X Toolkit Intrinsics — C Language Interface
X Window System

X Version 11, Release 6.8

First Revision - April, 1994

Joel McCormack

Digital Equipment Corporation
Western Software Laboratory

Paul Asente

Digital Equipment Corporation
Western Software Laboratory

Ralph R. Swick

Digital Equipment Corporation
External Research Group
MIT X Consortium

version 6 edited by Donna Coarse

X Consortium, Inc.

X Window System is a trademark of X Consortium, Inc.
Copyright © 1985, 1986, 1987, 1988, 1991, 1994 X Consortium

Permission is hereby granted, free of charge, ygarson obtaining a cgpf this software and associated documenta-
tion files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The abee mpyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-
ware.

THE SOFTWARE IS PRVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENTIN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACTTORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to pro-
mote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

Copyright © 1985, 1986, 1987, 1988, 1991, 1994 Digital Equipment Corporation, Maynard, Massachusetts.

Permission to use, cgpmodify and distribute this documentation forygurpose and without fee is hereby granted,
provided that the alve cpyright notice appears in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Digital not be used in in advertising or publicity per-
taining to distribution of the software without specific, written prior permission. Digital makes no representations
about the suitability of the software described herein fgmpanpose. ltis provided “as is'without express or implied
warranty.

Acknowledgments

The design of the X11 Intrinsics was done primarily by Joel McCormack of Digital WSL. Major
contributions to the design and implementation also were done by Charles Hayree€hiik

and Paul Asente of Digital WSL. Additional contributors to the design and/or implementation
were:

Loretta Guarino-Reid (Digital WSL) Rich Hyde (Digital WSL)

Susan Angebranndt (Digital WSL) Terry Weissman (Digital WSL)

Mary Larson (Digital UEG) Mark Manasse (Digital SRC)

Jim Gettys (Digital SRC) Leo Togiari (DigitalSDT)

Ralph Swick (Project Athena and Digital ERP) Mark Ackerman (Project Athena)
Ron Newman (Project Athena) Bob Scheifler (MIT LCS)

The contributors to the X10 toolkit also desemention. Althougtthe X11 Intrinsics present an
entirely different programming style, heorrow heavily from the implicit and explicit concepts
in the X10 toolkit.

The design and implementation of the X10 Intrinsics were done by:

Terry Weissman (Digital WSL)
Smoley Wallace (Digital WSL)
Phil Karlton (Digital WSL)
Charles Haynes (Digital WSL)
Frank Hall (HP)

The design and implementation of the X10 tootk&imple widgets were by the al@pas well as
by:

Ram Rao (Digital UEG)

Mary Larson (Digital UEG)

Mike Gancarz (Digital UEG)
Kathleen Langone (Digital UEG)

These widgets provided a checklist of requirements that we had to address in the X11 Intrinsics.

Thanks go to Al Mento of Digitad’ UEG Documentation Group for formatting and generally
improving this document and to John Ousterhout of BeyKeleextenstely reviewing early
drafts of it.

Finally, a ecial thanks to Mi& Chow, whose extense performance analysis of the X10 toolkit
provided the justification to redesign it entirely for X11.

Joel McCormack
Western Software Laboratory
Digital Equipment Corporation

March 1988

Xi

The current design of the Intrinsics has benefited greatly from the inpwerdlsgedicated
reviewers in the membership of the X Consortium. In addition to those already mentioned, the
following individuals hae cedicated significant time to suggesting imrents to the Intrin-

sics:

Steve Rtschike (Stellar) C.Doug Blewett (AT&T)

Bob Miller (HP) David Schiferl (Tektronix)

Fred Taft (HP) Michael Squires (Sequent)

Marcel Meth (A&T) Jim Fulton (MIT)

Mike Qollins (Digital) Kerry Kimbrough (Exas Instruments)
Scott McGregor (Digital) Phil Karlton (Digital)

Julian Payne (ESS) Jacques Davy (Bull)

Gabriel Beged-Dw (HP) Glennwidener (Tektronix)

Thanks go to each of them for the countless hours spent reviewing drafts and code.

Ralph R. Swick

External Research Group
Digital Equipment Corporation
MIT Project Athena

June 1988
From Release 3 to Release 4jesal nav members joined the design tealVe geatly appreciate

the thoughtful comments, suggestions, lepgliscussions, and in some cases implementation
code contributed by each of the following:

Don Alecci (AT&T) Ellis Cohen (OSF)
Donna Comerse (MIT) Clive Feather (1XI)
Nayeem Islam (Sun) Dana Laursen (HP)
Keith Packard (MIT) Chris Peterson (MIT)
Richard Probst (Sun) Larry Cable (Sun)

In Release 5, the effort to define the internationalization additions was headed by Bill McMahon
of Hewlett Packard and Frank Rojas of IBM. This has been an educational processyfof man

us, and Bill and Fran&'tutelage has carried us throug¥ania Jolobof of the OSF also contrib-

uted to the internationalization additions. The implementation efforts of Bill, Gabe Beged-Do
and especially Donna Cearse for this release are also gratefully acknowledged.

Ralph R. Swick
December 1989

and
July 1991

Xii

The Release 6 Intrinsics is a result of the collabegadforts of participants in the X Consor-
tium’s intrinsics working group. A few individuals contributed substantial design proposals, par-
ticipated in lengti discussions, reviewed final specifications, and in most cases, were also
responsible for sections of the implementation. yTtiesene recognition and thanks for their
major contributions:

Paul Asente (Adobe) Larry Cable (SunSoft)

Ellis Cohen (OSF) Daniel Dardailler (OSF)
Vania Jolobaf (OSF) KalelKeithley (X Consortium)
Courtng Loomis (HP) Douglas Rand (OSF)

Bob Scheifler (X Consortium) Ajay Vohra (SunSoft)

Many others analyzed designs, offered useful comments and suggestions, and participated in a
significant subset of the process. The following people dedeawks for their contributions:

Andy Bovingdon, Sam Chang, Chris Craig, George Erwin-Gypts&ith Edwards, Clie
FeatherStephen Gildea, Dan Hellegteve Humphrey, David Kaelbling, Jaime Lau, Rob Lem-

bree, Stuart Marks, Beth Mynatt, Tom Paquin, Chris Peterson, Kamesh Ramakrishna, Tom
Rodriguez, Jim VanGildeWill Walker, and Mike Wexer.

| am especially grateful to tev of my mlleagues: Ralph Swick for expert editorial guidance, and
Kaleb Keithlgy for leadership in the implementation and the specification work.

