
X Synchronization Extention Protocol

X Consortium Standard

Tim Glauert, Olivetti Research/MultiWorks
Dave Carver

Digital EquipmentCorporation, MIT/Project Athena
Jim Gettys

Digital EquipmentCorporation, Cambridge Research Laboratory
David Wiggins

X Consortium, Inc.

X Synchronization Extention Protocol: X Consortium Standard
by Tim Glauert
Dave Carver
Digital EquipmentCorporation, MIT/Project Athena
Jim Gettys
Digital EquipmentCorporation, Cambridge Research Laboratory
David Wiggins
X Consortium, Inc.

X Version 11, Release 6.6.84

Version 3.0
Copyright © 1991 Olivetti Research Limited, Cambridge England and Digital Equipment Corporation, Maynard,
Massachusetts
Copyright © 1991 X Consortium

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is hereby granted, provided that the above
copyright notice appear in all copies. Olivetti, Digital, MIT, and the X Consortium make no representations about the suitability for any purpose of
the information in this document. This documentation is provided as is without express or implied warranty.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/
or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to promote the sale, use or other
dealings in this Software without prior written authorization from the X Consortium.

iii

Table of Contents
1. Synchronization Protocol .. 1

Description .. 1
Types ... 1
Errors ... 3
Requests ... 3
Events .. 8

2. Encoding ... 10
Encoding New Types .. 10
Encoding Errors .. 10
Encoding Requests .. 11
Encoding Events ... 14

1

Chapter 1. Synchronization Protocol
The core X protocol makes no guarantees about the relative order of execution of requests for different
clients. This means that any synchronization between clients must be done at the client level in an
operating system-dependent and network-dependent manner. Even if there was an accepted standard for
such synchronization, the use of a network introduces unpredictable delays between the synchronization
of the clients and the delivery of the resulting requests to the X server.

The core X protocol also makes no guarantees about the time at which requests are executed, which
means that all clients with real-time constraints must implement their timing on the host computer. Any
such timings are subject to error introduced by delays within the operating system and network and are
inefficient because of the need for round-trip requests that keep the client and server synchronized.

The synchronization extension provides primitives that allow synchronization between clients to take place
entirely within the X server. This removes any error introduced by the network and makes it possible to
synchronize clients on different hosts running different operating systems. This is important for multimedia
applications, where audio, video, and graphics data streams are being synchronized. The extension also
provides internal timers within the X server to which client requests can be synchronized. This allows
simple animation applications to be implemented without any round-trip requests and makes best use of
buffering within the client, network, and server.

Description
The mechanism used by this extension for synchronization within the X server is to block the processing
of requests from a client until a specific synchronization condition occurs. When the condition occurs, the
client is released and processing of requests continues. Multiple clients may block on the same condition
to give inter-client synchronization. Alternatively, a single client may block on a condition such as an
animation frame marker.

The extension adds Counter and Alarm to the set of resources managed by the server. A counter has
a 64-bit integer value that may be increased or decreased by client requests or by the server internally. A
client can block by sending an Await request that waits until one of a set of synchronization conditions,
called TRIGGERs, becomes TRUE.

The CreateCounter request allows a client to create a Counter that can be changed by explicit
SetCounter and ChangeCounter requests. These can be used to implement synchronization between
different clients.

There are some counters, called System Counters, that are changed by the server internally rather than
by client requests. The effect of any change to a system counter is not visible until the server has finished
processing the current request. In other words, system counters are apparently updated in the gaps between
the execution of requests rather than during the actual execution of a request. The extension provides a
system counter that advances with the server time as defined by the core protocol, and it may also provide
counters that advance with the real-world time or that change each time the CRT screen is refreshed. Other
extensions may provide their own extension-specific system counters.

The extension provides an Alarm mechanism that allows clients to receive an event on a regular basis
when a particular counter is changed.

Types
Please refer to the X11 Protocol specification as this document uses syntactic conventions established
there and references types defined there.

