Extending X for Double-Buffering,
Multi-Buffering, and Stereo

Jeffrey Friedberg
Larry Seiler
Jeff Vroom

Extending X for Double-Buffering, Multi-Buffering, and Stereo
by

Jeffrey Friedberg

Larry Seiler

Jeff Vroom

X Version 11, Release 6.4

Version 3.3

Copyright © 1989 Digital Equipment Corporation
Copyright © 1989 X Consortium

Copyright © 1994 X Consortium

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in al copies. Digital Equipment Corporation makes no representations about the suitability for
any purpose of the information in this document. This documentation is provided "as is" without express or implied warranty. This document is
subject to change.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the ™" Software"),
to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/
or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “ASIS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to promote the sale, use or other
dealings in this Software without prior written authorization from the X Consortium.

X Window Systemis a trademark of X Consortium, Inc.

Table of Contents

T I I PP PP PPPTTR 1
Fg11 oo (¥ oi (oo H TP OP PP PPPPPTPRPPPIN 1
€0 PP PT 1
IMBOE BUFTEIS ..ottt ettt e e et e eeeaa e eens 1
NEW REGUESES ...ttt et e et e e 3
ATITTDULES ..ottt e et e et e 6
B BN e 8
B O S e e 9

U e e 9
Double-Buffering Normal WINAOWSuiiiiiiiiiiiiiiieecei e 9
Multi-Buffering Normal WINAOWScooiiiiiiiiiiiie e 10
SLEFEO WINUOWS ...ttt et e e et e e e e e e e et e e eenan e eeees 10
Single-Buffered Stere0 WinGOWSooieuuiiiiiiii e 11
Double-Buffering Stere0 WINGOWSccouuuiiiiiiieiiii e 12
Multi-Buffering Stere0 WIintOWSieiiiiiiiiiiii e e 13
ProtoCol BENCOTINGcieeiieiiiti ettt e e e enees 13
Y PE S . e e e 14
BV EN T S o et et e e e 14
ERRORS ... 14
REQUESTS .ottt et et e e ettt e ettt e et e et e et e et e e e e et e e e enta e eeenes 15

Chapter 1. TITLE

Warning

The Multi-Buffering extension described here was a draft standard of the X Consortium prior
to Release 6.1. It has been superseded by the Double Buffer Extension (DBE). DBE is an X
Consortium Standard as of Release 6.1.

Introduction

Severa proposals have been written that address some of the issues surrounding the support of double-
buffered, multi-buffered, and stereo windows in the X Window System:

» Extending X for Double-Buffering, Jeffrey Friedberg, Larry Seiler, Randi Rost.
* (Proposal for) Double-Buffering Extensions, Jeff VVroom.

» An Extension to X.11 for Displays with Multiple Buffers, David S.H. Rosenthal.
» A Multiple Buffering/Stereo Proposal, Mark Patrick.

The authors of this proposal have tried to unify the above documentsto yield a proposal that incorporates
support for double-buffering, multi-buffering, and stereo in away that is acceptable to al concerned.

Goals

Clients should be able to:

» Associate multiple buffers with awindow.

 Paint in any buffer associated with awindow.

 Display any buffer associated with awindow.

» Display aseries of buffersin awindow in rapid succession to achieve a smooth animation.
» Request simultaneous display of different buffersin different windows.

In addition, the extension should:

» Allow existing X applications to run unchanged.

 Support arange of implementation methods that can capitalize on existing hardware features.

Image Buffers

Normal windows are created using the standard Cr eat eW ndow request:

Cr eat eW ndow

par ent : W NDOW

w_id . W NDOW

dept h : CARDSB

vi sual : VISUALI D or CopyFronPar ent

TITLE

X, Yy : INT16

wi dt h, hei ght : I NT16
border _wi dth . INT16

val ue_nask . Bl TMASK

val ue_|Ii st . LI STof VALUE

This request allocates a set of window attributes and a buffer into which an image can be drawn. The
contents of this image buffer will be displayed when the window is mapped to the screen.

To support double-buffering and multi-buffering, we introduce the notion that additional image buffers
can be created and bound together to form groups. The following rules will apply:

 All image buffersin agroup will have the same visual type, depth, and geometry (ie: width and height).
» Only one image buffer per group can be displayed at atime.
 Draw operations can occur to any image buffer at any time.

