
The X Keyboard Extension:
Protocol Specification

X Consortium Standard

Erik Fortune



The X Keyboard Extension: Protocol Specification: X Consortium
Standard
Erik Fortune
X Version 11, Release 7.7
Version 1.0
Copyright © 1995, 1996 X Consortium Inc., Silicon Graphics Inc., Hewlett-Packard Company,
Digital Equipment Corporation

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the names of the X Consortium, Silicon Graphics Inc., Hewlett-Packard Company,
and Digital Equipment Corporation shall not be used in advertising or otherwise to promote the sale, use or other
dealings in this Software without prior written authorization.



iii

Table of Contents
Acknowledgments .................................................................................................  vi
1. Overview ............................................................................................................ 1

Conventions and Assumptions .......................................................................  1
2. Keyboard State .................................................................................................. 3

Locking and Latching Modifiers and Groups ................................................  3
Fundamental Components of XKB Keyboard State .......................................  3

Computing Effective Modifier and Group ..............................................  4
Computing A State Field from an XKB State .........................................  4

Derived Components of XKB Keyboard State ................................................ 5
Server Internal Modifiers and Ignore Locks Behavior ...........................  5

Compatibility Components of Keyboard State ...............................................  6
3. Virtual Modifiers ...............................................................................................  7

Modifier Definitions .......................................................................................  7
Inactive Modifier Definitions .................................................................. 8

Virtual Modifier Mapping ..............................................................................  8
4. Global Keyboard Controls ...............................................................................  10

The RepeatKeys Control ..............................................................................  10
The PerKeyRepeat Control ...................................................................  10
Detectable Autorepeat .......................................................................... 10

The SlowKeys Control .................................................................................. 11
The BounceKeys Control .............................................................................. 11
The StickyKeys Control ................................................................................ 11
The MouseKeys Control ...............................................................................  12
The MouseKeysAccel Control ......................................................................  12

Relative Pointer Motion ........................................................................ 12
Absolute Pointer Motion ....................................................................... 13

The AccessXKeys Control ............................................................................  13
The AccessXTimeout Control .......................................................................  13
The AccessXFeedback Control ..................................................................... 14
The Overlay1 and Overlay2 Controls ........................................................... 15
"Boolean" Controls and The EnabledControls Control ................................  16
Automatic Reset of Boolean Controls ..........................................................  16

5. Key Event Processing Overview ...................................................................... 17
6. Key Event Processing in the Server ...............................................................  18

Applying Global Controls .............................................................................  18
Key Behavior ................................................................................................  18
Key Actions ..................................................................................................  19
Delivering a Key or Button Event to a Client ..............................................  27

XKB Interactions With Core Protocol Grabs ........................................  27
7. Key Event Processing in the Client ................................................................. 29

Notation and Terminology ...........................................................................  29
Determining the KeySym Associated with a Key Event ...............................  30

Key Types .............................................................................................  30
Key Symbol Map ..................................................................................  31

Transforming the KeySym Associated with a Key Event .............................  32
Client Map Example ....................................................................................  33

8. Symbolic Names .............................................................................................. 35
9. Keyboard Indicators ........................................................................................  37

Global Information About Indicators ...........................................................  37
Per-Indicator Information ............................................................................  37

Indicator Maps .....................................................................................  37



The X Keyboard Exten-
sion: Protocol Specification

iv

10. Keyboard Bells ..............................................................................................  42
Client Notification of Bells ..........................................................................  42
Disabling Server Generated Bells ................................................................ 42
Generating Named Bells .............................................................................. 42
Generating Optional Named Bells ...............................................................  43
Forcing a Server Generated Bell .................................................................  43

11. Keyboard Geometry ....................................................................................... 44
Shapes and Outlines ....................................................................................  45
Sections ........................................................................................................  45
Doodads ........................................................................................................ 46
Keyboard Geometry Example ......................................................................  46

12. Interactions Between XKB and the Core Protocol ........................................  49
Group Compatibility Map ............................................................................  49

Setting a Passive Grab for an XKB State .............................................  50
Changing the Keyboard Mapping Using the Core Protocol .........................  50

Explicit Keyboard Mapping Components .............................................  51
Assigning Symbols To Groups ..............................................................  51
Assigning Types To Groups of Symbols for a Key ................................  52
Assigning Actions To Keys .................................................................... 54
Updating Everything Else ....................................................................  55

Effects of XKB on Core Protocol Events ...................................................... 55
Effect of XKB on Core Protocol Requests .................................................... 56
Sending Events to Clients ...........................................................................  57

13. The Server Database of Keyboard Components ............................................ 58
Component Names ....................................................................................... 58
Partial Components and Combining Multiple Components .........................  58
Component Hints .........................................................................................  59
Keyboard Components .................................................................................  60
The Keycodes Component ............................................................................ 60

The Types Component .......................................................................... 60
The Compatibility Map Component ...................................................... 60
The Symbols Component ...................................................................... 60
The Geometry Component .................................................................... 61

Complete Keymaps ....................................................................................... 61
14. Replacing the Keyboard "On-the-Fly" ...........................................................  62
15. Interactions Between XKB and the X Input Extension .................................. 63

Using XKB Functions with Input Extension Keyboards ...............................  63
Pointer and Device Button Actions ..............................................................  64
Indicator Maps for Extension Devices .........................................................  64
Indicator Names for Extension Devices ....................................................... 64

16. XKB Protocol Requests .................................................................................  66
Errors ...........................................................................................................  66

Keyboard Errors ...................................................................................  66
Side-Effects of Errors ...........................................................................  66

Common Types ............................................................................................. 66
Requests .......................................................................................................  70

Initializing the X Keyboard Extension ..................................................  70
Selecting Events ...................................................................................  71
Generating Named Keyboard Bells ......................................................  72
Querying and Changing Keyboard State .............................................. 73
Querying and Changing Keyboard Controls ......................................... 75
Querying and Changing the Keyboard Mapping ..................................  79
Querying and Changing the Compatibility Map ................................... 87
Querying and Changing Indicators ......................................................  88



The X Keyboard Exten-
sion: Protocol Specification

v

Querying and Changing Symbolic Names ............................................ 92
Querying and Changing Keyboard Geometry ....................................... 96
Querying and Changing Per-Client Flags ............................................. 98
Using the Server’s Database of Keyboard Components .......................  99
Querying and Changing Input Extension Devices ..............................  103
Debugging the X Keyboard Extension ................................................ 106

Events ......................................................................................................... 107
Tracking Keyboard Replacement .......................................................  107
Tracking Keyboard Mapping Changes ...............................................  109
Tracking Keyboard State Changes .....................................................  110
Tracking Keyboard Control Changes .................................................  111
Tracking Keyboard Indicator State Changes .....................................  112
Tracking Keyboard Indicator Map Changes ....................................... 113
Tracking Keyboard Name Changes ....................................................  113
Tracking Compatibility Map Changes ................................................  114
Tracking Application Bell Requests ...................................................  115
Tracking Messages Generated by Key Actions ..................................  116
Tracking Changes to AccessX State and Keys ...................................  116
Tracking Changes To Extension Devices ............................................ 117

A. Default Symbol Transformations ..................................................................  119
Interpreting the Control Modifier .............................................................. 119
Interpreting the Lock Modifier ..................................................................  119

Locale-Sensitive Capitalization ........................................................... 119
Locale-Insensitive Capitalization ........................................................  119

B. Canonical Key Types ..................................................................................... 124
Canonical Key Types ..................................................................................  124

The ONE_LEVEL Key Type ................................................................  124
The TWO_LEVEL Key Type ................................................................  124
The ALPHABETIC Key Type ...............................................................  124
The KEYPAD Key Type .......................................................................  124

C. New KeySyms ...............................................................................................  125
New KeySyms ............................................................................................  125

KeySyms Used by the ISO9995 Standard ..........................................  125
KeySyms Used to Control The Core Pointer ......................................  126
KeySyms Used to Change Keyboard Controls ....................................  127
KeySyms Used To Control The Server ...............................................  127
KeySyms for Non-Spacing Diacritical Keys ........................................  128

D. Protocol Encoding ......................................................................................... 129
Syntactic Conventions ................................................................................ 129
Common Types ........................................................................................... 130
Errors .........................................................................................................  136
Key Actions ................................................................................................  136
Key Behaviors ............................................................................................  140
Requests .....................................................................................................  140
Events ......................................................................................................... 159



vi

Acknowledgments
I am grateful for all of the comments and suggestions I have received over the years.
I could not possibly list everyone who has helped, but a few people have gone well
above and beyond the call of duty and simply must be listed here.

My managers here at SGI, Tom Paquin (now at Netscape) and Gianni Mariani were
wonderful. Rather than insisting on some relatively quick, specialized proprietary
solution to the keyboard problems we were having, both Tom and Gianni understood
the importance of solving them in a general way and for the community as a whole.
That was a difficult position to take and it was even harder to maintain when the
scope of the project expanded beyond anything we imagined was possible. Gianni
and Tom were unflagging in their support and their desire to “do the right thing”
despite the schedule and budget pressure that intervened from time to time.

Will Walker, at Digital Equipment Corporation, has been a longtime supporter of
XKB. His help and input was essential to ensure that the extension as a whole fits and
works together well. His focus was AccessX but the entire extension has benefited
from his input and hard work. Without his unflagging good cheer and willingness
to lend a hand, XKB would not be where it is today.

Matt Landau, at the X Consortium, stood behind XKB during some tough spots in
the release and standardization process. Without Matt’s support, XKB would likely
not be a standard for a long time to come. When it became clear that we had too
much to do for the amount of time we had remaining, Matt did a fantastic job of
finding people to help finish the work needed for standardization.

One of those people was George Sachs, at Hewlett-Packard, who jumped in to help
out. His help was essential in getting the extension into this release. Another was
Donna Converse, who helped figure out how to explain all of this stuff to someone
who hadn’t had their head buried in it for years.

Amber Benson and Gary Aitken were simply phenomenal. They jumped into a huge
and complicated project with good cheer and unbelievable energy. They were “up
to speed” and contributing within days. I stand in awe of the amount that they
managed to achieve in such a short time. Thanks to Gary and Amber, the XKB library
specification is a work of art and a thousand times easier to use and more useful
than it would otherwise be.

I truly cannot express my gratitude to all of you, without whom this would not have
been possible.

Erik Fortune

Silicon Graphics, Inc.

5 February 1996



1

Chapter 1. Overview
This extension provides a number of new capabilities and controls for text key-
boards.

The core X protocol specifies the ways that the  Shift ,  Control and  Lock modifiers
and the modifiers bound to the  Mode_switch or  Num_Lock keysyms interact to
generate keysyms and characters. The core protocol also allows users to specify
that a key affects one or more modifiers. This behavior is simple and fairly flexible,
but it has a number of limitations that make it difficult or impossible to properly
support many common varieties of keyboard behavior. The limitations of core pro-
tocol support for keyboards include:

• Use of a single, uniform, four-symbol mapping for all keyboard keys makes it dif-
ficult to properly support keyboard overlays, PC-style break keys or keyboards
that comply with ISO9995 or a host of other national and international standards.

• Use of a modifier to specify a second keyboard group has side-effects that wreak
havoc with client grabs and X toolkit translations and limit us to two keyboard
groups.

• Poorly specified locking key behavior requires X servers to look for a few "magic"
keysyms to determine which keys should lock when pressed. This leads to incom-
patibilities between X servers with no way for clients to detect implementation
differences.

• Poorly specified capitalization and control behavior requires modifications to X
library source code to support new character sets or locales and can lead to in-
compatibilities between system-wide and X library capitalization behavior.

• Limited interactions between modifiers specified by the core protocol make many
common keyboard behaviors difficult or impossible to implement. For example,
there is no reliable way to indicate whether or not using shift should "cancel" the
lock modifier.

• The lack of any explicit descriptions for indicators, most modifiers and other as-
pects of the keyboard appearance requires clients that wish to clearly describe
the keyboard to a user to resort to a mishmash of prior knowledge and heuristics.

This extension makes it possible to clearly and explicitly specify most aspects of
keyboard behavior on a per-key basis. It adds the notion of a numeric keyboard
group to the global keyboard state and provides mechanisms to more closely track
the logical and physical state of the keyboard. For keyboard control clients, this
extension provides descriptions and symbolic names for many aspects of keyboard
appearance and behavior. It also includes a number of keyboard controls designed
to make keyboards more accessible to people with movement impairments.

The X Keyboard Extension essentially replaces the core protocol definition of a key-
board. The following sections describe the new capabilities of the extension and the
effect of the extension on core protocol requests, events and errors.

Conventions and Assumptions
This document uses the syntactic conventions, common types, and errors defined
in sections two through four of the specification of the X Window System Protocol.



Overview

2

This document assumes familiarity with the fundamental concepts of X, especially
those related to the way that X handles keyboards. Readers who are not familiar
with the meaning or use of keycodes, keysyms or modifiers should consult (at least)
the first five chapters of the protocol specification of the X Window System before
continuing.



3

Chapter 2. Keyboard State
The core protocol description of keyboard state consists of eight  modifiers ( Shift ,
Lock ,  Control , and  Mod1 - Mod5 ). A modifier reports the state of one or modifier
keys, which are similar to qualifier keys as defined by the ISO9995 standard:

Qualifier key A key whose operation has no immediate effect, but which, for as
long as it is held down, modifies the effect of other keys. A qualifier
key may be, for example, a shift key or a control key.

Whenever a modifier key is physically or logically depressed, the modifier it con-
trols is set in the keyboard state. The protocol implies that certain modifier keys
lock (i.e. affect modifier state after they have been physically released) but does
not explicitly discuss locking keys or their behavior. The current modifier state is
reported to clients in a number of core protocol events and can be determined using
the  QueryPointer request.

The XKB extension retains the eight "real" modifiers defined by the core protocol
but extends the core protocol notion of  keyboard state to include up to four  keysym
groups , as defined by the ISO9995 standard:

Group: A logical state of a keyboard providing access to a collection of characters.
A group usually contains a set of characters which logically belong togeth-
er and which may be arranged on several shift levels within that group.

For example, keyboard group can be used to select between multiple alphabets on
a single keyboard, or to access less-commonly used symbols within a character set.

Locking and Latching Modifiers and Groups
With the core protocol, there is no way to tell whether a modifier is set due to a
lock or because the user is actually holding down a key; this can make for a clumsy
user-interface as locked modifiers or group state interfere with accelerators and
translations.

XKB adds explicit support for locking and latching modifiers and groups. Locked
modifiers or groups apply to all future key events until they are explicitly changed.
Latched modifiers or groups apply only to the next key event that does not change
keyboard state.

Fundamental Components of XKB Keyboard
State

The fundamental components of XKB keyboard state include:

• The locked modifiers and group

• The latched modifiers and group

• The base modifiers and group (for which keys are physically or logically down)

• The effective modifiers and group (the cumulative effect of the base, locked and
latched modifier and group states).



Keyboard State

4

• State of the core pointer buttons.

The latched and locked state of modifiers and groups can be changed in response
to keyboard activity or under application control using the  XkbLatchLockState re-
quest. The base modifier, base group and pointer button states always reflect the
logical state of the keyboard and pointer and change  only in response to keyboard
or pointer activity.

Computing Effective Modifier and Group
The effective modifiers and group report the cumulative effects of the base, latched
and locked modifiers and group respectively, and cannot be directly changed. Note
that the effective modifiers and effective group are computed differently.

The effective modifiers are simply the bitwise union of the base, latched and locked
modifiers.

The effective group is the arithmetic sum of the base, latched and locked groups.
The locked and effective keyboard group must fall in the range  Group1 - Group4
, so they are adjusted into range as specified by the global  GroupsWrap  control
as follows:

• If the  RedirectIntoRange flag is set, the four least significant bits of the groups
wrap control specify the index of a group to which all illegal groups correspond.
If the specified group is also out of range, all illegal groups map to  Group1.

• If the  ClampIntoRange flag is set, out-of-range groups correspond to the nearest
legal group. Effective groups larger than the highest supported group are mapped
to the highest supported group; effective groups less than  Group1 are mapped to
Group1 . For example, a key with two groups of symbols uses  Group2 type and
symbols if the global effective group is either  Group3 or  Group4.

• If neither flag is set, group is wrapped into range using integer modulus. For
example, a key with two groups of symbols for which groups wrap uses  Group1
symbols if the global effective group is  Group3 or  Group2 symbols if the global
effective group is  Group4.

The base and latched keyboard groups are unrestricted eight-bit integer values and
are not affected by the  GroupsWrap control.

Computing A State Field from an XKB State
Many events report the keyboard state in a single  state field. Using XKB, a state
field combines modifiers, group and the pointer button state into a single sixteen
bit value as follows:

• Bits 0 through 7 (the least significant eight bits) of the effective state comprise a
mask of type KEYMASK which reports the state modifiers.

• Bits 8 through 12 comprise a mask of type BUTMASK which reports pointer button
state.

• Bits 13 and 14 are interpreted as a two-bit unsigned numeric value and report
the state keyboard group.



Keyboard State

5

• Bit 15 (the most significant bit) is reserved and must be zero.

It is possible to assemble a state field from any of the components of the XKB key-
board state. For example, the effective keyboard state would be assembled as de-
scribed above using the effective keyboard group, the effective keyboard modifiers
and the pointer button state.

Derived Components of XKB Keyboard State
In addition to the fundamental state components, XKB keeps track of and reports a
number of state components which are derived from the fundamental components
but stored and reported separately to make it easier to track changes in the key-
board state. These derived components are updated automatically whenever any of
the fundamental components change but cannot be changed directly.

The first pair of derived state components control the way that passive grabs are
activated and the way that modifiers are reported in core protocol events that report
state. The server uses the  ServerInternalModifiers ,  IgnoreLocksModifiers and
IgnoreGroupLock controls, described in Server Internal Modifiers and Ignore Locks
Behavior, to derive these two states as follows:

• The lookup state is the state used to determine the symbols associated with a key
event and consists of the effective state minus any server internal modifiers.

• The grab state is the state used to decide whether a particular event triggers a
passive grab and consists of the lookup state minus any members of the ignore
locks modifiers that are not either latched or logically depressed. If the ignore
group locks control is set, the grab state does not include the effects of any locked
groups.

Server Internal Modifiers and Ignore Locks Behavior
The core protocol does not provide any way to exclude certain modifiers from client
events, so there is no way to set up a modifier which affects only the server.

The modifiers specified in the mask of the  InternalMods control are not reported
in any core protocol events, are not used to determine grabs and are not used to
calculate compatibility state for XKB-unaware clients. Server internal modifiers af-
fect only the action applied when a key is pressed.

The core protocol does not provide any way to exclude certain modifiers from grab
calculations, so locking modifiers often have unanticipated and unfortunate side-
effects. XKB provides another mask which can help avoid some of these problems.

The locked state of the modifiers specified in mask of the  IgnoreLockMods control
is not reported in most core protocol events and is not used to activate grabs. The
only core events which include the locked state of the modifiers in the ignore locks
mask are key press and release events that do not activate a passive grab and which
do not occur while a grab is active. If the  IgnoreGroupLock control is set, the locked
state of the keyboard group is not considered when activating passive grabs.

Without XKB, the passive grab set by a translation (e.g.  Alt<KeyPress>space )
does not trigger if any modifiers other than those specified by the translation are
set, with the result that many user interface components do not react when either



Keyboard State

6

Num Lock or when the secondary keyboard group are active. The ignore locks mask
and the ignore group locks control make it possible to avoid this behavior without
exhaustively grabbing every possible modifier combination.

Compatibility Components of Keyboard State
The core protocol interpretation of keyboard modifiers does not include direct sup-
port for multiple groups, so XKB reports the effective keyboard group to XKB-aware
clients using some of the reserved bits in the state field of some core protocol events,
as described in Computing A State Field from an XKB State.

This modified state field would not be interpreted correctly by XKB-unaware clients,
so XKB provides a  group compatibility mapping (see Group Compatibility Map)
which remaps the keyboard group into a core modifier mask that has similar effects,
when possible. XKB maintains three compatibility state components that are used
to make non-XKB clients work as well as possible:

• The  compatibility state corresponds to the effective modifier and effective group
state.

• The  compatibility lookup state is the core-protocol equivalent of the lookup state.

• The  compatibility grab state is the nearest core-protocol equivalent of the grab
state.

Compatibility states are essentially the corresponding XKB state, but with keyboard
group possibly encoded as one or more modifiers; Group Compatibility Map de-
scribes the group compatibility map, which specifies the modifier(s) that correspond
to each keyboard group.

The compatibility state reported to XKB-unaware clients for any given core protocol
event is computed from the modifier state that XKB-capable clients would see for
that same event. For example, if the ignore group locks control is set and group 2
is locked, the modifier bound to  Mode_switch is not reported in any event except
(Device)KeyPress and (Device)KeyRelease events that do not trigger a passive grab.

Note
Referring to clients as "XKB-capable is somewhat misleading in this context.
The sample implementation of XKB invisibly extends the X library to use
the keyboard extension if it is present. This means that most clients can
take advantage of all of XKB without modification, but it also means that
the XKB state can be reported to clients that have not explicitly requested
the keyboard extension. Clients that  directly interpret the state field of core
protocol events or that interpret the keymap directly may be affected by
some of the XKB differences; clients that use library or toolkit routines to
interpret keyboard events automatically use all of the XKB features.

XKB-aware clients can query the keyboard state at any time or request immediate
notification of a change to any of the fundamental or derived components of the
keyboard state.



7

Chapter 3. Virtual Modifiers
The core protocol specifies that certain keysyms, when bound to modifiers, af-
fect the rules of keycode to keysym interpretation for all keys; for example, when
Num_Lock is bound to some modifier, that modifier is used to choose shifted or un-
shifted state for the numeric keypad keys. The core protocol does not provide a con-
venient way to determine the mapping of modifier bits, in particular  Mod1 through
Mod5 , to keysyms such as  Num_Lock and  Mode_switch . Clients must retrieve
and search the modifier map to determine the keycodes bound to each modifier, and
then retrieve and search the keyboard mapping to determine the keysyms bound to
the keycodes. They must repeat this process for all modifiers whenever any part of
the modifier mapping is changed.

XKB provides a set of sixteen named virtual modifiers, each of which can be bound
to any set of the eight "real" modifiers ( Shift ,  Lock ,  Control and  Mod1 - Mod5 as
reported in the keyboard state). This makes it easier for applications and keyboard
layout designers to specify to the function a modifier key or data structure should
fulfill without having to worry about which modifier is bound to a particular keysym.

The use of a single, server-driven mechanism for reporting changes to all data struc-
tures makes it easier for clients to stay synchronized. For example, the core proto-
col specifies a special interpretation for the modifier bound to the  Num_Lock key.
Whenever any keys or modifiers are rebound, every application has to check the
keyboard mapping to make sure that the binding for  Num_Lock has not changed. If
Num_Lock is remapped when XKB is in use, the keyboard description is automati-
cally updated to reflect the new binding, and clients are notified immediately and
explicitly if there is a change they need to consider.

The separation of function from physical modifier bindings also makes it easier to
specify more clearly the intent of a binding. X servers do not all assign modifiers the
same way — for example,  Num_Lock might be bound to  Mod2 for one vendor and to
Mod4 for another. This makes it cumbersome to automatically remap the keyboard
to a desired configuration without some kind of prior knowledge about the keyboard
layout and bindings. With XKB, applications simply use virtual modifiers to specify
the behavior they want, without regard for the actual physical bindings in effect.

XKB puts most aspects of the keyboard under user or program control, so it is even
more important to clearly and uniformly refer to modifiers by function.

Modifier Definitions
Use an  XKB modifier definition to specify the modifiers affected by any XKB control
or data structure. An XKB modifier definition consists of a set of real modifiers, a
set of virtual modifiers, and an effective mask. The mask is derived from the real
and virtual modifiers and cannot be explicitly changed — it contains all of the real
modifiers specified in the definition  plus any real modifiers that are bound to the
virtual modifiers specified in the definition. For example, this modifier definition
specifies the numeric lock modifier if the  Num_Lock keysym is not bound to any
real modifier:

{ real_mods= None, virtual_mods= NumLock, mask= None }



Virtual Modifiers

8

If we assign  Mod2 to the  Num_Lock key, the definition changes to:

{ real_mods= None, virtual_mods= NumLock, mask= Mod2 }

Using this kind of modifier definition makes it easy to specify the desired behavior
in such a way that XKB can automatically update all of the data structures that make
up a keymap to reflect user or application specified changes in any one aspect of
the keymap.

The use of modifier definitions also makes it possible to unambiguously specify the
reason that a modifier is of interest. On a system for which the  Alt and  Meta
keysyms are bound to the same modifier, the following definitions behave identical-
ly:

{ real_mods= None, virtual_mods= Alt, mask= Mod1 }
{ real_mods= None, virtual_mods= Meta, mask= Mod1 }

If we rebind one of the modifiers, the modifier definitions automatically reflect the
change:

{ real_mods= None, virtual_mods= Alt, mask= Mod1 }
{ real_mods= None, virtual_mods= Meta, mask= Mod4 }

Without the level of indirection provided by virtual modifier maps and modifier de-
finitions, we would have no way to tell which of the two definitions is concerned
with  Alt and which is concerned with  Meta.

Inactive Modifier Definitions
Some XKB structures ignore modifier definitions in which the virtual modifiers are
unbound. Consider this example:

if ( state matches { Shift } ) Do OneThing;
if ( state matches { Shift+NumLock } ) Do Another;

If the  NumLock virtual modifier is not bound to any real modifiers, these effective
masks for these two cases are identical (i.e. they contain only  Shift ). When it is
essential to distinguish between  OneThing and Another, XKB considers only those
modifier definitions for which all virtual modifiers are bound.

Virtual Modifier Mapping
XKB maintains a  virtual modifier mapping , which lists the virtual modifiers asso-
ciated with each key. The real modifiers bound to a virtual modifier always include
all of the modifiers bound to any of the keys that specify that virtual modifier in
their virtual modifier mapping.

For example, if  Mod3 is bound to the  Num_Lock key by the core protocol modifier
mapping, and the  NumLock virtual modifier is bound to they  Num_Lock key by
the virtual modifier mapping,  Mod3 is added to the set of modifiers associated with
the  NumLock virtual modifier.



Virtual Modifiers

9

The virtual modifier mapping is normally updated automatically whenever actions
are assigned to keys (see Changing the Keyboard Mapping Using the Core Protocol
for details) and few applications should need to change the virtual modifier mapping
explicitly.



10

Chapter 4. Global Keyboard Controls
The X Keyboard Extension supports a number of  global key controls , which affect
the way that XKB handles the keyboard as a whole. Many of these controls make
the keyboard more accessible to the physically impaired and are based on the Ac-
cessDOS package1.

The RepeatKeys Control
The core protocol only allows control over whether or not the entire keyboard or
individual keys should autorepeat when held down. The  RepeatKeys control extends
this capability by adding control over the delay until a key begins to repeat and
the rate at which it repeats.  RepeatKeys is also coupled with the core autorepeat
control; changes to one are always reflected in the other.

The  RepeatKeys control has two parameters. The  autorepeat delay specifies the
delay between the initial press of an autorepeating key and the first generated re-
peat event in milliseconds. The  autorepeat interval specifies the delay between all
subsequent generated repeat events in milliseconds.

The PerKeyRepeat Control
When  RepeatKeys are active, the  PerKeyRepeat control specifies whether or not
individual keys should autorepeat when held down. XKB provides the  PerKeyRe-
peat for convenience only, and it always parallels the  auto-repeats field of the core
protocol  GetKeyboardControl request — changes to one are always reflected in the
other.

Detectable Autorepeat
The X server usually generates both press and release events whenever an autore-
peating key is held down. If an XKB-aware client enables the  DetectableAutorepeat
per-client option for a keyboard, the server sends that client a key release event only
when the key is  physically released. For example, holding down a key to generate
three characters without detectable autorepeat yields:

Press -> Release -> Press -> Release -> Press -> Release

If detectable autorepeat is enabled, the client instead receives:

Press-> Press -> Press -> Release

Note that only clients that request detectable autorepeat are affected; other clients
continue to receive both press and release events for autorepeating keys. Also note
that support for detectable autorepeat is optional; servers are not required to sup-
port detectable autorepeat, but they must correctly report whether or not it is sup-
ported.

1 AccessDOS provides access to the DOS operating system for people with physical impairments and was developed
by the Trace R&D Center at the University of Wisconsin. For more information on AccessDOS, contact the Trace R&D
Center, Waisman Center and Department of Industrial Engineering, University of Wisconsin-Madison WI 53705-2280.
Phone: 608-262-6966. e-mail: info@trace.wisc.edu.



Global Keyboard Controls

11

Querying and Changing Per-Client Flags describes the  XkbPerClientFlags request,
which reports or changes values for all of the per-client flags, and which lists the
per-client flags that are supported.

The SlowKeys Control
Some users often bump keys accidentally while moving their hand or typing stick
toward the key they want. Usually, the keys that are bumped accidentally are hit
only for a very short period of time. The  SlowKeys control helps filter these acci-
dental bumps by telling the server to wait a specified period, called the  SlowKeys
acceptance delay , before delivering key events. If the key is released before this
period elapses, no key events are generated. The user can then bump any number
of keys on their way to the one they want without generating unwanted characters.
Once they have reached the key they want, they can then hold it long enough for
SlowKeys to accept it.

The  SlowKeys control has one parameter; the  slow keys delay specifies the length
of time, in milliseconds, that a key must be held down before it is accepted.

When  SlowKeys are active, the X Keyboard Extension reports the initial press, ac-
ceptance, rejection or release of any key to interested clients using  AccessXNotify
events. The  AccessXNotify event is described in more detail in Events.

The BounceKeys Control
Some people with physical impairments accidentally "bounce" on a key when they
press it. That is, they press it once, then accidentally press it again immediately. The
BounceKeys control temporarily disables a key after it has been pressed, effectively
"debouncing" the keyboard.

The  BounceKeys has a single parameter. The  BounceKeys delay specifies the period
of time, in milliseconds, that the key is disabled after it is pressed.

When  BounceKeys are active, the server reports the acceptance or rejection of any
key to interested clients by sending an  AccessXNotify event. The  AccessXNotify
event is described in more detail in Events.

The StickyKeys Control
Some people find it difficult or impossible to press two keys at once. The  StickyKeys
control makes it easier for them to type by changing the behavior of the modifier
keys. When  StickyKeys are enabled, a modifier is latched when the user presses it
just once, so the user can first press a modifier, release it, then press another key.
For example, to get an exclamation point (!) on a PC-style keyboard, the user can
press the  Shift key, release it, then press the  1 key.

By default,  StickyKeys also allows users to lock modifier keys without requiring
special locking keys. The user can press a modifier twice in a row to lock it, and
then unlock it by pressing it one more time.

Modifiers are automatically unlatched when the user presses a non-modifier key.
For instance, to enter the sequence  Shift + Ctrl + Z the user could press and release
the  Shift key to latch the  Shift modifier, then press and release the  Ctrl key to



Global Keyboard Controls

12

latch the  Control modifier — the  Ctrl key is a modifier key, so pressing it does not
unlatch the  Shift modifier, but leaves both the  Shift and  Control modifiers latched,
instead. When the user presses the  Z key, it will be as though the user pressed
Shift + Ctrl + Z simultaneously. The  Z key is not a modifier key, so the  Shift and
Control modifiers are unlatched after the event is generated.

A locked a modifier remains in effect until the user unlocks it. For example, to enter
the sequence ("XKB") on a PC-style keyboard with a typical US/ASCII layout, the
user could press and release the  Shift key twice to lock the  Shift modifier. Then,
when the user presses the  9 ,  ‘ ,  x ,  k ,  b ,  ‘ , and  0 keys in sequence, it will generate
("XKB"). To unlock the  Shift modifier, the user can press and release the  Shift key.

Two option flags modify the behavior of the  StickyKeys control:

• If the  XkbAX_TwoKeys flag is set, XKB automatically turns  StickyKeys off if the
user presses two or more keys at once. This serves to automatically disable Stick-
yKeys when a user who does not require sticky keys is using the keyboard.

• The  XkbAX_LatchToLock controls the locking behavior of  StickyKeys ; the  Stick-
yKeys control only locks modifiers as described above if the  XkbAX_LatchToLock
flag is set.

The MouseKeys Control
The  MouseKeys control lets a user control all the mouse functions from the key-
board. When  MouseKeys are enabled, all keys with  MouseKeys actions bound to
them generate core pointer events instead of normal key press and release events.

The  MouseKeys control has a single parameter, the  mouse keys default button ,
which specifies the core pointer button to be used by mouse keys actions that do
not explicitly specify a button.

The MouseKeysAccel Control
If the  MouseKeysAccel control is enabled, the effect of a pointer motion action
changes as a key is held down. The  mouse keys delay specifies the amount of time
between the initial key press and the first repeated motion event. The  mouse keys
interval specifies the amount of time between repeated mouse keys events. The
steps to maximum acceleration field specifies the total number of events before
the key is travelling at maximum speed. The  maximum acceleration field specifies
the maximum acceleration. The  curve parameter controls the ramp used to reach
maximum acceleration.

When  MouseKeys are active and a  SA_MovePtr key action (see Key Actions) is
activated, a pointer motion event is generated immediately. If  MouseKeysAccel is
enabled and if acceleration is enabled for the key in question, a second event is
generated after  mouse keys delay  milliseconds, and additional events are gener-
ated every  mouse keys interval milliseconds for as long as the key is held down.

Relative Pointer Motion
If the  SA_MovePtr action specifies relative motion, events are generated as follows:
The initial event always moves the cursor the distance specified in the action; after
steps to maximum acceleration events have been generated, all subsequent events



Global Keyboard Controls

13

move the pointer the distance specified in the action times the  maximum accelera-
tion. Events after the first but before maximum acceleration has been achieved are
accelerated according to the formula:

Where  action_delta is the offset specified by the mouse keys action,  max_accel  and
steps_to_max are parameters to the  MouseKeysAccel ctrl, and the curveFactor is
computed using the  MouseKeysAccel  curve parameter as follows:

With the result that a  curve of  0 causes the distance moved to increase linearly
from  action_delta to

, and the minimum legal  curve of - 1000 causes all events after the first move at
max_accel . A negative  curve causes an initial sharp increase in acceleration which
tapers off, while a positive curve yields a slower initial increase in acceleration fol-
lowed by a sharp increase as the number of pointer events generated by the action
approaches  steps_to_max .

Absolute Pointer Motion
If an  SA_MovePtr action specifies an absolute position for one of the coordinates
but still allows acceleration, all repeated events contain any absolute coordinates
specified in the action.

The AccessXKeys Control
If  AccessXKeys is enabled many controls can also be turned on or off from the
keyboard by entering the following standard key sequences:

• Holding down a shift key by itself for eight seconds toggles the  SlowKeys control.

• Pressing and releasing a shift key five times in a row without any intervening key
events and with less than 30 seconds delay between consecutive presses toggles
the state of the  StickyKeys control.

• Simultaneously operating two or more modifier keys deactivates the  StickyKeys
control.

Some of these key sequences optionally generate audible feedback of the change in
state, as described in The AccessXFeedback Control, or cause  XkbAccessXNotify
events as described in Events.

The AccessXTimeout Control
In environments where computers are shared, features such as  SlowKeys present
a problem: if  SlowKeys is on, the keyboard can appear to be unresponsive because



Global Keyboard Controls

14

keys have no effect unless they are held for a certain period of time. To help address
this problem, XKB provides an  AccessXTimeout control to automatically change the
value of any global controls or AccessX options if the keyboard is idle for a specified
period of time.

The AccessXTimeout control has a number of parameters which affect the duration
of the timeout and the features changed when the timeout expires.

The  AccessX Timeout field specifies the number of seconds the keyboard must
be idle before the global controls and AccessX options are modified. The  AccessX
Options Mask field specifies which values in the  AccessX Options field are to be
changed, and the  AccessX Options Values field specifies the new values for those
options. The  AccessX Controls Mask field specifies which controls are to be changed
in the global set of  enabled controls , and the  AccessX Controls Values field specifies
the new values for those controls.

The AccessXFeedback Control
If  AccessXFeedback is enabled, special beep-codes indicate changes in keyboard
controls (or some key events when  SlowKeys or  StickyKeys are active). Many beep
codes sound as multiple tones, but XKB reports a single  XkbBellNotify event for
the entire sequence of tones.

All feedback tones are governed by the  AudibleBell control. Individual feedback
tones can be explicitly enabled or disabled using the  accessX options mask or set
to deactivate after an idle period using the  accessX timeout options mask . XKB
defines the following feedback tones:



Global Keyboard Controls

15

Feedback
Name

Bell Name Default Sound Indicates

FeatureFB AX_FeatureOn rising tone Keyboard control en-
abled

AX_FeatureOff falling tone Keyboard control dis-
abled

AX_FeatureChange two tones Several controls
changed state

IndicatorFB AX_IndicatorOn high tone Indicator Lit
AX_IndicatorOff low tone Indicator Extin-

guished
AX_IndicatorChange two high tones Several indicators

changed state
SlowWarnFB AX_SlowKeysWarning three high tones Shift key held for

four seconds
SKPressFB AX_SlowKeyPress single tone Key press while 

SlowKeys are on
SKReleaseFB AX_SlowKeyRelease single tone Key release while 

SlowKeys are on
SKAcceptFB AX_SlowKeyAccept single tone Key event accepted

by  SlowKeys
SKRejectFB AX_SlowKeyReject low tone Key event rejected by

SlowKeys
StickyKeysFB AX_StickyLatch low tone then high

tone
Modifier latched by 
StickyKeys

AX_StickyLock high tone Modifier locked by 
StickyKeys

AX_StickyUnlock low tone Modifier unlocked by
StickyKeys

BKRejectFB AX_BounceKeysReject low tone Key event rejected by
BounceKeys

Implementations that cannot generate continuous tones may generate multiple
beeps instead of falling and rising tones; for example, they can generate a high-
pitched beep followed by a low-pitched beep instead of a continuous falling tone.

If the physical keyboard bell is not very capable, attempts to simulate a continuous
tone with multiple bells can sound horrible. Set the  DumbBellFB AccessX option
to inform the server that the keyboard bell is not very capable and that XKB should
use only simple bell combinations. Keyboard capabilities vary wildly, so the sounds
generated for the individual bells when the  DumbBellFB option is set are imple-
mentation specific.

The Overlay1 and Overlay2 Controls
A keyboard overlay allows some subset of the keyboard to report alternate keycodes
when the overlay is enabled. For example a keyboard overlay can be used to simu-
late a numeric or editing keypad on keyboard that does not actually have one by



Global Keyboard Controls

16

generating alternate of keycodes for some keys when the overlay is enabled. This
technique is very common on portable computers and embedded systems with small
keyboards.

XKB includes direct support for two keyboard overlays, using the  Overlay1 and
Overlay2 controls. When  Overlay1 is enabled, all of the keys that are members of the
first keyboard overlay generate an alternate keycode. When  Overlay2 is enabled, all
of the keys that are members of the second keyboard overlay generate an alternate
keycode.

To specify the overlay to which a key belongs and the alternate keycode it should
generate when that overlay is enabled, assign it either the  KB_Overlay1 or
KB_Overlay2 key behaviors, as described in  Key Behavior.

"Boolean" Controls and The EnabledControls
Control

All of the controls described above, along with the  AudibleBell control (described
in Disabling Server Generated Bells) and the  IgnoreGroupLock control (described
in Server Internal Modifiers and Ignore Locks Behavior) comprise the  boolean con-
trols . In addition to any parameters listed in the descriptions of the individual con-
trols, the boolean controls can be individually enabled or disabled by changing the
value of the  EnabledControls control.

The following  non-boolean controls are always active and cannot be changed using
the  EnabledControls control or specified in any context that accepts only boolean
controls:  GroupsWrap (Computing Effective Modifier and Group),  EnabledControls
,  InternalMods (Server Internal Modifiers and Ignore Locks Behavior), and  Ignore-
LockMods (Server Internal Modifiers and Ignore Locks Behavior) and  PerKeyRe-
peat (The RepeatKeys Control)

Automatic Reset of Boolean Controls
The  auto-reset controls are a per-client value which consist of two masks that can
contain any of the boolean controls (see "Boolean" Controls and The EnabledCon-
trols Control). Whenever the client exits for any reason, any boolean controls spec-
ified in the  auto-reset mask are set to the corresponding value from the  auto-reset
values mask. This makes it possible for clients to "clean up after themselves" auto-
matically, even if abnormally terminated.

For example, a client that replace the keyboard bell with some other audible cue
might want to turn off the  AudibleBell control (Disabling Server Generated Bells)
to prevent the server from also generating a sound and thus avoid cacophony. If
the client were to exit without resetting the  AudibleBell  control, the user would
be left without any feedback at all. Setting  AudibleBell in both the auto-reset mask
and auto-reset values guarantees that the audible bell will be turned back on when
the client exits.



17

Chapter 5. Key Event Processing
Overview

There are three steps to processing each key event in the X server, and at least
three in the client. This section describes each of these steps briefly; the following
sections describe each step in more detail.

1. First, the server applies global keyboard controls to determine whether the key
event should be processed immediately, deferred, or ignored. For example, the
SlowKeys control can cause a key event to be deferred until the slow keys delay
has elapsed while the  RepeatKeys control can cause multiple X events from a
single physical key press if the key is held down for an extended period. The
global keyboard controls affect all of the keys on the keyboard and are described
in Global Keyboard Controls.

2. Next, the server applies per-key behavior. Per key-behavior can be used to simu-
late or indicate some special kinds of key behavior. For example, keyboard over-
lays, in which a key generates an alternate keycode under certain circumstances,
can be implemented using per-key behavior. Every key has a single behavior, so
the effect of key behavior does not depend on keyboard modifier or group state,
though it might depend on global keyboard controls. Per-key behaviors are de-
scribed in detail in Key Behavior.

3. Finally, the server applies key actions. Logically, every keysym on the keyboard
has some action associated with it. The key action tells the server what to do
when an event which yields the corresponding keysym is generated. Key actions
might change or suppress the event, generate some other event, or change some
aspect of the server. Key actions are described in Key Actions.

If the global controls, per-key behavior and key action combine to cause a key event,
the client which receives the event processes it in several steps.

1. First the client extracts the effective keyboard group and a set of modifiers from
the state field of the event. See Computing A State Field from an XKB State for
details.

