X Nonrectangular Window
Shape Extension Library

X Consortium Standard

Keith Packard

X Nonrectangular Window Shape Extension Library: X Consortium

Standard
by Keith Packard

X Version 11, Release 6.4

Version 1.0
Copyright © 1989 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “ Software”),
to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/
or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall beincluded in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to promote the sale, use or other
dealings in this Software without prior written authorization from the X Consortium.

Table of Contents

Lo OVEIVIBIW ottt ettt ettt e n e enaa s
D L= v] o 1T o H TSP UPPPT
3. C LaNQUAZE BiNING .. .ccvvuiiiiiiiee ittt
GlOSSANY .ttt ettt et e a e

Chapter 1. Overview

This extension provides arbitrary window and border shapes within the X 11 protocol.

The restriction of rectangular windows within the X protocol is a significant limitation in the
implementation of many styles of user interface. For example, many transient windows would like to
display a“drop shadow” to givetheillusion of 3 dimensions. Asanother example, someuser interface style
guides call for buttons with rounded corners; the full simulation of a nonrectangular shape, particularly
with respect to event distribution and cursor shape, is not possible within the core X protocol. As afina
example, round clocks and nonrectangular icons are desirable visual addition to the desktop.

This extension provides mechanisms for changing the visible shape of awindow to an arbitrary, possibly
digoint, nonrectangular form. The intent of the extension is to supplement the existing semantics, not
replace them. In particular, it is desirable for clients that are unaware of the extension to still be able to
cope reasonably with shaped windows. For example, window managers should still be able to negotiate
screen real estate in rectangular pieces. Toward this end, any shape specified for a window is clipped
by the bounding rectangle for the window as specified by the window's geometry in the core protocol.
An expected convention would be that client programs expand their shape to fill the area offered by the
window manager.

Chapter 2. Description

Each window (even with no shapes specified) is defined by two regions: the bounding region and the clip
region. The bounding region is the area of the parent window that the window will occupy (including
border). Theclip region isthe subset of the bounding region that is available for subwindows and graphics.
The area between the bounding region and the clip region is defined to be the border of the window.

A nonshaped window will have a bounding region that is a rectangle spanning the window, including its
border; the clip region will be arectangle filling the inside dimensions (not including the border). In this
document, these areas are referred to as the default bounding region and the default clip region. For a
window with inside size of width by height and border width bwidth, the default bounding and clip regions
are the rectangles (relative to the window origin):

bounding.x = -bwidth

bounding.y = -bwidth

bounding.width = width + 2 * bwidth
bounding.height = height + 2 * bwidth

clipx=0
clipy=0
clip.width = width
clip.height = height

This extension allows a client to modify either or both of the bounding or clip regions by specifying new
regions that combine with the default regions. These new regions are called the client bounding region
and the client clip region. They are specified relative to the origin of the window and are always defined
by offsets relative to the window origin (that is, region adjustments are not required when the window
is moved). Three mechanisms for specifying regions are provided: alist of rectangles, a bitmap, and an
existing bounding or clip region from awindow. Thisismodel ed on the specification of regionsin graphics
contexts in the core protocol and allows a variety of different uses of the extension.

When using an existing window shape as an operand in specifying a new shape, the client region is used,
unless none has been set, in which case the default region is used instead.

The effective bounding region of awindow is defined to be the intersection of the client bounding region
with the default bounding region. Any portion of the client bounding region that is not included in the
default bounding region will not be included in the effective bounding region on the screen. This means
that window managers (or other geometry managers) used to dealing with rectangular client windowswill
be able to constrain the client to arectangular area of the screen.

Construction of the effective bounding region is dynamic; the client bounding region is not mutated to
obtain the effective bounding region. If a client bounding region is specified that extends beyond the
current default bounding region, and the window is later enlarged, the effective bounding region will be
enlarged to include more of the client bounding region.

The effective clip region of awindow is defined to be the intersection of the client clip region with both
the default clip region and the client bounding region. Any portion of the client clip region that is not
included in both the default clip region and the client bounding region will not beincluded in the effective
clip region on the screen.

Construction of the effective clip region is dynamic; the client clip region is not mutated to obtain the
effective clip region. If aclient clip region is specified that extends beyond the current default clip region
and thewindow or itsbounding regionislater enlarged, the effective clip region will be enlarged to include
more of the client clip region if it isincluded in the effective bounding region.

Description

The border of a window is defined to be the difference between the effective bounding region and the
effective clip region. If thisregion is empty, no border is displayed. If thisregion is nonempty, the border
is filled using the border-tile or border-pixel of the window as specified in the core protocol. Note that
a window with a nonzero border width will never be able to draw beyond the default clip region of the
window. Also note that a zero border width does not prevent a window from having a border, since the
clip shape can still be made smaller than the bounding shape.

All output to thewindow and visible regions of any subwindowswill be clipped to the effective clip region.
The server must not retain window contents beyond the effective bounding region with backing store. The
window's origin (for graphics operations, background tiling, and subwindow placement) is not affected by
the existence of abounding region or clip region.

Areasthat are inside the default bounding region but outside the effective bounding region are not part of
the window; these areas of the screen will be occupied by other windows. Input events that occur within
the default bounding region but outside the effective bounding region will be delivered as if the window
was not occluding the event position. Events that occur in a nonrectangular border of a window will be
delivered to that window, just as for events that occur in anormal rectangular border.

An| nput Onl y window can have its bounding region set, but it isaMat ch error to attempt to set aclip
regionon an | nput Onl y window or to specify its clip region as a source to arequest in this extension.