« Window management requests (MapW ndow, Dest r oyW ndow, Conf i gur eW ndow, etc...) affect
al image buffers associated with awindow.

» Appropriate resize and exposure events will be generated for every image buffer that is affected by a
window management operation.

By alowing draw operations to occur on any image buffer at any time, aclient could, on amulti-threaded
multi-processor server, simultaneously build up imagesfor display. To support this, each buffer must have
its own resource ID. Since buffers are different than windows and pixmaps (buffers are not hierarchical
and pixmaps cannot be displayed) anew resource, Buf f er , isintroduced. Furthermore, aBuf f er isalso
a Dr awabl e, thus draw operations may also be performed on buffers ssmply by passing a buffer ID to
the existing pixmap/window interface.

To allow existing X applications to work unchanged, we assume awindow ID passed in a draw request,
for amulti-buffered window, will be an aliasfor the ID of the currently displayed image buffer. Any draw
requests (eq: Get | nage) on the window will be relative to the displayed image buffer.

In window management requests, only awindow ID will be accepted. Requests like Quer yTr ee, will
continue to return only window ID's. Most events will return just the window ID. Some new events,
described in a subsequent section, will return a buffer ID.

When a window has backing store the contents of the window are saved off-screen. Likewise, when the
contents of an image buffer of a multi-buffer window is saved off-screen, it is said to have backing store.
This appliesto al image buffers, whether or not they are selected for display.

In some multi-buffer implementations, undisplayed buffers might be implemented using pixmaps. Since
the contents of pixmaps exist off-screen and are not affected by occlusion, these image buffersin effect
have backing store.

On the other hand, both the displayed and undisplayed image buffers might be implemented using a subset
of the on-screen pixels. In this case, unless the contents of an image buffer are saved off-screen, these
image buffersin effect do not have backing store.

Output to any image buffer of an unmapped multi-buffered window that does not have backing store is
discarded. Output to any image buffer of a mapped multi-buffer window will be performed; however,
portions of an image buffer may be occluded or clipped.

When an unmapped multi-buffered window becomes mapped, the contents of any image buffer buffer that
did not have backing store is tiled with the background and zero or more exposure events are generated.

TITLE

New

If no background is defined for the window, then the screen contents are not altered and the contents of
any undisplayed image buffers are undefined. If backing store was maintained for an image buffer, then
No exposure events are generated.

Requests

The new request, Cr eat el nageBuf f er s, creates a group of image buffers and associates them with
anorma X window:

Creat el nageBuffers

w_id : W NDOW

buffers . LI STof BUFFER

update_action : {Undefined, Background, Unt ouched, Copi ed}
updat e_hi nt . {Frequent,Internmittent, Static}

=>

nunber buffers : CARDL6

(Errors: Wndow, |DChoice, Value)

Oneimage buffer will be associated with each ID passed in buffers. Thefirst buffer of thelistisreferred to
as buffer[0], the next buffer[1], and so on. Each buffer will have the same visual type and geometry asthe
window. Buffer[O] will refer to the image buffer already associated with the window ID and its contents
will not be modified. The displayed image buffer attribute is set to buffer[Q].

Image buffersfor theremaining ID's (buffer[1],...) areallocated. If the window ismapped, or if theseimage
buffers have backing store, their contents will be tiled with the window background (if no background is
defined, the buffer contents are undefined), and zero or more expose events will be generated for each of
these buffers. The contents of an image buffer is undefined when the window is unmapped and the buffer
does not have backing store.

If the window already has a group of image buffers associated with it (ie: from a previous
Cr eat el nageBuUf f er s request) the actions described for Dest r oyl mageBuf f er s are performed
first (thiswill delete the association of the previous buffer ID's and their buffers as well as de-allocate all
buffers except for the one aready associated with the window ID).

To allow a server implementation to efficiently allocate the buffers, the total number of buffers required
and the update action (how they will behave during an update) is specified "up front" in the request. If
the server cannot allocate all the buffers requested, the total number of buffers actually allocated will
be returned. No Al | oc errors will be generated \- buffer[0] can always be associated with the existing
displayed image buffer.

For example, an application that wants to animate a short movie loop may request 64 image buffers. The
server may only be able to support 16 image buffers of thistype, size, and depth. The application can then
decide 16 buffers is sufficient and may truncate the movie loop, or it may decide it really needs 64 and
will free the buffers and complain to the user.

