How to further enhance
XKB configuration

Kamil Toman
Ivan U. Pascal
25 November 2002

Abstract

This guide is aimed to relieve one's labour to create a new (internationalized) keyboard layout. Unlike other
documents this guide accents the keymap developer's point of view.

Table of Contents

OVEIVIBIV .ttt ettt e ettt e e e e e et e b e et e e b e e et ab e e e et e e e s 1
THE BBSICS ...ttt e s 1
Enhancing XKB CONfIQUIBLIONcccuuuieiiitiieeeiii ettt e e e e eeb e eeee 2
LEVEIS AN GIOUPDS ...ttt ettt ettt ettt e ettt e e e et et e e e e et r e e e entaeeeenbnaeeees 2
DefiNiNg NEW LAYOULSuuuiiiiiii ittt e ettt e et et e e e e et eeeeba e eeee 3
Predefined XKB SymBol SELScoouiiiiii e 4
[YA Y] =< PP 4
RUIES e ettt et et 7
Descriptive FIles Of RUIESuuiiiii e 8
Overview

The developer of a new layout should read the xkb protocol specification (The X Keyboard Extension:
Protocol Specification [http://www.x-docs.org/XKB/XKBproto.pdf]) at least to clarify for himself some
xkb-specific terms used in this document and elsewhere in xkb configuration. Also it shows wise to
understand how the X server and a client digest their keyboard inputs (with and without xkb).

A useful sourceisalso Ivan Pascal'stext about xkb configuration [http://www.tsu.ru/~pascal/en/xkb] often
referenced throughout this document.

Note that this document covers only enhancements which are to be made to XFree86 version 4.3 and
X11R6.7.0 and above.

The Basics

At the startup (or at later at user's command) X server startsits xkb keyboard module extension and reads
data from a compiled configuration file.

This compiled configuration file is prepared by the program xkbcomp which behaves atogether as an
ordinary compiler (see man xkbconp). Itsinput are human readable xkb configuration files which are
verified and then composed into a useful xkb configuration. Users don't need to mess with xkbcomp
themselves, for them it isinvisible. Usually, it is started upon X server startup.

Asyou probably already know, the xkb configuration consists of five main modules:

http://www.x-docs.org/XKB/XKBproto.pdf
http://www.x-docs.org/XKB/XKBproto.pdf
http://www.x-docs.org/XKB/XKBproto.pdf
http://www.tsu.ru/~pascal/en/xkb
http://www.tsu.ru/~pascal/en/xkb

How to further enhance
XKB configuration

Keycodes Tables that defines translation from keyboard scan codes into reasonable symbolic
names, maximum, minimum legal keycodes, symbolic aliases and description of
physicaly present LED-indicators. The primary sence of this component is to allow
definitions of maps of symbols (see below) to be independent of physical keyboard
scancodes. There are two main naming conventions for symbolic names (always four
bytes long):

» names which express some traditional meaning like <SPCE> (stands for space bar)
or

» nameswhich express somerelative positioning on akeyboard, for example<AE01>
(an exclamation mark on US keyboards), on the right there are keys <AE02>,

<AEO03> etc.

Types Types describe how the produced key is changed by active modifiers (like Shift,
Control, Alt, ...). There are severa predefined types which cover most of used
combinations.

Compat Compatibility component defines internal behaviour of modifiers. Using compat

component you can assign various actions (elaborately described in xkb specification)
to key events. Thisis also the place where LED-indicators behaviour is defined.

Symbols For i18n purposes, thisis the most important table. It defines what values (=symbols)
are assigned to what keycodes (represented by their symbolic name, see above). There
may be defined more than one valuefor each key and then it depends on akey type and
on modifiers state (respective compat component) which value will be the resulting
one.

Geometry Geometry files aren't used by xkb itself but they may be used by some external
programs to depict a keyboard image.

All these components have the files located in xkb configuration tree in subdirectories with the same
names (usually in/ usr/1i b/ X11/ xkb).

Enhancing XKB Configuration

Most of xkb enhancements concerns a need to define new output symbols for the some input key events.
In other words, a need to define a new symbol map (for a new language, standard or just to feel more
comfortable when typing text).