The server must accept changes to the clip region of aroot window, but the server is permitted to ignore
requested changesto the bounding region of aroot window. If the server accepts bounding region changes,
the contents of the screen outside the bounding region are implementation dependent.

Chapter 3. C Language Binding

The C functions provide direct access to the protocol and add no additional semantics.

The include file for this extension is <X11/extensions/shape.h>. The defined shape kinds are
ShapeBoundi ng and ShapeC i p The defined region operations are ShapeSet ShapeUni on
Shapel nt er sect ShapeSubtract and Shapel nvert.

Bool XShapeQuer yExtension(*di splay, *event_base, *error_base);

XShapeQuer yExt ensi on returns Tr ue if the specified display supports the SHAPE extension else
Fal se If the extension is supported, *event_base is set to the event number for ShapeNot i fy events
and *error_base would be set to the error number for the first error for this extension. Because no errors
are defined for this version of the extension, the value returned here is not defined (nor useful).

St at us XShapeQueryVersi on(*di splay, *major_version, *mnor_version);

If the extension is supported, XShapeQuer yVer si on setsthe magjor and minor version numbers of the
extension supported by the display and returns a nonzero value. Otherwise, the arguments are not set and
zero isreturned.

XShapeConmbi neRegi on(*di spl ay, dest, dest _ki nd, x_of f, y_off,
regi on, op, *region);

XShapeConbi neRegi on converts the specified region into a list of rectangles and calls
XShapeComnbi neRect angl es

XShapeConbi neRect angl es(*di splay, dest, dest_kind, x_off, y_off,
*rectangles, n_rects, op, ordering);

If the extension is supported, XShapeConbi neRect angl es performs a ShapeRect angl es
operation; otherwise, the request isignored.

XShapeCombi neMask(*di splay, dest, dest_kind, x_off, vy off, src,
op) ;

If the extension is supported, XShapeConbi neMask performsaShapeMask operation; otherwise, the
request isignored.

XShapeCombi neShape(*display, dest, dest_kind, x off, vy off, src,
src_kind, op);

If the extension is supported, XShapeConbi neShape performs a ShapeConbi ne operation;
otherwise, the request isignored.

XShapeO f set Shape(di spl ay, dest, dest_kind, x_off, y off);

If the extension is supported, XShape f set Shape perfformsaShape f set operation; otherwise,
the request isignored.

Status XShapeQueryExtents(*di spl ay, Wi ndow, *boundi ng_shaped,
*x_boundi ng, *y_bounding, *w bounding, *h bounding, *clip_shaped,
*x_clip, *y_clip, *wclip, *h_clip);

If the extension is supported, XShapeQuer yExt ent s sets x_bounding, y_bounding, w_bounding,
h_bounding to the extents of the bounding shape and sets x_clip, y_clip, w_clip, h_clip to the extents of
the clip shape. For unspecified client regions, the extents of the corresponding default region are used.

C Language Binding

If the extension is supported, a nonzero value is returned; otherwise, zero is returned.
XShapeSel ect I nput (*di splay, w ndow, mask);

To makethisextension more compatiblewith other interfaces, although only one event type can be selected
via the extension, XShapeSel ect | nput provides a general mechanism similar to the standard Xlib
binding for window events. A mask value has been defined, ShapeNot i f yMask that is the only valid
bit in mask that may be specified. The structure for this event is defined as follows:

typedef struct {
inttype, /* of event */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* trueif this came frome a SendEvent request */
Display *display; /* Display the event was read from */
Window window; /* window of event */
intkind;, /* ShapeBounding or ShapeClip */
intx,y; /*extentsof new region*/
unsigned width, height;
Timetime, /* server timestamp when region changed */
Bool shaped; /* trueif theregion exists */
} XShapeEvent;

unsi gned | ong XShapel nput Sel ected(*di splay, w ndow);

XShapel nput Sel ect ed returns the current input mask for extension events on the specified window;
the value returned if ShapeNot i fy is selected for is ShapeNot i f yMask otherwise, it returns zero.
If the extension is not supported, it returns zero.

XRect angl e *XShapeGCet Rect angl es(*di spl ay, wi ndow, ki nd, *count,
*ordering);

If the extension is not supported, XShapeGet Rect angl es returns NULL. Otherwise, it returns a list
of rectangles that describe the region specified by kind.

Glossary

Glossary

bounding region

clip region

default bounding region
default clip region

client bounding region
client clip region

effective bounding region

effective clip region

The area of the parent window that this window will occupy. This areais divided
into two parts: the border and the interior.

The interior of the window, as a subset of the bounding region. This region
describes the area that will be painted with the window background when the
window is cleared, will contain all graphics output to the window, and will clip
any subwindows.

The rectangular area, as described by the core protocol window size, that covers
theinterior of the window and its border.

The rectangular area, as described by the core protocol window size, that covers
the interior of the window and excludes the border.

The region associated with awindow that is directly modified via this extension
when specified by ShapeBoundi ng Thisregion isused in conjunction with the
default bounding region to produce the effective bounding region.

The region associated with awindow that is directly modified via this extension
when specified by Shaped i p Thisregionisusedinconjunctionwiththe default
clip region and the client bounding region to produce the effective clip region.

The actual shape of the window on the screen, including border and interior
(but excluding the effects of overlapping windows). When awindow has a client
bounding region, the effective bounding region is the intersection of the default
bounding region and the client bounding region. Otherwise, the effective bounding
region is the same as the default bounding region.

The actual shape of theinterior of the window on the screen (excluding the effects
of overlapping windows). When a window has a client clip region or a client
bounding region, the effective clip region is the intersection of the default clip
region, the client clip region (if any) and the client bounding region (if any).
Otherwise, the effective clip region is the same as the default clip region.

