X Access Control

Extension Specification
Eamon F. Walsh

THE SOFTWARE ISPROVIDED "ASIS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OF OR OTHER DEALINGS IN THE SOFTWARE.

2009

Revision History
Revision 1.0 19 Oct 2006 efw
Initial Version
Revision 2.0 10 Mar 2008 efw
Version 2.0
Revision 2.1 19 Jun 2009 efw
Version 2.1 (XI2)
Revision 2.2 29 Jun 2009 efw
Version 2.2 (Property post-data hook)

Abstract

The X Access Control Extension (XACE) is aset of generic "hooks" that can be used by other X extensions to
perform access checks. The goal of XACE isto prevent clutter in the core dix/os code by providing acommon
mechanism for doing these sorts of checks. The concept isidentical to the Linux Security Module (LSM) in the
Linux Kernel.

XACE version 1.0 was a generalization of the SECURITY extension, which provides a simple on/off trust model
where "untrusted” clients are restricted in certain areas. Its hooks were for the most part straight replacements of
the old SECURITY logic with generic hook calls. XACE version 2.0 has substantially modified many of the hooks,
adding additional parameters and many new access types. Coverage has also been extended to many additional
extensions, such as Render and Composite. Finally, there is new support for polyinstantiation, or duplicate, window
properties and selections.

This paper describes the implementation of XACE version 2.0, changes to the core server DIX and OS layers that
have been made or are being considered, and each of the security hooks that X ACE offers at the current time and
their function. It is expected that changes to XA CE be documented here. Please notify the authors of this document
of any changesto XACE so that they may be properly documented.

Table of Contents

T (oo (8 oo o 2
[ 1= = 0 (811 = 2
PU DOSE .eittteeeeeereeeaeaa 2
L T LYY 4 PP 3




XACE-Spec

AV A= £ T T 7= g o == P 3
FULUFE WWOTK e e e e e e e e e e e e e e et e e et eeaaeeaenas 4
L= o PP 5
SEONNG SECUMLY SEBEE .vvuiviieiii et e et et e et e e e e e e e e e e e e e et e e et e e e et e e et e e et e eeaneeannaees 5
USING HOOKS .. itieiii et e e e e e e e e e e e e e et e e et e e et e e e aa e e et e eennnas 5
(0] (0 N 17
REOUESES ...ttt 17
B IS o e 17
Ol S e e 18
Introduction
Prerequisites

Thisdocument istargeted to programmerswho are writing security extensionsfor X. It is assumed that the
reader isfamiliar with the C programming language. It is assumed that the reader understands the general
workings of the X protocol and X server.

Purpose

XACE makesit easier to implement new security modelsfor X by providing a set of pluggable hooks that
extension writers can use. Theideaisto provide an abstraction layer between security extensions and the
core DIX/OS code of the X server. This prevents security extensions writers from having to understand
theinner workings of the X server and it prevents X server maintainers from having to deal with multiple
security subsystems, each with its own intrusive code.

For example, consider the X.Org X server's resource subsystem, which is used to track different types
of server objects using ID numbers. The act of looking up an object by its ID number is a security-
relevant operation which security extension writers would likely wish to control. For one or two security
extensions it may be acceptable to simply insert the extension's code directly into the resource manager
code, bracketed by i f def 's. However for more extensions this approach leads to a tangle of code,
particularly when results need to be logically combined, asin i f statement conditions. Additionally,
different extension writers might place their resource checking code in different places in the server,
leading to difficulty intracking down where exactly aparticular lookup operationisbeing blocked. Finally,
this approach may lead to unexpected interactions between the code of different extensions, since there
is no collaboration between extension writers.

The solution employed by the X Access Control Extension isto place hooks (callsinto XACE) at security-
relevant places, such as the resource subsystem mentioned above. Other extensions, typicaly in their
initialization routines, can register callback functions on these hooks. When the hook is called from the
server code, each callback function registered onitiscalled in turn. The callback function is provided with
necessary arguments needed to make a security decision, including areturn value argument which can be
set to indicate the result. XACE itself does not make security decisions, or even know or care how such
decisions are made. XACE merely enforces the result of the decision, such as by returning a BadAccess
error to the requesting client.

This separation between the decision-making logic and the enforcement logic is advantageous because it
allows a great variety of security models to be devel oped without resorting to intrusive modifications to
the core systems being secured. The challenge isto ensure that the hook framework itself provides hooks
everywhere they need to be provided. Once created, however, a hook can be used by everyone, leading
to less duplication of effort.




XACE-Spec

Prior Work

Security Extension

XACE was initially based on the SECURITY extension. This extension introduced the concept of
"trusted” and "untrusted” client connections, with the trust level established by the authorization token
used in the initia client connection. Untrusted clients are restricted in severa areas, notably in the
use of background "None" windows, access to server resources owned by trusted clients, and certain
keyboard input operations. Server extensionsare also declared "trusted” or "untrusted,” with only untrusted
extensions being visible to untrusted client connections.