2. Using the modifiers and effective keyboard group, the client selects a symbol
from the list of keysyms bound to the key. Determining the KeySym Associated
with a Key Event discusses symbol selection.

3. If necessary, the client transforms the symbol and resulting string using any mod-
ifiers that are "left over" from the process of looking up a symbol. For example,
if the  Lock modifier is left over, the resulting keysym is capitalized according to
the capitalization rules specified by the system. See  Transforming the KeySym
Associated with a Key Event for a more detailed discussion of the transformations
defined by XKB.

4. Finally, the client uses the keysym and remaining modifiers in an application-spe-
cific way. For example, applications based on the X toolkit might apply transla-
tions based on the symbol and modifiers reported by the first three steps.



18

Chapter 6. Key Event Processing in the
Server

This section describes the steps involved in processing a key event within the server
when XKB is present. Key events can be generated due to keyboard activity and
passed to XKB by the DDX layer, or they can be synthesized by another extension,
such as XTEST.

Applying Global Controls
When the X Keyboard Extension receives a key event, it first checks the global key
controls to decide whether to process the event immediately or at all. The global
key controls which might affect the event, in descending order of priority, are:

• If a key is pressed while the  BounceKeys control is enabled, the extension gen-
erates the event only if the key is active. When a key is released, the server deac-
tivates the key and starts a  bounce keys timer with an interval specified by the
debounce delay.

If the bounce keys timer expires or if some other key is pressed before the timer
expires, the server reactivates the corresponding key and deactivates the timer.
Neither expiration nor deactivation of a bounce keys timer causes an event.

• If the  SlowKeys control is enabled, the extension sets a  slow keys timer with
an interval specified by the slow keys delay, but does not process the key event
immediately. The corresponding key release deactivates this timer.

If the slow keys timer expires, the server generates a key press for the corre-
sponding key, sends an  XkbAccessXNotify and deactivates the timer.

• The extension processes key press events normally whether or not the  Re-
peatKeys control is active, but if  RepeatKeys are enabled and per-key autorepeat
is enabled for the event key, the extension processes key press events normally,
but it also initiates an  autorepeat timer with an interval specified by the autore-
peat delay. The corresponding key release deactivates the timer.

If the autorepeat timer expires, the server generates a key release and a key press
for the corresponding key and reschedules the timer according to the autorepeat
interval.

Key events are processed by each global control in turn: if the  BounceKeys control
accepts a key event,  SlowKeys considers it. Once  SlowKeys allows or synthesizes
an event, the  RepeatKeys control acts on it.

Key Behavior
Once an event is accepted by all of the controls or generated by a timer, the server
checks the per-key behavior of the corresponding key. This extension currently de-
fines the following key behaviors:



Key Event Process-
ing in the Server

19

Behavior Effect
KB_Default Press and release events are processed normally.
KB_Lock If a key is logically up (i.e. the corresponding bit of the

core key map is cleared) when it is pressed, the key press
is processed normally and the corresponding release is ig-
nored. If the key is logically down when pressed, the key
press is ignored but the corresponding release is processed
normally.

KB_RadioGroup

flags: CARD8

index: CARD8

If another member of the radio group specified by  index is
logically down when a key is pressed, the server synthesizes
a key release for the member that is logically down and then
processes the new key press event normally.

If the key itself is logically down when pressed, the key
press event is ignored, but the processing of the correspond-
ing key release depends on the value of the  RGAllowNone
bit in  flags . If it is set, the key release is processed normal-
ly; otherwise the key release is also ignored.

All other key release events are ignored.
KB_Overlay1

key: KEYCODE

If the  Overlay1 control is enabled, events from this key are
reported as if they came from the key specified in  key . Oth-
erwise, press and release events are processed normally.

KB_Overlay2

key: KEYCODE

If the  Overlay2 control is enabled, events from this key are
reported as if they came from the key specified in  key . Oth-
erwise, press and release events are processed normally.

The X server uses key behavior to determine whether to process or filter out any
given key event; key behavior is independent of keyboard modifier or group state
(each key has exactly one behavior.

Key behaviors can be used to simulate any of these types of keys or to indicate an
unmodifiable physical, electrical or software driver characteristic of a key. An op-
tional  permanent flag can modify any of the supported behaviors and indicates that
behavior describes an unalterable physical, electrical or software aspect of the key-
board. Permanent behaviors cannot be changed or set by the  XkbSetMap request.
The  permanent flag indicates a characteristic of the underlying system that XKB
cannot affect, so XKB treats all permanent behaviors as if they were  KB_Default
and does not filter key events described in the table above.

Key Actions
Once the server has applied the global controls and per-key behavior and has de-
cided to process a key event, it applies  key actions to determine the effects of the
key on the internal state of the server. A key action consists of an operator and some
optional data. XKB supports actions which:

• change base, latched or locked modifiers or group

• move the core pointer or simulate core pointer button events

• change most aspects of keyboard behavior



Key Event Process-
ing in the Server

20

• terminate or suspend the server

• send a message to interested clients

• simulate events on other keys

Each key has an optional list of actions. If present, this list parallels the list of sym-
bols associated with the key (i.e. it has one action per symbol associated with the
key). For key press events, the server looks up the action to be applied from this list
using the key symbol mapping associated with the event key, just as a client looks
up symbols as described in Determining the KeySym Associated with a Key Event;
if the event key does not have any actions, the server uses the  SA_NoAction event
for that key regardless of modifier or group state.

Key actions have essentially two halves; the effects on the server when the key is
pressed and the effects when the key is released. The action applied for a key press
event determines the further actions, if any, that are applied to the corresponding
release event or to events that occur while the key is held down. Clients can change
the actions associated with a key while the key is down without changing the action
applied next time the key is released; subsequent press-release pairs will use the
newly bound key action.

Most actions directly change the state of the keyboard or server; some actions al-
so modify other actions that occur simultaneously with them. Two actions occur
simultaneously if the keys which invoke the actions are both logically down at the
same time, regardless of the order in which they are pressed or delay between the
activation of one and the other.

Most actions which affect keyboard modifier state accept a modifier definition (see
Virtual Modifiers) named  mods and a boolean flag name  useModMap among their
arguments. These two fields combine to specify the modifiers affected by the action
as follows: If  useModMap is  True , the action sets any modifiers bound by the
modifier mapping to the key that initiated the action; otherwise, the action sets the
modifiers specified by  mods . For brevity in the text of the following definitions, we
refer to this combination of  useModMap and  mods as the "action modifiers."

The X Keyboard Extension supports the following actions:

Action Effect
SA_NoAction • No direct effect, though SA_NoAction events may change

the effect of other server actions (see below).
SA_SetMods

mods: MOD_DEF

useModMap: BOOL

clearLocks: BOOL

• Key press adds any action modifiers to the keyboard’s base
modifiers.

• Key release clears any action modifiers in the keyboard’s
base modifiers, provided that no other key which affects
the same modifiers is logically down.

• If no keys were operated simultaneously with this key and 
clearLocks is set, release unlocks any action modifiers.

SA_LatchMods

mods: MOD_DEF

useModMap: BOOL

• Key press and release events have the same effect as for 
SA_SetMods ; if no keys were operated simultaneously
with the latching modifier key, key release events have the
following additional effects:



Key Event Process-
ing in the Server

21

Action Effect
clearLocks: BOOL

latchToLock: BOOL

• Modifiers that were unlocked due to  clearLocks have no
further effect.

• If  latchToLock is set, key release locks and then unlatches
any remaining action modifiers that are already latched.

• Finally, key release latches any action modifiers that were
not used by the  clearLocks or  latchToLock flags.

SA_LockMods

mods: MOD_DEF

useModMap: BOOL

noLock: BOOL

noUnlock: BOOL

• Key press sets the base and possibly the locked state of
any action modifiers. If  noLock is  True , only the base
state is changed.

• For key release events, clears any action modifiers in the
keyboard’s base modifiers, provided that no other key
which affects the same modifiers is down. If  noUnlock is 
False and any of the action modifiers were locked before
the corresponding key press occurred, key release unlocks
them.

SA_SetGroup

group: INT8

groupAbsolute:
BOOL

clearLocks: BOOL

• If  groupAbsolute is set, key press events change the base
keyboard group to  group ; otherwise, they add  group to
the base keyboard group. In either case, the resulting ef-
fective keyboard group is brought back into range depend-
ing on the value of the  GroupsWrap control for the key-
board.

• If an  SA_ISOLock key is pressed while this key is held
down, key release has no effect, otherwise it cancels the
effects of the press.

• If no keys were operated simultaneously with this key and 
clearLocks is set, key release also sets the locked key-
board group to  Group1 .

SA_LatchGroup

group: INT8

groupAbsolute:
BOOL

clearLocks: BOOL

latchToLock: BOOL

• Key press and release events have the same effect as an 
SA_SetGroup action; if no keys were operated simultane-
ously with the latching group key and the  clearLocks flag
was not set or had no effect, key release has the following
additional effects:

• If  latchToLock is set and the latched keyboard group is
non-zero, the key release adds the delta applied by the
corresponding key press to the locked keyboard group and
subtracts it from the latched keyboard group. The locked
and effective keyboard group are brought back into range
according to the value of the global  GroupsWrap control
for the keyboard.

• Otherwise, key release adds the key press delta to the
latched keyboard group.

SA_LockGroup

group: INT8

• If  groupAbsolute is set, key press sets the locked key-
board group to  group . Otherwise, key press adds  group
to the locked keyboard group. In either case, the resulting
locked and effective group is brought back into range de-



Key Event Process-
ing in the Server

22

Action Effect
groupAbsolute:
BOOL

pending on the value of the  GroupsWrap control for the
keyboard.

• Key release has no effect.
SA_MovePtr

x, y: INT16

noAccel: BOOL

absoluteX: BOOL

absoluteY: BOOL

• If  MouseKeys are not enabled, this action behaves like 
SA_NoAction , otherwise this action cancels any pending
repeat key timers for this key and has the following addi-
tional effects.

• Key press generates a core pointer  MotionNotify event
instead of the usual  KeyPress . If  absoluteX is  True , 
x specifies the new pointer X coordinate, otherwise  x is
added to the current pointer X coordinate;  absoluteY and 
y specify the new Y coordinate in the same way.

• If  noAccel is  False , and the  MouseKeysAccel keyboard
control is enabled, key press also initiates the mouse keys
timer for this key; every time this timer expires, the cursor
moves again. The distance the cursor moves in these sub-
sequent events is determined by the mouse keys accelera-
tion as described in The MouseKeysAccel Control.

• Key release disables the mouse keys timer (if it was initiat-
ed by the corresponding key press) but has no other effect
and is ignored (does not generate an event of any type).

SA_PtrBtn

button: CARD8

count: CARD8

useDfltBtn: BOOL

• If  MouseKeys are not enabled, this action behaves like 
SA_NoAction .

• If  useDfltBtn is set, the event is generated for the current
default core button. Otherwise, the event is generated for
the button specified by  button .

• If the mouse button specified for this action is logically
down, the key press and corresponding release are ig-
nored and have no effect.

• Otherwise, key press causes one or more core pointer but-
ton events instead of the usual key press. If  count is  0 ,
key press generates a single  ButtonPress event; if  count
is greater than  0 , key press generates  count pairs of 
ButtonPress and  ButtonRelease events.

• If  count is  0 , key release generates a core pointer  But-
tonRelease which matches the event generated by the cor-
responding key press; if count is non-zero, key release
does not cause a  ButtonRelease event. Key release never
causes a key release event.

SA_LockPtrBtn

button: BUTTON

noLock: BOOL

• If  MouseKeys are not enabled, this action behaves like 
SA_NoAction .

• Otherwise, if the button specified by  useDfltBtn and  but-
ton is not locked, key press causes a  ButtonPress instead
of a key press and locks the button. If the button is already



Key Event Process-
ing in the Server

23

Action Effect
noUnlock: BOOL

useDfltBtn: BOOL

locked or if  noLock is  True , key press is ignored and has
no effect.

• If the corresponding key press was ignored, and if  noUn-
lock is  False , key release generates a  ButtonRelease
event instead of a key release event and unlocks the spec-
ified button. If the corresponding key press locked a but-
ton, key release is ignored and has no effect.

SA_SetPtrDflt

affect: CARD8

value: CARD8

dfltBtnAbs: BOOL

• If  MouseKeys are not enabled, this action behaves like 
SA_NoAction .

• Otherwise, both key press and key release are ignored, but
key press changes the pointer value specified by  affect  to
value , as follows:

• If  which is  SA_AffectDfltBtn ,  value and  dfltBtnAbs spec-
ify the default pointer button used by the various pointer
actions as follow: If  dfltBtnAbs  is True, value specifies the
button to be used, otherwise,  value specifies the amount
to be added to the current default button. In either case, il-
legal button choices are wrapped back into range.

SA_ISOLock

dfltIsGroup:  False

mods: MOD_DEF

useModMap: BOOL

noLock: BOOL

noUnlock: BOOL

noAffectMods:
BOOL

noAffectGrp: BOOL

noAffectPtr: BOOL

noAffectCtrls:
BOOL

or

dfltIsGroup:  True

group: INT8

groupAbsolute:
BOOL

noAffectMods:
BOOL

• If  dfltIsGroup is  True , key press sets the base group
specified by  groupAbsolute and  group . Otherwise, key
press sets the action modifiers in the keyboard’s base
modifiers.

• Key release clears the base modifiers or group that were
set by the key press; it may have additional effects if no
other appropriate actions occur simultaneously with the 
SA_ISOLock operation.

• If  noAffectMods is  False , any  SA_SetMods or 
SA_LatchMods actions that occur simultaneously with the 
ISOLock action are treated as  SA_LockMods instead.

• If  noAffectGrp is  False , any  SA_SetGroup or 
SA_LatchGroup actions that occur simultaneously with this
action are treated as  SA_LockGroup actions instead.

• If  noAffectPtr is  False ,  SA_PtrBtn actions that occur si-
multaneously with the  SA_ISOLock action are treated as 
SA_LockPtrBtn actions instead.

• If  noAffectCtrls is  False , any  SA_SetControls actions
that occur simultaneously with the  SA_ISOLock action are
treated as  SA_LockControls actions instead.

• If no other actions were transformed by the  SA_ISOLock
action, key release locks the group or modifiers specified
by the action arguments.



Key Event Process-
ing in the Server

24

Action Effect
noAffectGrp: BOOL

noAffectPtr: BOOL

noAffectCtrls:
BOOL
SA_TerminateServer• Key press terminates the server. Key release is ignored.

• This action is optional; servers are free to ignore it. If ig-
nored, it behaves like  SA_NoAction .

SA_SwitchScreen

num: INT8

switchApp: BOOL

screenAbs: BOOL

• If the server supports this action and multiple screens
or displays (either virtual or real), this action changes to
the active screen indicated by  num and  screenAbs . If 
screenAbs is  True , num specifies the index of the new
screen; otherwise, num specifies an offset from the cur-
rent screen to the new screen.

• If  switchApp is  False , it should switch to another screen
on the same server. Otherwise it should switch to another
X server or application which shares the same physical dis-
play.

• This action is optional; servers are free to ignore the
action or any of its flags if they do not support the re-
quested behavior. If the action is ignored, it behaves like 
SA_NoAction , otherwise neither key press nor release
generate an event.

SA_SetControls

controls:
KB_BOOLCTRLMASK

• Key press enables any boolean controls that are specified
in  controls and not already enabled at the time of the key
press. Key release disables any controls that were enabled
by the corresponding key press. This action can cause  Xk-
bControlsNotify events.

SA_LockControls

controls:
KB_BOOLCTRLMASK

noLock: BOOL

noUnlock: BOOL

• If  noLock is  False , key press locks and enables any con-
trols that are specified in  controls and not already locked
at the time of the key press.

If  noUnlock is  False , key release unlocks and disables
any controls that are specified in  controls and were not
enabled at the time of the corresponding key press.

SA_ActionMessage
: pressMsg: BOOL

releaseMsg: BOOL

genEvent: BOOL

message: STRING

• if  pressMsg is  True , key press generates an  XkbAction-
Message event which reports the keycode, event type and
the contents of  message .

• If  releaseMsg is  True , key release generates an  XkbAc-
tionMessage event which reports the keycode, event type
and contents of  message .

• If  genEvent is  True , both press and release generate key
press and key release events, regardless of whether they
also cause an  XkbActionMessage .



Key Event Process-
ing in the Server

25

Action Effect
SA_RedirectKey

newKey: KEYCODE

modsMask: KEY-
MASK

mods: KEYMASK

vmodsMask:
CARD16

vmods: CARD16

• Key press causes a key press event for the key specified
by  newKey instead of for the actual key. The state report-
ed in this event reports of the current effective modifiers
changed as follow: Any real modifiers specified in  mods-
Mask are set to corresponding values from  mods . Any
real modifiers bound to the virtual modifiers specified in 
vmodsMask are either set or cleared, depending on the
corresponding value in  vmods . If the real and virtual
modifier definitions specify conflicting values for a single
modifier, the real modifier definition has priority.

• Key release causes a key release event for the key speci-
fied by  newKey ; the state field for this event consists of
the effective keyboard modifiers at the time of the release,
changed as described above.

• The  SA_RedirectKey action normally redirects to another
key on the same device as the key or button which caused
the event, unless that device does not belong to the input
extension KEYCLASS, in which case this action causes an
event on the core keyboard device.

SA_DeviceBtn

count: CARD8

button: BUTTON

device: CARD8

• The  device field specifies the ID of an extension device;
the  button field specifies the index of a button on that
device. If the button specified by this action is logically
down, the key press and corresponding release are ig-
nored and have no effect. If the device or button spec-
ified by this action are illegal, this action behaves like 
SA_NoAction .

• Otherwise, key press causes one or more input extension
device button events instead of the usual key press event.
If  count is  0 , key press generates a single  DeviceButton-
Press event; if  count is greater than  0 , key press gener-
ates  count pairs of  DeviceButtonPress and  DeviceButton-
Release events.

• If  count is  0 , key release generates an input extension 
DeviceButtonRelease which matches the event generated
by the corresponding key press; if count is non-zero, key
release does not cause a  DeviceButtonRelease event. Key
release never causes a key release event.

SA_LockDeviceBtn

button: BUTTON

device: CARD8

noLock: BOOL

noUnlock: BOOL

• The  device field specifies the ID of an extension device;
the  button field specifies the index of a button on that de-
vice. If the device or button specified by this action are il-
legal, it behaves like  SA_NoAction .

• Otherwise, if the specified button is not locked and if 
noLock is  False , key press causes an input extension 
DeviceButtonPress event instead of a key press event
and locks the button. If the button is already locked or if 
noLock is  True , key press is ignored and has no effect.



Key Event Process-
ing in the Server

26

Action Effect
• If the corresponding key press was ignored, and if  noUn-

lock is  False , key release generates an input extension 
DeviceButtonRelease event instead of a core protocol or
input extension key release event and unlocks the speci-
fied button. If the corresponding key press locked a but-
ton, key release is ignored and has no effect.

SA_DeviceValuator

device : CARD8

val1What :
SA_DVOP

val1 : CARD8

val1Value : INT8

val1Scale : 0...7

val2What : BOOL

val2 : CARD8

val2Value : INT8

val2Scale : 0...7

• The  device field specifies the ID of an extension device; 
val1 and  val2 specify valuators on that device. If  device
is illegal or if neither  val1 nor  val2 specifies a legal valua-
tor, this action behaves like  SA_NoAction .

• If  valn specifies a legal valuator and  valnWhat is not 
SA_IgnoreVal , the specified value is adjusted as specified
by  valnWhat :

• If  valnWhat is  SA_SetValMin ,  valn is set to its minimum
legal value.

• If  valnWhat is  SA_SetValCenter ,  valn is centered (to
(max-min)/2).

• If  valnWhat is  SA_SetValMax ,  valn is set to its maximum
legal value.

• if  valnWhat is  SA_SetValRelative ,

is added to  valn .

• if  valnWhat is  SA_SetValAbsolute ,  valn is set to

.

• Illegal values for  SA_SetValRelative or  SA_SetValAbsolute
are clamped into range.

If  StickyKeys are enabled, all  SA_SetMods and  SA_SetGroup actions act like
SA_LatchMods and  SA_LatchGroup respectively. If the  LatchToLock AccessX op-
tion is set, either action behaves as if both the  SA_ClearLocks and  SA_LatchToLock
flags are set.

Actions which cause an event from another key or from a button on another device
immediately generate the specified event. These actions do not consider the behav-
ior or actions (if any) that are bound to the key or button to which the event is
redirected.

Core events generated by server actions contain the keyboard state that was in
effect at the time the key event occurred; the reported state does not reflect any
changes in state that occur as a result of the actions bound to the key event that
caused them.



Key Event Process-
ing in the Server

27

Events sent to clients that have not issued an  XkbUseExtension request contain a
compatibility state in place of the actual XKB keyboard state. See Effects of XKB on
Core Protocol Events for a description of this compatibility mapping.

Delivering a Key or Button Event to a Client
The window and client that receive core protocol and input extension key or but-
ton events are determined using the focus policy, window hierarchy and passive
grabs as specified by the core protocol and the input extension, with the following
changes:

• A passive grab triggers if the modifier state specified in the grab matches the grab
compatibility state (described in Compatibility Components of Keyboard State).
Clients can choose to use the XKB grab state instead by setting the  GrabsUseXK-
BState per-client flag. This flag affects all passive grabs that are requested by the
client which sets it but does not affect passive grabs that are set by any other
client.

• The state field of events which trigger a passive grab reports the XKB or compat-
ibility grab state in effect at the time the grab is triggered; the state field of the
corresponding release event reports the corresponding grab state in effect when
the key or button is released.

• If the  LookupStateWhenGrabbed per-client flag is set, all key or button events
that occur while a keyboard or pointer grab is active contain the XKB or compat-
ibility lookup state, depending on the value of the  GrabsUseXKBState per-client
flag. If  LookupStateWhenGrabbed is not set, they include the XKB or compatibil-
ity grab state, instead.

• Otherwise, the state field of events that do not trigger a passive grab report is
derived from the XKB effective modifiers and group, as described in Computing
A State Field from an XKB State.

• If a key release event is the result of an autorepeating key that is being held down,
and the client to which the event is reported has requested detectable autorepeat
(see  Detectable Autorepeat), the event is not delivered to the client.

The following section explains the intent of the XKB interactions with core protocol
grabs and the reason that the per-client flags are needed.

XKB Interactions With Core Protocol Grabs
XKB provides the separate lookup and grab states to help work around some diffi-
culties with the way the core protocol specifies passive grabs. Unfortunately, many
clients work around those problems differently, and the way that XKB handles grabs
and reports keyboard state can sometimes interact with those client workarounds
in unexpected and unpleasant ways.

To provide more reasonable behavior for clients that are aware of XKB without
causing problems for clients that are unaware of XKB, this extension provides two
per-client flags that specify the way that XKB and the core protocol should interact.

• The largest problems arise from the fact that an XKB state field encodes an ex-
plicit keyboard group in bits 13-14 (as described in Computing A State Field from



Key Event Process-
ing in the Server

28

an XKB State), while pre-XKB clients use one of the eight keyboard modifiers to
select an alternate keyboard group. To make existing clients behave reasonably,
XKB normally uses the compatibility grab state instead of the XKB grab state to
determine whether or not a passive grab is triggered. XKB-aware clients can set
the  GrabsUseXKBState per-client flag to indicate that they are specifying passive
grabs using an XKB state.

• Some toolkits start an active grab when a passive grab is triggered, in order to
have more control over the conditions under which the grab is terminated. Un-
fortunately, the fact that XKB reports a different state in events that trigger or
terminate grabs means that this grab simulation can fail to terminate the grab
under some conditions. To work around this problem, XKB normally reports the
grab state in all events whenever a grab is active. Clients which do not use active
grabs like this can set the  LookupStateWhenGrabbed per-client flag in order to
receive the same state component whether or not a grab is active.

The  GrabsUseXKBState per-client flag also applies to the state of events sent
while a grab is active. If it is set, events during a grab contain the XKB lookup
or grab state; by default, events during a grab contain the compatibility lookup
or grab state.

The state used to trigger a passive grab is controlled by the setting of the  Grab-
sUseXKBState per-client flag at the time the grab is registered. Changing this flag
does not affect existing passive grabs.



29

Chapter 7. Key Event Processing in the
Client

The XKB  client map for a keyboard is the collection of information a client needs
to interpret key events that come from that keyboard. It contains a global list of
key types , described in Key Types, and an array of  key symbol map s, each of
which describes the symbols bound to one particular key and the rules to be used
to interpret those symbols.

Notation and Terminology
XKB associates a two-dimensional array of symbols with each key. Symbols are ad-
dressed by keyboard group (see  Keyboard State) and shift level, where level is de-
fined as in the ISO9995 standard:

Level One of several states (normally 2 or 3) which govern which graphic charac-
ter is produced when a graphic key is actuated. In certain cases the level
may also affect function keys.

Note that shift level is derived from the modifier state, but not necessarily in the
same way for all keys. For example, the  Shift modifier selects shift level 2 on most
keys, but for keypad keys the modifier bound to  Num_Lock (i.e. the  NumLock
virtual modifier) also selects shift level 2.gray symbols on a key

We use the notation G n L n to specify the position of a symbol on a key or in memory:

Core Symbols

Aa
L1 L2 L1 L2

G1 G2

Xkb Symbols

Aa
L1 L2

G1

G2

Symbols

aG1L1 =
AG1L2 =

G2L1 =
G2L2 =

Physical Key

Sh
ift

 L
ev

el

Group

a
A

The gray characters indicate symbols that are implied or expected but are not ac-
tually engraved on the key.

Note
Unfortunately, the "natural" orientation of symbols on a key and the natural
orientation in memory are reversed from one another, so keyboard group
refers to a column on the key and a row in memory. There’s no real help for
it, but we try to minimize confusion by using "group" and "level" (or "shift
level") to refer to symbols regardless of context.



Key Event Process-
ing in the Client

30

Determining the KeySym Associated with a
Key Event

To look up the symbol associated with an XKB key event, we need to know the group
and shift level that correspond to the event.

Group is reported in bits 13-14 of the state field of the key event, as described in
Computing A State Field from an XKB State. The keyboard group reported in the
event might be out-of-range for any particular key because the number of groups
can vary from key to key. The XKB description of each key contains a  group info field
which is interpreted identically to the global groups wrap control (see Computing
Effective Modifier and Group) and which specifies the interpretation of groups that
are out-of-range for that key.

Once we have determined the group to be used for the event, we have to determine
the shift level. The description of a key includes a  key type for each group of symbols
bound to the key. Given the modifiers from the key event, this key type yields a shift
level and a set of "leftover" modifiers, as described in Key Types below.

Finally, we can use the effective group and the shift level returned by the type of
that group to look up a symbol in a two-dimensional array of symbols associated
with the key.

Key Types
Each entry of a key type’s  map field specifies the shift level that corresponds to
some XKB modifier definition; any combination of modifiers that is not explicitly
listed somewhere in the map yields shift level one. Map entries which specify un-
bound virtual modifiers (see Inactive Modifier Definitions) are not considered; each
entry contains an automatically-updated  active field which indicates whether or
not it should be used.

Each key type includes a few fields that are derived from the contents of the map
and which report some commonly used values so they don’t have to be constantly
recalculated. The  numLevels field contains the highest shift level reported by any
of its map entries; XKB uses  numLevels to insure that the array of symbols bound to
a key is large enough (the number of levels reported by a key type is also referred to
as its width). The  modifiers field reports all real modifiers considered by any of the
map entries for the type. Both  modifiers   and  numLevels are updated automatically
by XKB and neither can be changed explicitly.

Any modifiers specified in  modifiers are normally  consumed (see Transforming the
KeySym Associated with a Key Event), which means that they are not considered
during any of the later stages of event processing. For those rare occasions that a
modifier  should be considered despite having been used to look up a symbol, key
types include an optional  preserve field. If a  preserve list is present, each entry
corresponds to one of the key type’s map entries and lists the modifiers that should
not be consumed if the matching map entry is used to determine shift level.

For example, the following key type implements caps lock as defined by the core
protocol (using the second symbol bound to the key):



Key Event Process-
ing in the Client

31

type "ALPHABETIC" {
 modifiers = Shift+Lock;
 map[Shift]= Level2;
 map[Lock]= Level2;
 map[Shift+Lock]= Level2;
};

The problem with this kind of definition is that we could assign completely unrelated
symbols to the two shift levels, and "Caps Lock" would choose the second symbol.
Another definition for alphabetic keys uses system routines to capitalize the keysym:

type "ALPHABETIC" {
 modifiers= Shift;
 map[Shift]= Level2;
};

When caps lock is applied using this definition, we take the symbol from shift level
one and capitalize it using system-specific capitalization rules. If shift and caps lock
are both set, we take the symbol from shift level two and try to capitalize it, which
usually has no effect.

The following key type implements shift-cancels-caps lock behavior for alphabetic
keys:

type "ALPHABETIC" {
 modifiers = Shift+Lock;
 map[Shift] = Level2;
 preserve[Lock]= Lock;
};

Consider the four possible states that can affect alphabetic keys: no modifiers, shift
alone, caps lock alone or shift and caps lock together. The map contains no explicit
entry for  None (no modifiers), so if no modifiers are set, any group with this type
returns the first keysym. The map entry for  Shift reports  Level2 , so any group
with this type returns the second symbol when  Shift is set. There is no map entry
for  Lock alone, but the type specifies that the  Lock modifier should be preserved
in this case, so  Lock alone returns the first symbol in the group but first applies the
capitalization transformation, yielding the capital form of the symbol. In the final
case, there is no map entry for  Shift+Lock , so it returns the first symbol in the
group; there is no preserve entry, so the  Lock modifier is consumed and the symbol
is not capitalized.

Key Symbol Map

The  key symbol map for a key contains all of the information that a client needs to
process events generated by that key. Each key symbol mapping reports:

• The number of groups of symbols bound to the key ( numGroups ).

• The treatment of out-of-range groups ( groupInfo ).

• The index of the key type to for each  possible group ( kt_index[MaxKbdGroups] ).



Key Event Process-
ing in the Client

32

• The width of the widest type associated with the key ( groupsWidth ).

• The two-dimensional (numGroups  × groupsWidth) array of symbols bound to the
key.

It is legal for a key to have zero groups, in which case it also has zero symbols and
all events from that key yield  NoSymbol . The array of key types is of fixed width
and is large enough to hold key types for the maximum legal number of groups (
MaxKbdGroups , currently four); if a key has fewer than  MaxKbdGroups groups,
the extra key types are reported but ignored. The  groupsWidth field cannot be
explicitly changed; it is updated automatically whenever the symbols or set of types
bound to a key are changed.

If, when looking up a symbol, the effective keyboard group is out-of-range for the
key, the  groupInfo field of the key symbol map specifies the rules for determining
the corresponding legal group as follows:

• If the  RedirectIntoRange flag is set, the two least significant bits of  groupInfo
specify the index of a group to which all illegal groups correspond. If the specified
group is also out of range, all illegal groups map to  Group1 .

• If  ClampIntoRange flag is set, out-of-range groups correspond to the nearest legal
group. Effective groups larger than the highest supported group are mapped to
the highest supported group; effective groups less than  Group1 are mapped to
Group1 . For example, a key with two groups of symbols uses  Group2 type and
symbols if the global effective group is either  Group3 or  Group4 .

• If neither flag is set, group is wrapped into range using integer modulus. For
example, a key with two groups of symbols for which groups wrap uses  Group1
symbols if the global effective group is  Group3 or  Group2 symbols if the global
effective group is  Group4 .

The client map contains an array of key symbol mappings, with one entry for each
key between the minimum and maximum legal keycodes, inclusive. All keycodes
which fall in that range have key symbol mappings, whether or not any key actually
yields that code.

Transforming the KeySym Associated with a
Key Event

Any modifiers that were not used to look up the keysym, or which were explicitly
preserved, might indicate further transformations to be performed on the keysym
or the character string that is derived from it. For example, If the  Lock modifier
is set, the symbol and corresponding string should be capitalized according to the
locale-sensitive capitalization rules specified by the system. If the  Control modifier
is set, the keysym is not affected, but the corresponding character should be con-
verted to a control character as described in Default Symbol Transformations.

This extension specifies the transformations to be applied when the  Control or  Lock
modifiers are active but were not used to determine the keysym to be used:



Key Event Process-
ing in the Client

33

Modifier Transformation
Control Report the control character associated with the symbol.

This extension defines the control characters associated
with the ASCII alphabetic characters (both upper and lower
case) and for a small set of punctuation characters (see De-
fault Symbol Transformations). Applications are free to asso-
ciate control characters with any symbols that are not speci-
fied by this extension.

Lock Capitalize the symbol either according to capitalization rules
appropriate to the application locale or using the capital-
ization rules defined by this extension (see Default Symbol
Transformations).

Interpretation of other modifiers is application dependent.

Note
This definition of capitalization is fundamentally different from the core
protocol’s, which uses the lock modifier to select from the symbols bound to
the key. Consider key 9 in the client map example; the core protocol provides
no way to generate the capital form of either symbol bound to this key. XKB
specifies that we first look up the symbol and then capitalize, so XKB yields
the capital form of the two symbols when caps lock is active.

XKB specifies the behavior of  Lock and  Control , but interpretation of other mod-
ifiers is left to the application.

Client Map Example
Consider a simple, if unlikely, keyboard with the following keys (gray characters
indicate symbols that are implied or expected but are not actually engraved on the
key):

Key:

Keycode: 13

Num
Lock

15

Enter

12

1
End

9

è
ö

8

Q
q @

10

A
a æ

11

?
\

?

ϐ

The core protocol represents this keyboard as a simple array with one row per key
and four columns (the widest key, key 10, determines the width of the entire array).



Key Event Process-
ing in the Client

34

Key G1L1 G1L2 G2L1 G2L2
8 Q NoSymbol at NoSymbol
9 odiaeresis egrave NoSymbol NoSymbol
10 A NoSymbol Æ NoSymbol
11 ssharp question backslash questiondown
12 KP_End KP_1 NoSymbol NoSymbol
13 Num_Lock NoSymbol NoSymbol NoSymbol
14 NoSymbol NoSymbol NoSymbol NoSymbol
15 Return NoSymbol NoSymbol NoSymbol

The row to be used for a given key event is determined by keycode; the column to be
used is determined by the symbols bound to the key, the state of the  Shift and  Lock
Modifiers and the state of the modifiers bound to the  Num_Lock and  Mode_switch
keys as specified by the core protocol.

The XKB description of this keyboard consists of six key symbol maps, each of which
specifies the types and symbols associated with each keyboard group for one key:

Key Group: Type L1 L2
8 G1: ALPHABETIC q Q
G2: ONE_LEVEL @ NoSymbol
9 G1: TWO_LEVEL odiaeresis egrave
10 G1: ALPHABETIC a A
G2: ALPHABETIC ae AE
11 G1: TWO_LEVEL ssharp question
G2: ONE_LEVEL backslash questiondown
12 G1: KEYPAD KP_End KP_1
13 G1: ONE_LEVEL Num_Lock
14 No Groups
15 G1: ONE_LEVEL Return

The keycode reported in a key event determines the row to be used for that event;
the effective keyboard group determines the list of symbols and key type to be used.
The key type determines which symbol is chosen from the list.

Determining the KeySym Associated with a Key Event details the procedure to map
from a key event to a symbol and/or a string.



35

Chapter 8. Symbolic Names
The core protocol does not provide any information to clients other than that actu-
ally used to interpret events. This makes it difficult to write a client which presents
the keyboard to a user in an easy-to-understand way. Such applications have to ex-
amine the vendor string and keycodes to determine the type of keyboard connected
to the server and have to examine keysyms and modifier mappings to determine the
effects of most modifiers (the  Shift ,  Lock and  Control modifiers are defined by
the core protocol but no semantics are implied for any other modifiers).

This extension provides such applications with symbolic names for most compo-
nents of the keyboard extension and a description of the physical layout of the key-
board.

The  keycodes name describes the range and meaning of the keycodes returned by
the keyboard in question; the  keyboard  geometry  name describes the physical
location, size and shape of the various keys on the keyboard. As an example to dis-
tinguish between these two names, consider function keys on PC-compatible key-
boards. Function keys are sometimes above the main keyboard and sometimes to
the left of the main keyboard, but the same keycode is used for the key that is log-
ically  F1 regardless of physical position. Thus, all PC-compatible keyboards might
share a keycodes name but different geometry names.

Note
The keycodes name is intended to be a very general description of the key-
codes returned by a keyboard; A single keycodes name might cover key-
boards with differing numbers of keys provided that the keys that all keys
have the same semantics when present. For example, 101 and 102 key PC
keyboards might use the same name. Applications can use the keyboard
geometry to determine which subset of the named keyboard type is in use.

The  symbols name identifies the symbols bound to the keys. The symbols name is
a human or application-readable description of the intended locale or usage of the
keyboard with these symbols. The  physical symbols name describes the symbols
actually engraved on the keyboard, which might be different than the symbols cur-
rently being used.

The  types name provides some information about the set of key types that can be
associated with the keyboard keys. The  compat name provides some information
about the rules used to bind actions to keys changed using core protocol requests.

The  compat ,  types ,  keycodes ,  symbols and  geometry names typically corre-
spond to the keyboard components from which the current keyboard description
was assembled. These components are stored individually in the server’s database
of keyboard components, described in  The Server Database of Keyboard Compo-
nents, and can be combined to assemble a complete keyboard description.

Each key has a four-byte symbolic name. The key name links keys with similar func-
tions or in similar positions on keyboards that report different scan codes.  Key
aliases allow the keyboard layout designer to assign multiple names to a single key,
to make it easier to refer to keys using either their position  or their "function."

For example, consider the common keyboard customizations:



Symbolic Names

36

• Set the "key to the left of the letter a" to be a control key.

• Change the "caps lock" key, wherever it might be, to a control key.

If we specify key names by position, the first customization is simple but the second
is impossible; if we specify key names by function, the second customization is sim-
ple but the first is impossible. Using key aliases, we can specify both function and
position for "troublesome" keys, and both customizations are straightforward.

Key aliases can be specified both in the symbolic names component and in the key-
board geometry (see Keyboard Geometry). Both sets of aliases are always valid, but
key alias definitions in the keyboard geometry have priority; if both symbolic names
and geometry include aliases, applications should consider the definitions from the
geometry before considering the definitions from the symbolic names section.

XKB provides symbolic names for each of the four keyboard groups, sixteen virtual
modifiers, thirty-two keyboard indicators, and up to  MaxRadioGroups (32) radio
groups.

XKB allows keyboard layout designers or editors to assign names to each key type
and to each of the levels in a key type. For example, the second position on an alpha-
betic key might be called the "Caps" level while the second position on a numeric
keypad key might be called the "Num Lock" level.



37

Chapter 9. Keyboard Indicators
Although the core X protocol supports thirty-two LEDs on a keyboard, it does not
provide any way to link the state of the LEDs and the logical state of the keyboard.
For example, most keyboards have a "Caps Lock" LED, but X does not provide any
standard way to make the LED automatically follow the logical state of the modifier
bound to the  Caps Lock key.

The core protocol also gives no way to determine which bits in the  led_mask field
of the keyboard state map to the particular LEDs on the keyboard. For example, X
does not provide a method for a client to determine which bit to set in the  led_mask
to turn on the "Scroll Lock" LED, or even if the keyboard has a "Scroll Lock" LED.

Most X servers implement some kind of automatic behavior for one or more of the
keyboard LEDs, but the details of that automatic behavior are implementation-spe-
cific and can be difficult or impossible to control.

XKB provides indicator names and programmable indicators to help solve these
problems. Using XKB, clients can determine the names of the various indicators,
determine and control the way that the individual indicators should be updated
to reflect keyboard changes, and determine which of the 32 keyboard indicators
reported by the protocol are actually present on the keyboard. Clients may also
request immediate notification of changes to the state of any subset of the keyboard
indicators, which makes it straightforward to provide an on-screen "virtual" LED
panel.

Global Information About Indicators
XKB provides only two pieces of information about the indicators as a group.

The  physical indicators mask reports which of the 32 logical keyboard indicators
supported by the core protocol and XKB corresponds to some actual indicator on the
keyboard itself. Because the physical indicators mask describes a physical charac-
teristic of the keyboard, it cannot be directly changed under program control. It is
possible, however, for the set of physical indicators to be change if a new keyboard is
attached or if a completely new keyboard description is loaded by the  XkbGetKey-
boardByName request (see Using the Server’s Database of Keyboard Components).

The  indicator state mask reports the current state of the 32 logical keyboard indi-
cators. This field and the core protocol indicator state (as reported by the  led-mask
field of the core protocol  GetKeyboardControl request) are always identical.

Per-Indicator Information
Each of the thirty-two keyboard indicators has a symbolic name, of type ATOM. The
XkbGetNames request reports the symbolic names for all keyboard components,
including the indicators. Use the  XkbSetNames request to change symbolic names.
Both requests are described in Querying and Changing Symbolic Names.

Indicator Maps
XKB also provides an  indicator map for each of the thirty-two keyboard indicators;
an indicator map specifies:



Keyboard Indicators

38

• The conditions under which the keyboard modifier state affects the indicator.

• The conditions under which the keyboard group state affects the indicator.

• The conditions under which the state of the boolean controls affects the indicator.

• The effect (if any) of attempts to explicitly change the state of the indicator using
the core protocol  SetKeyboardControl request.

If  IM_NoAutomatic is set in the  flags field of an indicator map, that indicator never
changes in response to changes in keyboard state or controls, regardless of the
values for the other fields of the indicator map. If  IM_NoAutomatic is not set in
flags , the other fields of the indicator map specify the automatic changes to the
indicator in response to changes in the keyboard state or controls.

The  which_groups and the  groups fields of an indicator map determine how the
keyboard group state affects the corresponding indicator. The  which_groups field
controls the interpretation of  groups and may contain any one of the following
values:

Value Interpretation of the Groups Field
IM_UseNone The  groups field and the current keyboard group state are

ignored.
IM_UseBase If  groups is non-zero, the indicator is lit whenever the base

keyboard group is non-zero. If  groups is zero, the indicator
is lit whenever the base keyboard group is zero.

