Double Buffer Extension Library

X Consortium Standard

lan Elliot

Double Buffer Extension Library: X Consortium Standard

by lan Elliot
Davide Wiggins

Version 1.0

Copyright © 1989 X Consortium, Inc and Digital Equipment Corporation
Copyright © 1992 X Consortium, Inc and Intergraph Corporation
Copyright © 1993 X Consortium, Inc and Silicon Graphics, Inc.
Copyright © 1994 X Consortium, Inc and Hewlett-Packard Company
Copyright © 1995 X Consortium, Inc and Hewlett-Packard Company

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies. Digital Equipment Corporation, Intergraph Corporation, Silicon Graphics, Hewlett-
Packard, and the X Consortium make no representations about the suitability for any purpose of theinformation in thisdocument. Thisdocumentation
isprovided "asis" without express or implied warranty.

Table of Contents

R O(0 1 01 o = PP
Window Management OPEIatiONScoeeuuuerieiieeeeii ettt e e e e e e e eenans
COmMPIEX SWBP ACHIONS ... eeeeie ettt ettt et ettt e e et e e e e e b

4. C LanQuagE BiNAINGooeeiiiieiiiiiee ettt et e e
LI 1 T PP UPTUPP

5. ACKNOWIEAGEIMENES ...ttt ettt ettt e et e e e et et e e e e aa e e eenens
B, REFEIEINCES ...t e

Chapter 1. Introduction

The Double Buffer Extension (DBE) provides a standard way to utilize double-buffering within the
framework of the X Window System. Double-buffering usestwo buffers, called front and back, which hold
images. Thefront buffer isvisibleto the user; the back buffer is not. Successive frames of an animation are
rendered into the back buffer while the previously rendered frame is displayed in the front buffer. When
anew frame is ready, the back and front buffers swap roles, making the new frame visible. Ideally, this
exchange appearsto happen instantaneously to the user and with no visual artifacts. Thus, only completely
rendered images are presented to the user, and they remain visible during the entire time it takes to render
anew frame. The result is aflicker-free animation.

Chapter 2. Goals

This extension should enable clients to:

Allocate and deallocate double-buffering for awindow.
Draw to and read from the front and back buffers associated with a window.
Swap the front and back buffers associated with a window.

Specify awide range of actions to be taken when awindow is swapped. This includes explicit, smple
swap actions (defined below), and more complex actions (for example, clearing ancillary buffers) that
can be put together within explicit "begin" and "end" requests (defined below).

Request that the front and back buffers associated with multiple double-buffered windows be swapped
simultaneously.

In addition, the extension should:

 Allow multiple clients to use double-buffering on the same window.

Support arange of implementation methods that can capitalize on existing hardware features.

* Add no new event types.

Bereasonably easy to integrate with avariety of direct graphics hardware access (DGHA) architectures.

Chapter 3. Concepts

Normal windows are created using the core CreateWindow request, which allocates a set of window
attributes and, for InputOutput windows, a front buffer, into which an image can be drawn. The contents
of this buffer will be displayed when the window isvisible.

Thisextension enables applicationsto use double-buffering with awindow. Thisinvolves creating asecond
buffer, called a back buffer, and associating one or more back buffer names (XIDs) with the window for
use when referring to (that is, drawing to or reading from) the window’s back buffer. The back buffer
nameis a DRAWABLE of type BACKBUFFER.

DBE provides arelative double-buffering model. One XID, the window, always refersto the front buffer.
One or more other X1Ds, the back buffer names, always refer to the back buffer. After a buffer swap, the
window continues to refer to the (new) front buffer, and the back buffer name continues to refer to the
(new) back buffer. Thus, applications and toolkits that want to just render to the back buffer always use
the back buffer namefor all drawing requests to the window. Portions of an application that want to render
to the front buffer always use the window XID for all drawing regquests to the window.

Multiple clients and toolkits can al use double-buffering on the same window. DBE does nhot provide a
request for querying whether awindow has double-buffering support, and if so, what the back buffer name
is. Given the asynchronous nature of the X Window System, this would cause race conditions. Instead,
DBE allows multiple back buffer names to exist for the same window; they al refer to the same physical
back buffer. The first time a back buffer name is allocated for a window, the window becomes double-
buffered and the back buffer name is associated with the window. Subsequently, the window already
is a double-buffered window, and nothing about the window changes when a new back buffer name is
allocated, except that the new back buffer name is associated with the window. The window remains
double-buffered until either the window is destroyed or until al of the back buffer names for the window
are deallocated.

In general, both the front and back buffers are treated the same. particular, here are some important
characteristics:

* Only one buffer per window can be visible at atime (the front buffer).

