
Inter-Client Exchange Library

X Consortium Standard

Ralph Mor, X Consortium

Inter-Client Exchange Library: X Consortium Standard
by Ralph Mor
X Version 11, Release 7.7
Version 1.0
Copyright © 1993, 1994, 1996 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

iii

Table of Contents
1. Overview of ICE .. 1
2. The ICE Library - C Language Interface to ICE ... 2
3. Intended Audience .. 3
4. Header Files and Library Name ... 4
5. Note on Prefixes ... 5
6. Protocol Registration .. 6

Callbacks for Processing Messages ... 9
Authentication Methods ... 11

7. ICE Connections .. 14
Opening an ICE Connection .. 14
Listening for ICE Connections ... 15
Host Based Authentication for ICE Connections ... 17
Accepting ICE Connections ... 17
Closing ICE Connections ... 19
Connection Watch Procedures ... 20

8. Protocol Setup and Shutdown .. 22
9. Processing Messages .. 24
10. Ping ... 26
11. Using ICElib Informational Functions ... 27
12. ICE Messages .. 29

Sending ICE Messages .. 29
Reading ICE Messages .. 32

13. Error Handling .. 35
14. Multi-Threading Support ... 37
15. Miscellaneous Functions ... 38
16. Acknowledgements .. 39
A. Authentication Utility Functions ... 40
B. MIT-MAGIC-COOKIE-1 Authentication .. 43

1

Chapter 1. Overview of ICE
There are numerous possible inter-client protocols, with many similarities and com-
mon needs - authentication, version negotiation, byte order negotiation, and so on.
The Inter-Client Exchange (ICE) protocol is intended to provide a framework for
building such protocols, allowing them to make use of common negotiation mecha-
nisms and to be multiplexed over a single transport connection.

2

Chapter 2. The ICE Library - C
Language Interface to ICE

A client that wishes to utilize ICE must first register the protocols it understands
with the ICE library. Each protocol is dynamically assigned a major opcode ranging
from 1-255 (two clients can use different major opcodes for the same protocol). The
next step for the client is either to open a connection with another client or to wait
for connections made by other clients. Authentication may be required. A client can
both initiate connections with other clients and be waiting for clients to connect to
itself (a nested session manager is an example). Once an ICE connection is estab-
lished between the two clients, one of the clients needs to initiate a ProtocolSet-
up in order to "activate" a given protocol. Once the other client accepts the Proto-
colSetup (once again, authentication may be required), the two clients are ready
to start passing messages specific to that protocol to each other. Multiple protocols
may be active on a single ICE connection. Clients are responsible for notifying the
ICE library when a protocol is no longer active on an ICE connection, although ICE
does not define how each subprotocol triggers a protocol shutdown.

The ICE library utilizes callbacks to process incoming messages. Using callbacks
allows ProtocolSetup messages and authentication to happen behind the scenes.
An additional benefit is that messages never need to be buffered up by the library
when the client blocks waiting for a particular message.

3

Chapter 3. Intended Audience
This document is intended primarily for implementors of protocol libraries layered
on top of ICE. Typically, applications that wish to utilize ICE will make calls into
individual protocol libraries rather than directly make calls into the ICE library.
However, some applications will have to make some initial calls into the ICE library
in order to accept ICE connections (for example, a session manager accepting con-
nections from clients). But in general, protocol libraries should be designed to hide
the inner details of ICE from applications.

4

Chapter 4. Header Files and Library
Name

The header file <X11/ICE/ICElib.h> defines all of the ICElib data structures and
function prototypes. ICElib.h includes the header file <X11/ICE/ICE.h>, which de-
fines all of the ICElib constants. Protocol libraries that need to read and write mes-
sages should include the header file <X11/ICE/ICEmsg.h>.

Applications should link against ICElib using -lICE.

5

Chapter 5. Note on Prefixes
The following name prefixes are used in the library to distinguish between a client
that initiates a ProtocolSetup and a client that responds with a ProtocolReply

• IcePo - Ice Protocol Originator

• IcePa - Ice Protocol Acceptor

6

Chapter 6. Protocol Registration
In order for two clients to exchange messages for a given protocol, each side must
register the protocol with the ICE library. The purpose of registration is for each side
to obtain a major opcode for the protocol and to provide callbacks for processing
messages and handling authentication. There are two separate registration func-
tions:

• One to handle the side that does a ProtocolSetup

• One to handle the side that responds with a ProtocolReply

It is recommended that protocol registration occur before the two clients establish
an ICE connection. If protocol registration occurs after an ICE connection is created,
there can be a brief interval of time in which a ProtocolSetup is received, but
the protocol is not registered. If it is not possible to register a protocol before the
creation of an ICE connection, proper precautions should be taken to avoid the
above race condition.

The IceRegisterForProtocolSetup function should be called for the client that
initiates a ProtocolSetup

int IceRegisterForProtocolSetup(*protocol_name, *vendor, *release,
version_count, *version_recs, auth_count, **auth_names, *auth_procs,
io_error_proc);

protocol_name A string specifying the name of the protocol to register.

vendor A vendor string with semantics specified by the protocol.

release A release string with semantics specified by the protocol.

version_count The number of different versions of the protocol supported.

version_recs List of versions and associated callbacks.

auth_count The number of authentication methods supported.

auth_names The list of authentication methods supported.

auth_procs The list of authentication callbacks, one for each authentication
method.

io_error_proc IO error handler, or NULL.

IceRegisterForProtocolSetup returns the major opcode reserved or -1 if an error
occurred. In order to actually activate the protocol, the IceProtocolSetup function
needs to be called with this major opcode. Once the protocol is activated, all mes-
sages for the protocol should be sent using this major opcode.

A protocol library may support multiple versions of the same protocol. The
version_recs argument specifies a list of supported versions of the protocol, which
are prioritized in decreasing order of preference. Each version record consists of
a major and minor version of the protocol as well as a callback to be used for pro-
cessing incoming messages.

Protocol Registration

7

typedef struct {
 int major_version;
 int minor_version;
 IcePoProcessMsgProc process_msg_proc;
} IcePoVersionRec;

The IcePoProcessMsgProc callback is responsible for processing the set of mes-
sages that can be received by the client that initiated the ProtocolSetup For further
information, see Callbacks for Processing Messages

Authentication may be required before the protocol can become active. The proto-
col library must register the authentication methods that it supports with the ICE li-
brary. The auth_names and auth_procs arguments are a list of authentication names
and callbacks that are prioritized in decreasing order of preference. For information
on the IcePoAuthProc callback, see Authentication Methods

The IceIOErrorProc callback is invoked if the ICE connection unexpectedly
breaks. You should pass NULL for io_error_proc if not interested in being notified.
For further information, Error Handling

The IceRegisterForProtocolReply function should be called for the client that
responds to a ProtocolSetup with a ProtocolReply

Bool IceRegisterForProtocolReply(*protocol_name, *vendor, *release,
version_count, *version_recs, auth_count, **auth_names, *auth_procs,
host_based_auth_proc, protocol_setup_proc, protocol_activate_proc,
io_error_proc);

protocol_name A string specifying the name of the protocol to register.

vendor A vendor string with semantics specified by the proto-
col.

release A release string with semantics specified by the proto-
col.

version_count The number of different versions of the protocol sup-
ported.

version_recs List of versions and associated callbacks.

auth_count The number of authentication methods supported.

auth_names The list of authentication methods supported.

auth_procs The list of authentication callbacks, one for each au-
thentication method.

host_based_auth_proc Host based authentication callback.

protocol_setup_proc A callback to be invoked when authentication has suc-
ceeded for a ProtocolSetup but before the Protocol-
Reply is sent.

protocol_activate_proc A callback to be invoked after the ProtocolReply is
sent.

Protocol Registration

8

io_error_proc IO error handler, or NULL.

IceRegisterForProtocolReply returns the major opcode reserved or -1 if an error
occurred. The major opcode should be used in all subsequent messages sent for
this protocol.