Synchronization Protocol

2

The following new types are used by the extension.

INT64: 64-bit signed integer
COUNTER: XID
VALUETYPE: {Absolute,Relative};
TESTTYPE: {PositiveTransition,NegativeTransition,
 PositiveComparison,NegativeComparison}
TRIGGER: [
 counter:COUNTER,
 value-type:VALUETYPE,
 wait-value:INT64,
 test-type:TESTTYPE
]
WAITCONDITION: [
 trigger:TRIGGER,
 event-threshold:INT64
]
SYSTEMCOUNTER: [
 name:STRING8,
 counter:COUNTER,
 resolution:INT64
]
ALARM: XID
ALARMSTATE: {Active,Inactive,Destroyed}

The COUNTER type defines the client-side handle on a server Counter. The value of a counter is an
INT64.

The TRIGGER type defines a test on a counter that is either TRUE or FALSE. The value of the test is
determined by the combination of a test value, the value of the counter, and the specified test-type.

The test value for a trigger is calculated using the value-type and wait-value fields when the trigger
is initialized. If the value-type field is not one of the named VALUETYPE constants, the request that
initialized the trigger will return a Value error. If the value-type field is Absolute, the test value is
given by the wait-value field. If the value-type field is Relative, the test value is obtained by adding
the wait-value field to the value of the counter. If the resulting test value would lie outside the range for
an INT64, the request that initialized the trigger will return a Value error. If counter is None and the
value-type is Relative, the request that initialized the trigger will return a Match error. If counter is
not None and does not name a valid counter, a Counter error is generated.

If the test-type is PositiveTransition, the trigger is initialized to FALSE, and it will become TRUE
when the counter changes from a value less than the test value to a value greater than or equal to the test
value. If the test-type is NegativeTransition, the trigger is initialize to FALSE, and it will become
TRUE when the counter changes from a value greater than the test value to a value less than or equal to the
test value. If the test-type is PositiveComparison, the trigger is TRUE if the counter is greater than
or equal to the test value and FALSE otherwise. If the test-type is NegativeComparison, the trigger
is TRUE if the counter is less than or equal to the test value and FALSE otherwise. If the test-type is not
one of the named TESTTYPE constants, the request that initialized the trigger will return a Value error.
A trigger with a counter value of None and a valid test-type is always TRUE.

The WAITCONDITION type is simply a trigger with an associated event-threshold. The event threshold
is used by the Await request to decide whether or not to generate an event to the client after the trigger has
become TRUE. By setting the event-threshold to an appropriate value, it is possible to detect the situation
where an Await request was processed after the TRIGGER became TRUE, which usually indicates that
the server is not processing requests as fast as the client expects.

Synchronization Protocol

3

The SYSTEMCOUNTER type provides the client with information about a SystemCounter. The name
field is the textual name of the counter that identifies the counter to the client. The counter field is the
client-side handle that should be used in requests that require a counter. The resolution field gives the
approximate step size of the system counter. This is a hint to the client that the extension may not be able
to resolve two wait conditions with test values that differ by less than this step size. A microsecond clock,
for example, may advance in steps of 64 microseconds, so a counter based on this clock would have a
resolution of 64.

The only system counter that is guaranteed to be present is called SERVERTIME, which counts
milliseconds from some arbitrary starting point. The least significant 32 bits of this counter track the value
of Time used by the server in Events and Requests. Other system counters may be provided by different
implementations of the extension. The X Consortium will maintain a registry of system counter names to
avoid collisions in the name space.

An ALARM is the client-side handle on an Alarm resource.

Errors
Counter This error is generated if the value for a COUNTER argument in a request does not name

a defined COUNTER.

Alarm This error is generated if the value for an ALARM argument in a request does not name
a defined ALARM.