Solaris Trusted Extensions

Trusted Extensions for Solaris has an X extension (Xtsol) which adds security functionality. Some of the
XACE hooksin the current set were derived from security checks made by the Xtsol code. In other places,
where the Xtsol and SECURITY extensions both have checks, a single XACE hook replaces both.

Linux Security Modules

XACE is influenced by the Linux Security Modules project, which provides a similar framework of
security hooks for the Linux kernel.

Version 2.0 Changes

Different Return-Value Semantics

The status value returned by security modules has been changed. Formerly, security modules were
expected to set the "rval" field of the input structure to "False" if access was to be denied. In version 2.0,
thisfield hasbeen removedin al hooks. Security modules must now set the"status' field toan X error code
to describe the error. Typically, BadAccess will be returned, but this change allows security modules to
return BadAl | oc to report memory allocation failure and BadMat ch to report a polyinstantiated object
lookup failure (the section called “ Polyinstantiation”).

DevPrivates Mechanism

The devPrivates mechanismin the X server was substantially revised to better support security extensions.
The interface for using devPrivates has been unified across the different structures that support private
data. Private space alocation is now independent of whether objects have already been created, and the
private indexes are now global rather than being structure specific. Callbacks are available to initidize
newly allocated space and to clean up before it is freed. Finally, there is a mechanism for looking up the
offset of the private pointer field in a structure, given the structure's resource type.

New Access Modes

Inthe previousversion, there werefour possible modesfor the"access mode" field: read, write, create, and
destroy. Inversion 2.0, many new modes have been introduced to better describe X operations, particularly
on window objects. The access mode field has also been added to additional hooks as described in the
individual hook changes.

Polyinstantiation

XACE now supports polyinstantiation of selections and window properties. the section called “ Property
Access’ and the section called ” Selection Access’ describethe details, but the basicideaisthat the property
and sel ection access hooks may be used to not only change the return value of alookup operation but also




XACE-Spec

to modify the lookup result. This allows more than one property or selection with the same atom name
to be maintained.

Removed Hooks

The "drawable,” "map," "window init", and "background" hooks have been removed. They have been
folded into the resource access hook using new access modes. The "hostlist" hook has been removed and
replaced by a new server access hook (see the section called “ Server Access’). The "site policy” and
"declare extension security” hooks have been removed as the SECURITY extension has been revised to
no longer require them.

New Hooks

New "send" and "receive" hooks have been added to allow basic control over event delivery. "Client" and
"server" access hooks have been added to control access by clients to other clients (for example, through
theKi | | d i ent call) and to the server (for example when changing the host accesslist or changing the
font path). "Screen" and "screen saver" hooks have been added to control access to screens and screen
saver requests. A "selection” hook has been added to control access to selections.

Changes to Existing Hooks

» Theresource access hook structure now has additional fields to describe a"parent” object. They are set
only when a resource with a defined parent (such as a Window object) is being created, in which case
the access mode will include Di xCr eat eAccess.

» The device access hook structure has had the "fromRequest” field removed and an access mode field
added.

» The property access hook structure has had the "propertyName" field removed and a "ppProp” field
added, which contains a pointer to apointer to the property structureitself. The extralevel of indirection
supports polyinstantiation (see the section called “Polyinstantiation™). Note that the property structure
contains the property name.

» The extension dispatch/access hook structure now has an access mode field.

Future Work

Security Hooks

It is anticipated that the set of security hooks provided by XACE will change with time. Some hooks
may become deprecated. More hooks will likely be added as well, as more portions of the X server
are subjected to security analysis. Existing hooks may be added in more places in the code, particularly
protocol extensions. Currently, the only method XACE provides for restricting access to some protocol
extensionsis to deny access to them entirely.

It should be noted that XACE includes hooks in the protocol dispatch table, which allow a security
extension to examine any incoming protocol request (core or extension) and terminate the request before
it is handled by the server. This functionality can be used as a stopgap measure for security checks that
are not supported by the other XACE hooks. The end goal, however, isto have hooks integrated into the
Server proper.

Core X Server

The set of extensions supported by X.org needs to be re-examined. Many of them are essentially unused
and removing them would be easier than attempting to secure them. The GLX extension and the direct
rendering kernel interfaces need to be secured.




XACE-Spec

The server's routines for event delivery need to be reworked to allow greater control by X ACE modules.
In particular, security extensions need to be able to associate private data with each event at thetime of its
generation based on the context and then have that data available at a decision point just before the event
isdelivered to the client. Thiswould allow event delivery to be better controlled on a per-client basis, and
would potentially allow additional security extension functionality such as piggyback events.

Usage
Storing Security State

The first thing you, the security extension writer, should decide on is the state information that your
extension will be storing and how it will be stored. XACE itself does not provide any mechanism for
storing state.