IM_UseLatched If  groups is non-zero, the indicator is lit whenever the
latched keyboard group is non-zero. If  groups is zero, the in-
dicator is lit whenever the latched keyboard group is zero.

IM_UseLocked The  groups field is interpreted as a mask. The indicator is lit
when the current locked keyboard group matches one of the
bits that are set in  groups .

IM_UseEffective The  groups field is interpreted as a mask. The indicator is lit
when the current effective keyboard group matches one of
the bits that are set in  groups .

The  which_mods and  mods fields of an indicator map determine how the state of
the keyboard modifiers affect the corresponding indicator. The  mods field is an XKB
modifier definition, as described in Modifier Definitions, which can specify both real
and virtual modifiers. The mods field takes effect even if some or all of the virtual
indicators specified in  mods are unbound.

The  which_mods field can specify one or more components of the XKB keyboard
state. The corresponding indicator is lit whenever any of the real modifiers specified
in the  mask field of the  mods modifier definition are also set in any of the current
keyboard state components specified by the  which_mods . The  which_mods field
may have any combination of the following values:



Keyboard Indicators

39

Value Keyboard State Component To Be Considered
IM_UseBase Base modifier state
IM_UseLatched Latched modifier state
IM_UseLocked Locked modifier state
IM_UseEffective Effective modifier state
IM_UseCompat Modifier compatibility state

The  controls field specifies a subset of the boolean keyboard controls (see "Boolean"
Controls and The EnabledControls Control). The indicator is lit whenever any of the
boolean controls specified in  controls are enabled.

An indicator is lit whenever any of the conditions specified by its indicator map are
met, unless overridden by the  IM_NoAutomatic flag (described above) or an explicit
indicator change (described below).

Effects of Explicit Changes on Indicators

If the  IM_NoExplicit flag is set in an indicator map, attempts to change the state
of the indicator are ignored.

If both  IM_NoExplicit and  IM_NoAutomatic are both absent from an indicator map,
requests to change the state of the indicator are honored but might be immediately
superseded by automatic changes to the indicator state which reflect changes to
keyboard state or controls.

If the  IM_LEDDrivesKB flag is set and the  IM_NoExplicit flag is not, the keyboard
state and controls are changed to reflect the other fields of the indicator map, as
described in the remainder of this section. Attempts to explicitly change the value
of an indicator for which  IM_LEDDrivesKB is absent or for which  IM_NoExplicit is
present do not affect keyboard state or controls.

The effect on group state of changing an explicit indicator which drives the keyboard
is determined by the value of  which_groups and  groups , as follows:



Keyboard Indicators

40

which_groups New State Effect on Keyboard Group
State

IM_UseNone , or  IM_UseBase On or Off No Effect
IM_UseLatched On The  groups field is treated as

a group mask. The keyboard
group latch is changed to the
lowest numbered group spec-
ified in  groups ; if  groups is
empty, the keyboard group
latch is changed to zero.

IM_UseLatched Off The  groups field is treated as
a group mask. If the indicator
is explicitly extinguished, key-
board group latch is changed to
the lowest numbered group not
specified in  groups ; if  groups
is zero, the keyboard group
latch is set to the index of the
highest legal keyboard group.

IM_UseLocked , or 
IM_UseEffective

On If the  groups mask is emp-
ty, group is not changed, oth-
erwise the locked keyboard
group is changed to the lowest
numbered group specified in 
groups .

IM_UseLocked , or 
IM_UseEffective

Off Locked keyboard group is
changed to the lowest num-
bered group that is not speci-
fied in the  groups mask, or to 
Group1 if the  groups mask con-
tains all keyboard groups.

The effect on the keyboard modifiers of changing an explicit indicator which drives
the keyboard is determined by the values that are set in of  which_mods and  mods
, as follows:



Keyboard Indicators

41

Set in
which_mods

New State Effect on Keyboard Modifiers

IM_UseBase On or Off No Effect
IM_UseLatched On Any modifiers specified in the  mask field of 

mods are added to the latched modifiers.
IM_UseLatched Off Any modifiers specified in the  mask field of 

mods are removed from the latched modifiers.
IM_UseLocked
, 
IM_UseCompat
, or 
IM_UseEffective

On Any modifiers specified in the  mask field of 
mods are added to the locked modifiers.

IM_UseLocked Off Any modifiers specified in the  mask field of 
mods are removed from the locked modifiers.

IM_UseCompat
, or 
IM_UseEffective

Off Any modifiers specified in the  mask field of 
mods are removed from both the locked and
latched modifiers.

Lighting an explicit indicator which drives the keyboard also enables all of the
boolean controls specified in the  controls field of its indicator map. Explicitly extin-
guishing such an indicator disables all of the boolean controls specified in  controls .

The effects of changing an indicator which drives the keyboard are cumulative; it
is possible for a single change to affect keyboard group, modifiers and controls
simultaneously.

If an indicator for which both the  IM_LEDDrivesKB and  IM_NoAutomatic flags
are specified is changed, the keyboard changes specified above are applied and the
indicator is changed to reflect the state that was explicitly requested. The indicator
will remain in the new state until it is explicitly changed again.

If the  IM_NoAutomatic flag is not set for an indicator which drives the keyboard,
the changes specified above are applied and the state of the indicator is set to the
values specified by the indicator map. Note that it is possible in this case for the
indicator to end up in a different state than the one that was explicitly requested.
For example, an indicator with  which_mods of  IM_UseBase and  mods of  Shift is
not extinguished if one of the  Shift keys is physically depressed when the request
to extinguish the indicator is processed.



42

Chapter 10. Keyboard Bells
The core protocol provides requests to control the pitch, volume and duration of the
keyboard bell and a request to explicitly sound the bell.

The X Keyboard Extension allows clients to disable the audible bell, attach a sym-
bolic name to a bell request or receive an event when the keyboard bell is rung.

Client Notification of Bells
Clients can ask to receive  XkbBellNotify event when a bell is requested by a client
or generated by the server. Bells can be sounded due to core protocol  Bell requests,
X Input Extension  DeviceBell requests, X Keyboard Extension  XkbBell requests or
for reasons internal to the server such as the XKB  AccessXFeedback control.

Bell events caused by the  XkbBell request or by the  AccessXFeedback control
include an optional window and symbolic name for the bell. If present, the window
makes it possible to provide some kind of visual indication of which window caused
the sound. The symbolic name can report some information about the reason the
bell was generated and makes it possible to generate a distinct sound for each type
of bell.

Disabling Server Generated Bells
The global  AudibleBell boolean control for a keyboard indicates whether bells sent
to that device should normally cause the server to generate a sound. Applications
which provide "sound effects" for the various named bells will typically disable the
server generation of bells to avoid burying the user in sounds.

When the  AudibleBell control is active, all bells caused by core protocol  Bell and
X Input Extension  DeviceBell requests cause the server to generate a sound, as do
all bells generated by the XKB  AccessXFeedback control. Bells requested via the
X kbBell request normally cause a server-generated sound, but clients can ask the
server not to sound the default keyboard bell.

When the  AudibleBell control is disabled, the server generates a sound only for bells
that are generated using the  XkbBell request and which specify forced delivery of
the bell.

Generating Named Bells
The  XkbBell request allows clients to specify a symbolic name which is reported
in the bell events they cause. Bells generated by the  AccessXFeedback control of
this extension also include a symbolic name, but all kinds of feedback cause a single
event even if they sound multiple tones.

The X server is permitted to use symbolic bell names (when present) to generate
sounds other than simple tones, but it is not required to do so.

Aside from those used by the XKB  AccessXFeedback control (see The AccessXFeed-
back Control), this extension does not specify bell names or their interpretation.



Keyboard Bells

43

Generating Optional Named Bells
Under some circumstances, some kind of quiet audio feedback is useful, but a nor-
mal keyboard bell is not. For example, a quiet "launch effect" can be helpful to let
the user know that an application has been started, but a loud bell would simply
be annoying.

To simplify generation of these kinds of effects, the  XkbBell request allows clients
to specify "event only" bells. The X server never generates a normal keyboard bell
for "event only" bells, regardless of the setting of the global  AudibleBell control.

If the X server generates different sounds depending bell name, it is permitted to
generate a sound even for "event only" bells. This field is intended simply to weed
out "normal" keyboard bells.

Forcing a Server Generated Bell
Occasionally, it is useful to force the server to generate a sound. For example, a
client could "filter" server bells, generating sound effects for some but sounding
the normal server bell for others. Such a client needs a way to tell the server that
the requested bell should be generated regardless of the setting of the  AudibleBell
control.

To simplify this process, clients which call the  XkbBell request can specify that
a bell is forced. A forced bell always causes a server generated sound and never
causes a  XkbBellNotify event. Because forced bells do not cause bell notify events,
they have no associated symbolic name or event window.



44

Chapter 11. Keyboard Geometry
The XKB description of a keyboard includes an optional keyboard geometry which
describes the physical appearance of the keyboard. Keyboard geometry describes
the shape, location and color of all keyboard keys or other visible keyboard com-
ponents such as indicators. The information contained in a keyboard geometry is
sufficient to allow a client program to draw an accurate two-dimensional image of
the keyboard.

The components of the keyboard geometry include the following:

• A  symbolic name to help users identify the keyboard.

• The  width and  height of the keyboard, in

. For non-rectangular keyboards, the width and height describe the smallest
bounding-box that encloses the outline of the keyboard.

• A list of up to  MaxColors ( 32 )  color names . A color name is a string whose
interpretation is not specified by XKB. Other geometry components refer to colors
using their indices in this list.

• The base color of the keyboard is the predominant color on the keyboard and is
used as the default color for any components whose color is not explicitly speci-
fied.

• The  label color is the color used to draw the labels on most of the keyboard keys.

• The  label font is a string which describes the font used to draw labels on most
keys; XKB does not specify a format or name space for font names.

• A list of  geometry properties . A geometry property associates an arbitrary string
with an equally arbitrary name. Geometry properties can be used to provide hints
to programs that display images of keyboards, but they are not interpreted by
XKB. No other geometry structures refer to geometry properties.

• A list of  key aliases , as described in Symbolic Names.

• A list of  shapes ; other keyboard components refer to shapes by their index in this
list. A shape consists of a name and one or more closed-polygons called  outlines
. Shapes and outlines are described in detail in Shapes and Outlines.

Unless otherwise specified, geometry measurements are in

units. The origin (0,0) is in the top left corner of the keyboard image. Some geometry
components can be drawn rotated; all such objects rotate about their origin in

increments.



Keyboard Geometry

45

All geometry components include a  priority , which indicates the order in which
overlapping objects should be drawn. Objects are drawn in order from highest pri-
ority ( 0 ) to lowest ( 255 ).

The description of the actual appearance of the keyboard is subdivided into named
sections of related keys and  doodads . A a  doodad describes some visible aspect
of the keyboard that is not a key. A section is a collection of keys and doodads that
are physically close together and logically related.

Shapes and Outlines
An outline is a list of one or more points which describes a single closed-polygon,
as follows:

• A list with a single point describes a rectangle with one corner at the origin of the
shape ( 0 , 0 ) and the opposite corner at the specified point.

• A list of two points describes a rectangle with one corner at the position specified
by the first point and the opposite corner at the position specified by the second
point.

• A list of three or more points describes an arbitrary polygon. If necessary, the
polygon is automatically closed by connecting the last point in the list with the
first.

• A non-zero value for the  cornerRadius field specifies that the corners of the poly-
gon should be drawn as circles with the specified radius.

All points in an outline are specified relative to the origin of the enclosing shape.
Points in an outline may have negative values for the X and Y coordinate.

One outline (usually the first) is the primary outline; a keyboard display application
can generate a simpler but still accurate keyboard image by displaying only the
primary outlines for each shape. Non-rectangular keys must include a rectangular
approximation as one of the outlines associated with the shape; the approximation is
not normally displayed but can be used by very simple keyboard display applications
to generate a recognizable but degraded image of the keyboard.

Sections
Each section has its own coordinate system — if a section is rotated, the coordinates
of any components within the section are interpreted relative to the edges that were
on the top and left before rotation. The components that make up a section include:

• A list of  rows . A row is a list of horizontally or vertically adjacent keys. Horizontal
rows parallel the (pre-rotation) top of the section and vertical rows parallel the
(pre-rotation) left of the section. All keys in a horizontal row share a common top
coordinate; all keys in a vertical row share a left coordinate.

A key description consists of a key  name , a  shape , a key  color , and a  gap . The
key  name should correspond to one of the keys named in the keyboard names
description, the  shape specifies the appearance of the key, and the key  color
specifies the color of the key (not the label on the key). Keys are normally drawn



Keyboard Geometry

46

immediately adjacent to one another from left-to-right (or top-to-bottom) within a
row. The  gap field specifies the distance between a key and its predecessor.

• An optional list of doodads; any type of doodad can be enclosed within a section.
Position and angle of rotation are relative to the origin and angle of rotation of
the sections that contain them. Priority is relative to the other components of the
section, not to the keyboard as a whole.

• An optional list of  overlay keys . Each overlay key definition indicates a key that
can yield multiple scan codes and consists of a field named  under , which specifies
the primary name of the key and a field named  over , which specifies the name
for the key when the overlay keycode is selected. The key specified in  under must
be a member of the section that contains the overlay key definition, while the key
specified in over must not.

Doodads
Doodads can be global to the keyboard or part of a section. Doodads have symbolic
names of arbitrary length. The only doodad name whose interpretation is specified
by XKB is "Edges", which describes the outline of the entire keyboard, if present.

All doodads report their origin in fields named  left and  top . XKB supports five
kinds of doodads:

• An  indicator doodad describes one of the physical keyboard indicators. Indica-
tor doodads specify the shape of the indicator, the indicator color when it is lit (
on_color ) and the indicator color when it is dark ( off_color ).

• An  outline doodad describes some aspect of the keyboard to be drawn as one or
more hollow, closed polygons. Outline doodads specify the shape, color, and angle
of rotation about the doodad origin at which they should be drawn.

• A  solid doodad describes some aspect of the keyboard to be drawn as one or more
filled polygons. Solid doodads specify the shape, color and angle of rotation about
the doodad origin at which they should be drawn.

• A  text doodad describes a text label somewhere on the keyboard. Text doodads
specify the label string, the font and color to use when drawing the label, and the
angle of rotation of the doodad about its origin.

• A  logo doodad is a catch-all, which describes some other visible element of the
keyboard. A logo doodad is essentially an outline doodad with an additional sym-
bolic name that describes the element to be drawn.

If a keyboard display program recognizes the symbolic name, it can draw some-
thing appropriate within the bounding region of the shape specified in the doo-
dad. If the symbolic name does not describe a recognizable image, it should draw
an outline using the specified shape, outline, and angle of rotation.

The XKB extension does not specify the interpretation of logo names.

Keyboard Geometry Example
Consider the following example keyboard:



Keyboard Geometry

47

<ESC> <FK01><FK02><FK03><FK04><FK05><FK06><FK07><FK08>

<AE12>

<TAB>

<CAPS>

<LFSH>

<AE01>

<AD01>

<AC01>

<AB01>

<TLDE>

<AE02>

<AD02>

<AC02>

<AB02>

<INS>

<AE03>

<AD03>

<AC03>

<AB03>

<LEFT>

<AE04>

<AD04>

<AC04>

<AB04>

<RGHT>

<AE05>

<AD05>

<AC05>

<AB05>

<FK09><FK10><FK11><FK12><PRSC><SCLK><PAUS><FK16><FK17>

<AE06>

<AD06>

<AC06>

<AB06>

<NMLK>

<AE07>

<KP7>

<AD07>

<KP4>

<AC07>

<KP1>

<AB07>

<UP>

<KPEQ>

<AE08>

<KP8>

<AD08>

<KP5>

<AC08>

<KP2>

<AB08>

<DOWN>

<KPSL>

<AE09>

<KP9>

<AD09>

<KP6>

<AC09>

<KP3>

<AB09>

<AD11>

<KPMU>

<AE10>

<KPSU>

<AD10>

<KPAD>

<AC10>

<KPEN>

<AB10>

<AD12>

<KPEN>

<AE11>

<BKSL>

<AC11>

<RTSH>

<RAL
T>

<PGU
P>

<PGD
N>

<RCT
L>

<RTR
N>

<KP0
>

<SPC
E>

<LALT>

<HOME>

<END>

<LCTL>

<DELE>

<BKSP>

This keyboard has six sections: The left and right function sections (at the very
top) each have one horizontal row with eight keys. The left and right alphanumeric
sections (the large sections in the middle) each have six vertical rows, with four or
five keys in each row. The left and right editing sections each have three vertical
rows with one to three keys per row; the left editing section is rotated 20° clockwise
about its origin while the right editing section is rotated 20° counterclockwise.

This keyboard has four global doodads: Three small, round indicators and a rectan-
gular logo. The program which generated this image did not recognize the logo, so
it displays an outline with an appropriate shape in its place.



Keyboard Geometry

48

This keyboard has seven shapes: All of the keys in the two function sections use the
"FKEY" shape. Most of the keys in the alphanumeric sections, as well as four of the
keys in each of the editing sections use the "NORM" shape. The keys in the first
column of the left alphanumeric section and the last column of the right alphanu-
meric section all use the "WIDE" shape. Two keys in each of the editing sections use
the "TALL" shape. The "LED" shape describes the three small, round indicators be-
tween the function and alphabetic sections. The "LOGO" shape describes the key-
board logo, and the "EDGE" shape describes the outline of the keyboard as a whole.

The keyboard itself is white, as are all of the keys except for the eight keys that
make up the home row, which use the "grey20" color. It isn’t really visible in this
picture, but the three indicators have an "on" color of "green" and are "green30"
when they are turned off. The keys in the alphanumeric and editing sections all have
a (vertical) gap of 0.5mm; the keys in the two function sections have a (horizontal)
gap of 3mm.

Many of the keys in the right alphanumeric section, and the rightmost key in the
right editing section are drawn with two names in this image. Those are overlay
keys; the bottom key name is the normal name while the overlay name is printed at
the top. For example, the right editing section has a single overlay key entry, which
specifies an  under name of  <SPCE> and an  over name of  <KP0> , which indicates
that the key in question is usually the shift key, but can behave like the  0 key on
the numeric keypad when an overlay is active.



49

Chapter 12. Interactions Between XKB
and the Core Protocol

In addition to providing a number of new requests, XKB replaces or extends existing
core protocol requests and events. Some aspects of the this extension, such as the
ability to lock any key or modifier, are visible even to clients that are unaware of
the XKB extension. Other capabilities, such as control of keysym selection on a per-
key basis, are available only to XKB-aware clients.

Though they do not have access to some advanced extension capabilities, the XKB
extension includes compatibility mechanisms to ensure that non-XKB clients behave
as expected and operate at least as well with an XKB-capable server as they do today.

There are a few significant areas in which XKB state and mapping differences might
be visible to XKB-unaware clients:

• The core protocol uses a modifier to choose between two keyboard groups, while
this extension provides explicit support for multiple groups.

• The order of the symbols associated with any given key by XKB might not match
the ordering demanded by the core protocol.

To minimize problems that might result from these differences, XKB includes ways
to specify the correspondence between core protocol and XKB modifiers and sym-
bols.

This section describes the differences between the core X protocol’s notion of a
keyboard mapping and XKB and explains the ways they can interact.

Group Compatibility Map
As described in Keyboard State, the current keyboard group is reported to XKB-
aware clients in bits 13-14 of the state field of many core protocol events. XKB-
unaware clients cannot interpret those bits, but they might use a keyboard modifier
to implement support for a single keyboard group. To ensure that pre-XKB clients
continue to work when XKB is present, XKB makes it possible to map an XKB state
field, which includes both keyboard group and modifier state into a pre-XKB state
field which contains only modifiers.

A keyboard description includes one  group compatibility map per keyboard group
(four in all). Each such map is a modifier definition (i.e. specifies both real and virtual
modifiers) which specifies the modifiers to be set in the compatibility states when
the corresponding keyboard group is active. Here are a few examples to illustrate
the application of the group compatibility map:



Interactions Between XKB
and the Core Protocol

50

Group GroupCompat
Map

Effective
Modifiers

State for XKB
Clients

Compat-
ibility
Modifiers

State for non-
XKB Clients

1 Group1=None Shift x00xxxxx00000001Shift xxxxxxxx00000001
2 Group2=Mod3 None x01xxxxx00000000Mod3 xxxxxxxx00100000
3 Group3=Mod2 Shift x10xxxxx00000001Shift

+Mod2
xxxxxxxx00010001

4 Group4=None Control x11xxxxx00000100Control xxxxxxxx00000100

Note that non-XKB clients (i.e. clients that are linked with a version of the X library
that does not support XKB) cannot detect the fact that  Group4 is active in this
example because the group compatibility map for  Group4 does not specify any
modifiers.

Setting a Passive Grab for an XKB State
The fact that the  state field of an event might look different when XKB is present can
cause problems with passive grabs. Existing clients specify the modifiers they wish
to grab using the rules defined by the core protocol, which use a normal modifier to
indicate keyboard group. If we used an XKB state field, the high bits of the state field
would be non-zero whenever the keyboard was in any group other than  Group1 ,
and none of the passive grabs set by clients could ever be triggered.

To avoid this behavior, the X server normally uses the compatibility grab state to
decide whether or not to activate a passive grab, even for XKB-aware clients. The
group compatibility map attempts to encode the keyboard group in one or more
modifiers of the compatibility state, so existing clients continue to work exactly the
way they do today. By default, there is no way to directly specify a keyboard group
in a  Grabbed or  GrabButton request, but groups can be specified indirectly by
correctly adjusting the group compatibility map.

Clients that wish to specify an XKB keyboard state, including a separate keyboard
group, can set the  GrabsUseXKBState per-client flag which indicates that all sub-
sequent key and button grabs from the requesting clients are specified using an
XKB state.

Whether the XKB or core state should be used to trigger a grab is determined by
the setting of the  GrabsUseXKBState flag for the requesting client at the time the
key or button is grabbed. There is no way to change the state to be used for a grab
that is already registered or for grabs that are set by some other client.

Changing the Keyboard Mapping Using the
Core Protocol

An XKB keyboard description includes a lot of information that is not present in the
core protocol description of a keyboard. Whenever a client remaps the keyboard
using core protocol requests, XKB examines the map to determine likely default
values for the components that cannot be specified using the core protocol.

Some aspects of this automatic mapping are configurable, and make it fairly easy
to take advantage of many XKB features using existing tools like  xmodmap , but



Interactions Between XKB
and the Core Protocol

51

much of the process of mapping a core keyboard description into an XKB descrip-
tion is designed to preserve compatible behavior for pre-XKB clients and cannot be
redefined by the user. Clients or users that want behavior that cannot be described
using this mapping should use XKB functions directly.

Explicit Keyboard Mapping Components
This automatic remapping might accidentally replace definitions that were explicit-
ly requested by an application, so the XKB keyboard description defines a set of  ex-
plicit components for each key; any components that are listed in the explicit com-
ponents for a key are not changed by the automatic keyboard mapping. The explicit
components field for a key can contain any combination of the following values:

Bit in Explicit
Mask

Protects Against

ExplicitKeyType1 Automatic determination of the key type associated with 
Group1 (see Assigning Types To Groups of Symbols for a
Key)

ExplicitKeyType2 Automatic determination of the key type associated with 
Group2  (see Assigning Types To Groups of Symbols for a
Key)

ExplicitKeyType3 Automatic determination of the key type associated with 
Group3  (see Assigning Types To Groups of Symbols for a
Key).

ExplicitKeyType4 Automatic determination of the key type associated with 
Group4  (see Assigning Types To Groups of Symbols for a
Key).

ExplicitInterpret Application of any of the fields of a symbol interpretation to
the key in question (see Assigning Actions To Keys).

ExplicitAutoRepeat Automatic determination of autorepeat status for the key, as
specified in a symbol interpretation (see Assigning Actions
To Keys).

ExplicitBehavior Automatic assignment of the  KB_Lock behavior to the key,
if the  LockingKey flag is set in a symbol interpretation (see
Assigning Actions To Keys).

ExplicitVModMap Automatic determination of the virtual modifier map for the
key based on the actions assigned to the key and the symbol
interpretations which match the key (see Assigning Actions
To Keys).

Assigning Symbols To Groups
The first step in applying the changes specified by a core protocol  ChangeKey-
boardMapping request to the XKB description of a keyboard is to determine the
number of groups that are defined for the key and the width of each group. The XKB
extension does not change key types in response to core protocol  SetModifierMap-
ping requests, but it does choose key actions as described in Assigning Actions To
Keys.

Determining the number of symbols required for each group is straightforward. If
the key type for some group is not protected by the corresponding  ExplicitKeyType



Interactions Between XKB
and the Core Protocol

52

component, that group has two symbols. If any of the explicit components for the key
include  ExplicitKeyType3 or  ExplicitKeyType4 , the width of the key type currently
assigned to that group determines the number of symbols required for the group in
the core protocol keyboard description. The explicit type components for  Group1
and  Group2 behave similarly, but for compatibility reasons the first two groups
must have at least two symbols in the core protocol symbol mapping. Even if an
explicit type assigned to either of the first two keyboard groups has fewer than two
symbols, XKB requires two symbols for it in the core keyboard description.

If the core protocol request contains fewer symbols than XKB needs, XKB adds
trailing  NoSymbol keysyms to the request to pad it to the required length. If the
core protocol request includes more symbols than it needs, XKB truncates the list
of keysyms to the appropriate length.

Finally, XKB divides the symbols from the (possibly padded or truncated) list of
symbols specified by the core protocol request among the four keyboard groups. In
most cases, the symbols for each group are taken from the core protocol definition
in sequence (i.e. the first pair of symbols is assigned to  Group1 , the second pair
of symbols is assigned to  Group2 , and so forth). If either  Group1 or  Group2
has an explicitly defined key type with a width other than two, it gets a little more
complicated.

Assigning Symbols to Groups One and Two with Explicitly Defined
Key Types

The server assigns the first four symbols from the expanded or truncated map to the
symbol positions G1L1 , G1L2, G2L1 and G2L2, respectively. If the key type assigned
to Group1 reports more than two shift levels, the fifth and following symbols contain
the extra keysyms for  Group2 . If the key type assigned to  Group2 reports more
than two shift levels, the extra symbols follow the symbols (if any) for  Group1 in
the core protocol list of symbols. Symbols for  Group3 and  Group4 are contiguous
and follow the extra symbols, if any, for  Group1 and  Group2 .

For example, consider a key with a key type that returns three shift levels bound
to each group. The symbols bound to the core protocol are assigned in sequence
to the symbol positions:

G1L1, G1L2, G2L1, G2L2, G1L3, G2L3, G3L1, G3L2, G3L3, G4L1, G4L2, and G4L3

For a key with a width one key type on group one, a width two key type on group
two and a width three key type on group three, the symbols bound to the key by the
core protocol are assigned to the following key positions:

G1L1, (G1L2), G2L1, G2L2, G3L1, G3L2, G3L3

Note that the second and fourth symbols (positions  G1L2 and G2L2 ) can never be
generated if the key type associated with the group yields only one symbol. XKB
accepts and ignores them in order to maintain compatibility with the core protocol.

Assigning Types To Groups of Symbols for a Key
Once the symbols specified by  ChangeKeyboardMapping have been assigned to the
four keyboard groups for a key, the X server assigns a key type to each group on



Interactions Between XKB
and the Core Protocol

53

the key from a canonical list of key types. The first four key types in any keyboard
map are reserved for these standard key types:

Key Type Name Standard Definition
ONE_LEVEL Describes keys that have exactly one symbol per group.

Most special or function keys (such as  Return ) are 
ONE_LEVEL keys. Any combination of modifiers yields lev-
el  0 . Index  0 in any key symbol map specifies key type 
ONE_LEVEL .

TWO_LEVEL Describes non-keypad and non-alphabetic keys that have ex-
actly two symbols per group. By default, the  TWO_LEVEL
type yields column  1 if the Shift modifier is set, column  0
otherwise. Index  1 in any key symbol map specifies key type
TWO_LEVEL .

ALPHABETIC Describes alphabetic keys that have exactly two symbols per
group. The default definition of the  ALPHABETIC type pro-
vides shift-cancels-caps behavior as described in Key Types.
Index  2 in any key symbol map specifies key type  ALPHA-
BETIC .

KEYPAD Describes numeric keypad keys with two symbols per group.
Yields column  1 if either of the  Shift modifier or the real
modifier bound to the virtual modifier named  NumLock are
set. Yields column  0 if neither or both modifiers are set. In-
dex  3 in any key symbol map specifies key type  KEYPAD .

Users or applications may change these key types to get different default behavior
(to make shift cancel caps lock, for example) but they must always have the specified
number of symbols per group.

Before assigning key types to groups, the X server expands any alphanumeric sym-
bol definitions as follows:

If the second symbol of either group is  NoSymbol and the first symbol of that group
is an alphabetic keysym for which both lowercase and uppercase forms are defined,
the X server treats the key as if the first element of the group were the lowercase
form of the symbol and the second element were the uppercase form of the symbol.
For the purposes of this expansion, XKB ignores the locale and uses the capitaliza-
tion rules defined in Default Symbol Transformations.

For each keyboard group that does not have an explicit type definition, XKB chooses
a key type from the canonical key types. If the second symbol assigned to a group is
NoSymbol (after alphabetic expansion), the server assigns key type  ONE_LEVEL
. If the group contains the lowercase and uppercase forms of a single glyph (after
alphanumeric expansion), the server assigns key type  ALPHABETIC . If either of
the symbols in a group is a numeric keypad keysym ( KP_* ), the server assigns key
type  KEYPAD . Otherwise, it assigns key type  TWO_LEVEL .

Finally, XKB determines the number of groups of symbols that are actually defined
for the key. Trailing empty groups (i.e. groups that have  NoSymbol in all symbol
positions) are ignored.

There are two last special cases for compatibility with the core protocol: If, after
trailing empty groups are excluded, all of the groups of symbols bound to the key



Interactions Between XKB
and the Core Protocol

54

have identical type and symbol bindings, XKB assigns only one group to the key. If
Group2 is empty and either of  Group3 or  Group4 are not, and if neither  Group1
nor  Group2 have explicit key types, XKB copies the symbols and key type from
Group1 into  Group2 .

Assigning Actions To Keys
Once symbols have been divided into groups and key types chosen for the keys af-
fected by a  ChangeKeyboardMapping request, XKB examines the symbols and mod-
ifier mapping for each changed key and assigns server actions where appropriate.
XKB also automatically assigns server actions to changed keys if the client issues a
core protocol  SetModifierMapping request, and does so optionally in response to
XkbSetMap and  XkbSetCompatMap requests.

The compatibility map includes a list of  symbol interpretations , which XKB com-
pares to each symbol associated with any changed keys in turn, unless the  Explic-
itInterp component is set for a key. Setting the  ExplicitInterp component prevents
the application of symbol interpretations to that key.

If the modifiers and keysym specified in a symbol interpretation match the modifi-
er mapping and a symbol bound to a changed key that is not protected by  Explic-
itInterp , the server applies the symbol interpretation to the symbol position. The
server considers all symbol interpretations which specify an explicit keysym before
considering any that do not. The server uses the first interpretation which matches
the given combination of keysym and modifier mapping; other matching interpre-
tations are ignored.

XKB uses four of the fields of a symbol interpretation to decide if it matches one of
the symbols bound to some changed key:

• The  symbol field is a keysym which matches if it has the value  NoSymbol or is
identical to the symbol in question.

• The modifiers specified in the  mods field are compared to the modifiers affected
by the key in question as indicated by  match .

• The  match field can specify any of the comparisons:  NoneOf ,  AnyOfOrNone ,
AnyOf ,  AllOf or  Exactly .

• The  levelOneOnly setting, indicates that the interpretation in question should
only use the modifiers bound to this key by the modifier mapping if the symbol
that matches in level one of its group. Otherwise, if the symbol being considered
is not in shift level one of its group, the server behaves as if the modifier map for
the key were empty. Note that it is still possible for such an interpretation to apply
to a symbol in a shift level other than one if it matches a key without modifiers;
the  levelOneOnly flag only controls the way that matches are determined and
that the key modifiers are applied when an interpretation does match.

Applying a symbol interpretation can affect several aspects of the XKB definition of
the key symbol mapping to which it is applied:

• The  action specified in the symbol interpretation is bound to the symbol position;
any key event which yields that symbol will also activate the new action.

• If the matching symbol is in position G1L1, the autorepeat behavior of the key is
set from the  autorepeat field of the symbol interpretation. The  ExplicitAutoRe-



Interactions Between XKB
and the Core Protocol

55

peat component protects the autorepeat status of a key from symbol interpreta-
tion initiated changes.

• If the symbol interpretation specifies an associated virtual modifier, that virtual
modifier is added to the virtual modifier map for the key. The  ExplicitVModMap
component guards the virtual modifier map for a key from automatic changes. If
the  levelOneOnly flag is set for the interpretation, and the symbol in question is
not in position G1L1, the virtual modifier map is not updated.

• If the matching symbol is in position G1L1, and the  locking key field is set in the
symbol interpretation, the behavior of the key is changed to  KB_Lock (see Key
Behavior). The  ExplicitBehavior component prevents this change.

If no interpretations match a given symbol or key, the server uses:  SA_NoAction ,
autorepeat enabled, non-locking key. with no virtual modifiers.

If all of the actions computed for a key are  SA_NoAction , the server assigns an
length zero list of actions to the key.

If the core protocol modifier mapping is changed, the server regenerates actions
for the affected keys. The  XkbSetMap and  XkbSetCompatMap requests can also
cause actions for some or all keyboard keys to be recomputed.

Updating Everything Else
Changes to the symbols or modifier mapping can affect the bindings of virtual mod-
ifiers. If any virtual modifiers change, XKB updates all of its data structures to re-
flect the change. Applying virtual modifier changes to the keyboard mapping night
result in changes to types, the group compatibility map, indicator maps, internal
modifiers or ignore locks modifiers.

Effects of XKB on Core Protocol Events
After applying server actions which modify the base, latched or locked modifier
or group state of the keyboard, the X server recomputes the effective group and
state. Several components of the keyboard state are reported to XKB-aware clients
depending on context (see  Keyboard State for a detailed description of each of the
keyboard state components):

• The effective modifier state is reported in  XkbStateNotify events and in response
to  XkbGetState requests.

• The symbol lookup state is reported to XKB-aware clients in the state field of core
protocol and input extension key press and release events that do not activate
passive grabs. Unless the  LookupStateWhenGrabbed per-client flag is set, the
lookup state is only reported in these events when no grabs are active.

• The grab state is reported to XKB-aware clients in the state field of all core pro-
tocol events that report keyboard state, except  KeyPress and  KeyRelease events
that do not activate passive grabs.

• The effective group is the sum of the base, latched and locked keyboard groups.
An out of range effective group is wrapped or truncated into range according to
the setting of the  groupsWrap flag for the keyboard.



Interactions Between XKB
and the Core Protocol

56

The server reports compatibility states to any clients that have not issued a suc-
cessful  XkbUseExtension request. The server computes the compatibility symbol
lookup state and the compatibility effective grab state by applying the compatibility
modifier map to the corresponding computed XKB states.

The compatibility symbol lookup state is reported to non-XKB clients whenever an
XKB-aware client would receive the XKB lookup state. The compatibility grab state
is reported to XKB-unaware clients whenever an XKB client would receive the XKB
grab state.

If the  GrabsUseXKBState per-client option is not set, even XKB-aware clients re-
ceive the compatibility grab state in events that trigger or terminate passive grabs.
If this flag is not set, XKB clients also receive the compatibility grab or lookup state
whenever any keyboard grab is active.

If the  LookupStateWhenGrabbed per-client option is set, clients receive either the
XKB or compatibility lookup state when the keyboard is grabbed, otherwise they
receive either the XKB or compatibility grab state. All non-XKB clients receive the
compatibility form of the appropriate state component; the form that is sent to an
XKB-aware client depends on the setting of the  GrabsUseXKBState option for that
client.

Effect of XKB on Core Protocol Requests
Whenever a client updates the keyboard mapping using a core protocol request, the
server saves the requested core protocol keyboard mapping and reports it to any
clients that issue  GetKeyboardMapping or  GetModifierMapping requests. When-
ever a client updates the keyboard mapping using XKB requests, the server dis-
cards the affected portion of the stored core keyboard description and regenerates
it based on the XKB description of the keyboard.

The symbols associated with the XKB keyboard description appear in the order:

G1L1 G1L2 G2L1 G2L2 G1L3-n G2L3-n G3L* G4L*

If the type associated with  Group1 is width one, the second symbol is  NoSymbol ;
if the type associated with  Group2 is width one, the fourth symbol is  NoSymbol .

If a key has only one group but the keyboard has several, the symbols for  Group1
are repeated for each group. For example, given a keyboard with three groups and a
key with one group that contains the symbols {  a A }, the core protocol description
would contain the six symbols: {  a  A  a  A  a  A }. As a slightly more complicated
example, an XKB key which had a single width three group with the symbols {  a
b  c } would show up in the generated core protocol keyboard description with the
symbols {  a  b  a  b  c  c  a  b  c } for a keyboard with three groups.

The generated modifier mapping for a key contains all of the modifiers affected by
all of the actions associated with the key plus all of the modifiers associated with
any virtual modifiers bound to the key by the virtual modifier mapping. If any of
the actions associated with a key affect any component of the keyboard group, any
modifiers specified in any entry of the group compatibility map (see Group Compat-
ibility Map) are reported in the modifier mask. The  SA_ISOLock action can theo-
retically affect any modifier, but the modifier map of an  SA_ISOLock key contains
only the modifiers or group state that it sets by default.



Interactions Between XKB
and the Core Protocol

57

The server notifies interested clients of keyboard map changes in one of two ways. It
sends  XkbMapNotify to clients that have explicitly selected them and core protocol
MappingNotify events to clients that have not. Once a client requests  XkbMapNotify
events, the server stops sending it  MappingNotify events to inform it of keyboard
changes.

Sending Events to Clients
XKB normally assumes that events sent to clients using the core protocol  SendEvent
request contain a core protocol state, if applicable. If the client which will receive
the event is not XKB-capable, XKB attempts to convert the core state to an XKB
state as follows: if any of the modifiers bound to  Group2 in the group compatibility
map are set in the event state, XKB clears them in the resulting event but sets the
effective group in the event state to  Group2 .

If the  PCF_SendEventUsesXKBState per-client flag is set at the time of the SendE-
vent request, XKB instead assumes that the event reported in the event is an XKB
state. If the receiving client is not XKB-aware, the extension converts the XKB state
(which contains the effective state in bits 13-14) to a core state by applying the
group compatibility map just as it would for actual key events.



58

Chapter 13. The Server Database of
Keyboard Components

The X server maintains a database of keyboard components and common keyboard
mappings. This database contains five kinds of components; when combined, these
five components provide a complete description of a keyboard and its behavior.

The X Keyboard Extension provides requests to list the contents of this database,
to assemble and complete keyboard descriptions by merging the current keyboard
description with the contents of this database, or to replace the current keyboard
description with a complete keyboard description assembled as described below.

Component Names
Component and keymap names have the form " class ( member )" where  class de-
scribes a subset of the available components for a particular type and the optional
member identifies a specific component from that subset. For example, the name
"atlantis(acme)" might specify the symbols used for the atlantis national keyboard
layout by the vendor "acme." Each class has an optional  default member — refer-
ences which specify a class but not a member refer to the default member of the
class, if one exists.

The  class and  member names are both specified using characters from the Latin-1
character set. XKB implementations must accept all alphanumeric characters, mi-
nus (‘-’) and underscore (‘_’) in class or member names, and must not accept paren-
theses, plus, vertical bar, percent sign, asterisk, question mark or white space. The
use of other characters is implementation-dependent.

Partial Components and Combining Multiple
Components

Some of the elements in the server database contain describe only a piece of the
corresponding keyboard component. These  partial components should be combined
with other components of the same type to be useful.

For example, a partial symbols map might describe the differences between a com-
mon ASCII keyboard and some national layout. Such a partial map is not useful on
its own because it does not include those symbols that are the same on both the
ASCII and national layouts (such as function keys). On the other hand, this partial
map can configure  any ASCII keyboard to use a national layout.

Two components can be combined in two ways:

• If the second component  overrides the first, any definitions that are present in
both components are taken from the second.

• If the second component  augments the first, any definitions that are present in
both components are taken from the first.

Applications can use a  component expression to combine multiple components of
some time into a complete description of some aspect of the keyboard. A compo-



The Server Database of
Keyboard Components

59

nent expression is a string which lists the components to be combined separated
by operators which specify the rules for combining them. A complete description is
assembled from the listed components, left to right, as follows:

• If the new elements are being merged with an existing map, the special component
name ‘%’ refers to the unmodified value of the map.

• The ‘+’ operator specifies that the next specified component should override the
current assembled definition.

• The ‘|’ operator specifies that the next specified component should augment the
currently assembled definition.

• If the new elements are being merged with an existing map and the component
expression begins with an operator, a leading ‘%’ is implied.

• If any unknown or illegal characters appear anywhere in the string, the entire
expression is invalid and is ignored.

For example, the component expression "+de" specifies that the default element of
the "de" map should be applied to the current keyboard mapping, overriding any
existing definitions.

A slightly more involved example: the expression "acme(ascii)+de(basic)|iso9995-3"
constructs a German (de) mapping for the ASCII keyboard supplied by the "acme"
vendor. The new definition begins with the symbols for the default ASCII keyboard
for Acme, overrides them with any keys that are defined for the default German key-
board layout and then applies the definitions from the iso9995-3 to any undefined
keys or groups of keys (part three of the iso9995 standard defines a common set
of bindings for the secondary group, but allows national layouts to override those
definitions where necessary).

Component Hints
Each component has a set of flags that provide some additional hints about that
component. XKB provides these hints for clients that present the keyboard database
to users and specifies their interpretation only loosely. Clients can use these hints
to constrain the list of components or to control the way that components are pre-
sented to the user.

Hints for a component are reported with its name. The least significant byte of the
hints field has the same meaning for all five types of keyboard components, and can
contain any combination of the following values:

Flag Meaning
LC_Hidden Indicates a component that should not normally be present-

ed to the user.
LC_Default Indicates a component that is the default member of its

class.
LC_Partial Indicates a partial component.

The interpretation of the most significant byte of the hints field is dependent on the
type of component. The hints defined for each kind of component are listed in the
section below that describes that kind of component.