Requests
Initialize

version-major,version-minor: CARD8
=>
version-major,version-minor: CARD8

This request must be executed before any other requests for
this extension. If a client violates this rule, the results of
all SYNC requests that it issues are undefined. The request
takes the version number of the extension that the client
wishes to use and returns the actual version number being
implemented by the extension for this client. The extension
may return different version numbers to a client depending
of the version number supplied by that client. This request
should be executed only once for each client connection.

Given two different versions of the SYNC protocol,
v1 and v2, v1 is compatible with v2 if and only if
v1.version_major = v2.version_major and v1.version_minor
<= v2.version_minor. Compatible means that the
functionality is fully supported in an identical fashion in the
two versions.

This document describes major version 3, minor version 0 of
the SYNC protocol.

ListSystemCounters
=>
system-counters: LISTofSYSTEMCOUNTER

Synchronization Protocol

4

Errors: Alloc

This request returns a list of all the system counters that are
available at the time the request is executed, which includes
the system counters that are maintained by other extensions.
The list returned by this request may change as counters are
created and destroyed by other extensions.

CreateCounter
id: COUNTER
initial-value: INT64
Errors: IDChoice,Alloc

This request creates a counter and assigns the specified id
to it. The counter value is initialized to the specified initial-
value and there are no clients waiting on the counter.

DestroyCounter
counter: COUNTER
Errors: Counter,Access

This request destroys the given counter and sets the counter
fields for all triggers that specify this counter to None.
All clients waiting on the counter are released and a
CounterNotify event with the destroyed field set to
TRUE is sent to each waiting client, regardless of the
event-threshold. All alarms specifying the counter become
Inactive and an AlarmNotify event with a state
field of Inactive is generated. A counter is destroyed
automatically when the connection to the creating client is
closed down if the close-down mode is Destroy. An Access
error is generated if counter is a system counter. A Counter
error is generated if counter does not name a valid counter.

QueryCounter
counter: COUNTER
=>
value: INT64
Errors: Counter

This request returns the current value of the given counter or
a generates Counter error if counter does not name a valid
counter.

Await
wait-list: LISTofWAITCONDITION
Errors: Counter,Alloc,Value

When this request is executed, the triggers in the wait-list
are initialized using the wait-value and value-type fields,
as described in the definition of TRIGGER above. The
processing of further requests for the client is blocked until
one or more of the triggers becomes TRUE. This may
happen immediately, as a result of the initialization, or at
some later time, as a result of a subsequent SetCounter,
ChangeCounter or DestroyCounter request.

Synchronization Protocol

5

A Value error is generated if wait-list is empty.

When the client becomes unblocked, each trigger is
checked to determine whether a CounterNotify
event should be generated. The difference between
the counter and the test value is calculated by
subtracting the test value from the value of the
counter. If the test-type is PositiveTransition
or PositiveComparison, a CounterNotify event
is generated if the difference is at least event-
threshold. If the test-type is NegativeTransition or
NegativeComparison, a CounterNotify event is
generated if the difference is at most event-threshold. If the
difference lies outside the range for an INT64, an event is
not generated.

This threshold check is made for each trigger in the list and
a CounterNotify event is generated for every trigger for
which the check succeeds. The check for CounterNotify
events is performed even if one of the triggers is TRUE when
the request is first executed. Note that a CounterNotify
event may be generated for a trigger that is FALSE if there
are multiple triggers in the request. A CounterNotify
event with the destroyed flag set to TRUE is always
generated if the counter for one of the triggers is destroyed.

ChangeCounter
counter: COUNTER
amount: INT64
Errors: Counter,Access,Value

This request changes the given counter by adding amount
to the current counter value. If the change to this counter
satisfies a trigger for which a client is waiting, that client is
unblocked and one or more CounterNotify events may
be generated. If the change to the counter satisfies the trigger
for an alarm, an AlarmNotify event is generated and the
alarm is updated. An Access error is generated if counter is
a system counter. A Counter error is generated if counter
does not name a valid counter. If the resulting value for the
counter would be outside the range for an INT64, a Value
error is generated and the counter is not changed.