A protocol library may support multiple versions of the same protocol. The
version_recs argument specifies a list of supported versions of the protocol, which
are prioritized in decreasing order of preference. Each version record consists of
a major and minor version of the protocol as well as a callback to be used for pro-
cessing incoming messages.

typedef struct {
 int major_version;
 int minor_version;
 IcePaProcessMsgProc process_msg_proc;
} IcePaVersionRec;

The IcePaProcessMsgProc callback is responsible for processing the set of mes-
sages that can be received by the client that accepted the ProtocolSetup For fur-
ther information, see Callbacks for Processing Messages

Authentication may be required before the protocol can become active. The proto-
col library must register the authentication methods that it supports with the ICE li-
brary. The auth_names and auth_procs arguments are a list of authentication names
and callbacks that are prioritized in decreasing order of preference. For information
on the IcePaAuthProc, See Authentication Methods

If authentication fails and the client attempting to initiate the ProtocolSetup has
not required authentication, the IceHostBasedAuthProc callback is invoked with
the host name of the originating client. If the callback returns True the Proto-
colSetup will succeed, even though the original authentication failed. Note that
authentication can effectively be disabled by registering an IceHostBasedAuthProc
which always returns True If no host based authentication is allowed, you should
pass NULL for host_based_auth_proc.

Bool HostBasedAuthProc(*host_name);

protocol_name The host name of the client that sent the ProtocolSetup

The host_name argument is a string of the form protocol/hostname, where protocol
is one of {tcp, decnet, local}.

Because ProtocolSetup messages and authentication happen behind the scenes
via callbacks, the protocol library needs some way of being notified when the Pro-
tocolSetup has completed. This occurs in two phases. In the first phase, the Ice-
ProtocolSetupProc callback is invoked after authentication has successfully com-
pleted but before the ICE library sends a ProtocolReply Any resources required for
this protocol should be allocated at this time. If the IceProtocolSetupProc returns
a successful status, the ICE library will send the ProtocolReply and then invoke the
IceProtocolActivateProc callback. Otherwise, an error will be sent to the other
client in response to the ProtocolSetup

The IceProtocolActivateProc is an optional callback and should be registered
only if the protocol library intends to generate a message immediately following the

Protocol Registration

9

ProtocolReply You should pass NULL for protocol_activate_proc if not interested
in this callback.

Status ProtocolSetupProc(ice_conn, major_version, minor_version,
*vendor, *release, *client_data_ret, **failure_reason_ret);

protocol_name The ICE connection object.

major_version The major version of the protocol.

minor_version The minor version of the protocol.

vendor The vendor string registered by the protocol originator.

release The release string registered by the protocol originator.

client_data_ret Client data to be set by callback.

failure_reason_ret Failure reason returned.

The pointer stored in the client_data_ret argument will be passed to the IcePa-
ProcessMsgProc callback whenever a message has arrived for this protocol on the
ICE connection.

The vendor and release strings should be freed with free when they are no longer
needed.

If a failure occurs, the IceProtocolSetupProc should return a zero status as well
as allocate and return a failure reason string in failure_reason_ret. The ICE library
will be responsible for freeing this memory.

The IceProtocolActivateProc callback is defined as follows:

void ProtocolActivateProc(ice_conn, client_data);

ice_conn The ICE connection object.

client_data The client data set in the IceProtocolSetupProc callback.

The IceIOErrorProc callback is invoked if the ICE connection unexpectedly
breaks. You should pass NULL for io_error_proc if not interested in being notified.
For further information, see Error Handling

Callbacks for Processing Messages
When an application detects that there is new data to read on an ICE connection
(via select it calls the IceProcessMessages function Processing Messages When
IceProcessMessages reads an ICE message header with a major opcode other than
zero (reserved for the ICE protocol), it needs to call a function that will read the
rest of the message, unpack it, and process it accordingly.

If the message arrives at the client that initiated the ProtocolSetup the Ice-
PoProcessMsgProc callback is invoked.

void PoProcessMsgProc(ice_conn, client_data, opcode, length, swap,
*reply_wait, *reply_ready_ret);

Protocol Registration

10

ice_conn The ICE connection object.

client_data Client data associated with this protocol on the ICE connection.

opcode The minor opcode of the message.

length The length (in 8-byte units) of the message beyond the ICE head-
er.

swap A flag that indicates if byte swapping is necessary.

reply_wait Indicates if the invoking client is waiting for a reply.

reply_ready_ret If set to True a reply is ready.

If the message arrives at the client that accepted the ProtocolSetup the IcePa-
ProcessMsgProc callback is invoked.

void IcePaProcessMsgProc(ice_conn, client_data, opcode, length,
swap);

ice_conn The ICE connection object.

client_data Client data associated with this protocol on the ICE connection.

opcode The minor opcode of the message.

length The length (in 8-byte units) of the message beyond the ICE header.

swap A flag that indicates if byte swapping is necessary.

In order to read the message, both of these callbacks should use the macros defined
for this purpose (see Reading ICE Messages.). Note that byte swapping may be
necessary. As a convenience, the length field in the ICE header will be swapped by
ICElib if necessary.

In both of these callbacks, the client_data argument is a pointer to client data that
was registered at ProtocolSetup time. In the case of IcePoProcessMsgProc the
client data was set in the call to IceProtocolSetup In the case of IcePaProcessMs-
gProc the client data was set in the IceProtocolSetupProc callback.

The IcePoProcessMsgProc callback needs to check the reply_wait argument. If
reply_wait is NULL , the ICE library expects the function to pass the message to the
client via a callback. For example, if this is a Session Management "Save Yourself"
message, this function should notify the client of the "Save Yourself" via a callback.
The details of how such a callback would be defined are implementation-dependent.

However, if reply_wait is not NULL , then the client is waiting for a reply or an error
for a message it previously sent. The reply_wait is of type IceReplyWaitInfo

typedef struct {
 unsigned long sequence_of_request;
 int major_opcode_of_request;
 int minor_opcode_of_request;
 IcePointer reply;
} IceReplyWaitInfo;

Protocol Registration

11

IceReplyWaitInfo contains the major/minor opcodes and sequence number of the
message for which a reply is being awaited. It also contains a pointer to the reply
message to be filled in (the protocol library should cast this IcePointer to the ap-
propriate reply type). In most cases, the reply will have some fixed-size part, and
the client waiting for the reply will have provided a pointer to a structure to hold
this fixed-size data. If there is variable-length data, it would be expected that the
IcePoProcessMsgProc callback will have to allocate additional memory and store
pointer(s) to that memory in the fixed-size structure. If the entire data is variable
length (for example., a single variable-length string), then the client waiting for the
reply would probably just pass a pointer to fixed-size space to hold a pointer, and the
IcePoProcessMsgProc callback would allocate the storage and store the pointer. It
is the responsibility of the client receiving the reply to free any memory allocated
on its behalf.

If reply_wait is not NULL and IcePoProcessMsgProc has a reply or error to re-
turn in response to this reply_wait (that is, no callback was generated), then the
reply_ready_ret argument should be set to True Note that an error should only
be returned if it corresponds to the reply being waited for. Otherwise, the Ice-
PoProcessMsgProc should either handle the error internally or invoke an error han-
dler for its library.

If reply_wait is NULL, then care must be taken not to store any value in
reply_ready_ret, because this pointer may also be NULL.

The IcePaProcessMsgProc callback, on the other hand, should always pass the mes-
sage to the client via a callback. For example, if this is a Session Management "In-
teract Request" message, this function should notify the client of the "Interact Re-
quest" via a callback.

The reason the IcePaProcessMsgProc callback does not have a reply_wait, like Ice-
PoProcessMsgProc does, is because a process that is acting as a server should never
block for a reply (infinite blocking can occur if the connecting client does not act
properly, denying access to other clients).