The Server Database of
Keyboard Components

60

Keyboard Components
The five types of components stored in the server database of keyboard components
correspond to the  symbols ,  geometry ,  keycodes ,  compat and  types symbolic
names associated with a keyboard.

The Keycodes Component
The  keycodes component of a keyboard mapping specifies the range and interpre-
tation of the raw keycodes reported by the device. It sets the  keycodes symbolic
name, the minimum and maximum legal keycodes for the keyboard, and the sym-
bolic name for each key. The keycodes component might also contain aliases for
some keys, symbolic names for some indicators, and a description of which indica-
tors are physically present.

The special keycodes component named "computed" indicates that XKB should as-
sign unused keycodes to any unknown keys referenced by name by any of the other
components. The computed keycodes component is useful primarily when browsing
keymaps because it makes it possible to use the symbols and geometry components
without having to find a set of keycodes that includes keycode definitions for all of
the keys listed in the two components.

XKB defines no hints that are specific to the keycodes component.

The Types Component
The  types component of a keyboard mapping specifies the key types that can be
associated with the various keyboard keys. It affects the  types symbolic name and
the list of types associated with the keyboard (see Key Types). The types component
of a keyboard mapping can also optionally contain real modifier bindings and sym-
bolic names for one or more virtual modifiers.

The special types component named "canonical" always contains the types and de-
finitions listed in Canonical Key Types of this document.

XKB defines no hints that are specific to the types component.

The Compatibility Map Component
The  compatibility map component of a keyboard mapping primarily specifies the
rules used to assign actions to keysyms. It affects the  compat symbolic name, the
symbol compatibility map and the group compatibility map. The compat component
might also specify maps for some indicators and the real modifier bindings and
symbolic names of some virtual modifiers.

XKB defines no hints that are specific to the compatibility map component.

The Symbols Component
The  symbols component of a keyboard mapping specifies primarily the symbols
bound to each keyboard key. It affects the  symbols symbolic name, a key symbol
mapping for each key, they keyboard modifier mapping, and the symbolic names



The Server Database of
Keyboard Components

61

for the keyboard symbol groups. Optionally, the  symbols component can contain
explicit actions and behaviors for some keys, or the real modifier bindings and sym-
bolic names for some virtual modifiers.

XKB defines the following additional hints for the symbols component:

Flag Meaning
LC_AlphanumericKeysIndicates a symbol component that contains bindings pri-

marily for an alphanumeric section of the keyboard.
LC_ModifierKeys Indicates a symbol component that contains bindings pri-

marily for modifier keys.
LC_KeypadKeys Indicates a symbol component that contains bindings pri-

marily for numeric keypad keys.
LC_FunctionKeys Indicates a symbol component that contains bindings pri-

marily for function keys.
LC_AlternateGroup Indicates a symbol component that contains bindings for an

alternate keyboard group.

These hints only apply to partial symbols components; full symbols components are
assumed to specify all of the pieces listed above.

Note
The alphanumeric, modifier, keypad or function keys hints should describe
the primary intent of the component designer and should not simply an ex-
haustive list of the kinds of keys that are affected. For example, national
keyboard layouts affect primarily alphanumeric keys, but many affect a few
modifier keys too; such mappings should set only  LC_AlphanumericKeys
hint. In general, symbol components should set only one of those four flags
(though  LC_AlternateGroup may be combined with any of the other flags).

The Geometry Component
The  geometry component of a keyboard mapping specifies primarily the geometry
of the keyboard. It contains the geometry symbolic name and the keyboard geometry
description. The geometry component might also contain aliases for some keys or
symbolic names for some indicators and might affect the set of indicators that are
physically present. Key aliases defined in the geometry component of a keyboard
mapping override those defined in the keycodes component.

XKB defines no hints that are specific to the geometry component.

Complete Keymaps
The X server also reports a set of fully specified keymaps. The keymaps specified
in this list are usually assembled from the components stored in the rest of the
database and typically represent the most commonly used keymaps for a particular
system.

XKB defines no hints that are specific to complete keymaps.



62

Chapter 14. Replacing the Keyboard
"On-the-Fly"

XKB supports the  XkbNewKeyboardNotify event, which reports a change in key-
board geometry or the range of supported keycodes. The server can generate an
XkbNewKeyboardNotify event when it detects a new keyboard, or in response to
an  XkbGetKeyboardByName request (see Using the Server’s Database of Keyboard
Components) which loads a new keyboard description.

When a client opens a connection to the X server, the server reports the minimum
and maximum keycodes. If the range of supported keycodes is changed, XKB keeps
track of the minimum and maximum keycodes that were reported to each client
and filters out any events that fall outside of that range. Note that these events are
simply ignored; they are not delivered to some other client.

When the server sends an  XkbNewKeyboardNotify event to a client to inform it
of the new keycode range, XKB resets the stored range of legal keycodes to the
keycode range reported in the event. Non-XKB clients and XKB-aware clients that
do not request  XkbNewKeyboardNotify events never receive events from keys that
fall outside of the legal range that XKB maintains for that client.

When a client requests  XkbNewKeyboardNotify events, the server compares the
range of keycodes for the current keyboard to the range of keycodes that are valid
for the client. If they are not the same, the server immediately sends that client an
XkbNewKeyboardNotify event. Even if the "new" keyboard is not new to the server,
it is new to this particular client.

In addition to filtering out-of-range key events, XKB:

• Adjusts core protocol  MappingNotify events to refer only to keys that match the
stored legal range.

• Reports keyboard mappings for keys that match the stored legal range to clients
that issue a core protocol  GetKeyboardMapping request.

• Reports modifier mappings only for keys that match the stored legal range to
clients that issue a core protocol  GetModifierMapping request.

• Restricts the core protocol  ChangeKeyboardMapping and  SetModifierMapping
requests to keys that fall inside the stored legal range.

In short, XKB does everything possible to hide the fact that the range of legal key-
codes has changed from clients non-XKB clients, which cannot be expected to deal
with it. The corresponding XKB events and requests do  not pay attention to the
legal keycode range in the same way because XKB makes it possible for clients to
track changes to the keycode range for a device and respond to them.



63

Chapter 15. Interactions Between XKB
and the X Input Extension

All XKB interactions with the input extension are optional; implementors are free
to restrict the effects of the X Keyboard Extension to the core keyboard device. The
XkbGetExtensionDeviceInfo request reports whether or not an XKB implementation
supports a particular capability for input extension devices.

XKB recognizes the following interactions with the X Input Extension:

Name Capability
XI_Keyboards If set, applications can use all XKB requests and events with

extension keyboards.
XI_ButtonActions If set, clients can assign key actions to buttons, even on in-

put extension devices that are not keyboards.
XI_IndicatorNames If set, clients can assign names to indicators on non-key-

board extension devices.
XI_IndicatorMaps If set, clients can assign indicator maps to indicators on non-

keyboard extension devices.
XI_IndicatorState If set, clients can change the state of device indicators using

the  XkbSetExtensionDeviceInfo request.

Attempts to use an XKB feature with an extension device fail with a  Keyboard error
if the server does not support the  XkbXI_Keyboards optional feature. If a capability
particular capability other than  XkbXI_Keyboards is not supported, attempts to use
it fail silently. The replies for most requests that can use one of the other optional
features include a field to report whether or not the request was successful, but
such requests do not cause an error condition.

Clients can also request an  XkbExtensionDeviceNotify event. This event notifies
interested clients of changes to any of the supported XKB features for extension
devices, or if a request from the client that is receiving the event attempted to use
an unsupported feature.

Using XKB Functions with Input Extension
Keyboards

All XKB requests and events include a device identifier which can refer to an input
extension  KeyClass device, if the implementation allows XKB to control extension
devices. If the implementation does not support XKB manipulation of extension de-
vices, the device identifier is ignored but it must be either  0 or  UseCoreKbd .

Implementations which do not support the use of XKB functions with extension key-
boards must not set the  XkbXI_Keyboards flag. Attempts to use XKB features on
an extension keyboard with an implementation that does not support this feature
yield a  Keyboard error.



Interactions Between XKB
and the X Input Extension

64

Pointer and Device Button Actions
The XKB extension optionally allows clients to assign any key action (see Key Ac-
tions) to core pointer or input extension device buttons. This makes it possible to
control the keyboard or generate keyboard key events from extension devices or
from the core pointer.

XKB implementations are required to support actions for the buttons of the core
pointer device, but support for actions on extension devices is optional. Implemen-
tations which do not support button actions for extension devices must not set the
XkbXI_ButtonActions flag.

Attempts to query or assign button actions with an implementation that does not
support this feature report failure in the request reply and might cause the server
to send an  XkbExtensionDeviceNotify event to the client which issued the request
that failed. Such requests never cause an error condition.

Indicator Maps for Extension Devices
The XKB extension allows applications to assign indicator maps to the indicators
of non-keyboard extension devices. If supported, maps can be assigned to all exten-
sion device indicators, whether they are part of a keyboard feedback or part of an
indicator feedback.

Implementations which do not support indicator maps for extension devices must
not set the  XkbXI_IndicatorMaps flag.

Attempts to query or assign indicator maps with an implementation that does not
support this feature report failure in the request reply and might cause the server
to send an  XkbExtensionDeviceNotify event to the client which issued the request
that failed. Such requests never cause an error condition.

If this feature is supported, the maps for the default indicators on the core key-
board device are visible both as extension indicators and as the core indicators.
Changes made with  XkbSetDeviceInfo are visible via  XkbGetIndicatorMap and
changes made with  XkbSetIndicatorMap are visible via  XkbGetDeviceInfo .

Indicator Names for Extension Devices
The XKB extension allows applications to assign symbolic names to the indicators
of non-keyboard extension devices. If supported, symbolic names can be assigned
to all extension device indicators, whether they are part of a keyboard feedback or
part of an indicator feedback.

Implementations which do not support indicator maps for extension devices must
not set the  XkbXI_IndicatorMaps flag.

Attempts to query or assign indicator names with an implementation that does not
support this feature report failure in the request reply and might cause the server
to send an  XkbExtensionDeviceNotify event to the client which issued the request
that failed. Such requests never cause an error condition.

If this feature is supported, the names for the default indicators on the core key-
board device are visible both as extension indicators and as the core indicators.



Interactions Between XKB
and the X Input Extension

65

Changes made with  XkbSetDeviceInfo are visible via  XkbGetNames and changes
made with  XkbSetNames are visible via  XkbGetDeviceInfo .



66

Chapter 16. XKB Protocol Requests
This document uses the syntactic conventions and common types defined by the
specification of the core X protocol with a number of additions, which are detailed
below.

Errors
If a client attempts to use any other XKB request except  XkbUseExtension before
the extension is properly initialized, XKB reports an  Access error and ignores the
request. XKB is properly initialized once  XkbUseExtension reports that the client
has asked for a supported or compatible version of the extension.

Keyboard Errors
In addition to all of the errors defined by the core protocol, the X Keyboard Extension
defines a single error,  Keyboard , which indicates that some request specified an il-
legal device identifier or an extension device that is not a member of an appropriate.
Unless otherwise noted, any request with an argument of type KB_DEVICESPEC
can cause  Keyboard errors if an illegal or inappropriate device is specified.

When the extension reports a Keyboard error, the most significant byte of the
resource_id is a further refinement of the error cause, as defined in the table below.
The least significant byte contains the device, class, or feedback id as indicated:

high-order byte value meaning low-order byte
XkbErr_BadDevice 0xff device not found device id
XkbErr_BadClass 0xfe device found, but is the

wrong class
class id

XkbErr_BadId 0xfd device found, class ok, but de-
vice does not have a feedback
with the indicated id

feedback id

Side-Effects of Errors
With the exception of  Alloc or  Implementation errors, which might result in an
inconsistent internal state, no XKB request that reports an error condition has any
effect. Unless otherwise stated, requests which update some aspect of the keyboard
description will not apply only part of a request — if part of a request fails, the whole
thing is ignored.

Common Types
The following types are used in the request and event definitions in subsequent
sections:

Name Value
LISTofITEMs The type LISTofITEMs is special. It is similar to the

LISTofVALUE defined by the core protocol, but the el-
ements of a LISTofITEMs are not necessarily all the
same size. The use of a BITMASK to indicate which



XKB Protocol Requests

67

Name Value
members are present is optional for a LISTofITEMs
— it is possible for the set of elements to be derived
from one or more fields of the request.

KB_DEVICESPEC 8 bit unsigned integer,  UseCoreKbd, or UseCorePtr
KB_LEDCLASSSPEC {  KbdFeedbackClass ,  LedFeedbackClass ,  DfltXI-

Class ,  AllXIClasses ,  XINone }
KB_BELLCLASSSPEC {  KbdFeedbackClass ,  BellFeedbackClass ,  DfltXI-

Class ,  AllXIClasses }
KB_IDSPEC 8 bit unsigned integer or  DfltXIId
KB_VMODMASK CARD16, each bit corresponds to a virtual modifier
KB_GROUPMASK {  Group1 ,  Group2 ,  Group3 ,  Group4 }
KB_GROUPSWRAP {  WrapIntoRange ,  ClampIntoRange ,  RedirectIn-

toRange }
KB_GROUPINFO { groupsWrap: KB_GROUPSWRAP redirectGroup: 1…

4, numGroups: 1…4 }
KB_NKNDETAILSMASK {  NKN_Keycodes , NKN_Geometry,  NKN_DeviceID }
KB_STATEMASK KEYBUTMASK or KB_GROUPMASK
KB_STATEPARTMASK {  ModifierState ,  ModifierBase ,  ModifierLatch , 

ModifierLock ,  GroupState ,  GroupBase ,  Grou-
pLatch ,  GroupLock ,  CompatState ,  GrabMods , 
CompatGrabMods ,  LookupMods ,  CompatLookup-
Mods ,  PointerButtons }

KB_BOOLCTRLMASK {  RepeatKeys ,  SlowKeys ,  BounceKeys ,  StickyKeys
,  MouseKeys ,  MouseKeysAccel ,  AccessXKeys ,  Ac-
cessXTimeout ,  AccessXFeedback ,  AudibleBell , 
Overlay1 ,  Overlay2 ,  IgnoreGroupLock }

KB_CONTROLSMASK {  GroupsWrap, InternalMods ,  IgnoreLock-
Mods ,  PerKeyRepeat ,  ControlsEnabled } or
KB_BOOLCTRLMASK

KB_MAPPARTMASK {  KeyTypes ,  KeySyms ,  ModifierMap ,  Explic-
itComponents ,  KeyActions ,  KeyBehaviors ,  Vir-
tualMods ,  VirtualModMap }

KB_CMDETAILMASK {  SymInterp ,  GroupCompat }
KB_NAMEDETAILMASK {  KeycodesName ,  GeometryName ,  SymbolsName

,  PhysSymbolsName ,  TypesName ,  CompatName , 
KeyTypeNames ,  KTLevelNames ,  IndicatorNames , 
KeyNames ,  KeyAliases ,  VirtualModNames ,  Group-
Names ,  RGNames }

KB_AXNDETAILMASK {  AXN_SKPress ,  AXN_SKAccept ,  AXN_SKReject
,  AXN_SKRelease, AXN_BKAccept, AXN_BKReject,
AXN_AXKWarning  }

KB_AXSKOPTSMASK {  AX_TwoKeys ,  AX_LatchToLock }
KB_AXFBOPTSMASK {  AX_SKPressFB ,  AX_SKAcceptFB , 

AX_FeatureFB ,  AX_SlowWarnFB ,  AX_IndicatorFB
,  AX_StickyKeysFB ,  AX_SKReleaseFB ,



XKB Protocol Requests

68

Name Value
AX_SKRejectFB ,  AX_BKRejectFB ,  AX_DumbBellFB
}

KB_AXOPTIONSMASK KB_AXFBOPTSMASK or KB_AXSKOPTSMASK
KB_GBNDETAILMASK {  GBN_Types ,  GBN_CompatMap , 

GBN_ClientSymbols ,  GBN_ServerSymbols
,  GBN_IndicatorMap ,  GBN_KeyNames , 
GBN_Geometry ,  GBN_OtherNames }

KB_BELLDETAILMASK {  XkbAllBellNotifyEvents }
KB_MSGDETAILMASK {  XkbAllActionMessages }
KB_EVENTTYPE {  XkbNewKeyboardNotify ,  XkbMapNotify ,  Xk-

bStateNotify ,  XkbControlsNotify ,  XkbIndicatorS-
tateNotify ,  XkbIndicatorMapNotify ,  XkbNamesNo-
tify ,  XkbCompatMapNotify ,  XkbBellNotify ,  XkbAc-
tionMessage ,  XkbAccessXNotify ,  XkbExtensionDe-
viceNotify }

KB_ACTION [ type: CARD8 data: LISTofCARD8 ]
KB_BEHAVIOR [ type: CARD8, data: CARD 8 ]
KB_MODDEF [ mask: KEYMASK, mods: KEYMASK, vmods:

KB_VMODMASK ]
KB_KTMAPENTRY [ active: BOOL, level: CARD8, mods: KB_MODDEF ]
KB_KTSETMAPENTRY [ level: CARD8, mods: KB_MODDEF ]
KB_KEYTYPE [ mods: KB_MODDEF, numLevels: CARD8,

map: LISTofKB_KTMAPENTRY, preserve:
LISTofKB_MODDEF ]

KB_SETKEYTYPE [ realMods: KEYMASK, vmods: CARD16, numLevels:
CARD8, map: LISTofKB_KTSETMAPENTRY, preserve:
LISTofKB_MODDEF ]

KB_KEYSYMMAP [ ktIndex: LISTofCARD8, width: CARD8 numGroups:
0…4, groupsWrap: KB_GROUPSWRAP, redirectGroup:
0…3, syms: LISTofKEYSYM ]

KB_KEYVMODMAP [ key: KEYCODE, vmods: CARD16 ]
KB_KEYMODMAP [ key: KEYCODE, mods: KEYMASK ]
KB_EXPLICITMASK {  ExplicitKeyType1 ,  ExplicitKeyType2 ,  Explic-

itKeyType3 ,  ExplicitKeyType4 ,  ExplicitInterpret , 
ExplicitAutoRepeat ,  ExplicitBehavior ,  ExplicitV-
ModMap }

KB_INDICATORMASK CARD32, each bit corresponds to an indicator
KB_IMFLAGS {  IM_NoExplicit ,  IM_NoAutomatic , 

IM_LEDDrivesKB }
KB_IMMODSWHICH {  IM_UseNone ,  IM_UseBase ,  IM_UseLatched , 

IM_UseLocked ,  IM_UseEffective ,  IM_UseCompat }
KB_IMGROUPSWHICH {  IM_UseNone ,  IM_UseBase ,  IM_UseLatched , 

IM_UseLocked ,  IM_UseEffective }



XKB Protocol Requests

69

Name Value
KB_INDICATORMAP [ flags: CARD8, mods: KB_MODDEF, whichMods:

groups: KB_GROUPMASK, whichGroups: ctrls:
KB_BOOLCTRLMASK ]

KB_SYMINTERPMATCH {  SI_NoneOf ,  SI_AnyOfOrNone ,  SI_AnyOf , 
SI_AllOf ,  SI_Exactly }

KB_SYMINTERP [ sym: KEYSYM, mods; KEYMASK, levelOneOnly:
BOOL, match: KB_SYMINTERPMATCH, virtualMod:
CARD8, autoRepeat: BOOL, lockingKey: BOOL ]

KB_PCFMASK {  PCF_DetectableAutorepeat , 
PCF_GrabsUseXkbState ,  PCF_AutoResetControls
,  PCF_LookupStateWhenGrabbed , 
PCF_SendEventUsesXKBState }

KB_LCFLAGSMASK {  LC_Hidden ,  LC_Default ,  LC_Partial }
KB_LCSYMFLAGSMASK {  LC_AlphanumericKeys ,  LC_ModifierKeys

,  LC_KeypadKeys ,  LC_FunctionKeys , 
LC_AlternateGroup }

These types are used by the  XkbGetGeometry and  XkbSetGeometry requests:

Name Value
KB_PROPERTY [ name, value: STRING8 ]
KB_POINT [ x, y: CARD16 ]
KB_OUTLINE [ cornerRadius: CARD8, points: LISTofKB_POINT ]
KB_SHAPE [ name: ATOM, outlines: LISTofKB_OUTLINE prima-

ryNdx, approxNdx: CARD8 ]
KB_KEYNAME [ name: LISTofCHAR ]
KB_KEYALIAS [ real: LISTofCHAR, alias: LISTofCHAR ]
KB_KEY [ name: KB_KEYNAME, gap: INT16, shapeNdx, col-

orNdx: CARD8 ]
KB_ROW [ top, left: INT16, vertical: BOOL, keys

LISTofKB_KEY ]
KB_OVERLAYKEY [ over, under: KB_KEYNAME ]
KB_OVERLAYROW [ rowUnder: CARD8, keys: LISTofKB_OVERLAYKEY ]
KB_OVERLAY [ sectionUnder: CARD8, rows:

LISTofKB_OVERLAYROW ]
KB_SHAPEDOODAD [ name: ATOM, priority: CARD8, top, left: INT16,

type: { SolidDoodad, OutlineDoodad }, angle: INT16,
width, height: CARD16 colorNdx, shapeNdx: CARD8 ]

KB_TEXTDOODAD [ name: ATOM, priority: CARD8, top, left: INT16,
angle: INT16, width, height: CARD16, colorNdx:
CARD8, text: STRING8, font: STRING8 ]

KB_INDICATORDOODAD [ name: ATOM, priority: CARD8, top, left: INT16, an-
gle: INT16, shapeNdx, onColorNdx, offColorNdx:
CARD8 ]



XKB Protocol Requests

70

Name Value
KB_LOGODOODAD [ name: ATOM, priority: CARD8, top, left: INT16, an-

gle: INT16, colorNdx, shapeNdx: CARD8, logoName:
STRING8 ]

KB_DOODAD KB_SHAPEDOODAD, or KB_TEXTDOODAD, or
KB_INDICATORDOODAD, or KB_LOGODOODAD

KB_SECTION [ name: ATOM, top, left, angle: INT16, width,
height: CARD16, priority: CARD8, rows:
LISTofKB_ROW, doodads: LISTofKB_DOODAD, over-
lays: LISTofKB_OVERLAY ]

These types are used by  XkbGetDeviceInfo and  XkbSetDeviceInfo :

Name Value
KB_XIDEVFEATUREMASK {  XI_ButtonActions ,  XI_IndicatorNames , 

XI_IndicatorMaps ,  XI_IndicatorState }
KB_XIFEATUREMASK { KB_XIDEVFEATURES or  XI_Keyboards
KB_XIDETAILMASK { KB_XIFEATURES or  XI_UnsupportedFeature  }
KB_DEVICELEDINFO [ ledClass: KB_LEDCLASSSPEC, ledID: KB_IDSPEC,

physIndicators: CARD32, state: CARD32, names:
LISTofATOM, maps: LISTofKB_INDICATORMAP ]

Requests
This section lists all of the requests supported by the X Keyboard Extension, sepa-
rated into categories of related requests.

Initializing the X Keyboard Extension

XkbUseExtension
wantedMajor, wantedMinor: CARD16
supported: BOOL
serverMajor, serverMinor: CARD16

This request enables XKB extension capabilities for the client that issues the re-
quest; the  wantedMajor and  wantedMinor fields specify the extension version in
use by the requesting client. The  supported field is  True if the server supports
a compatible version,  False otherwise. The  serverMajor and  serverMinor fields
return the actual version supported by the server.

Until a client explicitly and successfully requests the XKB extension, an XKB capable
server reports compatibility state in all core protocol events and requests. Once a
client asks for XKB extension semantics by issuing this request, the server reports
the extended XKB keyboard state in some core protocol events and requests, as
described in the overview section of this specification.

Clients should issue an  XkbUseExtension request before using any other extension
requests.



XKB Protocol Requests

71

Selecting Events

XkbSelectEvents
deviceSpec: KB_DEVICESPEC
affectWhich, clear, selectAll: KB_EVENTTYPE
affectMap, map: KB_MAPPARTMASK
details: LISTofITEMs
Errors:  Keyboard ,  Match ,  Value

This request updates the event masks of the keyboard indicated by  deviceSpec for
this client. If  deviceSpec specifies an illegal device, a  Keyboard error results.

The  affectMap and  map fields specify changes to the event details mask for the
XkbMapNotify event. If any map components are set in  map but not in  affectMap
, a  Match error results. Otherwise, any map components that are set in  affectMap
are set or cleared in the map notify details mask, depending on the value of the
corresponding field in  map .

The  affectWhich ,  clear , and  selectAll fields specify changes to any other event
details masks. If any event types are set in both  clear and  selectAll , a  Match
error results; if any event types are specified in either  clear or  selectAll but not
in  affectWhich , a  Match error results. Otherwise, the detail masks for any event
types specified in the  affectWhich field of this request are changed as follows:

• If the event type is also set in  clear , the detail mask for the corresponding event
is set to  0 or  False , as appropriate.

• If the event type is also set in  selectAll , the detail mask for the corresponding
event is set to include all legal detail values for that type.

• If the event type is not set in either  clear or  selectAll , the corresponding ele-
ment of  details lists a set of explicit changes to the details mask for the event,
as described below.

Each entry of the  details list specifies changes to the event details mask for a single
type of event, and consists of an  affects mask and a  values mask. All details that are
specified in  affects are set to the corresponding value from  values ; if any details
are listed in  values but not in  affects , a  Match error results.

The details list contains entries only for those event types, if any, that are listed in
the  affectWhich mask and not in either  clear or  selectAll . When present, the items
of the  details list appear in the following order:

Event Type Legal Details Type
XkbNewKeyboardNotify KB_NKNDETAILSMASK CARD16
XkbStateNotify KB_STATEPARTMASK CARD16
XkbControlsNotify KB_CONTROLMASK CARD32
XkbIndicatorMapNotify KB_INDICATORMASK CARD32
XkbIndicatorStateNotify KB_INDICATORMASK CARD32
XkbNamesNotify KB_NAMEDETAILMASK CARD16



XKB Protocol Requests

72

Event Type Legal Details Type
XkbCompatMapNotify KB_CMDETAILMASK CARD8
XkbBellNotify KB_BELLDETAILMASK CARD8
XkbActionMessage KB_MSGDETAILMASK CARD8
XkbAccessXNotify KB_AXNDETAILMASK CARD16
XkbExtensionDeviceNotify KB_XIDETAILMASK CARD16

Detail masks for event types that are not specified in  affectWhich are not changed.

If any components are specified in a client’s event masks, the X server sends the
client an appropriate event whenever any of those components change state. Unless
explicitly modified, all event detail masks are empty. Events describes all XKB events
and the conditions under which the server generates them.

Generating Named Keyboard Bells

XkbBell
deviceSpec: KB_DEVICESPEC
bellClass: KB_BELLCLASSSPEC
bellID: KB_IDSPEC
percent: INT8
forceSound: BOOL
eventOnly: BOOL
pitch, duration: INT16
name: ATOM
window: WINDOW
Errors:  Keyboard ,  Value ,  Match

This request generates audible bells and/or  XkbBellNotify events for the bell spec-
ified by the  bellClass and  bellID on the device specified by  deviceSpec at the
specified  pitch ,  duration and volume ( percent ). If deviceSpec specifies a device
that does not have a bell or keyboard feedback, a  Keyboard error results.

If both  forceSound and  eventOnly are set, this request yields a  Match error. Oth-
erwise, if  forceSound is  True , this request always generates a sound and never
generates an event; if  eventOnly is  True , it causes an event but no sound. If neither
forceSound nor  eventOnly are  True , this request always generates an event; if the
keyboard’s global  AudibleBell control is enabled, it also generates a sound.

Any bell event generated by this request contains all of the information about the
bell that was requested, including the symbolic name specified by  name and the
event window specified by window. The  name and  window are not directly inter-
preted by XKB, but they must have the value  None or specify a legal Atom or Win-
dow, respectively.  XkbBellNotify events generated in response to core protocol or
X input extension bell requests always report  None as their  name .

The  bellClass ,  bellID , and  percent fields are interpreted as for the X input exten-
sion  DeviceBell request. If  pitch and  duration are zero, the server uses the corre-



XKB Protocol Requests

73

sponding values for that bell from the core protocol or input extension, otherwise
pitch and  duration are interpreted as for the core protocol  ChangeKeyboardCon-
trol request; if they do not include legal values, a  Value error results. The  window
field must specify a legal Window or have the value  None , or a  Value error results.
The name field must specify a legal Atom or have the value  None , or an  Atom
error results. If an error occurs, this request has no other effect (i.e. does not cause
a sound or generate an event).

The  pitch ,  volume , and  duration are suggested values for the bell, but XKB does
not require the server to honor them.

Querying and Changing Keyboard State

XkbGetState
deviceSpec: KB_DEVICESPEC
deviceID: CARD8
mods, baseMods, latchedMods, lockedMods: KEYMASK
group, lockedGroup: KB_GROUP
baseGroup, latchedGroup: INT16
compatState: KEYMASK
grabMods, compatGrabMods: KB_GROUP
lookupMods, compatLookupMods: KEYMASK
ptrBtnState: BUTMASK
Errors:  Keyboard

This request returns a detailed description of the current state of the keyboard
specified by  deviceSpec .

The  deviceID return value contains the input extension identifier for the specified
device, or  0 if the server does not support the input extension.

The  baseMods return value reports the modifiers that are set because one or more
modifier keys are logically down. The  latchedMods and  lockedMods return values
report the modifiers that are latched or locked respectively. The  mods return value
reports the effective modifier mask which results from the current combination of
base, latched and locked modifiers.

The  baseGroup return value reports the group state selected by group shift keys
that are logically down. The  latchedGroup and  lockedGroup return values detail
the effects of latching or locking group shift keys and  XkbLatchLockState requests.
The  group return value reports the effective keyboard group which results from
the current combination of base, latched and locked group values.

The  lookupMods return value reports the lookup modifiers, which consist of the
current effective modifiers minus any server internal modifiers. The  grabMods re-
turn value reports the grab modifiers, which consist of the lookup modifiers minus
any members of the ignore locks mask that are not either latched or logically de-
pressed. Keyboard State describes the lookup modifiers and grab modifiers in more
detail.



XKB Protocol Requests

74

The  ptrBtnState return value reports the current logical state of up to five buttons
on the core pointer device.

The  compatState return value reports the compatibility state that corresponds to
the effective keyboard group and modifier state. The  compatLookupMods and  com-
patGrabMods return values report the core protocol compatibility states that corre-
spond to the XKB lookup and grab state. All of the compatibility states are comput-
ed by applying the group compatibility mapping to the corresponding XKB modifier
and group states, as described in  Group Compatibility Map.

XkbLatchLockState
deviceSpec: KB_DEVICESPEC
affectModLocks, modLocks: KEYMASK
lockGroup: BOOL
groupLock: KB_GROUP
affectModLatches,modLatches: KEYMASK
latchGroup: BOOL
groupLatch: INT16
Errors:  Keyboard ,  Value

This request locks or latches keyboard modifiers and group state for the device
specified by  deviceSpec . If  deviceSpec specifies an illegal or non-keyboard device,
a  Keyboard error occurs.

The locked state of any modifier specified in the  affectModLocks mask is set to the
corresponding value from  modLocks . If  lockGroup is  True , the locked keyboard
group is set to the group specified by  groupLock . If any modifiers are set in  mod-
Locks but not  affectModLocks , a  Match error occurs.

The latched state of any modifier specified in the  affectModLatches mask is set to
the corresponding value from  modLatches . If  latchGroup is  True , the latched
keyboard group is set to the group specified by  groupLatch . if any modifiers are
set in  modLatches but not in  affectModLatches , a  Match error occurs.

If the locked group exceeds the maximum number of groups permitted for the spec-
ified keyboard, it is wrapped or truncated back into range as specified by the global
GroupsWrap   control. No error results from an out-of-range group specification.

After changing the locked and latched modifiers and groups as specified, the X serv-
er recalculates the effective and compatibility keyboard state and generates  XkbS-
tateNotify events as appropriate if any state components have changed. Changing
the keyboard state might also turn indicators on or off which can cause  XkbIndica-
torStateNotify events as well.

If any errors occur, this request has no effect.



XKB Protocol Requests

75

Querying and Changing Keyboard Controls

XkbGetControls
deviceSpec: KB_DEVICESPEC
deviceID: CARD8
mouseKeysDfltBtn: CARD8
numGroups: CARD8
groupsWrap: KB_GROUPINFO
internalMods,ignoreLockMods: KB_MODDEF
repeatDelay,repeatInterval: CARD16
slowKeysDelay, debounceDelay: CARD16
mouseKeysDelay, mouseKeysInterval: CARD16
mouseKeysTimeToMax, mouseKeysMaxSpeed: CARD16
mouseKeysCurve: INT16
accessXOptions: KB_AXOPTIONMASK
accessXTimeout: CARD16
accessXTimeoutOptionsMask, accessXTimeoutOptionValues: CARD16
accessXTimeoutMask,accessXTimeoutValues: CARD32
enabledControls: KB_BOOLCTRLMASK
perKeyRepeat: LISTofCARD8
Errors:  Keyboard

This request returns the current values and status of all controls for the keyboard
specified by  deviceSpec . If  deviceSpec specifies an illegal device a  Keyboard error
results. On return, the  deviceID specifies the identifier of the requested device or
zero if the server does not support the input extension.

The  numGroups return value reports the current number of groups, and  group-
sWrap reports the treatment of out-of-range groups, as described in Key Symbol
Map. The  internalMods and  ignoreLockMods return values report the current val-
ues of the server internal and ignore locks modifiers as described in  Keyboard State.
Both are modifier definitions ( Modifier Definitions) which report the real modifiers,
virtual modifiers, and the resulting combination of real modifiers that are bound to
the corresponding control.

The  repeatDelay ,  repeatInterval ,  slowKeysDelay and  debounceDelay fields report
the current values of the for the autorepeat delay, autorepeat interval, slow keys
delay and bounce keys timeout, respectively. The  mouseKeysDelay ,  mouseKeysIn-
terval ,  mouseKeysTimeToMax and  mouseKeysMaxSpeed and  mouseKeysCurve
return values report the current acceleration applied to mouse keys, as described
in The MouseKeysAccel Control. All times are reported in milliseconds.

The  mouseKeysDfltBtn return value reports the current default pointer button for
which events are synthesized by the mouse keys server actions.

The  accessXOptions return value reports the current settings of the various Ac-
cessX options flags which govern the behavior of the  StickyKeys control and of
AccessX feedback.



XKB Protocol Requests

76

The  accessXTimeout return value reports the length of time, in seconds, that the
keyboard must remain idle before AccessX controls are automatically changed; an
accessXTimeout of  0 indicates that AccessX controls are not automatically changed.
The  accessXTimeoutMask specifies the boolean controls to be changed if the Ac-
cessX timeout expires; the  accessXTimeoutValues field specifies new values for all
of the controls in the timeout mask. The  accessXTimeoutOptionsMask field speci-
fies the AccessX options to be changed when the AccessX timeout expires; the  ac-
cessXTimeoutOptionValues return value reports the values to which they will be set.

The  enabledControls return value reports the current state of all of the global
boolean controls.

The  perKeyRepeat array consists of one bit per key and reports the current au-
torepeat behavior of each keyboard key; if a bit is set in  perKeyRepeat , the corre-
sponding key repeats if it is held down while global keyboard autorepeat is enabled.
This array parallels the core protocol and input extension keyboard controls, if the
autorepeat behavior of a key is changed via the core protocol or input extension,
those changes are automatically reflected in the  perKeyRepeat array.

XkbSetControls
deviceSpec: KB_DEVICESPEC
affectInternalRealMods, internalRealMods: KEYMASK
affectInternalVirtualMods,internalVirtualMods: KB_VMODMASK
affectIgnoreLockRealMods,ignoreLockRealMods: KB_MODMASK
affectIgnoreLockVirtualMods,ignoreLockVirtualMods: KB_VMODMASK
mouseKeysDfltBtn: CARD8
groupsWrap: KB_GROUPINFO
accessXOptions: CARD16
affectEnabledControls: KB_BOOLCTRLMASK
enabledControls: KB_BOOLCTRLMASK
changeControls: KB_CONTROLMASK
repeatDelay,repeatInterval: CARD16
slowKeysDelay, debounceDelay: CARD16
mouseKeysDelay, mouseKeysInterval: CARD16
mouseKeysTimeToMax, mouseKeysMaxSpeed: CARD16
mouseKeysCurve: INT16
accessXTimeout: CARD16
accessXTimeoutMask, accessXTimeoutValues: KB_BOOLCTRLMASK
accessXTimeoutOptionsMask,accessXTimeoutOptionsValues: CARD16
perKeyRepeat: LISTofCARD8
Errors: Keyboard ,  Value

This request sets the keyboard controls indicated in  changeControls for the key-
board specified by  deviceSpec . Each bit that is set in  changeControls indicates
that one or more of the other request fields should be applied, as follows:



XKB Protocol Requests

77

Bit in changeControls Field(s) to be Applied
XkbRepeatKeysMask repeatDelay ,  repeatInterval
XkbSlowKeysMask slowKeysDelay
XkbStickyKeysMask accessXOptions (only the  XkbAX_TwoKeys   and the 

XkbAX_LatchToLock options are affected)
XkbBounceKeysMask debounceDelay
XkbMouseKeysMask mouseKeysDfltBtn
XkbMouseKeysAccelMask mouseKeysDelay ,  mouseKeysInterval , 

mouseKeysCurve ,  mouseKeysTimeToMax , 
mouseKeysMaxSpeed

XkbAccessXKeysMask accessXOptions (all options)
XkbAccessXTimeoutMask accessXTimeout ,  accessXTimeoutMask ,  accessX-

TimeoutValues ,  accessXTimeoutOptionsMask ,  ac-
cessXTimeoutOptionsValues

XkbAccessXFeedback-
Mask

accessXOptions (all options except those affected by
the  XkbStickyKeysMask bit)

XkbGroupsWrapMask groupsWrap
XkbInternalModsMask affectInternalRealMods ,  internalRealMods ,  affec-

tInternalVirtualMods ,  internalVirtualMods
XkbIgnoreLockModsMask affectIgnoreLockRealMods ,  ignoreLockRealMods

,  affectIgnoreLockVirtualMods ,  ignoreLockVir-
tualMods

XkbPerKeyRepeatMask perKeyRepeat
XkbControlsEnabledMask affectEnabledControls ,  enabledControls

If any other bits are set in  changeControls , a  Value error results. If any of the bits
listed above are not set in  changeControls , the corresponding fields must have the
value  0 , or a  Match error results.

If applied,  repeatDelay and  repeatInterval change the autorepeat characteristics
of the keyboard, as described in The RepeatKeys Control. If specified,  repeatDelay
and  repeatInterval must both be non-zero or a  Value error results.

If applied, the  slowKeysDelay field specifies a new delay for the  SlowKeys control,
as defined in The SlowKeys Control. If specified,  slowKeysDelay must be non-zero,
or a  Value error results.

If applied, the  debounceDelay field specifies a new delay for the  BounceKeys con-
trol, as described in The BounceKeys Control. If present, the  debounceDelay must
be non-zero or a  Value error results.

If applied, the  mouseKeysDfltBtn field specifies the core pointer button for which
events are generated whenever a  SA_PtrBtn or  SA_LockPtrBtn key action is ac-
tivated. If present,  mouseKeysDfltBtn must specify a legal button for the core
pointer device, or a  Value error results. Key Actions describes the  SA_PtrBtn and
SA_LockPtrBtn actions in more detail.

If applied, the  mouseKeysDelay ,  mouseKeysInterval ,  mouseKeysTimeToMax ,
mouseKeysMaxSpeed and  mouseKeysCurve fields change the rate at which the



XKB Protocol Requests

78

pointer moves when a key which generates a  SA_MovePtr action is held down. The
MouseKeysAccel Control describes these  MouseKeysAccel parameters in more de-
tail. If defined, the  mouseKeysDelay ,  mouseKeysInterval ,  mouseKeysTimeToMax
and  mouseKeysMaxSpeed values must all be greater than zero, or a  Value error
results. The  mouseKeysCurve value must be greater than  -1000 or a  Value error
results.

If applied, the  accessXOptions field sets the AccessX options, which are described
in detail in The AccessXKeys Control. If either one of  XkbStickyKeysMask and  Xk-
bAccessXFeedbackMask are set in  changeControls and  XkbAccessXKeysMask is
not, only a subset of the AccessX options are changed, as described in the table
above; if both are set or if the  AccessXKeys bit is set in  changeControls , all of
the AccessX options are updated. Any bit in  accessXOptions whose interpretation
is undefined must be zero, or a  Value error results.

If applied, the  accessXTimeout ,  accessXTimeoutMask ,  accessXTimeoutValues
,  accessXTimeoutOptionsMask and  accessXTimeoutOptionsValues fields change
the behavior of the AccessX Timeout control, as described in The AccessXTimeout
Control. The  accessXTimeout must be greater than zero, or a  Value error results.
The  accessXTimeoutMask or  accessXTimeoutValues fields must specify only legal
boolean controls, or a  Value error results. The  accessXTimeoutOptionsMask and
accessXTimeoutOptionsValues fields must contain only legal AccessX options or a
Value error results. If any bits are set in either values field but not in the corre-
sponding mask, a  Match error results.

If present, the  groupsWrap field specifies the treatment of out-of-range keyboard
groups, as described in Key Symbol Map. If the  groupsWrap field does not specify
a legal treatment for out-of-range groups, a  Value error results.

If present, the  affectInternalRealMods field specifies the set of real modifiers to be
changed in the internal modifier definition and the  internalRealMods field speci-
fies new values for those modifiers. The  affectInternalVirtualMods and  internalVir-
tualMods fields update the virtual modifier component of the modifier definition
that describes the internal modifiers in the same way. If any bits are set in either
values field but not in the corresponding mask field, a  Match error results.

If present, the  affectIgnoreLockRealMods field specifies the set of real modifiers
to be changed in the ignore locks modifier definition and the  ignoreLockRealMods
field specifies new values for those modifiers. The  affectIgnoreLockVirtualMods
and  ignoreLockVirtualMods fields update the virtual modifier component of the
ignore locks modifier definition in the same way. If any bits are set in either values
field but not in the corresponding mask field, a  Match error results.