Donna Cowerse
X Consortium
April 1994

Xiii

About This Manual

X Toolkit Intrinsics — C Languge Interfaceis intended to be read by both application program-
mers who will use one or more of the mavidget sets built with the Intrinsics and by widget
programmers who will use the Intrinsics to build widgets for one of the widget sets. Not all the
information in this manual, hower, gplies to both audiences. That is, because the application
programmer is likely to use only a number of the Intrinsics functions in writing an application and
because the widget programmer is likely to useynmaore, if not all, of the Intrinsics functions

in building a widget, an attempt has been made to highlight those areas of information that are
deemed to be of special interest for the application program(ihés assumed the widget pro-
grammer will hae © be amiliar with all the information.) Therefore, all entries in the table of
contents that are printed lrold indicate the information that should be of special interest to an
application programmer.

It is also assumed that, as application programmers become more familiar with the concepts dis-
cussed in this manual, $hwiill find it more corwvenient to implement portions of their applica-

tions as special-purpose or custom widgets. It is possible, nonetheless, to use widgets without
knowing hav to build them.

Conventions Used in this Manual
This document uses the following e@ntions:

. Global symbols are printed ithis special bnt. These can be either function names, sym-
bols defined in include files, data types, or structure names. Arguments to functions, proce-
dures, or macros are printeditalics.

. Each function is introduced by a general discussion that distinguishes it from other func-
tions. Thefunction declaration itself follows, and each argument is specifically explained.
General discussion of the function, ifyans required, follows the arguments.

. To diminate ary ambiguity between those arguments that you pass and those that a func-
tion returns to you, the explanations for all arguments that you pass start with the word
specifiesr, in the case of multiple arguments, the wepecify The explanations for all
arguments that are returned to you start with the wetminsor, in the case of multiple
arguments, the wonetturn.

Xiv

Chapter 1

Intrinsics and Widgets

The Intrinsics are a programming library tailored to the special requirements of user interface
construction within a network wingosystem, specifically the X WindoSystem. Thdntrinsics
and a widget set malup an X Dolkit.

1.1. Intrinsics

The Intrinsics provide the base mechanism necessary to build a wide variety of interoperating
widget sets and applicationvéronments. Theéntrinsics are a layer on top of Xlib, the C Library
X Interface. Thg extend the fundamental abstractions provided by the X Wirfistem while

still remaining independent of wiparticular user interface polior syle.

The Intrinsics use object-oriented programming techniques to supply a consistent architecture for
constructing and composing user interface components, known as widgets. This allows program-
mers to extend a widget set inmneays, either by deriving mewidgets from existing ones (sub-
classing) or by writing entirely mewidgets following the established a@ntions.

When the Intrinsics were first coneed, the root of the object hierarclvas a widget class

named Core. In Release 4 of the Intrinsics, three nonwidget superclasses were agdédrabo
These superclasses are described in Chapter 12. The name of thewlasth@ooot of the

Intrinsics class hierarghis Object. Theremainder of this specification refers uniformlyntial-
getsandCoreas if thegy were the base class for all Intrinsics operations. The argument descrip-
tions for each Intrinsics procedure and Chapter 12 describe which operations are defined for the
nonwidget superclasses of Core. The reader may determine by context whether a specific refer-
ence towidgetactually means “widgetor ‘‘object”

1.2. Languages

The Intrinsics are intended to be used fay pogramming purposes. Programmers writing wid-
gets will be using most of the facilities provided by the Intrinsics to construct user interface com-
ponents from the simple, such as buttons and scrollbars, to the complex, such as control panels
and property sheets. Application programmers will use a much smaller subset of the Intrinsics
procedures in combination with one or more sets of widgets to construct and present complete
user interfaces on an X displayhe Intrinsics programming interfaces primarily intended for
application use are designed to be callable from most procedural programming languages. There-
fore, most arguments are passed by reference rather thatuby Theanterfaces primarily

intended for widget programmers are expected to be used principally from the C language. In
these cases, the usual C programming@dions apply In this specification, the terolient

refers to ap module, widget, or application that calls an Intrinsics procedure.

Applications that use the Intrinsics mechanisms must include the headeXflli&8rtrinsic.h >
and <X11/StringDefs.h>, or their eqwalent, and thg may also include X11/Xatoms.h> and
<X11/Shell.r>. In addition, widget implementations should includ€ld/IntrinsicP.h > instead
of <X11/Intrinsic.h >.

The applications must also include the additional header files for each widget clasythat the
to use (for example, X11/Xaw/Label.h> or <X11/Xaw/Scrollbar.h>). Ona ROSIX-based sys-
tem, the Intrinsics object library file is nami#alXt.a and is usually referenced as —IXt when
linking the application.

X Toolkit Intrinsics X11 Release 6.8

1.3. Procedures and Macros

All functions defined in this specification except those specifiedvioely be implemented as C
macros with aguments. Gpplications may us&undef’ to remove a nacro definition and

ensure that the actual function is referencedy guth macro will expand to a single expression
that has the same precedence as a function call and/ghsttes each of its arguments exactly
once, fully protected by parentheses, so that arbitrary expressions may be used as arguments.

The following symbols are macros that do natehfanction equialents and that may expand
their arguments in a manner other than that describad:aktCheckSubclass XtNew,
XtNumber, XtOffsetOf, XtOffset, and XtSetArg.

1.4. Wdgets

The fundamental abstraction and data type of the X Toolkit is the widget, which is a combination
of an X windav and its associated input and display semantics and which is dynamically allo-
cated and contains state information. Some widgets display information (for example, text or
graphics), and others are merely containers for other widgets (for example, a menu box). Some
widgets are output-only and do not react to pointeregbdard input, and others change their dis-
play in response to input and camdke functions that an application has attached to them.

Every widget belongs to exactly one widget class, which is statically allocated and initialized and
which contains the operations allable on widgets of that class. Logicalywidget class is the
procedures and data associated with all widgets belonging to that class. These procedures and
data can be inherited by subclasses. Physj@ailydget class is a pointer to a structure. The
contents of this structure are constant for all widgets of the widget class but will vary from class
to class. (Here, “constantheans the class structure is initialized at compile time ang ne
changed, except for a one-time class initialization and in-place compilation of resource lists,
which takes place when the first widget of the class or subclass is crdaseflijther informa-

tion, see Section 2.5.

The distribution of the declarations and code forva walget class among a public .h file for
application programmer use, ayate .h file for widget programmer use, and the implementation
.c file is described in Section 1.6. The predefined widget classes adhere to thestorsn

A widget instance is composed ofaparts:
. A data structure which contains instance-specific values.
. A class structure which contains information that is applicable to all widgets of that class.

Much of the input/output of a widget (for example, fonts, colors, sizes, or border widths) is cus-
tomizable by users.

This chapter discusses the base widget classes, Core, Composite, and Constraint, and ends with a
discussion of widget classing.

1.4.1. Coe Widgets

The Core widget class contains the definitions of fields common to all widgets. All widgets
classes are subclasses of the Core class, which is defined®@gréd@assPartand CorePart
structures.

