
X11 Input Extension
Protocol Specification

Mark Patrick, Ardent Computer
George Sachs

Hewlett-Packard

X11 Input Extension Protocol Specification
by Mark Patrick
George Sachs
Hewlett-Packard

X Version 11, Release 6.4

1.0
Copyright © 1989 Hewlett-Packard Company and Ardent Computer
Copyright © 1990 Hewlett-Packard Company and Ardent Computer
Copyright © 1991 Hewlett-Packard Company and Ardent Computer
Copyright © 1989 X Consortium
Copyright © 1990 X Consortium
Copyright © 1991 X Consortium
Copyright © 1992 X Consortium

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies. Ardent and Hewlett-Packard make no representations about the suitability for any
purpose of the information in this document. It is provided "as is" without express or implied warranty.

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of The Open Group shall not be used in advertising or otherwise to promote the sale, use or other
dealings in this Software without prior written authorization from the X Consortium.

X Window System is a trademark of X Consortium, Inc.

iii

Table of Contents
1. Input Extension .. 1

Overview .. 1
Design Approach .. 1
Core Input Devices ... 1
Extension Input Devices .. 1
Using Extension Input Devices ... 2

Library Extension Requests .. 3
Window Manager Functions ... 3
Events ... 28
Event Handling Functions .. 36

A. Input Extension Protocol Encoding .. 74

1

Chapter 1. Input Extension
Overview

This document describes an extension to the X11 server. The purpose of this extension is to support the
use of additional input devices beyond the pointer and keyboard devices defined by the core X protocol.
This first section gives an overview of the input extension. The following sections correspond to chapters
9, 10, and 11, ``Window and Session Manager Functions'', ``Events'', and ``Event Handling Functions'' of
the ``Xlib - C Language Interface'' manual and describe how to use the input device extension.

Design Approach
The design approach of the extension is to define functions and events analogous to the core functions and
events. This allows extension input devices and events to be individually distinguishable from each other
and from the core input devices and events. These functions and events make use of a device identifier and
support the reporting of n-dimensional motion data as well as other data that is not currently reportable
via the core input events.

Core Input Devices
The X server core protocol supports two input devices: a pointer and a keyboard. The pointer device has
two major functions. First, it may be used to generate motion information that client programs can detect.
Second, it may also be used to indicate the current location and focus of the X keyboard. To accomplish
this, the server echoes a cursor at the current position of the X pointer. Unless the X keyboard has been
explicitly focused, this cursor also shows the current location and focus of the X keyboard.

The X keyboard is used to generate input that client programs can detect.

The X keyboard and X pointer are referred to in this document as the core devices, and the input events
they generate (KeyPress , KeyRelease , ButtonPress , ButtonRelease , and
MotionNotify) are known as the core input events. All other input devices are referred to as
extension input devices, and the input events they generate are referred to as extension input events. This
input extension does not change the behavior or functionality of the core input devices, core events,
or core protocol requests, with the exception of the core grab requests. These requests may affect the
synchronization of events from extension devices. See the explanation in the section titled ``Event
Synchronization and Core Grabs.''

Selection of the physical devices to be initially used by the server as the core devices is left implementation
dependent. Functions are defined that allow client programs to change which physical devices are used
as the core devices.

Extension Input Devices
The input extension controls access to input devices other than the X keyboard and X pointer.
It allows client programs to select input from these devices independently from each other
and independently from the core devices. Input events from these devices are of extension
types (DeviceKeyPress , DeviceKeyRelease , DeviceButtonPress ,
DeviceButtonRelease , DeviceMotionNotify , and so on) and contain a device identifier
so that events of the same type coming from different input devices can be distinguished.

Extension input events are not limited in size by the size of the server 32-byte wire events. Extension
input events may be constructed by the server sending as many wire-sized events as necessary to return the

Input Extension

2

information required for that event. The library event reformatting routines are responsible for combining
these into one or more client XEvents.

Any input device that generates key, button, or motion data may be used as an extension input device.
Extension input devices may have zero or more keys, zero or more buttons, and may report zero or more
axes of motion. Motion may be reported as relative movements from a previous position or as an absolute
position. All valuators reporting motion information for a given extension input device must report the
same kind of motion information (absolute or relative).

This extension is designed to accommodate new types of input devices that may be added in the future.
The protocol requests that refer to specific characteristics of input devices organize that information by
input device classes. Server implementors may add new classes of input devices without changing the
protocol requests.

All extension input devices are treated like the core X keyboard in determining their location and focus.
The server does not track the location of these devices on an individual basis and, therefore, does not echo
a cursor to indicate their current location. Instead, their location is determined by the location of the core
X pointer. Like the core X keyboard, some may be explicitly focused. If they are not explicitly focused,
their focus is determined by the location of the core X pointer.

Input Device Classes

Some of the input extension requests divide input devices into classes based on their functionality. This is
intended to allow new classes of input devices to be defined at a later time without changing the semantics
of these functions. The following input device classes are currently defined:

KEY The device reports key events.

BUTTON The device reports button events.

VALUATOR The device reports valuator data in motion events.

PROXIMITY The device reports proximity events.

FOCUS The device can be focused.

FEEDBACK The device supports feedbacks.

Additional classes may be added in the future. Functions that support multiple input classes, such as the
XListInputDevices function that lists all available input devices, organize the data they return by
input class. Client programs that use these functions should not access data unless it matches a class defined
at the time those clients were compiled. In this way, new classes can be added without forcing existing
clients that use these functions to be recompiled.

Using Extension Input Devices
A client that wishes to access an input device does so through the library functions defined in the following
sections. A typical sequence of requests that a client would make is as follows:

• XListInputDevices - lists all of the available input devices. From the information returned by this
request, determine whether the desired input device is attached to the server. For a description of the
XListInputDevices request, see the section entitled ``Listing Available Devices.''

• XOpenDevice - requests that the server open the device for access by this client. This request
returns an XDevice structure that is used by most other input extension requests to identify the

Input Extension

3

specified device. For a description of the XOpenDevice request, see the section entitled ``Enabling
and Disabling Extension Devices.''

• Determine the event types and event classes needed to select the desired input extension events, and
identify them when they are received. This is done via macros whose name corresponds to the desired
event, for example, DeviceKeyPress . For a description of these macros, see the section entitled
``Selecting Extension Device Events.''

• XSelectExtensionEvent - selects the desired events from the server. For a description of the
XSelextExtensionEvent request, see the section entitled ``Selecting Extension Device Events.''

• XNextEvent - receives the next available event. This is the core XNextEvent function provided
by the standard X libarary.

Other requests are defined to grab and focus extension devices, to change their key, button, or modifier
mappings, to control the propagation of input extension events, to get motion history from an extension
device, and to send input extension events to another client. These functions are described in the following
sections.

Library Extension Requests
Extension input devices are accessed by client programs through the use of new protocol requests.
The following requests are provided as extensions to Xlib. Constants and structures referenced by
these functions may be found in the files <X11/extensions/XI.h> and <X11/extensions/
XInput.h>, which are attached to this document as Appendix A.

The library will return NoSuchExtension if an extension request is made to a server that does not
support the input extension.

Input extension requests cannot be used to access the X keyboard and X pointer devices.

Window Manager Functions
This section discusses the following X Input Extension Window Manager topics:

• Changing the core devices

• Event synchronization and core grabs

• Extension active grabs

• Passively grabbing a key

• Passively grabbing a button

• Thawing a device

• Controlling device focus

• Controlling device feedback

• Ringing a bell on an input device

• Controlling device encoding

Input Extension

4

• Controlling button mapping

• Obtaining the state of a device

Changing the Core Devices

These functions are provided to change which physical device is used as the X pointer or X keyboard.

Note

Using these functions may change the characteristics of the core devices. The new pointer device
may have a different number of buttons from the old one, or the new keyboard device may have a
different number of keys or report a different range of keycodes. Client programs may be running
that depend on those characteristics. For example, a client program could allocate an array based
on the number of buttons on the pointer device and then use the button numbers received in button
events as indices into that array. Changing the core devices could cause such client programs
to behave improperly or to terminate abnormally if they ignore the ChangeDeviceNotify
event generated by these requests.

These functions change the X keyboard or X pointer device and generate an XChangeDeviceNotify
event and a MappingNotify event. The specified device becomes the new X keyboard or X pointer
device. The location of the core device does not change as a result of this request.

These requests fail and return AlreadyGrabbed if either the specified device or the core device it would
replace are grabbed by some other client. They fail and return GrabFrozen if either device is frozen by
the active grab of another client.

These requests fail with a BadDevice error if the specified device is invalid, has not previously been
opened via XOpenDevice , or is not supported as a core device by the server implementation.

Once the device has successfully replaced one of the core devices, it is treated as a core device until it is
in turn replaced by another ChangeDevice request or until the server terminates. The termination of
the client that changed the device will not cause it to change back. Attempts to use the XCloseDevice
request to close the new core device will fail with a BadDevice error.

To change which physical device is used as the X keyboard, use the XChangeKeyboardDevice
function. The specified device must support input class Keys (as reported in the ListInputDevices
request) or the request will fail with a BadMatch error.

int XChangeKeyboardDevice(*display, *device);

display Specifies the connection to the X server.

device Specifies the desired device.

If no error occurs, XChangeKeyboardDevice returns Success . A ChangeDeviceNotify
event with the request field set to NewKeyboard is sent to all clients selecting that event. A
MappingNotify event with the request field set to MappingKeyboard is sent to all clients. The
requested device becomes the X keyboard, and the old keyboard becomes available as an extension input
device. The focus state of the new keyboard is the same as the focus state of the old X keyboard.

XChangeKeyboardDevice can generate AlreadyGrabbed , BadDevice , BadMatch , and
GrabFrozen errors.

To change which physical device is used as the X pointer, use the XChangePointerDevice function.
The specified device must support input class Valuators (as reported in the XListInputDevices

Input Extension

5

request) and report at least two axes of motion, or the request will fail with a BadMatch error. If the
specified device reports more than two axes, the two specified in the xaxis and yaxis arguments will be
used. Data from other valuators on the device will be ignored.

If the specified device reports absolute positional information, and the server implementation does not
allow such a device to be used as the X pointer, the request will fail with a BadDevice error.

int XChangePointerDevice(*display, *device, xaxis, yaxis);

display Specifies the connection to the X server.

device Specifies the desired device.

xaxis Specifies the zero-based index of the axis to be used as the
x-axis of the pointer device.

yaxis Specifies the zero-based index of the axis to be used as the
y-axis of the pointer device.

If no error occurs, XChangePointerDevice returns Success . A ChangeDeviceNotify event
with the request field set to NewPointer is sent to all clients selecting that event. A MappingNotify
event with the request field set to MappingPointer is sent to all clients. The requested device becomes
the X pointer, and the old pointer becomes available as an extension input device.

XChangePointerDevice can generate AlreadyGrabbed , BadDevice , BadMatch , and
GrabFrozen errors.

Event Synchronization and Core Grabs

Implementation of the input extension requires an extension of the meaning of event synchronization for
the core grab requests. This is necessary in order to allow window managers to freeze all input devices
with a single request.

The core grab requests require a pointer_mode and keyboard_mode argument. The meaning of these modes
is changed by the input extension. For the XGrabPointer and XGrabButton requests, pointer_mode
controls synchronization of the pointer device, and keyboard_mode controls the synchronization of
all other input devices. For the XGrabKeyboard and XGrabKey requests, pointer_mode controls
the synchronization of all input devices, except the X keyboard, while keyboard_mode controls the
synchronization of the keyboard. When using one of the core grab requests, the synchronization of
extension devices is controlled by the mode specified for the device not being grabbed.

Extension Active Grabs

Active grabs of extension devices are supported via the XGrabDevice function in the same way that
core devices are grabbed using the core XGrabKeyboard function, except that an extension input device
is passed as a function parameter. The XUngrabDevice function allows a previous active grab for an
extension device to be released.

Passive grabs of buttons and keys on extension devices are supported via the XGrabDeviceButton
and XGrabDeviceKey functions. These passive grabs are released via the XUngrabDeviceKey and
XUngrabDeviceButton functions.

To grab an extension device, use the XGrabDevice function. The device must have previously been
opened using the XOpenDevice function.

Input Extension

6

int XGrabDevice(*display, *device, grab_window, owner_events,
event_count, *event_list, this_device_mode, other_device_mode,
time);

"display" Specifies the connection to the X server.

device Specifies the desired device.

grab_window Specifies the ID of a window associated with
the device specified above.

owner_events Specifies a boolean value of either True or
False .

event_count Specifies the number of elements in the
event_list array.

event_list Specifies a pointer to a list of event classes
that indicate which events the client wishes to
receive. These event classes must have been
obtained using the device being grabbed.

this_device_mode Controls further processing of events
from this device. You can pass one
of these constants: GrabModeSync or
GrabModeAsync .

other_device_mode Controls further processing of events from
all other devices. You can pass one
of these constants: GrabModeSync or
GrabModeAsync .

time Specifies the time. This may be either
a timestamp expressed in milliseconds or
CurrentTime .

XGrabDevice actively grabs an extension input device and generates DeviceFocusIn and
DeviceFocusOut events. Further input events from this device are reported only to the grabbing client.
This function overrides any previous active grab by this client for this device.

The event_list parameter is a pointer to a list of event classes. This list indicates which events the client
wishes to receive while the grab is active. If owner_events is False , input events from this device
are reported with respect to grab_window and are reported only if specified in event_list. If owner_events
is True , then if a generated event would normally be reported to this client, it is reported normally.
Otherwise, the event is reported with respect to the grab_window and is only reported if specified in
event_list.

The this_device_mode argument controls the further processing of events from this device, and the
other_device_mode argument controls the further processing of input events from all other devices.

• If the this_device_mode argument is GrabModeAsync , device event processing continues normally;
if the device is currently frozen by this client, then processing of device events is resumed. If the
this_device_mode argument is GrabModeSync , the state of the grabbed device (as seen by client
applications) appears to freeze, and no further device events are generated by the server until the
grabbing client issues a releasing XAllowDeviceEvents call or until the device grab is released.
Actual device input events are not lost while the device is frozen; they are simply queued for later
processing.

Input Extension

7

• If the other_device_mode is GrabModeAsync , event processing from other input devices is
unaffected by activation of the grab. If other_device_mode is GrabModeSync , the state of all
devices except the grabbed device (as seen by client applications) appears to freeze, and no further
events are generated by the server until the grabbing client issues a releasing XAllowEvents or
XAllowDeviceEvents call or until the device grab is released. Actual events are not lost while the
other devices are frozen; they are simply queued for later processing.

XGrabDevice fails on the following conditions:

• If the device is actively grabbed by some other client, it returns AlreadyGrabbed .

• If grab_window is not viewable, it returns GrabNotViewable .

• If the specified time is earlier than the last-grab-time for the specified device or later than the current X
server time, it returns GrabInvalidTime . Otherwise, the last-grab-time for the specified device
is set to the specified time and CurrentTime is replaced by the current X server time.

• If the device is frozen by an active grab of another client, it returns GrabFrozen .

If a grabbed device is closed by a client while an active grab by that client is in effect, that active grab will
be released. Any passive grabs established by that client will be released. If the device is frozen only by
an active grab of the requesting client, it is thawed.

XGrabDevice can generate BadClass , BadDevice , BadValue , and BadWindow errors.

To release a grab of an extension device, use the XUngrabDevice function.

int XUngrabDevice(*display, *device, time);

display Specifies the connection to the X server.

device Specifies the desired device.

time Specifies the time. This may be either a timestamp
expressed in milliseconds, or CurrentTime .

XUngrabDevice allows a client to release an extension input device and any queued events if this client
has it grabbed from either XGrabDevice or XGrabDeviceKey . If any other devices are frozen by
the grab, XUngrabDevice thaws them. This function does not release the device and any queued events
if the specified time is earlier than the last-device-grab time or is later than the current X server time. It
also generates DeviceFocusIn and DeviceFocusOut events. The X server automatically performs
an XUngrabDevice if the event window for an active device grab becomes not viewable or if the client
terminates without releasing the grab.

XUngrabDevice can generate BadDevice errors.

Passively Grabbing a Key

To passively grab a single key on an extension device, use XGrabDeviceKey . That device must have
previously been opened using the XOpenDevice function, or the request will fail with a BadDevice
error. If the specified device does not support input class Keys , the request will fail with a BadMatch
error.

int XGrabDeviceKey(*display, *device, keycode, modifiers,
*modifier_device, grab_window, owner_events, event_count,
*event_list, this_device_mode, other_device_mode);

Input Extension

8

display Specifies the connection to the X server.

device Specifies the desired device.

keycode Specifies the keycode of the key that is to be
grabbed. You can pass either the keycode or
AnyKey .

modifiers Specifies the set of keymasks. This mask is
the bitwise inclusive OR of these keymask
bits: ShiftMask , LockMask ,
ControlMask , Mod1Mask ,
Mod2Mask , Mod3Mask , Mod4Mask ,
and Mod5Mask .

You can also pass AnyModifier ,
which is equivalent to issuing the grab key
request for all possible modifier combinations
(including the combination of no modifiers).

modifier_device Specifies the device whose modifiers are to
be used. If NULL is specified, the core X
keyboard is used as the modifier_device.

grab_window Specifies the ID of a window associated with
the device specified above.

owner_events Specifies a boolean value of either True or
False .

event_count Specifies the number of elements in the
event_list array.

event_list Specifies a pointer to a list of event classes
that indicate which events the client wishes to
receive.

this_device_mode Controls further processing of events
from this device. You can pass one
of these constants: GrabModeSync or
GrabModeAsync .

other_device_mode Controls further processing of events from
all other devices. You can pass one
of these constants: GrabModeSync or
GrabModeAsync .

XGrabDeviceKey is analogous to the core XGrabKey function. It creates an explicit passive grab for
a key on an extension device. The XGrabDeviceKey function establishes a passive grab on a device.
Consequently, in the future,

• IF the device is not grabbed and the specified key, which itself can be a modifier key, is logically pressed
when the specified modifier keys logically are down on the specified modifier device (and no other
keys are down),

• AND no other modifier keys logically are down,

Input Extension

9

• AND EITHER the grab window is an ancestor of (or is) the focus window or the grab window is a
descendent of the focus window and contains the pointer,

• AND a passive grab on the same device and key combination does not exist on any ancestor of the
grab window,

• THEN the device is actively grabbed, as for XGrabDevice , the last-device-grab time is set to
the time at which the key was pressed (as transmitted in the DeviceKeyPress event), and the
DeviceKeyPress event is reported.

The interpretation of the remaining arguments is as for XGrabDevice . The active grab is terminated
automatically when the logical state of the device has the specified key released (independent of the logical
state of the modifier keys).

Note that the logical state of a device (as seen by means of the X protocol) may lag the physical state if
device event processing is frozen.

A modifier of AnyModifier is equivalent to issuing the request for all possible modifier combinations
(including the combination of no modifiers). It is not required that all modifiers specified have currently
assigned keycodes. A key of AnyKey is equivalent to issuing the request for all possible keycodes.
Otherwise, the key must be in the range specified by min_keycode and max_keycode in the information
returned by the XListInputDevices function. If it is not within that range, XGrabDeviceKey
generates a BadValue error.

XGrabDeviceKey generates a BadAccess error if some other client has issued a XGrabDeviceKey
with the same device and key combination on the same window. When using AnyModifier or
AnyKey , the request fails completely and the X server generates a BadAccess error, and no grabs are
established if there is a conflicting grab for any combination.

XGrabDeviceKey returns Success upon successful completion of the request.

XGrabDeviceKey can generate BadAccess , BadClass , BadDevice , BadMatch ,
BadValue , and BadWindow errors.