Authentication Methods
As already stated, a protocol library must register the authentication methods that
it supports with the ICE library. For each authentication method, there are two
callbacks that may be registered:

• One to handle the side that initiates a ProtocolSetup

• One to handle the side that accepts or rejects this request

IcePoAuthProc is the callback invoked for the client that initiated the ProtocolSet-
up This callback must be able to respond to the initial "Authentication Required"
message or subsequent "Authentication Next Phase" messages sent by the other
client.

IcePoAuthStatus IcePoAuthStatus (ice_conn, client_data, opcode);

ice_conn The ICE connection object.

auth_state_ptr A pointer to state for use by the authentication callback pro-
cedure.

Protocol Registration

12

clean_up If True authentication is over, and the function should clean
up any state it was maintaining. The last 6 arguments should
be ignored.

swap If True the auth_data may have to be byte swapped (depend-
ing on its contents).

auth_datalen The length (in bytes) of the authenticator data.

auth_data The data from the authenticator.

reply_datalen_ret The length (in bytes) of the reply data returned.

reply_data_ret The reply data returned.

error_string_ret If the authentication procedure encounters an error during
authentication, it should allocate and return an error string.

Authentication may require several phases, depending on the authentication
method. As a result, the IcePoAuthProc may be called more than once when au-
thenticating a client, and some state will have to be maintained between each invo-
cation. At the start of each ProtocolSetup *auth_state_ptr is NULL, and the func-
tion should initialize its state and set this pointer. In subsequent invocations of the
callback, the pointer should be used to get at any state previously stored by the
callback.

If needed, the network ID of the client accepting the ProtocolSetup can be obtained
by calling the IceConnectionString function.

ICElib will be responsible for freeing the reply_data_ret and error_string_ret point-
ers with free

The auth_data pointer may point to a volatile block of memory. If the data must be
kept beyond this invocation of the callback, be sure to make a copy of it.

The IcePoAuthProc should return one of four values:

• IcePoAuthHaveReply - a reply is available.

• IcePoAuthRejected - authentication rejected.

• IcePoAuthFailed - authentication failed.

• IcePoAuthDoneCleanup - done cleaning up.

IcePaAuthProc is the callback invoked for the client that received the ProtocolSet-
up

IcePoAuthStatus PoAuthStatus (ice_conn, *auth_state_ptr, swap,
auth_datalen, auth_data, *reply_datalen_ret, *reply_data_ret,
**error_string_ret);

ice_conn The ICE connection object.

auth_state_ptr A pointer to state for use by the authentication callback pro-
cedure.

Protocol Registration

13

swap If True auth_data may have to be byte swapped (depending
on its contents).

auth_datalen The length (in bytes) of the protocol originator authentication
data.

auth_data The authentication data from the protocol originator.

reply_datalen_ret The length of the authentication data returned.

reply_data_ret The authentication data returned.

error_string_ret If authentication is rejected or fails, an error string is re-
turned.

Authentication may require several phases, depending on the authentication
method. As a result, the IcePaAuthProc may be called more than once when au-
thenticating a client, and some state will have to be maintained between each invo-
cation. At the start of each ProtocolSetup auth_datalen is zero, *auth_state_ptr is
NULL, and the function should initialize its state and set this pointer. In subsequent
invocations of the callback, the pointer should be used to get at any state previously
stored by the callback.

If needed, the network ID of the client accepting the ProtocolSetup can be obtained
by calling the IceConnectionString function.

The auth_data pointer may point to a volatile block of memory. If the data must be
kept beyond this invocation of the callback, be sure to make a copy of it.

ICElib will be responsible for transmitting and freeing the reply_data_ret and
error_string_ret pointers with free

The IcePaAuthProc should return one of four values:

• IcePaAuthContinue - continue (or start) authentication.

• IcePaAuthAccepted - authentication accepted.

• IcePaAuthRejected - authentication rejected.

• IcePaAuthFailed - authentication failed.

14

Chapter 7. ICE Connections
In order for two clients to establish an ICE connection, one client has to be waiting
for connections, and the other client has to initiate the connection. Most clients will
initiate connections, so we discuss that first.

Opening an ICE Connection
To open an ICE connection with another client (that is, waiting for connections),
use IceOpenConnection

IceConn IceOpenConnection(*network_ids_list, context,
must_authenticate, major_opcode_check, error_length,
*error_string_ret);

network_ids_list Specifies the network ID(s) of the other client.

context A pointer to an opaque object or NULL. Used to determine
if an ICE connection can be shared (see below).

must_authenticate If True the other client may not bypass authentication.

major_opcode_check Used to force a new ICE connection to be created (see be-
low).

error_length Length of the error_string_ret argument passed in.

error_string_ret Returns a null-terminated error message, if any. The
error_string_ret argument points to user supplied memory.
No more than error_length bytes are used.

IceOpenConnection returns an opaque ICE connection object if it succeeds; other-
wise, it returns NULL.

The network_ids_list argument contains a list of network IDs separated by commas.
An attempt will be made to use the first network ID. If that fails, an attempt will be
made using the second network ID, and so on. Each network ID has the following
format:

tcp/
<hostname>:<portnumber>

or

dec-
net/<hostname>::<objname>

or

lo-
cal/<hostname>:<path>

Most protocol libraries will have some sort of open function that should internally
make a call into IceOpenConnection When IceOpenConnection is called, it may be
possible to use a previously opened ICE connection (if the target client is the same).
However, there are cases in which shared ICE connections are not desired.

The context argument is used to determine if an ICE connection can be shared. If
context is NULL, then the caller is always willing to share the connection. If context

ICE Connections

15

is not NULL, then the caller is not willing to use a previously opened ICE connection
that has a different non-NULL context associated with it.

In addition, if major_opcode_check contains a nonzero major opcode value, a pre-
viously created ICE connection will be used only if the major opcode is not active
on the connection. This can be used to force multiple ICE connections between two
clients for the same protocol.

Any authentication requirements are handled internally by the ICE library. The
method by which the authentication data is obtained is implementation-dependent. 1

After IceOpenConnection is called, the client is ready to send a ProtocolSetup (pro-
vided that IceRegisterForProtocolSetup was called) or receive a ProtocolSetup
(provided that IceRegisterForProtocolReply was called).

Listening for ICE Connections
Clients wishing to accept ICE connections must first call IceListenForConnections
or IceListenForWellKnownConnections so that they can listen for connections. A
list of opaque "listen" objects are returned, one for each type of transport method
that is available (for example, Unix Domain, TCP, DECnet, and so on).

Normally clients will let ICElib allocate an available name in each transport and
return listen objects. Such a client will then use IceComposeNetworkIdList to ex-
tract the chosen names and make them available to other clients for opening the
connection. In certain cases it may be necessary for a client to listen for connections
on pre-arranged transport object names. Such a client may use IceListenForWell-
KnownConnections to specify the names for the listen objects.

Status IceListenForConnections(*count_ret, **listen_objs_ret,
error_length, *error_string_ret);

count_ret Returns the number of listen objects created.

listen_objs_ret Returns a list of pointers to opaque listen objects.

error_length The length of the error_string_ret argument passed in.

error_string_ret Returns a null-terminated error message, if any. The
error_string_ret points to user supplied memory. No more than
error_length bytes are used.

The return value of IceListenForConnections is zero for failure and a positive
value for success.

Status IceListenForWellKnownConnections(*port_id, *count_ret,
**listen_objs_ret, error_length, *error_string_ret);

port_id Specifies the port identification for the address(es) to be
opened. The value must not contain the slash ("/"> or comma
(".") character; thse are reserved for future use.

count_ret Returns the number of listen objects created.
1The X Consortium's ICElib implementation uses an .ICEauthority file (see Appendix A).

ICE Connections

16

listen_objs_ret Returns a list of pointers to opaque listen objects.

listen_objs_ret Returns a list of pointers to opaque listen objects.

error_length The length of the error_string_ret argument passed in.

error_string_ret Returns a null-terminated error message, if any. The
error_string_ret points to user supplied memory. No more than
error_length bytes are used.