It should be noted that all the clients whose triggers are
satisfied by this change are unblocked, so this request cannot
be used to implement mutual exclusion.

SetCounter
counter: COUNTER
value: INT64
Errors: Counter,Access

This request sets the value of the given counter to value.
The effect is equivalent to executing the appropriate

Synchronization Protocol

6

ChangeCounter request to change the counter value to value.
An Access error is generated if counter names a system
counter. A Counter error is generated if counter does not
name a valid counter.

CreateAlarm
id: ALARM
values-mask: CARD32
values-list: LISTofVALUE
left">Errors: IDChoice,Counter,Match,Value,Alloc

This request creates an alarm and assigns the identifier id to
it. The values-mask and values-list specify the attributes that
are to be explicitly initialized. The attributes for an Alarm
and their defaults are:

Attribute Type Default

trigger TRIGGER counter None

 value-type Absolute

 value 0

 test-type PositiveComparison

delta INT64 1

events BOOL TRUE

The trigger is initialized as described in the definition of
TRIGGER, with an error being generated if necessary.

If the counter is None, the state of the alarm is set to
Inactive, else it is set to Active.

Whenever the trigger becomes TRUE, either as
a result of this request or as the result of a
SetCounter, ChangeCounter, DestroyCounter,
or ChangeAlarm request, an AlarmNotify event is
generated and the alarm is updated. The alarm is updated
by repeatedly adding delta to the value of the trigger and
reinitializing it until it becomes FALSE. If this update would
cause value to fall outside the range for an INT64, or if
the counter value is None, or if the delta is 0 and test-type
is PositiveComparison or NegativeComparison,
no change is made to value and the alarm state is changed
to Inactive before the event is generated. No further
events are generated by an Inactive alarm until a
ChangeAlarm or DestroyAlarm request is executed.

If the test-type is PositiveComparison or
PositiveTransition and delta is less than
zero, or if the test-type is NegativeComparison or
NegativeTransition and delta is greater than zero, a
Match error is generated.

Synchronization Protocol

7

The events value enables or disables delivery of
AlarmNotify events to the requesting client. The alarm
keeps a separate event flag for each client so that other clients
may select to receive events from this alarm.

An AlarmNotify event is always generated at some time
after the execution of a CreateAlarm request. This will
happen immediately if the trigger is TRUE, or it will happen
later when the trigger becomes TRUE or the Alarm is
destroyed.

ChangeAlarm
id: ALARM
values-mask: CARD32
values-list: LISTofVALUE
Errors: Alarm,Counter,Value,Match

This request changes the parameters of an Alarm. All of the
parameters specified for the CreateAlarm request may
be changed using this request. The trigger is reinitialized
and an AlarmNotify event is generated if appropriate, as
explained in the description of the CreateAlarm request.

Changes to the events flag affect the event delivery to the
requesting client only and may be used by a client to select
or deselect event delivery from an alarm created by another
client.

The order in which attributes are verified and altered is
server-dependent. If an error is generated, a subset of the
attributes may have been altered.

DestroyAlarm
alarm: ALARM
Errors: Alarm

This request destroys an alarm. An alarm is automatically
destroyed when the creating client is closed down if the
close-down mode is Destroy. When an alarm is destroyed,
an AlarmNotify event is generated with a state value of
Destroyed.

QueryAlarm
alarm: ALARM
=>
trigger: TRIGGER
delta: INT64
events: ALARMEVENTMASK
state: ALARMSTATE
Errors: Alarm

This request retrieves the current parameters for an Alarm.

SetPriority
client-resource: XID

Synchronization Protocol

8

priority: INT32
Errors: Match

This request changes the scheduling priority of the client
that created client-resource. If client-resource is None, then
the priority for the client making the request is changed. A
Match error is generated if client-resource is not None and
does not name an existing resource in the server. For any two
priority values, A and B, A is higher priority if and only if
A is greater than B.

The priority of a client is set to 0 when the initial client
connection is made.