One might be tempted to provide a request that inquires whether n buffers of a particular type, size, and
depth could be allocated. But if the query is decoupled from the actual alocation, another client could
sneak in and take the buffers before the original client has allocated them.

While any buffer of a group can be selected for display, some applications may display buffers in a
predictable order (ie: the movie loop application). The list order (buffer[Q], buffer[1], ...) will be used as
ahint by the server asto which buffer will be displayed next. A client displaying buffersin this order may
see a performance improvement.

TITLE

update action indicates what should happen to a previously displayed buffer when a different buffer
becomes displayed. Possible actions are;

Undefined The contents of the buffer that was last displayed will become undefined after
the update. Thisisthe most efficient action sinceit allows the implementation to
trash the contents of the buffer if it needs to.

Background The contents of the buffer that was last displayed will be set to the background
of the window after the update. The background action allows devices to use a
fast clear capability during an update.

Untouched The contents of the buffer that was last displayed will be untouched after the
update. Used primarily when cycling through images that have aready been
drawn.

Copied The contents of the buffer that was last displayed will become the same as those

that are being displayed after the update. This is useful when incrementally
adding to an image.

update_hint indicates how often the client will request a different buffer to be displayed. This hint will
allow smart server implementationsto choose the most efficient meansto support amulti-buffered window
based on the current need of the application (dumb implementations may choose to ignore this hint).
Possible hints are:

Frequent An animation or movieloop isbeing attempted and the fastest, most efficient
means for multi-buffering should be employed.

Intermittent The displayed image will be changed every so often. This is common for
images that are displayed at a rate slower than a second. For example, a
clock that is updated only once a minute.

Static The displayed image buffer will not be changed any time soon. Typically
set by an application whenever there is a pause in the animation.

To display an image buffer the following request can be used:

Di spl ayl mageBuffers

buffers : LI STof BUFFER
m n_del ay : CARD16
max_del ay : CARD16

(Errors: Buffer, Match)

Theimage bufferslisted will become displayed as simultaneously as possible and the update action, bound
at Cr eat el mageBuf f er s time, will be performed.

A list of buffersis specified to allow the server to efficiently change the display of more than one window
at atime (ie: when a global screen swap method is used). Attempting to simultaneously display multiple
image buffers from the same window is an error (Mat ch) since it violates the rule that only one image
buffer per group can be displayed at atime.

If a specified buffer is already displayed, any delays and update action will still be performed for that
buffer. Inthisinstance, only the update action of Background (and possibly Undefined) will have any affect
on the contents of the displayed buffer. These semantics allow an animation application to successfully
execute even when thereis only a single buffer available for awindow.

TITLE

When aDi spl ayl nageBuf f er s request is made to an unmapped multi-buffered window, the effect
of the update action depends on whether the image buffers involved have backing store. When the target
of the update action is an image buffer that does not have backing store, output is discarded. When the
target image buffer does have backing store, the update is performed; however, when the source of the
updateisan image buffer does not have backing store (asin the case of update action Copied), the contents
of target image buffer will become undefined.

min_delay and max_delay put a bound on how long the server should wait before processing the display
request. For each of the windows to be updated by this request, at least min_delay milli-seconds should
elapse since the last time any of the windows were updated; conversely, no window should have to wait
more than max_delay milli-seconds before being updated.

min_delay allows an application to slow down an animation or movie loop so that it appears synchronized
at arate the server can support given the current load. For example, amin_delay of 100 indicatesthe server
should wait at least 1/10 of a second since the last time any of the windows were updated. A min_delay
of zero indicates no waiting is necessary.

max_delay can be thought of as an additional delay beyond min_delay the server is allowed to wait to
facilitate such things as efficient update of multiple windows. If max_delay would require an update
before min_delay is satisfied, then the server should process the display request as soon as the min_delay
requirement is met. A typical value for max_delay is zero.

To implement the above functionality, the time since the last update by a Di spl ayl mageBuf f er s
request for each multi-buffered window needs to be saved as state by the server. The server may delay
execution of the Di spl ayl mageBuf f er s request until the appropriate time (e.g. by requeuing the
request after computing the timeout); however, the entire request must be processed in one operation.
Request execution indivisibility must be maintained. When a server is implemented with internal
concurrency, the extension must adhere to the same concurrency semantics as those defined for the core
protocol.