One method of storing state is global variablesin the extension code. Tables can be kept corresponding to
internal server structures, updated to stay synchronized with the structures themselves. One problem with
this method is that the X server does not have consistent methods for lifecycle management of its objects,
meaning that it might be difficult to keep state up to date with objects.

Another method of storing state isto attach your extension's security data directly to the server structures.
This method is possible via the devPri vat es mechanism provide by the DIX layer. Structures
supporting this mechanism can be identified by the presence of a"devPrivates® field. Full documentation
of the devPrivates mechanism is described in the core X server documentation.

Using Hooks

Overview

XACE hastwo header filesthat security extension code may need toinclude. Include Xext / xacestr. h
if you need the structure definitions for the XACE hooks in your source file. Otherwise, include Xext /
xace. h, which contains everything else including constants and function declarations.

XACE hooks use the standard X server callback mechanism. Y our security extension's callback functions
should al use the following prototype:

voi d MCal | back(Cal | backLi stPtr *pcbl, pointer userdata,
poi nter call data);

When the callback is called, pcbl points to the callback list itself. The X callback mechanism allows
the list to be manipulated in various ways, but XACE callbacks should not do this. Remember that other
security extensions may be registered on the same hook. user dat a is set to the data argument that was
passed to XaceRegi st er Cal | back at registration time; this can be used by your extension to pass
datainto the callback. cal | dat a points to a value or structure which is specific to each XACE hook.
These are discussed in the documentation for each specific hook, below. Your extension must cast this
argument to the appropriate pointer type.

To register acallback on a given hook, use XaceRegi st er Cal | back:

Bool XaceRegi st er Cal | back(i nt hook, Cal | backProcPtr
cal | back, pointer userdata);

Where hook isthe XACE hook you wish to register on, cal | back isthe callback function you wish to
register, and user dat a will be passed through to the callback asits second argument, as described above.
See Table 1, “XACE security hooks.” for the list of XACE hook codes. XaceRegi st er Cal | back is




XACE-Spec

Hooks

typically called from the extension initialization code; seethe SECURITY source for examples. Thereturn
valueis TRUE for success, FALSE otherwise.

To unregister a callback, use XaceDel et eCal | back:

Bool XaceDel et eCal | back(int hook, Call backProcPtr call back,

poi nter userdata);

where the three arguments are identical to those used in the call to XaceRegi st er Cal | back. The
return value is TRUE for success, FALSE otherwise.

The currently defined set of XACE hooksis shown in Table 1, “XACE security hooks.”. As discussed in
the section called “ Security Hooks”, the set of hooksis likely to changein the future as X ACE is adopted
and further security analysis of the X server is performed.

Table 1. XACE security hooks.

Hook | dentifier Callback Argument Type Refer to

XACE_CORE_DI SPATCH XaceCoreDispatchRec the section called “ Core
Dispatch”

XACE_EXT_DI SPATCH XaceExtAccessRec the section called “Extension
Dispatch”

XACE_RESOURCE_ACCESS XaceResourceA ccessRec the section called “ Resource
Access’

XACE_DEVI CE_ACCESS XaceDeviceAccessRec the section called “Device
Access’

XACE_PROPERTY_ACCESS XacePropertyAccessRec the section called “ Property
Access’

XACE_SEND_ ACCESS XaceSendA ccessRec the section called “ Send Access’

XACE_RECEI VE_ACCESS XaceReceiveAccessRec the section called “Receive

Access’

XACE_CLI ENT_ACCESS

XaceClientAccessRec

the section called “ Client
Access’

XACE_EXT_ACCESS XaceExtAccessRec the section called “ Extension
Access’

XACE_SERVER_ ACCESS XaceServerAccessRec the section called “ Server
Access’

XACE_SELECTI ON_ACCESS | XaceSelectionAccessRec the section called “ Selection
Access’

XACE_SCREEN_ACCESS XaceScreenAccessRec the section called “ Screen

Access’

XACE_SCREENSAVER _ACCESS

XaceScreenA ccessRec

the section called “ Screen Saver
Access’

XACE_AUTH_AVAI L

XaceAuthAvailRec

the section called “ Authorization
Availability Hook”

XACE_KEY_AVAI L

XaceKeyAvailRec

the section called “Keypress
Availability Hook”




XACE-Spec

Hook | dentifier Callback Argument Type Refer to

XACE _AUDI T_BEG N XaceAuditRec the section called “ Auditing
Hooks’

XACE_AUDI T_END XaceAuditRec the section called “ Auditing
Hooks”

Inthe descriptionsthat follow, itishelpful to havealisting of Xext / xacest r . h availablefor reference.

Core Dispatch

This hook allows security extensions to examine all incoming core protocol requests before they are
dispatched. The hook argument is a pointer to a structure of type XaceCoreDispatchRec. This structure
containsacl i ent field of type ClientPtr and ast at us field of typeint.

The cl i ent field refers to the client making the incoming request. Note that the complete request is
accessible viathe r equest Buf f er member of the client structure. The REQUEST family of macros,
locatedini ncl ude/ di x. h, areuseful in verifying and reading from this member.