1.4.1.1. CoeClassPart Structure
All widget classes contain the fields defined in @weClassPartstructure.

X Toolkit Intrinsics

typedef struct {

WidgetClass superclass;
String class_name;
Cardinal widget_size;
XtProc class_initialize;

XtwidgetClassProc class_part_initialize;

XtEnum class_inited;
XtInitProc initialize;
XtArgsProc initialize_hook;
XtRealizeProc realize;
XtActionList actions;
Cardinal num_actions;
XtResourcelList resources;
Cardinal num_resources;

X11 Release 6.8

See Section 1.6
See Chapter 9
See Section 1.6
See Section 1.6

See Section 1.6
See Section 1.6

See Section 2.5
See Section 2.5
See Section 2.6

See Chapter 10
See Chapter 10

See Chapter 9
See Chapter 9

XrmClass xrm_class; Ridte to resource manager

Boolean compress_motion; See Section 7.9
XtEnum compress xposure; Se&ection 7.9
Boolean compress_entenea See Section 7.9
Boolean visible_interest; See Section 7.10
XtWidgetProc destryg SeeSection 2.8
XtWidgetProc resize; See Chapter 6
XtExposeProcgose; Se&ection 7.10
XtSetValuesFunc setalues; Se&ection 9.7
XtArgsFunc set_alues_hook; SeBection 9.7
XtAlmostProc set_alues_almost; Segection 9.7
XtArgsProc get_slues_hook; SeBection 9.7
XtAcceptFocusProc accept_focus; See Section 7.3
XtVersionType ‘ersion; Se&ection 1.6
XtPointer callback_pviate; Private to callbacks
String tm_table; See Chapter 10
XtGeometryHandler query_geometry; See Chapter 6
XtStringProc display_accelerator; See Chapter 10
XtPointer etension; Se&ection 1.6

} CoreClassPart;

All widget classes hee the Core class fields as their first component. The prototyyicaddet-
Classand CoreWidgetClassare defined with only this set of fields.

typedef struct {
CoreClassPart core_class;
} WidgetClassRec, *WidgetClass, CoreClassRec, *CoreWidgetClass;

Various routines can cast widget class pointers, as needed, to specific widget class types.
The single occurrences of the class record and pointer for creating instances of Core are
In IntrinsicP.h :

extern WidgetClassRec widgetClassRec;
#define coreClassRec widgetClassRec

X Toolkit Intrinsics X11 Release 6.8

In Intrinsic.h :
| extern WidgetClass widgetClass, coreWidgetClass;

The opaque typew/idget and WidgetClassand the opaque variabledgetClassare defined

for generic actions on widgets. In order to m#iiese types opaque and ensure that the compiler
does not allev applications to access pete data, the Intrinsics use incomplete structure defini-
tions inIntrinsic.h :

L typedef struct _WidgetClassRec *WidgetClass, *CoreWidgetClass;

1.4.1.2. CoePart Structure
All widget instances contain the fields defined in @wePart structure.

| typedef struct _CorePart {

Widget self;

WidgetClass widget_class;
Widget parent;

Boolean being_destyed,

XtCallbackList destrg_callbacks;

XtPointer constraints;
Position x;

Position y;

Dimension width;
Dimension height;
Dimension border_width;
Boolean managed,;
Boolean sensie;
Boolean ancestor_sensj
XtTranslations accelerators;
Pixel border_pigl,
Pixmap border_pixmap;
WidgetList popup_list;
Cardinal num_popups;
String name;

Screen *screen;
Colormap colormap;
Window window;

Cardinal depth;

Pixel background_p#;

Described below
See Section 1.6
See Section 2.5
SeeSection 2.8
Se8ection 2.8
See Section 3.6
See Chapter 6
See Chapter 6
See Chapter 6
See Chapter 6
See Chapter 6
See Chapter 3
See Section 7.7
See Section 7.7
See Chapter 10
SeeSection 2.6
See Section 2.6
See Chapter 5
See Chapter 5
See Chapter 9
See Section 2.6
See Section 2.6
SeeSection 2.6
See Section 2.6
SeeSection 2.6

See Section 2.6
See Section 7.10
See Chapter 3

Pixmap background_pixmap;

Boolean visible;

Boolean mapped_when_managed;
} CorePart;

L

All widget instances he the Core fields as their first component. The prototypical Wpdget

X Toolkit Intrinsics X11 Release 6.8

is defined with only this set of fields.

typedef struct {
CorePart core;
} WidgetRec, *Widget, CoreRec, *CoreWidget;

Various routines can cast widget pointers, as needed, to specific widget types.

In order to mak these types opaque and ensure that the compiler does moggliications to
access pviate data, the Intrinsics use incomplete structure definitiohgtimsic.h .

typedef struct _WidgetRec *Widget, *CoreWidget;

1.4.1.3. Coe Resources

The resource names, classes, and representation types specifiecbire@lassReaesource list
are

Name Class Representation
XtNaccelerators XtCAccelerators XtRAcceleratorTable
XtNbackground XtCBackground XtRPixel
XtNbackgroundPixmap XtCPixmap XtRPixmap
XtNborderColor XtCBorderColor XtRPixel
XtNborderPixmap XtCPixmap XtRPixmap
XtNcolormap XtCColormap XtRColormap
XtNdepth XtCDepth XtRInt
XtNmappedWhenManaged XtCMappedWhenManaged XtRBoolean
XtNscreen XtCScreen XtRScreen
XtNtranslations XtCTanslations XtRranslationTable

Additional resources are defined for all widgets viadhgctClassRecandrectObjClassRec
resource lists; see Sections 12.2 and 12.3 for details.

1.4.1.4. CoePart Default Values

The default values for the Core fields, which are filled in by the Intrinsics, from the resource lists,
and by the initialize procedures, are

Field Defuwult Value

self Addresf the widget structure (may not be changed).
widget_class widget_clasargument taXtCreateWidget (may not be changed).
parent parentargument toXtCreateWidget (may not be changed).
being_destrged Rarent'sbeing_destroyedalue.

destry_callbacks NULL

constraints NULL

X 0

X Toolkit Intrinsics

X11 Release 6.8

y 0
width 0
height 0
border_width 1
managed False
sensitve True

ancestor_sensit
accelerators

logical AND of parent'sensitiveandancestor_sensitivealues.
NULL

border_pixel XtDefaultForeground

border_pixmap XtUnspecifiedPixmap

popup_list NULL

num_popups 0

name nameargument taXtCreateWidget (may not be changed).

screen Paent'sscreentop-level widget gets screen from display specifier
(may not be changed).

colormap Rrent’'scolormapvalue.

window NULL

depth Rrent'sdepth top-level widget gets root winde depth.

background_pixel XtDefaultBackground

background_pixmap XtUnspecifiedPixmap

visible True

mapped_when_man- True

aged

XtUnspecifiedPixmapis a symbolic constant guaranteed to be unequalteadia Pixmap id,

None, and ParentRelative.