If present, the  perKeyRepeat array specifies the repeat behavior of the individual
keyboard keys. The corresponding core protocol or input extension per-key autore-
peat information is updated to reflect any changes specified in  perKeyRepeat . If
the bits that correspond to any out-of-range keys are set in  perKeyRepeat , a  Value
error results.

If present, the  affectEnabledControls and  enabledControls field enable and disable
global boolean controls. Any controls set in both fields are enabled; any controls
that are set in  affectEnabledControls but not in  enabledControls are disabled.
Controls that are not set in either field are not affected. If any controls are specified
in  enabledControls but not in  affectEnabledControls , a  Match error results. If
either field contains anything except boolean controls, a  Value error results.



XKB Protocol Requests

79

Querying and Changing the Keyboard Mapping

XkbGetMap
deviceSpec: KB_DEVICESPEC
full, partial: KB_MAPPARTMASK
firstType, nTypes: CARD8
firstKeySym, firstKeyAction: KEYCODE
nKeySyms, nKeyActions: CARD8
firstKeyBehavior,firstKeyExplicit: KEYCODE
nKeyBehaviors,nKeyExplicit: CARD8
firstModMapKey,firstVModMapKey: KEYCODE
nModMapKeys, nVModMapKeys: CARD8
virtualMods: KB_VMODMASK
deviceID: CARD8
minKeyCode, maxKeyCode: KEYCODE
present: KB_MAPPARTMASK
firstType, nTypes, nTotalTypes: CARD8
firstKeySym, firstKeyAction: KEYCODE
nKeySyms, nKeyActions: CARD8
totalSyms, totalActions: CARD16
firstKeyBehavior, firstKeyExplicit: KEYCODE
nKeyBehaviors, nKeyExplicit: CARD8
totalKeyBehaviors, totalKeyExplicit: CARD8
firstModMapKey, firstVModMapKey: KEYCODE
nModMapKeys, nVModMapKeys: CARD8
totalModMapKeys, totalVModMapKeys: CARD8
virtualMods: KB_VMODMASK
typesRtrn: LISTofKB_KEYTYPE
symsRtrn: LISTofKB_KEYSYMMAP
actsRtrn: { count: LISTofCARD8, acts: LISTofKB_ACTION }
behaviorsRtrn: LISTofKB_SETBEHAVIOR
vmodsRtrn: LISTofSETofKEYMASK
explicitRtrn: LISTofKB_SETEXPLICIT
modmapRtrn: LISTofKB_KEYMODMAP
vmodMapRtrn: LISTofKB_KEYVMODMAP
Errors:  Keyboard ,  Value ,  Match ,  Alloc

This request returns the indicated components of the server and client maps of the
keyboard specified by  deviceSpec . The  full mask specifies the map components
to be returned in full; the  partial mask specifies the components for which some
subset of the legal elements are to be returned. The server returns a  Match error



XKB Protocol Requests

80

if any component is specified in both  full and  partial , or a  Value error if any
undefined bits are set in either  full or  partial .

Each bit in the  partial mask controls the interpretation of one or more of the other
request fields, as follows:

Bit in the Partial Mask Type Corresponding Field(s)
XkbKeyTypesMask key types firstType ,  nTypes
XkbKeySymsMask keycodes firstKeySym ,  nKeySyms
XkbKeyActionsMask keycodes firstKeyAction ,  nKeyActions
XkbKeyBehaviorsMask keycodes firstKeyBehavior ,  nKeyBe-

haviors
XkbExplicitComponentsMask keycodes firstKeyExplicit ,  nKeyExplic-

it
XkbModifierMapMask keycodes firstModMapKey ,  nModMap-

Keys
XkbVirtualModMapMask keycodes firstVModMapKey , 

nVModMapKeys
XkbVirtualModsMask virtual modifiers virtualMods

If any of these keyboard map components are specified in  partial , the correspond-
ing values must specify a valid subset of the requested components or this request
reports a  Value error. If a keyboard map component is not specified in  partial , the
corresponding fields must contain zeroes, or a  Match error results.

If any error is generated, the request aborts and does not report any values.

On successful return, the  deviceID field reports the X input extension device ID
of the keyboard for which information is being returned, or  0 if the server does
not support the X input extension. The  minKeyCode and  maxKeyCode return val-
ues report the minimum and maximum keycodes that are legal for the keyboard in
question.

The  present return value lists all of the keyboard map components contained in
the reply. The bits in  present affect the interpretation of the other return values
as follows:

If  XkbKeyTypesMask is set in  present :

• firstType and  nTypes specify the types reported in the reply.

• nTotalTypes reports the total number of types defined for the keyboard

• typesRtrn has  nTypes elements of type KB_KEYTYPE which describe consecutive
key types starting from  firstType .

If  XkbKeySymsMask is set in  present :

• firstKeySym and  nKeySyms specify the subset of the keyboard keys for which
symbols will be reported.

• totalSyms reports the total number of keysyms bound to the keys returned in this
reply.



XKB Protocol Requests

81

• symsRtrn has  nKeySyms elements of type KB_KEYSYMMAP, which describe the
symbols bound to consecutive keys starting from  firstKeySym .

If  XkbKeyActionsMask is set in  present :

• firstKeyAction and  nKeyActions specify the subset of the keys for which actions
are reported.

• totalActions reports the total number of actions bound to the returned keys.

• The  count  field of the  actsRtrn return value has  nKeyActions entries of type
CARD8, which specify the number of actions bound to consecutive keys starting
from  firstKeyAction . The  acts field of  actsRtrn has  totalActions elements of
type KB_ACTION and specifies the actions bound to the keys.

If  XkbKeyBehaviorsMask is set in  present :

• The  firstKeyBehavior and  nKeyBehaviors return values report the range of key-
board keys for which behaviors will be reported.

• The  totalKeyBehaviors return value reports the number of keys in the range to
be reported that have non-default values.

• The  behaviorsRtrn value has  totalKeyBehaviors entries of type KB_BEHAVIOR.
Each entry specifies a key in the range for which behaviors are being reported
and the behavior associated with that key. Any keys in that range that do not have
an entry in  behaviorsRtrn have the default behavior,  KB_Default .

If  XkbExplicitComponentsMask is set in  present :

• The  firstKeyExplicit and  nKeyExplicit return values report the range of keyboard
keys for which the set of explicit components is to be returned.

• The  totalKeyExplicit return value reports the number of keys in the range spec-
ified by  firstKeyExplicit and  nKeyExplicit that have one or more explicit compo-
nents.

• The  explicitRtrn return value has  totalKeyExplicit entries of type
KB_KEYEXPLICIT. Each entry specifies the a key in the range for which explicit
components are being reported and the explicit components that are bound to it.
Any keys in that range that do not have an entry in  explicitRtrn have no explicit
components.

If  XkbModifierMapMask is set in  present :

• The  firstModMapKey and  nModMapKeys return values report the range of key-
board keys for which the modifier map is to be reported.

• The  totalModMapKeys return value reports the number of keys in the range spec-
ified by  firstModMapKey and  nModMapKeys that are bound with to one or more
modifiers.

• The  modmapRtrn return value has  totalModMapKeys entries of type
KB_KEYMODMAP. Each entry specifies the a key in the range for which the mod-



XKB Protocol Requests

82

ifier map is being reported and the set of modifiers that are bound to that key. Any
keys in that range that do not have an entry in  modmapRtrn are not associated
with any modifiers by the modifier mapping.

If  XkbVirtualModMapMask is set in  present :

• The  firstVModMapKey and  nVModMapKeys return values report the range of
keyboard keys for which the virtual modifier map is to be reported.

• The  totalVModMapKeys return value reports the number of keys in the range
specified by  firstVModMapKey and  nVModMapKeys that are bound with to or
more virtual modifiers.

• The  vmodmapRtrn return value has  totalVModMapKeys entries of type
KB_KEYVMODMAP. Each entry specifies the a key in the range for which the vir-
tual modifier map is being reported and the set of virtual modifiers that are bound
to that key. Any keys in that range that do not have an entry in  vmodmapRtrn are
not associated with any virtual modifiers,

If  XkbVirtualModsMask is set in  present :

• The  virtualMods return value is a mask with one bit per virtual modifier which
specifies the virtual modifiers for which a set of corresponding real modifiers is
to be returned.

• The  vmodsRtrn return value is a list with one entry of type KEYBUTMASK for
each virtual modifier that is specified in  virtualMods . The entries in  vmodsRtrn
contain the real modifier bindings for the specified virtual modifiers, beginning
with the lowest-numbered virtual modifier that is present in  virtualMods and
proceeding to the highest.

If any of these bits are not set in  present , the corresponding numeric fields all have
the value zero, and the corresponding lists are all of length zero.



XKB Protocol Requests

83

XkbSetMap
deviceSpec: KB_DEVICESPEC
flags: {  SetMapResizeTypes, SetMapRecomputeActions  }
present: KB_MAPPARTMASK
minKeyCode, maxKeyCode: KEYCODE
firstType, nTypes: CARD8
firstKeySym, firstKeyAction: KEYCODE
nKeySyms, nKeyActions: CARD8
totalSyms, totalActions: CARD16
firstKeyBehavior, firstKeyExplicit: KEYCODE
nKeyBehaviors, nKeyExplicit: CARD8
totalKeyBehaviors, totalKeyExplicit: CARD8
firstModMapKey, firstVModMapKey: KEYCODE
nModMapKeys, nVModMapKeys: CARD8
totalModMapKeys, totalVModMapKeys: CARD8
virtualMods: VMODMASK
types: LISTofKB_KEYTYPE
syms: LISTofKB_KEYSYMMAP
actions: { count: LISTofCARD8, actions: LISTofKB_ACTION }
behaviors: LISTofKB_BEHAVIOR
vmods: LISTofKEYMASK
explicit: LISTofKB_EXPLICIT
modmap: LISTofKB_KEYMODMAP
vmodmap: LISTofKB_KEYVMODMAP
Errors:  Keyboard ,  Value ,  Match ,  Alloc

This request changes the indicated parts of the keyboard specified by  deviceSpec
. With XKB, the effect of a key release is independent of the keyboard mapping at
the time of the release, so this request can be processed regardless of the logical
state of the modifier keys at the time of the request.

The  present field specifies the keyboard map components contained to be changed.
The bits in  present affect the interpretation of the other fields as follows:

If  XkbKeyTypesMask is set in  present ,  firstType and  nTypes specify a subset of
the key types bound to the keyboard to be changed or created. The index of the first
key type to be changed must be less than or equal to the unmodified length of the
list of key types or a  Value error results.

If  XkbKeyTypesMask is set in  present and  SetMapResizeTypes is set in  flags
, the server resizes the list of key types bound to the keyboard so that the last
key type specified by this request is the last element in the list. If the list of key
types is shrunk, any existing key definitions that use key types that eliminated are
automatically assigned key types from the list of canonical key types as described
in  Assigning Types To Groups of Symbols for a Key. The list of key types bound
to a keyboard must always include the four canonical types and cannot have more



XKB Protocol Requests

84

than  XkbMaxTypesPerKey (32) types; any attempt to reduce the number of types
bound to a keyboard below four or above  XkbMaxTypesPerKey causes a  Value
error. Symbolic names for newly created key types or levels within a key type are
initialized to  None .

If  XkbKeyTypesMask is set in  present , the types list has  nTypes entries of type
KB_KEYTYPE.Each key type specified in  types must be valid or a  Value error re-
sults. To be valid a key type definition must meet the following criteria:

• The  numLevels for the type must be greater than zero.

• If the key type is  ONE_LEVEL (i.e. index zero in the list of key types),  numLevels
must be one.

• If the key type is  TWO_LEVEL or  KEYPAD , or  ALPHABETIC (i.e. index one, two,
or three in the lest of key types) group width must be two.

Each key type in types must also be internally consistent, or a Match error results.
To be internally consistent, a key type definition must meet the following criteria:

• Each map entry must specify a resulting level that is legal for the type.

• Any real or virtual modifiers specified in any of the map entries must also be
specified in the  mods for the type.

If  XkbKeySymsMask is set in  present ,  firstKeySym and  nKeySyms specify a sub-
set of the keyboard keys to which new symbols are to be assigned and  totalSyms
specifies the total number of symbols to be assigned to those keys. If any of the
keys specified by  firstKeySym and  nKeySyms are not legal, a  Match error results.
The  syms list has  nKeySyms elements of type KB_KEYSYMMAP. Each key in the
resulting key symbol map must be valid and internally consistent or a  Value error
results. To be valid and internally consistent, a key symbol map must meet the fol-
lowing criteria:

• The key type indices must specify legal result key types.

• The number of groups specified by  groupInfo must be in the range  0…4 .

• The  width of the key symbol map must be equal to  numLevels of the widest key
type bound to the key.

• The number of symbols,  nSyms , must equal the number of groups times  width .

If  XkbKeyActionsMask is set in  present ,  firstKeyAction and  nKeyActions specify
a subset of the keyboard keys to which new actions are to be assigned and  totalAc-
tions specifies the total number of actions to be assigned to those keys. If any of
the keys specified by  firstKeyAction and  nKeyActions are not legal, a  Match error
results. The  count field of the  actions return value has  nKeyActions elements of
type CARD8; each element of  count specifies the number of actions bound to the
corresponding key. The  actions list in the  actions field has  totalActions elements of
type KB_ACTION. These actions are assigned to each target key in turn, as specified
by  count . The list of actions assigned to each key must either be empty or have
exactly as many actions as the key has symbols, or a  Match error results.

If  XkbKeyBehaviorsMask is set in  present ,  firstKeyBehavior and  nKeyBehaviors
specify a subset of the keyboard keys to which new behaviors are to be assigned, and



XKB Protocol Requests

85

totalKeyBehaviors specifies the total number of keys in that range to be assigned
non-default behavior. If any of the keys specified by  firstKeyBehavior and  nKey-
Behaviors are not legal, a  Match error results. The  behaviors list has  totalKeyBe-
haviors elements of type KB_BEHAVIOR; each entry of  behaviors specifies a key in
the specified range and a new behavior for that key; any key that falls in the range
specified by  firstBehavior and  nBehaviors for which no behavior is specified in
behaviors is assigned the default behavior,  KB_Default . The new behaviors must be
legal, or a  Value error results. To be legal, the behavior specified in the  XkbSetMap
request must:

• Specify a key in the range indicated by  firstKeyBehavior and  nKeyBehaviors .

• Not specify the  permanent flag; permanent behaviors cannot be set or changed
using the  XkbSetMap request.

• If present, the  KB_Overlay1 and  KB_Overlay2 behaviors must specify a keycode
for the overlay key that is valid for the current keyboard.

• If present, the  KB_RadioGroup behavior must specify a legal index (0…31) for
the radio group to which the key belongs.

Key behaviors that are not recognized by the server are accepted but ignored. At-
tempts to replace a "permanent" behavior are silently ignored; the behavior is not
replaced, but not error is generated and any other components specified in the  Xk-
bSetMap request are updated, as appropriate.

If  XkbVirtualModsMask is set in  present ,  virtualMods is a mask which specifies
the virtual modifiers to be rebound. The  vmods list specifies the real modifiers that
are bound to each of the virtual modifiers specified in  virtualMods , starting from
the lowest numbered virtual modifier and progressing upward. Any virtual modifier
that is not specified in  virtualMods has no corresponding entry in  vmods , so the
vmods list has one entry for each bit that is set in  virtualMods .

If  XkbExplicitComponentsMask is set in  present ,  firstKeyExplicit and  nKeyExplicit
specify a subset of the keyboard keys to which new explicit components are to be
assigned, and  totalKeyExplicit specifies the total number of keys in that range that
have at least one explicit component. The  explicit list has  totalKeyExplicit elements
of type KB_KEYEXPLICIT; each entry of  explicit specifies a key in the specified
range and a new set of explicit components for that key. Any key that falls in the
range specified by  firstKeyExplicit and  nKeyExplicit that is not assigned some value
in  explicit has no explicit components.

If  XkbModifierMapMask is set in  present ,  firstModMapKey and  nModMapKeys
specify a subset of the keyboard keys for which new modifier mappings are to be
assigned, and  totalModMapKeys specifies the total number of keys in that range
to which at least one modifier is bound. The  modmap list has  totalModMapKeys
elements of type KB_KEYMODMAP; each entry of  modmap specifies a key in the
specified range and a new set of modifiers to be associated with that key. Any key
that falls in the range specified by  firstModMapKey and  nModMapKeys that is not
assigned some value in  modmap has no associated modifiers.

If the modifier map is changed by the  XkbSetMap request, any changes are also
reflected in the core protocol modifier mapping. Changes to the core protocol mod-
ifier mapping are reported to XKB-unaware clients via  MappingNotify events and
can be retrieved with the core protocol  GetModifierMapping request.



XKB Protocol Requests

86

If  XkbVirtualModMapMask is set in  present ,  firstVModMapKey and  nVModMap-
Keys specify a subset of the keyboard keys for which new modifier mappings are
to be assigned, and  totalVModMapKeys specifies the total number of keys in that
range to which at least one virtual modifier is bound. The  vmodmap list has  totalV-
ModMapKeys elements of type KB_KEYVMODMAP; each entry of  vmodmap speci-
fies a key in the specified range and a new set of virtual modifiers to be associated
with that key. Any key that falls in the range specified by  firstVModMapKey and
nVModMapKeys that is not assigned some value in  vmodmap has no associated
virtual modifiers.

If the resulting keyboard map is legal, the server updates the keyboard map.
Changes to some keyboard components have indirect effects on others:

If the  XkbSetMapRecomputeActions bit is set in  flags , the actions associated with
any keys for which symbol or modifier bindings were changed by this request are
recomputed as described in Assigning Actions To Keys. Note that actions are re-
computed  after  any actions specified in this request are bound to keys, so the
actions specified in this request might be clobbered by the automatic assignment
of actions to keys.

If the group width of an existing key type is changed, the list of symbols associated
with any keys of the changed type might be resized accordingly. If the list increases
in size, any unspecified new symbols are initialized to  NoSymbol .

If the list of actions associated with a key is not empty, changing the key type of
the key resizes the list. Unspecified new actions are calculated by applying any
keyboard symbol interpretations to the corresponding symbols.

The number of groups global to the keyboard is always equal to the largest number
of groups specified by any of the key symbol maps. Changing the number of groups
in one or more key symbol maps may change the number of groups global to the
keyboard.

Assigning key behavior  KB_RadioGroup to a key adds that key as a member of the
specified radio group. Changing a key with the existing behavior  KB_RadioGroup
removes that key from the group. Changing the elements of a radio group can cause
synthetic key press or key release events if the key to be added or removed is logi-
cally down at the time of the change.

Changing a key with behavior  KB_Lock causes a synthetic key release event if the
key is logically but not physically down at the time of the change.

This request sends an  XkbMapNotify event which reflects both explicit and indirect
map changes to any interested clients. If any symbolic names are changed, it sends
a  XkbNamesNotify reflecting the changes to any interested clients. XKB-unaware
clients are notified of keyboard changes via core protocol  MappingNotify events.

Key press and key release events caused by changing key behavior may cause ad-
ditional  XkbStateNotify or  XkbIndicatorStateNotify events.



XKB Protocol Requests

87

Querying and Changing the Compatibility Map

XkbGetCompatMap
deviceSpec: KB_DEVICESPEC
groups: KB_GROUPMASK
getAllSI: BOOL
firstSI, nSI: CARD16
deviceID: CARD8
groupsRtrn: KB_GROUPMASK
firstSIRtrn, nSIRtrn, nTotalSI: CARD16
siRtrn: LISTofKB_SYMINTERP
groupRtrn: LISTofKB_MODDEF
Errors:  Keyboard ,  Match ,  Alloc

This request returns the listed compatibility map components for the keyboard spec-
ified by  deviceSpec . If  deviceSpec does not specify a valid keyboard device, a
Keyboard Error results. On return,  deviceID reports the input extension identifier
of the keyboard device or  0 if the server does not support the input extension.

If  getAllSI is  False ,  firstSI and  nSI specify a subset of the symbol interpretations
to be returned; if used,  nSI must be greater than  0 and all of the elements specified
by  firstSI and  nSI must be defined or a  Value error results. If  getAllSyms is  True ,
the server ignores  firstSym and  nSyms and returns all of the symbol interpretations
defined for the keyboard.

The  groups mask specifies the groups for which compatibility maps are to be re-
turned.

The  nTotalSI return value reports the total number of symbol interpretations de-
fined for the keyboard. On successful return, the  siRtrn return list contains the
definitions for  nSIRtrn symbol interpretations beginning at  firstSIRtrn .

The  groupRtrn return values report the entries in the group compatibility map for
any groups specified in the  groupsRtrn return value.

XkbSetCompatMap
deviceSpec: KB_DEVICESPEC
recomputeActions: BOOL
truncateSI: BOOL
groups: KB_GROUPMASK
firstSI, nSI: CARD16
si: LISTofKB_SYMINTERPRET
groupMaps: LISTofKB_MODDEF
Errors:  Keyboard ,  Match ,  Value ,  Alloc

This request changes a specified subset of the compatibility map of the keyboard
indicated by  deviceSpec . If  deviceSpec specifies an invalid device, a  Keyboard
error results and nothing is changed.



XKB Protocol Requests

88

The  firstSI and  nSI fields specify a subset of the keyboard symbol interpretations
to be changed. The  si list specifies new values for each of the interpretations in
that range.

The first symbol interpretation to be changed,  firstSI , must be less than or equal to
the unchanged length of the list of symbol interpretations, or a  Value error results.
If the resulting list would be larger than the unchanged list, it server list of symbol
interpretations is automatically increased in size. Otherwise, if  truncateSyms is
True , the server deletes any symbol interpretations after the last element changed
by this request, and reduces the length of the list accordingly.

The  groupMaps fields contain new definitions for a subset of the group compatibil-
ity map;  groups specifies the group compatibility map entries to be updated from
groupMaps .

All changed compatibility maps and symbol interpretations must either ignore
group state or specify a legal range of groups, or a  Value error results.

If the  recomputeActions field is  True , the server regenerates recalculates the
actions bound to all keyboard keys by applying the new symbol interpretations to
the entire key symbol map, as described in Assigning Actions To Keys.

Querying and Changing Indicators

XkbGetIndicatorState
deviceSpec: KB_DEVICESPEC
deviceID: CARD8 state: KB_INDICATORMASK
Errors:  Keyboard

This request reports the current state of the indicators for the keyboard specified
by  deviceSpec . If  deviceSpec does not specify a valid keyboard, a  Keyboard error
results.

On successful return, the  deviceID field reports the input extension identifier of
the keyboard or  0 if the server does not support the input extension. The  state
return value reports the state of each of the thirty-two indicators on the specified
keyboard. The least-significant bit corresponds to indicator 0, the most significant
bit to indicator 31; if a bit is set, the corresponding indicator is lit.

XkbGetIndicatorMap
deviceSpec: KB_DEVICESPEC
which: KB_INDICATORMASK
deviceID: CARD8
which: KB_INDICATORMASK
realIndicators: KB_INDICATORMASK
nIndicators: CARD8
maps: LISTofKB_INDICATORMAP
Errors:  Keyboard ,  Value



XKB Protocol Requests

89

This request returns a subset of the maps for the indicators on the keyboard spec-
ified by  deviceSpec . If  deviceSpec does not specify a valid keyboard device, a
Keyboard error results.

The  which field specifies the subset to be returned; a set bit in the which field
indicates that the map for the corresponding indicator should be returned.

On successful return, the  deviceID field reports the input extension identifier of
the keyboard or  0 if the server does not support the input extension. Any indicators
specified in  realIndicators are actually present on the keyboard; the rest are virtual
indicators. Virtual indicators do not directly cause any visible or audible effect when
they change state, but they do cause  XkbIndicatorStateNotify events.

The  maps return value reports the requested indicator maps. Indicator maps are
described in Indicator Maps

XkbSetIndicatorMap
deviceSpec: KB_DEVICESPEC
which: KB_INDICATORMASK
maps: LISTofKB_INDICATORMAP
Errors:  Keyboard ,  Value

This request changes a subset of the maps on the keyboard specified by  deviceSpec
. If  deviceSpec does not specify a valid keyboard device, a  Keyboard error results.

The  which field specifies the subset to be changed; the  maps field contains the
new definitions.

If successful, the new indicator maps are applied immediately. If any indicators
change state as a result of the new maps, the server generates  XkbIndicatorS-
tateNotify events as appropriate.

XkbGetNamedIndicator
deviceSpec: KB_DEVICESPEC
ledClass: KB_LEDCLASSSPEC
ledID: KB_IDSPEC
indicator: ATOM
deviceID: CARD8
supported: BOOL
indicator: ATOM
found: BOOL
on: BOOL
realIndicator: BOOL
ndx: CARD8
map: KB_INDICATORMAP
Errors:  Keyboard ,  Atom ,  Value

This request returns information about the indicator specified by  ledClass ,  ledID ,
and  indicator on the keyboard specified by  deviceSpec . The  indicator field spec-
ifies the name of the indicator for which information is to be returned.



XKB Protocol Requests

90

If  deviceSpec does not specify a device with indicators, a  Keyboard error results.
If  ledClass does not have the value  DfltXIClass ,  LedFeedbackClass , or  KbdFeed-
backClass , a  Value error results. If  ledID does not have the value  DfltXIId or
specify the identifier of a feedback of the class specified by  ledClass on the device
specified by  deviceSpec , a  Match error results. If  indicator is not a valid ATOM
other than  None , an  Atom error results.

This request is always supported with default class and identifier on the core key-
board device. If the request specifies a device other than the core keyboard device
or a feedback class and identifier other than the defaults, and the server does not
support indicator names or indicator maps for extension devices, the  supported
return value is  False and the values of the other fields in the reply are undefined.
If the client which issued the unsupported request has also selected to do so, it
will also receive an  XkbExtensionDeviceNotify event which reports the attempt to
use an unsupported feature, in this case one or both of  XkbXI_IndicatorMaps or
XkbXI_IndicatorNames .

Otherwise,  supported is  True and the  deviceID field reports the input extension
identifier of the keyboard or  0 if the server does not support the input extension.
The  indicator return value reports the name for which information was requested
and the  found return value is  True if an indicator with the specified name was
found on the device.

If a matching indicator was found:

• The  on return value reports the state of the indicator at the time of the request.

• The  realIndicator return value is  True if the requested indicator is actually
present on the keyboard or  False if it is virtual.

• The  ndx return value reports the index of the indicator in the requested feedback.

• The  map return value reports the indicator map used by to automatically change
the state of the specified indicator in response to changes in keyboard state or
controls.

If no matching indicator is found, the  found return value is  False , and the  on ,
realIndicator ,  ndx , and  map return values are undefined.

XkbSetNamedIndicator
deviceSpec: KB_DEVICESPEC
ledClass: KB_LEDCLASSSPEC
ledID: KB_IDSPEC
indicator: ATOM
setState: BOOL
on: BOOL
setMap: BOOL
createMap: BOOL
map: KB_SETINDICATORMAP
Errors:  Keyboard ,  Atom ,  Access



XKB Protocol Requests

91

This request changes various aspects of the indicator specified by  ledClass ,  ledID
, and  indicator on the keyboard specified by  deviceSpec . The  indicator argument
specifies the name of the indicator to be updated.

If  deviceSpec does not specify a device with indicators, a  Keyboard error results.
If  ledClass does not have the value  DfltXIClass ,  LedFeedbackClass , or  KbdFeed-
backClass , a  Value error results. If  ledID does not have the value  DfltXIId or
specify the identifier of a feedback of the class specified by  ledClass on the device
specified by  deviceSpec , a  Match error results. If  indicator is not a valid ATOM
other than  None , an  Atom error results.

This request is always supported with default class and identifier on the core key-
board device. If the request specifies a device other than the core keyboard device
or a feedback class and identifier other than the defaults, and the server does not
support indicator names or indicator maps for extension devices, the  supported
return value is  False and the values of the other fields in the reply are undefined.
If the client which issued the unsupported request has also selected to do so, it
will also receive an  XkbExtensionDeviceNotify event which reports the attempt to
use an unsupported feature, in this case one or both of  XkbXI_IndicatorMaps and
XkbXI_IndicatorNames .

Otherwise,  supported is  True and the  deviceID field reports the input extension
identifier of the keyboard or  0 if the server does not support the input extension.
The  indicator return value reports the name for which information was requested
and the  found return value is  True if an indicator with the specified name was
found on the device.

If no indicator with the specified name is found on the specified device, and the
createMap field is  True , XKB assigns the specified name to the lowest-numbered
indicator that has no name (i.e. whose name is  None ) and applies the rest of the
fields in the request to the newly named indicator. If no unnamed indicators remain,
this request reports no error and has no effect.

If no matching indicator is found or new indicator assigned this request reports no
error and has no effect. Otherwise, it updates the indicator as follows:

If  setMap  is  True , XKB changes the map for the indicator (see Indicator Maps)
to reflect the values specified in  map .

If  setState is  True , XKB attempts to explicitly change the state of the indicator
to the state specified in  on . The effects of an attempt to explicitly change the
state of an indicator depend on the values in the map for that indicator and are not
guaranteed to succeed.

If this request affects both indicator map and state, it updates the indicator map
before attempting to change its state, so the success of the explicit change depends
on the indicator map values specified in the request.

If this request changes the indicator map, it applies the new map immediately to
determine the appropriate state for the indicator given the new indicator map and
the current state of the keyboard.



XKB Protocol Requests

92

Querying and Changing Symbolic Names
XkbGetNames
deviceSpec: KB_DEVICESPEC
which: KB_NAMEDETAILMASK
deviceID: CARD8 which: KB_NAMESMASK minKeyCode, maxKeyCode: KEY-
CODE nTypes: CARD8 nKTLevels: CARD16 groupNames: KB_GROUPMASK
virtualMods: KB_VMODMASK firstKey: KEYCODE nKeys: CARD8 indica-
tors: KB_INDICATORMASK nRadioGroups, nKeyAliases: CARD8 present:
KB_NAMEDETAILMASK valueList: LISTofITEMs
Errors:  Keyboard ,  Value

This request returns the symbolic names for various components of the keyboard
mapping for the device specified by  deviceSpec . The  which field specifies the
keyboard components for which names are to be returned. If  deviceSpec does not
specify a valid keyboard device, a  Keyboard error results. If any undefined bits in
which are non-zero, a  Value error results.

The  deviceID return value contains the X Input Extension device identifier of the
specified device or  0 if the server does not support the input extension. The  present
and  valueList return values specify the components for which names are being
reported. If a component is specified in  present , the corresponding element is
present in the  valueList , otherwise that component has length  0 . The components
of the  valueList appear in the following order, when present:.

Component Size Type
XkbKeycodesName 1 ATOM
XkbGeometryName 1 ATOM
XkbSymbolsName 1 ATOM
XkbPhysSymbolsName 1 ATOM
XkbTypesName 1 ATOM
XkbCompatName 1 ATOM
XkbKeyTypeNames nTypes LISTofATOM
XkbKTLevelNames nTypes ,  nKTLevels { count: LISTofCARD8,

names: LISTofATOM }
XkbIndicatorNames One per bit set in  indica-

tors
LISTofATOM

XkbVirtualModNames One per bit set in  vir-
tualMods

LISTofATOM

XkbGroupNames One per bit set in  group-
Names

LISTofATOM

XkbKeyNames nKeys LISTofKB_KEYNAME
XkbKeyAliases nKeyAliases LISTofKB_KEYALIAS
XkbRGNames nRadioGroups LISTofATOM

If type names are reported, the  nTypes return value reports the number of types
defined for the keyboard, and the list of key type names in  valueList has  nTypes
elements.



XKB Protocol Requests

93

If key type level names are reported, the list of key type level names in the  valueList
has two parts: The  count array has  nTypes elements, each of which reports the
number of level names reported for the corresponding key type. The  names array
has  nKTLevels atoms and reports the names of each type sequentially. The  nK-
TLevels return value is always equal to the sum of all of the elements of the  count
array.

If indicator names are reported, the  indicators mask specifies the indicators for
which names are defined; any indicators not specified in  indicators have the name
None . The list of indicator names in  valueList contains the names of the listed in-
dicators, beginning with the lowest-numbered indicator for which a name is defined
and proceeding to the highest.

If virtual modifier names are reported, the  virtualMods mask specifies the virtual
modifiers for which names are defined; any virtual modifiers not specified in  vir-
tualMods have the name  None . The list of virtual modifier names in  valueList con-
tains the names of the listed virtual modifiers, beginning with the lowest-numbered
virtual modifier for which a name is defined and proceeding to the highest.

If group names are reported, the  groupNames mask specifies the groups for which
names are defined; any groups not specified in  groupNames have the name  None .
The list of group names in  valueList contains the names of the listed groups, begin-
ning with the lowest-numbered group for which a name is defined and proceeding
to the highest.

If key names are reported, the  firstKey and  nKeys return values specify a range
of keys which includes all keys for which names are defined; any key that does not
fall in the range specified by  firstKey and  nKeys has the name  NullKeyName . The
list of key names in the  valueList has  nKeys entries and specifies the names of the
keys beginning at  firstKey .

If key aliases are reported, the  nKeyAliases return value specifies the total number
of key aliases defined for the keyboard. The list of key aliases in  valueList has
nKeyAliases entries, each of which reports an alias and the real name of the key to
which it corresponds.

If radio group names are reported, the  nRadioGroups return value specifies the
number of radio groups on the keyboard for which names are defined. The list of
radio group names in  valueList reports the names of each group and has  nRadi-
oGroups entries.



XKB Protocol Requests

94

XkbSetNames
deviceSpec: KB_DEVICESPEC
which: KB_NAMEDETAILMASK
virtualMods: KB_VMODMASK
firstType, nTypes: CARD8
firstKTLevel, nKTLevels: CARD8
totalKTLevelNames: CARD16
indicators: KB_INDICATORMASK
groupNames: KB_GROUPMASK
nRadioGroups: CARD8
firstKey: KEYCODE
nKeys, nKeyAliases: CARD8
valueList: LISTofITEMs
Errors:  Keyboard ,  Atom ,  Value ,  Match ,  Alloc

This request changes the symbolic names for the requested components of the key-
board specified by  deviceSpec . The  which field specifies the components for which
one or more names are to be updated. If  deviceSpec does not specify a valid key-
board device, a  Keyboard error results. If any undefined bits in  which are non-zero,
a  Value error results. If any error (other than  Alloc or  Implementation ) occurs,
this request returns without modifying any names.

The  which and  valueList fields specify the components to be changed; the type of
each  valueList entry, the order in which components appear in the  valueList when
specified, and the correspondence between components in  which and the entries
in the  valueList are as specified for the  XkbGetNames request.

If keycodes, geometry, symbols, physical symbols, types or compatibility map names
are to be changed, the corresponding entries in the  valueList must have the value
None or specify a valid ATOM, else an  Atom error occurs.

If key type names are to be changed, the  firstType and  nTypes fields specify a
range of types for which new names are supplied, and the list of key type names
in  valueList has  nTypes elements. Names for types that fall outside of the range
specified by  firstType and  nTypes are not affected. If this request specifies names
for types that are not present on the keyboard, a  Match error results. All of the
type names in the  valueList must be valid ATOMs or have the value  None , or an
Atom error results.

The names of the first four keyboard types are specified by the XKB extension and
cannot be changed; including any of the canonical types in this request causes an
Access error, as does trying to assign the name reserved for a canonical type to one
of the other key types.

If key type level names are to be changed, the  firstKTLevel and  nKTLevels fields
specify a range of key types for which new level names are supplied, and the list of
key type level names in the  valueList has two parts: The  count array has  nKTLevels
elements, each of which specifies the number of levels for which names are supplied
on the corresponding key type; any levels for which no names are specified are
assigned the name  None . The  names array has  totalKTLevels atoms and specifies



XKB Protocol Requests

95

the names of each type sequentially. The  totalKTLevels field must always equal the
sum of all of the elements of the  count array. Level names for types that fall outside
of the specified range are not affected. If this request specifies level names for types
that are not present on the keyboard, or if it specifies more names for a type than
the type has levels, a  Match error results. All specified type level names must be
None or a valid ATOM or an  Atom error results.

If indicator names are to be changed, the  indicators mask specifies the indicators
for which new names are specified; the names for indicators not specified in  indi-
cators are not affected. The list of indicator names in  valueList contains the new
names for the listed indicators, beginning with the lowest-numbered indicator for
which a name is defined and proceeding to the highest. All specified indicator names
must be a valid ATOM or  None , or an  Atom error results.

If virtual modifier names are to be changed, the  virtualMods mask specifies the
virtual modifiers for which new names are specified; names for any virtual modifiers
not specified in  virtualMods are not affected. The list of virtual modifier names in
valueList contains the new names for the specified virtual modifiers, beginning with
the lowest-numbered virtual modifier for which a name is defined and proceeding
to the highest. All virtual modifier names must be valid ATOMs or  None , or an
Atom error results.

If group names are to be changed, the  groupNames mask specifies the groups for
which new names are specified; the name of any group not specified in  groupNames
is not changed. The list of group names in  valueList contains the new names for
the listed groups, beginning with the lowest-numbered group for which a name is
defined and proceeding to the highest. All specified group names must be a valid
ATOM or  None , or an  Atom error results.

If key names are to be changed, the  firstKey and  nKeys fields specify a range of
keys for which new names are defined; the name of any key that does not fall in
the range specified by  firstKey and  nKeys is not changed. The list of key names
in the  valueList has  nKeys entries and specifies the names of the keys beginning
at  firstKey .

If key aliases are to be changed, the  nKeyAliases field specifies the length of a new
list of key aliases for the keyboard. The list of key aliases can only be replaced in its
entirety; it cannot be replaced. The list of key aliases in  valueList has  nKeyAliases
entries, each of which reports an alias and the real name of the key to which it
corresponds.

XKB does not check key names or aliases for consistency and validity, so applications
should take care not to assign duplicate names or aliases

If radio group names are to be changed, the  nRadioGroups field specifies the length
of a new list of radio group names for the keyboard. There is no way to edit the
list of radio group names; it can only be replaced in its entirety. The list of radio
group names in  valueList reports the names of each group and has  nRadioGroups
entries. If the list of radio group names specifies names for more radio groups than
XKB allows (32), a  Match error results. All specified radio group names must be
valid ATOMs or have the value  None , or an  Atom error results.



XKB Protocol Requests

96

Querying and Changing Keyboard Geometry

XkbGetGeometry
deviceSpec: KB_DEVICESPEC
name: ATOM
deviceID: CARD8
name: ATOM
found: BOOL
widthMM, heightMM: CARD16
baseColorNdx, labelColorNdx: CARD8
properties: LISTofKB_PROPERTY
colors: LISTofSTRING8
shapes: LISTofKB_SHAPE
sections: LISTofKB_SECTION
doodads: LISTofKB_DOODAD
keyAliases: LISTofKB_KEYALIAS
Errors:  Keyboard

This request returns a description of the physical layout of a keyboard. If the  name
field has the value  None , or if name is identical to the name of the geometry for
the keyboard specified by  deviceSpec , this request returns the geometry of the
keyboard specified by  deviceSpec ; otherwise, if  name is a valid atom other than
None , the server returns the keyboard geometry description with that name in the
server database of keyboard components (see The Server Database of Keyboard
Components) if one exists. If  deviceSpec does not specify a valid keyboard device,
a  Keyboard error results. If  name has a value other than  None or a valid ATOM,
an  Atom error results.

On successful return, the  deviceID field reports the X Input extension identifier of
the keyboard device specified in the request, or  0 if the server does not support
the input extension.

The  found return value reports whether the requested geometry was available. If
found is  False , no matching geometry was found and the remaining fields in the
request reply are undefined; if  found is  True , the remaining fields of the reply
describe the requested keyboard geometry. The interpretation of the components
that make up a keyboard geometry is described in detail in Keyboard Geometry



XKB Protocol Requests

97

XkbSetGeometry
deviceSpec: KB_DEVICESPEC
name: ATOM
widthMM, heightMM, CARD16
baseColorNdx, labelColorNdx: CARD8
shapes: LISTofKB_SHAPE
sections: LISTofKB_SECTION
properties: LISTofKB_PROPERTY
colors: LISTofSTRING8
doodads: LISTofKB_DOODAD
keyAliases: LISTofKB_KEYALIAS
Errors:  Keyboard ,  Atom ,  Value

This request changes the reported description of the geometry for the keyboard
specified by  deviceSpec . If deviceSpec does not specify a valid keyboard device,
a  Keyboard error results.

The  name field specifies the name of the new keyboard geometry and must be a
valid ATOM or an  Atom error results. The new geometry is not added to the serv-
er database of keyboard components, but it can be retrieved using the  XkbGetGe-
ometry request for as long as it is bound to the keyboard. The keyboard geometry
symbolic name is also updated from the name field, and an  XkbNamesNotify event
is generated, if necessary.

The list of  colors must include at least two definitions, or a  Value error results.
All color definitions in the geometry must specify a legal color (i.e. must specify a
valid index for one of the entries of the  colors list) or a  Match error results. The
baseColorNdx and the  labelColorNdx must be different or a  Match error results.

The list of  shapes must include at least one shape definition, or a  Value error
results. If any two shapes have the same name, a  Match error result. All doodads
and keys which specify shape must specify a valid index for one of the elements of
the  shapes list, or a  Match error results.

All section, shape and doodad names must be valid ATOMs or an  Atom error results;
the constant  None is not permitted for any of these components.

All doodads must be of a known type; XKB does not support "private" doodad types.

If, after rotation, any keys or doodads fall outside of the bounding box for a section,
the bounding box is automatically adjusted to the minimum size which encloses all
of its components.

If, after adjustment and rotation, the bounding box of any section or doodad extends
below zero on either the X or Y axes, the entire geometry is translated so that the
minimum extent along either axis is zero.

If, after rotation and translation, any keyboard components fall outside of the rec-
tangle specified by  widthMM and  heightMM , the keyboard dimensions are au-
tomatically resized to the minimum bounding box that surrounds all components.
Otherwise, the width and height of the keyboard are left as specified.



XKB Protocol Requests

98

The  under field of any overlay key definitions must specify a key that is in the
section that contains the overlay key, or a  Match error results. This request does
not check the value of the  over field of an overlay key definition, so applications
must be careful to avoid conflicts with actual keys.