To release a passive grab of a single key on an extension device, use XUngrabDeviceKey .

int XUngrabDeviceKey(*display, *device, keycode, modifiers,
*modifier_device, ungrab_window);

display Specifies the connection to the X server.

device Specifies the desired device.

keycode Specifies the keycode of the key that is to be
ungrabbed. You can pass either the keycode
or AnyKey .

modifiers Specifies the set of keymasks. This mask is
the bitwise inclusive OR of these keymask
bits: ShiftMask , LockMask ,
ControlMask , Mod1Mask ,
Mod2Mask , Mod3Mask , Mod4Mask ,
and Mod5Mask .

You can also pass AnyModifier ,
which is equivalent to issuing the ungrab key

Input Extension

10

request for all possible modifier combinations
(including the combination of no modifiers).

modifier_device Specifies the device whose modifiers are to
be used. If NULL is specified, the core X
keyboard is used as the modifier_device.

ungrab_window Specifies the ID of a window associated with
the device specified above.

XUngrabDeviceKey is analogous to the core XUngrabKey function. It releases an explicit passive
grab for a key on an extension input device.

XUngrabDeviceKey can generate BadAlloc , BadDevice , BadMatch , BadValue , and
BadWindow errors.

Passively Grabbing a Button

To establish a passive grab for a single button on an extension device, use XGrabDeviceButton .
The specified device must have previously been opened using the XOpenDevice function, or the request
will fail with a BadDevice error. If the specified device does not support input class Buttons , the
request will fail with a BadMatch error.

int XGrabDeviceButton(*display, *device, button, modifiers,
, grab_window, owner_events, event_count, *event_list,
this_device_mode, other_device_mode);

display Specifies the connection to the X server.

device Specifies the desired device.

button Specifies the code of the button that is to be
grabbed. You can pass either the button or
AnyButton .

modifiers Specifies the set of keymasks. This mask is
the bitwise inclusive OR of these keymask
bits: ShiftMask , LockMask ,
ControlMask , Mod1Mask ,
Mod2Mask , Mod3Mask , Mod4Mask ,
and Mod5Mask .

You can also pass AnyModifier , which
is equivalent to issuing the grab request for
all possible modifier combinations (including
the combination of no modifiers).

modifier_device Specifies the device whose modifiers are to
be used. If NULL is specified, the core X
keyboard is used as the modifier_device.

grab_window Specifies the ID of a window associated with
the device specified above.

owner_events Specifies a boolean value of either True or
False .

Input Extension

11

event_count Specifies the number of elements in the
event_list array.

event_list Specifies a list of event classes that indicates
which device events are to be reported to the
client.

this_device_mode Controls further processing of events
from this device. You can pass one
of these constants: GrabModeSync or
GrabModeAsync .

other_device_mode Controls further processing of events from
all other devices. You can pass one
of these constants: GrabModeSync or
GrabModeAsync .

XGrabDeviceButton is analogous to the core XGrabButton function. It creates an explicit passive
grab for a button on an extension input device. Because the server does not track extension devices, no
cursor is specified with this request. For the same reason, there is no confine_to parameter. The device
must have previously been opened using the XOpenDevice function.

The XGrabDeviceButton function establishes a passive grab on a device. Consequently, in the future,

• IF the device is not grabbed and the specified button is logically pressed when the specified modifier
keys logically are down (and no other buttons or modifier keys are down),

• AND EITHER the grab window is an ancestor of (or is) the focus window OR the grab window is a
descendent of the focus window and contains the pointer,

• AND a passive grab on the same device and button/key combination does not exist on any ancestor of
the grab window,

• THEN the device is actively grabbed, as for XGrabDevice , the last-grab time is set to the
time at which the button was pressed (as transmitted in the DeviceButtonPress event), and the
DeviceButtonPress event is reported.

The interpretation of the remaining arguments is as for XGrabDevice . The active grab is terminated
automatically when logical state of the device has all buttons released (independent of the logical state
of the modifier keys).

Note that the logical state of a device (as seen by means of the X protocol) may lag the physical state if
device event processing is frozen.

A modifier of AnyModifier is equivalent to issuing the request for all possible modifier combinations
(including the combination of no modifiers). It is not required that all modifiers specified have currently
assigned keycodes. A button of AnyButton is equivalent to issuing the request for all possible buttons.
Otherwise, it is not required that the specified button be assigned to a physical button.

XGrabDeviceButton generates a BadAccess error if some other client has issued a
XGrabDeviceButton with the same device and button combination on the same window. When using
AnyModifier or AnyButton , the request fails completely and the X server generates a BadAccess
error and no grabs are established if there is a conflicting grab for any combination.

XGrabDeviceButton can generate BadAccess , BadClass , BadDevice , BadMatch ,
BadValue , and BadWindow errors.

Input Extension

12

To release a passive grab of a button on an extension device, use XUngrabDeviceButton .

int XUngrabDeviceButton(*display, *device, button, modifiers,
*modifier_device, ungrab_window);

display Specifies the connection to the X server.

device Specifies the desired device.

button Specifies the code of the button that is to be
ungrabbed. You can pass either a button or
AnyButton .

modifiers Specifies the set of keymasks. This mask is
the bitwise inclusive OR of these keymask
bits: ShiftMask , LockMask ,
ControlMask , Mod1Mask ,
Mod2Mask , Mod3Mask , Mod4Mask ,
and Mod5Mask .

You can also pass AnyModifier ,
which is equivalent to issuing the ungrab key
request for all possible modifier combinations
(including the combination of no modifiers).

modifier_device Specifies the device whose modifiers are to
be used. If NULL is specified, the core X
keyboard is used as the modifier_device.

ungrab_window Specifies the ID of a window associated with
the device specified above.

XUngrabDeviceButton is analogous to the core XUngrabButton function. It releases an explicit
passive grab for a button on an extension device. That device must have previously been opened using the
XOpenDevice function, or a BadDevice error will result.

A modifier of AnyModifier is equivalent to issuing the request for all possible modifier combinations
(including the combination of no modifiers).

XUngrabDeviceButton can generate BadAlloc , BadDevice , BadMatch , BadValue ,
and BadWindow errors.

Thawing a Device

To allow further events to be processed when a device has been frozen, use XAllowDeviceEvents .

int XAllowDeviceEvents(*display, *device, event_mode, time);

display Specifies the connection to the X server.

device Specifies the desired device.

event_mode Specifies the event mode. You
can pass one of these constants:
AsyncThisDevice , SyncThisDevice ,
AsyncOtherDevices ,

Input Extension

13

ReplayThisDevice , AsyncAll , or
SyncAll .

time Specifies the time. This may be either a timestamp
expressed in milliseconds, or CurrentTime .

XAllowDeviceEvents releases some queued events if the client has caused a device to freeze. It has
no effect if the specified time is earlier than the last-grab time of the most recent active grab for the client
and device, or if the specified time is later than the current X server time. The following describes the
processing that occurs depending on what constant you pass to the event_mode argument:

• AsyncThisDevice

• If the specified device is frozen by the client, event processing for that continues as usual. If the device
is frozen multiple times by the client on behalf of multiple separate grabs, AsyncThisDevice thaws
for all. AsyncThisDevice has no effect if the specified device is not frozen by the client, but the
device need not be grabbed by the client.

• SyncThisDevice

• If the specified device is frozen and actively grabbed by the client, event processing for that device
continues normally until the next key or button event is reported to the client. At this time, the specified
device again appears to freeze. However, if the reported event causes the grab to be released, the
specified device does not freeze. SyncThisDevice has no effect if the specified device is not frozen
by the client or is not grabbed by the client.

• ReplayThisDevice

• If the specified device is actively grabbed by the client and is frozen as the result of an event having
been sent to the client (either from the activation of a GrabDeviceButton or from a previous
AllowDeviceEvents with mode SyncThisDevice , but not from a Grab), the grab is
released and that event is completely reprocessed. This time, however, the request ignores any passive
grabs at or above (toward the root) the grab-window of the grab just released. The request has no effect
if the specified device is not grabbed by the client or if it is not frozen as the result of an event.

• AsyncOtherDevices

• If the remaining devices are frozen by the client, event processing for them continues as usual.
If the other devices are frozen multiple times by the client on behalf of multiple separate grabs,
AsyncOtherDevices ``thaws'' for all. AsyncOtherDevices has no effect if the devices are not
frozen by the client, but those devices need not be grabbed by the client.

• SyncAll

• If all devices are frozen by the client, event processing (for all devices) continues normally until the
next button or key event is reported to the client for a grabbed device, at which time the devices again
appear to freeze. However, if the reported event causes the grab to be released, then the devices do not
freeze (but if any device is still grabbed, then a subsequent event for it will still cause all devices to
freeze). SyncAll has no effect unless all devices are frozen by the client. If any device is frozen twice
by the client on behalf of two separate grabs, SyncAll "thaws" for both (but a subsequent freeze for
SyncAll will freeze each device only once).

• AsyncAll

• If all devices are frozen by the client, event processing (for all devices) continues normally. If any device
is frozen multiple times by the client on behalf of multiple separate grabs, AsyncAll ``thaws ''for all.

Input Extension

14

If any device is frozen twice by the client on behalf of two separate grabs, AsyncAll ̀ `thaws'' for both.
AsyncAll has no effect unless all devices are frozen by the client.

AsyncThisDevice , SyncThisDevice , and ReplayThisDevice have no effect on the
processing of events from the remaining devices. AsyncOtherDevices has no effect on the processing
of events from the specified device. When the event_mode is SyncAll or AsyncAll , the device
parameter is ignored.

It is possible for several grabs of different devices (by the same or different clients) to be active
simultaneously. If a device is frozen on behalf of any grab, no event processing is performed for the device.
It is possible for a single device to be frozen because of several grabs. In this case, the freeze must be
released on behalf of each grab before events can again be processed.

XAllowDeviceEvents can generate BadDevice and BadValue errors.

Controlling Device Focus

The current focus window for an extension input device can be determined using the XGetDeviceFocus
function. Extension devices are focused using the XSetDeviceFocus function in the same way that the
keyboard is focused using the core XSetInputFocus function, except that a device ID is passed as a
function parameter. One additional focus state, FollowKeyboard , is provided for extension devices.

To get the current focus state, revert state, and focus time of an extension device, use
XGetDeviceFocus .

int XGetDeviceFocus(*display, *device, *focus_return,
*revert_to_return, *focus_time_return);

display Specifies the connection to the X server.

device Specifies the desired device.

focus_return Specifies the address of a variable into which
the server can return the ID of the window
that contains the device focus or one of the
constants None , PointerRoot , or
FollowKeyboard .

revert_to_return Specifies the address of a variable into which
the server can return the current revert_to
status for the device.

focus_time_return Specifies the address of a variable into which
the server can return the focus time last set for
the device.

XGetDeviceFocus returns the focus state, the revert-to state, and the last-focus-time for an extension
input device.

XGetDeviceFocus can generate BadDevice and BadMatch errors.

To set the focus of an extension device, use XSetDeviceFocus .

int XSetDeviceFocus(*display, *device, focus, revert_to, time);

display Specifies the connection to the X server.

Input Extension

15

device Specifies the desired device.

focus Specifies the ID of the window to which the device's
focus should be set. This may be a window ID,
or PointerRoot , FollowKeyboard , or
None .

revert_to Specifies to which window the focus of the
device should revert if the focus window
becomes not viewable. One of the following
constants may be passed: RevertToParent ,
RevertToPointerRoot , RevertToNone ,
or RevertToFollowKeyboard .

time Specifies the time. You can pass either a timestamp,
expressed in milliseconds, or CurrentTime .

XSetDeviceFocus changes the focus for an extension input device and the last-focus-change-time. It
has no effect if the specified time is earlier than the last-focus-change-time or is later than the current X
server time. Otherwise, the last-focus-change-time is set to the specified time. This function causes the X
server to generate DeviceFocusIn and DeviceFocusOut events.

The action taken by the server when this function is requested depends on the value of the focus argument:

• If the focus argument is None , all input events from this device will be discarded until a new focus
window is set. In this case, the revert_to argument is ignored.

• If the focus argument is a window ID, it becomes the focus window of the device. If an input event from
the device would normally be reported to this window or to one of its inferiors, the event is reported
normally. Otherwise, the event is reported relative to the focus window.

• If the focus argument is PointerRoot , the focus window is dynamically taken to be the root window
of whatever screen the pointer is on at each input event. In this case, the revert_to argument is ignored.

• If the focus argument is FollowKeyboard , the focus window is dynamically taken to be the same
as the focus of the X keyboard at each input event.

The specified focus window must be viewable at the time XSetDeviceFocus is called. Otherwise, it
generates a BadMatch error. If the focus window later becomes not viewable, the X server evaluates the
revert_to argument to determine the new focus window.

• If the revert_to argument is RevertToParent , the focus reverts to the parent (or the closest
viewable ancestor), and the new revert_to value is taken to be RevertToNone .

• If the revert_to argument is RevertToPointerRoot , RevertToFollowKeyboard , or
RevertToNone , the focus reverts to that value.

When the focus reverts, the X server generates DeviceFocusIn and DeviceFocusOut events, but
the last-focus-change time is not affected.

XSetDeviceFocus can generate BadDevice , BadMatch , BadValue , and BadWindow
errors.

Controlling Device Feedback

To determine the current feedback settings of an extension input device, use
XGetFeedbackControl .

Input Extension

16

XFeedbackState * XGetFeedbackControl(*display, *device,
*num_feedbacks_return);

display Specifies the connection to the X server.

device Specifies the desired device.

num_feedbacks_return Returns the number of feedbacks supported
by the device.

XGetFeedbackControl returns a list of FeedbackState structures that describe the feedbacks
supported by the specified device. There is an XFeedbackState structure for each class of feedback.
These are of variable length, but the first three members are common to all.

typedef struct {
 XID class;
 int length;
 XID id;
} XFeedbackState;

The common members are as follows:

• The class member identifies the class of feedback. It may be compared to constants defined
in the file < X11/extensions/XI.h >. Currently defined feedback constants include:
KbdFeedbackClass , PtrFeedbackClass , StringFeedbackClass ,
IntegerFeedbackClass , LedFeedbackClass , and BellFeedbackClass .

• The length member specifies the length of the FeedbackState structure and can be used by clients
to traverse the list.

• The id member uniquely identifies a feedback for a given device and class. This allows a device to
support more than one feedback of the same class. Other feedbacks of other classes or devices may
have the same ID.

Those feedbacks equivalent to those supported by the core keyboard are reported in class KbdFeedback
using the XKbdFeedbackState structure, which is defined as follows:

typedef struct {
 XID class;
 int length;
 XID id;
 int click;
 int percent;
 int pitch;
 int duration;
 int led_mask;
 int global_auto_repeat;
 char auto_repeats[32];
} XKbdFeedbackState;

Input Extension

17

The additional members of the XKbdFeedbackState structure report the current state of the feedback:

• The click member specifies the key-click volume and has a value in the range 0 (off) to 100 (loud).

• The percent member specifies the bell volume and has a value in the range 0 (off) to 100 (loud).

• The pitch member specifies the bell pitch in Hz. The range of the value is implementation-dependent.

• The duration member specifies the duration in milliseconds of the bell.

• The led_mask member is a bit mask that describes the current state of up to 32 LEDs. A value of 1 in
a bit indicates that the corresponding LED is on.

• The global_auto_repeat member has a value of AutoRepeatModeOn or AutoRepeatModeOff .

• The auto_repeats member is a bit vector. Each bit set to 1 indicates that auto-repeat is enabled for the
corresponding key. The vector is represented as 32 bytes. Byte N (from 0) contains the bits for keys 8N
to 8N + 7, with the least significant bit in the byte representing key 8N.

Those feedbacks equivalent to those supported by the core pointer are reported in class PtrFeedback
using the XPtrFeedbackState structure, which is defined as follows:

typedef struct {
 XID class;
 int length;
 XID id;
 int accelNum;
 int accelDenom;
 int threshold;
} XPtrFeedbackState;

The additional members of the XPtrFeedbackState structure report the current state of the feedback:

• The accelNum member returns the numerator for the acceleration multiplier.

• The accelDenom member returns the denominator for the acceleration multiplier.

• The accelDenom member returns the threshold for the acceleration.

Integer feedbacks are those capable of displaying integer numbers and reported via the
XIntegerFeedbackState structure. The minimum and maximum values that they can display are
reported.

typedef struct {
 XID class;
 int length;
 XID id;
 int resolution;
 int minVal;
 int maxVal;

Input Extension

18

} XIntegerFeedbackState;

The additional members of the XIntegerFeedbackState structure report the capabilities of the
feedback:

• The resolution member specifies the number of digits that the feedback can display.

• The minVal member specifies the minimum value that the feedback can display.

• The maxVal specifies the maximum value that the feedback can display.

String feedbacks are those that can display character information and are reported via the
XStringFeedbackState structure. Clients set these feedbacks by passing a list of KeySyms
to be displayed. The XGetFeedbackControl function returns the set of key symbols that the
feedback can display, as well as the maximum number of symbols that can be displayed. The
XStringFeedbackState structure is defined as follows:

typedef struct {
 XID class;
 int length;
 XID id;
 int max_symbols;
 int num_syms_supported;
 KeySym *syms_supported;
} XStringFeedbackState;

The additional members of the XStringFeedbackState structure report the capabilities of the
feedback:

• The max_symbols member specifies the maximum number of symbols that can be displayed.

• The syms_supported member is a pointer to the list of supported symbols.

• The num_syms_supported member specifies the length of the list of supported symbols.

Bell feedbacks are those that can generate a sound and are reported via the XBellFeedbackState
structure. Some implementations may support a bell as part of a KbdFeedback feedback. Class
BellFeedback is provided for implementations that do not choose to do so and for devices that support
multiple feedbacks that can produce sound. The meaning of the members is the same as that of the
corresponding fields in the XKbdFeedbackState structure.

typedef struct {
 XID class;
 int length;
 XID id;
 int percent;
 int pitch;
 int duration;
} XBellFeedbackState;

Input Extension

19

Led feedbacks are those that can generate a light and are reported via the XLedFeedbackState
structure. Up to 32 lights per feedback are supported. Each bit in led_mask corresponds to one supported
light, and the corresponding bit in led_values indicates whether that light is currently on (1) or off (0).
Some implementations may support leds as part of a KbdFeedback feedback. Class LedFeedback
is provided for implementations that do not choose to do so and for devices that support multiple led
feedbacks.

typedef struct {
 XID class;
 int length;
 XID id;
 Mask led_values;
 Mask led_mask;
} XLedFeedbackState;

XGetFeedbackControl can generate BadDevice and BadMatch errors.

To free the information returned by the XGetFeedbackControl function, use
XFreeFeedbackList .

void XFreeFeedbackList(*list);

list Specifies the pointer to the XFeedbackState structure
returned by a previous call to XGetFeedbackControl .

XFreeFeedbackList frees the list of feedback control information.

To change the settings of a feedback on an extension device, use XChangeFeedbackControl . This
function modifies the current control values of the specified feedback using information passed in the
appropriate XFeedbackControl structure for the feedback. Which values are modified depends on the
valuemask passed.

int XChangeFeedbackControl(*display, *device, valuemask, *value);

display Specifies the connection to the X server.

device Specifies the desired device.

valuemask Specifies one value for each bit in the mask (least to
most significant bit). The values are associated with
the feedbacks for the specified device.

value Specifies a pointer to the XFeedbackControl
structure.

XChangeFeedbackControl controls the device characteristics described by the
XFeedbackControl structure. There is an XFeedbackControl structure for each class of feedback.
These are of variable length, but the first three members are common to all and are as follows:

Input Extension

20

typedef struct {
 XID class;
 int length;
 XID id;
} XFeedbackControl;

Feedback class KbdFeedback controls feedbacks equivalent to those provided by the core keyboard
using the KbdFeedbackControl structure, which is defined as follows:.

typedef struct {
 XID class;
 int length;
 XID id;
 int click;
 int percent;
 int pitch;
 int duration;
 int led_mask;
 int led_value;
 int key;
 int auto_repeat_mode;
} XKbdFeedbackControl;

This class controls the device characteristics described by the XKbdFeedbackControl structure.
These include the key_click_percent, global_auto_repeat, and individual key auto-repeat. Valid modes are
AutoRepeatModeOn , AutoRepeatModeOff , and AutoRepeatModeDefault .