IceListenForWellKnownConnections constructs a list of network IDs by prepend-
ing each known transport to port_id and then attempts to create listen objects for
the result. Port_id is the portnumber, objname, or path portion of the ICE network
ID. If a listen object for a particular network ID cannot be created the network ID
is ignored. If no listen objects are created IceListenForWellKnownConnections re-
turns failure.

The return value of IceListenForWellKnownConnections is zero for failure and a
positive value for success.

To close and free the listen objects, use IceFreeListenObjs

void IceFreeListenObjs(count, *listen_objs);

count The number of listen objects.

listen_objs The listen objects.

To detect a new connection on a listen object, use select on the descriptor associ-
ated with the listen object.

To obtain the descriptor, use IceGetListenConnectionNumber

int IceGetListenConnectionNumber(*listen_objs);

listen_obj The listen objects.

To obtain the network ID string associated with a listen object, use IceGetListen-
ConnectionString

char IceGetListenConnectionString(listen_obj);

listen_obj The listen objects.

A network ID has the following format:

tcp/
<hostname>:<portnumber>

or

dec-
net/<hostname>::<objname>

or

lo-
cal/<hostname>:<path>

To compose a string containing a list of network IDs separated by commas (the
format recognized by IceOpenConnection use IceComposeNetworkIdList

ICE Connections

17

char IceComposeNetworkIdList(count, *listen_objs);

count The number of listen objects.

listen_objs The listen objects.

Host Based Authentication for ICE Connec-
tions

If authentication fails when a client attempts to open an ICE connection and the
initiating client has not required authentication, a host based authentication pro-
cedure may be invoked to provide a last chance for the client to connect. Each lis-
ten object has such a callback associated with it, and this callback is set using the
IceSetHostBasedAuthProc function.

void IceSetHostBasedAuthProc(listen_obj, host_based_auth_proc);

IceListenObj The listen object.

host_based_auth_proc The host based authentication procedure.

By default, each listen object has no host based authentication procedure associated
with it. Passing NULL for host_based_auth_proc turns off host based authentication
if it was previously set.

Bool HostBasedAuthProc(*host_name);

host_name The host name of the client that tried to open an ICE connection.

The host_name argument is a string in the form protocol/ hostname, where protocol
is one of {tcp, decnet, local}.

If IceHostBasedAuthProc returns True access will be granted, even though the orig-
inal authentication failed. Note that authentication can effectively be disabled by
registering an IceHostBasedAuthProc which always returns True

Host based authentication is also allowed at ProtocolSetup time. The callback
is specified in the IceRegisterForProtocolReply function (see Protocol Registra-
tion).

Accepting ICE Connections
After a connection attempt is detected on a listen object returned by IceListen-
ForConnections you should call IceAcceptConnection This returns a new opaque
ICE connection object.

IceConn IceAcceptConnection(listen_obj, *status_ret);

listen_obj The listen object on which a new connection was detected.

status_ret Return status information.

The status_ret argument is set to one of the following values:

ICE Connections

18

• IceAcceptSuccess - the accept operation succeeded, and the function returns a
new connection object.

• IceAcceptFailure - the accept operation failed, and the function returns NULL.

• IceAcceptBadMalloc - a memory allocation failed, and the function returns NULL.

In general, to detect new connections, you should call select on the file descriptors
associated with the listen objects. When a new connection is detected, the IceAc-
ceptConnection function should be called. IceAcceptConnection may return a new
ICE connection that is in a pending state. This is because before the connection
can become valid, authentication may be necessary. Because the ICE library cannot
block and wait for the connection to become valid (infinite blocking can occur if the
connecting client does not act properly), the application must wait for the connec-
tion status to become valid.

The following pseudo-code demonstrates how connections are accepted:

new_ice_conn = IceAcceptConnection (listen_obj, &accept_status);
if (accept_status != IceAcceptSuccess)
{
 close the file descriptor and return
}

status = IceConnectionStatus (new_ice_conn);
time_start = time_now;

while (status == IceConnectPending)
{
 select() on {new_ice_conn, all open connections}

 for (each ice_conn in the list of open connections)
 if (data ready on ice_conn)
 {
 status = IceProcessMessages (ice_conn, NULL, NULL);
 if (status == IceProcessMessagesIOError)
 IceCloseConnection(ice_conn);
 }
 if data ready on new_ice_conn
 {
 /*
 * IceProcessMessages is called until the connection
 * is non-pending. Doing so handles the connection
 * setup request and any authentication requirements.
 */

 IceProcessMessages (new_ice_conn, NULL, NULL);
 status = IceConnectionStatus (new_ice_conn);
 }
 else
 {
 if (time_now - time_start > MAX_WAIT_TIME)
 status = IceConnectRejected;
 }

ICE Connections

19

}

if (status == IceConnectAccepted)
{
 Add new_ice_conn to the list of open connections
}
else
{
 IceCloseConnection
 new_ice_conn
}

After IceAcceptConnection is called and the connection has been validated, the
client is ready to receive a ProtocolSetup (provided that IceRegisterForProto-
colReply was called) or send a ProtocolSetup (provided that IceRegisterForPro-
tocolSetup was called).

Closing ICE Connections
To close an ICE connection created with IceOpenConnection or IceAcceptConnec-
tion use IceCloseConnection

IceCloseStatus IceCloseConnection(ice_conn);

ice_conn The ICE connection to close.

To actually close an ICE connection, the following conditions must be met:

• The open reference count must have reached zero on this ICE connection. When
IceOpenConnection is called, it tries to use a previously opened ICE connection.
If it is able to use an existing connection, it increments the open reference count
on the connection by one. So, to close an ICE connection, each call to IceOpen-
Connection must be matched with a call to IceCloseConnection The connection
can be closed only on the last call to IceCloseConnection

• The active protocol count must have reached zero. Each time a ProtocolSet-
up succeeds on the connection, the active protocol count is incremented by one.
When the client no longer expects to use the protocol on the connection, the Ice-
ProtocolShutdown function should be called, which decrements the active proto-
col count by one (see Protocol Setup and Shutdown).

• If shutdown negotiation is enabled on the connection, the client on the other side
of the ICE connection must agree to have the connection closed.

IceCloseConnection returns one of the following values:

• IceClosedNow - the ICE connection was closed at this time. The watch procedures
were invoked and the connection was freed.

• IceClosedASAP - an IO error had occurred on the connection, but IceCloseCon-
nection is being called within a nested IceProcessMessages The watch proce-
dures have been invoked at this time, but the connection will be freed as soon as
possible (when the nesting level reaches zero and IceProcessMessages returns
a status of IceProcessMessagesConnectionClosed

ICE Connections

20

• IceConnectionInUse - the connection was not closed at this time, because it is
being used by other active protocols.

• IceStartedShutdownNegotiation - the connection was not closed at this time
and shutdown negotiation started with the client on the other side of the ICE con-
nection. When the connection is actually closed, IceProcessMessages will return
a status of IceProcessMessagesConnectionClosed

When it is known that the client on the other side of the ICE connection has ter-
minated the connection without initiating shutdown negotiation, the IceSetShut-
downNegotiation function should be called to turn off shutdown negotiation. This
will prevent IceCloseConnection from writing to a broken connection.

void IceSetShutdownNegotiation(ice_conn, negotiate);

ice_conn A valid ICE connection object.

negotiate If False shutdown negotiating will be turned off.

To check the shutdown negotiation status of an ICE connection, use IceCheckShut-
downNegotiation

Bool IceCheckShutdownNegotiation(ice_conn);

ice_conn A valid ICE connection object.

IceCheckShutdownNegotiation returns True if shutdown negotiation will take
place on the connection; otherwise, it returns False Negotiation is on by default for
a connection. It can only be changed with the IceSetShutdownNegotiation func-
tion.