To explicitly clear arectangular area of an image buffer to the window background, the following request
can be used:

Cl ear | mageBuf f er Ar ea

buf f er : BUFFER
X, VY . INT16
w, h . CARD16
exposures . BOOL

(Errors: Buffer, Value)

Like the X Cl ear Ar ea request, x and y are relative to the window's origin and specify the upper-left
corner of the rectangle. If width is zero, it is replaced with the current window width minus x. If height
is zero it is replaced with the current window height minusy. If the window has a defined background
tile, the rectangle is tiled with a plane mask of all ones, a function of Copy, and a subwindow-mode of
ClipByChildren. If the window has background None, the contents of the buffer are not changed. In either
case, if exposuresistrue, then one or more exposure events are generated for regions of the rectangle that
are either visible or are being retained in backing store.

The group of image buffers allocated by a Cr eat el nageBuf f er s request can be destroyed with the
following request:

Dest r oyl mageBuffers

TITLE

w_id . W NDOW
(Error: Wndow)

The association between the buffer ID's and their corresponding image buffers are deleted. Any image
buffers not selected for display arede-allocated. If thewindow isnot multi-buffered, the request isignored.

Attributes

The following attributes will be associated with each window that is multi-buffered:

di spl ayed_buffer : CARD16

updat e_action : {Undefi ned, Backgr ound, Unt ouched, Copi ed}
updat e_hi nt : {Frequent,Intermttent, Static}

wi ndow_node : {Mono, St er eo}

buffers LI STof BUFFER

displayed buffer is set to the index of the currently displayed image buffer (for stereo windows, this will
be the index of the left buffer \- the index of the right buffer is simply index+1). window_mode indicates
whether this window is Mono or Stereo. The ID for each buffer associated with the window isrecorded in
the buffers list. The above attributes can be queried with the following request:

CetMulti BufferAttri bute

w_id : W NDOW

=>

di spl ayed _buffer : CARDL6

update_action : {Undefi ned, Backgr ound, Unt ouched, Copi ed}
updat e_hi nt : {Frequent,Internmittent, Static}

wi ndow_node . {Mono, St er eo}

buffers : LI STof BUFFER

(Errors: Wndow, Access, Value)

If the window is not multi-buffered, a Access error will be generated. The only multi-buffer attribute
that can be explicitly set isupdate_hint. Rather than have a specific request to set this attribute, a generic
set request is provided to allow for future expansion:

Set Mul ti BufferAttri butes

w.id ;W NDOW
val ue_mask . Bl TMASK
val ue_|i st . LI STof VALUE

(Errors: Wndow, WMatch, Val ue)

If the window is not multi-buffered, a Mat ch error will be generated. The following attributes are
maintained for each buffer of a multi-buffered window:

wi ndow : W NDOW

event _mask . SETof EVENT

i ndex : CARD16

si de : {Mono, Left, Ri ght}

TITLE

window indicates the window this buffer is associated with. event_mask specifies which events, relevant
to buffers, will be sent back to the client via the associated buffer ID (initially no events are selected).
indexisthelist position (0, 1, ...) of the buffer. side indicates whether this buffer is associated with the left
side or right side of a stereo window. For non-stereo windows, this attribute will be set to Mono. These
attributes can be queried with the following request:

CGet Buf fer Attri butes

buffer BUFFER

=>

wi ndow W NDOW

event _mask SETof EVENT

i ndex CARD16

si de {Mono, Left, Ri ght}
(Errors: Buffer, Value)

Theonly buffer attributethat can beexplicitly setisevent_mask. The only eventsthat arevalid are Expose
and thenew Cl obber Not i fy and Updat eNot i f y event (see Events section below). A Val ue error
will be generated if an event not selectable for a buffer is specified in an event mask. Rather than have a
specific request to set this attribute, a generic set request is provided to allow for future expansion:

SetBuf ferAttributes
buffer
val ue_mask
val ue_|i st

BUFFER

Bl TMASK

LI STof VALUE
Buf f er,

(Errors: Val ue)

Clients may want to query the server about basic multi-buffer and stereo capability on a per screen basis.
The following request returns alarge list of information that would most likely be read once by Xlib for
each screen, and used as a data base for other Xlib queries:

CGetBufferlnfo

r oot W NDOW
=>
info LI STof SCREEN | NFO

Where SCREEN | NFOand BUFFER | NFOare defined as:

SCREEN_| NFO [normal _info : LI STof BUFFER | NFO
stereo_info : LI STof BUFFER | NFO]
BUFFER_| NFO [visual VI SUALI D,
max_buffers : CARD1G,
dept h CARDS]

Information regarding multi-buffering of normal (mono) windows s returned in the normal_info list. The
stereo_info list containsinformation about stereo windows. If the stereo_info list isempty, stereo windows
are not supported on the screen. If max_buffersis zero, the maximum number of buffers for the depth and
visual is afunction of the size of the created window and current memory limitations.