Valid masks are as follows:

#define DvKeyClickPercent (1><<0)
#define DvPercent (1><<0)
#define DvPitch (1><<0)
#define DvDuration (1><<0)
#define DvLed (1><<0)
#define DvLedMode (1><<0)
#define DvKey (1><<0)
#define DvAutoRepeatMode (1><<0)

Feedback class PtrFeedback controls feedbacks equivalent to those provided by the core pointer using
the PtrFeedbackControl structure, which is defined as follows:

typedef struct {
 XID class;
 int length;
 XID id;
 int accelNum;
 int accelDenom;

Input Extension

21

 int threshold;
} XPtrFeedbackControl;

Which values are modified depends on the valuemask passed.

Valid masks are as follows:

#define DvAccelnum (1L<<0)
#define DvAccelDenom (1L<<1)
#define DvThreshold (1L<<2)

The acceleration, expressed as a fraction, is a multiplier for movement. For example, specifying 3/1 means
that the device moves three times as fast as normal. The fraction may be rounded arbitrarily by the X
server. Acceleration takes effect only if the device moves more than threshold pixels at once and applies
only to the amount beyond the value in the threshold argument. Setting a value to -1 restores the default.
The values of the accelNumerator and threshold fields must be nonzero for the pointer values to be set.
Otherwise, the parameters will be unchanged. Negative values generate a BadValue error, as does a zero
value for the accelDenominator field.

This request fails with a BadMatch error if the specified device is not currently reporting relative motion.
If a device that is capable of reporting both relative and absolute motion has its mode changed from
Relative to Absolute by an XSetDeviceMode request, valuator control values will be ignored by
the server while the device is in that mode.

Feedback class IntegerFeedback controls integer feedbacks displayed on input devices and are
reported via the IntegerFeedbackControl structure, which is defined as follows:

typedef struct {
 XID class;
 int length;
 XID id;
 int int_to_display;
} XIntegerFeedbackControl;

Valid masks are as follows:

#define DvInteger (1L<<0)

Feedback class StringFeedback controls string feedbacks displayed on input devices and reported via
the StringFeedbackControl structure, which is defined as follows:

typedef struct {
 XID class;
 int length;
 XID id;
 int num_keysyms;

Input Extension

22

 KeySym *syms_to_display;
} XStringFeedbackControl;

Valid masks are as follows:

#define DvString (1L<<0)

Feedback class BellFeedback controls a bell on an input device and is reported via the
BellFeedbackControl structure, which is defined as follows:

typedef struct {
 XID class;
 int length;
 XID id;
 int percent;
 int pitch;
 int duration;
} XBellFeedbackControl;

Valid masks are as follows:

#define DvPercent (1L<<1)
#define DvPitch (1L<<2)
#define DvDuration (1L<<3)

Feedback class LedFeedback controls lights on an input device and are reported via the
LedFeedbackControl structure, which is defined as follows:

typedef struct {
 XID class;
 int length;
 XID id;
 int led_mask;
 int led_values;
} XLedFeedbackControl;

Valid masks are as follows:

#define DvLed (1L<<4)
#define DvLedMode (1L<<5)

XChangeFeedbackControl can generate BadDevice , BadFeedBack , BadMatch , and
BadValue errors.

Input Extension

23

Ringing a Bell on an Input Device

To ring a bell on an extension input device, use XDeviceBell .

int XDeviceBell(*display, *device, feedbackid, percent);

display Specifies the connection to the X server.

device Specifies the desired device.

feedbackclass Specifies the feedbackclass. Valid
values are KbdFeedbackClass and
BellFeedbackClass .

feedbackid Specifies the ID of the feedback that has the
bell.

percent Specifies the volume in the range -100 (quiet)
to 100 percent (loud).

XDeviceBell is analogous to the core XBell function. It rings the specified bell on the specified input
device feedback, using the specified volume. The specified volume is relative to the base volume for the
feedback. If the value for the percent argument is not in the range -100 to 100 inclusive, a BadValue
error results. The volume at which the bell rings when the percent argument is nonnegative is:

 base - [(base * percent) / 100] + percent

The volume at which the bell rings when the percent argument is negative is:

 base + [(base * percent) / 100]

To change the base volume of the bell, use XChangeFeedbackControl .

XDeviceBell can generate BadDevice and BadValue errors.

Controlling Device Encoding

To get the key mapping of an extension device that supports input class Keys , use
XGetDeviceKeyMapping .

KeySym * XGetDeviceKeyMapping(*display, *device,
first_keycode_wanted, keycode_count, *keysyms_per_keycode_return);

display Specifies the connection to the X server.

device Specifies the desired device.

first_keycode_wanted Specifies the first keycode that is to be
returned.

keycode_count Specifies the number of keycodes that are to
be returned.

keysyms_per_keycode_return Returns the number of keysyms per keycode.

Input Extension

24

XGetDeviceKeyMapping is analogous to the core XGetKeyboardMapping function. It returns
the symbols for the specified number of keycodes for the specified extension device.

XGetDeviceKeyMapping returns the symbols for the specified number of keycodes for the specified
extension device, starting with the specified keycode. The first_keycode_wanted must be greater than
or equal to min-keycode as returned by the XListInputDevices request (else a BadValue error
results). The following value:

first_keycode_wanted + keycode_count - 1

must be less than or equal to max-keycode as returned by the XListInputDevices request (else a
BadValue error results).

The number of elements in the keysyms list is as follows:

keycode_count * keysyms_per_keycode_return

And KEYSYM number N (counting from zero) for keycode K has an index (counting from zero), in
keysyms, of the following:

(K - first_keycode_wanted) * keysyms_per_keycode_return + N

The keysyms_per_keycode_return value is chosen arbitrarily by the server to be large enough to report
all requested symbols. A special KEYSYM value of NoSymbol is used to fill in unused elements for
individual keycodes.

To free the data returned by this function, use XFree .

If the specified device has not first been opened by this client via XOpenDevice , this request will
fail with a BadDevice error. If that device does not support input class Keys , this request will fail
with a BadMatch error.

XGetDeviceKeyMapping can generate BadDevice , BadMatch , and BadValue errors.

To change the keyboard mapping of an extension device that supports input class Keys , use
XChangeDeviceKeyMapping .

int XChangeDeviceKeyMapping(*display, *device, first_keycode,
keysyms_per_keycode, *keysyms, num_codes);

display Specifies the connection to the X server.

device Specifies the desired device.

first_keycode Specifies the first keycode that is to be
changed.

keysyms_per_keycode Specifies the keysyms that are to be used.

keysyms Specifies a pointer to an array of keysyms.

num_codes Specifies the number of keycodes that are to
be changed.

Input Extension

25

XChangeDeviceKeyMapping is analogous to the core XChangeKeyboardMapping function. It
defines the symbols for the specified number of keycodes for the specified extension keyboard device.

If the specified device has not first been opened by this client via XOpenDevice , this request will
fail with a BadDevice error. If the specified device does not support input class Keys , this request
will fail with a BadMatch error.

The number of elements in the keysyms list must be a multiple of keysyms_per_keycode. Otherwise,
XChangeDeviceKeyMapping generates a BadLength error. The specified first_keycode must be
greater than or equal to the min_keycode value returned by the ListInputDevices request, or
this request will fail with a BadValue error. In addition, if the following expression is not less than
the max_keycode value returned by the ListInputDevices request, the request will fail with a
BadValue error:

 first_keycode + (num_codes / keysyms_per_keycode) - 1

XChangeDeviceKeyMapping can generate BadAlloc , BadDevice , BadMatch , and
BadValue errors.

To obtain the keycodes that are used as modifiers on an extension device that supports input class Keys ,
use XGetDeviceModifierMapping .

XModifierKeymap * XGetDeviceModifierMapping(*display, *device);

display Specifies the connection to the X server.

device Specifies the desired device.

XGetDeviceModifierMapping is analogous to the core XGetModifierMapping function. The
XGetDeviceModifierMapping function returns a newly created XModifierKeymap structure
that contains the keys being used as modifiers for the specified device. The structure should be freed
after use with XFreeModifierMapping . If only zero values appear in the set for any modifier, that
modifier is disabled.

XGetDeviceModifierMapping can generate BadDevice and BadMatch errors.

To set which keycodes are to be used as modifiers for an extension device, use
XSetDeviceModifierMapping .

int XSetDeviceModifierMapping(*display, *device, *modmap);

display Specifies the connection to the X server.

device Specifies the desired device.

modmap Specifies a pointer to the XModifierKeymap structure.

XSetDeviceModifierMapping is analogous to the core XSetModifierMapping function. The
XSetDeviceModifierMapping function specifies the keycodes of the keys, if any, that are to be
used as modifiers. A zero value means that no key should be used. No two arguments can have the
same nonzero keycode value. Otherwise, XSetDeviceModifierMapping generates a BadValue
error. There are eight modifiers, and the modifiermap member of the XModifierKeymap structure
contains eight sets of max_keypermod keycodes, one for each modifier in the order Shift , Lock ,
Control , Mod1 , Mod2 , Mod3 , Mod4 , and Mod5 . Only nonzero keycodes have
meaning in each set, and zero keycodes are ignored. In addition, all of the nonzero keycodes must be in

Input Extension

26

the range specified by min_keycode and max_keycode reported by the XListInputDevices function.
Otherwise, XSetModifierMapping generates a BadValue error. No keycode may appear twice in
the entire map. Otherwise, it generates a BadValue error.

A X server can impose restrictions on how modifiers can be changed, for example, if certain keys do not
generate up transitions in hardware or if multiple modifier keys are not supported. If some such restriction
is violated, the status reply is MappingFailed , and none of the modifiers are changed. If the new
keycodes specified for a modifier differ from those currently defined and any (current or new) keys for
that modifier are in the logically down state, the status reply is MappingBusy , and none of the
modifiers are changed. XSetModifierMapping generates a DeviceMappingNotify event on a
MappingSuccess status.

XSetDeviceModifierMapping can generate BadAlloc , BadDevice , BadMatch , and
BadValue errors.

Controlling Button Mapping

To set the mapping of the buttons on an extension device, use XSetDeviceButtonMapping .

int XSetDeviceButtonMapping(*display, *device, map[], nmap);

display Specifies the connection to the X server.

device Specifies the desired device.

map Specifies the mapping list.

nmap Specifies the number of items in the mapping list.

XSetDeviceButtonMapping sets the mapping of the buttons on an extension device. If it succeeds,
the X server generates a DeviceMappingNotify event, and XSetDeviceButtonMapping returns
MappingSuccess . Elements of the list are indexed starting from one. The length of the list must be
the same as XGetDeviceButtonMapping would return, or a BadValue error results. The index is a
button number, and the element of the list defines the effective number. A zero element disables a button,
and elements are not restricted in value by the number of physical buttons. However, no two elements can
have the same nonzero value, or a BadValue error results. If any of the buttons to be altered are logically
in the down state, XSetDeviceButtonMapping returns MappingBusy , and the mapping is not
changed.

XSetDeviceButtonMapping can generate BadDevice , BadMatch , and BadValue errors.

To get the button mapping, use XGetDeviceButtonMapping .

int XGetDeviceButtonMapping(*display, *device, map_return[], nmap);

display Specifies the connection to the X server.

device Specifies the desired device.

map_return Specifies the mapping list.

nmap Specifies the number of items in the mapping list.

XGetDeviceButtonMapping returns the current mapping of the specified extension device. Elements
of the list are indexed starting from one. XGetDeviceButtonMapping returns the number of physical

Input Extension

27

buttons actually on the pointer. The nominal mapping for the buttons is the identity mapping: map[i]=i.
The nmap argument specifies the length of the array where the button mapping is returned, and only the
first nmap elements are returned in map_return.

XGetDeviceButtonMapping can generate BadDevice and BadMatch errors.

Obtaining the State of a Device

To obtain information that describes the state of the keys, buttons, and valuators of an extension device,
use XQueryDeviceState .

XDeviceState * XQueryDeviceState(*display, *device);

display Specifies the connection to the X server.

device Specifies the desired device.

XQueryDeviceState returns a pointer to an XDeviceState structure, which points to a list of
structures that describe the state of the keys, buttons, and valuators on the device:

typedef struct {
 XID device_id;
 int num_classes;
 XInputClass *data;
} XDeviceState;

The structures are of variable length, but the first two members are common to all and are as follows:

typedef struct {
 unsigned char class;
 unsigned char length;
} XInputClass;

The class member contains a class identifier. This identifier can be compared with constants defined in the
file < X11/extensions/XI.h >. Currently defined constants are: KeyClass , ButtonClass ,
and ValuatorClass .

The length member contains the length of the structure and can be used by clients to traverse the list.

The XValuatorState structure describes the current state of the valuators on the device. The
num_valuators member contains the number of valuators on the device. The mode member is a mask
whose bits report the data mode and other state information for the device. The following bits are currently
defined:

 DeviceMode 1 << 0 Relative = 0, Absolute = 1
 ProximityState 1 << 1 InProximity = 0, OutOfProximity = 1

Input Extension

28

The valuators member contains a pointer to an array of integers that describe the current value of the
valuators. If the mode is Relative , these values are undefined.

typedef struct {
 unsigned char class;
 unsigned char length;
 unsigned char num_valuators;
 unsigned char mode;
 int *valuators;
} XValuatorState;

The XKeyState structure describes the current state of the keys on the device. Byte N (from 0) contains
the bits for key 8N to 8N + 7 with the least significant bit in the byte representing key 8N.

typedef struct {
 unsigned char class;
 unsigned char length;
 short num_keys;
 char keys[32];
} XKeyState;

The XButtonState structure describes the current state of the buttons on the device. Byte N (from 0)
contains the bits for button 8N to 8N + 7 with the least significant bit in the byte representing button 8N.

typedef struct {
 unsigned char class;
 unsigned char length;
 short num_buttons;
 char buttons[32];
} XButtonState;

XQueryDeviceState can generate BadDevice errors.

To free the data returned by this function, use XFreeDeviceState .

void XFreeDeviceState(*state);

state Specifies the pointer to the XDeviceState data returned by
a previous call to XQueryDeviceState .

XFreeDeviceState frees the device state data.

Events
The input extension creates input events analogous to the core input events. These extension input events
are generated by manipulating one of the extension input devices. The remainder of this section discusses
the following X Input Extension event topics:

Input Extension

29

• Event types

• Event classes

• Event structures

Event Types

Event types are integer numbers that a client can use to determine what kind of event it has received. The
client compares the type field of the event structure with known event types to make this determination.

The core input event types are constants and are defined in the header file < X11/X.h >. Extension
event types are not constants. Instead, they are dynamically allocated by the extension's request to the X
server when the extension is initialized. Because of this, extension event types must be obtained by the
client from the server.

The client program determines the event type for an extension event by using the information returned
by the XOpenDevice request. This type can then be used for comparison with the type field of events
received by the client.

Extension events propagate up the window hierarchy in the same manner as core events. If a window is
not interested in an extension event, it usually propagates to the closest ancestor that is interested, unless
the dont_propagate list prohibits it. Grabs of extension devices may alter the set of windows that receive
a particular extension event.

The following table lists the event category and its associated event type or types.

Event Category Event Type

Device key DeviceKeyPress

 DeviceKeyRelease

Device motion DeviceButtonPress

 DeviceButtonRelease

 DeviceMotionNotify

Device input focus DeviceFocusIn

 DeviceFocusOut

Device state notification DeviceStateNotify

Device proximity ProximityIn

 ProximityOut

Device mapping DeviceMappingNotify

Device change ChangeDeviceNotify

Event Classes

Event classes are integer numbers that are used in the same way as the core event masks. They are used
by a client program to indicate to the server which events that client program wishes to receive.

The core input event masks are constants and are defined in the header file < X11/X.h >. Extension
event classes are not constants. Instead, they are dynamically allocated by the extension's request to the
X server when the extension is initialized. Because of this, extension event classes must be obtained by
the client from the server.

Input Extension

30

The event class for an extension event and device is obtained from information returned by the
XOpenDevice function. This class can then be used in an XSelectExtensionEvent request to ask
that events of that type from that device be sent to the client program.

For DeviceButtonPress events, the client may specify whether or not an implicit passive grab
should be done when the button is pressed. If the client wants to guarantee that it will receive a
DeviceButtonRelease event for each DeviceButtonPress event it receives, it should specify
the DeviceButtonPressGrab class in addition to the DeviceButtonPress class. This restricts
the client in that only one client at a time may request DeviceButtonPress events from the same
device and window if any client specifies this class.

If any client has specified the DeviceButtonPressGrab class, any requests by any other
client that specify the same device and window and specify either DeviceButtonPress or
DeviceButtonPressGrab will cause an Access error to be generated.

If only the DeviceButtonPress class is specified, no implicit passive grab will be done when a button
is pressed on the device. Multiple clients may use this class to specify the same device and window
combination.

The client may also select DeviceMotion events only when a button is down. It does this by specifying
the event classes DeviceButton1Motion through DeviceButton5Motion . An input device
will support only as many button motion classes as it has buttons.

Event Structures

Each extension event type has a corresponding structure declared in < X11/extensions/XInput.h
>. All event structures have the following common members:

type Set to the event type number that uniquely
identifies it. For example, when the X
server reports a DeviceKeyPress event
to a client application, it sends an
XDeviceKeyPressEvent structure.

serial Set from the serial number reported in the protocol
but expanded from the 16-bit least significant bits
to a full 32-bit value.

send_event Set to True if the event came from an
XSendEvent request.

display Set to a pointer to a structure that defines the
display on which the event was read.

Extension event structures report the current position of the X pointer. In addition, if the device reports
motion data and is reporting absolute data, the current value of any valuators the device contains is also
reported.

Device Key Events

Key events from extension devices contain all the information that is contained in a key event from the X
keyboard. In addition, they contain a device ID and report the current value of any valuators on the device,
if that device is reporting absolute data. If data for more than six valuators is being reported, more than
one key event will be sent. The axes_count member contains the number of axes that are being reported.
The server sends as many of these events as are needed to report the device data. Each event contains the

Input Extension

31

total number of axes reported in the axes_count member and the first axis reported in the current event in
the first_axis member. If the device supports input class Valuators , but is not reporting absolute
mode data, the axes_count member contains zero (0).

The location reported in the x, y and x_root, y_root members is the location of the core X pointer.

The XDeviceKeyEvent structure is defined as follows:

typedef struct {
 int type; /* of event */
 unsigned long serial; /* # of last request processed */
 Bool send_event; /* true if from SendEvent request */
 Display *display; /* Display the event was read from */
 Window window; /* "event" window reported relative to */
 XID deviceid;
 Window root; /* root window event occurred on */
 Window subwindow; /* child window */
 Time time; /* milliseconds */
 int x, y; /* x, y coordinates in event window */
 int x_root; /* coordinates relative to root */
 int y_root; /* coordinates relative to root */
 unsigned int state; /* key or button mask */
 unsigned int keycode; /* detail */
 Bool same_screen; /* same screen flag */
 unsigned int device_state; /* device key or button mask */
 unsigned char axes_count;
 unsigned char first_axis;
 int axis_data[6];
} XDeviceKeyEvent;

typedef XDeviceKeyEvent XDeviceKeyPressedEvent;
typedef XDeviceKeyEvent XDeviceKeyReleasedEvent;

Device Button Events

Button events from extension devices contain all the information that is contained in a button event from
the X pointer. In addition, they contain a device ID and report the current value of any valuators on the
device if that device is reporting absolute data. If data for more than six valuators is being reported, more
than one button event may be sent. The axes_count member contains the number of axes that are being
reported. The server sends as many of these events as are needed to report the device data. Each event
contains the total number of axes reported in the axes_count member and the first axis reported in the
current event in the first_axis member. If the device supports input class Valuators , but is not
reporting absolute mode data, the axes_count member contains zero (0).