Connection Watch Procedures
To add a watch procedure that will be called each time ICElib opens a new connec-
tion via IceOpenConnection or IceAcceptConnection or closes a connection via
IceCloseConnection use IceAddConnectionWatch

Status IceAddConnectionWatch(watch_proc, client_data);

watch_proc The watch procedure to invoke when ICElib opens or closes a con-
nection.

client_data This pointer will be passed to the watch procedure.

The return value of IceAddConnectionWatch is zero for failure, and a positive value
for success.

Note that several calls to IceOpenConnection might share the same ICE connection.
In such a case, the watch procedure is only invoked when the connection is first
created (after authentication succeeds). Similarly, because connections might be
shared, the watch procedure is called only if IceCloseConnection actually closes
the connection (right before the IceConn is freed).

The watch procedures are very useful for applications that need to add a file de-
scriptor to a select mask when a new connection is created and remove the file de-
scriptor when the connection is destroyed. Because connections are shared, know-

ICE Connections

21

ing when to add and remove the file descriptor from the select mask would be dif-
ficult without the watch procedures.

Multiple watch procedures may be registered with the ICE library. No assumptions
should be made about their order of invocation.

If one or more ICE connections were already created by the ICE library at the time
the watch procedure is registered, the watch procedure will instantly be invoked
for each of these ICE connections (with the opening argument set to True

The watch procedure is of type IceWatchProc

void WatchProc(ice_conn, client_data, opening, *watch_data);

ice_conn The opened or closed ICE connection. Call IceConnectionNumber to
get the file descriptor associated with this connection.

client_data Client data specified in the call to IceAddConnectionWatch

opening If True the connection is being opened. If False the connection is
being closed.

watch_data Can be used to save a pointer to client data.

If opening is True the client should set the *watch_data pointer to any data it may
need to save until the connection is closed and the watch procedure is invoked again
with opening set to False

To remove a watch procedure, use IceRemoveConnectionWatch

void IceRemoveConnectionWatch(watch_proc, client_data);

watch_proc The watch procedure that was passed to IceAddConnectionWatch

client_data The client_data pointer that was passed to IceAddConnectionWatch

22

Chapter 8. Protocol Setup and
Shutdown

To activate a protocol on a given ICE connection, use IceProtocolSetup

IceProtocolSetupStatus IceProtocolSetup(ice_conn, my_opcode,
client_data, must_authenticate, *major_version_ret,
*minor_version_ret, **vendor_ret, **release_ret, error_length,
*error_string_ret);

ice_conn A valid ICE connection object.

my_opcode The major opcode of the protocol to be set up, as returned by
IceRegisterForProtocolSetup

client_data The client data stored in this pointer will be passed to the
IcePoProcessMsgProc callback.

must_authenticate If True the other client may not bypass authentication.

major_version_ret The major version of the protocol to be used is returned.

minor_version_ret The minor version of the protocol to be used is returned.

vendor_ret The vendor string specified by the protocol acceptor.

release_ret The release string specified by the protocol acceptor.

error_length Specifies the length of the error_string_ret argument passed
in.

error_string_ret Returns a null-terminated error message, if any. The
error_string_ret argument points to user supplied memory.
No more than error_length bytes are used.

The vendor_ret and release_ret strings should be freed with free when no longer
needed.

IceProtocolSetup returns one of the following values:

• IceProtocolSetupSuccess - the major_version_ret, minor_version_ret,
vendor_ret, release_ret are set.

• IceProtocolSetupFailure or IceProtocolSetupIOError - check
error_string_ret for failure reason. The major_version_ret, minor_version_ret,
vendor_ret, release_ret are not set.

• IceProtocolAlreadyActive - this protocol is already active on this connection.
The major_version_ret, minor_version_ret, vendor_ret, release_ret are not set.

To notify the ICE library when a given protocol will no longer be used on an ICE
connection, use IceProtocolShutdown

Status IceProtocolShutdown(ice_conn, major_opcode);

Protocol Setup and Shutdown

23

ice_conn A valid ICE connection object.

major_opcode The major opcode of the protocol to shut down.

The return value of IceProtocolShutdown is zero for failure and a positive value
for success.

Failure will occur if the major opcode was never registered OR the protocol of the
major opcode was never activated on the connection. By activated, we mean that
a ProtocolSetup succeeded on the connection. Note that ICE does not define how
each sub-protocol triggers a protocol shutdown.

24

Chapter 9. Processing Messages
To process incoming messages on an ICE connection, use IceProcessMessages

IceProcessMessagesStatus IceProcessMessages(ice_conn, *reply_wait,
*reply_ready_ret);

ice_conn A valid ICE connection object.

reply_wait Indicates if a reply is being waited for.

reply_ready_ret If set to True on return, a reply is ready.

IceProcessMessages is used in two ways:

• In the first, a client may generate a message and block by calling IceProcessMes-
sages repeatedly until it gets its reply.

• In the second, a client calls IceProcessMessages with reply_wait set to NULL in
response to select showing that there is data to read on the ICE connection. The
ICE library may process zero or more complete messages. Note that messages
that are not blocked for are always processed by invoking callbacks.

IceReplyWaitInfo contains the major/minor opcodes and sequence number of the
message for which a reply is being awaited. It also contains a pointer to the reply
message to be filled in (the protocol library should cast this IcePointer to the ap-
propriate reply type). In most cases, the reply will have some fixed-size part, and
the client waiting for the reply will have provided a pointer to a structure to hold
this fixed-size data. If there is variable-length data, it would be expected that the
IcePoProcessMsgProc callback will have to allocate additional memory and store
pointer(s) to that memory in the fixed-size structure. If the entire data is variable
length (for example, a single variable-length string), then the client waiting for the
reply would probably just pass a pointer to fixed-size space to hold a pointer, and
the IcePoProcessMsgProc callback would allocate the storage and store the point-
er. It is the responsibility of the client receiving the reply to free up any memory
allocated on its behalf.

typedef struct {
 unsigned long sequence_of_request;
 int major_opcode_of_request;
 int minor_opcode_of_request;
 IcePointer reply;
} IceReplyWaitInfo;

If reply_wait is not NULL and IceProcessMessages has a reply or error to re-
turn in response to this reply_wait (that is, no callback was generated), then the
reply_ready_ret argument will be set to True

If reply_wait is NULL, then the caller may also pass NULL for reply_ready_ret and
be guaranteed that no value will be stored in this pointer.

IceProcessMessages returns one of the following values:

• IceProcessMessagesSuccess - no error occurred.

Processing Messages

25

• IceProcessMessagesIOError - an IO error occurred, and the caller must explicitly
close the connection by calling IceCloseConnection

• IceProcessMessagesConnectionClosed - the ICE connection has been closed
(closing of the connection was deferred because of shutdown negotiation, or be-
cause the IceProcessMessages nesting level was not zero). Do not attempt to ac-
cess the ICE connection at this point, since it has been freed.

26

Chapter 10. Ping
To send a "Ping" message to the client on the other side of the ICE connection, use
IcePing

Status IcePing(ice_conn, ping_reply_proc, client_data);

ice_conn A valid ICE connection object.

ping_reply_proc The callback to invoke when the Ping reply arrives.

client_data This pointer will be passed to the IcePingReplyProc callback.

IcePing returns zero for failure and a positive value for success.