The st at us field may be set to a nonzero X protocol error code. In this event, the request will not be
processed further and the error code will be returned to the client.

Extension Dispatch

This hook allows security extensions to examine all incoming extension protocol requests before they
are dispatched. The hook argument is a pointer to a structure of type XaceExtAccessRec. This structure
containsacl i ent field of type ClientPtr, aext field of type ExtensionEntry*, aaccess_node field
of type Mask, and ast at us field of typeint.

The cl i ent field refers to the client making the incoming request. Note that the complete request is
accessible viathe r equest Buf f er member of the client structure. The REQUEST family of macros,
located ini ncl ude/ di x. h, are useful in verifying and reading from this member.

Theext field refersto the extension being accessed. Thisis required information since extensions are not
associated with any particular major number.

Theaccess_node fieldissetto Di xUseAccess when this hook is exercised.

The st at us field may be set to a nonzero X protocol error code. In this event, the request will not be
processed further and the error code will be returned to the client.

Resource Access

This hook allows security extensions to monitor all resource lookups. The hook argument is a pointer to
a structure of type XaceResourceAccessRec. This structure containsacl i ent field of type ClientPtr, a
i d field of type XID, art ype field of type RESTYPE, ar es field of type pointer, apt ype field of
type RESTYPE, apar ent field of type pointer, aaccess_node field of type Mask, and a st at us
field of typeint.

Thecl i ent field refersto the client on whose behalf the lookup is being performed. Note that this may
beserver C i ent for server lookups.

Thei d field isthe resource ID being looked up.
Ther t ype field isthe type of the resource being looked up.

Ther es field isthe resource itself: the result of the lookup.




XACE-Spec

The pt ype field isthe type of the parent resource or RT_NONE if not set.

The par ent field is the parent resource itself or NULL if not set. The parent resource is set only when
two conditions are met: The resource in question is being created at the time of the call (in which case
theaccess_node will includeDi xCr eat eAccess) and the resource in question has a defined parent
object. Table 3, “Resource access hook parent objects.” lists the resources that support parent objects. The
purpose of these two fields is to provide generic support for "parent” resources.

The access_node field encodes the type of action being performed. The valid mode bits are defined
ini ncl ude/ di xaccess. h. The meaning of the bits depends on the specific resource type. Tables
for some common types can be found in Table 2, “Resource access hook access modes.”. Note that the
Di xCr eat eAccess access mode has special meaning: it signifies that the resource object is in the
process of being created. This provides an opportunity for the security extension to initialize its security
label information in the structure devPrivates or otherwise. If the status field is set to an error codein this
case, the resource creation will fail and no entry will be made under the specified resource ID.

The st at us field may be set to anonzero X protocol error code. In this event, the resource lookup will
fail and an error (usually, but not always, the status value) will be returned to the client.

Table 2. Resour ce access hook access modes.

Access M ode Bit

Meaning

Example Call Site

D xReadAccess

The primary data or contents
of the object are being read
(drawables, cursors, colormaps).

Getlmage, GetCursorlmage,
CreatePicture, QueryColors

D xWiteAccess

The primary data or contents
of the object are being written
(drawables, cursors, colormaps).

Putlmage, RenderTriFan,
ClearArea, StoreColors,
RecolorCursor

Di xDestroyAccess

The object is being removed.

CloseFont, DestroyWindow,
FreePixmap, FreeCursor,
RenderFreePicture

Di xCr eat eAccess

The object is being created.

CreateWindow, CreatePixmap,
CreateGC, CreateColormap

Di xCGet AttrAccess

The object's attributes are being
queried, or the object is being
referenced.

GetWindowAttributes,
GetGeometry, QueryFont,
CopyGC, QueryBestSize

Di xSet Attr Access

The object’s attributes are being
changed.

SetWindowAttributes,
ChangeGC, SetClipRectangles,
XFixesSetCursorName

Di xLi st PropAccess

User properties set on the object
are being listed (windows).

ListProperties

Di xGet PropAccess

A user property set on the object
is being read (windows).

GetProperty, RotateProperties

Di xSet PropAccess

A user property set on the object
is being written (windows).

ChangeProperty,
RotateProperties, DeleteProperty

D xLi st Access

Child objects of the object are
being listed out (windows).

QueryTree, MapSubwindows,
UnmapSubwindows

D xAddAccess

A child object is being added
to the object (drawables, fonts,
colormaps).

CreateWindow,
ReparentWindow, AllocColor,




XACE-Spec

Access M ode Bit

M eaning

Example Call Site

RenderCreatePicture,
RenderAddGlyphs

D xRenpbveAccess

A child object is being removed
from object (drawables, fonts,
colormaps).

DestroyWindow,
ReparentWindow, FreeColors,
RenderFreeGlyphs

D xH deAccess

Object is being unmapped or
hidden from view (drawables,
cursor).