This request does not verify that key names or aliases are unique. It also does not
verify that all key names specified in the geometry are bound to some keycode or
that all keys that are named in the keyboard definition are also available in the
geometry. Applications should make sure that keyboard geometry has no internal
conflicts and is consistent with the other components of the keyboard definition,
but XKB does not check for or guarantee it.

Querying and Changing Per-Client Flags

XkbPerClientFlags
deviceSpec: KB_DEVICESPEC
change: KB_PCFMASK
value: KB_PCFMASK
ctrlsToChange: KB_BOOLCTRLMASK
autoCtrls: KB_BOOLCTRLMASK
autoCtrlValues: KB_BOOLCTRLMASK
deviceID: CARD8 supported: KB_PCFMASK value: KB_PCFMASK autoC-
trls: KB_BOOLCTRLMASK autoCtrlValues: KB_BOOLCTRLMASK where:
KB_PCFMASK:
Errors:  Keyboard ,  Value ,  Match ,  Alloc

Changes the client specific flags for the keyboard specified by  deviceSpec . Reports
a  Keyboard error if  deviceSpec does not specify a valid keyboard device.

Any flags specified in  change are set to the corresponding values in  value , provided
that the server supports the requested control. Legal per-client-flags are:

Flag… Described in…
XkbPCF_DetectableAutorepeat Detectable Autorepeat
XkbPCF_GrabsUseXKBStateMask Setting a Passive Grab for an XKB State
XkbPCF_AutoResetControlsMask Automatic Reset of Boolean Controls
XkbPCF_LookupStateWhenGrabbed Effects of XKB on Core Protocol Events
XkbPCF_SendEventUsesXKBState Sending Events to Clients

If  PCF_AutoResetControls is set in both  change and  value , the client’s mask of
controls to be changed is updated from  ctrlsToChange ,  autoCtrls , and  autoCtrl-
Values . Any controls specified in  ctrlsToChange are modified in the auto-reset con-
trols mask for the client; the corresponding bits from the  autoCtrls field are copied
into the auto-reset controls mask and the corresponding bits from  autoCtrlValues
are copied into the auto-reset controls state values. If any controls are specified
in  autoCtrlValues but not in  autoCtrls , a  Match error results. If any controls are
specified in  autoCtrls but not in  ctrlsToChange , a  Match error results.



XKB Protocol Requests

99

If  PCF_AutoResetControls is set in  change but not in  value , the client’s mask
of controls to be changed is reset to all zeroes (i.e. the client does not change any
controls when it exits).

This request reports a  Match error if a bit is set in any of the value masks but not
in the control mask that governs it or a  Value error if any undefined bits are set
in any of the masks.

On successful return, the  deviceID field reports the X Input extension identifier of
the keyboard, or  0 if the server does not support the X Input Extension.

The  supported return value reports the set of per-client flags that are supported
by the server; in this version of XKB, only the  XkbPCF_DetectableAutorepeat per-
client flag is optional; all other per-client flags must be supported.

The  value return value reports the current settings of all per-client flags for the
specified keyboard. The  autoCtrls return value reports the current set of controls
to be reset when the client exits, while the  autoCtrlValues return value reports the
state to which they should be set.

Using the Server’s Database of Keyboard Components
XkbListComponents
deviceSpec: KB_DEVICESPEC
maxNames: CARD16
keymapsSpec: STRING8
keycodesSpec: STRING8
typesSpec: STRING8
compatMapSpec: STRING8
symbolsSpec: STRING8
geometrySpec: STRING8
deviceID: CARD8
extra: CARD16
keymaps,keycodes,types,compatMaps: LISTofKB_COMPONENTNAME
symbols, geometries: LISTofKB_COMPONENTNAME
Where:
KB_COMPONENTNAME { hints: CARD8, name: STRING8 }
Errors:  Keyboard ,  Alloc

This request returns one or more lists of keyboard components that are available
from the X server database of keyboard components for the device specified by  de-
viceSpec . The X server is allowed, but not required or expected, to maintain sepa-
rate databases for each keyboard device. A  Keyboard error results if  deviceSpec
does not specify a valid keyboard device.

The  maxNames field specifies the maximum number of component names to be
reported, in total, by this request.

The  keymapsSpec ,  keycodesSpec ,  typesSpec ,  compatMapSpec ,  symbolsSpec
and  geometrySpec request fields specify a pattern to be matched against the names



XKB Protocol Requests

100

of all components of the corresponding type in the server database of keyboard
components.

Each pattern uses the ISO Latin-1 encoding and should contain only parentheses,
the wildcard characters "?" and "*" or characters that are permitted in a component
class or member name (see Component Names). Illegal characters in a pattern are
simply ignored; no error results if a pattern contains illegal characters.

Comparison is case-sensitive and, in a pattern, the "?" wildcard character match-
es any single character except parentheses while the "*" character matches any
number of characters except parentheses. If an implementation accepts characters
other than those required by XKB, whether or not those characters match either
wildcard is also implementation dependent. An empty pattern does not match any
component names.

On successful return, the  deviceID return value reports the X Input Extension de-
vice identifier of the specified device, or  0 if the server does not support the X in-
put extension. The  extra return value reports the number of matching component
names that could not be returned due to the setting of the  maxNames field in the
request.

The  keymaps ,  keycodes ,  types ,  compatMaps ,  symbols and  geometries return
the hints (see Component Hints) and names of any components from the server
database that match the corresponding pattern.

The Server Database of Keyboard Components describes the X server database of
keyboard components in more detail.

XkbGetKbdByName
deviceSpec: KB_DEVICESPEC
need, want: KB_GBNDETAILMASK
load: BOOL
keymapsSpec: STRING8
keycodesSpec, typesSpec: STRING8
compatMapSpec, symbolsSpec: STRING8
geometrySpec: STRING8
deviceID: CARD8
minKeyCode, maxKeyCode: KEYCODE
loaded, newKeyboard: BOOL
found, reported: KB_GBNDETAILMASK
map: optional  XkbGetMap reply
compat: optional  XkbGetCompatMap reply
indicators: optional  XkbGetIndicatorMap reply
names: optional  XkbGetNames reply
geometry: optional  XkbGetGeometry reply
Errors:  Keyboard ,  Access ,  Alloc

Assembles and returns a keymap from the current mapping and specified elements
from the server database of keymap components for the keyboard specified by  de-



XKB Protocol Requests

101

viceSpec , and optionally replaces the current keyboard mapping with the newly
generated description. If  deviceSpec does not specify a valid keyboard device, a
Keyboard error results.

The  keymapsSpec ,  keycodesSpec ,  typesSpec ,  compatMapSpec ,  symbolsSpec
and  geometrySpec component expressions (see  Partial Components and Combin-
ing Multiple Components) specify the database components to be used to assemble
the keyboard description.

The  want field lists the pieces of the keyboard description that the client wants
to have reported for the newly constructed keymap. The  need field lists all of the
pieces that must be reported. If any of the pieces in  need cannot be loaded from
the specified names, no description of the keyboard is returned.

The  want and  need fields can include any combinations of these  XkbGetMapBy-
Name (GBN) components:

XkbGetMapByName
Keyboard Component…

Database Component… Components of Key-
board Description

XkbGBN_Types types key types
XkbGBN_CompatMap compat symbol interpretations,

group compatibility map
XkbGBN_ClientSymbols symbols, types, keycodes key types, key symbol

mappings, modifier map-
ping

XkbGBN_ServerSymbols symbols, types, keycodes key behaviors, key ac-
tions, key explicit compo-
nents, virtual modifiers,
virtual modifier mapping

XkbGBN_IndicatorMap compat indicator maps, indicator
names

XkbGBN_KeyNames keycodes key names, key aliases
XkbGBN_Geometry geometry keyboard geometry
XkbGBN_OtherNames all key types, symbol in-

terpretations, indicator
maps, names, geometry

If either field contains a GBN component that depends on some database component
for which the request does not supply an expression, XKB automatically substitutes
the special pattern "%" which copies the corresponding component from the current
keyboard description, as described in Partial Components and Combining Multiple
Components.

The  load flag asks the server to replace the current keyboard description for  de-
viceSpec with the newly constructed keyboard description. If  load is  True , the
request must include component expressions for all of the database components; if
any are missing, XKB substitutes "%" as described above.

If all necessary components are both specified and found, the new keyboard descrip-
tion is loaded. If the new keyboard description has a different geometry or keycode
range than the previous keyboard description, XKB sends  XkbNewKeyboardNotify



XKB Protocol Requests

102

events to all interested clients. See Replacing the Keyboard "On-the-Fly" for more
information about the effects of replacing the keyboard description on the fly.

If the range of keycodes changes, clients that have requested  XkbNewKeyboardNo-
tify events are not sent any other change notification events by this request. Clients
that do not request  XkbNewKeyboardNotify events are sent other XKB change no-
tification events (e.g.  XkbMapNotify ,  XkbNamesNotify ) as necessary to alert them
to as many of the keyboard changes as possible.

If no error occurs, the request reply reports the GBN components that were found
and sends a description of any of the resulting keyboard that includes and of the
components that were requested.

The  deviceID return value reports the X Input extension device identifier of the
keyboard that was used, or  0 if the server does not support the X input extension.

The  minKeyCode and  maxKeyCode return values report the legal range of keycodes
for the keyboard description that was created. If the resulting keyboard description
does not include at least one of the key names, client symbols or server symbols
components,  minKeyCode and  maxKeyCode are both  0 .

The  loaded return value reports whether or not the existing keyboard definition
was replaced with the newly created one. If  loaded is  True , the  newKeyboard
return value reports whether or not the new map changed the geometry or range of
keycodes and caused  XkbNewKeyboardNotify events for clients that have request-
ed them.

The  found return value reports the GBN components that were present in the
keymap that was constructed by this request. The  reported return value lists the
subset of those components for which descriptions follow. if any of the components
specified in the  need field of the request were not found,  reported is empty, oth-
erwise it contains the intersection of the  found return value with the union of the
need and  want request fields.

If any of  GBN_Types ,  GBN_ClientSymbols or  GBN_ServerSymbols are set in  re-
ported , the  map return value has the same format as the reply to an  XkbGetMap
request and reports the corresponding pieces of the newly constructed keyboard
description.

If  GBN_CompatMap is set in  reported , the  compat return value has the same
format as the reply to an  XkbGetCompatMap request and reports the symbol in-
terpretations and group compatibility map for the newly constructed keyboard de-
scription.

If  GBN_IndicatorMap is set in  reported , the  indicators return value has the same
format as the reply to an  XkbGetIndicatorMap request and reports the physical
indicators and indicator maps for the newly constructed keyboard description.

If  GBN_KeyNames or  GBN_OtherNames are set in  reported , the  names return
value has the same format as the reply to an  XkbGetNames reply and reports the
corresponding set of symbolic names for the newly constructed keyboard descrip-
tion.

If  GBN_Geometry is set in  reported , the  geometry return value has the same
format as the reply to an  XkbGetGeometryMap request and reports the keyboard
geometry for the newly constructed keyboard description.



XKB Protocol Requests

103

Querying and Changing Input Extension Devices
XkbGetDeviceInfo
deviceSpec: KB_DEVICESPEC
wanted: KB_XIDEVFEATUREMASK
ledClass: KB_LEDCLASSSPEC
ledID: KB_IDSPEC
allButtons: BOOL
firstButton, nButtons: CARD8
deviceID: CARD8
present: KB_XIDEVFEATUREMASK
supported: KB_XIFEATUREMASK
unsupported: KB_XIFEATUREMASK
firstBtnWanted: CARD8
nBtnsWanted: CARD8
firstBtnRtrn: CARD8
nBtnsRtrn: CARD8
totalBtns: CARD8
hasOwnState: BOOL
dfltKbdFB, dfltLedFB: KB_IDSPEC
devType: ATOM
name: STRING
btnActions: LISTofKB_ACTION
leds: LISTofKB_DEVICELEDINFO
Errors:  Device ,  Match ,  Access ,  Alloc

Reports a subset of the XKB-supplied information about the input device specified by
deviceSpec . Unlike most XKB requests, the device specified for  XkbGetDeviceInfo
need not be a keyboard device. Nonetheless, a  Keyboard error results if  deviceSpec
does not specify a valid core or input extension device.

The  wanted field specifies the types of information to be returned, and controls the
interpretation of the other request fields.

If the server does not support assignment of XKB actions to extension device but-
tons, the  allButtons ,  firstButton and  nButtons fields are ignored.

Otherwise, if the  XkbXI_ButtonActions flag is set in  wanted , the  allButtons ,
firstButton and  nButtons fields specify the device buttons for which actions should
be returned. Setting  allButtons to  True requests actions for all device buttons; if
allButtons is  False ,  firstButton and  nButtons specify a range of buttons for which
actions are requested. If the device has no buttons or if  firstButton and  nButtons
specify illegal buttons, a  Match error results. If  allButtons is  True ,  firstButton
and  nButtons are ignored.

If the server does not support XKB access to any aspect of the indicators on exten-
sion devices, or if the  wanted field does not include any of the indicator flags, the



XKB Protocol Requests

104

ledClass and  ledID fields are ignored. Otherwise,  ledClass and  ledID specify one
or more feedback(s) for which indicator information is requested. If  ledClass or
ledID have illegal values, a  Value error results. If they have legal values but do not
specify a keyboard or indicator class feedback for the device in question, a  Match
error results.

The  ledClass field can specify either  KbdFeedbackClass ,  LedFeedbackClass ,
XkbDfltXIClass , or  XkbAllXIClasses . If at least one keyboard feedback is defined for
the specified device,  XkbDfltXIClass is equivalent to  KbdFeedbackClass , otherwise
it is equivalent to  LedFeedbackClass . If  XkbAllXIClasses is specified, this request
returns information about both indicator and keyboard class feedbacks which match
the requested identifier, as described below.

The  ledID field can specify any valid input extension feedback identifier,  XkbD-
fltXIId , or  XkbAllXIIds . The default keyboard feedback is the one that is affected
by core protocol requests; the default led feedback is implementation-specific. If
XkbAllXIIds is specified, this request returns indicator information about all feed-
backs of the class(es) specified by  ledClass .

If no error results, the  deviceID return value reports the input extension device
identifier of the device for which values are being returned. The  supported return
value reports the set of optional XKB extension device features that are supported
by this implementation (see  Interactions Between XKB and the X Input Extension)
for the specified device, and the unsupported return value reports any  unsupported
features.

If  hasOwnState is  True , the device is also a keyboard, and any indicator maps
bound to the device use the current state and control settings for this device to
control automatic changes. If  hasOwnState is  False , the state and control settings
of the core keyboard device control automatic indicator changes.

The  name field reports the X Input Extension name for the device. The  devType
field reports the X Input Extension device type. Both fields are provided merely for
convenience and are not interpreted by XKB.

The  present return value reports the kinds of device information being returned,
and controls the interpretation of the remaining fields. The  present field consists
of the  wanted field from the original request minus the flags for any unsupported
features.

If  XkbXI_ButtonActions is set in  present , the  totalBtns return value reports the
total number of buttons present on the device,  firstBtnWanted and  nBtnsWanted
specify the range of buttons for which actions were requested, and the  firstBtnRtrn
and  nBtnsRtrn  values specify the range of buttons for which actions are reported.
The  actionsRtrn list has  nButtonsRtrn entries which contain the actions bound to
the specified buttons on the device. Any buttons for which actions were requested
but not returned have the action  NoAction() .

If any indicator information is reported, the leds list contains one element for each
requested feedback. For example, if  ledClass is  XkbAllXIClasses and  ledID is  Xk-
bAllXIIds ,  leds describes all of the indicators on the device and has one element
for each keyboard or led class feedback defined for the device. If any information
at all is reported about a feedback, the set of physical indicators is also reported in
the  physIndicators field of the corresponding element of  leds .



XKB Protocol Requests

105

If the server supports assignment of indicator maps to extension device indicators,
and if the  XkbXI_IndicatorMaps flag is set in  wanted , each member of  leds reports
any indicators on the corresponding feedback to which names have been assigned.
Any indicators for which no map is reported have the default map, which allows
explicit changes and does not request any automatic changes.

If the server supports assignment of indicator names to extension device indicators,
and the  XkbXI_IndicatorNames flag is set in  wanted , each member of  leds reports
any indicators on the corresponding feedback to which names have been assigned.
Any indicators for which no name is reported have the name  None .

If the server supports XKB access to the state of extension device indicators, and
the  XkbXI_IndicatorState flag is set in wanted, each member of leds reports the
state of the indicators on the corresponding feedback.

If any unsupported features are requested, and the requesting client has selected
for them, the server sends the client an  XkbExtensionDeviceNotify event which
indicates that an unsupported feature was requested. This event is only generated if
the client which issued the unsupported request has selected for it and, if generated,
is not sent to any other clients.

XkbSetDeviceInfo
deviceSpec: KB_DEVICESPEC
change: KB_XIDEVFEATUREMASK
firstBtn, nBtns: CARD8
btnActions:LISTofKB_ACTION
leds: LISTofKB_DEVICELEDINFO
Errors:  Device ,  Match ,  Access ,  Alloc

Changes a subset of the XKB-supplied information about the input device specified
by  deviceSpec . Unlike most XKB requests, the device specified for  XkbGetDe-
viceInfo need not be a keyboard device. Nonetheless, a  Keyboard error results if
deviceSpec does not specify a valid core or input extension device

The  change field specifies the features for which new values are supplied, and
controls the interpretation of the other request fields.

If the server does not support assignment of XKB actions to extension device but-
tons, the  firstButton and  nButtons fields are ignored.

Otherwise, if the  XkbXI_ButtonActions flag is set in  change , the  firstBtn and  nBtns
fields specify a range of buttons for which actions are specified in this request. If
the device has no buttons or if  firstBtn and  nBtns specify illegal buttons, a  Match
error results.

Each element of the  leds list describes the changes for a single keyboard or led
feedback. If the  ledClass field of any element of  leds contains any value other than
KbdFeedbackClass ,  LedFeedbackClass or  XkbDfltXIClass , a  Value error results.
If the  ledId field of any element of leds contains any value other than a valid input
extension feedback identifier or  XkbDfltXIId , a  Value error results. If both fields
are valid, but the device has no matching feedback, a  Match error results.

The fields of each element of  leds are interpreted as follows:



XKB Protocol Requests

106

• If  XkbXI_IndicatorMaps is set in  change and the server supports XKB assignment
of indicator maps to the corresponding feedback, the maps for all indicators on
the corresponding feedback are taken from  leds . If the server does not support
this feature, any maps specified in  leds are ignored.

• If  XkbXI_IndicatorNames is set in  change , and the server supports XKB assign-
ment of names to indicators for the corresponding feedback, the names for all
indicators on the corresponding feedback are taken from  leds . If the server does
not support this feature, any names specified in  leds are ignored. Regardless of
whether they are used, any names be a valid Atom or  None , or an  Atom error
results.

• If  XkbXI_IndicatorState is set in change, and the server supports XKB changes to
extension device indicator state, the server attempts to change the indicators on
the corresponding feedback as specified by  leds . Any indicator maps bound to
the feedback are applied, so state changes might be blocked or have side-effects.

If any unsupported features are requested, and the requesting client has selected
for them, the server sends the client an  XkbExtensionDeviceNotify event which
indicates that an unsupported feature was requested. This event is only generated if
the client which issued the unsupported request has selected for it and, if generated,
is not sent to any other clients.

Debugging the X Keyboard Extension

XkbSetDebuggingFlags
affectFlags, flags: CARD32
affectCtrls, ctrls: CARD32
message: STRING
currentFlags, supportedFlags: CARD32
currentCtrls, supportedCtrls: CARD32

This request sets up various internal XKB debugging flags and controls. It is intend-
ed for developer use and may be disabled in production servers. If disabled,  Xk-
bSetDebuggingFlags has no effect but returns  Success .

The  affectFlags field specifies the debugging flags to be changed, the  flags field
specifies new values for the changed flags. The interpretation of the debugging flags
is implementation-specific, but flags are intended to control debugging output and
should not otherwise affect the operation of the server.

The  affectCtrls field specifies the debugging controls to be changed, the  ctrls field
specifies new values for the changed controls. The interpretation of the debugging
controls is implementation-specific, but debugging controls are allowed to affect
the behavior of the server.

The  message field provides a message that the X server can print in any logging or
debugging files before changing the flags. The server must accept this field but it
is not required to actually display it anywhere.

The X Test Suite makes some assumptions about the implementation of locking mod-
ifier keys that do not apply when XKB is present. The  XkbDF_DisableLocks debug-
ging control provides a simple workaround to these test suite problems by simply



XKB Protocol Requests

107

disabling all locking keys. If  XkbDF_DisableLocks is enabled, the  SA_LockMods
and  SA_LockGroup actions behave like  SA_SetMods and  SA_LockMods , respec-
tively. If it is disabled,  SA_LockMods and  SA_LockGroup actions behave normally.

Implementations are free to ignore the  XkbDF_DisableLocks debugging control or
to define others.

The  currentFlags return value reports the current setting for the debugging flags,
if applicable. The  currentCtrls return value reports the setting for the debugging
controls, if applicable. The  supportedFlags and  supportedCtrls fields report the
flags and controls that are recognized by the implementation. Attempts to change
unsupported fields or controls are silently ignored.

If the  XkbSetDebuggingFlags request contains more data than expected, the serv-
er ignores the extra data, but no error results. If the request has less data than
expected, a  Length error results.

If the  XkbSetDebuggingFlags reply contains more data than expected, the client
just ignores any uninterpreted data without reporting an error. If the reply has less
data than expected, a  Length error results.

Events
All XKB events report the time at which they occurred in a field named  time and
the device on which they occurred in a field named  deviceID . XKB uses a single X
event code for all events and uses a common field to distinguish XKB event type.

Tracking Keyboard Replacement

XkbNewKeyboardNotify
time: TIMESTAMP
deviceID: CARD8
changed: KB_NKNDETAILMASK
minKeyCode, maxKeyCode: KEYCODE
oldDeviceID: CARD8
oldMinKeyCode, oldMaxKeyCode: KEYCODE
requestMajor, requestMinor: CARD8

An  XkbNewKeyboardNotify event reports that a new core keyboard has been in-
stalled. New keyboard notify events can be generated:

• When the X server detects that the keyboard was changed.

• When a client installs a new extension device as the core keyboard using the X
Input Extension  ChangeKeyboardDevice request.

• When a client issues an  XkbGetMapByName request which changes the keycodes
range or geometry.

The  changed field of the event reports the aspects of the keyboard that have
changed, and can contain any combination of the event details for this event:



XKB Protocol Requests

108

Bit in Changed Meaning
NKN_Keycodes The new keyboard has a different minimum or maxi-

mum keycode.
NKN_Geometry The new keyboard has a different keyboard geometry.
NKN_DeviceID The new keyboard has a new X Input Extension de-

vice identifier

The server sends an  XkbNewKeyboardNotify event to a client only if at least one
of the bits that is set in the  changed field of the event is also set in the appropriate
event details mask for the client.

The  minKeyCode and  maxKeyCode fields report the minimum and maximum key-
codes that can be returned by the new keyboard. The  oldMinKeyCode and  old-
MaxKeyCode fields report the minimum and maximum values that could be returned
before the change. This event always reports all four values, but the old and new
values are the same unless  NKN_Keycodes is set in  changed .

Once a client receives a new keyboard notify event which reports a new keycode
range, the X server reports events from all keys in the new range to that client.
Clients that do not request or receive new keyboard notify events receive events
only from keys that fall in the last range for legal keys reported to that client. See
Replacing the Keyboard "On-the-Fly" for a more detailed explanation.

If  NKN_Keycodes is set in  changed , the  XkbNewKeyboardNotify event subsumes
all other change notification events (e.g.  XkbMapNotify ,  XkbNamesNotify ) that
would otherwise result from the keyboard change. Clients who receive an  Xkb-
NewKeyboardNotify event should assume that all other aspects of the keyboard
mapping have changed and regenerate the entire local copy of the keyboard de-
scription.

The  deviceID field reports the X Input Extension device identifier of the new key-
board device;  oldDeviceID reports the device identifier before the change. This
event always includes both values, but they are the same unless  NKN_DeviceID is
set in  changed . If the server does not support the X Input Extension, both fields
have the value  0 .

The  requestMajor and  requestMinor fields report the major and minor opcode
of the request that caused the keyboard change. If the keyboard change was not
caused by some client request, both fields have the value  0 .



XKB Protocol Requests

109

Tracking Keyboard Mapping Changes

XkbMapNotify
time: TIMESTAMP
deviceID: CARD8
ptrBtnActions: CARD8
changed: KB_MAPPARTMASK
minKeyCode, maxKeyCode: KEYCODE
firstType, nTypes: CARD8
firstKeySym, firstKeyAction: KEYCODE
nKeySyms, nKeyActions: CARD8
firstKeyBehavior, firstKeyExplicit: KEYCODE
nKeyBehaviors, nKeyExplicit: CARD8
virtualMods: KB_VMODMASK
firstModMapKey, firstVModMapKey: KEYCODE
nModMapKeys, nVModMapKeys: CARD8

An  XkbMapNotify event reports that some aspect of XKB map for a keyboard has
changed. Map notify events can be generated whenever some aspect of the key-
board map is changed by an XKB or core protocol request.

The  deviceID field reports the keyboard for which some map component has
changed and the  changed field reports the components with new values, and can
contain any of the values that are legal for the  full and  partial fields of the  Xk-
bGetMap request. The server sends an  XkbMapNotify event to a client only if at
least one of the bits that is set in the  changed field of the event is also set in the
appropriate event details mask for the client.

The  minKeyCode and  maxKeyCode fields report the range of keycodes that are
legal on the keyboard for which the change is being reported.

If  XkbKeyTypesMask is set in  changed , the  firstType and  nTypes fields report a
range of key types that includes all changed types. Otherwise, both fields are  0 .

If  XkbKeySymsMask is set in  changed , the  firstKeySym and  nKeySyms fields
report a range of keycodes that includes all keys with new symbols. Otherwise, both
fields are  0 .

If  XkbKeyActionsMask is set in  changed , the  firstKeyAction and  nKeyActions
fields report a range of keycodes that includes all keys with new actions. Otherwise,
both fields are  0 .

If  XkbKeyBehaviorsMask is set in  changed , the  firstKeyBehavior  and  nKeyBe-
haviors fields report a range of keycodes that includes all keys with new key behav-
ior. Otherwise, both fields are  0 .

If  XkbVirtualModsMask is set in  changed ,  virtualMods contains all virtual modi-
fiers to which a new set of real modifiers is bound. Otherwise,  virtualMods is  0 .



XKB Protocol Requests

110

If  XkbExplicitComponentsMask is set in  changed , the  firstKeyExplicit and  nKey-
Explicit fields report a range of keycodes that includes all keys with changed explicit
components. Otherwise, both fields are  0 .

If  XkbModifierMapMask is set in  changed , the  firstModMapKey and  nModMap-
Keys fields report a range of keycodes that includes all keys with changed modifier
bindings. Otherwise, both fields are  0 .

If  XkbVirtualModMapMask is set in  changed , the  firstVModMapKey and
nVModMapKeys fields report a range of keycodes that includes all keys with
changed virtual modifier mappings. Otherwise, both fields are  0 .

Tracking Keyboard State Changes

XkbStateNotify
time: TIMESTAMP
deviceID: CARD8
mods, baseMods, latchedMods, lockedMods: KEYMASK
group, lockedGroup: CARD8
baseGroup, latchedGroup: INT16
compatState: KEYMASK
grabMods, compatGrabMods: KEYMASK
lookupMods, compatLookupMods: KEYMASK
ptrBtnState: BUTMASK
changed: KB_STATEPARTMASK
keycode: KEYCODE
eventType: CARD8
requestMajor, requestMinor: CARD8

An XkbStateNotify event reports that some component of the XKB state (see Key-
board State) has changed. State notify events are usually caused by key or pointer
activity, but they can also result from explicit state changes requested by the  Xk-
bLatchLockState request or by other extensions.

The  deviceID field reports the keyboard on which some state component changed.
The  changed field reports the XKB state components (see Keyboard State) that
have changed and contain any combination of:



XKB Protocol Requests

111

Bit in changed Event field Changed component
ModifierState mods The effective modifiers
ModifierBase baseMods The base modifiers
ModifierLatch latchedMods The latched modifiers
ModifierLock lockedMods The locked modifiers
GroupState group The effective keyboard group
GroupBase baseGroup The base keyboard group
GroupLatch latchedGroup The latched keyboard group
GroupLock lockedGroup The locked keyboard group
PointerButtons ptrBtnState The state of the core pointer buttons
GrabMods grabMods The XKB state used to compute grabs
LookupMods lookupMods The XKB state used to look up symbols
CompatState compatState Default state for non-XKB clients
CompatGrabMods compatGrabMods The core state used to compute grabs
CompatLookup-
Mods

compatLookup-
Mods

The core state used to look up symbols

The server sends an  XkbStateNotify event to a client only if at least one of the bits
that is set in the  changed field of the event is also set in the appropriate event
details mask for the client.

A state notify event reports current values for all state components, even those with
unchanged values.

The  keycode field reports the key or button which caused the change in state while
the  eventType field reports the exact type of event (e.g.  KeyPress ). If the change
in state was not caused by key or button activity, both fields have the value  0 .

The  requestMajor and  requestMinor fields report the major and minor opcodes of
the request that caused the change in state and have the value  0 if it was resulted
from key or button activity.

Tracking Keyboard Control Changes
XkbControlsNotify
time: TIMESTAMP
deviceID: CARD8
numGroups: CARD8
changedControls: KB_CONTROLMASK
enabledControls,enabledControlChanges: KB_BOOLCTRLMASK
keycode: KEYCODE
eventType: CARD8
requestMajor: CARD8
requestMinor: CARD8

An  XkbControlsNotify event reports a change in one or more of the global keyboard
controls (see Global Keyboard Controls) or in the internal modifiers or ignore locks



XKB Protocol Requests

112

masks (see  Server Internal Modifiers and Ignore Locks Behavior). Controls notify
events are usually caused by and  XkbSetControls request, but they can also be
caused by keyboard activity or certain core protocol and input extension requests.

The  deviceID field reports the keyboard for which some control has changed, and
the  changed field reports the controls that have new values.

The  changed field can contain any of the values that are permitted for the  change-
Controls field of the  XkbSetControls request. The server sends an  XkbControlsNo-
tify event to a client only if at least one of the bits that is set in the  changed field
of the event is also set in the appropriate event details mask for the client.

The  numGroups field reports the total number of groups defined for the keyboard,
whether or not the number of groups has changed.

The  enabledControls field reports the current status of all of the boolean controls,
whether or not any boolean controls changed state. If  EnabledControls is set in
changed , the  enabledControlChanges field reports the boolean controls that were
enabled or disabled; if a control is specified in  enabledControlChanges , the value
that is reported for that control in  enabledControls represents a change in state.

The  keycode field reports the key or button which caused the change in state while
the  eventType field reports the exact type of event (e.g.  KeyPress ). If the change
in state was not caused by key or button activity, both fields have the value  0 .

The  requestMajor and  requestMinor fields report the major and minor opcodes of
the request that caused the change in state and have the value  0 if it was resulted
from key or button activity.

Tracking Keyboard Indicator State Changes

XkbIndicatorStateNotify
time: TIMESTAMP
deviceID: CARD8
stateChanged, state: KB_INDICATORMASK

An  XkbIndicatorStateNotify event indicates that one or more of the indicators on a
keyboard have changed state. Indicator state notify events can be caused by:

• Automatic update to reflect changes in keyboard state (keyboard activity,  Xk-
bLatchLockState requests).

• Automatic update to reflect changes in keyboard controls ( XkbSetControls , key-
board activity, certain core protocol and input extension requests).

• Explicit attempts to change indicator state (core protocol and input extension
requests,  XkbSetNamedIndicator requests).

• Changes to indicator maps ( XkbSetIndicatorMap and  XkbSetNamedIndicator
requests).

The  deviceID field reports the keyboard for which some indicator has changed, and
the  state field reports the new state for all indicators on the specified keyboard. The
stateChanged field specifies which of the values in  state represent a new state for



XKB Protocol Requests

113

the corresponding indicator. The server sends an  XkbIndicatorStateNotify event to
a client only if at least one of the bits that is set in the  stateChanged field of the
event is also set in the appropriate event details mask for the client.

Tracking Keyboard Indicator Map Changes

XkbIndicatorMapNotify
time: TIMESTAMP
deviceID: CARD8
state: KB_INDICATORMASK
mapChanged: KB_INDICATORMASK

An  XkbIndicatorMapNotify event indicates that the maps for one or more keyboard
indicators have been changed. Indicator map notify events can be caused by  Xk-
bSetIndicatorMap and  XkbSetNamedIndicator requests.

The  deviceID field reports the keyboard for which some indicator map has changed,
and the  mapChanged field reports the indicators with changed maps. The server
sends an  XkbIndicatorMapNotify event to a client only if at least one of the bits
that is set in the  mapChanged field of the event is also set in the appropriate event
details mask for the client.

The  state field reports the current state of all indicators on the specified keyboard.

Tracking Keyboard Name Changes

XkbNamesNotify
time: TIMESTAMP
deviceID: CARD8
changed: KB_NAMEDETAILMASK
firstType, nTypes: CARD8
firstLevelName, nLevelNames: CARD8
firstKey: KEYCODE
nKeys, nKeyAliases, nRadioGroups: CARD8
changedGroupNames: KB_GROUPMASK
changedVirtualMods: KB_VMODMASK
changedIndicators: KB_INDICATORMASK

An  XkbNamesNotify event reports a change to one or more of the symbolic names
associated with a keyboard. Symbolic names can change when:

• Some client explicitly changes them using  XkbSetNames .

• The list of key types or radio groups is resized

• The group width of some key type is changed

The  deviceID field reports the keyboard on which names were changed. The
changed mask lists the components for which some names have changed and can



XKB Protocol Requests

114

have any combination of the values permitted for the  which field of the  XkbGet-
Names request. The server sends an  XkbNamesNotify event to a client only if at
least one of the bits that is set in the  changed field of the event is also set in the
appropriate event details mask for the client.

If  KeyTypeNames is set in  changed , the  firstType and  nTypes fields report a range
of types that includes all types with changed names. Otherwise, both fields are  0 .

If  KTLevelNames is set in  changed , the  firstLevelName and  nLevelNames fields
report a range of types that includes all types with changed level names. Otherwise,
both fields are  0 .

If  IndicatorNames is set in  changed , the  changedIndicators field reports the
indicators with changed names. Otherwise,  changedIndicators is  0 .

If  VirtualModNames is set in  changed , the  changedVirtualMods field reports the
virtual modifiers with changed names. Otherwise,  changedVirtualMods is  0 .

If  GroupNames is set in  changed , the  changedGroupNames field reports the
groups with changed names. Otherwise,  changedGroupNames is  0 .

If  KeyNames is set in  changed , the  firstKey and  nKeys fields report a range of
keycodes that includes all keys with changed names. Otherwise, both fields are  0 .

The  nKeyAliases field reports the total number of key aliases associated with the
keyboard, regardless of whether  KeyAliases is set in  changed .

The  nRadioGroups field reports the total number of radio group names associated
with the keyboard, regardless of whether  RGNames is set in  changed .

Tracking Compatibility Map Changes

XkbCompatMapNotify
time: TIMESTAMP
deviceID: CARD8
changedGroups: KB_GROUPMASK
firstSI, nSI: CARD16
nTotalSI: CARD16

An  XkbCompatMapNotify event indicates that some component of the compatibil-
ity map for a keyboard has been changed. Compatibility map notify events can be
caused by  XkbSetCompatMap and  XkbGetMapByName requests.

The  deviceID field reports the keyboard for which the compatibility map has
changed; if the server does not support the X input extension,  deviceID is  0 .

The  changedGroups field reports the keyboard groups, if any, with a changed entry
in the group compatibility map. The  firstSI and  nSI fields specify a range of symbol
interpretations in the symbol compatibility map that includes all changed symbol
interpretations; if the symbol compatibility map is unchanged, both fields are  0 .
The  nTotalSI field always reports the total number of symbol interpretations present
in the symbol compatibility map, regardless of whether any symbol interpretations
have been changed.



XKB Protocol Requests

115

The server sends an  XkbCompatMapNotify event to a client only if at least one of
the following conditions is met:

• The  nSI field of the event is non-zero, and the  XkbSymInterpMask bit is set in
the appropriate event details mask for the client.

• The  changedGroups field of the event contains at least one group, and the  Xkb-
GroupCompatMask bit is set in the appropriate event details mask for the client.

Tracking Application Bell Requests

XkbBellNotify
time: TIMESTAMP
deviceID: CARD8
bellClass: { KbdFeedbackClass, BellFeedbackClass }
bellID: CARD8
percent: CARD8
pitch: CARD16
duration: CARD16
eventOnly: BOOL
name: ATOM
window: WINDOW

An  XkbBellNotify event indicates that some client has requested a keyboard bell.
Bell notify events are usually caused by  Bell ,  DeviceBell , or  XkbBell requests,
but they can also be generated by the server (e.g. if the  AccessXFeedback control
is active).

The server sends an  XkbBellNotify event to a client if the appropriate event details
field for the client has the value  True .

The  deviceID field specifies the device for which a bell was requested, while the
bellClass and  bellID fields specify the input extension class and identifier of the
feedback for which the bell was requested. If the reporting server does not support
the input extension, all three fields have the value 0.

The  percent ,  pitch and  duration fields report the volume, tone and duration
requested for the bell as specified by the  XkbBell request. Bell notify events caused
by core protocol or input extension requests use the pitch and duration specified in
the corresponding bell or keyboard feedback control.

If the bell was caused by an  XkbBell request or by the X server,  name reports an
optional symbolic name for the bell and the  window field optionally reports the
window for which the bell was generated. Otherwise, both fields have the value
None .

If the  eventOnly field is  True , the server did not generate a sound in response
to the request, otherwise the server issues the beep before sending the event. The
eventOnly field can be  True if the  AudibleBell control is disabled or if a client
explicitly requests  eventOnly when it issues an  XkbBell request.



XKB Protocol Requests

116

Tracking Messages Generated by Key Actions

XkbActionMessage
time: TIMESTAMP
deviceID: CARD8
keycode: KEYCODE
press: BOOL
mods: KEYMASK
group: KB_GROUP
keyEventFollows: BOOL
message: LISTofCARD8

An  XkbActionMessage event is generated when the user operates a key to which
an  SA_ActionMessage message is bound under the appropriate state and group.
The server sends an  XkbActionMessage event to a client if the appropriate event
details field for the client has the value  True .

The  deviceID field specifies the keyboard device that contains the key which acti-
vated the event. The  keycode field specifies the key whose operation caused the
message and press is  True if the message was caused by the user pressing the key.
The  mods and  group fields report the effective keyboard modifiers and group in
effect at the time the key was pressed or released.

If  keyEventFollows is  True , the server will also send a key press or release event,
as appropriate, for the key that generated the message. If it is  False , the key
causes only a message. Note that the key event is delivered normally with respect
to passive grabs, keyboard focus, and cursor position, so that  keyEventFollows
does not guarantee that any particular client which receives the  XkbActionMessage
notify event will also receive a key press or release event.

The  message field is  NULL -terminated string of up to  ActionMessageLength ( 6
) bytes, which reports the contents of the  message field in the action that caused
the message notify event.

Tracking Changes to AccessX State and Keys

XkbAccessXNotify
time: TIMESTAMP
deviceID: CARD8
detail: KB_AXNDETAILMASK
keycode: KEYCODE
slowKeysDelay: CARD16
debounceDelay: CARD16

An  XkbAccessXNotify event reports on some kinds of keyboard activity when any
of the  SlowKeys ,  BounceKeys or  AccessXKeys controls are active. Compatibility
map notify events can only be caused by keyboard activity.



XKB Protocol Requests

117

The  deviceID and  keycode fields specify the keyboard and key for which the event
occurred. The  detail field describes the event that occurred and has one of the
following values:

Detail Control Meaning
AXN_SKPress SlowKeys Key pressed
AXN_SKAccept SlowKeys K ey held until it was accepted.
AXN_SKReject SlowKeys Key released before it was accepted.
AXN_SKRelease SlowKeys Key released after it was accepted.
AXN_BKAccept BounceKeys Key pressed while it was active.
AXN_BKReject BounceKeys Key pressed while it was still disabled.
AXN_AXKWarning AccessXKeys Shift key held down for four seconds

Each subclass of the AccessX notify event is generated only when the control spec-
ified in the table above is enabled. The server sends an  XkbAccessXNotify event
to a client only if the bit which corresponds to the value of the  detail field for the
event is set in the appropriate event details mask for the client.

Regardless of the value of  detail , the  slowKeysDelay and  debounceDelay fields
always reports the current slow keys acceptance delay (see The SlowKeys Control)
and debounce delay (see The BounceKeys Control) for the specified keyboard.

Tracking Changes To Extension Devices
XkbExtensionDeviceNotify
time: TIMESTAMP
deviceID: CARD16
ledClass: { KbdFeedbackClass, LedFeedbackClass }
ledID: CARD16
reason: KB_XIDETAILMASK
supported: KB_XIFEATUREMASK
unsupported: KB_XIFEATUREMASK
ledsDefined: KB_INDICATORMASK
ledState: KB_INDICATORMASK
firstButton, nButtons: CARD8

An  XkbExtensionDeviceNotify event reports:

• A change to some part of the XKB information for an extension device.

• An attempt to use an XKB extension device feature that is not supported for the
specified device by the current implementation.

The  deviceID field specifies the X Input Extension device identifier of some
device on which an XKB feature was requested, or  XkbUseCorePtr if the re-
quest affected the core pointer device. The  reason field explains why the event
was generated in response to the request, and can contain any combination of
XkbXI_UnsupportedFeature and the values permitted for the change field of the
XkbSetDeviceInfo request.



XKB Protocol Requests

118

If  XkbXI_ButtonActions is set in  reason , this event reports a successful change to
the XKB actions bound to one or more buttons on the core pointer or an extension
device. The  firstButton and  nButtons fields report a range of device buttons that
include all of the buttons for which actions were changed.

If any combination of  XkbXI_IndicatorNames ,  XkbXI_IndicatorMaps , or
XkbXI_IndicatorState is set in either  reason or  unsupported , the  ledClass and
ledID fields specify the X Input Extension feedback class and identifier of the feed-
back for which the change is reported. If this event reports any changes to an in-
dicator feedback, the  ledsDefined field reports all indicators on that feedback for
which either a name or a indicator map are defined, and  ledState reports the cur-
rent state of all of the indicators on the specified feedback.

