X11R6 Sample
Implementation Frame Work

Katsuhisa Yano
TOSHIBA Corporation
Yoshio Horiuchi
IBM Japan

X11R6 Sample Implementation Frame Work
by

Katsuhisa Yano

TOSHIBA Corporation

Yoshio Horiuchi

IBM Japan

X Version 11, Release 7
Copyright © 1994 TOSHIBA Corporation
Copyright © 1994 IBM Corporation

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice and this permission notice appear in all copies. TOSHIBA Corporation and
IBM Corporation make no representations about the suitability for any purpose of the information in this document.
This documentation is provided as is without express or implied warranty.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of The Open Group shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization from X Consortium.

X Window System is a trademark of The Open Group.

Table of Contents

1. Framework
Preface
Objective

Locale Object Binding Functions

Locale Method In

Locale Method Functions

Charset functions

Converter Functions
X Locale Database functions

Utility Functions

LIS o it Lo < ST

iii

Chapter 1. Framework

Preface

This document proposes to define the structures, methods and their signatures that
are expected to be common to all locale dependent functions within the Xlib sample
implementation. The following illustration (Fig.1) is proposed to outline the sepa-
rating of the components within the sample implementation.

Preface drawing.

Framework

Application

P

<<ANSI/MSE API>> <<XLib API>> <<ANSI/MSE

(X Contrib) (X Core) (X Contri
Locale Library Input |Output C Library
-ANSI impl. Method|Method
non imp ANS|
<Locl. Serv. API>

RN |
Vo v i

XLC XLOCALE XLC_FONTSET localedef [
_MB CUR MAX - fontset info - MB_CUR_
codeset info - charset info - codset in
o char/charset - font/charset o char/cha
o conv/charset - XLFD,GL/GR 0 conv/chz

\ 7\
Frame work of Locxq $5e4shed ™S Beire® (X Core) System Locals

Generally speaking, the internationalized portion of Xlib (Locale Dependent X, LDX)
consists of three objects; locale (LC) , input method (IM) and output method (OM).
The LC provides a set of information that depends on user's language environment.
The IM manages text inputing, and the OM manages text drawing. Both IM and OM
highly depend on LC data.

In X11R5, there are two sample implementations, Ximp and Xsi, for Xlib interna-
tionalization. But in both implementations, IM and OM actually refer the private

Framework

extension of LC. It breaks coexistence of these two sample implementations. For
example, if a user creates a new OM for special purpose as a part of Ximp, it will
not work with Xsi.

As a solution of this problem, we propose to define the standard APIs between these
three objects, and define the structure that are common to these objects.

Objective

e Explain the current X11R6 sample implementation
¢ Document the common set of locale dependent interfaces

* Provide more flexible pluggable layer

Locale Object Binding Functions

This chapter describes functions related locale object binding for implementing the
pluggable layer.

A locale loader is an entry point for locale object, which instantiates XLCd object
and binds locale methods with specified locale name. The behavior of loader is im-
plementation dependent. And, what kind of loaders are available is also implemen-
tation dependent.

The loader is called in _XOpenLC, but caller of XOpenLC does not need to care
about its inside. For example, if the loader is implemented with dynamic load func-
tions, and the dynamic module is expected to be unloaded when the corresponding
XLCd is freed, close methods of XLCdMethods should handle unloading.

Initializing a locale loader list
void XlclnitLoader

The Xl clnitLoader function initializes the locale loader list with vendor specif-
ic manner. Each loader is registered with calling _Xl cAddLoader. The number of
loaders and their order in the loader list is implementation dependent.

Add a loader

typedef XLCd (*XLCdLoadProc)(name);
char *name;

typedef int XlcPosition;

#define XlcHead
#define XlcTail

Bool Xl cAddLoader(proc, position);

The _Xl cAddLoader function registers the specified locale loader "proc" to the in-
ternal loader list. The position specifies that the loader "proc" should be placed in
the top of the loader list(XlcHead) or last(XlIcTail).

Framework

The object loader is called from the top of the loader list in order, when calling time.
Renove a | oader
void _ Xl cRenovelLoader(proc);

The _X cRenmpovelLoader function removes the locale loader specified by "proc" from
the loader list.