 Both buffers associated with a window have the same visual type, depth, width, height, and shape as
the window.

 Both buffers associated with awindow are "visible" (or "obscured") in the same way. When an Expose
event is generated for awindow, both buffers should be considered to be damaged in the exposed area.
Damage that occurs to either buffer will result in an Expose event on the window. When a double-
buffered window is exposed, both buffers are tiled with the window background, exactly as stated by
the core protocol. Even though the back buffer is not visible, terms such as obscure apply to the back
buffer as well asto the front buffer.

* It is acceptable at any time to pass a BACKBUFFER in any request, notably any core or extension
drawing request, that expects a DRAWABLE. This enables an application to draw directly into
BACKBUFFERs in the same fashion as it would draw into any other DRAWABLE.

* Itisan error (Window) to passa BACKBUFFER in a core request that expects a Window.

* A BACKBUFFER will never be sent by core X in areply, event, or error where aWindow is specified.

« If core X11 backing-store and save-under appliesto adouble-buffered window, it appliesto both buffers
equally.

Concepts

« If the core ClearArearequest is executed on a double-buffered window, the same area in both the front
and back buffersis cleared.

The effect of passing a window to a request that accepts a DRAWABLE is unchanged by this extension.
The window and front buffer are synonomous with each other. This includes obeying the Get | nage
semantics and the subwindow-mode semantics if a core graphics context is involved. Regardless of
whether the window was explicitly passedinaCGet | mage request, or implicitly referenced (that is, one of
the window’ s ancestors was passed in the request), the front (that is, visible) buffer is always referenced.
Thus, DBE-naive screen dump clientswill always get the front buffer. Get | mage on aback buffer returns
undefined image contents for any obscured regions of the back buffer that fall within the image.

Drawing to a back buffer always uses the clip region that would be used to draw to the front buffer with
a GC subwindow-mode of Cl i pBy Chi | dr en. If an ancestor of a double-buffered window is drawn to
with acore GC having a subwindow-mode of Includel nferiors, the effect on the double-buffered window’ s
back buffer depends on the depth of the double-buffered window and the ancestor. If the depths are the
same, the contents of the back buffer of the double-buffered window are not changed. If the depths are
different, the contents of the back buffer of the double-buffered window are undefined for the pixels that
thel ncl udel nf eri or s drawing touched.

DBE adds no new events. DBE does not extend the semantics of any existing events with the
exception of adding a new DRAWABLE type called BACKBUFFER. If events, replies, or errors that
contain a DRAWABLE (for example, G- aphi csExpose) are generated in response to a request, the
DRAWABLE returned will be the one specified in the request.

DBE advertises which visuals support double-buffering.

DBE does not include any timing or synchronization facilities. Applications that need such facilities
(for example, to maintain a constant frame rate) should investigate the Synchronization Extension, an X
Consortium standard.

Window Management Operations

The basic philosophy of DBE is that both buffers are treated the same by core X window management
operations.

When the core Dest r oyW ndowis executed on adouble-buffered window, both buffers associated with
the window are destroyed, and al back buffer names associated with the window are freed.

If the core Conf i gur eW ndowrequest changes the size of awindow, both buffers assume the new size.
If the window’ s size increases, the effect on the buffers depends on whether the implementation honors bit
gravity for buffers. If bit gravity isimplemented, then the contents of both buffers are moved in accordance
with the window’ s bit gravity (see the core Conf i gur eW ndow request), and the remaining areas are
tiled with the window background. If bit gravity is not implemented, then the entire unobscured region
of both buffers is tiled with the window background. In either case, Expose events are generated for
the region that is tiled with the window background. If the core GetGeometry request is executed on a
BACKBUFFER, the returned X, y, and border-width will be zero.

If the Shape extension ShapeRect angl es, ShapeMask, ShapeCombi ne, or ShapeO f set
request is executed on a double-buffered window, both buffers are reshaped to match the new window
shape. The region differenceis the following:

D = newshape # oldshape

It istiled with the window background in both buffers, and Expose events are generated for D.

Concepts

Complex Swap Actions

DBE has no explicit knowledge of ancillary buffers (for example, depth buffers or alphabuffers), and only
has alimited set of defined swap actions. Some applications may need aricher set of swap actions than
DBE provides. Some DBE implementations have knowledge of ancillary buffers, and/or can provide arich
set of swap actions. Instead of continually extending DBE toincreaseits set of swap actions, DBE provides
aflexible "idiom" mechanism. If an application’s needs are served by the defined swap actions, it should
use them; otherwise, it should use the following method of expressing acomplex swap action asan idiom.
Following this policy will ensure the best possible performance across awide variety of implementations.