What do you need to do? Generally, you have to define following things:
* the map of symbolsitself

* therulesto alow usersto select the new mapping

* the description of the new layout

First of al, it is good to go through existing layouts and to examine them if there is something you could
easily adjust to fit your needs. Even if thereisnothing similar you may get someideas about basic concepts
and used tricks.

Levels And Groups

Since XFree86 4.3.0 and X11R6.7.0 you can use multi-layout concept of xkb configuration. Though it
is still in boundaries of xkb protocol and general ideas, the keymap designer must obey new rules when
creating new maps. |n exchange we get a more powerful and cleaner configuration system.

How to further enhance
XKB configuration

Remember that it is the application which must decide which symbol matches which keycode according
to effective modifier state. The X server itself sends only an input event message to. Of course, usually the
general interpretation is processed by Xlib, Xaw, Matif, Qt, Gtk and similar libraries. The X server only
supplies its mapping table (usually upon an application startup).

You can think of the X server's symbol table as of a irregular table where each keycode has its row
and where each combination of modifiers determines exactly one column. The resulting cell then gives
the proper symbolic value. Not all keycodes need to bind different values for different combination of
modifiers. <ENTER> key, for instance, usually doesn't depend on any modifiers so it its row has only
one column defined.

Note that in XKB there is no prior assumption that certain modifiers are bound to certain columns. By
editing proper files (see keytypes) this mapping can be changed as well.

Unlike the original X protocol the XKB approach is far more flexible. It is comfortable to add one
additional XKB term - group. You can think of a group as of a vector of columns per each keycode
(naturally the dimension of this vector may differ for different keycodes). What isit good for? The group
isnot very useful unless you intend to use more than onelogically different set of symbols (like more than
one alphabet) defined in asingle mapping table. But then, the group has a natural meaning - each symbol
set has its own group and changing it means selecting a different one. XKB approach alows up to four
different groups. The columnsinside each group are called (shift) levels. The X server knows the current
group and reports it together with modifier set and with akeycode in key events.

Tosum it up:

« for each keycode XKB keyboard map contains up to four one-dimensional tables - groups (logically
different symbol sets)

« for each group of a keycode XKB keyboard map contains some columns - shift levels (values reached
by combinations of Shift, Ctrl, Alt, ... modifiers)

« different keycodes can have different number of groups
« different groups of one keycode can have different number of shift levels
» the current group number istracked by X server

It is clear that if you sanely define levels, groups and sanely bind modifiers and associated actions you
can have simultaneously loaded up to four different symbol sets where each of them would reside in its
own group.

The multi-layout concept provides afacility to manipulate xkb groups and symbol definitionsin away that
allows almost arbitrary composition of predefined symbol tables. To keep it fully functional you have to:

* define all symbols only in the first group

* (re)define any modifiers with extra care to avoid strange (anisometric) behaviour

Defining New Layouts

See Some Words About XKB internals [http://www.tsu.ru/~pascal/en/xkb/internal s.ntml] for explanation
of used xkb terms and problems addressed by XKB extension.

See Common notes about XKB configuration files language [http://www.tsu.ru/~pascal/en/xkb/gram-
common.html] for more precise explanation of syntax of xkb configuration files.

http://www.tsu.ru/~pascal/en/xkb/internals.html
http://www.tsu.ru/~pascal/en/xkb/internals.html
http://www.tsu.ru/~pascal/en/xkb/gram-common.html
http://www.tsu.ru/~pascal/en/xkb/gram-common.html
http://www.tsu.ru/~pascal/en/xkb/gram-common.html

How to further enhance
XKB configuration

Predefined XKB Symbol Sets

If you are about to define some European symbol map extension, you might want to use on of four
predefined |atin al phabet layouts.

