt ocol Shutdown(ice_conn, mgajor_opcode);

22

Protocol Setup and Shutdown

ice_conn A valid ICE connection object.
major opcode The major opcode of the protocol to shut down.

The return value of | cePr ot ocol Shut down is zero for failure and a positive value
for success.

Failure will occur if the major opcode was never registered OR the protocol of the
major opcode was never activated on the connection. By activated, we mean that
a Pr ot ocol Set up succeeded on the connection. Note that ICE does not define how
each sub-protocol triggers a protocol shutdown.

23

Chapter 9. Processing Messages

To process incoming messages on an ICE connection, use | cePr ocessMessages

| ceProcessMessagesSt at us | ceProcessMessages(ice_conn, *reply wait,
*reply ready ret);

ice conn A valid ICE connection object.

reply wait Indicates if a reply is being waited for.
reply ready ret If set to Tr ue on return, a reply is ready.
| ceProcessMessages is used in two ways:

* In the first, a client may generate a message and block by calling | cePr ocessMes-
sages repeatedly until it gets its reply.

* In the second, a client calls | cePr ocessMessages with reply wait set to NULL in
response to sel ect showing that there is data to read on the ICE connection. The
ICE library may process zero or more complete messages. Note that messages
that are not blocked for are always processed by invoking callbacks.

| ceRepl yWii t | nf o contains the major/minor opcodes and sequence number of the
message for which a reply is being awaited. It also contains a pointer to the reply
message to be filled in (the protocol library should cast this | cePoi nt er to the ap-
propriate reply type). In most cases, the reply will have some fixed-size part, and
the client waiting for the reply will have provided a pointer to a structure to hold
this fixed-size data. If there is variable-length data, it would be expected that the
| cePoProcessMsgProc callback will have to allocate additional memory and store
pointer(s) to that memory in the fixed-size structure. If the entire data is variable
length (for example, a single variable-length string), then the client waiting for the
reply would probably just pass a pointer to fixed-size space to hold a pointer, and
the | cePoPr ocessMsgPr oc callback would allocate the storage and store the point-
er. It is the responsibility of the client receiving the reply to free up any memory
allocated on its behalf.

t ypedef struct {
unsi gned | ong sequence_of request;
i nt maj or_opcode_of request;
i nt mnor_opcode_of request;
| cePoi nter reply;
} lceRepl yWaitlnfo;

If reply wait is not NULL and | ceProcessMessages has a reply or error to re-
turn in response to this reply wait (that is, no callback was generated), then the
reply ready ret argument will be set to Tr ue

If reply wait is NULL, then the caller may also pass NULL for reply ready ret and
be guaranteed that no value will be stored in this pointer.

| ceProcessMessages returns one of the following values:

* | ceProcessMessagesSuccess - no error occurred.

24

Processing Messages

* | ceProcessMessages! CError -an IO error occurred, and the caller must explicitly
close the connection by calling | ceCl oseConnecti on

* | ceProcessMessagesConnecti onC osed - the ICE connection has been closed
(closing of the connection was deferred because of shutdown negotiation, or be-
cause the | ceProcessMessages nesting level was not zero). Do not attempt to ac-
cess the ICE connection at this point, since it has been freed.

25

Chapter 10. Ping

To send a "Ping" message to the client on the other side of the ICE connection, use
I cePi ng

Status lcePing(ice _conn, ping reply proc, client_data);

ice_conn A valid ICE connection object.

ping reply proc The callback to invoke when the Ping reply arrives.

client data This pointer will be passed to the | cePi ngRepl yPr oc callback.
| cePi ng returns zero for failure and a positive value for success.