The effect of different client priorities depends on the
particular implementation of the extension, and in some
cases it may have no effect at all. However, the intention is
that higher priority clients will have their requests executed
before those of lower priority clients.

For most animation applications, it is desirable that
animation clients be given priority over nonrealtime clients.
This improves the smoothness of the animation on a loaded
server. Because a server is free to implement very strict
priorities, processing requests for the highest priority client
to the exclusion of all others, it is important that a client
that may potentially monopolize the whole server, such as an
animation that produces continuous output as fast as it can
with no rate control, is run at low rather than high priority.

GetPriority
client-resource: XID
=>
priority: INT32
Errors: Match

This request returns the scheduling priority of the client
that created client-resource. If client-resource is None, then
the priority for the client making the request is returned. A
Match error is generated if client-resource is not None and
does not name an existing resource in the server.

Events
CounterNotify

counter: COUNTER
wait-value: INT64
counter-value: INT64
time: TIME
count: CARD16
destroyed: BOOL

CounterNotify events may be generated when a client becomes
unblocked after an Await request has been processed. The wait-value is

Synchronization Protocol

9

the value being waited for, and counter-value is the actual value of the
counter at the time the event was generated. The destroyed flag is TRUE
if this request was generated as the result of the destruction of the counter
and FALSE otherwise. The time is the server time at which the event was
generated.

When a client is unblocked, all the CounterNotify events for the
Await request are generated contiguously. If count is 0, there are no more
events to follow for this request. If count is n, there are at least n more
events to follow.

AlarmNotify
alarm: ALARM
counter-value: INT64
alarm-value: INT64
state: ALARMSTATE
time: TIME

An AlarmNotify event is generated when an alarm is triggered. alarm-
value is the test value of the trigger in the alarm when it was triggered,
counter-value is the value of the counter that triggered the alarm, and time
is the server time at which the event was generated. The state is the new
state of the alarm. If state is Inactive, no more events will be generated
by this alarm until a ChangeAlarm request is executed, the alarm is
destroyed, or the counter for the alarm is destroyed.

10

Chapter 2. Encoding
Please refer to the X11 Protocol Encoding document as this section uses syntactic conventions established
there and references types defined there.

The name of this extension is "SYNC".

Encoding New Types
The following new types are used by the extension.

ALARM: CARD32
ALARMSTATE:
 0 Active
 1 Inactive
 2 Destroyed
COUNTER: CARD32
INT64: 64-bit signed integer
SYSTEMCOUNTER:
 4 COUNTER counter
 8 INT64 resolution
 2 n length of name in bytes
 n STRING8 name
 p pad,p=pad(n+2)
TESTTYPE:
 0 PositiveTransition
 1 NegativeTransition
 2 PositiveComparison
 3 NegativeComparison
TRIGGER:
 4 COUNTER counter
 4 VALUETYPE wait-type
 8 INT64 wait-value
 4 TESTTYPE test-type VALUETYPE:
 0 Absolute
 1 Relative
WAITCONDITION:
 20 TRIGGER trigger
 8 INT64 event threshold

An INT64 is encoded in 8 bytes with the most significant 4 bytes first followed by the least significant 4
bytes. Within these 4-byte groups, the byte ordering determined during connection setup is used.

Encoding Errors

Counter
 1 0 Error
 1 Base + 0 code
 2 CARD16 sequence number
 4 CARD32 bad counter
 2 CARD16 minor opcode

Encoding

11

 1 CARD8 major opcode
 21 unused
Alarm
 1 0 Error
 1 Base + 1 code
 2 CARD16 sequence number
 4 CARD32 bad alarm
 2 CARD16 minor opcode
 1 CARD8 major opcode
 21 unused

Encoding Requests

Initialize
 1 CARD8 major opcode
 1 0 minor opcode
 2 2 request length
 1 CARD8 major version
 1 CARD8 minor version
 2 unused
=>
 1 1 Reply
 1 unused
 2 CARD16 sequence number
 4 0 reply length
 1 CARD8 major version
 1 CARD8 minor version
 2 unused
 20 unused