Okay, let's assume you want extend an existing keymap and you want to override a few keys. Let's take
asimple U.K. keyboard as an example (defined in pc/ gb):

partial default al phanuneric_keys
xkb_synbol s "basic" ({
i ncl ude "pc/latin"

nane[Groupl] ="Great Britain";

key <AE02> { | 2, qguot edbl, twosuperi or, oneeighth] }
key <AEO03> { | 3, sterling, threesuperior, sterling] };
key <ACl1> { [apostrophe, at, dead_circunflex, dead_caron] };
key <TLDE> { [grave, not si gn, bar, bar 1 };
key <BKSL> { [nunbersign, asciitilde, dead_grave, dead_breve] }
key <RALT> { type[G oupl]="TWO LEVEL",

[SO Level 3_Shift, Milti_key] };

nodi fier_map Mod5 { <RALT> };

It defines a new layout in basi ¢ variant as an extension of common latin aphabet layout. The layout
(symbol set) nameisset to "Great Britain". Then there are redefinitions of afew keycodes and amodifiers
binding. Asyou can see the number of shift levelsisthe same for <AE02>, <AE03>, <AC11>, <TLDE>
and <BKSL> keys but it differs from number of shift levels of <RALT>.

Note that the <RALT> key itself is a binding key for Mod5 and that it serves like a shift modifier for
Level Three, together with Shift asamulti-key. It isagood habit to respect thisrulein anew similar layout.

Okay, you could now define more variants of your new layout besides basi ¢ simply by including
(augmenting/overriding/...) the basic definition and altering what may be needed.

Key Types

Thedifferencesinthe number of columns (shift levels) are caused by adifferent types of keys (seethetypes
definition in section basics). Most keycodes have implicitly set the keytypeintheincluded “pc/ 1 at i n”
fileto “FOUR_LEVEL_ALPHABETI C’. The only exception is <RALT> keycode which is explicitly set
“TWO_LEVEL” keytype.

All those names refer to pre-defined shift level schemes. Usually you can choose a suitable shift level
scheme from def aul t types scheme list in proper xkb component's subdirectory.

The most used schemes are:

ONE_LEVEL The key does not depend on any modifiers. The
symbol from first level is always chosen.

TWO_LEVEL The key uses a modifier Shift and may have two
possible values. The second level may be chosen
by Shift modifier. If Lock modifier (usually Caps-

How to further enhance
XKB configuration

ALPHABETIC

THREE_LEVEL

FOUR_LEVEL

FOUR_LEVEL_ALPHABETIC

KEYPAD

FOUR_LEVEL_KEYPAD

lock) applies the symbol is further processed using
system-specific capitalization rules. If both Shift
+Lock modifier apply the symbol from the second
level istaken and capitalization rulesare applied (and
usually have no effect).

The key uses modifiers Shift and Lock. It may have
two possible values. The second level may be chosen
by Shift modifier. When Lock modifier applies, the
symbol from the first level is taken and further
processed using system-specific capitalization rules.
If both Shift+Lock modifier apply the symbol
from the first level is taken and no capitalization
rules applied. This is often called shift-cancels-caps
behaviour.

Is the same as TWO_LEVEL but it considers an
extra modifier - LevelThree which can be used to
gain the symbol value from the third level. If both
Shift+Level Three modifiers apply the value from
the third levd is also taken. Asin TWO_LEVEL,
the Lock modifier doesn't influence the resulting
level. Only Shift and LevelThree are taken into
that consideration. If the Lock modifier is active
capitalization rules are applied on the resulting
symbol.

Is the same as THREE LEVEL but unlike
LEVEL_THREE if both Shift+Level Three modifiers
apply the symbol istaken from the fourth level.

Is similar to FOUR_LEVEL but also defines shift-
cancels-capsbehaviour asin ALPHABETIC. If Lock
+Level Three apply the symbol from the third level is
taken and the capitalization rules are applied. If Lock
+Shift+Level Three apply the symbol from the third
level istaken and no capitalization rules are applied.

As the name suggest this scheme is primarily used
for numeric keypads. The scheme considers two
modifiers - Shift and NumLock. If none of modifiers
applies the symbol from the first level is taken.
If either Shift or NumLock modifiers apply the
symbol from the second level is taken. If both Shift
+NumL ock modifiers apply the symbol from thefirst
level istaken. Again, shift-cancels-caps variant.