When | cePr ocessMessages processes the Ping reply, it will invoke the | cePi ngRe-
pl yPr oc callback.

voi d PingReplyProc(ice _conn, client _data);
ice_conn A valid ICE connection object.

client data The client data specified in the call to | cePi ng

26

Chapter 11. Using ICElib Informational
Functions

| ceConnect St at us | ceConnecti onStatus(ice_conn);

| ceConnect i onSt at us returns the status of an ICE connection. The possible return
values are:

* | ceConnect Pendi ng - the connection is not valid yet (that is, authentication is tak-
ing place). This is only relevant to connections created by | ceAccept Connecti on

* | ceConnect Accept ed - the connection has been accepted. This is only relevant to
connections created by | ceAccept Connecti on

* | ceConnect Rej ect ed - the connection had been rejected (that is, authentication
failed). This is only relevant to connections created by | ceAccept Connecti on

e | ceConnect | OError - an IO error has occurred on the connection.
char *lceVendor(ice_conn);

| ceVendor returns the ICE library vendor identification for the other side of the
connection. The string should be freed with a call to f r ee when no longer needed.

char *lceRel ease(ice_conn);

| ceRel ease returns the release identification of the ICE library on the other side
of the connection. The string should be freed with a call to f ree when no longer
needed.

int 1ceProtocol Version(ice_conn);

| ceProt ocol Versi on returns the major version of the ICE protocol on this con-
nection.

int 1ceProtocol Revision(ice_conn);

| cePr ot ocol Revi si on returns the minor version of the ICE protocol on this con-
nection.

int 1ceConnectionNunber(ice_conn);
| ceConnect i onNunber returns the file descriptor of this ICE connection.
char *lceConnectionString(ice_conn);

| ceConnectionSt ri ng returns the network ID of the client that accepted this con-
nection. The string should be freed with a call to f r ee when no longer needed.

unsi gned |l ong | celLast Sent SequenceNunber(ice_conn);

| ceLast Sent SequenceNunber returns the sequence number of the last message
sent on this ICE connection.

unsi gned |l ong | celLast Recei vedSequenceNumnber(ice_conn);

27

Using ICElib Infor-
mational Functions

| ceLast Recei vedSequenceNunber returns the sequence number of the last mes-
sage received on this ICE connection.

Bool | ceSwappi ng(ice_conn);

| ceSwappi ng returns Tr ue if byte swapping is necessary when reading messages
on the ICE connection.

| cePointer |ceCetContext(ice_conn);

| ceGet Cont ext returns the context associated with a connection created by
| ceCpenConnecti on

28

Chapter 12. ICE Messages

All ICE messages have a standard 8-byte header. The ICElib macros that read and
write messages rely on the following naming convention for message headers:

CARD8 mmj or _opcode;
CARD8 mi nor _opcode;
CARD8 dat a[2] ;

CARD32 | ength B32;

The 3rd and 4th bytes of the message header can be used as needed. The length
field is specified in units of 8 bytes.

Sending ICE Messages

The ICE library maintains an output buffer used for generating messages. Protocol
libraries layered on top of ICE may choose to batch messages together and flush
the output buffer at appropriate times.

If an IO error has occurred on an ICE connection, all write operations will be ig-
nored. For further information, see Error Handling.

To get the size of the ICE output buffer, use |ceGet Qut Buf Si ze
int 1ceGetQutBufSize(ice_conn);

ice conn A valid ICE connection object.

To flush the ICE output buffer, use | ceFl ush

int lceFlush(ice_conn);

ice_conn A valid ICE connection object.

Note that the output buffer may be implicitly flushed if there is insufficient space
to generate a message.

The following macros can be used to generate ICE messages:

| ceGet Header (i ce_conn, maj or _opcode, m nor _opcode, header _si ze,
*pnsg) ;

ice_conn A valid ICE connection object.

major opcode The major opcode of the message.

minor opcode The minor opcode of the message.

header size The size of the message header (in bytes).

<C data type> The actual C data type of the message header.

pmsg The message header pointer. After this macro is called, the library
can store data in the message header.

29

ICE Messages

| ceGet Header is used to set up a message header on an ICE connection. It sets
the major and minor opcodes of the message, and initializes the message's length
to the length of the header. If additional variable length data follows, the message's
length field should be updated.

| ceGet Header Ext r a(i ce_conn, maj or _opcode, m nor _opcode,
header size, extra, *pnmsg, *pdata);

ice_conn A valid ICE connection object.

major opcode The major opcode of the message.

minor opcode The minor opcode of the message.

header size The size of the message header (in bytes).

extra The size of the extra data beyond the header (in 8-byte units).
<C data type> The actual C data type of the message header.

pmsg The message header pointer. After this macro is called, the library
can store data in the message header.

pdata Returns a pointer to the ICE output buffer that points immediate-
ly after the message header. The variable length data should be
stored here. If there was not enough room in the ICE output buffer,
pdata is set to NULL.