Current implementation provides following locale loaders;

_ Xl cDef aul t Loader
_ Xl cCGeneri cLoader
_ Xl cEucLoader

Xl cSjisLoader

Xl cUt f Loader

_Xai xCsDynanmi cLoad

Locale Method Interface

This chapter describes the locale method API, which is a set of accessible functions
from both IM and OM parts. The locale method API provides the functionalities;
obtaining locale dependent information, handling charset, converting text, etc.

As a result of using these APIs instead of accessing vender private extension of the
locale object, we can keep locale, IM and OM independently each other.

Locale Method Functions

Open a Local e Met hod
XLCd _XOpenLC(*nane);

The _XOpenLC function opens a locale method which corresponds to the specified
locale name. _XOpenLC calls a locale object loader, which is registered via _Xl -
cAddLoader into the internal loader list. If the called |oader isvalid
and successfully opens a locale, _XOpenLCreturns the XLCd. If the loader is invalid
or failed to open a locale, _XOpenLC calls the next loader. If all registered loaders
cannot open a locale, XOpenLCreturns NULL.

XLCd XlcCurrentL.C

The _Xl cCurrent LC function returns an XLCd that are bound to current locale.
Close a Locale Method

void _Xd oseLC(|cd);

The _Xd oselC function close a locale method the specified lcd.

Obtain Locale Method values

char * XGetLCVal ues(|cd);

Framework

The XGet LCVal ues function returns NULL if no error occurred; otherwise, it re-
turns the name of the first argument that could not be obtained. The following values
are defined as standard arguments. Other values are implementation dependent.

Name Type Description

XlcNCodeset char* codeset part of locale name

XlcNDefaultString char* XDefaultString()

XlcNEncodingName char* encoding name

XlcNLanguage char* language part of locale name

XlcNMbCurMax int ANSI C MB CUR MAX

XlcNStateDependentEncoding Bool is state-dependent encoding or
not

XlcNTerritory char* territory part of locale name

Charset functions

The XlcCharSet is an identifier which represents a subset of characters (character
set) in the locale object.

t ypedef enum {

Xl cUnknown, Xl cCO, XlcA, X cCl, XIcGR X cGLGE& X cOher
} Xl cSide;

typedef struct _Xl cChar Set Rec * Xl cChar Set ;

typedef struct {

char *nane;

XPoi nter val ue;
} XicArg, *Xl cArglList;

typedef char* (*Xl cGet CSval uesProc) (charset, args, numargs);
Xl cChar Set char set;
Xl cArgLi st args;
int num. args;

typedef struct _Xl cChar Set Rec {
char *nane;
XrmQuar k xrm nane;
char *encodi ng_nane;
XrnQuar k xr m encodi ng_nare;
Xl cSi de side;
i nt char_si ze;
int set_size;
char *ct_sequence;
Xl cGet CSVal uesProc get val ues;
} Xl cChar Set Rec;

Get an XlcCharSet

Xl cChar Set Xl cGet Char Set (*nane) ;

Framework

The _XI cGet Char Set function gets an XlcCharSet which corresponds to the charset
name specified by "name". _Xl cGet Char Set

to specified "name".

The following character sets are pre-registered.

Name

Description

ISO8859-1:GL

JISX0201.1976-0:GL

ISO8859-1:GR
ISO8859-2:GR
ISO8859-3:GR
ISO8859-4:GR
ISO8859-7:GR
ISO8859-6:GR
ISO8859-8:GR
ISO8859-5:GR
ISO8859-9:GR
JISX0201.1976-0:GR

GB2312.1980-0:GL
GB2312.1980-0:GR
JISX0208.1983-0:GL
JISX0208.1983-0:GR
KSC5601.1987-0:GL
KSC5601.1987-0:GR

JI1SX0212.1990-0:GL

JISX0212.1990-0:GR

Add an XlcCharSet

7-bit ASCII graphics (ANSI X3.4-1968),

Left half of ISO 8859 sets

Left half of JIS X0201-1976 (reaffirmed 1984),
8-Bit Alphanumeric-Katakana Code

Right half of ISO 8859-1, Latin alphabet No.
Right half of ISO 8859-2, Latin alphabet No.
Right half of ISO 8859-3, Latin alphabet No.
Right half of ISO 8859-4, Latin alphabet No. 4
Right half of ISO 8859-7, Latin/Greek alphabet
Right half of ISO 8859-6, Latin/Arabic alphabet
Right half of ISO 8859-8, Latin/Hebrew alphabet
Right half of ISO 8859-5, Latin/Cyrillic alphabet
Right half of ISO 8859-9, Latin alphabet No. 5
Right half of JIS X0201-1976 (reaffirmed 1984),
8-Bit Alphanumeric-Katakana Code
GB2312-1980, China (PRC) Hanzi defined as GL
GB2312-1980, China (PRC) Hanzi defined as GR
JIS X0208-1983, Japanese Graphic Character Set
defined as GL