When IceProcessMessages processes the Ping reply, it will invoke the IcePingRe-
plyProc callback.

void PingReplyProc(ice_conn, client_data);

ice_conn A valid ICE connection object.

client_data The client data specified in the call to IcePing

27

Chapter 11. Using ICElib Informational
Functions

IceConnectStatus IceConnectionStatus(ice_conn);

IceConnectionStatus returns the status of an ICE connection. The possible return
values are:

• IceConnectPending - the connection is not valid yet (that is, authentication is tak-
ing place). This is only relevant to connections created by IceAcceptConnection

• IceConnectAccepted - the connection has been accepted. This is only relevant to
connections created by IceAcceptConnection

• IceConnectRejected - the connection had been rejected (that is, authentication
failed). This is only relevant to connections created by IceAcceptConnection

• IceConnectIOError - an IO error has occurred on the connection.

char *IceVendor(ice_conn);

IceVendor returns the ICE library vendor identification for the other side of the
connection. The string should be freed with a call to free when no longer needed.

char *IceRelease(ice_conn);

IceRelease returns the release identification of the ICE library on the other side
of the connection. The string should be freed with a call to free when no longer
needed.

int IceProtocolVersion(ice_conn);

IceProtocolVersion returns the major version of the ICE protocol on this con-
nection.

int IceProtocolRevision(ice_conn);

IceProtocolRevision returns the minor version of the ICE protocol on this con-
nection.

int IceConnectionNumber(ice_conn);

IceConnectionNumber returns the file descriptor of this ICE connection.

char *IceConnectionString(ice_conn);

IceConnectionString returns the network ID of the client that accepted this con-
nection. The string should be freed with a call to free when no longer needed.

unsigned long IceLastSentSequenceNumber(ice_conn);

IceLastSentSequenceNumber returns the sequence number of the last message
sent on this ICE connection.

unsigned long IceLastReceivedSequenceNumber(ice_conn);

Using ICElib Infor-
mational Functions

28

IceLastReceivedSequenceNumber returns the sequence number of the last mes-
sage received on this ICE connection.

Bool IceSwapping(ice_conn);

IceSwapping returns True if byte swapping is necessary when reading messages
on the ICE connection.

IcePointer IceGetContext(ice_conn);

IceGetContext returns the context associated with a connection created by
IceOpenConnection

29

Chapter 12. ICE Messages
All ICE messages have a standard 8-byte header. The ICElib macros that read and
write messages rely on the following naming convention for message headers:

 CARD8 major_opcode;
 CARD8 minor_opcode;
 CARD8 data[2];
 CARD32 length B32;

The 3rd and 4th bytes of the message header can be used as needed. The length
field is specified in units of 8 bytes.

Sending ICE Messages
The ICE library maintains an output buffer used for generating messages. Protocol
libraries layered on top of ICE may choose to batch messages together and flush
the output buffer at appropriate times.

If an IO error has occurred on an ICE connection, all write operations will be ig-
nored. For further information, see Error Handling.

To get the size of the ICE output buffer, use IceGetOutBufSize

int IceGetOutBufSize(ice_conn);

ice_conn A valid ICE connection object.

To flush the ICE output buffer, use IceFlush

int IceFlush(ice_conn);

ice_conn A valid ICE connection object.

Note that the output buffer may be implicitly flushed if there is insufficient space
to generate a message.

The following macros can be used to generate ICE messages:

IceGetHeader(ice_conn, major_opcode, minor_opcode, header_size,
*pmsg);

ice_conn A valid ICE connection object.

major_opcode The major opcode of the message.

minor_opcode The minor opcode of the message.

header_size The size of the message header (in bytes).

<C_data_type> The actual C data type of the message header.

pmsg The message header pointer. After this macro is called, the library
can store data in the message header.

ICE Messages

30

IceGetHeader is used to set up a message header on an ICE connection. It sets
the major and minor opcodes of the message, and initializes the message's length
to the length of the header. If additional variable length data follows, the message's
length field should be updated.

IceGetHeaderExtra(ice_conn, major_opcode, minor_opcode,
header_size, extra, *pmsg, *pdata);

ice_conn A valid ICE connection object.

major_opcode The major opcode of the message.

minor_opcode The minor opcode of the message.

header_size The size of the message header (in bytes).

extra The size of the extra data beyond the header (in 8-byte units).

<C_data_type> The actual C data type of the message header.

pmsg The message header pointer. After this macro is called, the library
can store data in the message header.

pdata Returns a pointer to the ICE output buffer that points immediate-
ly after the message header. The variable length data should be
stored here. If there was not enough room in the ICE output buffer,
pdata is set to NULL.

IceGetHeaderExtra is used to generate a message with a fixed (and relatively
small) amount of variable length data. The complete message must fit in the ICE
output buffer.

IceSimpleMessage(ice_conn, major_opcode, minor_opcode);

ice_conn A valid ICE connection object.

major_opcode The major opcode of the message.

minor_opcode The minor opcode of the message.

IceSimpleMessage is used to generate a message that is identical in size to the
ICE header message, and has no additional data.

IceErrorHeader(ice_conn, offending_major_opcode,
offending_minor_opcode, offending_sequence_num, severity,
error_class, data_length);

ice_conn A valid ICE connection object.

offending_major_opcode The major opcode of the protocol in which an error was
detected.

offending_minor_opcode The minor opcode of the protocol in which an error was
detected.

offending_sequence_num The sequence number of the message that caused the
error.

ICE Messages

31

severity IceCanContinue IceFatalToProtocol or IceFatalTo-
Connection

error_class The error class.

data_length Length of data (in 8-byte units) to be written after the
header.

IceErrorHeader sets up an error message header.

Note that the two clients connected by ICE may be using different major opcodes
for a given protocol. The offending_major_opcode passed to this macro is the major
opcode of the protocol for the client sending the error message.

Generic errors, which are common to all protocols, have classes in the range
0x8000..0xFFFF. See the Inter-Client Exchange Protocol standard for more details.

IceBadMinor 0x8000
IceBadState 0x8001
IceBadLength 0x8002
IceBadValue 0x8003

Per-protocol errors have classes in the range 0x0000-0x7fff.

To write data to an ICE connection, use the IceWriteData macro. If the data fits
into the ICE output buffer, it is copied there. Otherwise, the ICE output buffer is
flushed and the data is directly sent.

This macro is used in conjunction with IceGetHeader and IceErrorHeader

IceWriteData(ice_conn, bytes, *data);

ice_conn A valid ICE connection object.

bytes The number of bytes to write.

data The data to write.

To write data as 16-bit quantities, use IceWriteData16

IceWriteData16(ice_conn, bytes, *data);

ice_conn A valid ICE connection object.

bytes The number of bytes to write.

data The data to write.

To write data as 32-bit quantities, use IceWriteData32

IceWriteData32(ice_conn, bytes, *data);

ice_conn A valid ICE connection object.

bytes The number of bytes to write.

data The data to write.

ICE Messages

32

To write data as 32-bit quantities, use IceWriteData32

To bypass copying data to the ICE output buffer, use IceSendData to directly send
data over the network connection. If necessary, the ICE output buffer is first flushed.

IceSendData(ice_conn, bytes, *data);

ice_conn A valid ICE connection object.

bytes The number of bytes to send.

data The data to send.

To force 32-bit or 64-bit alignment, use IceWritePad A maximum of 7 pad bytes
can be specified.

IceWritePad(ice_conn, bytes, *data);

ice_conn A valid ICE connection object.

bytes The number of bytes to write.

data The number of pad bytes to write.

Reading ICE Messages
The ICE library maintains an input buffer used for reading messages. If the ICE
library chooses to perform nonblocking reads (this is implementation-dependent),
then for every read operation that it makes, zero or more complete messages may
be read into the input buffer. As a result, for all of the macros described in this
section that read messages, an actual read operation will occur on the connection
only if the data is not already present in the input buffer.

To get the size of the ICE input buffer, use IceGetInBufSize

int IceGetInBufSize(ice_conn);

ice_conn A valid ICE connection object.

When reading messages, care must be taken to check for IO errors. If any IO error
occurs in reading any part of a message, the message should be thrown out. After
using any of the macros described below for reading messages, the IceValidIO
macro can be used to check if an IO error occurred on the connection. After an IO
error has occurred on an ICE connection, all read operations will be ignored. For
further information, see Error Handling.

Bool IceValidIO(ice_conn);

ice_conn A valid ICE connection object.

The following macros can be used to read ICE messages.

IceReadSimpleMessage(ice_conn, *pmsg);

ice_conn A valid ICE connection object.

<C_data_type> The actual C data type of the message header.

ICE Messages

33

pmsg This pointer is set to the message header.