| ceGet Header Ext r a is used to generate a message with a fixed (and relatively
small) amount of variable length data. The complete message must fit in the ICE
output buffer.

| ceSi npl eMessage(ice_conn, najor_opcode, m nor_opcode);
ice_conn A valid ICE connection object.

major opcode The major opcode of the message.

minor opcode The minor opcode of the message.

| ceSi npl eMessage is used to generate a message that is identical in size to the
ICE header message, and has no additional data.

| ceError Header (i ce_conn, of f endi ng_maj or _opcode,
of f endi ng_m nor _opcode, of f endi ng_sequence_num severity,
error_class, data_length);

ice_conn A valid ICE connection object.

offending major opcode The major opcode of the protocol in which an error was
detected.

offending minor opcode The minor opcode of the protocol in which an error was
detected.

offending sequence num The sequence number of the message that caused the
error.

30

ICE Messages

severity I ceCanConti nue | ceFat al ToPr ot ocol or | ceFat al To-
Connecti on

error class The error class.
data _length Length of data (in 8-byte units) to be written after the
header.

| ceErr or Header sets up an error message header.

Note that the two clients connected by ICE may be using different major opcodes
for a given protocol. The offending major opcode passed to this macro is the major
opcode of the protocol for the client sending the error message.

Generic errors, which are common to all protocols, have classes in the range
0x8000..0xFFFF. See the Inter-Client Exchange Protocol standard for more details.

IceBadMinor 0x8000
IceBadState 0x8001
IceBadLength 0x8002
IceBadValue 0x8003

Per-protocol errors have classes in the range 0x0000-0x7fff.

To write data to an ICE connection, use the |ceWiteData macro. If the data fits
into the ICE output buffer, it is copied there. Otherwise, the ICE output buffer is
flushed and the data is directly sent.

This macro is used in conjunction with | ceGet Header and | ceError Header
lceWiteData(ice_conn, bytes, *data);

ice_conn A valid ICE connection object.

bytes The number of bytes to write.

data The data to write.

To write data as 16-bit quantities, use |ceWiteDat al6
lceWiteDatal6(ice_conn, bytes, *data);

ice_ conn A valid ICE connection object.

bytes The number of bytes to write.

data The data to write.

To write data as 32-bit quantities, use |ceWiteDat a32
lceWiteData32(ice_conn, bytes, *data);

ice conn A valid ICE connection object.

bytes The number of bytes to write.

data The data to write.

31

ICE Messages

To write data as 32-bit quantities, use |ceWi t eDat a32

To bypass copying data to the ICE output buffer, use |ceSendDat a to directly send
data over the network connection. If necessary, the ICE output bufferis first flushed.

| ceSendData(ice_conn, bytes, *data);
ice_conn A valid ICE connection object.
bytes The number of bytes to send.
data The data to send.

To force 32-bit or 64-bit alignment, use |ceWitePad A maximum of 7 pad bytes
can be specified.

IceWitePad(ice_conn, bytes, *data);
ice conn A valid ICE connection object.
bytes The number of bytes to write.

data The number of pad bytes to write.

Reading ICE Messages

The ICE library maintains an input buffer used for reading messages. If the ICE
library chooses to perform nonblocking reads (this is implementation-dependent),
then for every read operation that it makes, zero or more complete messages may
be read into the input buffer. As a result, for all of the macros described in this
section that read messages, an actual read operation will occur on the connection
only if the data is not already present in the input buffer.

To get the size of the ICE input buffer, use |ceGet | nBufSi ze
int IceCetlnBufSize(ice_conn);
ice_ conn A valid ICE connection object.

When reading messages, care must be taken to check for IO errors. If any 1O error
occurs in reading any part of a message, the message should be thrown out. After
using any of the macros described below for reading messages, the 1ceValidl O
macro can be used to check if an IO error occurred on the connection. After an 10
error has occurred on an ICE connection, all read operations will be ignored. For
further information, see Error Handling.

Bool IceValidl Q(ice_conn);

ice_conn A valid ICE connection object.

The following macros can be used to read ICE messages.
| ceReadSi npl eMessage(i ce_conn, *pneQ);

ice_conn A valid ICE connection object.