1.4.2. CompositaNidgets

The Composite widget class is a subclass of the Core widget class (see Chapter 3). Composite
widgets are intended to be containers for other widgets. The additional data used by composite
widgets are defined by theompositeClassPartand CompositePart structures.

1.4.2.1. CompositeClassit Structure
In addition to the Core class fields, widgets of the Composite clasdhgafollowing class fields.

typedef struct {
XtGeometryHandler geometry_manager;
XtWidgetProc change_managed;
XtWidgetProc insert_child;
XtWidgetProc delete_child;
XtPointer etension;

} CompositeClassPart;

See Chapter 6
See Chapter 3
See Chapter 3
See Chapter 3
Se&ection 1.6

The extension record defined fGompositeClassPartwith record_typeequal toNULLQ UARK
is CompositeClassExtensionRec

X Toolkit Intrinsics X11 Release 6.8

typedef struct {
XtPointer next_gtension; Se&ection 1.6.12
XrmQuark record_type; See Section 1.6.12
long \ersion; Seé&ection 1.6.12
Cardinal record_size; See Section 1.6.12
Boolean accepts_objects; See Section 2.5.2
Boolean allavs_change_managed_set; Seetion 3.4.3

} CompositeClassExtensionRec, *CompositeClassExtension;

Composite classes¥ymthe Composite class fields immediately following the Core class fields.

typedef struct {
CoreClassPart core_class;
CompositeClassPart composite_class;

} CompositeClassRec, *CompositeWidgetClass;

The single occurrences of the class record and pointer for creating instances of Composite are
In IntrinsicP.h :

extern CompositeClassRec compositeClassRec;

In Intrinsic.h :

extern WidgetClass compositeWidgetClass;

The opaque typeSompositeWidgetand CompositeWidgetClassand the opaque variable
compositeWidgetClassare defined for generic operations on widgets whose class is Composite
or a subclass of Composite. The symbolic constant fo€CtirapositeClassExtensiorversion
identifier isXtCompositeExtensionVersion(see Section 1.6.12)ntrinsic.h uses an incom-

plete structure definition to ensure that the compiler catches attempts to acebsslata.

typedef struct _CompositeClassRec *CompositeWidgetClass;

1.4.2.2. CompositeBrt Structure

In addition to the Core instance fields, widgets of the Composite chasdheeollowing instance
fields defined in th€ompositePart structure.

X Toolkit Intrinsics X11 Release 6.8

typedef struct {
WidgetList children; See Chapter 3
Cardinal num_children; See Chapter 3
Cardinal num_slots; See Chapter 3
XtOrderProc insert_position; See Section 3.2

} CompositePart;

Composite widgets wva the Composite instance fields immediately following the Core instance
fields.

typedef struct {
CorePart core;
CompositePart composite;

} CompositeRec, *CompositeWidget;

Intrinsic.h uses an incomplete structure definition to ensure that the compiler catches attempts to
access pviate data.

typedef struct _CompositeRec *CompositeWidget;

1.4.2.3. CompositdResources

The resource names, classes, and representation types that are specifiednmptstteClass-
Recresource list are

Name Class Representation
XtNchildren XtCReadOnly XtRWidgetList

XtNinsertPosition XtClInsertPosition XtRFunction
XtNnumChildren XtCReadOnly XtRCardinal

1.4.2.4. CompositeRrt Default Values

The default values for the Composite fields, which are filled in from the Composite resource list
and by the Composite initialize procedure, are

Field Dehult Value
children NULL
num_children 0
num_slots 0

insert_position Interndlinction to insert at end

Thechildren, num_childrenandinsert_positiorfields are declared as resources; XtNinsertPosi-
tion is a settable resource, XtNchildren and XtNnumChildren may be read blyes but

X Toolkit Intrinsics X11 Release 6.8

should only be modified by the composite widget class procedures.

1.4.3. ConstraintWidgets

The Constraint widget class is a subclass of the Composite widget class (see Section 3.6). Con-
straint widgets maintain additional state data for each child; for example, client-defined con-
straints on the child’geometry The additional data used by constraint widgets are defined by the
ConstraintClassPart and ConstraintPart structures.

1.4.3.1. ConstraintClassBrt Structure

In addition to the Core and Composite class fields, widgets of the Constraint eladseHal-
lowing class fields.

typedef struct {

XtResourcelList resources; See Chapter 9
Cardinal num_resources; See Chapter 9
Cardinal constraint_size; See Section 3.6
XtInitProc initialize; See Section 3.6
XtWidgetProc destryg SeeSection 3.6
XtSetValuesFunc setalues; Se&ection 9.7.2
XtPointer extension; Se&ection 1.6

} ConstraintClassPart;

The extension record defined fGonstraintClassPart with record_typeequal toNULLQ UARK
is ConstraintClassExtensionRec

typedef struct {
XtPointer next_gtension; Se&ection 1.6.12
XrmQuark record_type; See Section 1.6.12
long \ersion; Seé&ection 1.6.12
Cardinal record_size; See Section 1.6.12
XtArgsProc get_slues_hook; SeBection 9.7.1

} ConstraintClassExtensionRec, *ConstraintClassExtension;

Constraint classes Yathe Constraint class fields immediately following the Composite class
fields.

typedef struct _ConstraintClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ConstraintClassPart constraint_class;

} ConstraintClassRec, *ConstraintWidgetClass;

The single occurrences of the class record and pointer for creating instances of Constraint are
In IntrinsicP.h :

X Toolkit Intrinsics X11 Release 6.8

extern ConstraintClassRec constraintClassRec;

In Intrinsic.h :

extern WidgetClass constraintwWidgetClass;

The opaque typeSonstraintWidget and ConstraintWidgetClass and the opaque variabt®n-
straintWidgetClass are defined for generic operations on widgets whose class is Constraint or a
subclass of Constraint. The symbolic constant forGbastraintClassExtensionversion identi-

fier is XtConstraintExtensionVersion (see Section 1.6.12)ntrinsic.h uses an incomplete
structure definition to ensure that the compiler catches attempts to aceassdata.

typedef struct _ConstraintClassRec *ConstraintWidgetClass;

1.4.3.2. ConstraintRart Structure

In addition to the Core and Composite instance fields, widgets of the Constraint etateha
following unused instance fields defined in @enstraintPart structure

typedef struct {
int empty;
} ConstraintPart;

Constraint widgets & the Constraint instance fields immediately following the Composite
instance fields.

typedef struct {
CorePart core;
CompositePart composite;
ConstraintPart constraint;

} ConstraintRec, *ConstraintWidget;

Intrinsic.h uses an incomplete structure definition to ensure that the compiler catches attempts to
access pviate data.

typedef struct _ConstraintRec *ConstraintWidget;

1.4.3.3. ConstraintResources

The constraintClassReccore_classaandconstraint_class resourcéiglds are NULL, and the
num_resourceBelds are zero; no additional resources beyond those declared by the superclasses
are defined for Constraint.