The following request returns the major and minor version numbers of this extension:

TITLE

Cet Buf f er Ver si on

=>
maj or _nunber . CARDS
m nor _nunber . CARDS

The version numbers are an escape hatch in case future revisions of the protocol are necessary. In general,
the major version would increment for incompatible changes, and the minor version would increment for
small upward compatible changes. Barring changes, the major version will be 1, and the minor version
will be 1.

Events

All eventsnormally generated for single-buffered windows are al so generated for multi-buffered windows.
Most of these events (ie: Conf i gur eNot i fy) will only be generated for the window and not for each
buffer. These events will return awindow ID.

Expose events will be generated for both the window and any buffer affected. When this event is
generated for abuffer, the same event structurewill be used but abuffer ID isreturned instead of awindow
ID. Clients, when processing these events, will know whether an ID returned in an event structure is for
awindow or a buffer by comparing the returned ID to the ones returned when the window and buffer
were created.

Graphi csExposur e and NoExposur e are generated using whatever ID is specified in the graphics
operation. If awindow ID is specified, the event will contain the window ID. If a buffer ID is specified,
the event will contain the buffer ID.

In some implementations, moving awindow over a multi-buffered window may cause one or more of its
buffers to get overwritten or become unwritable. To alow a client drawing into one of these buffers the
opportunity to stop drawing until some portion of the buffer is writable, the following event is added:

Cl obber Noti fy
buffer . BUFFER
state : {Uncl obbered, Partial | yCl obber ed, Ful | yd obber ed}

The Cl obber Not i fy event is reported to clients selecting ClobberNotify on a buffer. When a buffer
that was fully or partialy clobbered becomes unclobbered, an event with Unclobbered is generated.
When a buffer that was unclobbered becomes partially clobbered, an event with PartiallyClobbered is
generated. When a buffer that was unclobbered or partialy clobbered becomes fully clobbered, an event
with FullyClobbered is generated.

Cl obber Not i fy eventson agiven buffer are generated before any Expose events on that buffer, but
itisnot required that all Cl obber Not i f y eventson all buffers be generated before all Expose events
on al buffers.

The ordering of Cl obber Notify events with respect to VisibilityNotify events is not
constrained.

If multiple buffers were used as an image FIFO between an image server and the X display server, then
the FIFO manager would like to know when a buffer that was previously displayed, has been undisplayed
and updated, asthe side effect of aDi spl ayl nageBuf f er s request. Thisallowsthe FIFO manager to
load up afuture frame as soon as a buffer becomes available. To support this, the following event is added:

Updat eNot i fy

TITLE

buf fer . BUFFER

The Updat eNot i f y event is reported to clients selecting UpdateNotify on a buffer. Whenever a buffer
becomes updated (e.g. its update action is performed as part of aDi spl ayl nageBuf f er s request), an
Updat eNot i f y event is generated.

Errors

The following error type has been added to support this extension:

Buffer

A value for aBUFFER argument does not name a defined BUFFER.

Double-Buffering Normal Windows

The following pseudo-code fragment illustrates how to create and display a double-buffered image:

/*

* Create a normal w ndow
*/

CreateWndow W ...)

/*

* Create two inmage buffers. Assume after display, buffer

* contents become "undefined". Assume we will "frequently”
* update the display. Abort if we don't get two buffers,
*/

n = Createl mageBuffers(W [BO,Bl], Undefined, Frequent)

if (n!=2) <abort>

/*

* Map wi ndow to the screen
*/

MapW ndow(W)

/*

* Draw i mages using alternate buffers, display every
* 1/10 of a second. Note we draw Bl first so it wll
* "pop" on the screen

*/
whi | e ani mating
{
<draw pi cture using B1>
Di spl ayl mageBuffers([B1], 100, 0)
<dr aw pi cture using BO>
Di spl ayl mageBuffers([BO], 100, O)
}
/*

* Strip image buffers and | eave wi ndow with

TITLE

* contents of last displayed i mage buffer.
*/
Dest royl mageBuffers(W)

Multi-Buffering Normal Windows

Multi-buffered images are also supported by these requests. The following pseudo-code fragment
illustrates how to create a a multi-buffered image and cycle through the images to simulate a movie loop:

/*

* Create a nornmal w ndow

*/

CreateWndow W ...)