<C data type> The actual C data type of the message header.

32

ICE Messages

pmsg This pointer is set to the message header.

| ceReadSi npl eMessage is used for messages that are identical in size to the 8-byte
ICE header, but use the spare 2 bytes in the header to encode additional data. Note
that the ICE library always reads in these first 8 bytes, so it can obtain the major
opcode of the message. | ceReadSi npl eMessage simply returns a pointer to these
8 bytes; it does not actually read any data into the input buffer.

For a message with variable length data, there are two ways of reading the message.
One method involves reading the complete message in one pass using |ceRead-
Conpl et eMessage The second method involves reading the message header (note
that this may be larger than the 8-byte ICE header), then reading the variable length
data in chunks (see | ceReadMessageHeader and | ceReadDat a

| ceReadConpl et eMessage(ice_conn, header_size, *pnsg, *pdata);
ice_conn A valid ICE connection object.

header size The size of the message header (in bytes).

<C data type> The actual C data type of the message header.

pmsg This pointer is set to the message header.

pdata This pointer is set to the variable length data of the message.

If the ICE input buffer has sufficient space, | ceReadConpl et eMessage will read the
complete message into the ICE input buffer. Otherwise, a buffer will be allocated to
hold the variable length data. After the call, the pdata argument should be checked
against NULL to make sure that there was sufficient memory to allocate the buffer.

After calling | ceReadConpl et eMessage and processing the message, |ceDis-
poseConpl et eMessage should be called.

| ceDi sposeConpl et eMessage(i ce_conn, *pdata);
ice_ conn A valid ICE connection object.

pdata The pointer to the variable length data returned in | ceReadCom
pl et eMessage

If a buffer had to be allocated to hold the variable length data (because it did not
fit in the ICE input buffer), it is freed here by ICElib.

| ceReadMessageHeader (i ce_conn, header_size, *pnsg);
ice_conn A valid ICE connection object.

header size The size of the message header (in bytes).

<C data type> The actual C data type of the message header.
pmsg This pointer is set to the message header.

| ceReadMessageHeader reads just the message header. The rest of the data should
be read with the | ceReadDat a family of macros. This method of reading a message
should be used when the variable length data must be read in chunks.

33

ICE Messages

To read data directly into a user supplied buffer, use | ceReadDat a
| ceReadData(ice_conn, bytes, *pdata);

ice_conn A valid ICE connection object.

bytes The number of bytes to read.

pdata The data is read into this user supplied buffer.

To read data as 16-bit quantities, use | ceReadDat al6

| ceReadDat al6(ice_conn, swap, bytes, *pdata);

ice conn A valid ICE connection object.

swap If True, the values will be byte swapped.
bytes The number of bytes to read.
pdata The data is read into this user supplied buffer.

To read data as 32-bit quantities, use | ceReadDat a32
| ceReadDat a32(ice_conn, swap, bytes, *pdata);

ice conn A valid ICE connection object.

swap If True, the values will be byte swapped.
bytes The number of bytes to read.
pdata The data is read into this user supplied buffer.

To force 32-bit or 64-bit alignment, use |ceReadPad A maximum of 7 pad bytes
can be specified.

| ceReadPad(ice_conn, bytes);
ice conn A valid ICE connection object.

bytes The number of pad bytes.

34

Chapter 13. Error Handling

There are two default error handlers in ICElib:

* One to handle typically fatal conditions (for example, a connection dying because
a machine crashed)

* One to handle ICE-specific protocol errors

These error handlers can be changed to user-supplied routines if you prefer your
own error handling and can be changed as often as you like.

To set the ICE error handler, use | ceSet Error Handl er
| ceSet ErrorHandl er(ice_conn, bytes);

handler The ICE error handler. You should pass NULL to restore the default han-
dler.

| ceSet Err or Handl er returns the previous error handler.

The ICE error handler is invoked when an unexpected ICE protocol error (major
opcode 0) is encountered. The action of the default handler is to print an explanatory
message to stderr and if the severity is fatal, call exi t with a nonzero value. If
exiting is undesirable, the application should register its own error handler.

Note that errors in other protocol domains should be handled by their respective
libraries (these libraries should have their own error handlers).