ListSystemCounters
 1 CARD8 major opcode
 1 1 minor opcode
 2 1 request length
=>
 1 1 Reply
 1 unused
 2 CARD16 sequence number
 4 0 reply length
 4 INT32 list length
 20 unused
 4n list of SYSTEMCOUNTER system counters

CreateCounter
 1 CARD8 major opcode
 1 2 minor opcode
 2 4 request length
 4 COUNTER id
 8 INT64 initial value

DestroyCounter
 1 CARD8 major opcode

Encoding

12

 1 6 minor opcode1

 2 2 request length
 4 COUNTER counter
=>
 1 1 Reply
 1 unused
 2 CARD16 sequence number
 4 0 reply length
 8 INT64 counter value
 16 unused

Await
 1 CARD8 major opcode
 1 7 minor opcode2

 2 1 + 7*n request length
 28n LISTofWAITCONDITION wait conditions

ChangeCounter
 1 CARD8 major opcode
 1 4 minor opcode3

 2 4 request length
 4 COUNTER counter
 8 INT64 amount

SetCounter
 1 CARD8 major opcode
 1 3 minor opcode4

 2 4 request length
 4 COUNTER counter
 8 INT64 value

CreateAlarm
 1 CARD8 major opcode
 1 8 minor opcode
 2 3+n request length
 4 ALARM id
 4 BITMASK values mask

 #x00000001 counter
 #x00000002 value-type
 #x00000004 value
 #x00000008 test-type
 #x00000010 delta
 #x00000020 events

 4n LISTofVALUE values

VALUES
 4 COUNTER counter

1A previous version of this document gave an incorrect minor opcode
2A previous version of this document gave an incorrect minor opcode.
3A previous version of this document gave an incorrect minor opcode.
4A previous version of this document gave an incorrect minor opcode.

Encoding

13

 4 VALUETYPE value-type
 8 INT64 value
 4 TESTTYPE test-type
 8 INT64 delta
 4 BOOL events

ChangeAlarm
 1 CARD8 major opcode
 1 9 minor opcode
 2 3+n request length
 4 ALARM id
 4 BITMASK values mask
 encodings as for CreateAlarm
 4n LISTofVALUE values
 encodings as for CreateAlarm

DestroyAlarm
 1 CARD8 major opcode
 1 11 minor opcode5

 2 2 request length
 4 ALARM alarm

QueryAlarm
 1 CARD8 major opcode
 1 10 minor opcode6

 2 2 request length
 4 ALARM alarm
=>
 1 1 Reply
 1 unused
 2 CARD16 sequence number
 4 2 reply length
 20 TRIGGER trigger
 8 INT64 delta
 1 BOOL events
 1 ALARMSTATE state
 2 unused

SetPriority
 1 CARD8 major opcode
 1 12 minor opcode
 2 3 request length
 4 CARD32 id
 4 INT32 priority

GetPriority
 1 CARD8 major opcode
 1 13 minor opcode
 2 1 request length
 4 CARD32 id
=>

5A previous version of this document gave an incorrect minor opcode.
6A previous version of this document gave an incorrect minor opcode.

Encoding

14

 1 1 Reply
 1 unused
 2 CARD16 sequence number
 4 0 reply length
 4 INT32 priority
 20 unused

Encoding Events

CounterNotify
 1 Base + 0 code
 1 0 kind
 2 CARD16 sequence number
 4 COUNTER counter
 8 INT64 wait value
 8 INT64 counter value
 4 TIME timestamp
 2 CARD16 count
 1 BOOL destroyed
 1 unused

AlarmNotify
 1 Base + 1 code
 1 1 kind
 2 CARD16 sequence number
 4 ALARM alarm
 8 INT64 counter value
 8 INT64 alarm value
 4 TIME timestamp
 1 ALARMSTATE state
 3 unused