/*

* Create "N inmage buffers. Assume after display, buffer

* contents are "untouched". Assume we will "frequently”

* update the display. Abort if we don't get all the buffers.
*/

n = Createl mageBuffers(W [BO0,B1,...,B(N-1)], Untouched, Frequent)
if (n!= N <abort>

/*

* Map wi ndow to screen

*/

MapW ndow(W)

/*

* Draw each frame of novie one per buffer

*/

foreach frane
<draw franme using B(i)>

/*
* Cycle through franes, one frame every 1/10 of a second.
*/
whi | e ani mati ng
{

foreach frame

Di spl ayl mageBuffers([B(i)], 100, 0)

}

Stereo Windows

How stereo windows are supported on a server is implementation dependent. A server may contain
specialized hardware that allows left and right images to be toggled at field or frame rates. The stereo
affect may only be perceived with the aid of special viewing glasses. The display of a stereo picture should
be independent of how often the contents of the picture are updated by an application. Double and multi-
buffering of images should be possible regardless of whether the image is displayed normally or in stereo.

To achieve this goal, a ssimple extension to normal windows is suggested. Stereo windows are just like
normal windows except the displayed image is made up of aleft image buffer and a right image buffer.
To create a stereo window, a client makes the following request:

10

TITLE

Cr eat eSt er eoW ndow

par ent : W NDOW

w_id . W NDOW

left, right : BUFFER

dept h . CARDS

vi sual : VI SUALI D or CopyFronPar ent
X, Yy : INT16

wi dt h, hei ght © INT16

border _wi dth . INT16

val ue_nask . Bl TMASK

val ue_|Ii st . LI STof VALUE

(Errors: Alloc, Color, Cursor, Match,
Pi xmap, Val ue, W ndow)

This request, modeled after the Cr eat eW ndow request, adds just two new parameters: left and right.
For stereo, it is essential that one can distinguish whether a draw operation isto occur on the left image or
right image. While an internal mode could have been added to achieve this, using two buffer ID's allows
clientsto simultaneously build up the left and right components of a stereo image. These ID's always refer
to (are an diasfor) the left and right image buffers that are currently displayed.

Like normal windows, the window ID is used whenever a window management operation is to be
performed. Window queries would also return this window ID (eg: Quer yTr ee) as would most events.
Like the window ID, the left and right buffer ID's each have their own event mask. They can be set and
queried using the Set / Get Buf f er At t ri but es requests.

Using the window ID of a stereo window in a draw request (eg: Get | nage) results in pixels that are
undefined. Possible semantics are that both | eft and right images get drawn, or just asingle sideis operated
on (existing applications will have to be re-written to explicitly use the left and right buffer ID's in order
to successfully create, fetch, and store stereo images).

Having an explicit Cr eat eSt er eoW ndowrequest is helpful in that a server implementation will know
from the onset whether a stereo window isdesired and can return appropriate statusto the client if it cannot
support this functionality.

Some hardware may support separate stereo and non-stereo modes, perhaps with different vertical
resolutions. For example, the vertical resolution in stereo mode may be half that of non-stereo mode.
Selecting one mode or the other must be done through some means outside of this extension (eg: by
providing a separate screen for each hardware display mode). The screen attributes (ie: x/y resolution) for
a screen that supports normal windows, may differ from a screen that supports stereo windows; however,
all windows, regardless of type, displayed on the same screen must have the same screen attributes (ie:
pixel aspect ratio).

If a screen that supports stereo windows also supports normal windows, then the images presented to the
left and right eyes for normal windows should be the same (ie: have no stereo offset).

Single-Buffered Stereo Windows

The following shows how to create and display a single-buffered stereo image:

/*
* Create the stereo window, map it the screen,
* and draw the left and right inmages

11

TITLE

*/
CreateStereoWndow(W L, R ...)