JIS X0208-1983, Japanese Graphic Character Set
defined as GR

KS C5601-1987, Korean Graphic Character Set
defined as GL

KS C5601-1987, Korean Graphic Character Set
defined as GR

JIS X0212-1990, Japanese Graphic Character Set
defined as GL

JIS X0212-1990, Japanese Graphic Character Set
defined as GR

w N =

Bool Xl cAddChar Set(charset);

The _Xl cAddChar Set function registers XlcCharSet specified by "charset".

bt ai n Character Set val ues

returns NULL, if no XlcCharSet bound

Framework

char * Xl cGetCSval ues(charset, ...);

The _Xl cGet CSVal ues function returns NULL if no error occurred; otherwise, it re-
turns the name of the first argument that could not be obtained. The following values
are defined as standard arguments. Other values are implementation dependent.

Name Type Description

XlcNName char* charset name

XlcNEncodingName char* XLFD CharSet Registry and En-
coding

XlcNSide XlcSide charset side (GL, GR, ...)

XlcNCharSize int number of octets per character

XlcNSetSize int number of character sets

XlcNControlSequence char* control sequence of Compound
Text

Converter Functions

We provide a set of the common converter APIs, that are independent from both of
source and destination text type.

typedef struct _Xl cConvRec *Xl cConv;

typedef void (*X cC oseConverterProc)(conv);
Xl cConv conv;

typedef int (*X cConvertProc)(conv, from fromleft, to, to_ left, args, numargs);
Xl cConv conv;
XPointer *from
int *fromleft;
XPoi nter *to;
int *to left;
XPoi nter *args;
int num.args;

t ypedef void (*X cReset ConverterProc)(conv);
Xl cConv conv;

typedef struct _Xl cConvMet hodsRec {
Xl cC oseConverterProc close;
Xl cConvert Proc convert;
Xl cReset ConverterProc reset;

} Xl cConvMet hodsRec, *Xl cConvMet hods;

typedef struct _Xl cConvRec {
Xl cConvMet hods net hods;
XPoi nter state;

} Xl cConvRec;

Open a converter

Framework

Xl cConv _Xl cOpenConverter(fromlcd, *fromtype, to_lcd, *to_type);

_Xl cOpenConverter function opens the converter which converts a text from spec-
ified "from_type" to specified "to_type" encoding. If the function cannot find proper
converter or cannot open a corresponding converter, it returns NULL. Otherwise,
it returns the conversion descriptor.

The following types are pre-defined. Other types are implementation dependent.

Name Type Description Arguments
XlcNMultiByte char * multibyte -
XlcNWideChar wchar t wide character -
*
XlcNCompoundText char* COMPOUND TEXT -
XIcNString char* STRING -
XlcNCharSet char * per charset XlcCharSet
XlcNChar char * per character XlcCharSet

Close a converter

void Xl cd oseConverter(conv);

The Xl cd oseConverter function closes the specified converter "conv".
Code conversion

int Xl cConvert(conv, *from *fromleft, *to, *to left, *args,
num ar gs) ;

The _Xl cConvert function converts a sequence of characters from one type, in the
array specified by "from", into a sequence of corresponding characters in another
type, in the array specified by "to". The types are those specified in the _XlI cOpen-
Converter() call that returned the conversion descriptor, "conv". The arguments
"from", "from left", "to" and "to left" have the same specification of XPG4 iconv
function.

For state-dependent encodings, the conversion descriptor "conv" is placed into its
initial shift state by a call for which "from" is a NULL pointer, or for which "from"
points to a null pointer.

The following 2 converters prepared by locale returns appropriate charset (XlcCha-
rSet) in an area pointed by args[0].