The location reported in the x, y and x_root, y_root members is the location of the core X pointer.

typedef struct {
 int type; /* of event */
 unsigned long serial; /* # of last request processed by server */

Input Extension

32

 Bool send_event; /* true if from a SendEvent request */
 Display *display; /* Display the event was read from */
 Window window; /* "event" window reported relative to */
 XID deviceid;
 Window root; /* root window that the event occurred on */
 Window subwindow; /* child window */
 Time time; /* milliseconds */
 int x, y; /* x, y coordinates in event window */
 int x_root; /* coordinates relative to root */
 int y_root; /* coordinates relative to root */
 unsigned int state; /* key or button mask */
 unsigned int button; /* detail */
 Bool same_screen; /* same screen flag */
 unsigned int device_state; /* device key or button mask */
 unsigned char axes_count;
 unsigned char first_axis;
 int axis_data[6];
} XDeviceButtonEvent;

typedef XDeviceButtonEvent XDeviceButtonPressedEvent;
typedef XDeviceButtonEvent XDeviceButtonReleasedEvent;

Device Motion Events

Motion events from extension devices contain all the information that is contained in a motion event from
the X pointer. In addition, they contain a device ID and report the current value of any valuators on the
device.

The location reported in the x, y and x_root, y_root members is the location of the core X pointer, and
so is 2-dimensional.

Extension motion devices may report motion data for a variable number of axes. The axes_count member
contains the number of axes that are being reported. The server sends as many of these events as are needed
to report the device data. Each event contains the total number of axes reported in the axes_count member
and the first axis reported in the current event in the first_axis member.

typedef struct {
 int type; /* of event */
 unsigned long serial; /* # of last request processed by server */
 Bool send_event; /* true if from a SendEvent request */
 Display *display; /* Display the event was read from */
 Window window; /* "event" window reported relative to */
 XID deviceid;
 Window root; /* root window that the event occurred on */
 Window subwindow; /* child window */
 Time time; /* milliseconds */
 int x, y; /* x, y coordinates in event window */
 int x_root; /* coordinates relative to root */
 int y_root; /* coordinates relative to root */
 unsigned int state; /* key or button mask */
 char is_hint; /* detail */
 Bool same_screen; /* same screen flag */

Input Extension

33

 unsigned int device_state; /* device key or button mask */
 unsigned char axes_count;
 unsigned char first_axis;
 int axis_data[6];
} XDeviceMotionEvent;

Device Focus Events

These events are equivalent to the core focus events. They contain the same information, with the addition
of a device ID to identify which device has had a focus change, and a timestamp.

DeviceFocusIn and DeviceFocusOut events are generated for focus changes of extension devices
in the same manner as core focus events are generated.

typedef struct {
 int type; /* of event */
 unsigned long serial; /* # of last request processed by server */
 Bool send_event; /* true if this came from a SendEvent request */
 Display *display; /* Display the event was read from */
 Window window; /* "event" window it is reported relative to */
 XID deviceid;
 int mode; /* NotifyNormal, NotifyGrab, NotifyUngrab */
 int detail;
 /*
 * NotifyAncestor, NotifyVirtual, NotifyInferior,
 * NotifyNonLinear,NotifyNonLinearVirtual, NotifyPointer,
 * NotifyPointerRoot, NotifyDetailNone
 */
 Time time;
} XDeviceFocusChangeEvent;

typedef XDeviceFocusChangeEvent XDeviceFocusInEvent;
typedef XDeviceFocusChangeEvent XDeviceFocusOutEvent;

Device StateNotify Event

This event is analogous to the core keymap event but reports the current state of the device for each input
class that it supports. It is generated after every DeviceFocusIn event and EnterNotify event and
is delivered to clients who have selected XDeviceStateNotify events.

If the device supports input class Valuators , the mode member in the XValuatorStatus structure
is a bitmask that reports the device mode, proximity state, and other state information. The following bits
are currently defined:

 0x01 Relative = 0, Absolute = 1
 0x02 InProximity = 0, OutOfProximity = 1

If the device supports more valuators than can be reported in a single XEvent , multiple
XDeviceStateNotify events will be generated.

Input Extension

34

typedef struct {
 unsigned char class;
 unsigned char length;
} XInputClass;

typedef struct {
 int type;
 unsigned long serial; /* # of last request processed by server */
 Bool send_event; /* true if this came from a SendEvent request */
 Display *display; /* Display the event was read from */
 Window window;
 XID deviceid;
 Time time;
 int num_classes;
 char data[64];
} XDeviceStateNotifyEvent;

typedef struct {
 unsigned char class;
 unsigned char length;
 unsigned char num_valuators;
 unsigned char mode;
 int valuators[6];
} XValuatorStatus;

typedef struct {
 unsigned char class;
 unsigned char length;
 short num_keys;
 char keys[32];
} XKeyStatus;

typedef struct {
 unsigned char class;
 unsigned char length;
 short num_buttons;
 char buttons[32];
} XButtonStatus;

Device Mapping Event

This event is equivalent to the core MappingNotify event. It notifies client programs when the mapping
of keys, modifiers, or buttons on an extension device has changed.

typedef struct {
 int type;
 unsigned long serial;
 Bool send_event;

Input Extension

35

 Display *display;
 Window window;
 XID deviceid;
 Time time;
 int request;
 int first_keycode;
 int count;
} XDeviceMappingEvent;

ChangeDeviceNotify Event

This event has no equivalent in the core protocol. It notifies client programs when one of the core devices
has been changed.

typedef struct {
 int type;
 unsigned long serial;
 Bool send_event;
 Display *display;
 Window window;
 XID deviceid;
 Time time;
 int request;
} XChangeDeviceNotifyEvent;

Proximity Events

These events have no equivalent in the core protocol. Some input devices such as graphics tablets or
touchscreens may send these events to indicate that a stylus has moved into or out of contact with a
positional sensing surface.

The event contains the current value of any valuators on the device if that device is reporting absolute
data. If data for more than six valuators is being reported, more than one proximity event may be sent.
The axes_count member contains the number of axes that are being reported. The server sends as many of
these events as are needed to report the device data. Each event contains the total number of axes reported
in the axes_count member and the first axis reported in the current event in the first_axis member. If the
device supports input class Valuators , but is not reporting absolute mode data, the axes_count
member contains zero (0).

typedef struct {
 int type; /* ProximityIn or ProximityOut */
 unsigned long serial; /* # of last request processed by server */
 Bool send_event; /* true if this came from a SendEvent request */
 Display *display; /* Display the event was read from */
 Window window;
 XID deviceid;
 Window root;
 Window subwindow;
 Time time;

Input Extension

36

 int x, y;
 int x_root, y_root;
 unsigned int state;
 Bool same_screen;
 unsigned int device_state; /* device key or button mask */
 unsigned char axes_count;
 unsigned char first_axis;
 int axis_data[6];
} XProximityNotifyEvent;

typedef XProximityNotifyEvent XProximityInEvent;
typedef XProximityNotifyEvent XProximityOutEvent;

Event Handling Functions
This section discusses the X Input Extension event handling functions that allow you to:

• Determine the extension version

• List the available devices

• Enable and disable extension devices

• Change the mode of a device

• Initialize valuators on an input device

• Get input device controls

• Change input device controls

• Select extension device events

• Determine selected device events

• Control event propogation

• Send an event

• Get motion history

Determining the Extension Version

XExtensionVersion * XGetExtensionVersion(*display, *name);

display Specifies the connection to the X server.

name Specifies the name of the desired extension.

XGetExtensionVersion allows a client to determine whether a server supports the desired version
of the input extension.

The XExtensionVersion structure returns information about the version of the extension supported
by the server and is defined as follows:

Input Extension

37

typedef struct {
 Bool present;
 short major_version;
 short minor_version;
} XExtensionVersion;

The major and minor versions can be compared with constants defined in the header file < X11/
extensions/XI.h >. Each version is a superset of the previous versions.

You should use XFree to free the data returned by this function.

Listing Available Devices

A client program that wishes to access a specific device must first determine whether that device is
connected to the X server. This is done through the XListInputDevices function, which will return
a list of all devices that can be opened by the X server. The client program can use one of the names
defined in the < X11/extensions/XI.h > header file in an XInternAtom request to determine
the device type of the desired device. This type can then be compared with the device types returned by
the XListInputDevices request.

XDeviceInfo * XListInputDevices(*display, *ndevices);

display Specifies the connection to the X server.

ndevices Specifies the address of a variable into which the server
can return the number of input devices available to the
X server.

XListInputDevices allows a client to determine which devices are available for X input and
information about those devices. An array of XDeviceInfo structures is returned, with one element in
the array for each device. The number of devices is returned in the ndevices argument.

The X pointer device and X keyboard device are reported, as well as all available extension input devices.
The use member of the XDeviceInfo structure specifies the current use of the device. If the value of
this member is IsXPointer , the device is the X pointer device. If the value is IsXKeyboard ,
the device is the X keyboard device. If the value is IsXExtensionDevice , the device is available
for use as an extension input device.

Each XDeviceInfo entry contains a pointer to a list of structures that describe the characteristics of each
class of input supported by that device. The num_classes member contains the number of entries in that list.

If the device supports input class Valuators , one of the structures pointed to by the XDeviceInfo
structure will be an XValuatorInfo structure. The axes member of that structure contains the address
of an array of XAxisInfo structures. There is one element in this array for each axis of motion
reported by the device. The number of elements in this array is contained in the num_axes element of the
XValuatorInfo structure. The size of the motion buffer for the device is reported in the motion_buffer
member of the XValuatorInfo structure.

The XDeviceInfo structure is defined as follows:

typedef struct _XDeviceInfo {
 XID id;

Input Extension

38

 Atom type;
 char *name;
 int num_classes;
 int use;
 XAnyClassPtr inputclassinfo;
} XDeviceInfo;

The structures pointed to by the XDeviceInfo structure are defined as follows:

typedef struct _XKeyInfo {
 XID class;
 int length;
 unsigned short min_keycode;
 unsigned short max_keycode;
 unsigned short num_keys;
} XKeyInfo;

typedef struct _XButtonInfo {
 XID class;
 int length;
 short num_buttons;
} XButtonInfo;

typedef struct _XValuatorInfo {
 XID class;
 int length;
 unsigned char num_axes;
 unsigned char mode;
 unsigned long motion_buffer;
 XAxisInfoPtr axes;
} XValuatorInfo;

The XAxisInfo structure pointed to by the XValuatorInfo structure is defined as follows:

typedef struct _XAxisInfo {
 int resolution;
 int min_value;
 int max_value;
} XAxisInfo;

The following atom names are defined in the < X11/extensions/XI.h > header file.

MOUSE QUADRATURE
TABLET SPACEBALL
KEYBOARD DATAGLOVE
TOUCHSCREEN EYETRACKER

Input Extension

39

TOUCHPAD CURSORKEYS
BUTTONBOX FOOTMOUSE
BARCODE ID_MODULE
KNOB_BOX ONE_KNOB
TRACKBALL NINE_KNOB\s+1

These names can be used in an XInternAtom request to return an atom that can be used for comparison
with the type member of the XDeviceInfo structure.

XListInputDevices returns NULL if there are no input devices to list.

To free the data returned by XListInputDevices , use XFreeDeviceList .

void XFreeDeviceList(*list);

list Specifies the pointer to the XDeviceInfo array returned by a
previous call to XListInputDevices .

XFreeDeviceList frees the list of input device information.

Enabling and Disabling Extension Devices

Each client program that wishes to access an extension device must request that the server open that device
by calling the XOpenDevice function.

XDevice * XOpenDevice(*display, device_id);

display Specifies the connection to the X server.

device_id Specifies the ID that uniquely identifies the device
to be opened. This ID is obtained from the
XListInputDevices request.

XOpenDevice opens the device for the requesting client and, on success, returns an XDevice structure,
which is defined as follows:

typedef struct {
 XID device_id;
 int num_classes;
 XInputClassInfo *classes;
} XDevice;

The XDevice structure contains a pointer to an array of XInputClassInfo structures. Each element
in that array contains information about events of a particular input class supported by the input device.

The XInputClassInfo structure is defined as follows:

typedef struct {
 unsigned char input_class;
 unsigned char event_type_base;
} XInputClassInfo;

Input Extension

40

A client program can determine the event type and event class for a given event by using macros defined
by the input extension. The name of the macro corresponds to the desired event, and the macro is passed
the structure that describes the device from which input is desired, for example:

 DeviceKeyPress(XDevice *device, event_type, event_class)

The macro will fill in the values of the event class to be used in an XSelectExtensionEvent request
to select the event and the event type to be used in comparing with the event types of events received via
XNextEvent .

XOpenDevice can generate BadDevice errors.

Before terminating, the client program should request that the server close the device by calling the
XCloseDevice function.

int XCloseDevice(*display, *device);

display Specifies the connection to the X server.

device Specifies the device to be closed.

XCloseDevice closes the device for the requesting client and frees the associated XDevice structure.

A client may open the same extension device more than once. Requests after the first successful one return
an additional XDevice structure with the same information as the first, but otherwise have no effect. A
single XCloseDevice request will terminate that client's access to the device.

Closing a device releases any active or passive grabs the requesting client has established. If the device is
frozen only by an active grab of the requesting client, any queued events are released.

If a client program terminates without closing a device, the server will automatically close that device on
behalf of the client. This does not affect any other clients that may be accessing that device.

XCloseDevice can generate BadDevice errors.

Changing the Mode of a Device

Some devices are capable of reporting either relative or absolute motion data. To change the mode of a
device from relative to absolute, use XSetDeviceMode .

int XSetDeviceMode(*display, *device, mode);

display Specifies the connection to the X server.

device Specifies the device whose mode should be changed.

mode Specifies the mode. You can pass Absolute or
Relative .

XSetDeviceMode allows a client to request the server to change the mode of a device that is capable
of reporting either absolute positional data or relative motion data. If the device is invalid or if the client
has not previously requested that the server open the device via an XOpenDevice request, this request
will fail with a BadDevice error. If the device does not support input class Valuators or if it is not
capable of reporting the specified mode, the request will fail with a BadMatch error.

Input Extension

41

This request will fail and return DeviceBusy if another client has already opened the device and
requested a different mode.

XSetDeviceMode can generate BadDevice , BadMatch , BadMode , and DeviceBusy errors.

Initializing Valuators on an Input Device

Some devices that report absolute positional data can be initialized to a starting value. Devices that
are capable of reporting relative motion or absolute positional data may require that their valuators be
initialized to a starting value after the mode of the device is changed to Absolute .

To initialize the valuators on such a device, use XSetDeviceValuators .

Status XSetDeviceValuators(*display, *device, num_valuators);

display Specifies the connection to the X server.

device Specifies the device whose valuators should
be initialized.

valuators Specifies the values to which each valuator
should be set.

first_valuator Specifies the first valuator to be set.

num_valuators Specifies the number of valuators to be set.

XSetDeviceValuators initializes the specified valuators on the specified extension input device.
Valuators are numbered beginning with zero. Only the valuators in the range specified by first_valuator
and num_valuators are set. A BadValue error results if the number of valuators supported by the device
is less than the following expression:

 first_valuator + num_valuators

If the request succeeds, Success is returned. If the specified device is grabbed by some other client, the
request will fail and a status of AlreadyGrabbed will be returned.

XSetDeviceValuators can generate BadDevice , BadLength , BadMatch , and
BadValue errors.

Getting Input Device Controls

Some input devices support various configuration controls that can be queried or changed by clients. The
set of supported controls will vary from one input device to another. Requests to manipulate these controls
will fail if either the target X server or the target input device does not support the requested device control.

Each device control has a unique identifier. Information passed with each device control varies in length
and is mapped by data structures unique to that device control.

To query a device control, use XGetDeviceControl .

XDeviceControl * XGetDeviceControl(*display, *device, control);

display Specifies the connection to the X server.

Input Extension

42

device Specifies the device whose configuration control status is
to be returned.

control Identifies the specific device control to be queried.

XGetDeviceControl returns the current state of the specified device control. If the target X server
does not support that device control, a BadValue error is returned. If the specified device does not support
that device control, a BadMatch error is returned.

If the request is successful, a pointer to a generic XDeviceState structure is returned. The information
returned varies according to the specified control and is mapped by a structure appropriate for that control.
The first two members are common to all device controls and are defined as follows:

typedef struct {
 XID control;
 int length;
} XDeviceState;
\fP

The control may be compared to constants defined in the file < X11/extensions/XI.h >. Currently
defined device controls include DEVICE_RESOLUTION.

The information returned for the DEVICE_RESOLUTION control is defined in the
XDeviceResolutionState structure, which is defined as follows:

typedef struct {
 XID control;
 int length;
 int num_valuators;
 int *resolutions;
 int *min_resolutions;
 int *max_resolutions;
} XDeviceResolutionState;

This device control returns a list of valuators and the range of valid resolutions allowed for each. Valuators
are numbered beginning with zero (0). Resolutions for all valuators on the device are returned. For each
valuator i on the device, resolutions[i] returns the current setting of the resolution, min_resolutions[i]
returns the minimum valid setting, and max_resolutions[i] returns the maximum valid setting.

When this control is specified, XGetDeviceControl fails with a BadMatch error if the specified
device has no valuators.

XGetDeviceControl can generate BadMatch and BadValue errors.

Changing Input Device Controls

Some input devices support various configuration controls that can be changed by clients. Typically, this
would be done to initialize the device to a known state or configuration. The set of supported controls will
vary from one input device to another. Requests to manipulate these controls will fail if either the target X
server or the target input device does not support the requested device control. Setting the device control

Input Extension

43

will also fail if the target input device is grabbed by another client or is open by another client and has
been set to a conflicting state.

Each device control has a unique identifier. Information passed with each device control varies in length
and is mapped by data structures unique to that device control.

To change a device control, use XChangeDeviceControl .

Status XChangeDeviceControl(*display, *device, control, *value);

display Specifies the connection to the X server.

device Specifies the device whose configuration control status is
to be modified.

control Identifies the specific device control to be changed.

value Specifies a pointer to an XDeviceControl structure
that describes which control is to be changed and how it
is to be changed.

XChangeDeviceControl changes the current state of the specified device control. If the target X
server does not support that device control, a BadValue error is returned. If the specified device does
not support that device control, a BadMatch error is returned. If another client has the target device
grabbed, a status of AlreadyGrabbed is returned. If another client has the device open and has set it
to a conflicting state, a status of DeviceBusy is returned. If the request fails for any reason, the device
control will not be changed.

If the request is successful, the device control will be changed and a status of Success is returned. The
information passed varies according to the specified control and is mapped by a structure appropriate for
that control. The first two members are common to all device controls:

typedef struct {
 XID control;
 int length;
} XDeviceControl;

The control may be set using constants defined in the < X11/extensions/XI.h > header file.
Currently defined device controls include DEVICE_RESOLUTION.

The information that can be changed by the DEVICE_RESOLUTION control is defined in the
XDeviceResolutionControl structure, which is defined as follows:

typedef struct {
 XID control;
 int length;
 int first_valuator;
 int num_valuators;
 int *resolutions;
} XDeviceResolutionControl;

Input Extension

44

This device control changes the resolution of the specified valuators on the specified extension input
device. Valuators are numbered beginning with zero. Only the valuators in the range specified by
first_valuator and num_valuators are set. A value of -1 in the resolutions list indicates that the resolution
for this valuator is not to be changed. The num_valuators member specifies the number of valuators in
the resolutions list.

When this control is specified, XChangeDeviceControl fails with a BadMatch error if the specified
device has no valuators. If a resolution is specified that is not within the range of valid values (as returned by
XGetDeviceControl), XChangeDeviceControl fails with a BadValue error. A BadValue
error results if the number of valuators supported by the device is less than the following expression:

 first_valuator + num_valuators,

XChangeDeviceControl can generate BadMatch and BadValue errors.