UnmapWindow,
XFixesHideCursor

Di xShowAccess

Object is being mapped or shown
(drawables, cursor).

MapWindow,
X FixesShowCursor

D xBl endAccess

Drawable contents are being
mixed in away that may
compromise contents.

Background "None",
CompositeRedirectWindow,
CompositeRedirectSubwindows

Di xGr abAccess Override-redirect bit on a CreateWindow,
window has been set. ChangeWindowAttributes
Di xl nstal | Access Colormap is being installed. InstallColormap

D xUni nstal | Access

Colormap is being uninstalled.

UninstallColormap

Di xSendAccess

Aneventisbeing senttoa
window.

SendEvent

Di xRecei veAccess

A client is setting an event mask
on awindow.

ChangeWindowAttributes,
XiSelectExtensionEvent

D xUseAccess

The object is being used without
modifying it (fonts, cursors, gc).

CreateWindow, FillPoly,
GrabButton, ChangeGC

D xManageAccess

Window-manager type actions on

CirculateWindow,

adrawable. ChangeSaveSet,

ReparentWindow

Table 3. Resour ce access hook parent objects.

Resource Type Parent Resource Type Notes

RT_W NDOW RT_W NDOW Contains the parent window. This
will be NULL for root windows.

RT_PI XMAP RT_W NDOW COMPOSITE extension only: the
source window is passed as the
parent for redirect pixmaps.

Render Pi ct ur eType RC_DRAVWABLE The source drawable is passed

as the parent for Render picture
objects.

Device Access

This hook allows security extensions to restrict client actions on input devices. The hook argument is
a pointer to a structure of type XaceDeviceAccessRec. This structure containsacl i ent field of type
ClientPtr, adev field of type DevicelntPtr, aaccess_node field of type Mask, and a st at us field

of typeint.

Thecl i ent field refers to the client attempting to access the device (keyboard). Note that this may be

serverClient.




XACE-Spec

Thedev field refersto the input device being accessed.

Theaccess_node field encodes the type of action being performed. The valid mode bits are described

in the table below.

The st at us field may be set to anonzero X protocol error code. In this event, the device operation will
fail and an error (usually, but not always, the status value) will be returned to the client.

Table 4. Device access hook access modes.

Access M ode Bit

Meaning

Example Call Site

Di xGet Attr Access

Attributes of the device are being
queried.

GetK eyboardMapping,
XiGetK eyboardControl,
XkbGetDevicelnfo

D xReadAccess

The state of the deviceisbeing
polled.

QueryPointer, QueryKeymap,
XkbGetState

D xWiteAccess

The state of the deviceisbeing
programatically manipulated.

WarpPointer, X TestFakel nput,
XiSendExtensionEvent

D xSet Attr Access

Per-client device configuration is
being performed.

XkbPerClientFlags

D xManageAccess

Global device configurationis
being performed.

ChangeK eyboardMapping,
XiChangeDeviceControl,
XkbSetControls

Di xUseAccess

The device is being opened or
referenced.

XiOpenDevice, XkbSelectEvents

D xG abAccess

The device is being grabbed.

GrabPointer, GrabButton,
GrabKey

D xFreezeAccess

The state of the device is being
frozen by a synchronous grab.

GrabKeyboard, GrabPointer

Di xFor ceAccess

The device cursor is being
overriden by agrab.

GrabPointer, GrabButton

Di xGet FocusAccess

The device focusis being
retrieved.

GetlnputFocus,
XiGetDeviceFocus

Di xSet FocusAccess

The device focusis being set.

SetlnputFocus,
XiSetDeviceFocus

D xBel | Access

The device bell is being rung.

Bell, XiDeviceBell

Di xCr eat eAccess

The device object has been newly
allocated.

XIChangeDeviceHierarchy,
XIAddMaster

Di xDestroyAccess

The device is being removed.

X1ChangeDeviceHierarchy,
XIRemoveM aster

Di xAddAccess

A slave deviceis being attached
to the device.

XIChangeDeviceHierarchy,
X1ChangeA ttachment

D xRenoveAccess

A davedeviceisbeing
unattached from the device.

X1ChangeDeviceHierarchy,
X1ChangeAttachment

Di xLi st PropAccess

Properties set on the device are
being listed.

ListDeviceProperties,
XIListProperties

Di xGet PropAccess

A property set on the deviceis
being read.

GetDeviceProperty,
X1GetProperty

10




XACE-Spec

Access M ode Bit Meaning Example Call Site
Di xSet PropAccess A property set onthedeviceis | SetDeviceProperty,
being written. X1SetProperty

Property Access

This hook allows security extensions to monitor all property accesses and additionally to support
polyinstantiation if desired. The hook argument isapointer to astructure of type XacePropertyAccessRec.
This structure containsacl i ent field of type ClientPtr, a pW n field of type WindowPtr, a ppPr op
field of type PropertyPtr*, aaccess_node field of type Mask, and ast at us field of typeint.