Assuggested by theterm "idiom," acomplex swap action should be expressed asagroup/series of requests.
Taken together, thisgroup of requests may be combined into an atomic operation by theimplementation, in
order to maximize performance. The set of idioms actually recognized for optimization isimplementation
dependent. To help withidiom expression and interpretation, an idiom must be surrounded by two protocol
requests. DBEBegi nl di omand DBEEnd| di om Unlessthis begin-end pair surroundstheidiom, it may
not be recognized by a given implementation, and performance will suffer.

For example, if an application wantsto swap buffersfor two windows, and use core X to clear only certain
planes of the back buffers, the application would issue the following protocol reguests as agroup, and in
the following order:

» DBEBegi nl di omrequest.

» DBESwapBuf f ers request with XIDs for two windows, each of which uses a swap action of
Untouched.

» Core X Pol yFi | | Rect angl e request to the back buffer of one window.
* Core X Pol yFi | | Rect angl e request to the back buffer of the other window.
e DBEENndI di omrequest.

The DBEBegi nl di omand DBEEndI di omrequests do not perform any actions themselves. They are
treated as markers by implementations that can combine certain groups/series of requests as idioms, and
areignored by other implementations or for nonrecognized groups/series of requests. If these requests are
sent out of order, or are mismatched, no errors are sent, and the requests are executed as usual, though
performance may suffer.

An idiom need not include a DBESwapBuf f er s request. For example, if a swap action of Copi ed is
desired, but only some of the planes should be copied, a core X CopyAr ea request may be used instead
of DBESwapBuf f er s. If DBESwapBuf f er s isincluded in an idiom, it should immediately follow the
DBEBegi nl di omrequest. Also, when the DBESwapBuf f er s isincluded in an idiom, that request’s
swap action will still be valid, and if the swap action might overlap with another request, then the final
result of theidiom must be asiif the separate requests were executed serially. For example, if the specified
swap action is Unt ouched, and if a Pol yFi | | Rect angl e using a client clip rectangle is done to
thewindow’s back buffer after the DBESwapBuf f er s request, then the contents of the new back buffer
(after the idiom) will be the same asiif the idiom was not recognized by the implementation.

It ishighly recommended that Application Programming Interface (API) providers define, and application
developers use, "convenience' functions that alow client applications to call one procedure that
encapsulates common idioms. These functions will generate the DBEBegi nl di omrequest, the idiom
requests, and DBEEnd| di omrequest. Usage of these functions will ensure best possible performance
across awide variety of implementations.

Chapter 4. C Language Binding

All identi#ter The header for this extension is <X11/extensions/X dbe.h>. names provided by this header
begin with Xdbe.

Types

Thetype XdbeBackBuf f er isaDr awabl e.

The type XdbeSwapAct i on can be one of the constants XdbeUndef i ned, XdbeBackgr ound,
XdbeUnt ouched, or XdbeCopi ed.

C Functions

The C functions provide direct accessto the protocol and add no additional semantics. For complete details
ontheeffects of thesefunctions, refer to the appropriate protocol request, which can be derived by replacing
Xdbe at the start of the function name with DBE. All functions that have return type St at us will return
nonzero for success and zero for failure.

St at us XdbeQuer yExt ensi on(*dpy, *maj or _version_return,
*m nor_version_return);

XdbeQuer yExt ensi on setsmajor version return and minor version return to the major and minor DBE
protocol version supported by the server. If the DBE library is compatible with the version returned by
the server, it returns nonzero. If dpy does not support the DBE extension, or if there was an error during
communication with the server, or if the server and library protocol versions are incompatible, it returns
zero. No other Xdbe functions may be called before this function. If a client violates this rule, the effects
of all subsequent Xdbe callsthat it makes are undefined.

XdbeScreenVi sual Info *XdbeGet Vi sual I nfo(*dpy, *screen_specifiers,
*num screens) ;

XdbeGet Vi sual | nf o returnsinformation about which visual s support doubl e buffering. The argument
num_screens specifies how many elements there are in the screen specifiers list. Each drawable in
screen_specifiers designates a screen for which the supported visuals are being requested. If num_screens
is zero, information for all screensis regquested. In this case, upon return from this function, num_screens
will be set to the number of screens that were found. If an error occurs, this function returns NULL;
otherwise, it returns apointer to alist of XdbeScr eenVi sual | nf o structures of length num_screens.
The nth element in the returned list corresponds to the nth drawable in the screen_specifiers list, unless
element in the returned list corresponds to the nth screen of the server, starting with screen zero.