From To Description
XlcNMultiByte XlcNCharSet Segmentation (Decomposing)
XlcNWideChar XIcNCharSet Segmentation (Decomposing)

The conversion, from XlcNMultiByte/XlcNWideChar to XIcNCharSet, extracts a seg-
ment which has same charset encoding characters. More than one segment cannot
be converted in a call.

Reset a converter

void _Xl cReset Converter(conv);

Framework

The _Xl cReset Converter function reset the specified converter "conv".

Register a converter

typedef Xl cConv (*Xl cOpenConverterProc)(fromlcd, fromtype, to lcd, to_type);
XLCd from| cd;
char *fromtype;
XLCd to_Ilcd;
char *to_type;

Bool Xl cSetConverter(fromlcd, *from to lcd, *to, converter);

The Xl cSetConverter function registers a converter which convert from
"from type" to "to type" into the converter list (in the specified XL.Cd).

X Locale Database functions

X Locale Database contains the subset of user's environment that depends on lan-
guage. The following APIs are provided for accessing X Locale Database and other
locale relative files.

For more detail about X Locale Database, please refer X Locale Database Definition
document.

Get a resource from database
void _XlcGetResource(lcd, *category, *class, ***value, *count);

The Xl cGet Resour ce function obtains a locale dependent data which is associated
with the locale of specified "lcd". The locale data is provided by system locale or
by X Locale Database file, and what kind of data is available is implementation
dependent.

The specified "category" and "class" are used for finding out the objective locale
data.

The returned value is returned in value argument in string list form, and the re-
turned count shows the number of strings in the value.

The returned value is owned by locale method, and should not be modified or freed
by caller.

Get a locale relative file name
char *_Xl cFileNanme(|cd, *category);

The _Xl cFi | eNane functions returns a file name which is bound to the specified
"lcd" and "category", as a null-terminated string. If no file name can be found, or
there is no readable file for the found file name, _Xl cFi | eNanme returns NULL. The
returned file name should be freed by caller.

The rule for searching a file name is implementation dependent. In current imple-
mentation, _Xl cFi | eNane uses "{category}.dir" file as mapping table, which has
pairs of strings, a full locale name and a corresponding file name.

Framework

Utility Functions

Compare Latin-1 strings
int Xl cConparel SOLatinl(*str2);
int Xl cNConparel SOLatinl(*str2, |en);

The Xl cConparel soLatinl function to compares two ISO-8859-1 strings. Bytes
representing ASCII lower case letters are converted to upper case before making
the comparison. The value returned is an integer less than, equal to, or greater than
zero, depending on whether "str1" is lexicographicly less than, equal to, or greater
than "str2".

The _Xl cNConpar el soLati nl function is identical to _Xl cConpar el SOLati nl1, ex-
cept that at most "len" bytes are compared.

Resource Utility

int X cNunber(array);

Similar to XtNumber.

void Xl cCopyFromArg(*src, *dst, size);

void Xl cCopyToArg(*src, **dst, size);
Similar to Xt CopyFromArg and Xt CopyToArg.

void Xl cCountVaList(var, *count _ret);

Similar to _Xt Count Vali st.

void _XlcVaToArgList(var, count, *args_ret);

Similar to _Xt VaToAr gLi st.

typedef struct _X cResource {
char *nane;
XrmQuar k xrm nane;
int size;
int offset;
unsi gned | ong mask;
} Xl cResource, *Xl cResourcelist;

#def i ne Xl cCr eat eMask (1L<<0)
#def i ne Xl cDef aul t Mask (1L<<1)
#def i ne Xl cCGet Mask (1L<<2)
#def i ne Xl cSet Mask (1L<<3)
#def i ne Xl cl gnor eMask (1L<<4)

void _Xl cConpil eResourceli st(resources, numresources);

Similar to Xt Conpi | eResour ceLi st.

10

Framework

char * _Xl cCet Val ues(base, resources, numresources, args, numargs,
mask) ;

Similar to XtGetSubvalues.

char * Xl cSet Val ues(base, resources, numresources, args, humargs,
mask) ;

Similar to XtSetSubvalues.