Is similar to KEYPAD scheme but considers also
LevelThree modifier. If Level Three modifier applies
the symbol from the third level is taken. If Shift
+LevelThree or NumLock+LevelThree apply the
symbol from the fourth level is taken. If all Shift
+NumL ock+Level Three modifiers apply the symbol
from the third level istaken. This also, shift-cancels-
caps variant.

How to further enhance
XKB configuration

Besides that, there are several schemesfor special purposes:

PC BREAK Itissimilar to TWO_LEVEL scheme but it considers the Control modifier rather
than Shift. That means, the symbol from the second level ischosen by Control rather
than by Shift.

PC_SYSRQ It issimilar to TWO_LEVEL scheme but it considers the Alt modifier rather than
Shift. That means, the symbol from the second level is chosen by Alt rather than
by Shift.

CTRL+ALT The key uses modifiers Alt and Control. It may have two possible values. If only
onemodifier (Alt or Control) appliesthe symbol from thefirst level ischosen. Only
if both Alt+Control modifiers apply the symbol from the second level is chosen.

SHIFT+ALT The key uses modifiers Shift and Alt. It may have two possible values. If only one
modifier (Alt or Shift) appliesthe symbol from thefirst level ischosen. Only if both
Alt+Shift modifiers apply the symbol from the second level is chosen.

If needed, special caps schemesmay be used. They redefinethe standard behaviour of all * ALPHABETI C
types. The layouts (maps of symbols) with keys defined in respective types then automatically change
their behaviour accordingly. Possible redefinitions are:

* internal

e interna_nocancel
o shift

« shift_nocancel

None of these schemes should be used directly. They are defined merely for ' caps: ' xkb options (used
to globally change the layouts behaviour).

Don't alter any of existing key types. If you need a different behaviour create a new one.

More On Definitions Of Types

When the XKB software deals with a separate type description it gets a complete list of modifiers that
should be taken into account from the ' nodi fi ers=<list of nodifiers>" listand expects
that aset of ' map[<conbi nati on of nodifiers>]=<list of nodifiers>" instructions
that contain the mapping for each combination of modifiers mentioned in that list. Modifiers that are not
explicitly listed are NOT taken into account when the resulting shift level iscomputed. If some combination
is omitted the program (subroutine) should choose the first level for this combination (a quite reasonable
behavior).

L ets consider an example with two modifiers ModOne and ModTwo:

type "..." {
nodi fi ers = MbdOne+ModTwo;
map[None] = Level 1;

map[ModOne] = Level 2;
b

In this case the map statements for ModTwo only and ModOne+ModTwo are omitted. It means that if
the ModTwo is active the subroutine can't found explicit mapping for such combination an will use the
default level i.e. Levell.

How to further enhance
XKB configuration

But in the case the type described as:

type "..." {
nodi fi ers = MbdOne;
map[None] = Level 1;
map[ModOne] = Level 2;

b

the ModTwo will not be taken into account and the resulting level depends on the ModOne state only.
That means, ModTwo alone produces the Level1 but the combination ModOne+ModTwo produces the
Level2 aswell as ModOne alone.

What does it mean if the second modifier is the Lock? It means that in the first case (the Lock itself
is included in the list of modifiers but combinations with this modifier aren't mentioned in the map
statements) the internal capitalization rules will be applied to the symbol from the first level. But in the
second case the capitalization will be applied to the symbol chosen accordingly to he first modifier - and
this can be the symbol from the first as well as from the second level.

Usually, all modifiersintroduced in* nodi fi ers=<li st of nodifiers>" listareused for shift
level calculation and then discarded. Sometimes this is not desirable. If you want to use a modifier for
shift level calculation but you don't want to discard it, you may list in 'pr eser ve[<conbi nat i on
of nodifiers>]=<list of nodifiers>.Tha means, for a given combination all listed
modifierswill be preserved. If the Lock modifier ispreserved then the resulting symbol ispassed to internal
capitalization routine regardless whether it has been used for a shift level calculation or not.

Any key type description can use both real and virtual modifiers. Since real modifiersawayshave standard
names it is not necessary to explicitly declare them. Virtua modifiers can have arbitrary names and can
be declared (prior using them) directly in key type definition:

virtual _nodifiers <conma-separated |ist of nodifiers>

asseeninfor examplebasi ¢, pc or nrousekeys key type definitions.