10

X Toolkit Intrinsics X11 Release 6.8

1.5. Implementation-SpecificTypes

To increase the portability of widget and application source code between different system envi-
ronments, the Intrinsics definevssal types whose precise representation is explicitly dependent
upon, and chosen pgach individual implementation of the Intrinsics.

These implementation-defined types are

Boolean A datum that contains a zero or nonzeatue. Unlesexplicitly stated, clients
should not assume that the nonzero value is equal to the symbolidTvakie

Cardinal An unsigned integer datum with a minimum range of [0..2716-1].
Dimension An unsigned integer datum with a minimum range of [0..2°16-1].
Position A signed integer datum with a minimum range of [-2715..2715-1].

XtPointer A datum large enough to contain the largest of a char*, int*, function posrte-
ture pointeror long \alue. Apointer to ag type or function, or a long value may
be cowerted to anXtPointer and back again and the result will compare equal to
the original alue. INANSI C environments it is expected thé&Pointer will be
defined as void*.

XtArgVal A datum large enough to contain AtPointer, Cardinal , Dimension, or Posi-
tion value.

XtEnum An integer datum large enough to encode at least 128 distinct valoas, which
are the symbolic valuek ue andFalse. The symbolic valueIRUE andFALSE
are also defined to be equalTioue and False, respectiely.

In addition to these specific types, the precise order of the fields within the structure declarations
for ary of the instance part recor@bjectPart, RectObjPart, CorePart, CompositePart,

ShellPart, WMShellPart, TopLevelShellPart, and ApplicationShellPart is implementation-
defined. Thesstructures may also e alditional prvate fields internal to the implementation.

The ObjectPart, RectObjPart, and CorePart structures must be defined so that alember

with the same name appears at the same off$@bjaectRec, RectObjRec, and CoreRec (Wid-
getReg. Noother relations between the offsets of &mo fields may be assumed.

1.6. Widget Classing

Thewidget_clasgield of a widget points to its widget class structure, which contains information
that is constant across all widgets of that class. As a consequence, widgets usually do not imple-
ment directly callable procedures; ratitey implement procedures, called methods, that are
available through their widget class structure. These methodsvakedhby generic procedures

that ewwelop common actions around the methods implemented by the widget class. Such proce-
dures are applicable to all widgets of that class and also to widgets whose classes are subclasses
of that class.

All widget classes are a subclass of Core and can be subclassed fauthetassing reduces the
amount of code and declarations necessary t@aaw widget class that is similar to an exist-

ing class.For example, you do not lva © describe gery resource your widget uses in AtRe-
sourcelist. Instead, you describe only the resources your widget has that its superclass does not.
Subclasses usually inherit nyaof their superclasses’ procedures (for example, the expose proce-
dure or geometry handler).

Subclassing, hower, can be taken too failf you create a subclass that inherits none of the pro-
cedures of its superclass, you should consider whether yeudasen the most appropriate
superclass.

To make good use of subclassing, widget declarations and namingaions are highly styl-
ized. Awidget consists of three files:

. A public .h file, used by client widgets or applications.

11

X Toolkit Intrinsics X11 Release 6.8

. A private .h file, used by widgets whose classes are subclasses of the widget class.
. A .c file, which implements the widget.

1.6.1. Wdget Naming Corventions

The Intrinsics provide a vehicle by which programmers can createvitigets and @anize a
collection of widgets into an applicatioifo ensure that applications need not deal with as many
styles of capitalization and spelling as the number of widget classes it uses, the following guide-
lines should be followed when writingweavidgets:

. Use the X library naming ceentions that are applicablé-or example, a record compo-
nent name is all lowercase and uses underscores (_) for compound words (for example,
background_pixmap). ype and procedure names start with uppercase and use capitaliza-
tion for compound words (for examplargList or XtSetValues).

. A resource name is spelled identically to the field name except that compound names use
capitalization rather than underscoii let the compiler catch spelling errors, each
resource name shouldyea gmbolic identifier prefixed with “XtN. For example, the
background_pixmafeld has the corresponding identifier XtNbackgroundPixmap, which is
defined as the string “backgroundPixmiapgviany predefined names are listed in
<X11/StringDefs.h>. Beforeyou irvent a n&v name, you should makaure there is not
already a name that you can use.

. A resource class string starts with a capital letter and uses capitalization for compound
names (for example,“BorderWidth' Eachresource class string should/eaa gmbolic
identifier prefixed with “XtC’ (for example, XtCBorder\With). Mary predefined classes
are listed in «11/StringDefs.h>.

. A resource representation string is spelled identically to the type name (for example,
“TranslationTablé). Eachrepresentation string shouldvesa ymbolic identifier prefixed
with “XtR’’ (for example, XtRranslation@able). Mary predefined representation types are
listed in <X11/StringDefs.h>.

. New widget classes start with a capital and use uppercase for compotasl Wsven a
new class name AbcXyz, you should derieveal names:

- Additional widget instance structure part name AbcXyzPart.

- Complete widget instance structure names AbcXyzRec and _AbcXyzRec.
- Widget instance structure pointer type name AbcXyzWidget.

- Additional class structure part name AbcXyzClassPart.

- Complete class structure names AbcXyzClassRec and _AbcXyzClassRec.
- Class structure pointer type name AbcXyzWidgetClass.

- Class structure variable abcXyzClassRec.

- Class structure pointer variable abcXyzWidgetClass.

. Action proceduresvailable to translation specifications should fallthe same naming
corventions as procedures. That is,\ttseart with a capital letteend compound names
use uppercase (for example, “Highlighgthd “NotifyClient”).

The symbolic identifiers XtN..., XtC..., and XtR... may be implemented as macros, as global
symbols, or as a mixture of thedaw The(implicit) type of the identifier isString. The pointer
value itself is not significant; clients must not assume that inequalitycoitiwntifiers implies
inequality of the resource name, class, or representation string. Clients should also note that
although global symbols permit savings in literal storage in some environmentasthantro-

duce the possibility of multiple definition conflicts when applications attempt to use indepen-
dently deeloped widgets simultaneously.

12

X Toolkit Intrinsics X11 Release 6.8

1.6.2. Wdget Subclassing in Public .h Files
The public .h file for a widget class is imported by clients and contains

A reference to the public .h file for the superclass.

Symbolic identifiers for the names and classes of tikerasources that this widget adds to
its superclass. The definitions shoulddna &ngle space between the definition name and
the value and no trailing space or comment in order to reduce the possibility of compiler
warnings from similar declarations in multiple classes.

Type declarations for gmew resource data types defined by the class.
The class record pointer variable used to create widget instances.
The C type that corresponds to widget instances of this class.