If  XkbXI_IndicatorNames is set in  reason , this event reports a successful change
to the symbolic names bound to one or more extension device indicators by XKB.
If  XkbXI_IndicatorMaps is set in  reason , this event reports a successful change
to the indicator maps bound to one or more extension device indicators by XKB. If
XkbXI_IndicatorState is set in reason, this event reports that one or more indicators
in the specified device and feedback have changed state.

If  XkbXI_UnsupportedFeature is set in reason, this event reports an unsuccessful
attempt to use some XKB extension device feature that is not supported by the
XKB implementation in the server for the specified device. The  unsupported mask
reports the requested features that are not available on the specified device. See
Interactions Between XKB and the X Input Extension for more information about
possible XKB interactions with the X Input Extension.

The server sends an  XkbExtensionDeviceNotify event to a client only if at least one
of the bits that is set in the  reason field of the event is also set in the appropriate
event details mask for the client.

Events that report a successful change to some extension device feature are report-
ed to all clients that have expressed interest in the event; events that report an
attempt to use an unsupported feature are reported only to the client which issued
the request. Events which report a partial success are reported to all interested
clients, but only the client that issued the request is informed of the attempt to use
unsupported features.



119

Appendix A. Default Symbol
Transformations

Interpreting the Control Modifier
If the  Control modifier is not consumed by the symbol lookup process, routines that
determine the symbol and string that correspond to an event should convert the
symbol to a string as defined in the table below. Only the string to be returned is
affected by the  Control modifier; the symbol is not changed.

This table lists the decimal value of the standard control characters that correspond
to some keysyms for ASCII characters. Control characters for symbols not listed in
this table are application-specific.

Keysyms Value Keysyms Value Keysyms Value Keysyms Value
atsign 0 h, H 8 p, P 16 x, X 24
a, A 1 i, I 9 q, Q 17 y, Y 25
b, B 2 j, J 10 r, R 18 z, Z 26
c, C 3 k, K 11 s, S 19 left_bracket 27
d, D 4 l, L 12 t, T 20 backslash 28
e, E 5 m, M 13 u, U 21 right_bracket29
f, F 6 n, N 14 v, V 22 asciicircum 30
g, G 8 o, O 15 w, W 23 underbar 31

Interpreting the Lock Modifier
If the  Lock modifier is not consumed by the symbol lookup process, routines that
determine the symbol and string that correspond to an event should capitalize the
result. Unlike the transformation for  Control , the capitalization transformation
changes both the symbol and the string returned by the event.

Locale-Sensitive Capitalization

If  Lock is set in an event and not consumed, applications should capitalize the string
and symbols that result from an event according to the capitalization rules in effect
for the system on which the application is running, taking the current state of the
user environment (e.g. locale) into account.

Locale-Insensitive Capitalization

XKB recommends but does not require locale-sensitive capitalization. In cases
where the locale is unknown or where locale-sensitive capitalization is prohibitively
expensive, applications can capitalize according to the rules defined in this exten-
sion.



Default Symbol
Transformations

120

The following tables list all of the keysyms for which XKB defines capitalization
behavior. Any keysyms not explicitly listed in these tables are not capitalized by XKB
when locale-insensitive capitalization is in effect and are not automatically assigned
the  ALPHABETIC type as described in the Alphabetic Key Type.

Capitalization Rules for Latin-1 Keysyms

This table lists the Latin-11 keysyms for which XKB defines upper and lower case:

Low-
er
Case

Up-
per
Case

Low-
er
Case

Up-
per
Case

Lower Case Upper Case Lower Case Upper Case

a A o O acircumflex Acircumflex eth ETH
b B p P adiaeresis Adiaeresis ntilde Ntilde
c C q Q atilde Atilde ograve Ograve
d D r R aring Aring oacute Oacute
e E s S ae AE ocircumflex Ocircumflex
f F t T ccedilla Ccedilla otilde Otilde
g G u U egrave Egrave odiaeresis Odiaeresis
h H v V eacute Eacute oslash Ooblique
i I w W ecircumflex Ecircumflex ugrave Ugrave
j J x X ediaeresis Ediaeresis uacute Uacute
k K y Y igrave Igrave ucircumflex Ucircumflex
l L z Z iacute Iacute udiaeresis Udiaeresis
m M agraveAgraveicircumflex Icircumflex yacute Yacute
n N aa-

cute
Aa-
cute

idiaeresis Idiaeresis thorn THORN

Capitalization Rules for Latin-2 Keysyms

This table lists the Latin-2 keysyms for which XKB defines upper and lower case:

Lower Case Upper Case Lower Case Upper Case Lower Case Upper Case
aogonek Aogonek zabovedot Zabovedot dstroke Dstroke
lstroke Lstroke racute Racute nacute Nacute
lcaron Lcaron abreve Abreve ncaron Ncaron
sacute Sacute lacute Lacute odoublea-

cute
Odoublea-
cute

scaron Scaron cacute Cacute rcaron Rcaron
scedilla Scedilla ccaron Ccaron uabovering Uabovering
tcaron Tcaron eogonek Eogonek udoublea-

cute
Udoublea-
cute

zacute Zacute ecaron Ecaron tcedilla Tcedilla
zcaron Zcaron dcaron Dcaron



Default Symbol
Transformations

121

Capitalization Rules for Latin-3 Keysyms

This table lists the Latin-3 keysyms for which XKB defines upper and lower case:

Lower Case Upper Case Lower Case Upper Case Lower Case Upper Case
hstroke Hstroke jcircumflex Jcircumflex gcircumflex Gcircumflex
hcircumflex Hcircumflex cabovedot Cabovedot ubreve Ubreve
idotless Iabovedot ccircumflex Ccircumflex scircumflex Scircumflex
gbreve Gbreve gabovedot Gabovedot

Capitalization Rules for Latin-4 Keysyms

This table lists the Latin-4 keysyms for which XKB defines upper and lower case:

Lower Case Upper Case Lower Case Upper Case Lower Case Upper Case
rcedilla Rcedilla eng ENG omacron Omacron
itilde Itilde amacron Amacron kcedilla Kcedilla
lcedilla Lcedilla iogonek Iogonek uogonek Uogonek
emacron Emacron eabovedot eabovedot utilde Utilde
gcedilla Gcedilla imacron Imacron umacron Umacron
tslash Tslash ncedilla Ncedilla

Capitalization Rules for Cyrillic Keysyms

This table lists the Cyrillic keysyms for which XKB defines upper and lower case:



Default Symbol
Transformations

122

Lower Case Upper Case Lower Case Upper Case
Serbian_dje Serbian_DJE Cyrillic_i Cyrillic_I
Macedonia_gje Macedonia_GJE Cyrillic_shorti Cyrillic_SHORTI
Cyrillic_io Cyrillic_IO Cyrillic_ka Cyrillic_KA
Ukrainian_ie Ukrainian_IE Cyrillic_el Cyrillic_EL
Macedonia_dse Macedonia_DSE Cyrillic_em Cyrillic_EM
Ukrainian_i Ukrainian_I Cyrillic_en Cyrillic_EN
Ukrainian_yi Ukrainian_YI Cyrillic_o Cyrillic_O
Cyrillic_je Cyrillic_JE Cyrillic_pe Cyrillic_PE
Cyrillic_lje Cyrillic_LJE Cyrillic_ya Cyrillic_YA
Cyrillic_nje Cyrillic_NJE Cyrillic_er Cyrillic_ER
Serbian_tshe Serbian_TSHE Cyrillic_es Cyrillic_ES
Macedonia_kje Macedonia_KJE Cyrillic_te Cyrillic_TE
Byelorussian_shortu Byelorussian_SHORTUCyrillic_u Cyrillic_U
Cyrillic_dzhe Cyrillic_DZHE Cyrillic_zhe Cyrillic_ZHE
Cyrillic_yu Cyrillic_YU Cyrillic_ve Cyrillic_VE
Cyrillic_a Cyrillic_A Cyrillic_softsign Cyrillic_SOFTSIGN
Cyrillic_be Cyrillic_BE Cyrillic_yeru Cyrillic_YERU
Cyrillic_tse Cyrillic_TSE Cyrillic_ze Cyrillic_ZE
Cyrillic_de Cyrillic_DE Cyrillic_sha Cyrillic_SHA
Cyrillic_ie Cyrillic_IE Cyrillic_e Cyrillic_E
Cyrillic_ef Cyrillic_EF Cyrillic_shcha Cyrillic_SHCHA
Cyrillic_ghe Cyrillic_GHE Cyrillic_che Cyrillic_CHE
Cyrillic_ha Cyrillic_HA Cyrillic_hardsign Cyrillic_HARDSIGN

Capitalization Rules for Greek Keysyms

This table lists the Greek keysyms for which XKB defines upper and lower case:



Default Symbol
Transformations

123

Lower Case Upper Case Lower Case Upper Case
Greek_omegaaccent Greek_OMEGAACCENT Greek_iota Greek_IOTA
Greek_alphaaccent Greek_ALPHAACCENT Greek_kappa Greek_KAPPA
Greek_epsilonaccent Greek_EPSILONACCENT Greek_lamda Greek_LAMDA
Greek_etaaccent Greek_ETAACCENT Greek_lambda Greek_LAMBDA
Greek_iotaaccent Greek_IOTAACCENT Greek_mu Greek_MU
Greek_iotadieresis Greek_IOTADIERESIS Greek_nu Greek_NU
Greek_omicronaccent Greek_OMICRONACCENTGreek_xi Greek_XI
Greek_upsilonaccent Greek_UPSILONACCENT Greek_omicronGreek_OMICRON
Greek_upsilondieresis Greek_UPSILONDIERESISGreek_pi Greek_PI
Greek_alpha Greek_ALPHA Greek_rho Greek_RHO
Greek_beta Greek_BETA Greek_sigma Greek_SIGMA
Greek_gamma Greek_GAMMA Greek_tau Greek_TAU
Greek_delta Greek_DELTA Greek_upsilon Greek_UPSILON
Greek_epsilon Greek_EPSILON Greek_phi Greek_PHI
Greek_zeta Greek_ZETA Greek_chi Greek_CHI
Greek_eta Greek_ETA Greek_psi Greek_PSI
Greek_theta Greek_THETA Greek_omega Greek_OMEGA

Capitalization Rules for Other Keysyms

XKB defines no capitalization rules for symbols in any other set of keysyms provid-
ed by the consortium. Applications are free to apply additional rules for private
keysyms or for other keysyms not covered by XKB.



124

Appendix B. Canonical Key Types
Canonical Key Types

The ONE_LEVEL Key Type
The  ONE_LEVEL key type describes groups that have only one symbol. The default
ONE_LEVEL type has no map entries and does not pay attention to any modifiers.

The TWO_LEVEL Key Type
The  TWO_LEVEL key type describes groups that have two symbols but are neither
alphabetic nor numeric keypad keys. The default  TWO_LEVEL type uses only the
Shift modifier. It returns level two if  Shift is set, level one if it is not.

The ALPHABETIC Key Type
The  ALPHABETIC key type describes groups that consist of two symbols — the
lowercase form of a symbol followed by the uppercase form of the same symbol.
The default  ALPHABETIC type implements locale-sensitive "shift cancels caps lock"
behavior using both the  Shift and  Lock modifiers as follows:

• If  Shift and  Lock are both set, the default  ALPHABETIC type yields level one.

• If  Shift alone is set, it yields level two.

• If  Lock alone is set, it yields level one but preserves the  Lock modifier.

• If neither  Shift nor  Lock are set, it yields level one.

The KEYPAD Key Type
The  KEYPAD key type describes that consist of two symbols, at least one of which
is a numeric keypad symbol. The default  KEYPAD type implements "shift cancels
numeric lock" behavior using the  Shift modifier and the real modifier bound to the
virtual modifier named "NumLock" (the "NumLock" modifier) as follows:

• If  Shift and the "NumLock" modifier are both set, the default  KEYPAD  type yields
level one.

• If either  Shift or the "NumLock" modifier alone are set, it yields level two.

• If neither  Shift nor the "NumLock" modifier are set, it yields level one.



125

Appendix C. New KeySyms

New KeySyms

KeySyms Used by the ISO9995 Standard

Byte 3 Byte 4 Character Name
254 1 ISO LOCK
254 2 ISO LATCHING LEVEL TWO SHIFT
254 3 ISO LEVEL THREE SHIFT
254 4 ISO LATCHING LEVEL THREE SHIFT
254 5 ISO LEVEL THREE SHIFT LOCK
254 6 ISO LATCHING GROUP SHIFT
254 7 ISO GROUP SHIFT LOCK
254 8 ISO NEXT GROUP
254 9 ISO LOCK NEXT GROUP
254 10 ISO PREVIOUS GROUP
254 11 ISO LOCK PREVIOUS GROUP
254 12 ISO FIRST GROUP
254 13 ISO LOCK FIRST GROUP
254 14 ISO LAST GROUP
254 15 ISO LOCK LAST GROUP
254 32 LEFT TAB
254 33 MOVE LINE UP
254 34 MOVE LINE DOWN
254 35 PARTIAL LINE UP
254 36 PARTIAL LINE DOWN
254 37 PARTIAL SPACE LEFT
254 38 PARTIAL SPACE RIGHT
254 39 SET MARGIN LEFT
254 40 SET MARGIN RIGHT
254 41 RELEASE MARGIN LEFT
254 42 RELEASE MARGIN RIGHT
254 43 RELEASE MARGIN LEFT AND RIGHT
254 44 FAST CURSOR LEFT
254 45 FAST CURSOR RIGHT
254 46 FAST CURSOR UP
254 47 FAST CURSOR DOWN
254 48 CONTINUOUS UNDERLINE



New KeySyms

126

Byte 3 Byte 4 Character Name
254 49 DISCONTINUOUS UNDERLINE
254 50 EMPHASIZE
254 51 CENTER OBJECT
254 52 ISO_ENTER

KeySyms Used to Control The Core Pointer

Byte 3 Byte 4 Character Name
254 224 POINTER LEFT
254 225 POINTER RIGHT
254 226 POINTER UP
254 227 POINTER DOWN
254 228 POINTER UP AND LEFT
254 229 POINTER UP AND RIGHT
254 230 POINTER DOWN AND LEFT
254 231 POINTER DOWN AND RIGHT
254 232 DEFAULT POINTER BUTTON
254 233 POINTER BUTTON ONE
254 234 POINTER BUTTON TWO
254 235 POINTER BUTTON THREE
254 236 POINTER BUTTON FOUR
254 237 POINTER BUTTON FIVE
254 238 DEFAULT POINTER BUTTON DOUBLE

CLICK
254 239 POINTER BUTTON ONE DOUBLE

CLICK
254 240 POINTER BUTTON TWO DOUBLE

CLICK
254 241 POINTER BUTTON THREE DOUBLE

CLICK
254 242 POINTER BUTTON FOUR DOUBLE

CLICK
254 243 POINTER BUTTON FIVE DOUBLE

CLICK
254 244 DRAG DEFAULT POINTER BUTTON
254 245 DRAG POINTER BUTTON ONE
254 246 DRAG POINTER BUTTON TWO
254 247 DRAG POINTER BUTTON THREE
254 248 DRAG POINTER BUTTON FOUR
254 249 ENABLE POINTER FROM KEYBOARD
254 250 ENABLE KEYBOARD POINTER ACCEL



New KeySyms

127

Byte 3 Byte 4 Character Name
254 251 SET DEFAULT POINTER BUTTON

NEXT
254 252 SET DEFAULT POINTER BUTTON PRE-

VIOUS
254 253 DRAG POINTER BUTTON FIVE

KeySyms Used to Change Keyboard Controls

Byte 3 Byte 4 Character Name
254 112 ENABLE ACCESSX KEYS
254 113 ENABLE ACCESSX FEEDBACK
254 114 TOGGLE REPEAT KEYS
254 115 TOGGLE SLOW KEYS
254 116 ENABLE BOUNCE KEYS
254 117 ENABLE STICKY KEYS
254 118 ENABLE MOUSE KEYS
254 119 ENABLE MOUSE KEYS ACCELER-

ATION
254 120 ENABLE OVERLAY1
254 121 ENABLE OVERLAY2
254 122 ENABLE AUDIBLE BELL

KeySyms Used To Control The Server

Byte Byte Character Name
254 208 FIRST SCREEN
254 209 PREVIOUS SCREEN
254 210 NEXT SCREEN
254 211 LAST SCREEN
254 212 TERMINATE SERVER



New KeySyms

128

KeySyms for Non-Spacing Diacritical Keys

Byte Byte Character Name
254 80 DEAD GRAVE ACCENT
254 81 DEAD ACUTE ACCENT
254 82 DEAD CIRCUMFLEX
254 83 DEAD TILDE
254 84 DEAD MACRON
254 85 DEAD BREVE
254 86 DEAD DOT ABOVE
254 87 DEAD DIAERESIS
254 88 DEAD RING ABOVE
254 89 DEAD DOUBLE ACUTE ACCENT
254 90 DEAD CARON
254 91 DEAD CEDILLA
254 92 DEAD OGONEK
254 93 DEAD IOTA
254 94 DEAD VOICED SOUND
254 95 DEAD SEMI VOICED SOUND
254 96 DEAD DOT BELOW



129

Appendix D. Protocol Encoding
Syntactic Conventions

This document uses the same syntactic conventions as the encoding of the core X
protocol, with the following additions:

A LISTofITEMs contains zero or more items of variable type and size. The encode
form for a LISTofITEMs is:

v     LISTofITEMs           NAME

      TYPE                  MASK-EXPRESSION
      value1                corresponding field(s)
      ...
      valuen                corresponding field(s)

The MASK-EXPRESSION is an expression using C-style boolean operators and fields
of the request which specifies the bitmask used to determine whether or not a mem
ber of the LISTofITEMs is present. If present, TYPE specifies the interpretation of
the resulting bitmask and the values are listed using the symbolic names of the
members of the set. If TYPE is blank, the values are numeric constants.

It is possible for a single bit in the MASK-EXPRESSION to control more than one
ITEM — if the bit is set, all listed ITEMs are present. It is also possible for multiple
bits in the MASK-EXPRESSION to control a single ITEM — if any of the bits associ-
ated with an ITEM are set, it is present in the LISTofITEMs.

The size of a LISTofITEMS is derived from the items that are present in the list, so it
is always given as a variable in the request description, and the request is followed
by a section of the form:

ITEMs
encode-form
...
encode-form

listing an encode-form for each ITEM. The NAME in each encode-form keys to the
fields listed as corresponding to each bit in the MASK-EXPRESSION. Items are not
necessarily the same size, and the size specified in the encoding form is the size
that the item occupies if it is present.

Some types are of variable size. The encode-form for a list of items of a single type
but variable size is:

S0+..Ss     LISTofTYPE     name

Which indicates that the list has  s elements of variable size and that the size of the
list is the sum of the sizes of all of the elements that make up the list. The notation
Sn refers to the size of the  n th element of the list and the notation S* refers to
the size of the list as a whole.



Protocol Encoding

130

The definition of a type of variable size includes an expression which specifies the
size. The size is specified as a constant plus a variable expression; the constant
specifies the size of the fields that are always present and the variables which make
up the variable expression are defined in the constant portion of the structure. For
example, the following definition specifies a counted string with a two-byte length
field preceding the string:

TYPE             2+n+p
2     n          length
n     STRING8    string
p                unused,p=pad(n)

Some fields are optional. The size of an optional field has the form: "[ expr ]" where
expr specifies the size of the field if it is present. An explanation of the conditions
under which the field is present follows the name in the encode form:

1       BOOL          more
3                     unused
[4]     CARD32        optData, if more==TRUE

This portion of the structure is four bytes long if more is FALSE or eight bytes long
if more is TRUE. This notation can also be used in size expressions; for example,
the size of the previous structure is written as "4+[4]" bytes.

Common Types

SETofKB_EVENTTYPE
     #x0001                  XkbNewKeyboardNotify
     #x0002                  XkbMapNotify
     #x0004                  XkbStateNotify
     #x0008                  XkbControlsNotify
     #x0010                  XkbIndicatorStateNotify
     #x0020                  XkbIndicatorMapNotify
     #x0040                  XkbNamesNotify
     #x0080                  XkbCompatMapNotify
     #x0100                  XkbBellNotify
     #x0200                  XkbActionMessage
     #x0400                  XkbAccessXNotify
     #x0800                  XkbExtensionDeviceNotify

SETofKB_NKNDETAIL
     #x01                    XkbNKN_Keycodes
     #x02                    XkbNKN_Geometry
     #x04                    XkbNKN_DeviceID

SETofKB_AXNDETAIL
     #x01                    XkbAXN_SKPress
     #x02                    XkbAXN_SKAccept
     #x04                    XkbAXN_SKReject
     #x08                    XkbAXN_SKRelease
     #x10                    XkbAXN_BKAccept
     #x20                    XkbAXN_BKReject



Protocol Encoding

131

     #x40                    XkbAXN_AXKWarning

SETofKB_MAPPART
     #x0001                  XkbKeyTypes
     #x0002                  XkbKeySyms
     #x0004                  XkbModifierMap
     #x0008                  XkbExplicitComponents
     #x0010                  XkbKeyActions
     #x0020                  XkbKeyBehaviors
     #x0040                  XkbVirtualMods
     #x0080                  XkbVirtualModMap

SETofKB_STATEPART
     #x0001                  XkbModifierState
     #x0002                  XkbModifierBase
     #x0004                  XkbModifierLatch
     #x0008                  XkbModifierLock
     #x0010                  XkbGroupState
     #x0020                  XkbGroupBase
     #x0040                  XkbGroupLatch
     #x0080                  XkbGroupLock
     #x0100                  XkbCompatState
     #x0200                  XkbGrabMods
     #x0400                  XkbCompatGrabMods
     #x0800                  XkbLookupMods
     #x1000                  XkbCompatLookupMods
     #x2000                  XkbPointerButtons

SETofKB_BOOLCTRL
     #x00000001                  XkbRepeatKeys
     #x00000002                  XkbSlowKeys
     #x00000004                  XkbBounceKeys
     #x00000008                  XkbStickyKeys
     #x00000010                  XkbMouseKeys
     #x00000020                  XkbMouseKeysAccel
     #x00000040                  XkbAccessXKeys
     #x00000080                  XkbAccessXTimeoutMask
     #x00000100                  XkbAccessXFeedbackMask
     #x00000200                  XkbAudibleBellMask
     #x00000400                  XkbOverlay1Mask
     #x00000800                  XkbOverlay2Mask
     #x00001000                  XkbIgnoreGroupLockMask

SETofKB_CONTROL
     Encodings are the same as for SETofKB_BOOLCTRL, with the addition of:
     #x080000000                  XkbGroupsWrap
     #x100000000                  XkbInternalMods
     #x200000000                  XkbIgnoreLockMods
     #x400000000                  XkbPerKeyRepeat
     #x800000000                  XkbControlsEnabled

SETofKB_AXFBOPT
     #x0001                  XkbAX_SKPressFB
     #x0002                  XkbAX_SKAcceptFB
     #x0004                  XkbAX_FeatureFB



Protocol Encoding

132

     #x0008                  XkbAX_SlowWarnFB
     #x0010                  XkbAX_IndicatorFB
     #x0020                  XkbAX_StickyKeysFB
     #x0100                  XkbAX_SKReleaseFB
     #x0200                  XkbAX_SKRejectFB
     #x0400                  XkbAX_BKRejectFB
     #x0800                  XkbAX_DumbBell

SETofKB_AXSKOPT
     #x0040                  XkbAX_TwoKeys
     #x0080                  XkbAX_LatchToLock

SETofKB_AXOPTION
     Encoding same as the bitwise union of :
     SETofKB_AXFBOPT
     SETofKB_AXSKOPT

KB_DEVICESPEC
     0..255     input extension device id
     #x100      XkbUseCoreKbd
     #x200      XkbUseCorePtr

KB_LEDCLASSRESULT
     0     KbdFeedbackClass
     4     LedFeedbackClass

KB_LEDCLASSSPEC
     Encoding same as KB_LEDCLASSRESULT, with the addition of:
     #x0300     XkbDfltXIClass
     #x0500     XkbAllXIClasses

KB_BELLCLASSRESULT
     0     KbdFeedbackClass
     5     BellFeedbackClass

KB_BELLCLASSSPEC
     Encoding same as KB_BELLCLASSRESULT, with the addition of:
     #x0300     XkbDfltXIClass

KB_IDSPEC
     0..255     input extension feedback id
     #x0400     XkbDfltXIId

KB_IDRESULT
     Encoding same as KB_IDSPEC, with the addition of:
     #xff00     XkbXINone

KB_MULTIIDSPEC
     encodings same as KB_IDSPEC, with the addition of:
     #x0500     XkbAllXIIds

KB_GROUP
     0     XkbGroup1
     1     XkbGroup2
     2     XkbGroup3
     3     XkbGroup4



Protocol Encoding

133

KB_GROUPS
     Encoding same as KB_GROUP, with the addition of:
     254     XkbAnyGroup
     255     XkbAllGroups

SETofKB_GROUP
     #x01     XkbGroup1
     #x02     XkbGroup2
     #x04     XkbGroup3
     #x08     XkbGroup4

SETofKB_GROUPS
     Encoding same as SETofKB_GROUP, with the addition of:
     #x80     XkbAnyGroup

KB_GROUPSWRAP
     #x00     XkbWrapIntoRange
     #x40     XkbClampIntoRange
     #x80     XkbRedirectIntoRange

SETofKB_VMODSHIGH
     #x80     virtual modifier 15
     #x40     virtual modifier 14
     #x20     virtual modifier 13
     #x10     virtual modifier 12
     #x08     virtual modifier 11
     #x04     virtual modifier 10
     #x02     virtual modifier 9
     #x01     virtual modifier 8

SETofKB_VMODSLOW
     #x80     virtual modifier 7
     #x40     virtual modifier 6
     #x20     virtual modifier 5
     #x10     virtual modifier 4
     #x08     virtual modifier 3
     #x04     virtual modifier 2
     #x02     virtual modifier 1
     #x01     virtual modifier 0

SETofKB_VMOD
     #x8000     virtual modifier 15
     #x4000     virtual modifier 14
     #x2000     virtual modifier 13
     #x1000     virtual modifier 12
     #x0800     virtual modifier 11
     #x0400     virtual modifier 10
     #x0200     virtual modifier 9
     #x0100     virtual modifier 8
     #x0080     virtual modifier 7
     #x0040     virtual modifier 6
     #x0020     virtual modifier 5
     #x0010     virtual modifier 4
     #x0008     virtual modifier 3
     #x0004     virtual modifier 2



Protocol Encoding

134

     #x0002     virtual modifier 1
     #x0001     virtual modifier 0

SETofKB_EXPLICIT
     #x80     XkbExplicitVModMap
     #x40     XkbExplicitBehavior
     #x20     XkbExplicitAutoRepeat
     #x10     XkbExplicitInterpret
     #x08     XkbExplicitKeyType4
     #x04     XkbExplicitKeyType3
     #x02     XkbExplicitKeyType2
     #x01     XkbExplicitKeyType1

KB_SYMINTERPMATCH
     #x80     XkbSI_LevelOneOnly
     #x7f     operation, one of the following:
          0 XkbSI_NoneOf
          1 XkbSI_AnyOfOrNone
          2 XkbSI_AnyOf
          3 XkbSI_AllOf
          4 XkbSI_Exactly

SETofKB_IMFLAG
     #x80     XkbIM_NoExplicit
     #x40     XkbIM_NoAutomatic
     #x20     XkbIM_LEDDrivesKB

SETofKB_IMMODSWHICH
     #x10     XkbIM_UseCompat
     #x08     XkbIM_UseEffective
     #x04     XkbIM_UseLocked
     #x02     XkbIM_UseLatched
     #x01     XkbIM_UseBase

SETofKB_IMGROUPSWHICH
     #x10     XkbIM_UseCompat
     #x08     XkbIM_UseEffective
     #x04     XkbIM_UseLocked
     #x02     XkbIM_UseLatched
     #x01     XkbIM_UseBase

KB_INDICATORMAP
1     SETofKB_IMFLAGS          flags
1     SETofKB_IMGROUPSWHICH          whichGroups
1     SETofKB_GROUP          groups
1     SETofKB_IMMODSWHICH          whichMods
1     SETofKEYMASK          mods
1     SETofKEYMASK          realMods
2     SETofKB_VMOD          vmods
4     SETofKB_BOOLCTRL          ctrls

SETofKB_CMDETAIL
     #x01     XkbSymInterp
     #x02     XkbGroupCompat

SETofKB_NAMEDETAIL



Protocol Encoding

135

     #x0001     XkbKeycodesName
     #x0002     XkbGeometryName
     #x0004     XkbSymbolsName
     #x0008     XkbPhysSymbolsName
     #x0010     XkbTypesName
     #x0020     XkbCompatName
     #x0040     XkbKeyTypeNames
     #x0080     XkbKTLevelNames
     #x0100     XkbIndicatorNames
     #x0200     XkbKeyNames
     #x0400     XkbKeyAliases
     #x0800     XkbVirtualModNames
     #x1000     XkbGroupNames
     #x2000     XkbRGNames

SETofKB_GBNDETAIL
     #x01     XkbGBN_Types
     #x02     XkbGBN_CompatMap
     #x04     XkbGBN_ClientSymbols
     #x08     XkbGBN_ServerSymbols
     #x10     XkbGBN_IndicatorMaps
     #x20     XkbGBN_KeyNames
     #x40     XkbGBN_Geometry
     #x80     XkbGBN_OtherNames

SETofKB_XIEXTDEVFEATURE
     #x02     XkbXI_ButtonActions
     #x04     XkbXI_IndicatorNames
     #x08     XkbXI_IndicatorMaps
     #x10     XkbXI_IndicatorState

SETofKB_XIFEATURE
     Encoding same as SETofKB_XIEXTDEVFEATURE, with the addition of:
     #x01     XkbXI_Keyboards

SETofKB_XIDETAIL
     Encoding same as SETofKB_XIFEATURE, with the addition of:
     #x8000     XkbXI_UnsupportedFeature

SETofKB_PERCLIENTFLAG
     #x01     XkbDetectableAutorepeat
     #x02     XkbGrabsUseXKBState
     #x04     XkbAutoResetControls
     #x08     XkbLookupStateWhenGrabbed
     #x10     XkbSendEventUsesXKBState

KB_MODDEF
1     SETofKEYMASK          mask
1     SETofKEYMASK          realMods
2     SETofVMOD          vmods

KB_COUNTED_STRING8
1     l          length
l     STRING8          string

KB_COUNTED_STRING16



Protocol Encoding

136

2     l          length
l     STRING8          string

KB_COUNTED_STRING16
p               unused,p=pad(2+l)

Errors
1     0          Error
2     ??          code
2     CARD16          sequence
4     CARD32          error value
     most significant 8 bits of error value have the meaning:
     0xff     XkbErrBadDevice
     0xfe     XkbErrBadClass
     0xfd     XkbErrBadId
     the least significant 8 bits of the error value contain the device id,
class, or feedback
     id which failed.
2     CARD16          minor opcode
1     CARD8          major opcode
21               unused

Key Actions
1     0          type
7               unused

1     1          type
1     BITMASK          flags
     #x01     XkbSA_ClearLocks
     #x02     XkbSA_LatchToLock
     #x04     XkbSA_UseModMapMods
1     SETofKEYMASK          mask
1     SETofKEYMASK          real modifiers
1     SETofKB_VMODSHIGH          virtual modifiers high
1     SETofKB_VMODSLOW          virtual modifiers low
2               unused

1     2          type
1     BITMASK          flags
     #x01     XkbSA_ClearLocks
     #x02     XkbSA_LatchToLock
     #x04     XkbSA_UseModMapMods
1     SETofKEYMASK          mask
1     SETofKEYMASK          real modifiers
1     SETofKB_VMODSHIGH          virtual modifiers high
1     SETofKB_VMODSLOW          virtual modifiers low
2               unused

1     3          type
1     BITMASK          flags
     #x01     XkbSA_LockNoLock
     #x02     XkbSA_LockNoUnlock



Protocol Encoding

137

     #x04     XkbSA_UseModMapMods
1     SETofKEYMASK          mask
1     SETofKEYMASK          real modifiers
1     SETofKB_VMODSHIGH          virtual modifiers high
1     SETofKB_VMODSLOW          virtual modifiers low
2               unused

1     4          type
1     BITMASK          flags
     #x01     XkbSA_ClearLocks
     #x02     XkbSA_LatchToLock
     #x04     XkbSA_GroupAbsolute
1     INT8          group
5               unused

1     5          type
1     BITMASK          flags
     #x01     XkbSA_ClearLocks
     #x02     XkbSA_LatchToLock
     #x04     XkbSA_GroupAbsolute
1     INT8          group
5               unused

1     6          type
1     BITMASK          flags
     #x01     XkbSA_LockNoLock
     #x02     XkbSA_LockNoUnlock
     #x04     XkbSA_GroupAbsolute
1     INT8          group
5               unused

1     7          type
1     BITMASK          flags
     #x01     XkbSA_NoAcceleration
     #x02     XkbSA_MoveAbsoluteX
     #x04     XkbSA_MoveAbsoluteY
1     INT8          x high
1     CARD8          x low
1     INT8          y high
1     CARD8          y low
2               unused

1     8          type
1     BITMASK          flags
1     CARD8          count
1     CARD8          button
4               unused

1     9          type
1     BITMASK          flags
1               unused
1     CARD8          button
4               unused

1     10          type



Protocol Encoding

138

1     BITMASK          flags
     #x02     XkbSA_DfltBtnAbsolute
1     BITMASK          affect
     #x01     XkbSA_AffectDfltBtn
1     INT8          value
4               unused

1     11          type
1     BITMASK          flags
     #x01     XkbSA_LockNoLock
     #x02     XkbSA_LockNoUnlock
     #x04     XkbSA_UseModMapMods (if SA_ISODfltIsGroup is 0)
     #x04     XkbSA_GroupAbsolute (if SA_ISODfltIsGroup is 1)
     #x80     XkbSA_ISODfltIsGroup
1     SETofKEYMASK          mask
1     SETofKEYMASK          real modifiers
1     INT8          group
1     BITMASK          affect
     #x08     XkbSA_ISONoAffectCtrls
     #x10     XkbSA_ISONoAffectPtr
     #x20     XkbSA_ISONoAffectGroup
     #x40     XkbSA_ISONoAffectMods
1     SETofKB_VMODSHIGH          virtual modifiers high
1     SETofKB_VMODSLOW          virtual modifiers low

1     12          type
7               unused

1     13          type
1     BITMASK          flags
     #x01     XkbSA_SwitchApplication
     #x04     XkbSA_SwitchAbsolute
1     INT8          new screen
5               unused (must be 0)

1     14          type
3               unused (must be 0)
1     BITMASK          boolean controls high
     #x01     XkbAccessXFeedbackMask
     #x02     XkbAudibleBellMask
     #x04     XkbOverlay1Mask
     #x08     XkbOverlay2Mask
     #x10     XkbIgnoreGroupLockMask
1     BITMASK          boolean controls low
     #x01     XkbRepeatKeys
     #x02     XkbSlowKeys
     #x04     XkbBounceKeys
     #x08     XkbStickyKeys
     #x10     XkbMouseKeys
     #x20     XkbMouseKeysAccel
     #x40     XkbAccessXKeys
     #x80     XkbAccessXTimeoutMask
2          unused (must be 0)

1     15          type



Protocol Encoding

139

3               unused (must be 0)
1     BITMASK          boolean controls high
     #x01     XkbAccessXFeedbackMask
     #x02     XkbAudibleBellMask
     #x04     XkbOverlay1Mask
     #x08     XkbOverlay2Mask
     #x10     XkbIgnoreGroupLockMask
1     BITMASK          boolean controls low
     #x01     XkbRepeatKeys
     #x02     XkbSlowKeys
     #x04     XkbBounceKeys
     #x08     XkbStickyKeys
     #x10     XkbMouseKeys
     #x20     XkbMouseKeysAccel
     #x40     XkbAccessXKeys
     #x80     XkbAccessXTimeoutMask

1     16          type
2               unused (must be 0)

1     16          type
1     BITMASK          flags
     #x01          XkbSA_MessageOnPress
     #x02          XkbSA_MessageOnRelease
     #x04          XkbSA_MessageGenKeyEvent
6     STRING          message

1     17          type
1     KEYCODE          new key
1     SETofKEYMASK          mask
1     SETofKEYMASK          real modifiers
1     SETofKB_VMODSHIGH          virtual modfiiers mask high
1     SETofKB_VMODSLOW          virtual modifiers mask low
1     SETofKB_VMODSHIGH          virtual modifiers high
1     SETofKB_VMODSLOW          virtual modfiers low

1     18          type
1     0          flags
1     CARD8          count
1     CARD8          button
1     CARD8          device
3               unused (must be 0)

1     19          type
1     BITMASK          flags
     #x01          XkbSA_LockNoLock
     #x02          XkbSA_LockNoUnlock
1               unused
1     CARD8          button
1     CARD8          device

1     20          type
1     CARD8          device
1     KB_SA_VALWHAT          valuator 1 what
     #x00          XkbSA_IgnoreVal



Protocol Encoding

140

     #x01          XkbSA_SetValMin
     #x02          XkbSA_SetValCenter
     #x03          XkbSA_SetValMax
     #x04          XkbSA_SetValRelative
     #x05          XkbSA_SetValAbsolute
1     CARD8          valuator 1 index
1     CARD8          valuator 1 value
1     KB_SA_VALWHAT          valuator 2 what
     Encodings as for "valuator 1 what" above
1     CARD8          valuator 2 index
1     CARD8          valuator 2 value

Key Behaviors
1     #x00          type
1               unused

1     #x01          type
1               unused

1     #x02          type
1     0..31          group

1     #x03          type
1     KEYCODE          key

1     #x04          type
1     CARD8          key

1     #x81          type
1               unused

1     #x82          type
1     0..31          group

1     #x83          type
1     KEYCODE          key

1     #x84          type
1     KEYCODE          key

Requests
1     ??          opcode
1     0          xkb-opcode
2     2          request-length
2     CARD16          wantedMajor
2     CARD16          wantedMinor

1     1          Reply
1     BOOL          supported
2     CARD16          sequence number
4     0           reply length
2     1          serverMajor
2     0          serverMinor



Protocol Encoding

141

20               unused

1     ??          opcode
1     1          xkb-opcode
2     4+(V+p)/4          request-length
2     KB_DEVICESPEC           deviceSpec
2     SETofKB_EVENTTYPE          affectWhich
2     SETofKB_EVENTTYPE          clear
2     SETofKB_EVENTTYPE          selectAll
2     SETofKB_MAPDETAILS          affectMap
2     SETofKB_MAPDETAILS          map
V     LISTofITEMs          details
     SETofKB_EVENTTYPE
(affectWhich&(~clear)&(~selectAll))
     XkbNewKeyboardNotify     affectNewKeyboard, newKeyboardDetails
     XkbStateNotify     affectState, stateDetails
     XkbControlsNotify     affectCtrls, ctrlDetails
     XkbIndicatorStateNotify     affectIndicatorState, indicatorStateDetails
     XkbIndicatorMapNotify     affectIndicatorMap, indicatorMapDetails
     XkbNamesNotify     affectNames, namesDetails
     XkbCompatMapNotify     affectCompat, compatDetails
     XkbBellNotify     affectBell, bellDetails
     XkbActionMessage     affectMsgDetails, msgDetails
     XkbExtensionDeviceNotify     affectExtDev, extdevDetails

ITEMs
p          unused, p=pad(V)

ITEMs
2     SETofKB_NKNDETAIL          affectNewKeyboard
2     SETofKB_NKNDETAIL          newKeyboardDetails
2     SETofKB_STATEPART          affectState
2     SETofKB_STATEPART          stateDetails
4     SETofKB_CONTROL          affectCtrls
4     SETofKB_CONTROL          ctrlDetails
4     SETofKB_INDICATOR          affectIndicatorState
4     SETofKB_INDICATOR          indicatorStateDetails
4     SETofKB_INDICATOR          affectIndicatorMaps
4     SETofKB_INDICATOR          indicatorMapDetails
2     SETofKB_NAME_DETAIL          affectNames
2     SETofKB_NAME_DETAIL          namesDetails
1     SETofKB_CMDETAIL          affectCompat
1     SETofKB_CMDETAIL          compatDetails
1     SETofKB_BELLDETAIL          affectBell
1     SETofKB_BELLDETAIL          bellDetails
1     SETofKB_MSGDETAIL          affectMsgDetails
1     SETofKB_MSGDETAIL          msgDetails
2     SETofKB_AXNDETAIL          affectAccessX
2     SETofKB_AXNDETAIL          accessXDetails
2     SETofKB_XIDETAIL          affectExtDev
2     SETofKB_XIDETAIL          extdevDetails

1     ??          opcode
1     3          xkb-opcode
2     7          request-length



Protocol Encoding

142

2     KB_DEVICESPEC           deviceSpec
2     KB_BELLCLASSSPEC          bellClass
2     KB_IDSPEC          bellID
1     INT8          percent
1     BOOL          forceSound
1     BOOL          eventOnly
1               unused
2     INT16          pitch
2     INT16          duration
2               unused
4     ATOM          name
4     WINDOW          window

1     ??          opcode
1     4          xkb-opcode
2     2          request-length
2     KB_DEVICESPEC           deviceSpec
2               unused

1     1          Reply
1     CARD8          deviceID
2     CARD16          sequence number
4     0          length
1     SETofKEYMASK          mods
1     SETofKEYMASK          baseMods
1     SETofKEYMASK          latchedMods
1     SETofKEYMASK          lockedMods
1     KP_GROUP          group
1     KP_GROUP          lockedGroup
2     INT16          baseGroup
2     INT16          latchedGroup
1     SETofKEYMASK          compatState
1     SETofKEYMASK          grabMods
1     SETofKEYMASK          compatGrabMods
1     SETofKEYMASK          lookupMods
1     SETofKEYMASK          compatLookupMods
1               unused
2     SETofBUTMASK          ptrBtnState
6               unused