An ICE error handler has the type of | ceErrorHandl er

void IceErrorHandler(ice_conn, swap, of f endi ng_m nor _opcode,
of fendi ng_sequence_num error_class, severity, values);

handler The ICE connection object.

swap A flag that indicates if the values need byte swapping.
offending minor opcode The ICE minor opcode of the offending message.
offending sequence num The sequence number of the offending message.
error _class The error class of the offending message.

severity | ceCanConti nue | ceFat al ToPr ot ocol or | ceFat al To-
Connection

values Any additional error values specific to the minor opcode
and class.

The following error classes are defined at the ICE level:
| ceBadM nor

| ceBadSt at e
| ceBadLengt h

35

Error Handling

| ceBadVal ue

| ceBadMaj or

I ceNoAut h

| ceNoVer si on

| ceSet upFai | ed

| ceAut hRej ect ed

| ceAut hFai | ed

| ceProt ocol Duplicate

| ceMnj or OpcodeDupl i cate
| ceUnknownPr ot ocol

For further information, see the Inter-Client Exchange Protocol standard.
To handle fatal I/O errors, use | ceSet | CError Handl er
| cel CErrorHandl er IceSetl CerrorHandl er(handler);

handler The I/O error handler. You should pass NULL to restore the default han-
dler.

| ceSet | CErr or Handl er returns the previous IO error handler.
An ICE I/O error handler has the type of | cel OError Handl er
void I cel OerrorHandl er(ice_conn);

ice_ conn The ICE connection object.

There are two ways of handling IO errors in ICElib:

* In the first, the IO error handler does whatever is necessary to respond to the
10 error and then returns, but it does not call | ceC oseConnect i on The ICE con-
nection is given a "bad 10" status, and all future reads and writes to the connec-
tion are ignored. The next time | cePr ocessMessages is called it will return a sta-
tus of | cePr ocessMessages!| CErr or At that time, the application should call | ce-
Cl oseConnecti on

¢ In the second, the IO error handler does call | ceCl oseConnecti on and then uses
the | ongj np call to get back to the application's main event loop. The set j np and
| ongj np calls may not work properly on all platforms, and special care must be
taken to avoid memory leaks. Therefore, this second model is less desirable.

Before the application I/O error handler is invoked, protocol libraries that were in-
terested in being notified of I/O errors will have their |cel CError Proc handlers
invoked. This handler is set up in the protocol registration functions (see | ceReg-
i st er For Prot ocol Set up and | ceRegi st er For Pr ot ocol Repl y and could be used to
clean up state specific to the protocol.

void Icel CerrorProc(ice_conn);
ice_conn The ICE connection object.

Note that every | cel OError Proc callback must return. This is required because
each active protocol must be notified of the broken connection, and the application
IO error handler must be invoked afterwards.

36

Chapter 14. Multi-Threading Support

To declare that multiple threads in an application will be using the ICE library, use
| cel nitThr eads

Status IcelnitThreads()

The |l cel ni t Thr eads function must be the first ICElib function a multi-threaded pro-
gram calls. It must complete before any other ICElib call is made. | cel ni t Thr eads
returns a nonzero status if and only if it was able to initialize the threads package
successfully. It is safe to call | cel ni t Thr eads more than once, although the threads
package will only be initialized once.

Protocol libraries layered on top of ICElib will have to lock critical sections of code
that access an ICE connection (for example, when generating messages). Two calls,
which are generally implemented as macros, are provided:

voi d | ceLockConn(ice_conn);
voi d | ceUnl ockConn(ice_conn);
ice_conn The ICE connection object.

To keep an ICE connection locked across several ICElib calls, applications use
| ceAppLockConn and | ceAppUnl ockConn

voi d | ceAppLockConn(ice_conn);
ice_conn The ICE connection object.

The | ceAppLockConn function completely locks out other threads using the con-
nection until | ceAppUnl ockConn is called. Other threads attempting to use ICElib
calls on the connection will block. If the program has not previously called | cel ni t -
Threads | ceAppLockConn has no effect.

voi d | ceAppUnl ockConn(ice_conn);
ice_conn The ICE connection object.

The | ceAppUnl ockConn function allows other threads to complete ICElib calls on
the connection that were blocked by a previous call to | ceAppLockConn from this
thread. If the program has not previously called I cel ni t Threads | ceAppUnl ock-
Conn has no effect.