Selecting Extension Device Events

To select device input events, use XSelectExtensionEvent . The parameters passed are a pointer
to a list of classes that define the desired event types and devices, a count of the number of elements in
the list, and the ID of the window from which events are desired.

int XSelectExtensionEvent(*display, window, *event_list,
event_count);

display Specifies the connection to the X server.

window Specifies the ID of the window from which the
client wishes to receive events.

event_list Specifies a pointer to an array of event classes
that specify which events are desired.

event_count Specifies the number of elements in the
event_list.

XSelectExtensionEvent requests the server to send events that match the events and devices
described by the event list and that come from the requested window. The elements of the XEventClass
array are the event_class values obtained by invoking a macro with the pointer to an XDevice structure
returned by the XOpenDevice request. For example, the DeviceKeyPress macro would return
the XEventClass for DeviceKeyPress events from the specified device if it were invoked in the
following form:

 DeviceKeyPress (XDevice *device, event_type, event_class)

Macros are defined for the following event classes:

DeviceKeyPress
DeviceKeyRelease
DeviceButtonPress

Input Extension

45

DeviceButtonRelease
DeviceMotionNotify
DeviceFocusIn
DeviceFocusOut
ProximityIn
ProximityOut
DeviceStateNotify
DeviceMappingNotify
ChangeDeviceNotify
DevicePointerMotionHint
DeviceButton1Motion
DeviceButton2Motion
DeviceButton3Motion,
DeviceButton4Motion
DeviceButton5Motion
DeviceButtonMotion,
DeviceOwnerGrabButton
DeviceButtonPressGrab

To get the next available event from within a client program, use the core XNextEvent function. This
returns the next event whether it came from a core device or an extension device.

Succeeding XSelectExtensionEvent requests using event classes for the same device as was
specified on a previous request will replace the previous set of selected events from that device with the
new set.

XSelectExtensionEvent can generate BadAccess , BadClass , BadLength , and
BadWindow errors.

Determining Selected Device Events

To determine which extension events are currently selected from a given window, use
XGetSelectedExtensionEvents .

int XGetSelectedExtensionEvents(*display, window,
*this_client_count, **this_client, *all_clients_count,
**all_clients);

display Specifies the connection to the X server.

window Specifies the ID of the window from which
the client wishes to receive events.

this_client_count Returns the number of elements in the
this_client list.

this_client Returns a list of XEventClasses that
specify which events are selected by this
client.

all_clients_count Returns the number of elements in the
all_clients list.

all_clients Returns a list of XEventClasses that
specify which events are selected by all
clients.

Input Extension

46

XGetSelectedExtensionEvents returns pointers to two event class arrays. One lists the extension
events selected by this client from the specified window. The other lists the extension events selected by all
clients from the specified window. This information is analogous to that returned in your_event_mask and
all_event_masks of the XWindowAttributes structure when an XGetWindowAttributes request
is made. To free the two arrays returned by this function, use XFree .

XGetSelectedExtensionEvents can generate BadWindow errors.

Controlling Event Propagation

Extension events propagate up the window hierarchy in the same manner as core events. If a window is
not interested in an extension event, it usually propagates to the closest ancestor that is interested, unless
the dont_propagate list prohibits it. Grabs of extension devices may alter the set of windows that receive
a particular extension event.

Client programs may control event propagation through the use of the following two functions:
XChangeDeviceDontPropagateList and XGetDeviceDontPropagateList .

int XChangeDeviceDontPropagateList(*display, window, event_count,
*events, mode);

display Specifies the connection to the X server.

window Specifies the desired window.

event_count Specifies the number of elements in the events
list.

events Specifies a pointer to the list of XEventClasses.

mode Specifies the mode. You can pass AddToList
or DeleteFromList .

XChangeDeviceDontPropagateList adds an event to or deletes an event from the
do_not_propagate list of extension events for the specified window. There is one list per window, and the
list remains for the life of the window. The list is not altered if a client that changed the list terminates.

Suppression of event propagation is not allowed for all events. If a specified XEventClass is invalid
because suppression of that event is not allowed, a BadClass error results.

XChangeDeviceDontPropagateList can generate BadClass , BadMode , and BadWindow
errors.

XEventClass * XGetDeviceDontPropagateList(*display, window,
*event_count);

display Specifies the connection to the X server.

window Specifies the desired window.

event_count Returns the number of elements in the array
returned by this function.

XGetDeviceDontPropagateList allows a client to determine the do_not_propagate list of
extension events for the specified window. It returns an array of XEventClass , each XEventClass
representing a device/event type pair. To free the data returned by this function, use XFree .

Input Extension

47

XGetDeviceDontPropagateList can generate BadWindow errors.

Sending an Event

To send an extension event to another client, use XSendExtensionEvent .

int XSendExtensionEvent(*display, *device, window, propagate,
event_count, *event_list, *event);

display Specifies the connection to the X server.

device Specifies the device whose ID is recorded in the
event.

window Specifies the destination window ID. You
can pass a window ID, PointerWindow or
InputFocus .

propagate Specifies a boolean value that is either True or
False .

event_count Specifies the number of elements in the
event_list array.

event_list Specifies a pointer to an array of
XEventClass .

event Specifies a pointer to the event that is to be sent.

XSendExtensionEvent identifies the destination window, determines which clients should receive
the specified event, and ignores any active grabs. It requires a list of XEventClass to be specified. These
are obtained by opening an input device with the XOpenDevice request.

XSendExtensionEvent uses the window argument to identify the destination window as follows:

• If you pass PointerWindow , the destination window is the window that contains the pointer.

• If you pass InputFocus and if the focus window contains the pointer, the destination window is
the window that contains the pointer. If the focus window does not contain the pointer, the destination
window is the focus window.

To determine which clients should receive the specified events, XSendExtensionEvent uses the
propagate argument as follows:

• If propagate is False , the event is sent to every client selecting from the destination window any
of the events specified in the event_list array.

• If propagate is True and no clients have selected from the destination window any of the events
specified in the event_list array, the destination is replaced with the closest ancestor of destination for
which some client has selected one of the specified events and for which no intervening window has
that event in its do_not_propagate mask. If no such window exists, or if the window is an ancestor of
the focus window, and InputFocus was originally specified as the destination, the event is not sent
to any clients. Otherwise, the event is reported to every client selecting on the final destination any of
the events specified in event_list.

The event in the XEvent structure must be one of the events defined by the input extension, so that the X
server can correctly byte swap the contents as necessary. The contents of the event are otherwise unaltered

Input Extension

48

and unchecked by the X server except to force send_event to True in the forwarded event and to set the
sequence number in the event correctly.

XSendExtensionEvent returns zero if the conversion-to-wire protocol failed; otherwise, it returns
nonzero.

XSendExtensionEvent can generate BadClass , BadDevice , BadValue , and
BadWindow errors.

Getting Motion History

XDeviceTimeCoord * XGetDeviceMotionEvents(axis_count_return),
*display, *device, stop, *nevents_return, *mode_return,
*axis_count_return);

display Specifies the connection to the X server.

device Specifies the desired device.

start Specifies the start time.

stop Specifies the stop time.

nevents_return Returns the number of positions in the motion
buffer returned for this request.

mode_return Returns the mode of the nevents information.
The mode will be one of the following:
Absolute or Relative .

axis_count_return Returns the number of axes reported in each
of the positions returned.

XGetDeviceMotionEvents returns all positions in the device's motion history buffer that fall between
the specified start and stop times inclusive. If the start time is in the future or is later than the stop time,
no positions are returned.

The return type for this function is an XDeviceTimeCoord structure, which is defined as follows:

typedef struct {
 Time time;
 unsigned int *data;
} XDeviceTimeCoord;

The data member is a pointer to an array of data items. Each item is of type int, and there is one data item
per axis of motion reported by the device. The number of axes reported by the device is returned in the
axis_count variable.

The value of the data items depends on the mode of the device. The mode is returned in the mode variable.
If the mode is Absolute , the data items are the raw values generated by the device. These may be
scaled by the client program using the maximum values that the device can generate for each axis of motion
that it reports. The maximum value for each axis is reported in the max_val member of the XAxisInfo
structure, which is part of the information returned by the XListInputDevices request.

Input Extension

49

If the mode is Relative , the data items are the relative values generated by the device. The client
program must choose an initial position for the device and maintain a current position by accumulating
these relative values.

Consecutive calls to XGetDeviceMotionEvents can return data of different modes, that is, if some
client program has changed the mode of the device via an XSetDeviceMode request.

XGetDeviceMotionEvents can generate BadDevice and BadMatch errors.

To free the data returned by XGetDeviceMotionEvents , use XFreeDeviceMotionEvents .

void XFreeDeviceMotionEvents(*events);

events Specifies the pointer to the XDeviceTimeCoord
array returned by a previous call to
XGetDeviceMotionEvents .

XFreeDeviceMotionEvents frees the specified array of motion information. Appendix A

The following information is contained in the <X11/extensions/XInput.h> and <X11/
extensions/XI.h> header files:

/* Definitions used by the library and client */

#ifndef _XINPUT_H_
#define _XINPUT_H_

#ifndef _XLIB_H_
#include <X11/Xlib.h>
#endif

#ifndef _XI_H_
#include "XI.h"
#endif

#define _deviceKeyPress 0
#define _deviceKeyRelease 1

#define _deviceButtonPress 0
#define _deviceButtonRelease 1

#define _deviceMotionNotify 0

#define _deviceFocusIn 0
#define _deviceFocusOut 1

#define _proximityIn 0
#define _proximityOut 1

#define _deviceStateNotify 0
#define _deviceMappingNotify 1

Input Extension

50

#define _changeDeviceNotify 2

#define FindTypeAndClass(d, type, class, classid, offset) \
 { int i; XInputClassInfo *ip; \
 type = 0; class = 0; \
 for (i=0, ip= ((XDevice *) d)->classes; \
 i< ((XDevice *) d)->num_classes; \
 i++, ip++) \
 if (ip->input_class == classid) \
 {type = ip->event_type_base + offset; \
 class = ((XDevice *) d)->device_id << 8 | type;}}

#define DeviceKeyPress(d, type, class) \
 FindTypeAndClass(d, type, class, KeyClass, _deviceKeyPress)

#define DeviceKeyRelease(d, type, class) \
 FindTypeAndClass(d, type, class, KeyClass, _deviceKeyRelease)

#define DeviceButtonPress(d, type, class) \
 FindTypeAndClass(d, type, class, ButtonClass, _deviceButtonPress)

#define DeviceButtonRelease(d, type, class) \
 FindTypeAndClass(d, type, class, ButtonClass, _deviceButtonRelease)

#define DeviceMotionNotify(d, type, class) \
 FindTypeAndClass(d, type, class, ValuatorClass, _deviceMotionNotify)

#define DeviceFocusIn(d, type, class) \
 FindTypeAndClass(d, type, class, FocusClass, _deviceFocusIn)

#define DeviceFocusOut(d, type, class) \
 FindTypeAndClass(d, type, class, FocusClass, _deviceFocusOut)

#define ProximityIn(d, type, class) \
 FindTypeAndClass(d, type, class, ProximityClass, _proximityIn)

#define ProximityOut(d, type, class) \
 FindTypeAndClass(d, type, class, ProximityClass, _proximityOut)

#define DeviceStateNotify(d, type, class) \
 FindTypeAndClass(d, type, class, OtherClass, _deviceStateNotify)

#define DeviceMappingNotify(d, type, class) \
 FindTypeAndClass(d, type, class, OtherClass, _deviceMappingNotify)

#define ChangeDeviceNotify(d, type, class) \
 FindTypeAndClass(d, type, class, OtherClass, _changeDeviceNotify)

#define DevicePointerMotionHint(d, type, class) \
 { class = ((XDevice *) d)->device_id << 8 | _devicePointerMotionHint;}

#define DeviceButton1Motion(d, type, class) \
 { class = ((XDevice *) d)->device_id << 8 | _deviceButton1Motion;}

Input Extension

51

#define DeviceButton2Motion(d, type, class) \
 { class = ((XDevice *) d)->device_id << 8 | _deviceButton2Motion;}

#define DeviceButton3Motion(d, type, class) \
 { class = ((XDevice *) d)->device_id << 8 | _deviceButton3Motion;}

#define DeviceButton4Motion(d, type, class) \
 { class = ((XDevice *) d)->device_id << 8 | _deviceButton4Motion;}

#define DeviceButton5Motion(d, type, class) \
 { class = ((XDevice *) d)->device_id << 8 | _deviceButton5Motion;}

#define DeviceButtonMotion(d, type, class) \
 { class = ((XDevice *) d)->device_id << 8 | _deviceButtonMotion;}

#define DeviceOwnerGrabButton(d, type, class) \
 { class = ((XDevice *) d)->device_id << 8 | _deviceOwnerGrabButton;}

#define DeviceButtonPressGrab(d, type, class) \
 { class = ((XDevice *) d)->device_id << 8 | _deviceButtonGrab;}

#define NoExtensionEvent(d, type, class) \
 { class = ((XDevice *) d)->device_id << 8 | _noExtensionEvent;}

#define BadDevice(dpy, error) _xibaddevice(dpy, &error)

#define BadClass(dpy, error) _xibadclass(dpy, &error)

#define BadEvent(dpy, error) _xibadevent(dpy, &error)

#define BadMode(dpy, error) _xibadmode(dpy, &error)

#define DeviceBusy(dpy, error) _xidevicebusy(dpy, &error)

/***
 *
 * DeviceKey events. These events are sent by input devices that
 * support input class Keys.
 * The location of the X pointer is reported in the coordinate
 * fields of the x,y and x_root,y_root fields.
 *
 */

typedef struct
 {
 int type; /* of event */
 unsigned long serial; /* # of last request processed */
 Bool send_event; /* true if from SendEvent request */
 Display *display; /* Display the event was read from */
 Window window; /* "event" window reported relative to */
 XID deviceid;
 Window root; /* root window event occured on */
 Window subwindow; /* child window */
 Time time; /* milliseconds */

Input Extension

52

 int x, y; /* x, y coordinates in event window */
 int x_root; /* coordinates relative to root */
 int y_root; /* coordinates relative to root */
 unsigned int state; /* key or button mask */
 unsigned int keycode; /* detail */
 Bool same_screen; /* same screen flag */
 unsigned int device_state; /* device key or button mask */
 unsigned char axes_count;
 unsigned char first_axis;
 int axis_data[6];
 } XDeviceKeyEvent;

typedef XDeviceKeyEvent XDeviceKeyPressedEvent;
typedef XDeviceKeyEvent XDeviceKeyReleasedEvent;

/***
 *
 * DeviceButton events. These events are sent by extension devices
 * that support input class Buttons.
 *
 */

typedef struct {
 int type; /* of event */
 unsigned long serial; /* # of last request processed by server */
 Bool send_event; /* true if from a SendEvent request */
 Display *display; /* Display the event was read from */
 Window window; /* "event" window reported relative to */
 XID deviceid;
 Window root; /* root window that the event occured on */
 Window subwindow; /* child window */
 Time time; /* milliseconds */
 int x, y; /* x, y coordinates in event window */
 int x_root; /* coordinates relative to root */
 int y_root; /* coordinates relative to root */
 unsigned int state; /* key or button mask */
 unsigned int button; /* detail */
 Bool same_screen; /* same screen flag */
 unsigned int device_state; /* device key or button mask */
 unsigned char axes_count;
 unsigned char first_axis;
 int axis_data[6];
 } XDeviceButtonEvent;

typedef XDeviceButtonEvent XDeviceButtonPressedEvent;
typedef XDeviceButtonEvent XDeviceButtonReleasedEvent;

/***
 *
 * DeviceMotionNotify event. These events are sent by extension devices
 * that support input class Valuators.
 *
 */

Input Extension

53

typedef struct
 {
 int type; /* of event */
 unsigned long serial; /* # of last request processed by server */
 Bool send_event; /* true if from a SendEvent request */
 Display *display; /* Display the event was read from */
 Window window; /* "event" window reported relative to */
 XID deviceid;
 Window root; /* root window that the event occured on */
 Window subwindow; /* child window */
 Time time; /* milliseconds */
 int x, y; /* x, y coordinates in event window */
 int x_root; /* coordinates relative to root */
 int y_root; /* coordinates relative to root */
 unsigned int state; /* key or button mask */
 char is_hint; /* detail */
 Bool same_screen; /* same screen flag */
 unsigned int device_state; /* device key or button mask */
 unsigned char axes_count;
 unsigned char first_axis;
 int axis_data[6];
 } XDeviceMotionEvent;

/***
 *
 * DeviceFocusChange events. These events are sent when the focus
 * of an extension device that can be focused is changed.
 *
 */

typedef struct
 {
 int type; /* of event */
 unsigned long serial; /* # of last request processed by server */
 Bool send_event; /* true if from a SendEvent request */
 Display *display; /* Display the event was read from */
 Window window; /* "event" window reported relative to */
 XID deviceid;
 int mode; /* NotifyNormal, NotifyGrab, NotifyUngrab */
 int detail;
 /*
 * NotifyAncestor, NotifyVirtual, NotifyInferior,
 * NotifyNonLinear,NotifyNonLinearVirtual, NotifyPointer,
 * NotifyPointerRoot, NotifyDetailNone
 */
 Time time;
 } XDeviceFocusChangeEvent;

typedef XDeviceFocusChangeEvent XDeviceFocusInEvent;
typedef XDeviceFocusChangeEvent XDeviceFocusOutEvent;

/***
 *
 * ProximityNotify events. These events are sent by those absolute

Input Extension

54

 * positioning devices that are capable of generating proximity information.
 *
 */

typedef struct
 {
 int type; /* ProximityIn or ProximityOut */
 unsigned long serial; /* # of last request processed by server */
 Bool send_event; /* true if this came from a SendEvent request */
 Display *display; /* Display the event was read from */
 Window window;
 XID deviceid;
 Window root;
 Window subwindow;
 Time time;
 int x, y;
 int x_root, y_root;
 unsigned int state;
 Bool same_screen;
 unsigned int device_state; /* device key or button mask */
 unsigned char axes_count;
 unsigned char first_axis;
 int axis_data[6];
 } XProximityNotifyEvent;
typedef XProximityNotifyEvent XProximityInEvent;
typedef XProximityNotifyEvent XProximityOutEvent;

/***
 *
 * DeviceStateNotify events are generated on EnterWindow and FocusIn
 * for those clients who have selected DeviceState.
 *
 */

typedef struct
 {
 unsigned char class;
 unsigned char length;
 } XInputClass;

typedef struct {
 int type;
 unsigned long serial; /* # of last request processed by server */
 Bool send_event; /* true if this came from a SendEvent request */
 Display *display; /* Display the event was read from */
 Window window;
 XID deviceid;
 Time time;
 int num_classes;
 char data[64];
} XDeviceStateNotifyEvent;

typedef struct {
 unsigned char class;

Input Extension

55

 unsigned char length;
 unsigned char num_valuators;
 unsigned char mode;
 int valuators[6];
} XValuatorStatus;

typedef struct {
 unsigned char class;
 unsigned char length;
 short num_keys;
 char keys[32];
} XKeyStatus;

typedef struct {
 unsigned char class;
 unsigned char length;
 short num_buttons;
 char buttons[32];
} XButtonStatus;

/***
 *
 * DeviceMappingNotify event. This event is sent when the key mapping,
 * modifier mapping, or button mapping of an extension device is changed.
 *
 */

typedef struct {
 int type;
 unsigned long serial; /* # of last request processed by server */
 Bool send_event; /* true if this came from a SendEvent request */
 Display *display; /* Display the event was read from */
 Window window; /* unused */
 XID deviceid;
 Time time;
 int request; /* one of MappingModifier, MappingKeyboard,
 MappingPointer */
 int first_keycode;/* first keycode */
 int count; /* defines range of change w. first_keycode*/
} XDeviceMappingEvent;