Rules

Once you are finished with your symbol map you need to add it to rulesfile. The rules file describes how
all thefive basic keycodes, types, compat, symbols and geometry components should be composed to give
a sensible resulting xkb configuration.

The main advantage of rules over formerly used keymaps is a possibility to simply parameterize (once)
fixed patterns of configurations and thus to elegantly alow substitutions of various local configurations
into predefined templates.

A patterninarulesfile (oftenlocatedin/ usr/ | i b/ X11/ xkb/ r ul es) can be parameterized with four
other arguments. Mbdel , Layout, Vari ant and Opti ons. For most cases parameters nodel and
| ayout should be sufficient for choosing afunctional keyboard mapping.

The rules file itself is composed of pattern lines and lines with rules. The pattern line starts with an
exclamation mark (! *) and describes how will the xkb interpret the following lines (rules). A samplerules
filelookslike this:

How to further enhance
XKB configuration

I nodel = keycodes
maci nt osh_ol d = maci nt osh
* = xorg
I nodel = synbol s
hp = +i net (%)
m crosoftpro = +i net (%)
geni usconfy = +i net (%)
I nodel | ayout [1] = synbol s
maci nt osh us = maci nt osh/ us% v[1])
* * = pc/ pe(%) +pc/ % [1] % v[1])
I nodel | ayout [2] = synbol s
maci nt osh us = +maci ntosh/us[2] % v[2]):2
*oox = +pc/ N [2]%v[2]):2
I option = types
caps: i nternal = +caps(internal)
caps:internal _nocancel = +caps(internal _nocancel)

Each rule defines what certain combination of values on the left side of equa sign ('=") results in. For
example a (keyboard) model maci nt osh_ol d instructs xkb to take definitions of keycodes from file
keycodes/ maci nt osh whiletherest of models (represented by awild card * ') instructsit to takethem
fromfilekeycodes/ xor g. Thewild card represents all possible values on the | eft side which were not
found in any of the previous rules. The more specialized (more complete) rules have higher precedence
than general ones, i.e. the more general rules supply reasonable default values.

Asyou can see some lines contain substitution parameters - the parameters preceded by the percent sign
('%0). The first aphabetical character after the percent sign expands to the value which has been found on
the left side. For example +% % v) expandsinto +cz(bksl) if the respective values on the left side
were cz layout inits bksl variant. More, if the layout resp. variant parameter is followed by a pair of

brackets are omitted the first group is the default value.

So the second block of rules enhances symbol definitions for some particular keyboard models with extra
keys (for internet, multimedia, ...) . Other models are left intact. Similarly, the last block overrides some
key type definitions, so the common global behaviour "shift cancels caps' or "shift doesn't cancel caps”
can be selected. The rest of rules produces special symbols for each variant us layout of maci nt osh
keyboard and standard pc symbolsin appropriate variants as a defaullt.

Descriptive Files of Rules

Now you just need to add a detailed descriptionto <r ul es>. xm description file so the other users (and
external programs which often parse thisfile) know what is your work about.

Old Descriptive Files

Theformerly used descriptive fileswere named <r ul es>. | st Itsstructureisvery ssmple and quite self
descriptive but such simplicity had also some cavities, for example there was no way how to describe local
variants of layouts and there were problemswith thelocalization of descriptions. To preserve compatibility
with some older programs, new XML descriptive files can be converted to old format ".Ist'.

How to further enhance
XKB configuration

For each parameter of rules file should be described its meaning. For the rules file described above the
. I st filecould look like:

I nodel
pcl04 Ceneric 104-key PC
m crosoft M crosoft Natural
pc98 PC-98xx Series

naci nt osh Original Macintosh
I | ayout

us U S. English

cz Czech

de Gernan

I option
caps: i nternal uses internal capitalization. Shift cancels Caps
caps:internal nocancel uses internal capitalization. Shift doesn't cancel Caps

And that should be it. Enjoy creating your own xkb mapping.