Entry points for nes class methods.

For example, the following is the public .h file for a possible implementation of a Label widget:

#ifndef LABEL_H
#define LABEL_H

/* New resources */

#define XtNjustify "justify"

#define XtNforeground "foreground"
#define XtNlabel "label”

#define XtNfont "font"

#define XtNinternalWidth "internalwidth"
#define XtNinternalHeight "internalHeight"

/* Class record pointer */
extern WidgetClass labelWidgetClass;

/* C Widget type definition */
typedef struct _LabelRec *LabelWidget;

/* New class method entry points */
extern void LabelSe@Ext();

/* Widget w */

[* String text */

extern String LabelGe&x();
/* Widget w */

#endif LABEL_H

The conditional inclusion of the text allows the application to include header files for different
widgets without being concerned thatytlalready may be included as a superclass of another
widget.

To accommodate operating systems with file name length restrictions, the name of the public .h
file is the first ten characters of the widget cldsa. example, the public .h file for the Constraint
widget class iConstraint.h.

1.6.3. Wdget Subclassing in Pwate .h Files

The private .h file for a widget is imported by widget classes that are subclasses of the widget and

contains

13

X Toolkit Intrinsics X11 Release 6.8

A reference to the public .h file for the class.
A reference to the prite .h file for the superclass.

Symbolic identifiers for aynew resource representation types defined by the class. The
definitions should ha a engle space between the definition name and the value and no
trailing space or comment.

A structure part definition for the wdields that the widget instance adds to its superclass’s
widget structure.

The complete widget instance structure definition for this widget.

A structure part definition for the wdields that this widget class adds to its superclass’s
constraint structure if the widget class is a subclass of Constraint.

The complete constraint structure definition if the widget class is a subclass of Constraint.

Type definitions for annew procedure types used by class methods declared in the widget
class part.

A structure part definition for the wdields that this widget class adds to its superclass’s
widget class structure.

The complete widget class structure definition for this widget.
The complete widget class extension structure definition for this widgey; if an
The symbolic constant identifying the class extension versiony.if an

The name of the global class structure variable containing the generic class structure for
this class.

An inherit constant for eachweprocedure in the widget class part structure.

For example, the following is the préte .h file for a possible Label widget:

#ifndef LABELP_H
#define LABELP_H

#include <X11/Label.h>

/* New representation types used by the Label widget */
#define XtRJustify "Justify"

/* New fields for the Label widget record */
typedef struct {
[* Settable resources */

Pixel foreground;

XFontStruct *font;

String label, /* text to display */

XtJustify justify;

Dimension internal_width; [* # pixels horizontal border */
Dimension internal_height; [* # pixels vertical border */

/* Data derved from resources */
GC normal_GC,;
GC gray_GC;
Pixmap gray_pixmap;
Position label_x;
Position label_y;
Dimension label width;
Dimension label_height;
Cardinal label_len;

14

X Toolkit Intrinsics X11 Release 6.8

Boolean display_sensit;
} L abelPart;

/* Full instance record declaration */
typedef struct _LabelRec {
CorePart core;
LabelPart label;
} L abelRec;

I* Types for Label class methods */
typedef void (*LabelSe@xtProc)();
/* Widget w */
[* String text */

typedef String (*LabelGe&xtProc)();
[* Widget w */

/* New fields for the Label widget class record */
typedef struct {
LabelSetE&xtProc set_text;
LabelGetExtProc get_text;
XtPointer extension;
} L abelClassPart;

/* Full class record declaration */
typedef struct _LabelClassRec {
CoreClassPart core_class;
LabelClassPart label class;
} L abelClassRec;

/* Class record variable */
extern LabelClassRec labelClassRec;

#define LabellnheritSeéki((LabelSet&xtProc)_Xtinherit)
#define LabellnheritGeekt((LabelGetExtProc)_Xtinherit)
#endif LABELP_H

To accommodate operating systems with file name length restrictions, the name ofdtee.lpri
file is the first nine characters of the widget class followed by a capiFarexample, the prate
.h file for the Constraint widget class@®nstrainP.h.

1.6.4. Wdget Subclassing in .c Files

The .c file for a widget contains the structure initializer for the class record variable, which con-
tains the following parts:

. Class information (for examplsuperclassclass_namewidget_sizeclass_initialize and
class_initedl.

. Data constants (for examplesourcesandnum_resourcesctionsandnum_actionsvisi-
ble_interestcompress_motigrcompress_exposurand versior).

. Widget operations (for examplijtialize, realize, destroy resize expose set_values
accept_focusand ary new perations specific to the widget).

15

X Toolkit Intrinsics X11 Release 6.8

Thesuperclassield points to the superclass global class record, declared in the superghiss pri
.h file. For direct subclasses of the generic core widgeperclasshould be initialized to the
address of thavidgetClassRecstructure. Thauperclass is used for class chaining operations
and for inheriting or ereloping a superclassgerations (see Sections 1.6.7, 1.6.9, and 1.6.10).

Theclass_namdield contains the text name for this class, which is used by the resource manager.
For example, the Label widget has the string “LabeMore than one widget class can share the
same text class name. This string must be permanently allocated prior to or durxegtiiere

of the class initialization procedure and must not be subsequently deallocated.

Thewidget_sizdield is the size of the corresponding widget instance structure (not the size of the
class structure).

Theversionfield indicates the toolkit implementation version number and is used for runtime
consisteng checking of the X Toolkit and widgets in an applicatidiidget writers must set it to
the implementation-defined symbolic val§g/ersion in the widget class structure initialization.
Those widget writers who belie that their widget binaries are compatible with other implemen-
tations of the Intrinsics can put the special vaftidersionDontCheck in theversionfield to
disable version checking for those widgets. If a widget needs to compile altemoale for dif-
ferent revisions of the Intrinsics interface definition, it may use the syKiBglecificationRe-
lease as ascribed in Chapter 13. Use XfVersion allows the Intrinsics implementation to rec-
ognize widget binaries that were compiled with older implementations.

Theextensionfield is for future upward compatibilityif the widget programmer adds fields to

class parts, all subclass structure layouts change, requiring complete recompiiathow

clients to aoid recompilation, an extension field at the end of each class part can point to a record
that contains anadditional class information required.

All other fields are described in their respeetiections.

The .c file also contains the declaration of the global class structure pointer variable used to create
instances of the class. The following is an abbreviated version of the .c file for a Label widget.
The resources table is described in Chapter 9.