/***
 *
 * ChangeDeviceNotify event. This event is sent when an
 * XChangeKeyboard or XChangePointer request is made.
 *
 */

typedef struct {
 int type;
 unsigned long serial; /* # of last request processed by server */
 Bool send_event; /* true if this came from a SendEvent request */
 Display *display; /* Display the event was read from */
 Window window; /* unused */

Input Extension

56

 XID deviceid;
 Time time;
 int request; /* NewPointer or NewKeyboard */
} XChangeDeviceNotifyEvent;

/***
 *
 * Control structures for input devices that support input class
 * Feedback. These are used by the XGetFeedbackControl and
 * XChangeFeedbackControl functions.
 *
 */

typedef struct {
 XID class;
 int length;
 XID id;
} XFeedbackState;

typedef struct {
 XID class;
 int length;
 XID id;
 int click;
 int percent;
 int pitch;
 int duration;
 int led_mask;
 int global_auto_repeat;
 char auto_repeats[32];
} XKbdFeedbackState;

typedef struct {
 XID class;
 int length;
 XID id;
 int accelNum;
 int accelDenom;
 int threshold;
} XPtrFeedbackState;

typedef struct {
 XID class;
 int length;
 XID id;
 int resolution;
 int minVal;
 int maxVal;
} XIntegerFeedbackState;

typedef struct {
 XID class;
 int length;
 XID id;

Input Extension

57

 int max_symbols;
 int num_syms_supported;
 KeySym *syms_supported;
} XStringFeedbackState;

typedef struct {
 XID class;
 int length;
 XID id;
 int percent;
 int pitch;
 int duration;
} XBellFeedbackState;

typedef struct {
 XID class;
 int length;
 XID id;
 int led_values;
 int led_mask;
} XLedFeedbackState;

typedef struct {
 XID class;
 int length;
 XID id;
} XFeedbackControl;

typedef struct {
 XID class;
 int length;
 XID id;
 int accelNum;
 int accelDenom;
 int threshold;
} XPtrFeedbackControl;

typedef struct {
 XID class;
 int length;
 XID id;
 int click;
 int percent;
 int pitch;
 int duration;
 int led_mask;
 int led_value;
 int key;
 int auto_repeat_mode;
} XKbdFeedbackControl;

typedef struct {
 XID class;
 int length;

Input Extension

58

 XID id;
 int num_keysyms;
 KeySym *syms_to_display;
} XStringFeedbackControl;

typedef struct {
 XID class;
 int length;
 XID id;
 int int_to_display;
} XIntegerFeedbackControl;

typedef struct {
 XID class;
 int length;
 XID id;
 int percent;
 int pitch;
 int duration;
} XBellFeedbackControl;

typedef struct {
 XID class;
 int length;
 XID id;
 int led_mask;
 int led_values;
} XLedFeedbackControl;

/***
 *
 * Device control structures.
 *
 */

typedef struct {
 XID control;
 int length;
} XDeviceControl;

typedef struct {
 XID control;
 int length;
 int first_valuator;
 int num_valuators;
 int *resolutions;
} XDeviceResolutionControl;

typedef struct {
 XID control;
 int length;
 int num_valuators;
 int *resolutions;
 int *min_resolutions;

Input Extension

59

 int *max_resolutions;
} XDeviceResolutionState;

/***
 *
 * An array of XDeviceList structures is returned by the
 * XListInputDevices function. Each entry contains information
 * about one input device. Among that information is an array of
 * pointers to structures that describe the characteristics of
 * the input device.
 *
 */

typedef struct _XAnyClassinfo *XAnyClassPtr;

typedef struct _XAnyClassinfo {
 XID class;
 int length;
 } XAnyClassInfo;

typedef struct _XDeviceInfo *XDeviceInfoPtr;

typedef struct _XDeviceInfo
 {
 XID id;
 Atom type;
 char *name;
 int num_classes;
 int use;
 XAnyClassPtr inputclassinfo;
 } XDeviceInfo;

typedef struct _XKeyInfo *XKeyInfoPtr;

typedef struct _XKeyInfo
 {
 XID class;
 int length;
 unsigned short min_keycode;
 unsigned short max_keycode;
 unsigned short num_keys;
 } XKeyInfo;

typedef struct _XButtonInfo *XButtonInfoPtr;

typedef struct _XButtonInfo {
 XID class;
 int length;
 short num_buttons;
 } XButtonInfo;

typedef struct _XAxisInfo *XAxisInfoPtr;

typedef struct _XAxisInfo {

Input Extension

60

 int resolution;
 int min_value;
 int max_value;
 } XAxisInfo;

typedef struct _XValuatorInfo *XValuatorInfoPtr;

typedef struct _XValuatorInfo
 {
 XID class;
 int length;
 unsigned char num_axes;
 unsigned char mode;
 unsigned long motion_buffer;
 XAxisInfoPtr axes;
 } XValuatorInfo;

/***
 *
 * An XDevice structure is returned by the XOpenDevice function.
 * It contains an array of pointers to XInputClassInfo structures.
 * Each contains information about a class of input supported by the
 * device, including a pointer to an array of data for each type of event
 * the device reports.
 *
 */

typedef struct {
 unsigned char input_class;
 unsigned char event_type_base;
} XInputClassInfo;

typedef struct {
 XID device_id;
 int num_classes;
 XInputClassInfo *classes;
} XDevice;

/***
 *
 * The following structure is used to return information for the
 * XGetSelectedExtensionEvents function.
 *
 */

typedef struct {
 XEventClass event_type;
 XID device;
} XEventList;

/***

Input Extension

61

 *
 * The following structure is used to return motion history data from
 * an input device that supports the input class Valuators.
 * This information is returned by the XGetDeviceMotionEvents function.
 *
 */

typedef struct {
 Time time;
 int *data;
} XDeviceTimeCoord;

/***
 *
 * Device state structure.
 * This is returned by the XQueryDeviceState request.
 *
 */

typedef struct {
 XID device_id;
 int num_classes;
 XInputClass *data;
} XDeviceState;

/***
 *
 * Note that the mode field is a bitfield that reports the Proximity
 * status of the device as well as the mode. The mode field should
 * be OR'd with the mask DeviceMode and compared with the values
 * Absolute and Relative to determine the mode, and should be OR'd
 * with the mask ProximityState and compared with the values InProximity
 * and OutOfProximity to determine the proximity state.
 *
 */

typedef struct {
 unsigned char class;
 unsigned char length;
 unsigned char num_valuators;
 unsigned char mode;
 int *valuators;
} XValuatorState;

typedef struct {
 unsigned char class;
 unsigned char length;
 short num_keys;
 char keys[32];
} XKeyState;

typedef struct {
 unsigned char class;

Input Extension

62

 unsigned char length;
 short num_buttons;
 char buttons[32];
} XButtonState;

/***
 *
 * Function definitions.
 *
 */

_XFUNCPROTOBEGIN

extern int XChangeKeyboardDevice(
#if NeedFunctionPrototypes
 Display* /* display */,
 XDevice* /* device */
#endif
);

extern int XChangePointerDevice(
#if NeedFunctionPrototypes
 Display* /* display */,
 XDevice* /* device */,
 int /* xaxis */,
 int /* yaxis */
#endif
);

extern int XGrabDevice(
#if NeedFunctionPrototypes
 Display* /* display */,
 XDevice* /* device */,
 Window /* grab_window */,
 Bool /* ownerEvents */,
 int /* event count */,
 XEventClass* /* event_list */,
 int /* this_device_mode */,
 int /* other_devices_mode */,
 Time /* time */
#endif
);

extern int XUngrabDevice(
#if NeedFunctionPrototypes
 Display* /* display */,
 XDevice* /* device */,
 Time /* time */
#endif
);

extern int XGrabDeviceKey(
#if NeedFunctionPrototypes
 Display* /* display */,

Input Extension

63

 XDevice* /* device */,
 unsigned int /* key */,
 unsigned int /* modifiers */,
 XDevice* /* modifier_device */,
 Window /* grab_window */,
 Bool /* owner_events */,
 unsigned int /* event_count */,
 XEventClass* /* event_list */,
 int /* this_device_mode */,
 int /* other_devices_mode */
#endif
);

extern int XUngrabDeviceKey(
#if NeedFunctionPrototypes
 Display* /* display */,
 XDevice* /* device */,
 unsigned int /* key */,
 unsigned int /* modifiers */,
 XDevice* /* modifier_dev */,
 Window /* grab_window */
#endif
);

extern int XGrabDeviceButton(
#if NeedFunctionPrototypes
 Display* /* display */,
 XDevice* /* device */,
 unsigned int /* button */,
 unsigned int /* modifiers */,
 XDevice* /* modifier_device */,
 Window /* grab_window */,
 Bool /* owner_events */,
 unsigned int /* event_count */,
 XEventClass* /* event_list */,
 int /* this_device_mode */,
 int /* other_devices_mode */
#endif
);

extern int XUngrabDeviceButton(
#if NeedFunctionPrototypes
 Display* /* display */,
 XDevice* /* device */,
 unsigned int /* button */,
 unsigned int /* modifiers */,
 XDevice* /* modifier_dev */,
 Window /* grab_window */
#endif
);

extern int XAllowDeviceEvents(
#if NeedFunctionPrototypes
 Display* /* display */,

Input Extension

64

 XDevice* /* device */,
 int /* event_mode */,
 Time /* time */
#endif
);

extern int XGetDeviceFocus(
#if NeedFunctionPrototypes
 Display* /* display */,
 XDevice* /* device */,
 Window* /* focus */,
 int* /* revert_to */,
 Time* /* time */
#endif
);

extern int XSetDeviceFocus(
#if NeedFunctionPrototypes
 Display* /* display */,
 XDevice* /* device */,
 Window /* focus */,
 int /* revert_to */,
 Time /* time */
#endif
);

extern XFeedbackState *XGetFeedbackControl(
#if NeedFunctionPrototypes
 Display* /* display */,
 XDevice* /* device */,
 int* /* num_feedbacks */
#endif
);

extern int XFreeFeedbackList(
#if NeedFunctionPrototypes
 XFeedbackState* /* list */
#endif
);

extern int XChangeFeedbackControl(
#if NeedFunctionPrototypes
 Display* /* display */,
 XDevice* /* device */,
 unsigned long /* mask */,
 XFeedbackControl* /* f */
#endif
);

extern int XDeviceBell(
#if NeedFunctionPrototypes
 Display* /* display */,
 XDevice* /* device */,
 XID /* feedbackclass */,

Input Extension

65

 XID /* feedbackid */,
 int /* percent */
#endif
);

extern KeySym *XGetDeviceKeyMapping(
#if NeedFunctionPrototypes
 Display* /* display */,
 XDevice* /* device */,
#if NeedWidePrototypes
 unsigned int /* first */,
#else
 KeyCode /* first */,
#endif
 int /* keycount */,
 int* /* syms_per_code */
#endif
);

extern int XChangeDeviceKeyMapping(
#if NeedFunctionPrototypes
 Display* /* display */,
 XDevice* /* device */,
 int /* first */,
 int /* syms_per_code */,
 KeySym* /* keysyms */,
 int /* count */
#endif
);

extern XModifierKeymap *XGetDeviceModifierMapping(
#if NeedFunctionPrototypes
 Display* /* display */,
 XDevice* /* device */
#endif
);

extern int XSetDeviceModifierMapping(
#if NeedFunctionPrototypes
 Display* /* display */,
 XDevice* /* device */,
 XModifierKeymap* /* modmap */
#endif
);

extern int XSetDeviceButtonMapping(
#if NeedFunctionPrototypes
 Display* /* display */,
 XDevice* /* device */,
 unsigned char* /* map[] */,
 int /* nmap */
#endif
);

Input Extension

66

extern int XGetDeviceButtonMapping(
#if NeedFunctionPrototypes
 Display* /* display */,
 XDevice* /* device */,
 unsigned char* /* map[] */,
 unsigned int /* nmap */
#endif
);

extern XDeviceState *XQueryDeviceState(
#if NeedFunctionPrototypes
 Display* /* display */,
 XDevice* /* device */
#endif
);

extern int XFreeDeviceState(
#if NeedFunctionPrototypes
 XDeviceState* /* list */
#endif
);

extern XExtensionVersion *XGetExtensionVersion(
#if NeedFunctionPrototypes
 Display* /* display */,
 _Xconst char* /* name */
#endif
);

extern XDeviceInfo *XListInputDevices(
#if NeedFunctionPrototypes
 Display* /* display */,
 int* /* ndevices */
#endif
);

extern int XFreeDeviceList(
#if NeedFunctionPrototypes
 XDeviceInfo* /* list */
#endif
);

extern XDevice *XOpenDevice(
#if NeedFunctionPrototypes
 Display* /* display */,
 XID /* id */
#endif
);

extern int XCloseDevice(
#if NeedFunctionPrototypes
 Display* /* display */,
 XDevice* /* device */
#endif

Input Extension

67

);

extern int XSetDeviceMode(
#if NeedFunctionPrototypes
 Display* /* display */,
 XDevice* /* device */,
 int /* mode */
#endif
);

extern int XSetDeviceValuators(
#if NeedFunctionPrototypes
 Display* /* display */,
 XDevice* /* device */,
 int* /* valuators */,
 int /* first_valuator */,
 int /* num_valuators */
#endif
);

extern XDeviceControl *XGetDeviceControl(
#if NeedFunctionPrototypes
 Display* /* display */,
 XDevice* /* device */,
 int /* control */
#endif
);

extern int XChangeDeviceControl(
#if NeedFunctionPrototypes
 Display* /* display */,
 XDevice* /* device */,
 int /* control */,
 XDeviceControl* /* d */
#endif
);

extern int XSelectExtensionEvent(
#if NeedFunctionPrototypes
 Display* /* display */,
 Window /* w */,
 XEventClass* /* event_list */,
 int /* count */
#endif
);

extern int XGetSelectedExtensionEvents(
#if NeedFunctionPrototypes
 Display* /* display */,
 Window /* w */,
 int* /* this_client_count */,
 XEventClass** /* this_client_list */,
 int* /* all_clients_count */,
 XEventClass** /* all_clients_list */

Input Extension

68

#endif
);

extern int XChangeDeviceDontPropagateList(
#if NeedFunctionPrototypes
 Display* /* display */,
 Window /* window */,
 int /* count */,
 XEventClass* /* events */,
 int /* mode */
#endif
);

extern XEventClass *XGetDeviceDontPropagateList(
#if NeedFunctionPrototypes
 Display* /* display */,
 Window /* window */,
 int* /* count */
#endif
);

extern Status XSendExtensionEvent(
#if NeedFunctionPrototypes
 Display* /* display */,
 XDevice* /* device */,
 Window /* dest */,
 Bool /* prop */,
 int /* count */,
 XEventClass* /* list */,
 XEvent* /* event */
#endif
);

extern XDeviceTimeCoord *XGetDeviceMotionEvents(
#if NeedFunctionPrototypes
 Display* /* display */,
 XDevice* /* device */,
 Time /* start */,
 Time /* stop */,
 int* /* nEvents */,
 int* /* mode */,
 int* /* axis_count */
#endif
);

extern int XFreeDeviceMotionEvents(
#if NeedFunctionPrototypes
 XDeviceTimeCoord* /* events */
#endif
);

extern int XFreeDeviceControl(
#if NeedFunctionPrototypes
 XDeviceControl* /* control */

Input Extension

69

#endif
);

_XFUNCPROTOEND

#endif /* _XINPUT_H_ */

/* Definitions used by the server, library and client */

#ifndef _XI_H_

#define _XI_H_

#define sz_xGetExtensionVersionReq 8
#define sz_xGetExtensionVersionReply 32
#define sz_xListInputDevicesReq 4
#define sz_xListInputDevicesReply 32
#define sz_xOpenDeviceReq 8
#define sz_xOpenDeviceReply 32
#define sz_xCloseDeviceReq 8
#define sz_xSetDeviceModeReq 8
#define sz_xSetDeviceModeReply 32
#define sz_xSelectExtensionEventReq 12
#define sz_xGetSelectedExtensionEventsReq 8
#define sz_xGetSelectedExtensionEventsReply 32
#define sz_xChangeDeviceDontPropagateListReq 12
#define sz_xGetDeviceDontPropagateListReq 8
#define sz_xGetDeviceDontPropagateListReply 32
#define sz_xGetDeviceMotionEventsReq 16
#define sz_xGetDeviceMotionEventsReply 32
#define sz_xChangeKeyboardDeviceReq 8
#define sz_xChangeKeyboardDeviceReply 32
#define sz_xChangePointerDeviceReq 8
#define sz_xChangePointerDeviceReply 32
#define sz_xGrabDeviceReq 20
#define sz_xGrabDeviceReply 32
#define sz_xUngrabDeviceReq 12
#define sz_xGrabDeviceKeyReq 20
#define sz_xGrabDeviceKeyReply 32
#define sz_xUngrabDeviceKeyReq 16
#define sz_xGrabDeviceButtonReq 20
#define sz_xGrabDeviceButtonReply 32
#define sz_xUngrabDeviceButtonReq 16
#define sz_xAllowDeviceEventsReq 12
#define sz_xGetDeviceFocusReq 8
#define sz_xGetDeviceFocusReply 32
#define sz_xSetDeviceFocusReq 16
#define sz_xGetFeedbackControlReq 8
#define sz_xGetFeedbackControlReply 32
#define sz_xChangeFeedbackControlReq 12
#define sz_xGetDeviceKeyMappingReq 8
#define sz_xGetDeviceKeyMappingReply 32
#define sz_xChangeDeviceKeyMappingReq 8
#define sz_xGetDeviceModifierMappingReq 8

Input Extension

70

#define sz_xSetDeviceModifierMappingReq 8
#define sz_xSetDeviceModifierMappingReply 32
#define sz_xGetDeviceButtonMappingReq 8
#define sz_xGetDeviceButtonMappingReply 32
#define sz_xSetDeviceButtonMappingReq 8
#define sz_xSetDeviceButtonMappingReply 32
#define sz_xQueryDeviceStateReq 8
#define sz_xQueryDeviceStateReply 32
#define sz_xSendExtensionEventReq 16
#define sz_xDeviceBellReq 8
#define sz_xSetDeviceValuatorsReq 8
#define sz_xSetDeviceValuatorsReply 32
#define sz_xGetDeviceControlReq 8
#define sz_xGetDeviceControlReply 32
#define sz_xChangeDeviceControlReq 8
#define sz_xChangeDeviceControlReply 32

#define INAME "XInputExtension"

#define XI_KEYBOARD "KEYBOARD"
#define XI_MOUSE "MOUSE"
#define XI_TABLET "TABLET"
#define XI_TOUCHSCREEN "TOUCHSCREEN"
#define XI_TOUCHPAD "TOUCHPAD"
#define XI_BARCODE "BARCODE"
#define XI_BUTTONBOX "BUTTONBOX"
#define XI_KNOB_BOX "KNOB_BOX"
#define XI_ONE_KNOB "ONE_KNOB"
#define XI_NINE_KNOB "NINE_KNOB"
#define XI_TRACKBALL "TRACKBALL"
#define XI_QUADRATURE "QUADRATURE"
#define XI_ID_MODULE "ID_MODULE"
#define XI_SPACEBALL "SPACEBALL"
#define XI_DATAGLOVE "DATAGLOVE"
#define XI_EYETRACKER "EYETRACKER"
#define XI_CURSORKEYS "CURSORKEYS"
#define XI_FOOTMOUSE "FOOTMOUSE"

#define Dont_Check 0
#define XInput_Initial_Release 1
#define XInput_Add_XDeviceBell 2
#define XInput_Add_XSetDeviceValuators 3
#define XInput_Add_XChangeDeviceControl 4

#define XI_Absent 0
#define XI_Present 1

#define XI_Initial_Release_Major 1
#define XI_Initial_Release_Minor 0

#define XI_Add_XDeviceBell_Major 1
#define XI_Add_XDeviceBell_Minor 1

#define XI_Add_XSetDeviceValuators_Major 1

Input Extension

71

#define XI_Add_XSetDeviceValuators_Minor 2

#define XI_Add_XChangeDeviceControl_Major 1
#define XI_Add_XChangeDeviceControl_Minor 3

#define DEVICE_RESOLUTION 1

#define NoSuchExtension 1

#define COUNT 0
#define CREATE 1

#define NewPointer 0
#define NewKeyboard 1

#define XPOINTER 0
#define XKEYBOARD 1

#define UseXKeyboard 0xFF

#define IsXPointer 0
#define IsXKeyboard 1
#define IsXExtensionDevice 2

#define AsyncThisDevice 0
#define SyncThisDevice 1
#define ReplayThisDevice 2
#define AsyncOtherDevices 3
#define AsyncAll 4
#define SyncAll 5

#define FollowKeyboard 3
#define RevertToFollowKeyboard 3

#define DvAccelNum (1L << 0)
#define DvAccelDenom (1L << 1)
#define DvThreshold (1L << 2)

#define DvKeyClickPercent (1L<<0)
#define DvPercent (1L<<1)
#define DvPitch (1L<<2)
#define DvDuration (1L<<3)
#define DvLed (1L<<4)
#define DvLedMode (1L<<5)
#define DvKey (1L<<6)
#define DvAutoRepeatMode (1L<<7)

#define DvString (1L << 0)

#define DvInteger (1L << 0)

#define DeviceMode (1L << 0)
#define Relative 0
#define Absolute 1

Input Extension

72

#define ProximityState (1L << 1)
#define InProximity (0L << 1)
#define OutOfProximity (1L << 1)

#define AddToList 0
#define DeleteFromList 1

#define KeyClass 0
#define ButtonClass 1
#define ValuatorClass 2
#define FeedbackClass 3
#define ProximityClass 4
#define FocusClass 5
#define OtherClass 6

#define KbdFeedbackClass 0
#define PtrFeedbackClass 1
#define StringFeedbackClass 2
#define IntegerFeedbackClass 3
#define LedFeedbackClass 4
#define BellFeedbackClass 5

#define _devicePointerMotionHint 0
#define _deviceButton1Motion 1
#define _deviceButton2Motion 2
#define _deviceButton3Motion 3
#define _deviceButton4Motion 4
#define _deviceButton5Motion 5
#define _deviceButtonMotion 6
#define _deviceButtonGrab 7
#define _deviceOwnerGrabButton 8
#define _noExtensionEvent 9

#define XI_BadDevice 0
#define XI_BadEvent 1
#define XI_BadMode 2
#define XI_DeviceBusy 3
#define XI_BadClass 4

typedef unsigned long XEventClass;

/***
 *
 * Extension version structure.
 *
 */

typedef struct {
 int present;
 short major_version;
 short minor_version;
} XExtensionVersion;

Input Extension

73

#endif /* _XI_H_ */

74

Appendix A. Input Extension Protocol
Encoding

Syntactic Conventions

All numbers are in decimal, unless prefixed with #x, in which case they are in hexadecimal (base 16).