37

Chapter 15. Miscellaneous Functions

To allocate scratch space (for example, when generating messages with variable
data), use | ceAl | ocScr at ch Each ICE connection has one scratch space associated
with it. The scratch space starts off as empty and grows as needed. The contents
of the scratch space is not guaranteed to be preserved after any ICElib function
is called.

char *lceAllocScratch(ice_conn, size);
ice_ conn The ICE connection object.
size The number of bytes required.

Note that the memory returned by | ceAl | ocScrat ch should not be freed by the
caller. The ICE library will free the memory when the ICE connection is closed.

38

Chapter 16. Acknowledgements

Thanks to Bob Scheifler for his thoughtful input on the design of the ICE library.
Thanks also to Jordan Brown, Larry Cable, Donna Converse, Clive Feather, Stephen

Gildea, Vania Joloboff, Kaleb Keithley, Stuart Marks, Hiro Miyamoto, Ralph Swick,
Jim VanGilder, and Mike Wexler.

39

Appendix A. Authentication Utility
Functions

As discussed in this document, the means by which authentication data is obtained
by the ICE library (for Connect i onSet up messages or Pr ot ocol Set up messages) is
implementation-dependent.t !

This appendix describes some utility functions that manipulate an ICE authority file.
The authority file can be used to pass authentication data between clients.

The basic operations on the .ICEauthority file are:
* Get file name

* Lock

* Unlock

* Read entry

* Write entry

» Search for entry

These are fairly low-level operations, and it is expected that a program, like
"iceauth", would exist to add, remove, and display entries in the file.

In order to use these utility functions, the <X11/ICE/ICEutil.h> header file must
be included.

An entry in the .ICEauthority file is defined by the following data structure:

typedef struct {
char *protocol nane;
unsi gned short protocol data | ength;
char *protocol data;
char *network_id;
char *aut h_nane;
unsi gned short auth_data_l ength;
char *auth_dat a;
} lceAuthFil eEntry;

The protocol name member is either "ICE" for connection setup authentication or
the subprotocol name, such as "XSMP". For each entry, protocol specific data can
be specified in the protocol data member. This can be used to search for old entries
that need to be removed from the file.

The network id member is the network ID of the client accepting authentication
(for example, the network ID of a session manager). A network ID has the following
form:

The X Consortium's ICElib implementation assumes the presence of an ICE authority file.

40

Authentication
Utility Functions

tcp/ or
<hostname>:<portnumber>

dec- or
net/<hostname>::<objname>

lo-
cal/<hostname>:<path>

The auth name member is the name of the authentication method. The auth data
member is the actual authentication data, and the auth data length member is the
number of bytes in the data.

To obtain the default authorization file name, use | ceAut hFi | eNanme

char *IceAuthFileName()

If the ICEAUTHORITY environment variable if set, this value is returned. Otherwise,
the default authorization file name is $HHOME/.ICEauthority. This name is statically
allocated and should not be freed.

To synchronously update the authorization file, the file must be locked with a call
to I ceLockAut hFi | e This function takes advantage of the fact that the | i nk system
call will fail if the name of the new link already exists.

int IceLockAuthFile(*file_name, retries, tineout, dead);

file name The authorization file to lock.

retries The number of retries.
timeout The number of seconds before each retry.
dead If a lock already exists that is the specified dead seconds old, it is bro-

ken. A value of zero is used to unconditionally break an old lock.
One of three values is returned:
* | ceAut hLockSuccess - the lock succeeded.
* | ceAut hLockError - a system error occurred, and er r no may prove useful.
e | ceAut hLockTi neout - the specified number of retries failed.
To unlock an authorization file, use |ceUnl ockAut hFil e
int IceUnl ockAuthFile(*file_nane);
file name The authorization file to unlock.
To read the next entry in an authorization file, use | ceReadAut hFi | eEntry
| ceAut hFil eEntry *IceReadAut hFil eEntry(*auth file);
auth_file The authorization file.

Note that it is the responsibility of the application to open the file for reading before
calling this function. If an error is encountered, or there are no more entries to
read, NULL is returned.