1     ??          opcode
1     5          xkb-opcode
2     4          request-length
2     KB_DEVICESPEC           deviceSpec
1     SETofKEYMASK          affectModLocks
1     SETofKEYMASK          modLocks
1     BOOL          lockGroup
1     KB_GROUP          groupLock
1     SETofKEYMASK          affectModLatches
1     SETofKEYMASK          modLatches
1               unused
1     BOOL          latchGroup
2     INT16          groupLatch

1     ??          opcode



Protocol Encoding

143

1     6          xkb-opcode
2     2          request-length
2     KB_DEVICESPEC           deviceSpec
2               unused

1     1          Reply
1     CARD8          deviceID
2     CARD16          sequence number
4     15          length
1     CARD8          mouseKeysDfltBtn
1     CARD8          numGroups
1     CARD8          groupsWrap
1     SETofKEYMASK          internalMods.mask
1     SETofKEYMASK          ignoreLockMods.mask
1     SETofKEYMASK          internalMods.realMods
1     SETofKEYMASK          ignoreLockMods.realMods
1               unused
2     SETofKB_VMOD          internalMods.vmods
2     SETofKB_VMOD          ignoreLockMods.vmods
2     CARD16          repeatDelay
2     CARD16          repeatInterval
2     CARD16          slowKeysDelay
2     CARD16          debounceDelay
2     CARD16          mouseKeysDelay
2     CARD16          mouseKeysInterval
2     CARD16          mouseKeysTimeToMax
2     CARD16          mouseKeysMaxSpeed
2     INT16          mouseKeysCurve
2     SETofKB_AXOPTION          accessXOptions
2     CARD16          accessXTimeout
2     SETofKB_AXOPTION          accessXTimeoutOptionsMask
2     SETofKB_AXOPTION          accessXTimeoutOptionValues
2               unused
4     SETofKB_BOOLCTRL          accessXTimeoutMask
4     SETofKB_BOOLCTRL          accessXTimeoutValues
4     SETofKB_BOOLCTRL          enabledControls
32     LISTofCARD8          perKeyRepeat

1     ??          opcode
1     7          xkb-opcode
2     25          request-length
2     KB_DEVICESPEC           deviceSpec
1     SETofKEYMASK          affectInternalRealMods
1     SETofKEYMASK          internalRealMods
1     SETofKEYMASK          affectIgnoreLockRealMods
1     SETofKEYMASK          ignoreLockRealMods
2     SETofKB_VMOD          affectInternalVirtualMods
2     SETofKB_VMOD          internalVirtualMods
2     SETofKB_VMOD          affectIgnoreLockVirtualMods
2     SETofKB_VMOD          ignoreLockVirtualMods
1     CARD8          mouseKeysDfltBtn
1     CARD8          groupsWrap
2     SETofKB_AXOPTION          accessXOptions
2               unused



Protocol Encoding

144

4     SETofKB_BOOLCTRL          affectEnabledControls
4     SETofKB_BOOLCTRL          enabledControls
4     SETofKB_CONTROL          changeControls
2     CARD16          repeatDelay
2     CARD16          repeatInterval
2     CARD16          slowKeysDelay
2     CARD16          debounceDelay
2     CARD16          mouseKeysDelay
2     CARD16          mouseKeysInterval
2     CARD16          mouseKeysTimeToMax
2     CARD16          mouseKeysMaxSpeed
2     INT16          mouseKeysCurve
2     CARD16          accessXTimeout
4     SETofKB_BOOLCTRL          accessXTimeoutMask
4     SETofKB_BOOLCTRL          accessXTimeoutValues
2     SETofKB_AXOPTION          accessXTimeoutOptionsMask
2     SETofKB_AXOPTION          accessXTimeoutOptionsValues
32     LISTofCARD8          perKeyRepeat

1     CARD8          opcode
1     8          xkb-opcode
2     7          request-length
2     KB_DEVICESPEC           deviceSpec
2     SETofKB_MAPPART          full
2     SETofKB_MAPPART          partial
1     CARD8          firstType
1     CARD8          nTypes
1     KEYCODE          firstKeySym
1     CARD8          nKeySyms
1     KEYCODE          firstKeyAction
1     CARD8          nKeyActions
1     KEYCODE          firstKeyBehavior
1     CARD8          nKeyBehaviors
2     SETofKB_VMOD          virtualMods
1     KEYCODE          firstKeyExplicit
1     CARD8          nKeyExplicit
1     KEYCODE          firstModMapKey
1     CARD8          nModMapKeys
1     KEYCODE          firstVModMapKey
1     CARD8          nVModMapKeys
2               unused

1     1          Reply
1     CARD8          deviceID
2     CARD16          sequence number
4     2+(I/4)          length
2               unused
1     KEYCODE          minKeyCode
1     KEYCODE          maxKeyCode
2     SETofKB_MAPPART          present
1     CARD8          firstType
1     t          nTypes
1     CARD8          totalTypes
1     KEYCODE          firstKeySym



Protocol Encoding

145

2     S          totalSyms
1     s          nKeySyms
1     KEYCODE          firstKeyAction
2     A          totalActions
1     a          nKeyActions
1     KEYCODE          firstKeyBehavior
1     b          nKeyBehaviors
1     B          totalKeyBehaviors
1     KEYCODE          firstKeyExplicit
1     e          nKeyExplicit
1     E          totalKeyExplicit
1     KEYCODE          firstModMapKey
1     m          nModMapKeys
1     M          totalModMapKeys
1     KEYCODE          firstVModMapKey
1     0          nVModMapKeys
1     V          totalVModMapKeys
1               unused
2     SETofKB_VMOD          virtualMods (has v bits set to 1)
I     LISTofITEMs          map
     SETofKB_MAPPART               (present)
     XkbKeyTypes     typesRtrn
     XkbKeySyms     symsRtrn
     XkbKeyActions     actsRtrn.count, actsRtrn.acts
     XkbKeyBehaviors     behaviorsRtrn
     XkbVirtualMods     vmodsRtrn
     XkbExplicitComponents     explicitRtrn
     XkbModifierMap     modmapRtrn
     XkbVirtualModMap     vmodMapRtrn

ITEMs
T1+..Tt     LISTofKB_KEYTYPE          typesRtrn
8s+4S     LISTofKB_KEYSYMMAP          symsRtrn
a     LISTofCARD8          actsRtrn.count
p               unused,p=pad(a)
8A     LISTofKB_ACTION          actsRtrn.acts
4B     LISTofKB_SETBEHAVIOR          behaviorsRtrn
v     LISTofSETofKEYMASK          vmodsRtrn
p               unused, p=pad(v)
2E     LISTofKB_SETEXPLICIT          explicitRtrn
p               unused,p=pad(2E)
2M     LISTofKB_KEYMODMAP          modmapRtrn
p               unused, p=pad(2M)
4V     LISTofKB_KEYVMODMAP          vmodMapRtrn

KB_KEYTYPE     8+8m+[4m]
1     SETofKEYMASK          mods.mask
1     SETofKEYMASK          mods.mods
2     SETofKB_VMOD          mods.vmods
1     CARD8          numLevels
1     m          nMapEntries
1     BOOL          hasPreserve
1               unused
8m     LISTofKB_KTMAPENTRY          map



Protocol Encoding

146

[4m]     LISTofKB_MODDEF          preserve

KB_KTMAPENTRY
1     BOOL          active
1     SETofKEYMASK          mods.mask
1     CARD8          level
1     SETofKEYMASK          mods.mods
2     SETofKB_VMOD          mods.vmods
2               unused

KB_KEYSYMMAP     8+4n
4     LISTofCARD8          ktIndex
1     CARD8          groupInfo
1     CARD8          width
2     n          nSyms
4n     LISTofKEYSYM          syms

KB_SETBEHAVIOR
1     KEYCODE          keycode
2     KB_BEHAVIOR          behavior
1               unused

KB_SETEXPLICIT
1     KEYCODE          keycode
1     SETofKB_EXPLICIT          explicit

KB_KEYMODMAP
1     KEYCODE          keycode
1     SETofKB_KEYMASK          mods

KB_KEYVMODMAP
1     KEYCODE          keycode
1               unused
2     SETofKB_VMOD          vmods

1     CARD8          opcode
1     9          xkb-opcode
2     9+(I/4)          request-length
2     KB_DEVICESPEC           deviceSpec
2     SETofKB_MAPPART          present
2     SETofKB_SETMAPFLAGS          flags
     #0001     SetMapResizeTypes
     #0002     SetMapRecomputeActions
1     KEYCODE          minKeyCode
1     KEYCODE          maxKeyCode
1     CARD8          firstType
1     t          nTypes
1     KEYCODE          firstKeySym
1     s          nKeySyms
2     S          totalSyms
1     KEYCODE          firstKeyAction
1     a          nKeyActions
2     A          totalActions
1     KEYCODE          firstKeyBehavior
1     b          nKeyBehaviors



Protocol Encoding

147

1     B          totalKeyBehaviors
1     KEYCODE          firstKeyExplicit
1     e          nKeyExplicit
1     E          totalKeyExplicit
1     KEYCODE          firstModMapKey
1     m          nModMapKeys
1     M          totalModMapKeys
1     KEYCODE          firstVModMapKey
1     v          nVModMapKeys
1     V          totalVModMapKeys
2     SETofKB_VMOD          virtualMods (has n bits set to 1)
I     LISTofITEMs          values
     SETofKB_MAPPART          (present)
     XkbKeyTypes     types
     XkbKeySymbols     syms
     XkbKeyActions     actions.count,actions.actions
     XkbKeyBehaviors     behaviors
     XkbVirtualMods     vmods
     XkbExplicitComponents     explicit
     XkbModifierMap     modmap
     XkbVirtualModMap     vmodmap

ITEMs
T0+..Tt     LISTofKB_SETKEYTYPE          types
8s+4S     LISTofKB_KEYSYMMAP          syms
a     LISTofCARD8          actions.count
p               unused,p=pad(a)
8A     LISTofKB_ACTION          actions.actions
4B     LISTofKB_SETBEHAVIOR          behaviors
v     LISTofSETofKEYMASK          vmods
p               unused, p=pad(v)
2E     LISTofKB_SETEXPLICIT          explicit
p               unused,p=pad(2E)
2M     LISTofKB_KEYMODMAP          modmap
P               unused, p=pad(2M)
4V     LISTofKB_KEYVMODMAP          vmodmap

KB_SETKEYTYPE     8+4m+[4m]
1     SETofKEYMASK          mask
1     SETofKEYMASK          realMods
2     SETofKB_VMOD          virtualMods
1     CARD8          numLevels
1     m          nMapEntries
1     BOOL          preserve
1               unused
4m     LISTofKB_KTSETMAPENTRY          entries
[4m]     LISTofKB_MODDEF          preserveEntries (if preserve==TRUE)

KB_KTSETMAPENTRY
1     CARD8          level
1     SETofKEYMASK          realMods
2     SETofKB_VMOD          virtualMods

1     ??          opcode
1     10          xkb-opcode



Protocol Encoding

148

2     3          request-length
2     KB_DEVICESPEC           deviceSpec
1     SETofKB_GROUP          groups
1     BOOL          getAllSI
2     CARD16          firstSI
2     CARD16          nSI

1     1          Reply
1     CARD8          deviceID
2     CARD16          sequence number
4     (16n+4g)/4          length
1     SETofKB_GROUP          groupsRtrn (has g bits set to 1)
1               unused
2     CARD16          firstSIRtrn
2     n          nSIRtrn
2     CARD16          nTotalSI
16               unused
16n     LISTofKB_SYMINTERPRET          siRtrn
4g     LISTofKB_MODDEF          groupRtrn

1     ??          opcode
1     11          xkb-opcode
2     4+(16n+4g)          request-length
2     KB_DEVICESPEC           deviceSpec
1               unused
1     BOOL          recomputeActions
1     BOOL          truncateSI
1     SETofKB_GROUP          groups (has g bits set to 1)
2     CARD16          firstSI
2     n          nSI
2               unused
16n     LISTofKB_SYMINTERPRET          si
4g     LISTofKB_MODDEF          groupMaps

1     ??          opcode
1     12          xkb-opcode
2     2          request-length
2     KB_DEVICESPEC           deviceSpec

ITEMs
2               unused

1     1          Reply
1     CARD8          deviceID
2     CARD16          sequence number
4     0          length
4     SETofKB_INDICATOR          state
20               unused

1     ??          opcode
1     13          xkb-opcode
2     3          request-length
2     KB_DEVICESPEC           deviceSpec
2               unused
4     SETofKB_INDICATOR          which



Protocol Encoding

149

1     1          Reply
1     CARD8          deviceID
2     CARD16          sequence number
4     12n/4          length
4     SETofKB_INDICATOR          which (has n bits set to 1)
4     SETofKB_INDICATOR          realIndicators
1     n          nIndicators
15               unused
12n     LISTofKB_INDICATORMAP          maps

1     ??          opcode
1     14          xkb-opcode
2     3+3n          request-length
2     KB_DEVICESPEC           deviceSpec
2               unused
4     SETofKB_INDICATOR          which (has n bits set to 1)
12n     LISTofKB_INDICATORMAP          maps

1     CARD8          opcode
1     15          xkb-opcode
2     4          request-length
2     KB_DEVICESPEC           deviceSpec
2     KB_LEDCLASSSPEC          ledClass
2     KB_IDSPEC          ledID
2               unused
4     ATOM          indicator

1     1          Reply
1     CARD8          deviceID
2     CARD16          sequence number
4     0          length
4     ATOM          indicator
1     BOOL          found
1     BOOL          on
1     BOOL          realIndicator
1     KB_INDICATOR          ndx
1     SETofKB_IMFLAGS          map.flags
1     SETofKB_IMGROUPSWHICH          map.whichGroups
1     SETofKB_GROUPS          map.groups
1     SETofKB_IMMODSWHICH          map.whichMods
1     SETofKEYMASK          map.mods
1     SETofKEYMASK          map.realMods
2     SETofKB_VMOD          map.vmods
4     SETofKB_BOOLCTRL          map.ctrls
1     BOOL          supported
3               unused

1     ??          opcode
1     16          xkb-opcode
2     8          request-length
2     KB_DEVICESPEC           deviceSpec
2     KB_LEDCLASSSPEC          ledClass
2     KB_IDSPEC          ledID
2               unused
4     ATOM          indicator



Protocol Encoding

150

1     BOOL          setState
1     BOOL          on
1     BOOL          setMap
1     BOOL          createMap
1               unused
1     SETofKB_IMFLAGS          map.flags
1     SETofKB_IMGROUPSWHICH          map.whichGroups
1     SETofKB_GROUP          map.groups
1     SETofKB_IMMODSWHICH          map.whichMods
1     SETofKEYMASK          map.realMods
2     SETofKB_VMOD          map.vmods
4     SETofKB_BOOLCTRL          map.ctrls

1     CARD8          opcode
1     17          xkb-opcode
2     3          request-length
2     KB_DEVICESPEC           deviceSpec
2               unused
4     SETofKB_NAMEDETAIL          which

1     1          Reply
1     CARD8          deviceID
2     CARD16          sequence number
4     V/4          length
4     SETofKB_NAMEDETAIL          which
1     KEYCODE          minKeyCode
1     KEYCODE          maxKeyCode
1     t          nTypes
1     SETofKB_GROUP          groupNames (has g bits set to 1)
2     SETofKB_VMOD          virtualMods (has v bits set to 1)
1     KEYCODE          firstKey
1     k          nKeys
4     SETofKB_INDICATOR          indicators (has i bits set to 1)
1     r          nRadioGroups
1     a          nKeyAliases
2     l          nKTLevels
4               unused
V     LISTofITEMs          valueList
     SETofKB_NAMEDETAIL          (which)
     XkbKeycodesName     keycodesName
     XkbGeometryName     geometryName
     XkbSymbolsName     symbolsName
     XkbPhySymbolsName     physSymbolsName
     XkbTypesName     typesName
     XkbCompatName     compatName
     XkbKeyTypeNames     typeNames
     XkbKTLevelNames     nLevelsPerType, ktLevelNames
     XkbIndicatorNames     indicatorNames
     XkbVirtualModNames     virtualModNames
     XkbGroupNames     groupNames
     XkbKeyNames     keyNames
     XkbKeyAliases     keyAliases
     XkbRGNames     radioGroupNames

ITEMs



Protocol Encoding

151

4     ATOM          keycodesName
4     ATOM          geometryName
4     ATOM          symbolsName
4     ATOM          physSymbolsName
4     ATOM          typesName
4     ATOM          compatName
4t     LISTofATOM          typeNames
l     LISTofCARD8          nLevelsPerType, sum of all elements=L
p               unused, p=pad(l)
4L     LISTofATOM          ktLevelNames
4i     LISTofATOM          indicatorNames
4v     LISTofATOM          virtualModNames
4g     LISTofATOM          groupNames
4k     LISTofKB_KEYNAME          keyNames
8a     LISTofKB_KEYALIAS          keyAliases
4r     LISTofATOM          radioGroupNames

1     CARD8          opcode
1     18          xkb-opcode
2     7+(V/4)          request-length
2     KB_DEVICESPEC           deviceSpec
2     SETofKB_VMOD          virtualMods
4     SETofKB_NAMEDETAIL          which
1     CARD8          firstType
1     t          nTypes
1     CARD8          firstKTLevel
1     l          nKTLevels
4     SETofKB_INDICATOR          indicators (has i bits set to 1)
1     SETofKB_GROUP          groupNames (has g bits set to 1)
1     r          nRadioGroups
1     KEYCODE          firstKey
1     k          nKeys
1     a          nKeyAliases
1               unused
2     L          totalKTLevelNames
V     LISTofITEMs          values
     SETofKB_NAMEDETAIL          (which)
     XkbKeycodesName     keycodesName
     XkbGeometryName     geometryName
     XkbSymbolsName     symbolsName
     XkbPhySymbolsName     physSymbolsName
     XkbTypesName     typesName
     XkbCompatName     compatName
     XkbKeyTypeNames     typeNames
     XkbKTLevelNames     nLevelsPerType, ktLevelNames
     XkbIndicatorNames     indicatorNames
     XkbVirtualModNames     virtualModNames
     XkbGroupNames     groupNames
     XkbKeyNames     keyNames
     XkbKeyAliases     keyAliases
     XkbRGNames     radioGroupNames

ITEMs
4     ATOM          keycodesName



Protocol Encoding

152

4     ATOM          geometryName
4     ATOM          symbolsName
4     ATOM          physSymbolsName
4     ATOM          typesName
4     ATOM          compatName
4t     LISTofATOM          typeNames
l     LISTofCARD8          nLevelsPerType
p               unused, p=pad(l)
4L     LISTofATOM          ktLevelNames
4i     LISTofATOM          indicatorNames
4v     LISTofATOM          virtualModNames
4g     LISTofATOM          groupNames
4k     LISTofKB_KEYNAME          keyNames
8a     LISTofKB_KEYALIAS          keyAliases
4r     LISTofATOM          radioGroupNames

1     CARD8          opcode
1     19          xkb-opcode
2     3          request-length
2     KB_DEVICESPEC           deviceSpec
2               unused
4     ATOM          name

1     1          Reply
1     CARD8          deviceID
2     CARD16          sequence number
4     (f+8p+C*+H*+S*+D*+A*)/4          length
4     ATOM          name
1     BOOL          found
1               unused
2     CARD16          widthMM
2     CARD16          heightMM
2     p          nProperties
2     c          nColors
2     h          nShapes
2     s          nSections
2     d          nDoodads
2     a          nKeyAliases
1     CARD8          baseColorNdx
1     CARD8          labelColorNdx
f     KB_COUNTED_STRING16          labelFont
8p     LISTofKB_PROPERTY          properties
C0+..Cc     LISTofKB_COUNTED_STRING16          colors
H0+..Hh     LISTofKB_SHAPE          shapes
S0+..Ss     LISTofKB_SECTION          sections
D0+..Dd     LISTofKB_DOODAD          doodads
A0+..Aa     LISTofKB_KEYALIAS          keyAliases

KB_PROPERTY     4+n+v
2     n          nameLength
n     STRING8          name
2     v          valueLength
v     STRING8          value

KB_SHAPE     8+O*



Protocol Encoding

153

4     ATOM          name
1     o          nOutlines
1     CARD8          primaryNdx
1     CARD8          approxNdx
1               unused
O0+..Oo     LISTofKB_OUTLINE          outlines

KB_OUTLINE     4+4p
1     p          nPoints
1     CARD8          cornerRadius
2               unused
4p     LISTofKB_POINT          points

KB_POINT
2     INT16          x
2     INT16          y

KB_SECTION     20+R*+D*+O*
4     ATOM          name
2     INT16          top
2     INT16          left
2     CARD16          width
2     CARD16          height
2     INT16          angle
1     CARD8          priority
1     r          nRows
1     d          nDoodads
1     o          nOverlays
2               unused
R0+..Rr     LISTofKB_ROW          rows
D0+..Dd     LISTofKB_DOODAD          doodads
O0+..Oo     LISTofKB_OVERLAY          overlays

KB_ROW     8+8k
2     INT16          top
2     INT16          left
1     k          nKeys
1     BOOL          vertical
2               unused
8k     LISTofKB_KEY          keys

KB_KEY
4     STRING8          name
2     INT16          gap
1     CARD8          shapeNdx
1     CARD8          colorNdx

KB_OVERLAY     8+R*
4     ATOM          name
1     r          nRows
3               unused
R0+..Rr     LISTofKB_OVERLAYROW          rows

KB_OVERLAYROW     4+8k
1     CARD8          rowUnder



Protocol Encoding

154

1     k          nKeys
2               unused
8k     LISTofKB_OVERLAYKEY          keys

KB_OVERLAYKEY
4     STRING8          over
4     STRING8          under

KB_SHAPEDOODAD
4     ATOM          name
1     CARD8          type

KB_SHAPEDOODAD
     #1     XkbOutlineDoodad
     #2     XkbSolidDoodad
1     CARD8          priority
2     INT16          top
2     INT16          left
2     INT16          angle
1     CARD8          colorNdx
1     CARD8          shapeNdx
6               unused

KB_TEXTDOODAD     20+t+f
4     ATOM          name
1     CARD8          type
     #3     XkbTextDoodad
1     CARD8          priority
2     INT16          top
2     INT16          left
2     INT16          angle
2     CARD16          width
2     CARD16          height
1     CARD8          colorNdx
3               unused
t     KB_COUNTED_STRING16          text
f     KB_COUNTED_STRING16          font

KB_INDICATORDOODAD
4     ATOM          name
1     CARD8          type
     #4     XkbIndicatorDoodad
1     CARD8          priority
2     INT16          top
2     INT16          left
2     INT16          angle
1     CARD8          shapeNdx
1     CARD8          onColorNdx
1     CARD8          offColorNdx
5               unused

KB_LOGODOODAD     20+n
4     ATOM          name
1     CARD8          type
     #5     XkbLogoDoodad



Protocol Encoding

155

1     CARD8          priority
2     INT16          top
2     INT16          left
2     INT16          angle
1     CARD8          colorNdx
1     CARD8          shapeNdx
6               unused
n     KB_COUNTED_STRING16          logoName

KB_DOODAD:
     KB_SHAPEDOODAD, or KB_TEXTDOODAD, or
     KB_INDICATORDOODAD, or KB_LOGODOODAD

1     CARD8          opcode
1     20          xkb-opcode
2     7+(f+8p+C*+H*+S*+D*+A*)/4          request-length
2     KB_DEVICESPEC           deviceSpec
1     h          nShapes
1     s          nSections
4     ATOM          name
2     CARD16          widthMM
2     CARD16          heightMM
2     p          nProperties
2     c          nColors
2     d          nDoodads
2     a          nKeyAliases
1     CARD8          baseColorNdx
1     CARD8          labelColorNdx
2               unused
f     KB_COUNTED_STRING16          labelFont
8p     LISTofKB_PROPERTY          properties
C0+..Cc     LISTofKB_COUNTED_STRING16          colors
H0+..Hh     LISTofKB_SHAPE          shapes
S0+..Ss     LISTofKB_SECTION          sections
D0+..Dd     LISTofKB_DOODAD          doodads
A0+..Aa     LISTofKB_KEYALIAS          keyAliases

1     CARD8          opcode
1     21          xkb-opcode
2     7          request-length
2     KB_DEVICESPEC          deviceSpec
2               unused
4     SETofKB_PERCLIENTFLAG          change
4     SETofKB_PERCLIENTFLAG          value
4     SETofKB_BOOLCTRL          ctrlsToChange
4     SETofKB_BOOLCTRL          autoCtrls
4     SETofKB_BOOLCTRL          autoCtrlValues

1     1          Reply
1     CARD8          deviceID
2     CARD16          sequence number
4     0          length
4     SETofKB_PERCLIENTFLAG          supported
4     SETofKB_PERCLIENTFLAG          value
4     SETofKB_BOOLCTRL          autoCtrls



Protocol Encoding

156

4     SETofKB_BOOLCTRL          autoCtrlValues
8               unused

1     CARD8          opcode
1     22          xkb-opcode
2     2+(6+m+k+t+c+s+g+p)/4          request-length
2     KB_DEVICESPEC           deviceSpec
2     CARD16          maxNames
1     m          keymapsSpecLen
m     STRING          keymapsSpec
1     k          keycodesSpecLen
k     STRING          keycodesSpec
1     t          typesSpecLen
t     STRING          typesSpec
1     c          compatMapSpecLen
c     STRING          compatMapSpec
1     s          symbolsSpecLen
s     STRING          symbolsSpec
1     g          geometrySpecLen
g     STRING          geometrySpec
p               unused,p=pad(6+m+k+t+c+s+g)

1     1          Reply
1     CARD8          deviceID
2     CARD16          sequence number
4     (M*+K*+T*+C*+S*+G*+p)/4          length
2     m          nKeymaps
2     k          nKeycodes
2     t          nTypes
2     c          nCompatMaps
2     s          nSymbols
2     g          nGeometries
2     CARD16          extra
10               unused
M0+..Mm     LISTofKB_LISTING          keymaps
K0+..Kk     LISTofKB_LISTING          keycodes
T0+..Tt     LISTofKB_LISTING          types
C0+..Cc     LISTofKB_LISTING          compatMaps
S0+..Ss     LISTofKB_LISTING          symbols
G0+..Gg     LISTofKB_LISTING          geometries
p               unused,p=pad(M*+K*+T*+C*+S*+G*)

KB_LISTING     4+n+p
2     CARD16          flags
2     n          length
n     STRING8          string
p               unused,p=pad(n) to a 2-byte boundary

1     CARD8          opcode
1     23          xkb-opcode
2     3+(6+m+k+t+c+s+g+p)/4          request-length
2     KB_DEVICESPEC           deviceSpec
2     SETofKB_GBNDETAILMASK          need
2     SETofKB_GBNDETAILMASK          want
1     BOOL          load



Protocol Encoding

157

1               unused
1     m          keymapsSpecLen
m     STRING8          keymapsSpec
1     k          keycodesSpecLen
k     STRING8          keycodesSpec
1     t          typesSpecLen
t     STRING8          typesSpec
1     c          compatMapSpecLen
c     STRING8          compatMapSpec
1     s          symbolsSpecLen
s     STRING8          symbolsSpec
1     g          geometrySpecLen
g     STRING8          geometrySpec
p               unused,p=pad(6+m+k+t+c+s+g)

1     1          Reply
1     CARD8          deviceID
2     CARD16          sequence number
4     V/4          length
1     KEYCODE          minKeyCode
1     KEYCODE          maxKeyCode
1     BOOL          loaded
1     BOOL          newKeyboard
2     SETofKB_GBNDETAILMASK          found
2     SETofKB_GBNDETAILMASK          reported
16               unused
V     LISTofITEMs          replies
     SETofKB_GBNDETAILMASK          (reported)
     XkbGBN_Types     map
     XkbGBN_CompatMap     compat
     XkbGBN_ClientSymbols     map
     XkbGBN_ServerSymbols     map
     XkbGBN_IndicatorMap     indicators
     XkbGBN_KeyNames     names
     XkbGBN_OtherNames     names
     XkbGBN_Geometry     geometry

ITEMs
M     XkbGetMap reply          map
C     XkbGetCompatMap reply          compat
I     XkbGetIndicatorMap reply          indicators
N     XkbGetNames reply          names
G     XkbGetGeometry reply          geometry

1     CARD8          opcode
1     24          xkb-opcode
2     4          request-length
2     KB_DEVICESPEC           deviceSpec
2     SETofKB_DEVFEATURE          wanted
1     BOOL          allButtons
1     CARD8          firstButton
1     CARD8          nButtons
1               unused
2     KB_LEDCLASSSPEC          ledClass



Protocol Encoding

158

2     KB_IDSPEC          ledID

1     1          Reply
1     CARD8          deviceID
2     CARD16          sequence number
4     (2+n+p+8b+L*)/4          length
2     SETofKB_DEVFEATURE          present
2     SETofKB_FEATURE          supported
2     SETofKB_FEATURE          unsupported
2     l          nDeviceLedFBs
1     CARD8          firstBtnWanted
1     CARD8          nBtnsWanted
1     CARD8          firstBtnRtrn
1     b          nBtnsRtrn
1     CARD8          totalBtns
1     BOOL          hasOwnState
2     SETofKB_IDRESULT          dfltKbdFB
2     SETofKB_IDRESULT          dfltLedFB
2               unused
4     ATOM          devType
2     n          nameLen
n     STRING8          name
p               unused,p=pad(2+n)
8b     LISTofKB_ACTION          btnActions
L0+..Ll     LISTofKB_DEVICELEDINFO          leds

KB_DEVICELEDINFO     20+4n+12m
2     KB_LEDCLASSSPEC          ledClass
2     KB_IDSPEC          ledID
4     SETofKB_INDICATOR          namesPresent (has n bits set to 1)
4     SETofKB_INDICATOR          mapsPresent (has m bits set to 1)
4     SETofKB_INDICATOR          physIndicators
4     SETofKB_INDICATOR          state
4n     LISTofATOM          names
12m     LISTofKB_INDICATORMAP          maps

1     ??          opcode
1     25          xkb-opcode
2     3+(8b+L*)/4          request-length
2     KB_DEVICESPEC           deviceSpec
1     CARD8          firstBtn
1     b          nBtns
2     SETofKB_DEVFEATURE          change
2     l          nDeviceLedFBs
8b     LISTofKB_ACTION          btnActions
L0+..Ll     LISTofKB_DEVICELEDINFO          leds
     Encoding of KB_DEVICELEDINFO is as for XkbGetDeviceInfo

1     ??          opcode
1     101          xkb-opcode
2     6+(n+p)/4          request-length
2     n          msgLength
2               unused
4     CARD32          affectFlags
4     CARD32          flags



Protocol Encoding

159

4     CARD32          affectCtrls
4     CARD32          ctrls
n     STRING8          message
p               unused, p=pad(n)

1     1          Reply
1               unused
2     CARD16          sequence number
4     0          length
4     CARD32          currentFlags
4     CARD32          currentCtrls
4     CARD32          supportedFlags
4     CARD32          supportedCtrls
8               unused

Events
1     ??          code
1     0          xkb code
2     CARD16          sequence number
4     TIMESTAMP          time
1     CARD8          deviceID
1     CARD8          oldDeviceID
1     KEYCODE          minKeyCode
1     KEYCODE          maxKeyCode
1     KEYCODE          oldMinKeyCode
1     KEYCODE          oldMaxKeyCode
1     CARD8          requestMajor
1     CARD8          requestMinor
2     SETofKB_NKNDETAIL          changed
14               unused

1     ??          code
1     1          xkb code
2     CARD16          sequence number
4     TIMESTAMP          time
1     CARD8          deviceID
1     SETofBUTMASK          ptrBtnActions
2     SETofKB_MAPPART          changed
1     KEYCODE          minKeyCode
1     KEYCODE          maxKeyCode
1     CARD8          firstType
1     CARD8          nTypes
1     KEYCODE          firstKeySym
1     CARD8          nKeySyms
1     KEYCODE          firstKeyAct
1     CARD8          nKeyActs
1     KEYCODE          firstKeyBehavior
1     CARD8          nKeyBehavior
1     KEYCODE          firstKeyExplicit
1     CARD8          nKeyExplicit
1     KEYCODE          firstModMapKey
1     CARD8          nModMapKeys



Protocol Encoding

160

1     KEYCODE          firstVModMapKey
1     CARD8          nVModMapKeys
2     SETofKB_VMOD          virtualMods
2               unused

1     ??          code
1     2          xkb code
2     CARD16          sequence number
4     TIMESTAMP          time
1     CARD8          deviceID
1     SETofKEYMASK          mods
1     SETofKEYMASK          baseMods
1     SETofKEYMASK          latchedMods
1     SETofKEYMASK          lockedMods
1     KB_GROUP          group
2     INT16          baseGroup
2     INT16          latchedGroup
1     KB_GROUP          lockedGroup
1     SETofKEYMASK          compatState
1     SETofKEYMASK          grabMods
1     SETofKEYMASK          compatGrabMods
1     SETofKEYMASK          lookupMods
1     SETofKEYMASK          compatLookupMods
2     SETofBUTMASK          ptrBtnState
2     SETofKB_STATEPART          changed
1     KEYCODE          keycode
1     CARD8          eventType
1     CARD8          requestMajor
1     CARD8          requestMinor

1     ??          code
1     3          xkb code
2     CARD16          sequence number
4     TIMESTAMP          time
1     CARD8          deviceID
1     CARD8          numGroups
2               unused
4     SETofKB_CONTROL          changedControls
4     SETofKB_BOOLCTRL          enabledControls
4     SETofKB_BOOLCTRL          enabledControlChanges
1     KEYCODE          keycode
1     CARD8          eventType
1     CARD8          requestMajor
1     CARD8          requestMinor
4               unused

1     ??          code
1     4          xkb code
2     CARD16          sequence number
4     TIMESTAMP          time
1     CARD8          deviceID
3               unused
4     SETofKB_INDICATOR          state
4     SETofKB_INDICATOR          stateChanged



Protocol Encoding

161

12               unused

1     ??          code
1     5          xkb code
2     CARD16          sequence number
4     TIMESTAMP          time
1     CARD8          deviceID
3               unused
4     SETofKB_INDICATOR          state
4     SETofKB_INDICATOR          mapChanged
12               unused

1     ??          code
1     6          xkb code
2     CARD16          sequence number
4     TIMESTAMP          time
1     CARD8          deviceID
1               unused
2     SETofKB_NAMEDETAIL          changed
1     CARD8          firstType
1     CARD8          nTypes
1     CARD8          firstLevelName
1     CARD8          nLevelNames
1               unused
1     CARD8          nRadioGroups
1     CARD8          nKeyAliases
1     SETofKB_GROUP          changedGroupNames
2     SETofKB_VMOD          changedVirtualMods
1     KEYCODE          firstKey
1     CARD8          nKeys
4     SETofKB_INDICATOR          changedIndicators
4               unused

1     ??          code
1     7          xkb code
2     CARD16          sequence number
4     TIMESTAMP          time
1     CARD8          deviceID
1     SETofKB_GROUP          changedGroups
2     CARD16          firstSI
2     CARD16          nSI
2     CARD16          nTotalSI
16               unused

1     ??          code
1     8          xkb code
2     CARD16          sequence number
4     TIMESTAMP          time
1     CARD8          deviceID
1     KB_BELLCLASSRESULT          bellClass
1     CARD8          bellID
1     CARD8          percent
2     CARD16          pitch
2     CARD16          duration
4     ATOM          name



Protocol Encoding

162

4     WINDOW          window
1     BOOL          eventOnly
7               unused

1     ??          code
1     9          xkb code
2     CARD16          sequence number
4     TIMESTAMP          time
1     CARD8          deviceID
1     KEYCODE          keycode
1     BOOL          press
1     BOOL          keyEventFollows
1     SETofKEYMASK          mods
1     KB_GROUP          group
8     STRING8          message
10               unused

1     ??          code
1     10          xkb code
2     CARD16          sequence number
4     TIMESTAMP          time
1     CARD8          deviceID
1     KEYCODE          keycode
2     SETofKB_AXNDETAIL          detail
2     CARD16          slowKeysDelay
2     CARD16          debounceDelay

1     ??          code
16               unused

1     ??          code
1     11          xkb code
2     CARD16          sequence number
4     TIMESTAMP          time
1     CARD8          deviceID
1               unused
2     SETofKB_XIDETAIL          reason
2     KB_LEDCLASSRESULT          ledClass
2     CARD8          ledID
4     SETofKB_INDICATOR          ledsDefined
4     SETofKB_INDICATOR          ledState
1     CARD8          firstButton
1     CARD8          nButtons
2     SETofKB_XIFEATURE          supported
2     SETofKB_XIFEATURE          unsupported
2               unused


	The X Keyboard Extension: Protocol Specification
	Table of Contents
	Acknowledgments
	Chapter 1. Overview
	Conventions and Assumptions

	Chapter 2. Keyboard State
	Locking and Latching Modifiers and Groups
	Fundamental Components of XKB Keyboard State
	Computing Effective Modifier and Group
	Computing A State Field from an XKB State

	Derived Components of XKB Keyboard State
	Server Internal Modifiers and Ignore Locks Behavior

	Compatibility Components of Keyboard State

	Chapter 3. Virtual Modifiers
	Modifier Definitions
	Inactive Modifier Definitions

	Virtual Modifier Mapping

	Chapter 4. Global Keyboard Controls
	The RepeatKeys Control
	The PerKeyRepeat Control
	Detectable Autorepeat

	The SlowKeys Control
	The BounceKeys Control
	The StickyKeys Control
	The MouseKeys Control
	The MouseKeysAccel Control
	Relative Pointer Motion
	Absolute Pointer Motion

	The AccessXKeys Control
	The AccessXTimeout Control
	The AccessXFeedback Control
	The Overlay1 and Overlay2 Controls
	"Boolean" Controls and The EnabledControls Control
	Automatic Reset of Boolean Controls

	Chapter 5. Key Event Processing Overview
	Chapter 6. Key Event Processing in the Server
	Applying Global Controls
	Key Behavior
	Key Actions
	Delivering a Key or Button Event to a Client
	XKB Interactions With Core Protocol Grabs


	Chapter 7. Key Event Processing in the Client
	Notation and Terminology
	Determining the KeySym Associated with a Key Event
	Key Types
	Key Symbol Map

	Transforming the KeySym Associated with a Key Event
	Client Map Example

	Chapter 8. Symbolic Names
	Chapter 9. Keyboard Indicators
	Global Information About Indicators
	Per-Indicator Information
	Indicator Maps
	Effects of Explicit Changes on Indicators



	Chapter 10. Keyboard Bells
	Client Notification of Bells
	Disabling Server Generated Bells
	Generating Named Bells
	Generating Optional Named Bells
	Forcing a Server Generated Bell

	Chapter 11. Keyboard Geometry
	Shapes and Outlines
	Sections
	Doodads
	Keyboard Geometry Example

	Chapter 12. Interactions Between XKB and the Core Protocol
	Group Compatibility Map
	Setting a Passive Grab for an XKB State

	Changing the Keyboard Mapping Using the Core Protocol
	Explicit Keyboard Mapping Components
	Assigning Symbols To Groups
	Assigning Symbols to Groups One and Two with Explicitly Defined Key Types

	Assigning Types To Groups of Symbols for a Key
	Assigning Actions To Keys
	Updating Everything Else

	Effects of XKB on Core Protocol Events
	Effect of XKB on Core Protocol Requests
	Sending Events to Clients

	Chapter 13. The Server Database of Keyboard Components
	Component Names
	Partial Components and Combining Multiple Components
	Component Hints
	Keyboard Components
	The Keycodes Component
	The Types Component
	The Compatibility Map Component
	The Symbols Component
	The Geometry Component

	Complete Keymaps

	Chapter 14. Replacing the Keyboard "On-the-Fly"
	Chapter 15. Interactions Between XKB and the X Input Extension
	Using XKB Functions with Input Extension Keyboards
	Pointer and Device Button Actions
	Indicator Maps for Extension Devices
	Indicator Names for Extension Devices

	Chapter 16. XKB Protocol Requests
	Errors
	Keyboard Errors
	Side-Effects of Errors

	Common Types
	Requests
	Initializing the X Keyboard Extension
	Selecting Events
	Generating Named Keyboard Bells
	Querying and Changing Keyboard State
	Querying and Changing Keyboard Controls
	Querying and Changing the Keyboard Mapping
	Querying and Changing the Compatibility Map
	Querying and Changing Indicators
	Querying and Changing Symbolic Names
	Querying and Changing Keyboard Geometry
	Querying and Changing Per-Client Flags
	Using the Server’s Database of Keyboard Components
	Querying and Changing Input Extension Devices
	Debugging the X Keyboard Extension

	Events
	Tracking Keyboard Replacement
	Tracking Keyboard Mapping Changes
	Tracking Keyboard State Changes
	Tracking Keyboard Control Changes
	Tracking Keyboard Indicator State Changes
	Tracking Keyboard Indicator Map Changes
	Tracking Keyboard Name Changes
	Tracking Compatibility Map Changes
	Tracking Application Bell Requests
	Tracking Messages Generated by Key Actions
	Tracking Changes to AccessX State and Keys
	Tracking Changes To Extension Devices


	Appendix A. Default Symbol Transformations
	Interpreting the Control Modifier
	Interpreting the Lock Modifier
	Locale-Sensitive Capitalization
	Locale-Insensitive Capitalization
	Capitalization Rules for Latin-1 Keysyms
	Capitalization Rules for Latin-2 Keysyms
	Capitalization Rules for Latin-3 Keysyms
	Capitalization Rules for Latin-4 Keysyms
	Capitalization Rules for Cyrillic Keysyms
	Capitalization Rules for Greek Keysyms
	Capitalization Rules for Other Keysyms



	Appendix B. Canonical Key Types
	Canonical Key Types
	The ONE_LEVEL Key Type
	The TWO_LEVEL Key Type
	The ALPHABETIC Key Type
	The KEYPAD Key Type


	Appendix C. New KeySyms
	New KeySyms
	KeySyms Used by the ISO9995 Standard
	KeySyms Used to Control The Core Pointer
	KeySyms Used to Change Keyboard Controls
	KeySyms Used To Control The Server
	KeySyms for Non-Spacing Diacritical Keys


	Appendix D. Protocol Encoding
	Syntactic Conventions
	Common Types
	Errors
	Key Actions
	Key Behaviors
	Requests
	Events