The general syntax used to describe requests, replies, errors, events, and compound types is:

NameofThing
 encode-form
 ...
 encode-form

Each encode-form describes a single component.

For components described in the protocol as:

name: TYPE

the encode-form is:

N TYPE name

N is the number of bytes occupied in the data stream, and TYPE is the interpretation of those bytes. For
example,

depth: CARD8

becomes:

1 CARD8 depth

For components with a static numeric value the encode-form is:

N value name

The value is always interpreted as an N-byte unsigned integer. For example, the first two bytes of a Window
error are always zero (indicating an error in general) and three (indicating the Window error in particular):

Input Extension Protocol Encoding

75

1 0 Error
1 3 code

For components described in the protocol as:

name: {Name1, ..., NameI}

the encode-form is:

N name
 value1 Name1
 ...
 valueI NameI

The value is always interpreted as an N-byte unsigned integer. Note that the size of N is sometimes larger
than that strictly required to encode the values. For example:

class: {InputOutput, InputOnly, CopyFromParent}

becomes:

2 class
 0 CopyFromParent
 1 InputOutput
 2 InputOnly

For components described in the protocol as:

NAME: TYPE or Alternative1 ... or AlternativeI

the encode-form is:

N TYPE NAME
 value1 Alternative1
 ...
 valueI AlternativeI

The alternative values are guaranteed not to conflict with the encoding of TYPE. For example:

destination: WINDOW or PointerWindow or InputFocus

becomes:

Input Extension Protocol Encoding

76

4 WINDOW destination
 0 PointerWindow
 1 InputFocus

For components described in the protocol as:

value-mask: BITMASK

the encode-form is:

N BITMASK value-mask
 mask1 mask-name1
 ...
 maskI mask-nameI

The individual bits in the mask are specified and named, and N is 2 or 4. The most-significant bit in a
BITMASK is reserved for use in defining chained (multiword) bitmasks, as extensions augment existing
core requests. The precise interpretation of this bit is not yet defined here, although a probable mechanism
is that a 1-bit indicates that another N bytes of bitmask follows, with bits within the overall mask still
interpreted from least-significant to most-significant with an N-byte unit, with N-byte units interpreted in
stream order, and with the overall mask being byte-swapped in individual N-byte units.

For LISTofVALUE encodings, the request is followed by a section of the form:

VALUEs
 encode-form
 ...
 encode-form

listing an encode-form for each VALUE. The NAME in each encode-form keys to the corresponding
BITMASK bit. The encoding of a VALUE always occupies four bytes, but the number of bytes specified
in the encoding-form indicates how many of the least-significant bytes are actually used; the remaining
bytes are unused and their values do not matter.

In various cases, the number of bytes occupied by a component will be specified by a lowercase single-
letter variable name instead of a specific numeric value, and often some other component will have its
value specified as a simple numeric expression involving these variables. Components specified with such
expressions are always interpreted as unsigned integers. The scope of such variables is always just the
enclosing request, reply, error, event, or compound type structure. For example:

2 3+n request length

Input Extension Protocol Encoding

77

4n LISTofPOINT points

For unused bytes (the values of the bytes are undefined and do not matter), the encode-form is:

N unused

If the number of unused bytes is variable, the encode-form typically is:

p unused, p=pad(E)

where E is some expression, and pad(E) is the number of bytes needed to round E up to a multiple of four.

pad(E) = (4 - (E mod 4)) mod 4

Common Types

LISTofFOO

• In this document the LISTof notation strictly means some number of repetitions of the FOO encoding;
the actual length of the list is encoded elsewhere.

SETofFOO

• A set is always represented by a bitmask, with a 1-bit indicating presence in the set.

BITMASK: CARD32

WINDOW: CARD32

BYTE: 8-bit value

INT8: 8-bit signed integer

INT16: 16-bit signed integer

INT32: 32-bit signed integer

CARD8: 8-bit unsigned integer

CARD16: 16-bit unsigned integer

CARD32: 32-bit unsigned integer

TIMESTAMP: CARD32

EVENTCLASS: CARD32

Input Extension Protocol Encoding

78

INPUTCLASS
 0 KeyClass
 1 ButtonClass
 2 ValuatorClass
 3 FeedbackClass
 4 ProximityClass
 5 FocusClass
 6 OtherClass

INPUTCLASS
 0 KbdFeedbackClass
 1 PtrFeedbackClass
 2 StringFeedbackClass
 3 IntegerFeedbackClass
 4 LedFeedbackClass
 5 BellFeedbackClass

INPUTINFO
 0 KEYINFO
 1 BUTTONINFO
 2 VALUATORINFO

DEVICEMODE
 0 Relative
 1 Absolute

PROXIMITYSTATE
 0 InProximity
 1 OutOfProximity

BOOL
 0 False
 1 True

KEYSYM: CARD32

KEYCODE: CARD8

BUTTON: CARD8

Input Extension Protocol Encoding

79

SETofKEYBUTMASK
 #x0001 Shift
 #x0002 Lock
 #x0004 Control
 #x0008 Mod1
 #x0010 Mod2
 #x0020 Mod3
 #x0040 Mod4
 #x0080 Mod5
 #x0100 Button1
 #x0200 Button2
 #x0400 Button3
 #x0800 Button4
 #x1000 Button5
 #xe000 unused but must be zero

SETofKEYMASK
 encodings are the same as for SETofKEYBUTMASK, except with
 #xff00 unused but must be zero

STRING8: LISTofCARD8

STR
 1 n length of name in bytes
 n STRING8 name

Errors

Request
 1 0 Error
 1 1 code
 2 CARD16 sequence number
 4 unused
 2 CARD16 minor opcode
 1 CARD8 major opcode
 21 unused

Value
 1 0 Error
 1 2 code

Input Extension Protocol Encoding

80

 2 CARD16 sequence number
 4 <32-bits> bad value
 2 CARD16 minor opcode
 1 CARD8 major opcode
 21 unused

Window
 1 0 Error
 1 3 code
 2 CARD16 sequence number
 4 CARD32 bad resource id
 2 CARD16 minor opcode
 1 CARD8 major opcode
 21 unused

Match
 1 0 Error
 1 8 code
 2 CARD16 sequence number
 4 unused
 2 CARD16 minor opcode
 1 CARD8 major opcode
 21 unused

Access
 1 0 Error
 1 10 code
 2 CARD16 sequence number
 4 unused
 2 CARD16 minor opcode
 1 CARD8 major opcode
 21 unused

Alloc
 1 0 Error
 1 11 code
 2 CARD16 sequence number
 4 unused
 2 CARD16 minor opcode
 1 CARD8 major opcode
 21 unused

Input Extension Protocol Encoding

81

Name
 1 0 Error
 1 15 code
 2 CARD16 sequence number
 4 unused
 2 CARD16 minor opcode
 1 CARD8 major opcode
 21 unused

Device
 1 0 Error
 1 CARD8 code
 2 CARD16 sequence number
 4 unused
 2 CARD16 minor opcode
 1 CARD8 major opcode
 21 unused

Event
 1 0 Error
 1 CARD8 code
 2 CARD16 sequence number
 4 unused
 2 CARD16 minor opcode
 1 CARD8 major opcode
 21 unused

Mode
 1 0 Error
 1 CARD8 code
 2 CARD16 sequence number
 4 unused
 2 CARD16 minor opcode
 1 CARD8 major opcode
 21 unused

Class
 1 0 Error
 1 CARD8 code
 2 CARD16 sequence number
 4 unused

Input Extension Protocol Encoding

82

 2 CARD16 minor opcode
 1 CARD8 major opcode
 21 unused

Keyboards

KEYCODE values are always greater than 7 (and less than 256).

KEYSYM values with the bit #x10000000 set are reserved as vendor-specific.

The names and encodings of the standard KEYSYM values are contained in appendix F.

Pointers

BUTTON values are numbered starting with one.

Requests

GetExtensionVersion
 1 CARD8 input extension opcode
 1 1 GetExtensionVersion opcode
 2 2+(n+p)/4 request length
 2 n length of name
 2 unused
 n STRING8 name
 p unused, p=pad(n)

 =>
 1 1 Reply
 1 1 GetExtensionVersion opcode
 2 CARD16 sequence number
 4 0 reply length
 2 CARD16 major version
 2 CARD16 minor version
 1 BOOL present
 19 unused

ListInputDevices
 1 CARD8 input extension opcode
 1 2 ListInputDevices opcode
 2 1 request length

 =>
 1 1 Reply

Input Extension Protocol Encoding

83

 1 2 ListInputDevices opcode
 2 CARD16 sequence number
 4 (n+p)/4 reply length
 1 CARD8 number of input devices
 23 unused
 n LISTofDEVICEINFO info for each input device
 p unused, p=pad(n)

 DEVICEINFO
 4 CARD32 device type
 1 CARD8 device id
 1 CARD8 number of input classes this device reports
 1 CARD8 device use
 0 IsXPointer
 1 IsXKeyboard
 2 IsXExtensionDevice
 1 unused
 n LISTofINPUTINFO input info for each input class
 m STR name
 p unused, p=pad(m)

 INPUTINFO KEYINFO or BUTTONINFO or VALUATORINFO

 KEYINFO
 1 0 class id
 1 8 length
 1 KEYCODE minimum keycode
 1 KEYCODE maximum keycode
 2 CARD16 number of keys
 2 unused

BUTTONINFO
 1 1 class id
 1 4 length
 2 CARD16 number of buttons

VALUATORINFO
 1 2 class id
 1 8+12n length
 1 n number of axes

Input Extension Protocol Encoding

84

 1 SETofDEVICEMODE mode
 4 CARD32 size of motion buffer
 12n LISTofAXISINFO valuator limits

AXISINFO
 4 CARD32 resolution
 4 CARD32 minimum value
 4 CARD32 maximum value

OpenDevice
 1 CARD8 input extension opcode
 1 3 OpenDevice opcode
 2 2 request length
 1 CARD8 device id
 3 unused

 =>
 1 1 Reply
 1 3 OpenDevice opcode
 2 CARD16 sequence number
 4 (n+p)/4 reply length
 1 CARD8 number of input classes
 23 unused
 n LISTofINPUTCLASSINFO input class information
 p unused, p=pad(n)

 INPUTCLASSINFO
 1 CARD8 input class id
 0 KEY
 1 BUTTON
 2 VALUATOR
 3 FEEDBACK
 4 PROXIMITY
 5 FOCUS
 6 OTHER
 1 CARD8 event type base code for this class

CloseDevice
 1 CARD8 input extension opcode
 1 4 CloseDevice opcode

Input Extension Protocol Encoding

85

 2 2 request length
 1 CARD8 device id
 3 unused

SetDeviceMode
 1 CARD8 input extension opcode
 1 5 SetDeviceMode opcode
 2 2 request length
 1 CARD8 device id
 1 CARD8 mode
 2 unused

 =>
 1 1 Reply
 1 5 SetDeviceMode opcode
 2 CARD16 sequence number
 4 0 reply length
 1 CARD8 status
 0 Success
 1 AlreadyGrabbed
 3 + first_error DeviceBusy
 23 unused

SelectExtensionEvent
 1 CARD8 input extension opcode
 1 6 SelectExtensionEvent opcode
 2 3+n request length
 4 Window event window
 2 CARD16 count
 2 unused
 4n LISTofEVENTCLASS desired events

GetSelectedExtensionEvents
 1 CARD8 input extension opcode
 1 7 GetSelectedExtensionEvents opcode
 2 2 request length
 4 Window event window

 =>
 1 1 Reply

Input Extension Protocol Encoding

86

 1 7 GetSelecteExtensionEvents opcode
 2 CARD16 sequence number
 4 n + m reply length
 2 n this client count
 2 m all clients count
 20 unused
 4n LISTofEVENTCLASS this client list
 4m LISTofEVENTCLASS all clients list

ChangeDeviceDontPropagateList
 1 CARD8 input extension opcode
 1 8 ChangeDeviceDontPropagateList opcode
 2 3+n request length
 4 Window event window
 2 n count of events
 1 mode
 0 AddToList
 1 DeleteFromList
 1 unused
 4n LISTofEVENTCLASS desired events

GetDeviceDontPropagateList
 1 CARD8 input extension opcode
 1 9 GetDeviceDontPropagateList opcode
 2 2 request length
 4 Window event window

 =>
 1 1 Reply
 1 9 GetDeviceDontPropagateList opcode
 2 CARD16 sequence number
 4 n reply length
 2 n count of events
 22 unused
 4n LISTofEVENTCLASS don't propagate list

GetDeviceMotionEvents
 1 CARD8 input extension opcode
 1 10 GetDeviceMotionEvents opcode
 2 4 request length
 4 TIMESTAMP start
 0 CurrentTime
 4 TIMESTAMP stop

Input Extension Protocol Encoding

87

 0 CurrentTime
 1 CARD8 device id
 3 unused

 =>
 1 1 Reply
 1 10 GetDeviceMotionEvents opcode
 2 CARD16 sequence number
 4 (m+1)n reply length
 4 n number of DEVICETIMECOORDs in events
 1 m number of valuators per event
 1 CARD8 mode of the device
 0 Absolute
 1 Relative
 18 unused
 (4m+4)n LISTofDEVICETIMECOORD events

 DEVICETIMECOORD
 4 TIMESTAMP time
 4m LISTofINT32 valuators

ChangeKeyboardDevice
 1 CARD8 input extension opcode
 1 11 ChangeKeyboardDevice opcode
 2 2 request length
 1 CARD8 device id
 3 unused

 =>
 1 1 Reply
 1 11 ChangeKeyboardDevice opcode
 2 CARD16 sequence number
 4 0 reply length
 1 status
 0 Success
 1 AlreadyGrabbed
 2 DeviceFrozen
 23 unused

ChangePointerDevice

Input Extension Protocol Encoding

88

 1 CARD8 input extension opcode
 1 12 ChangePointerDevice opcode
 2 2 request length
 1 CARD8 x-axis
 1 CARD8 y-axis
 1 CARD8 device id
 1 unused

 =>
 1 1 Reply
 1 12 ChangePointerDevice opcode
 2 CARD16 sequence number
 4 0 reply length
 1 status
 0 Success
 1 AlreadyGrabbed
 2 DeviceFrozen
 23 unused

GrabDevice
 1 CARD8 input extension opcode
 1 13 GrabDevice opcode
 2 5+n request length
 4 WINDOW grab-window
 4 TIMESTAMP time
 0 CurrentTime
 2 n count of events
 1 this-device-mode
 0 Synchronous
 1 Asynchronous
 1 other-devices-mode
 0 Synchronous
 1 Asynchronous
 1 BOOL owner-events
 1 CARD8 device id
 2 unused
 4n LISTofEVENTCLASS event list

 =>
 1 1 Reply
 1 13 GrabDevice opcode
 2 CARD16 sequence number
 4 0 reply length
 1 status
 0 Success

Input Extension Protocol Encoding

89

 1 AlreadyGrabbed
 2 InvalidTime
 3 NotViewable
 4 Frozen
 23 unused

UngrabDevice
 1 CARD8 input extension opcode
 1 14 UngrabDevice opcode
 2 3 request length
 4 TIMESTAMP time
 0 CurrentTime
 1 CARD8 device id
 3 unused

GrabDeviceKey
 1 CARD8 input extension opcode
 1 15 GrabDeviceKey opcode
 2 5+n request length
 4 WINDOW grab-window
 2 n count of events
 2 SETofKEYMASK modifiers
 #x8000 AnyModifier
 1 CARD8 modifier device
 #x0FF UseXKeyboard
 1 CARD8 grabbed device
 1 KEYCODE key
 0 AnyKey
 1 this-device-mode
 0 Synchronous
 1 Asynchronous
 1 other-devices-mode
 0 Synchronous
 1 Asynchronous
 1 BOOL owner-events
 2 unused
 4n LISTofEVENTCLASS event list

UngrabDeviceKey
 1 CARD8 input extension opcode
 1 16 UngrabDeviceKey opcode
 2 4 request length
 4 WINDOW grab-window
 2 SETofKEYMASK modifiers
 #x8000 AnyModifier

Input Extension Protocol Encoding

90

 1 CARD8 modifier device
 #x0FF UseXKeyboard
 1 KEYCODE key
 0 AnyKey
 1 CARD8 grabbed device
 3 unused

GrabDeviceButton
 1 CARD8 input extension opcode
 1 17 GrabDeviceButton opcode
 2 5+n request length
 4 WINDOW grab-window
 1 CARD8 grabbed device
 1 CARD8 modifier device
 #x0FF UseXKeyboard
 2 n count of desired events
 2 SETofKEYMASK modifiers
 1 this-device-mode
 0 Synchronous
 1 Asynchronous
 1 other-device-mode
 0 Synchronous
 1 Asynchronous
 1 BUTTON button
 0 AnyButton
 1 BOOL owner-events
 #x8000 AnyModifier
 2 unused
 4n LISTofEVENTCLASS event list

UngrabDeviceButton
 1 CARD8 input extension opcode
 1 18 UngrabDeviceButton opcode
 2 4 request length
 4 WINDOW grab-window
 2 SETofKEYMASK modifiers
 #x8000 AnyModifier
 1 CARD8 modifier device
 #x0FF UseXKeyboard
 1 BUTTON button
 0 AnyButton
 1 CARD8 grabbed device
 3 unused