ANSI C Compatible Functions

The following are ANSI C/MSE Compatible Functions for non-ANSI C environment.
int Xnblen(*str, len);

The Xnbl en function returns the number of characters pointed to by "str". Only
"len" bytes in "str" are used in determining the character count returned. "Str" may
point at characters from any valid codeset in the current locale.

The call _Xnbl en is equivalent to Xmbtowc(Xmbtowc((wchar t*)NULL, str, len))
int _Xnbtowc(*wstr, *str, len);

The _Xnbt owc function converts the character(s) pointed to by "str" to their wide
character representation(s) pointed to by "wstr". "Len" is the number of bytes in
"str" to be converted. The return value is the number of characters converted.

The call _Xnbt owc is equivalent to Xlcmbtowc((XLCd)NULL, wstr, str, len)
int _Xcnbtowc(lcd, *wstr, *str, Ilen);

The Xl cnbt owc function is identical to _Xnbt owc, except that it requires the "lcd"
argument. If "lIcd" is (XLCd) NULL, _Xl cnbtowc, calls _Xl cCurrentLC to deter-
mine the current locale.

int _Xwctomb(*str, wc);

The _Xwctonb function converts a single wide character pointed to by "wc" to its
multibyte representation pointed to by "str". On success, the return value is 1.

The call _Xwct onb is equivalent to Xlcwctomb((XLCd)NULL, str, wstr)
int Xcwtonb(lcd, *str, wc);

The _Xl cwet onb function is identical to Xwctomb, except that it requires the "lcd"
argument. If "lcd" is (XLCd) NULL, _Xl cwctonb, calls Xl cCurrentLC to deter-
mine the current locale.

int _Xnbstowcs(*wstr, *str, len);

The _Xnbst owcs function converts the NULL-terminated string pointed to by "str"
to its wide character string representation pointed to by "wstr". "Len" is the number
of characters in "str" to be converted.

The call _Xnbst owcs is equivalent to Xlcmbstowcs((XLCd)NULL, wstr, str, len)

int X cnmbstowes(lcd, *wstr, *str, len);

11

Framework

The _Xl cnbst owcs function is identical to Xmbstowcs, except that it requires the
"lIcd" argument. If "lcd" is (XLCd) NULL, _XI cnbst owcs, calls _Xl cCurrentLCto
determine the current locale.

int _Xwestonmbs(*str, *wstr, len);

The _Xwcst onbs function converts the (wchar t) NULL terminated wide character
string pointed to by "wstr" to the NULL terminated multibyte string pointed to by
“Str“,

The call _Xwcst onbs is equivalent to Xlcwcstombs((XLCd)NULL, str, wstr, len)
int X cwestonbs(lcd, *str, *wstr, len);

The _Xl cwest ombs function is identical to Xwcstombs, except that it requires the
"lcd" argument. If "lcd" is (XLCd) NULL, Xl cwcstonbs, calls_ X cCurrentLC to
determine the current locale.

int _Xweslen(*wstr);

The _Xwcsl en function returns the count of wide characters in the (wchar t) NULL
terminated wide character string pointed to by "wstr".

wchar _t * _Xwescpy(*wstrl, *wstr2);
wchar _t * _Xwesncpy(*wstrl, *wstr2, len);

The _Xwcscpy function copies the (wchar t) NULL terminated wide character
string pointed to by "wstr2" to the object pointed at by "wstr1". "Wstrl" is (wchar t)
NULL terminated. The return value is a pointer to "wstri".

The _Xwcsncpy function is identical to _Xwcscpy, except that it copies "len" wide
characters from the object pointed to by "wstr2" to the object pointed to "wstri".

int _Xwescnmp(*wstr2);
int _Xwesncrmp(*wstr2, len);

The _Xwcscnp function compares two (wchar t) NULL terminated wide character
strings. The value returned is an integer less than, equal to, or greater than zero,
depending on whether "wstrl" is lexicographicly less then, equal to, or greater than
“Str II.

The Xwcsncnp function is identical to _Xl cConpar el SOLati n1, except that at
most "len" wide characters are compared.

12

	X11R6 Sample Implementation Frame Work
	Table of Contents
	Chapter 1. Framework
	Preface
	Objective
	Locale Object Binding Functions
	Locale Method Interface
	Locale Method Functions
	Charset functions
	Converter Functions
	X Locale Database functions
	Utility Functions