IceReadSimpleMessage is used for messages that are identical in size to the 8-byte
ICE header, but use the spare 2 bytes in the header to encode additional data. Note
that the ICE library always reads in these first 8 bytes, so it can obtain the major
opcode of the message. IceReadSimpleMessage simply returns a pointer to these
8 bytes; it does not actually read any data into the input buffer.

For a message with variable length data, there are two ways of reading the message.
One method involves reading the complete message in one pass using IceRead-
CompleteMessage The second method involves reading the message header (note
that this may be larger than the 8-byte ICE header), then reading the variable length
data in chunks (see IceReadMessageHeader and IceReadData

IceReadCompleteMessage(ice_conn, header_size, *pmsg, *pdata);

ice_conn A valid ICE connection object.

header_size The size of the message header (in bytes).

<C_data_type> The actual C data type of the message header.

pmsg This pointer is set to the message header.

pdata This pointer is set to the variable length data of the message.

If the ICE input buffer has sufficient space, IceReadCompleteMessage will read the
complete message into the ICE input buffer. Otherwise, a buffer will be allocated to
hold the variable length data. After the call, the pdata argument should be checked
against NULL to make sure that there was sufficient memory to allocate the buffer.

After calling IceReadCompleteMessage and processing the message, IceDis-
poseCompleteMessage should be called.

IceDisposeCompleteMessage(ice_conn, *pdata);

ice_conn A valid ICE connection object.

pdata The pointer to the variable length data returned in IceReadCom-
pleteMessage

If a buffer had to be allocated to hold the variable length data (because it did not
fit in the ICE input buffer), it is freed here by ICElib.

IceReadMessageHeader(ice_conn, header_size, *pmsg);

ice_conn A valid ICE connection object.

header_size The size of the message header (in bytes).

<C_data_type> The actual C data type of the message header.

pmsg This pointer is set to the message header.

IceReadMessageHeader reads just the message header. The rest of the data should
be read with the IceReadData family of macros. This method of reading a message
should be used when the variable length data must be read in chunks.

ICE Messages

34

To read data directly into a user supplied buffer, use IceReadData

IceReadData(ice_conn, bytes, *pdata);

ice_conn A valid ICE connection object.

bytes The number of bytes to read.

pdata The data is read into this user supplied buffer.

To read data as 16-bit quantities, use IceReadData16

IceReadData16(ice_conn, swap, bytes, *pdata);

ice_conn A valid ICE connection object.

swap If True, the values will be byte swapped.

bytes The number of bytes to read.

pdata The data is read into this user supplied buffer.

To read data as 32-bit quantities, use IceReadData32

IceReadData32(ice_conn, swap, bytes, *pdata);

ice_conn A valid ICE connection object.

swap If True, the values will be byte swapped.

bytes The number of bytes to read.

pdata The data is read into this user supplied buffer.

To force 32-bit or 64-bit alignment, use IceReadPad A maximum of 7 pad bytes
can be specified.

IceReadPad(ice_conn, bytes);

ice_conn A valid ICE connection object.

bytes The number of pad bytes.

35

Chapter 13. Error Handling
There are two default error handlers in ICElib:

• One to handle typically fatal conditions (for example, a connection dying because
a machine crashed)

• One to handle ICE-specific protocol errors

These error handlers can be changed to user-supplied routines if you prefer your
own error handling and can be changed as often as you like.

To set the ICE error handler, use IceSetErrorHandler

IceSetErrorHandler(ice_conn, bytes);

handler The ICE error handler. You should pass NULL to restore the default han-
dler.

IceSetErrorHandler returns the previous error handler.

The ICE error handler is invoked when an unexpected ICE protocol error (major
opcode 0) is encountered. The action of the default handler is to print an explanatory
message to stderr and if the severity is fatal, call exit with a nonzero value. If
exiting is undesirable, the application should register its own error handler.

Note that errors in other protocol domains should be handled by their respective
libraries (these libraries should have their own error handlers).

An ICE error handler has the type of IceErrorHandler

void IceErrorHandler(ice_conn, swap, offending_minor_opcode,
offending_sequence_num, error_class, severity, values);

handler The ICE connection object.

swap A flag that indicates if the values need byte swapping.

offending_minor_opcode The ICE minor opcode of the offending message.

offending_sequence_num The sequence number of the offending message.

error_class The error class of the offending message.

severity IceCanContinue IceFatalToProtocol or IceFatalTo-
Connection

values Any additional error values specific to the minor opcode
and class.

The following error classes are defined at the ICE level:

IceBadMinor
IceBadState
IceBadLength

Error Handling

36

IceBadValue
IceBadMajor
IceNoAuth
IceNoVersion
IceSetupFailed
IceAuthRejected
IceAuthFailed
IceProtocolDuplicate
IceMajorOpcodeDuplicate
IceUnknownProtocol

For further information, see the Inter-Client Exchange Protocol standard.

To handle fatal I/O errors, use IceSetIOErrorHandler

IceIOErrorHandler IceSetIOErrorHandler(handler);

handler The I/O error handler. You should pass NULL to restore the default han-
dler.

IceSetIOErrorHandler returns the previous IO error handler.

An ICE I/O error handler has the type of IceIOErrorHandler

void IceIOErrorHandler(ice_conn);

ice_conn The ICE connection object.

There are two ways of handling IO errors in ICElib:

• In the first, the IO error handler does whatever is necessary to respond to the
IO error and then returns, but it does not call IceCloseConnection The ICE con-
nection is given a "bad IO" status, and all future reads and writes to the connec-
tion are ignored. The next time IceProcessMessages is called it will return a sta-
tus of IceProcessMessagesIOError At that time, the application should call Ice-
CloseConnection

• In the second, the IO error handler does call IceCloseConnection and then uses
the longjmp call to get back to the application's main event loop. The setjmp and
longjmp calls may not work properly on all platforms, and special care must be
taken to avoid memory leaks. Therefore, this second model is less desirable.

Before the application I/O error handler is invoked, protocol libraries that were in-
terested in being notified of I/O errors will have their IceIOErrorProc handlers
invoked. This handler is set up in the protocol registration functions (see IceReg-
isterForProtocolSetup and IceRegisterForProtocolReply and could be used to
clean up state specific to the protocol.

void IceIOErrorProc(ice_conn);

ice_conn The ICE connection object.

Note that every IceIOErrorProc callback must return. This is required because
each active protocol must be notified of the broken connection, and the application
IO error handler must be invoked afterwards.

37

Chapter 14. Multi-Threading Support
To declare that multiple threads in an application will be using the ICE library, use
IceInitThreads

Status IceInitThreads()

The IceInitThreads function must be the first ICElib function a multi-threaded pro-
gram calls. It must complete before any other ICElib call is made. IceInitThreads
returns a nonzero status if and only if it was able to initialize the threads package
successfully. It is safe to call IceInitThreads more than once, although the threads
package will only be initialized once.

Protocol libraries layered on top of ICElib will have to lock critical sections of code
that access an ICE connection (for example, when generating messages). Two calls,
which are generally implemented as macros, are provided:

void IceLockConn(ice_conn);

void IceUnlockConn(ice_conn);

ice_conn The ICE connection object.

To keep an ICE connection locked across several ICElib calls, applications use
IceAppLockConn and IceAppUnlockConn

void IceAppLockConn(ice_conn);

ice_conn The ICE connection object.

The IceAppLockConn function completely locks out other threads using the con-
nection until IceAppUnlockConn is called. Other threads attempting to use ICElib
calls on the connection will block. If the program has not previously called IceInit-
Threads IceAppLockConn has no effect.

void IceAppUnlockConn(ice_conn);

ice_conn The ICE connection object.

The IceAppUnlockConn function allows other threads to complete ICElib calls on
the connection that were blocked by a previous call to IceAppLockConn from this
thread. If the program has not previously called IceInitThreads IceAppUnlock-
Conn has no effect.