Input Extension Protocol Encoding

91

AllowDeviceEvents
 1 CARD8 input extension opcode
 1 19 AllowDeviceEvents opcode
 2 3 request length
 4 TIMESTAMP time
 0 CurrentTime
 1 mode
 0 AsyncThisDevice
 1 SyncThisDevice
 2 ReplayThisDevice
 3 AsyncOtherDevices
 4 AsyncAll
 5 SyncAll
 1 CARD8 device id
 2 unused

GetDeviceFocus
 1 CARD8 input extension opcode
 1 20 GetDeviceFocus opcode
 2 2 request length
 1 CARD8 device
 3 unused

 =>
 1 1 Reply
 1 20 GetDeviceFocus opcode
 2 CARD16 sequence number
 4 0 reply length
 4 WINDOW focus
 0 None
 1 PointerRoot
 3 FollowKeyboard
 4 TIMESTAMP focus time
 1 revert-to
 0 None
 1 PointerRoot
 2 Parent
 3 FollowKeyboard
 15 unused

SetDeviceFocus
 1 CARD8 input extension opcode
 1 21 SetDeviceFocus opcode
 2 4 request length
 4 WINDOW focus

Input Extension Protocol Encoding

92

 0 None
 1 PointerRoot
 3 FollowKeyboard
 4 TIMESTAMP time
 0 CurrentTime
 1 revert-to
 0 None
 1 PointerRoot
 2 Parent
 3 FollowKeyboard
 1 CARD8 device
 2 unused

GetFeedbackControl
 1 CARD8 input extension opcode
 1 22 GetFeedbackControl opcode
 2 2 request length
 1 CARD8 device id
 3 unused

 =>
 1 1 Reply
 1 22 GetFeedbackControl opcode
 2 CARD16 sequence number
 4 m/4 reply length
 2 n number of feedbacks supported
 22 unused
 m LISTofFEEDBACKSTATE feedbacks

 FEEDBACKSTATE KBDFEEDBACKSTATE, PTRFEEDBACKSTATE, INTEGERFEEDBACKSTATE,
 STRINGFEEDBACKSTATE, BELLFEEDBACKSTATE, or LEDFEEDBACKSTATE

 KBDFEEDBACKSTATE
 1 0 feedback class id
 1 CARD8 id of this feedback
 2 20 length
 2 CARD16 pitch
 2 CARD16 duration
 4 CARD32 led_mask
 4 CARD32 led_values
 1 global_auto_repeat
 0 Off
 1 On

Input Extension Protocol Encoding

93

 1 CARD8 click
 1 CARD8 percent
 1 unused
 32 LISTofCARD8 auto_repeats

 PTRFEEDBACKSTATE
 1 0 feedback class id
 1 CARD8 id of this feedback
 2 12 length
 2 unused
 2 CARD16 acceleration-numerator
 2 CARD16 acceleration-denominator
 2 CARD16 threshold

 INTEGERFEEDBACKSTATE
 1 0 feedback class id
 1 CARD8 id of this feedback
 2 16 length
 4 CARD32 resolution
 4 INT32 minimum value
 4 INT32 maximum value

 STRINGFEEDBACKSTATE
 1 1 feedback class id
 1 CARD8 id of this feedback
 2 4n+8 length
 2 CARD16 max_symbols
 2 n number of keysyms supported
 4n LISTofKEYSYM key symbols supported

 BELLFEEDBACKSTATE
 1 1 feedback class id
 1 CARD8 id of this feedback
 2 12 length
 1 CARD8 percent
 3 unused
 2 CARD16 pitch
 2 CARD16 duration

 LEDFEEDBACKSTATE

Input Extension Protocol Encoding

94

 1 1 feedback class id
 1 CARD8 id of this feedback
 2 12 length
 4 CARD32 led_mask
 4 BITMASK led_values
 #x0001 On
 #x0002 Off

ChangeFeedbackControl
 1 CARD8 input extension opcode
 1 23 ChangeFeedbackControl opcode
 2 3+n/4 request length
 4 BITMASK value-mask (has n bits set to 1)
 #x0001 keyclick-percent
 #x0002 bell-percent
 #x0004 bell-pitch
 #x0008 bell-duration
 #x0010 led
 #x0020 led-mode
 #x0040 key
 #x0080 auto-repeat-mode
 #x0001 string
 #x0001 integer
 #x0001 acceleration-numerator
 #x0002 acceleration-denominator
 #x0004 acceleration-threshold
 1 CARD8 device id
 1 CARD8 feedback class id
 2 unused
 n FEEDBACKCLASS

 FEEDBACKCLASS KBDFEEDBACKCTL, PTRFEEDBACKCTL, INTEGERFEEDBACKCTL,
 STRINGFEEDBACKCTL, BELLFEEDBACKCTL, or LEDFEEDBACKCTL

 KBDFEEDBACKCTL
 1 0 feedback class id
 1 CARD8 id of this feedback
 2 20 length
 1 KEYCODE key
 1 auto-repeat-mode
 0 Off
 1 On
 2 Default
 1 INT8 key-click-percent
 1 INT8 bell-percent

Input Extension Protocol Encoding

95

 2 INT16 bell-pitch
 2 INT16 bell-duration
 4 CARD32 led_mask
 4 CARD32 led_values

 PTRFEEDBACKCTL
 1 1 feedback class id
 1 CARD8 id of this feedback
 2 12 length
 2 unused
 2 INT16 numerator
 2 INT16 denominator
 2 INT16 threshold

 STRINGCTL
 1 2 feedback class id
 1 CARD8 id of this feedback
 2 4n+8 length
 2 unused
 2 n number of keysyms to display
 4n LISTofKEYSYM list of key symbols to display

 INTEGERCTL
 1 3 feedback class id
 1 CARD8 id of this feedback
 2 8 length
 4 INT32 integer to display

 LEDCTL
 1 4 feedback class id
 1 CARD8 id of this feedback
 2 12 length
 4 CARD32 led_mask
 4 BITMASK led_values
 #x0001 On
 #x0002 Off

 BELLCTL
 1 5 feedback class id
 1 CARD8 id of this feedback

Input Extension Protocol Encoding

96

 2 8 length
 1 INT8 percent
 3 unused
 2 INT16 pitch
 2 INT16 duration

GetDeviceKeyMapping
 1 CARD8 input extension opcode
 1 24 GetDeviceKeyMapping opcode
 2 2 request length
 1 CARD8 device
 1 KEYCODE first-keycode
 1 CARD8 count
 1 unused

 =>
 1 1 Reply
 1 24 GetDeviceKeyMapping opcode
 2 CARD16 sequence number
 4 nm reply length (m = count field from the request)
 1 n keysyms-per-keycode
 23 unused
 4nm LISTofKEYSYM keysyms

ChangeDeviceKeyMapping
 1 CARD8 input extension opcode
 1 25 ChangeDeviceKeyMapping opcode
 2 2+nm request length
 1 CARD8 device
 1 KEYCODE first-keycode
 1 m keysyms-per-keycode
 1 n keycode-count
 4nm LISTofKEYSYM keysyms

GetDeviceModifierMapping
 1 CARD8 input extension opcode
 1 26 GetDeviceModifierMapping opcode
 2 2 request length
 1 CARD8 device
 3 unused

Input Extension Protocol Encoding

97

 =>
 1 1 Reply
 1 26 GetDeviceModifierMapping opcode
 2 CARD16 sequence number
 4 2n reply length
 1 n keycodes-per-modifier
 23 unused
 8n LISTofKEYCODE keycodes

SetDeviceModifierMapping
 1 CARD8 input extension opcode
 1 27 SetDeviceModifier opcode
 2 2+2n request length
 1 CARD8 device
 1 n keycodes-per-modifier
 2 unused
 8n LISTofKEYCODE keycodes

 =>
 1 1 Reply
 1 27 SetDeviceModifierMapping opcode
 2 CARD16 sequence number
 4 0 reply length
 1 status
 0 Success
 1 Busy
 2 Failed
 23 unused

GetDeviceButtonMapping
 1 CARD8 input extension opcode
 1 28 GetDeviceButtonMapping opcode
 2 2 request length
 1 CARD8 device
 3 unused

 =>
 1 1 Reply
 1 28 GetDeviceButtonMapping opcode
 2 CARD16 sequence number
 4 (n+p)/4 reply length
 1 n number of elements in map list

Input Extension Protocol Encoding

98

 23 unused
 n LISTofCARD8 map
 p unused, p=pad(n)

SetDeviceButtonMapping
 1 CARD8 input extension opcode
 1 29 SetDeviceButtonMapping opcode
 2 2+(n+p)/4 request length
 1 CARD8 device
 1 n length of map
 2 unused
 n LISTofCARD8 map
 p unused, p=pad(n)

 =>
 1 1 Reply
 1 29 SetDeviceButtonMapping opcode
 2 CARD16 sequence number
 4 0 reply length
 1 status
 0 Success
 1 Busy
 23 unused

QueryDeviceState
 1 CARD8 input extension opcode
 1 30 QueryDeviceState opcode
 2 2 request length
 1 CARD8 device
 3 unused

 =>
 1 1 Reply
 1 30 QueryDeviceState opcode
 2 CARD16 sequence number
 4 m/4 reply length
 1 n number of input classes
 23 unused
 m LISTofINPUTSTATE

Input Extension Protocol Encoding

99

 INPUTSTATE KEYSTATE or BUTTONSTATE or VALUATORSTATE

 KEYSTATE
 1 CARD8 key input class id
 1 36 length
 1 CARD8 num_keys
 1 unused
 32 LISTofCARD8 status of keys

 BUTTONSTATE
 1 CARD8 button input class id
 1 36 length
 1 CARD8 num_buttons
 1 unused
 32 LISTofCARD8 status of buttons

 VALUATORSTATE
 1 CARD8 valuator input class id
 1 4n + 4 length
 1 n number of valuators
 1 mode
 #x01 DeviceMode (0 = Relative, 1 = Absolute)
 #x02 ProximityState (0 = InProximity, 1 = OutOfProximity)
 4n LISTofCARD32 status of valuators

SendExtensionEvent
 1 CARD8 input extension opcode
 1 31 SendExtensionEvent opcode
 2 4 + 8n + m request length
 4 WINDOW destination
 1 CARD8 device
 1 BOOL propagate
 2 CARD16 eventclass count
 1 CARD8 num_events
 3 unused
 32n LISTofEVENTS events to send
 4m LISTofEVENTCLASS desired events

DeviceBell
 1 CARD8 input extension opcode

Input Extension Protocol Encoding

100

 1 32 DeviceBell opcode
 2 2 request length
 1 CARD8 device id
 1 CARD8 feedback id
 1 CARD8 feedback class
 1 INT8 percent

SetDeviceValuators
 1 CARD8 input extension opcode
 1 33 SetDeviceValuators opcode
 2 2 + n request length
 1 CARD8 device id
 1 CARD8 first valuator
 1 n number of valuators
 1 unused
 4n LISTofINT32 valuator values to set

 =>
 1 1 Reply
 1 33 SetDeviceValuators opcode
 2 CARD16 sequence number
 4 0 reply length
 1 CARD8 status
 0 Success
 1 AlreadyGrabbed
 23 unused

GetDeviceControl
 1 CARD8 input extension opcode
 1 34 GetDeviceControl opcode
 2 2 request length
 2 CARD16 device control type
 1 CARD8 device id
 1 unused

 =>
 1 1 Reply
 1 34 GetDeviceControl opcode
 2 CARD16 sequence number
 4 n/4 reply length
 1 CARD8 status
 0 Success
 1 AlreadyGrabbed

Input Extension Protocol Encoding

101

 3 + first_error DeviceBusy
 23 unused
 n DEVICESTATE

DEVICESTATE DEVICERESOLUTIONSTATE

DEVICERESOLUTIONSTATE
 2 0 control type
 2 8 + 12n length
 4 n num_valuators
 4n LISTOfCARD32 resolution values
 4n LISTOfCARD32 resolution min_values
 4n LISTOfCARD32 resolution max_values

ChangeDeviceControl
 1 CARD8 input extension opcode
 1 35 ChangeDeviceControl opcode
 2 2+n/4 request length
 2 CARD16 control type
 1 CARD8 device id
 1 unused
 n DEVICECONTROL

DEVICECONTROL DEVICERESOLUTIONCTL

DEVICERESOLUTIONCTL
 2 1 control type
 2 8 + 4n length
 1 CARD8 first_valuator
 1 n num_valuators
 2 unused
 4n LISTOfCARD32 resolution values

 =>
 1 1 Reply
 1 35 ChangeDeviceControl opcode

Input Extension Protocol Encoding

102

 2 CARD16 sequence number
 4 0 reply length
 1 CARD8 status
 0 Success
 1 AlreadyGrabbed
 3 + first_error DeviceBusy
 23 unused

Events

DeviceKeyPress, DeviceKeyRelease, DeviceButtonPress, DeviceButtonRelease, ProximityIn,
ProximityOut, and DeviceStateNotify events may be followed by zero or more DeviceValuator events.
DeviceMotionNotify events will be followed by one or more DeviceValuator events.

DeviceValuator
 1 CARD8 code
 1 CARD8 device id
 2 CARD16 sequence number
 2 SETofKEYBUTMASK state
 1 n number of valuators this device reports
 1 m number of first valuator in this event
 24 LISTofINT32 valuators

DeviceKeyPress
 1 CARD8 code
 1 KEYCODE detail
 2 CARD16 sequence number
 4 TIMESTAMP time
 4 WINDOW root
 4 WINDOW event
 4 WINDOW child
 0 None
 2 INT16 root-x
 2 INT16 root-y
 2 INT16 event-x
 2 INT16 event-y
 2 SETofKEYBUTMASK state
 1 BOOL same-screen
 1 CARD8 device id
 #x80 MORE_EVENTS follow

DeviceKeyRelease
 1 CARD8 code
 1 KEYCODE detail
 2 CARD16 sequence number
 4 TIMESTAMP time

Input Extension Protocol Encoding

103

 4 WINDOW root
 4 WINDOW event
 4 WINDOW child
 0 None
 2 INT16 root-x
 2 INT16 root-y
 2 INT16 event-x
 2 INT16 event-y
 2 SETofKEYBUTMASK state
 1 BOOL same-screen
 1 CARD8 device id
 #x80 MORE_EVENTS follow

DeviceButtonPress
 1 CARD8 code
 1 BUTTON detail
 2 CARD16 sequence number
 4 TIMESTAMP time
 4 WINDOW root
 4 WINDOW event
 4 WINDOW child
 0 None
 2 INT16 root-x
 2 INT16 root-y
 2 INT16 event-x
 2 INT16 event-y
 2 SETofKEYBUTMASK state
 1 BOOL same-screen
 1 CARD8 device id
 #x80 MORE_EVENTS follow

DeviceButtonRelease
 1 CARD8 code
 1 BUTTON detail
 2 CARD16 sequence number
 4 TIMESTAMP time
 4 WINDOW root
 4 WINDOW event
 4 WINDOW child
 0 None
 2 INT16 root-x
 2 INT16 root-y
 2 INT16 event-x
 2 INT16 event-y
 2 SETofKEYBUTMASK state
 1 BOOL same-screen
 1 CARD8 device id
 #x80 MORE_EVENTS follow

Input Extension Protocol Encoding

104

DeviceMotionNotify
 1 CARD8 code
 1 detail
 0 Normal
 1 Hint
 2 CARD16 sequence number
 4 TIMESTAMP time
 4 WINDOW root
 4 WINDOW event
 4 WINDOW child
 0 None
 2 INT16 root-x
 2 INT16 root-y
 2 INT16 event-x
 2 INT16 event-y
 2 SETofKEYBUTMASK state
 1 BOOL same-screen
 1 CARD8 device id
 #x80 MORE_EVENTS follow

DeviceFocusIn
 1 CARD8 code
 1 detail
 0 Ancestor
 1 Virtual
 2 Inferior
 3 Nonlinear
 4 NonlinearVirtual
 5 Pointer
 6 PointerRoot
 7 None
 2 CARD16 sequence number
 4 TIMESTAMP time
 4 WINDOW event
 1 mode
 0 Normal
 1 Grab
 2 Ungrab
 3 WhileGrabbed
 1 CARD8 device id
 18 unused

DeviceFocusOut
 1 CARD8 code
 1 detail

Input Extension Protocol Encoding

105

 0 Ancestor
 1 Virtual
 2 Inferior
 3 Nonlinear
 4 NonlinearVirtual
 5 Pointer
 6 PointerRoot
 7 None
 2 CARD16 sequence number
 4 TIMESTAMP time
 4 WINDOW event
 1 mode
 0 Normal
 1 Grab
 2 Ungrab
 3 WhileGrabbed
 1 CARD8 device id
 18 unused

ProximityIn
 1 CARD8 code
 1 unused
 2 CARD16 sequence number
 4 TIMESTAMP time
 4 WINDOW root
 4 WINDOW event
 4 WINDOW child
 0 None
 2 INT16 root-x
 2 INT16 root-y
 2 INT16 event-x
 2 INT16 event-y
 2 SETofKEYBUTMASK state
 1 BOOL same-screen
 1 CARD8 device id
 #x80 MORE_EVENTS follow

ProximityOut
 1 CARD8 code
 1 unused
 2 CARD16 sequence number
 4 TIMESTAMP time
 4 WINDOW root
 4 WINDOW event
 4 WINDOW child
 0 None
 2 INT16 root-x
 2 INT16 root-y

Input Extension Protocol Encoding

106

 2 INT16 event-x
 2 INT16 event-y
 2 SETofKEYBUTMASK state
 1 BOOL same-screen
 1 CARD8 device id
 #x80 MORE_EVENTS follow

DeviceStateNotify events may be immediately followed by zero or one DeviceKeyStateNotify and/ or
zero or more DeviceValuator events.

DeviceStateNotify
 1 CARD8 code
 1 CARD8 device id
 #x80 MORE_EVENTS follow
 2 CARD16 sequence number
 4 TIMESTAMP time
 1 CARD8 num_keys
 1 CARD8 num_buttons
 1 CARD8 num_valuators
 1 CARD8 valuator mode and input classes reported
 #x01 reporting keys
 #x02 reporting buttons
 #x04 reporting valuators
 #x40 device mode (0 = Relative, 1 = Absolute)
 #x80 proximity state (0 = InProximity, 1 = OutOfProximity)
 4 LISTofCARD8 first 32 keys (if reported)
 4 LISTofCARD8 first 32 buttons (if reported)
 12 LISTofCARD32 first 3 valuators (if reported)

DeviceKeyStateNotify
 1 CARD8 code
 1 CARD8 device id
 #x80 MORE_EVENTS follow
 2 CARD16 sequence number
 28 LISTofCARD8 state of keys 33-255

DeviceButtonStateNotify
 1 CARD8 code
 1 CARD8 device id
 #x80 MORE_EVENTS follow
 2 CARD16 sequence number
 28 LISTofCARD8 state of buttons 33-255

Input Extension Protocol Encoding

107

DeviceValuator
 1 CARD8 code
 1 CARD8 device id
 2 CARD16 sequence number
 2 SETofKEYBUTMASK state
 1 n number of valuators this device reports
 1 n number of first valuator in this event
 24 LISTofINT32 valuators

DeviceMappingNotify
 1 CARD8 code
 1 CARD8 device id
 2 CARD16 sequence number
 1 request
 0 MappingModifier
 1 MappingKeyboard
 2 MappingPointer
 1 KEYCODE first-keycode
 1 CARD8 count
 1 unused
 4 TIMESTAMP time
 20 unused

ChangeDeviceNotify
 1 CARD8 code
 1 CARD8 id of device specified on change request
 2 CARD16 sequence number
 4 TIMESTAMP time
 1 request
 0 NewPointer
 1 NewKeyboard
 23 unused