The XdbeScreenVisualInfo structure has the following fields:

int count number of itemsin visinfo
XdbeVisualnfo* visinfo list of visuals and depths for this screen

The XdbeVi sual | nf o structure has the following fields:

VisualD visual onevisual ID that supports double-buffering
int depth depth of visua in bits
int perflevel performance level of visual

C Language Binding

voi d XdbeFreeVi sual | nfo XdbeCet Vi sual I nfo(*vi sual _i nfo);

XdbeFreeVi sual Info frees the list of XdbeScreenVisuallnfo returned by
XdbeCet Vi sual I nf 0.

XdbeBackBuf f er XdbeAl | ocat eBackBuf f er Nane(*dpy, *wWi ndow,
swap_action);

XdbeAl | ocat eBackBuf f er Nanme returns a drawable ID used to refer to the back buffer of the
specified window. The swap_action is a hint to indicate the swap_action that will likely be used in
subsequent callsto Xdbe SwapBuf f er s. The actual swap_action used in callsto XdbeSwapBuf f er s
does not have to be the same as the swap_action passed to this function, though clients are encouraged to
provide accurate information whenever possible.

St at us XdbeDeal | ocat eBackBuf f er Nane(*dpy, buffer);

XdbeDeal | ocat eBackBuf f er Nare frees the specified drawable ID, buffer, that was obtained via
XdbeAl | ocat eBackBuf f er Nanme. The buffer must be avalid name for the back buffer of awindow,
or an XdbeBadBuf f er error results.

St at us XdbeSwapBuf fers(*dpy, *swap_info, numw ndows);

XdbeSwapBuf f er s swapsthefront and back buffersfor alist of windows. The argument num_windows
specifies how many windows are to have their buffers swapped; it is the number of elements in the
swap_info array. The argument swap_info specifies the information needed per window to do the swap.

The XdbeSwaplinfo structure has the following fields:

Window swap_window window for which to swap buffers
XdbeSwapAction swap_action swap action to use for this swap window

St at us XdbeBegi nl di on{ *dpy) ;

XdbeBegi nl di ommarks the beginning of an idiom sequence. See the section called “Complex Swap
Actions’ for acomplete discussion of idioms.

St at us XdbeEndl di om(*dpy) ;

XdbeEndl di ommarksthe end of an idiom sequence.

XdbeBackBufferAttri butes *XdbeGet BackBufferAttributes(*dpy, buffer);
XdbeCGet BackBuf f er At t ri but es returns the attributes associated with the specified buffer.

The XdbeBackBufferAttributes structure has the following fields:

Window window window that buffer belongs to
If buffer isnot avalid XdbeBackBuf f er , window is set to None.

The returned XdbeBackBuf f er At t ri but es structure can be freed with the Xlib function XFr ee.

Errors

The XdbeBuf f er Er r or structure has the following fields:

C Language Binding

int type

Display * display Display the event was read from
XdbeBackBuffer buffer resourceid

unsignedlong serid serial number of failed request
unsignedchar error code error base + XdbeBadBuf f er
unsigned char request code Major op-code of failed request
unsigned char minor code Minor op-code of failed request

Chapter 5. Acknowledgements

We wish to thank the following individuals who have contributed their time and talent toward shaping
the DBE specification:

T. Alex Chen, IBM; Peter Daifuku, Silicon Graphics, Inc.; lan Elliott, Hewlett-Packard Company; Stephen
Gildea, X Consortium, Inc.; Jim Graham, Sun; Larry Hare, AGE Logic; Jay Hersh, X Consortium, Inc.;
Daryl Huff, Sun; Deron Dann Johnson, Sun; Louis Khouw, Sun; Mark Kilgard, Silicon Graphics, Inc.; Rob
Lembree, Digital Equipment Corporation; Alan Ricker, Metheus; Michael Rosenblum, Digital Equipment
Corporation; Bob Scheifler, X Consortium, Inc.; Larry Seiler, Digital Equipment Corporation; Jeanne
Sparlin Smith, IBM; Jeff Stevenson, Hewlett-Packard Company; Walter Strand, Metheus; Ken Tidwell,
Hewlett-Packard Company; and David P. Wiggins, X Consortium, Inc.

Mark provided the impetus to start the DBE project. lan wrote the first draft of the specification. David
served as architect.

Chapter 6. References

Jeffrey Friedberg, Larry Seiler, and Jeff Vroom, "Multi-buffering Extension Specification Version 3.3."

Tim Glauert, Dave Carver, Jim Gettys, and David P. Wiggins, "X Synchronization Extension Version 3.0."

10