The client field refers to the client which is accessing the property. Note that this may be
server C i ent for server lookups.

The pW n field is the window on which the property is being accessed.

The ppPr op field is a double-indirect pointer to the PropertyRec structure being accessed. The extra
level of indirection supports property polyinstantiation; see below. If your extension does not use the
polyinstantiation feature, simply dereference the pointer to obtain a PropertyPtr for the property

Theaccess_node field encodes the type of action being performed. The valid mode bits are described
in the table below.

The st at us field may be set to anonzero X protocol error code. In this event, the property request will

not be processed further and the error code will be returned to the client. However, the BadMat ch code
has special meaning; see below.

Table 5. Property access hook mode bits.

Access M ode Bit Meaning Example Call Site

Di xCr eat eAccess The property object has been ChangeProperty
newly allocated (this bit will
always occur in conjunction with
D xWiteAccess).

D xWiteAccess The property datais being ChangeProperty,
completely overwritten with new | RotateProperties
data.

Di xBl endAccess The property datais being ChangeProperty
appended or prepended to.

Di xReadAccess The property dataisbeing read. | GetProperty

Di xDestroyAccess The property datais being DeleteProperty
deleted.

Di xGet AttrAccess Existence of the property is being | ListProperties
disclosed.

Di xPost Access Post-write call reflecting new ChangeProperty

contents (this bit will always
occur in conjunction with
D xWiteAccess).

New in XACE Version 2.0, this hook supports the polyinstantiation of properties. This means that more
than one property may exist having the same name, and the security extension can control which property

11



XACE-Spec

object is seen by which client. To perform property polyinstantiation, your security extension should take
the following steps:

* When a property is being created (Di xCr eat eAccess), the security extension should labdl it
appropriately based ontheclient that iscreating it. Inthiscase, the ppPr op field should not be modified.

* When a property is being looked up, the ppPr op field will refer to the first structure in the linked
list with the given name. The security extension may change the ppProp field to a different property
structure by traversing the linked list (using the PropertyRec next field) to find an aternate structure
with the same property name.

 Alternately, when aproperty isbeinglooked up, thest at us may besetto BadMat ch whichwill cause
the DIX layer to treat the property as not existing. This may result in an additional property object with
the same name being created (in which case the hook will be called again with the create access mode).

New in XACE Version 2.2, thishook allows security extensionsto verify the contents of propertiesafter the
client has written them. On a property change, the property access hook will be called twice. The first call
is unchanged from previous versions. The second call will have the Di xPost Access bit together with
Di xWiteAccess and the ppPr op property pointer will contain the new data. Setting the st at us
field to something other than Success will cause the previous property contents to be restored and the
client to receive the status code as an error.

Note that in the case of property creation (when Di XxCr eat eAccess is set), the ppPr op field already
reflects the new data. Hence security extensions wishing to validate property data should check for either
Di xPost Access or Di xCr eat eAccess inconjunctionwith Di xXW i t eAccess. If your extension
does not need this feature, simply ignore callswith the Di xPost Access hit set.

Send Access

This hook allows security extensions to prevent devices and clients from posting X events to a given
window. Thehook argument isapointer to astructure of type XaceSendA ccessRec. Thisstructure contains
aclient field of type ClientPtr, adev field of type DevicelntPtr, a pW n field of type WindowPtr, a
event s field of type events, acount field of typeint, and ast at us field of typeint.

Thecl i ent fieldreferstotheclient attemptingaSendEvent request or other synthetic event generation
to the given window. Thisfield may be NULL if the dev field is set.

The dev field refers to the device attempting to post an event which would be delivered to the given
window. Thisfield may be NULL if thecl i ent fieldis set.

The pW n field refersto the target window.
Theevent s field refersto the events that are being sent.
Thecount field contains the number of eventsintheevent s array.

Thest at us field may be set to anonzero X protocol error code. In this event, the events will be dropped
on the floor instead of being delivered.

Warning
This hook does not currently cover all instances of event delivery.

Receive Access

This hook allows security extensions to prevent a client from receiving X eventsthat have been delivered
to a given window. The hook argument is a pointer to a structure of type XaceReceiveAccessRec. This

12



XACE-Spec

structure containsacl i ent field of type ClientPtr, apW n field of type WindowPtr, aevent s field of
type events, acount field of typeint, and ast at us field of typeint.

Thecl i ent field refersto the client to which the event would be delivered.
The pW n field refersto the window where the event has been sent.
Theevent s field refers to the events that are being sent.

Thecount field contains the number of eventsintheevent s array.

The st at us field may be set to a nonzero X protocol error code. In this event, the events will not be
delivered to the client.

Warning
This hook does not currently cover all instances of event delivery.
Client Access

This hook alows security extensions to prevent clients from manipulating other clients directly. This
hook applies to a small set of protocol requests such asKi | | C i ent . The hook argument is a pointer
to a structure of type XaceClientAccessRec. This structure containsacl i ent field of type ClientPtr, a
t ar get field of type ClientPtr, aaccess_node field of type Mask, and ast at us field of typeint.