41

Authentication
Utility Functions

Entries should be free with a call to | ceFreeAut hFi |l eEntry

To write an entry in an authorization file, use 1ceWiteAuthFileEntry
Status lceWiteAuthFileEntry(*auth_file, *entry);

auth_file The authorization file.

entry The entry to write.

Note that it is the responsibility of the application to open the file for writing before
calling this function. The function returns a nonzero status if the operation was
successful.

To search the default authorization file for an entry that matches a given
protocol name/network id/auth name tuple, use | ceGet Aut hFi | eEntry

| ceAut hFil eEntry *] ceGet Aut hFi | eEntry(protocol _nane, net wor k_i d,
aut h_nan®e) ;
auth_file The name of the protocol to search on.

network id The network ID to search on.
auth name The authentication method to search on.
If | ceGet Aut hFi | eEnt ry fails to find such an entry, NULL is returned.

To free an entry returned by | ceReadAut hFi | eEntry or | ceGet Aut hFi | eEntry use
| ceFreeAut hFi | eEntry

void | ceFreeAut hFil eEntry(*entry);

entry The entry to free.

42

Appendix B. MIT-MAGIC-COOKIE-1
Authentication

The X Consortium's ICElib implementation supports a simple MIT-MAGIC-
COOKIE-1 authentication scheme using the authority file utilities described in Ap-
pendix A.

In this model, an application, such as a session manager, obtains a magic cookie by
calling | ceGener at eMagi cCooki e and then stores it in the user's local .ICEauthority
file so that local clients can connect. In order to allow remote clients to connect,
some remote execution mechanism should be used to store the magic cookie in the
user's .ICEauthority file on a remote machine.

In addition to storing the magic cookie in the .ICEauthority file, the application
needs to call the | ceSet PaAut hDat a function in order to store the magic cookie in
memory. When it comes time for the MIT-MAGIC-COOKIE-1 authentication proce-
dure to accept or reject the connection, it will compare the magic cookie presented
by the requestor to the magic cookie in memory.

char *I|ceCener at eMagi cCooki e(| ength);
length The desired length of the magic cookie.

The magic cookie returned will be null-terminated. If memory can not be allocated
for the magic cookie, the function will return NULL. Otherwise, the magic cookie
should be freed with a call to free

To store the authentication data in memory, use | ceSet PaAut hDat a Currently, this
function is only used for MIT-MAGIC-COOKIE-1 authentication, but it may be used
for additional authentication methods in the future.

voi d | ceSet PaAut hDat a(num entries, *entries);
num_entries The number of authentication data entries.
entries The list of authentication data entries.

Each entry has associated with it a protocol name (for example, "ICE" for ICE
connection setup authentication, "XSMP" for session management authentication),
a network ID for the "accepting" client, an authentication name (for example,
MIT-MAGIC-COOKIE-1), and authentication data. The ICE library will merge these
entries with previously set entries, based on the (protocol name, network id,
auth name) tuple.

typedef struct {

char *protocol nane;

char *network_id;

char *aut h_nane;

unsi gned short auth_data_ | ength;
char *auth_dat a;

} lceAut hDat aEntry;

43

	Inter-Client Exchange Library
	Table of Contents
	Chapter 1. Overview of ICE
	Chapter 2. The ICE Library - C Language Interface to ICE
	Chapter 3. Intended Audience
	Chapter 4. Header Files and Library Name
	Chapter 5. Note on Prefixes
	Chapter 6. Protocol Registration
	Callbacks for Processing Messages
	Authentication Methods

	Chapter 7. ICE Connections
	Opening an ICE Connection
	Listening for ICE Connections
	Host Based Authentication for ICE Connections
	Accepting ICE Connections
	Closing ICE Connections
	Connection Watch Procedures

	Chapter 8. Protocol Setup and Shutdown
	Chapter 9. Processing Messages
	Chapter 10. Ping
	Chapter 11. Using ICElib Informational Functions
	Chapter 12. ICE Messages
	Sending ICE Messages
	Reading ICE Messages

	Chapter 13. Error Handling
	Chapter 14. Multi-Threading Support
	Chapter 15. Miscellaneous Functions
	Chapter 16. Acknowledgements
	Appendix A. Authentication Utility Functions
	Appendix B. MIT-MAGIC-COOKIE-1 Authentication