MapW ndow(W)

<draw picture using L, R>

Double-Buffering Stereo Windows

Additional image buffers may be added to a stereo window to alow double or multi-buffering of stereo
images. Simply use the the Cr eat el mageBuf f er s request. Even numbered buffers (0,2,...) will be
left buffers. Odd numbered buffers (1,3,...) will beright buffers. Displayable stereo images are formed by
consecutive left/right pairs of image buffers. For example, (buffer[0],buffer[1]) form the first displayable
stereo image; (buffer[2],buffer[3]) the next; and so on.

The Cr eat el mageBuf f er s request will only create pairs of left and right image buffers for stereo
windows. By always pairing left and right image buffers together, implementations might be able to
perform some type of optimization. If an odd number of buffersis specified, aVal ue error is generated.
All the rules mentioned at the start of this proposal still apply to the image buffers supported by a stereo
window.

To display aimage buffer pair of a multi-buffered stereo image, either the left buffer ID or right buffer ID
may be specifiedinaDi spl ayl mageBuf f er s request, but not both.

To double-buffer a stereo window:

/*

* Create stereo window and map it to the screen

*/

CreateStereoWndow(W L, R ...)

/*

* Create two pairs of image buffers. Assunme after display,

* puffer contents becone "undefined". Assune we will "frequently"

* update the display. Abort if we did get all the buffers.

*/

n = Createl mageBuffers(W [LO,RO,L1, R1], Undefined, Frequently)
if (n!=4) <abort>

/*

* Map wi ndow to the screen
*/

MapW ndow(W)

/*
* Draw i mages using alternate buffers,
* display every 1/10 of a second.
*/
whi | e ani mati ng
{
<draw picture using L1, R1>
Di spl ayl mageBuffers([L1], 100, 0)

12

TITLE

<draw pi cture using LO, RO>
Di spl ayl mageBuffers([LO], 100, O)
}

Multi-Buffering Stereo Windows

To cycle through N stereo images:

/*

* Create stereo w ndow

*/

CreateStereoWndow(W L, R ...)

/*

* Create N pairs of image buffers. Assune after display,

* puffer contents are "untouched". Assune we will "frequently"

* update the display. Abort if we don't get all the buffers.

*/

n = Createl mageBuffers(W [LO,RO,...,L(N-1),R(N-1)], Untouched, Frequently)
if (n!= N2) <abort>

/*

* Map wi ndow to screen
*/

MapW ndow(W)

/*
* Draw the left and right hal ves of each image
*/
foreach stereo imge
<draw picture using L(i),R(i)>

/*
* Cycle through i mages every 1/10 of a second
*/
whi | e ani mati ng
{
foreach stereo imge
Di spl ayl mageBuffers([L(i)], 100, 0)
}

Protocol Encoding

The official name of this extension is "Multi-Buffering". When this string passed to Quer yExt ensi on
the information returned should be interpreted as follows:

major-opcode Specifiesthe major opcode of thisextension. Thefirst byte of each extension
request should specify thisvalue.

first-event Specifiesthe code that will be returned when Cl obber Not i f y eventsare
generated.

first-error Specifiesthe code that will be returned when Buf f er errors are generated.

13

TITLE

The following sections describe the protocol encoding for this extension.

TYPES

BUFFER | NFO

4 VI SUALI D Vi sua

2 CARD16 max- buf fers
1 CARD8 depth

1 unused

SETof BUFFER_EVENT
#x00008000 Exposur e

#x02000000 Cl obber Noti fy
#x04000000 Updat eNot i fy

EVENTS

Cl obber Noti fy

1 see first-event code
1 unused
2 CARD16 seqguence nunber
4 BUFFER buf f er
1 state
0 Uncl obber ed
1 Partiallyd obbered
2 Ful I yd obbered
23 unused
Updat eNot i fy
1 first-event+1 code
1 unused
2 CARD16 sequence nunber
4 BUFFER buf f er
24 unused
ERRORS
Buf f er
1 0 Error
1 see first-error code
2 CARD16 seqguence nunber
4 CARD32 bad resource id
2 CARD16 nm nor - opcode
1 CARDS maj or - opcode
21 unused

14

TITLE

REQUESTS

Cet Buf f er Ver si on

1 see mmj or - opcode maj or - opcode
1 0 m nor - opcode

2 1 request length

->

1 1 Reply

1 unused

2 CARD16 sequencenumnber

4 0 reply length

1 CARDS maj or ver si on nunber
1 CARDS m norver si on nunber
22 unused

Creat el mageBuffers

1 see mmj or-opcode mmj or - opcode
1 1 m nor - opcode
2 3+n request! ength
4 W NDOW wi d
1 updat e- acti on