Thecl i ent field refersto the client making the request.
Thet ar get field refersto the client being manipulated.

Theaccess_node field encodes the type of action being performed. The valid mode bits are described
in the table below.

The st at us field may be set to anonzero X protocol error code. In this event, the request will fail and
an error (usually, but not always, the status value) will be returned to the client.

Table 6. Client access hook mode bits.

Access M ode Bit Meaning Example Call Site
Di xGet AttrAccess Attributes of the client are being | SyncGetPriority
queried.
Di xSet AttrAccess Attributes of the client are being | SyncSetPriority
Set.
Di xManageAccess The client's close-down-mode SetCloseDownMode

(which affects global server
resource management) is being
set.

Di xDest r oyAccess The client is being killed. KillClient

Extension Access

Thishook allows security extensionsto approve or deny requestsinvolving which extensions are supported
by the server. This allows control over which extensions are visible. The hook argument is a pointer to
a structure of type XaceExtAccessRec. This structure containsacl i ent field of type ClientPtr, a ext
field of type ExtensionEntry*, aaccess_node field of type Mask, and ast at us field of typeint.

13



XACE-Spec

Thecl i ent fieldreferstotheclient making theincoming request, whichistypically Quer yExt ensi on
or Li st Ext ensi ons.

Theext field refersto the extension being accessed. Thisisrequired information since extensions are not
associated with any particular major number.

Theaccess_node fieldissetto Di xGet At t r Access when thishook is exercised.

The st at us field may be set to a honzero X protocol error code. In this event, the extension will be
reported as not supported (Quer yExt ensi ons) or omitted fromthereturnedlist (Li st Ext ensi ons).

Warning

If this hook is used, an extension dispatch hook should also be installed to make sure that clients
cannot circumvent the check by guessing the major opcodes of extensions.

Server Access

This hook allows security extensions to approve or deny requests that affect the X server itself. The hook
argument is a pointer to astructure of type XaceServerAccessRec, which containsacl i ent field of type
ClientPtr, aaccess_node field of type Mask, and ast at us field of typeint.

Thecl i ent field refersto the client making the request.

Theaccess_node field encodes the type of action being performed. The valid mode bits are described
in the table below.

The st at us field may be set to anonzero X protocol error code. In this event, the request will fail and
an error (usually, but not always, the status value) will be returned to the client.

Table 7. Server access hook mode bits.

Access M ode Bit Meaning Example Call Site

Di xGet AttrAccess Attributes of the server are being | GetFontPath
queried.

Di xSet AttrAccess Attributes of the server are being | SetFontPath
Set.

D xManageAccess Server management is being ChangeA ccessControl, ListHosts
performed.

D xGrabAccess A server grab is being performed. | GrabServer

D xReadAccess The server's actions are being Record, XEVIE extensions
recorded.

Di xDebugAccess Server debug facilitiesare being | XTest extension,
used. XkbSetDebuggingFlags

Selection Access

This hook allows security extensions to monitor all selection accesses and additionally to support
polyinstantiation if desired. The hook argument isapointer to astructure of type X aceSel ectionA ccessRec.
This structure contains a cl i ent field of type ClientPtr, a ppSel field of type Selection**, a
access_node field of type Mask, and ast at us field of typeint.

The client field refers to the client which is accessing the property. Note that this may be
server C i ent for server lookups.

14



XACE-Spec

The ppSel field is a double-indirect pointer to the Selection structure being accessed. The extra
level of indirection supports selection polyinstantiation; see below. If your extension does not use the
polyinstantiation feature, smply dereference the pointer to obtain a SelectionRec * for the selection.

Theaccess_node field encodes the type of action being performed. The valid mode bits are described
in the table below.

The st at us field may be set to anonzero X protocol error code. In this event, the property request will
not be processed further and the error code will be returned to the client. However, the BadVat ch code
has special meaning; see below.

Table 8. Selection access hook mode bits.

Access M ode Bit Meaning Example Call Site

Di xCr eat eAccess The selection object has been SetSelectionOwner
newly allocated (this bit will
always occur in conjunction with
Di xSet Att r Access).

Di xSet Attr Access The selection owner isbeing set. | SetSel ectionOwner

Di xGet AttrAccess The selection owner is being GetSel ectionOwner
queried.

Di xReadAccess A convert operation is being ConvertSelection
reguested on the selection.

This hook supports the polyinstantiation of selections. This means that more than one selection may exist
having the same name, and the security extension can control which selection object is seen by which
client. To perform selection polyinstantiation, your security extension should take the following steps:

» When selection ownership isbeing established (Di xSet At t r Access), the security extension should
label it appropriately based on the client that is taking ownership. In this case, the ppSel field should
not be modified.