/* Resources specific to Label */
static XtResource resources[] ={

{XtNforeground, XtCForeground, XtRPixel, sizeof(Pixel),
XtOffset(LabelWidget, label.foreground), XtRString,
XtDefaultForeground},

{XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct *),
XtOffset(LabelWidget, label.font),XtRString,
XtDefaultFont},

{XtNlabel, XtCLabel, XtRString, sizeof(String),
XtOffset(LabelWidget, label.label), XtRString, NULL},

}

/* Forward declarations of procedures */
static void Classinitialize();

static void Initialize();

static void Realize();

static void Setéxt();

static void Get&xt();

16

X Toolkit Intrinsics X11 Release 6.8

/* Class record constant */
LabelClassRec labelClassRec = {

[* core_class fields */

[* superclass */ (WidgetClass)&coreClassRec,
[* class_name */ "Label",
/* widget_size */ sizeof(LabelRec),
[* class_initialize */ Classlinitialize,
[* class_part_initialize */ NULL,
[* class_inited */ False,
[* initialize */ Initialize,
/* initialize_hook */ NULL,
/* realize */ Realize,
/* actions */ NULL,
/* num_actions */ 0,
/* resources */ resources,
[* num_resources */ XtNumber(resources),
/* xrm_class * NULLQUARK,
/* compress_motion */ True,
[* compress_xposure */ True,
[* compress_enterlea */ True,
[* visible_interest */ False,
[* destrgy */ NULL,
/* resize */ Resize,
[* expose */ Redisplay,
[* set_\alues */ SetValues,
/* set_\alues_hook * NULL,
/* set_walues_almost */ XtInheritSetValuesAlmost,
/* get_\values_hook * NULL,
/* accept_focus */ NULL,
[* version */ XtVersion,
[* callback_ofsets */ NULL,
/* tm_table */ NULL,
[* query_geometry */ XtinheritQueryGeometry
/[* display_accelerator */ NULL,
/* extension */ NULL

b

{

/* Label_class fields */

/* get_text */ Getlext,
[* set_tet */ Set’lext,
/* extension */ NULL

}

|3

/* Class record pointer */
WidgetClass labelWidgetClass = (WidgetClass) &labelClassRec;

/* New method access routines */

void LabelSet&xt(w, text)
Widget w;

17

X Toolkit Intrinsics X11 Release 6.8

String text;

LabelWidgetClass Iwc = (Label WidgetClass)XtClass(w);
XtCheckSubclass(wabelWidgetClass, NULL);
*(lwc->label_class.set_text)(viext)

[* Private procedures */

1.6.5. Wdget Class and Superclass Look Up
To dbtain the class of a widget, u¥¢Class.

WidgetClass XtClass()
Widgetw;

w Specifies the widget. Must be of class Object grsaibclass thereof.
The XtClass function returns a pointer to the widgetlass structure.

To dbtain the superclass of a widget, u@Superclass

WidgetClass XtSuperclasg(
Widgetw;

w Specifies the widget. Must be of class Object grsaibclass thereof.

The XtSuperclassfunction returns a pointer to the widgetiperclass class structure.

1.6.6. Wdget Subclass Verification
To dheck the subclass to which a widget belongs Xt&&Subclass

Boolean XtlsSubclasa(widget_clasp
Widgetw;
WidgetClassvidget_class

w Specifies the widget or object instance whose class is to beecheblustbe of
class Object or ansubclass thereof.

widget_class Specifies the widget class for which to test. MusbbjectClassor ary subclass
thereof.

The XtlsSubclassfunction returnsTr ue if the class of the specified widget is equal to or is a
subclass of the specified class. The widgeé#iss can be gmumber of subclasses down the

chain and need not be an immediate subclass of the specified class. Composite widgets that need
to restrict the class of the items ylewntain can us&tisSubclassto find out if a widget belongs

to the desired class of objects.

18

X Toolkit Intrinsics X11 Release 6.8

To test if a gven widget belongs to a subclass of an Intrinsics-defined class, the Intrinsics define
macros or functions equalent to XtlsSubclassfor each of the built-in classes. These proce-
dures areXtlsObject , XtlsRectObj, XtlsWidget, XtlIsComposite, XtlsConstraint , Xtls-

Shell, XtlsOverrideShell, XtisWMShell , XtlsVendorShell, XtlsTransientShell, XtlsTo-
pLevelShell, XtiIsApplicationShell, and XtisSessionShell

All these macros and functionsveaihe same argument description.

Boolean Xtlxclass> (w)
Widgetw;

w Specifies the widget or object instance whose class is to beecheblustbe of
class Object or ansubclass thereof.

These procedures may be faster than caMitigSubclassdirectly for the built-in classes.

To check a widges dass and to generate a debugging error messag&t@beckSubclass
defined in X11/IntrinsicP.h >:

void XtCheckSubclass(, widget_classmessge)
Widgetw;
WidgetClassvidget_class
Stringmessge

w Specifies the widget or object whose class is to be eldedklustbe of class Ob-
ject or ay subclass thereof.

widget_class Specifies the widget class for which to test. MusbbjectClassor ary subclass
thereof.

messge Specifies the message to be used.

The XtCheckSubclassmacro determines if the class of the specified widget is equal to or is a
subclass of the specified class. The widged#iss can be gmumber of subclasses down the

chain and need not be an immediate subclass of the specified class. If the specifiesl dadget’

is not a subclass{tCheckSubclassconstructs an error message from the supplied message, the
widget's ectual class, and the expected class and galisrorMsg . XtCheckSubclassshould

be used at the entry point of exported routines to ensure that the client has passed in a valid wid-
get class for the exported operation.

XtCheckSubclassis only executed when the module has been compiled with the compiler sym-
bol DEBUG defined; otherwise, it is defined as the empty string and generates no code.

1.6.7. Supeclass Chaining

While most fields in a widget class structure are self-contained, some fields are linked to their cor-
responding fields in their superclass structuk®gh a linked field, the Intrinsics access the

field’s value only after accessing its corresponding superclass value (called downward superclass
chaining) or before accessing its corresponding superclass value (called upward superclass chain-
ing). Theself-contained fields are

In all widget classes: class_name
class_initialize
widget_size
realize
visible_interest

19

X Toolkit Intrinsics X11 Release 6.8

resize

expose
accept_focus
compress_motion
compress_exposure
compress_enterleave
set values_almost
tm_table

version

allocate

deallocate

In Composite widget classes: geometry _manger
change_manged
insert_child
delete_child
accepts_objects
allows_change_mamad_set

In Constraint widget classes: constraint_size

In Shell widget classes: root_geometry_mauruger

With downward superclass chaining, theotation of an operation first accesses the field from
the Object, RectObj, and Core class structures, then from the subclass structure, and so on down
the class chain to that widgetass structure. These superclass-to-subclass fields are

class_part_initialize
get_values_hook
initialize
initialize_hook

set values
set_values_hook
resources

In addition, for subclasses of Constraint, the following fields ofabestraintClassPart and
ConstraintClassExtensionRecstructures are chained from the Constraint class down to the sub-
class:

resources

initialize

set values

get_values_hook

With upward superclass chaining, theacation of an operation first accesses the field from the
widget class structure, then from the superclass structure, and so on up the class chain to the Core,
RectObj, and Object class structures. The subclass-to-superclass fields are

destroy
actions

For subclasses of Constraint, the following field@bnstraintClassPart is chained from the
subclass up to the Constraint class:

20

X Toolkit Intrinsics X11 Release 6.8

destroy

1.6.8. Clasdnitialization: class_initialize and class_part_initialize Procedures

Many class records can be initialized completely at compile or link time. In some casegehowe
a dass may need to register type wenters or perform other sorts of once-only runtime initializa-
tion.