0 Undefi ned

1 Background

2 Unt ouched

3 Copi ed
1 updat e- hi nt

0 Frequent

1 Intermttent

2 Static
2 unused
4n LI STof BUFFER buffer-1ist
->
1 1 Reply
1 unused
2 CARD16 sequencenumnber
4 0 reply length
2 CARD16 nunber - buffers
22 unused

Dest r oyl mageBuffers

1 see mmj or-opcode mmj or - opcode

1 2 m nor - opcode

2 2 request length
4 W NDOW wi d

Di spl ayl mageBuffers

15

TITLE

ADNDNDNPRE

see mmj or - opcode
2+n

CARD16

CARD16

LI STof BUFFER

Set Mul ti Buf ferAttri butes

A DANPRELPRE

VALUEs

see mmj or - opcode
4
3+n
W NDOW

Bl TMASK
#x00000001

LI STof VALUE

0 Frequent
1 Intermttent
2 Static

CGetMul ti Buf ferAttri butes

PNRANRPPRPEGRANRPR

19
4n

see mmj or - opcode
5

2

W NDOW

1

CARD16
n
CARD16

Undefi ned
Backgr ound
Unt ouched
Copi ed

WNEFLO

o

Fr equent
Interm ttent
2 Static

[

0 Mono
1 Stereo

LI STof BUFFER

Set Buf ferAttri butes

maj or - opcode
request! ength
nm n- del ay
max- del ay
buffer-1ist

maj or - opcode
nm nor - opcode
request! ength
wi d

val ue-mask (has n bits set to 1)

updat e- hi nt
val ue-1i st

updat e- hi nt

maj or - opcode
m nor - opcode

request length
wi d

Reply

unused
sequencenumnber
reply length

di spl ayed- buf f er
updat e- acti on

updat e- hi nt

w ndow node

unused

buffer |ist

16

TITLE

1 see mmj or-opcode mmj or - opcode

1 6 m nor - opcode

2 3+n request! ength

4 BUFFER buffer

4 Bl TMASK val ue-mask (has n bits set to 1)
#x00000001 event - mask

4n LI STof VALUE val ue-11i st

VALUEs

4 SETof BUFFER_EVENT event - mask

CGetBuf ferAttri butes

1 see mmj or-opcode mmj or - opcode
1 7 m nor - opcode
2 2 request length
4 BUFFER buf fer
->
1 1 Reply
1 unused
2 CARD16 sequencenumnber
4 0 reply length
4 W NDOW wi d
4 SETof BUFFER_EVENT event - mask
2 CARD16 i ndex

1 side

0 Mono

1 Left

2 Right
13 unused

CGetBufferlnfo

1 see mmj or-opcode mmj or - opcode

1 8 m nor - opcode

2 2 request length

4 W NDOW r oot

®

1 1 Reply

1 unused

2 CARD16 sequencenumnber

4 2(n+m repl yl ength

2 n nunber BUFFER I NFO in nornal -info
2 m nunber BUFFER INFO in stereo-info
20 unused

8n LI STof BUFFER I NFO nornal -i nfo

8m LI STof BUFFER I NFO stereo-info

Cr eat eSt er eoW ndow

1 see mmj or-opcode mmj or - opcode

1 9 m nor - opcode

2 11+n request! ength
3 unused

1 CARDS dept h

17

TITLE

NNNMNNMNNNEABAAMD

4n

W NDOW
W NDOW
BUFFER
BUFFER
I NT16

I NT16

CARD16
CARD16
CARD16

0 CopyFr onPar ent

1 | nput Qut put

2 InputOnly

VI SUALI D

0 CopyFr onPar ent

Bl TMASK

encodi ngs are the sane
as for CreateW ndow

LI STof VALUE

encodi ngs are the sane
as for CreateW ndow

Cl ear | mageBuf f er Ar ea

1
1
2
4
2
2
2
2
3
1

see mmj or - opcode mmj or - opcode

10

5

W NDOW
I NT16

I NT16
CARD16
CARD16

BOOL

wd

par ent

| eft

right

X

y

wi dt h

hei ght
border-w dth
cl ass

vi sual

val ue-mask (has n bits set to 1)

val ue-1|i st

m nor - opcode
request length
buf fer

X

y

wi dt h

hei ght

unused
exposures

18