* When aselection is being looked up, the ppPr op field will refer to the first structure in the linked list
with the given name. The security extension may change the ppSel field to adifferent selection structure
by traversing the linked list (using the Selection next field) to find an alternate structure with the same
selection name.

» Alternately, when a selection is being looked up, the st at us may be set to BadMat ch which will
cause the DIX layer to treat the selection as not existing. This may result in an additional selection
object with the same name being created (in which case the hook will be called again with the create
access mode).

Screen Access

Thishook allows security extensionsto approve or deny requests that manipulate screen objects The hook
argument isapointer to astructure of type XaceScreenAccessRec. Thisstructure containsacl i ent field
of type ClientPtr, ascr een field of type ScreenPtr, aaccess_node field of type Mask, and ast at us
field of typeint.

Thecl i ent field refersto the client making the request.
Thescr een field refers to the screen object being referenced.

Theaccess_node field encodes the type of action being performed. The valid mode bits are described
in the table below.

15



XACE-Spec

The st at us field may be set to a nonzero X protocol error code. In this event, the request will not be
processed further and the error code will be returned to the client.

Table 9. Screen access hook mode bits.

Access M ode Bit Meaning Example Call Site

D xGet AttrAccess Attributes of the screen object are| ListInstalledColormaps,
being queried. QueryBestSize

Di xSet AttrAccess Attributes of the screen object are| Install Colormap
being set.

Di xHi deAccess The cursor on the screen is being | X FixesHideCursor
globally hidden.

Di xShowAccess The cursor on the screen is being | X FixesShowCursor
globally unhidden.

Screen Saver Access

This hook allows security extensions to approve or deny requests that manipulate the screensaver. The
hook argument isapointer to astructure of type XaceScreenAccessRec. Thisstructurecontainsacl i ent
field of type ClientPtr, ascr een field of type ScreenPtr, aaccess_node field of type Mask, and a
st at us field of typeint.

Thecl i ent field refersto the client making the request.

Thescr een field refers to the screen object being referenced.

Theaccess_node field encodes the type of action being performed. The valid mode bits are described
in the table below.

The st at us field may be set to a nonzero X protocol error code. In this event, the request will not be
processed further and the error code will be returned to the client.

Table 10. Screen saver access hook mode hits.

Access M ode Bit Meaning Example Call Site

Di xGet AttrAccess Attributes of the screen saver are | GetScreenSaver,
being queried. ScreenSaverQuerylnfo

Di xSet Attr Access Attributes of the screen saver are | SetScreenSaver,
being set. ScreenSaver Sel ectl nput

Di xHi deAccess The screen saver is being ForceScreenSaver, DPM SEnable
programmatically activated.

Di xShowAccess The screen saver isbeing ForceScreenSaver,
programmatically deactivated. DPMSDisable

Authorization Availability Hook

This hook allows security extensions to examine the authorization associated with a newly connected
client. This can be used to set up client security state depending on the authorization method that was
used. The hook argument is a pointer to a structure of type XaceAuthAvailRec. This structure contains a
cl i ent field of type ClientPtr, and aaut hl d field of type XID.

Thecl i ent field refersto the newly connected client.

16



XACE-Spec

The aut hl d field isthe resource ID of the client's authorization.

This hook has no return value.

Note

Thishook is called after the client enters the initial state and before the client enters the running
state. Keep thisin mind if your security extension uses the Cl i ent St at eCal | back list to
keep track of clients.

This hook isalegacy of the APPGROUP Extension. In the future, this hook may be phased out
in favor of anew client state, C i ent St at eAut hent i cat ed.

Keypress Availability Hook
This hook allows security extensions to examine keypresses outside of the normal event mechanism. This
could be used to implement server-side hotkey support. The hook argument is a pointer to a structure of
type XaceKeyAvailRec. This structure contains aevent field of type xEventPtr, akeybd field of type
DevicelntPtr, and acount field of typeint.
Theevent field refersto the keyboard event, typicaly aKeyPr ess or KeyRel ease.
Thekeybd field refers to the input device that generated the event.

Thecount field isthe number of repetitions of the event (not 100\% sure of this at present, however).

This hook has no return value.

Auditing Hooks
Two hooks provide basi c auditing support. The begin hook is called immediately before anincoming client
request is dispatched and before the dispatch hook is called (refer to the section called “ Core Dispatch”).
Theend hook is called immedately after the processing of the request hasfinished. The hook argument isa
pointer to astructure of type XaceKeyAvailRec. Thisstructure containsacl i ent field of type ClientPtr,
and ar equest Resul t field of typeint.
Thecl i ent field refersto client making the request.

Ther equest Resul t field contains the result of the request, either Success or one of the protocol
error codes. Note that thisfield is significant only in the end hook.

These hooks have no return value.

Protocol

Requests

XACE does not define any X protocol.

Events

XACE does not define any X protocol.

17



XACE-Spec

Errors

XACE does not define any X protocol.

18