38

Chapter 15. Miscellaneous Functions
To allocate scratch space (for example, when generating messages with variable
data), use IceAllocScratch Each ICE connection has one scratch space associated
with it. The scratch space starts off as empty and grows as needed. The contents
of the scratch space is not guaranteed to be preserved after any ICElib function
is called.

char *IceAllocScratch(ice_conn, size);

ice_conn The ICE connection object.

size The number of bytes required.

Note that the memory returned by IceAllocScratch should not be freed by the
caller. The ICE library will free the memory when the ICE connection is closed.

39

Chapter 16. Acknowledgements
Thanks to Bob Scheifler for his thoughtful input on the design of the ICE library.
Thanks also to Jordan Brown, Larry Cable, Donna Converse, Clive Feather, Stephen
Gildea, Vania Joloboff, Kaleb Keithley, Stuart Marks, Hiro Miyamoto, Ralph Swick,
Jim VanGilder, and Mike Wexler.

40

Appendix A. Authentication Utility
Functions

As discussed in this document, the means by which authentication data is obtained
by the ICE library (for ConnectionSetup messages or ProtocolSetup messages) is
implementation-dependent.† 1

This appendix describes some utility functions that manipulate an ICE authority file.
The authority file can be used to pass authentication data between clients.

The basic operations on the .ICEauthority file are:

• Get file name

• Lock

• Unlock

• Read entry

• Write entry

• Search for entry

These are fairly low-level operations, and it is expected that a program, like
"iceauth", would exist to add, remove, and display entries in the file.

In order to use these utility functions, the <X11/ICE/ICEutil.h> header file must
be included.

An entry in the .ICEauthority file is defined by the following data structure:

typedef struct {
 char *protocol_name;
 unsigned short protocol_data_length;
 char *protocol_data;
 char *network_id;
 char *auth_name;
 unsigned short auth_data_length;
 char *auth_data;
} IceAuthFileEntry;

The protocol_name member is either "ICE" for connection setup authentication or
the subprotocol name, such as "XSMP". For each entry, protocol specific data can
be specified in the protocol_data member. This can be used to search for old entries
that need to be removed from the file.

The network_id member is the network ID of the client accepting authentication
(for example, the network ID of a session manager). A network ID has the following
form:

1The X Consortium's ICElib implementation assumes the presence of an ICE authority file.

Authentication
Utility Functions

41

tcp/
<hostname>:<portnumber>

or

dec-
net/<hostname>::<objname>

or

lo-
cal/<hostname>:<path>

The auth_name member is the name of the authentication method. The auth_data
member is the actual authentication data, and the auth_data_length member is the
number of bytes in the data.

To obtain the default authorization file name, use IceAuthFileName

char *IceAuthFileName()

If the ICEAUTHORITY environment variable if set, this value is returned. Otherwise,
the default authorization file name is $HOME/.ICEauthority. This name is statically
allocated and should not be freed.

To synchronously update the authorization file, the file must be locked with a call
to IceLockAuthFile This function takes advantage of the fact that the link system
call will fail if the name of the new link already exists.

int IceLockAuthFile(*file_name, retries, timeout, dead);

file_name The authorization file to lock.

retries The number of retries.

timeout The number of seconds before each retry.

dead If a lock already exists that is the specified dead seconds old, it is bro-
ken. A value of zero is used to unconditionally break an old lock.

One of three values is returned:

• IceAuthLockSuccess - the lock succeeded.

• IceAuthLockError - a system error occurred, and errno may prove useful.

• IceAuthLockTimeout - the specified number of retries failed.

To unlock an authorization file, use IceUnlockAuthFile

int IceUnlockAuthFile(*file_name);

file_name The authorization file to unlock.

To read the next entry in an authorization file, use IceReadAuthFileEntry

IceAuthFileEntry *IceReadAuthFileEntry(*auth_file);

auth_file The authorization file.

Note that it is the responsibility of the application to open the file for reading before
calling this function. If an error is encountered, or there are no more entries to
read, NULL is returned.

Authentication
Utility Functions

42

Entries should be free with a call to IceFreeAuthFileEntry

To write an entry in an authorization file, use IceWriteAuthFileEntry

Status IceWriteAuthFileEntry(*auth_file, *entry);

auth_file The authorization file.

entry The entry to write.

Note that it is the responsibility of the application to open the file for writing before
calling this function. The function returns a nonzero status if the operation was
successful.

To search the default authorization file for an entry that matches a given
protocol_name/network_id/auth_name tuple, use IceGetAuthFileEntry

IceAuthFileEntry *IceGetAuthFileEntry(protocol_name, network_id,
auth_name);

auth_file The name of the protocol to search on.

network_id The network ID to search on.

auth_name The authentication method to search on.

If IceGetAuthFileEntry fails to find such an entry, NULL is returned.

To free an entry returned by IceReadAuthFileEntry or IceGetAuthFileEntry use
IceFreeAuthFileEntry

void IceFreeAuthFileEntry(*entry);

entry The entry to free.

43

Appendix B. MIT-MAGIC-COOKIE-1
Authentication

The X Consortium's ICElib implementation supports a simple MIT-MAGIC-
COOKIE-1 authentication scheme using the authority file utilities described in Ap-
pendix A.

In this model, an application, such as a session manager, obtains a magic cookie by
calling IceGenerateMagicCookie and then stores it in the user's local .ICEauthority
file so that local clients can connect. In order to allow remote clients to connect,
some remote execution mechanism should be used to store the magic cookie in the
user's .ICEauthority file on a remote machine.

In addition to storing the magic cookie in the .ICEauthority file, the application
needs to call the IceSetPaAuthData function in order to store the magic cookie in
memory. When it comes time for the MIT-MAGIC-COOKIE-1 authentication proce-
dure to accept or reject the connection, it will compare the magic cookie presented
by the requestor to the magic cookie in memory.

char *IceGenerateMagicCookie(length);

length The desired length of the magic cookie.

The magic cookie returned will be null-terminated. If memory can not be allocated
for the magic cookie, the function will return NULL. Otherwise, the magic cookie
should be freed with a call to free

To store the authentication data in memory, use IceSetPaAuthData Currently, this
function is only used for MIT-MAGIC-COOKIE-1 authentication, but it may be used
for additional authentication methods in the future.

void IceSetPaAuthData(num_entries, *entries);

num_entries The number of authentication data entries.

entries The list of authentication data entries.

Each entry has associated with it a protocol name (for example, "ICE" for ICE
connection setup authentication, "XSMP" for session management authentication),
a network ID for the "accepting" client, an authentication name (for example,
MIT-MAGIC-COOKIE-1), and authentication data. The ICE library will merge these
entries with previously set entries, based on the (protocol_name, network_id,
auth_name) tuple.

typedef struct {
 char *protocol_name;
 char *network_id;
 char *auth_name;
 unsigned short auth_data_length;
 char *auth_data;
} IceAuthDataEntry;

	Inter-Client Exchange Library
	Table of Contents
	Chapter 1. Overview of ICE
	Chapter 2. The ICE Library - C Language Interface to ICE
	Chapter 3. Intended Audience
	Chapter 4. Header Files and Library Name
	Chapter 5. Note on Prefixes
	Chapter 6. Protocol Registration
	Callbacks for Processing Messages
	Authentication Methods

	Chapter 7. ICE Connections
	Opening an ICE Connection
	Listening for ICE Connections
	Host Based Authentication for ICE Connections
	Accepting ICE Connections
	Closing ICE Connections
	Connection Watch Procedures

	Chapter 8. Protocol Setup and Shutdown
	Chapter 9. Processing Messages
	Chapter 10. Ping
	Chapter 11. Using ICElib Informational Functions
	Chapter 12. ICE Messages
	Sending ICE Messages
	Reading ICE Messages

	Chapter 13. Error Handling
	Chapter 14. Multi-Threading Support
	Chapter 15. Miscellaneous Functions
	Chapter 16. Acknowledgements
	Appendix A. Authentication Utility Functions
	Appendix B. MIT-MAGIC-COOKIE-1 Authentication