Because the C language does nethaitialization procedures that arevoked automatically

when a program starts up, a widget class can declare a class_initialize procedure that will be auto-
matically called exactly once by the Intrinsias class initialization procedure pointer is of type
XtProc:

typedef void (*XtProc)(void);

A widget class indicates that it has no class initialization procedure by specifying NULL in the
class_initializefield.

In addition to the class initialization that is done exactly once, some classes perform initialization
for fields in their parts of the class record. These are performed not just for the particular class,
but for subclasses as well, and are done in the sldass part initialization procedure, a pointer

to which is stored in thelass_part_initializdield. Theclass_part_initialize procedure pointer is

of type XtWidgetClassProc.

typedef void (*XtWidgetClassProc)(WidgetClass);
WidgetClassvidget_class

widget_class Points to the class structure for the class being initialized.

During class initialization, the class part initialization procedures for the class and all its super-
classes are called in superclass-to-subclass order on the class record. These proveduees ha
responsibility of doing andynamic initializations necessary to their clagsirt of the record.

The most common is the resolution ofyanherited methods defined in the claBsr example, if

a widget class C has superclasses Core, Composite, A, and B, the class record for C first is passed
to Core § dass_part_initialize procedure. This resolvey iamerited Core methods and com-

piles the textual representations of the resource list and action table that are defined in the class
record. Net, Composites dass_part_initialize procedure is called to initialize the composite part
of C’'s dass record. Finallythe class_part_initialize procedures for A, B, and C, in that cader
called. for further information, see Section 1.6.9. Classes that do not dejimewrdass fields

or that need no extra processing for them can specify NULL ioléiss_part_initializdield.

All widget classes, whether théavea dass initialization procedure or not, must start with their
class_initedield False.

The first time a widget of a class is creatétCreateWidget ensures that the widget class and
all superclasses are initialized, in superclass-to-subclass lbyd#ecking eaclelass_initedield
and, if it isFalse, by calling the class_initialize and the class_part_initialize procedures for the
class and all its superclasses. The Intrinsics then sekas® initedield to a nonzero value.

After the one-time initialization, a class structure is constant.

The following example provides the class initialization procedure for a Label class.

static void Classinitialize()

XtSetTypeCowuerter(XtRString, XtRJustifyCvtStringToJustify,
NULL, 0, XtCacheNone, NULL);

21

X Toolkit Intrinsics X11 Release 6.8

1.6.9. Initializing a Widget Class

A class is initialized when the first widget of that class grsabclass is createdlo initialize a
widget class without creating yawidgets, useXtlinitializeWidgetClass.

void XtInitializeWidgetClassgbject_clasy
WidgetClas®bject_class

object_class Specifies the object class to initializdlay be objectClass or ary subclass
thereof.

If the specified widget class is already initializ&dinitializeWidgetClass returns immediately.

If the class initialization procedure registers typeveaers, these type cuoerters are not\ail-
able until the first object of the class or subclass is creat&tmtializeWidgetClass is called
(see Section 9.6).

1.6.10. Inheritanceof Superclass Operations

A widget class is free to useyaof its superclass’slf-contained operations rather than imple-
menting its own code. The most frequently inherited operations are

expose
realize
insert_child
delete_child
geometry_manager
set_values_almost
To inherit an operatioryz specify the constanXtinherit Xyzin your class record.

Every class that declares annprocedure in its widget class part must provide for inheriting the
procedure in its class_part_initialize procedure. The chained operations declared in Core and
Constraint records are ve inherited. Vilget classes that do nothing beyond what their super-
class does specify NULL for chained procedures in their class records.

Inheriting works by comparing the value of the field with a known, special value and by copying
in the superclassvalue for that field if a match occurs. This special value, called the inheritance
constant, is usually the Intrinsics internal valuélnherit cast to the appropriate type Xtin-

herit is a procedure that issues an error message if it is actually called.

For example,CompositeP.hcontains these definitions:

#define XtinheritGeometryManager ((XtGeometryHandler) _Xtinherit)
#define XtinheritChangeManaged ((XtWidgetProc) _XtInherit)
#define XtinheritinsertChild ((XtArgsProc) _Xtinherit)

#define XtinheritDeleteChild ((XtWidgetProc) _Xtinherit)

Composites dass_part_initialize procedure begins as follows:

static void CompositeClassPartInitialize(widgetClass)
WidgetClass widgetClass;

{
CompositeWidgetClass wc = (CompositeWidgetClass)widgetClass;

22

X Toolkit Intrinsics X11 Release 6.8

CompositeWidgetClass super = (CompositeWidgetClass)wc->core_class.superclass;

if (wc->composite_class.geometry_manager == XtinheritGeometryManager) {
wc->composite_class.geometry_manager = super->composite_class.geometry_manager;

}

if (wc->composite_class.change_managed == XtinheritChangeManaged) {
wc->composite_class.change_managed = super->composite_class.change_managed;

}

Nonprocedure fields may be inherited in the same manner as procedure fields. The class may
declare apreserved value it wishes for the inheritance constant fonidietds. Theollowing
inheritance constants are defined:

For Object:
XtInheritAllocate
XtInheritDeallocate

For Core:
XtinheritRealize
XtInheritResize
XtInheritExpose
XtInheritSetValuesAlmost
XtInheritAcceptFocus
XtinheritQueryGeometry
XtInheritTranslations
XtInheritDisplayAccelerator

For Composite:
XtinheritGeometryManager
XtInheritChangeManaged
XtInheritinsertChild
XtInheritDeleteChild

For Shell:
XtInheritRootGeometryManager

1.6.11. Irvocation of Superclass Operations

A widget sometimes needs to call a superclass operation that is not cheenexample, a wid-
get’s expose procedure might call its superclasgfmseand then perform a little more work on
its ovn. For example, a Composite class with predefined managed children can implement
insert_child by first calling its superclassisert_childand then calling<tManageChild to add
the child to the managed set.

23

X Toolkit Intrinsics X11 Release 6.8

Note

A class method should not u¥¢Superclassbut should instead call the class

method of its own specific superclass directly through the superclass record. That is,
it should use its own class pointers omiyt the widges dass pointers, as the wid-

get's dass may be a subclass of the class whose implementation is being referenced.

This technique is referred to esvelopinghe superclass’gperation.

1.6.12. Clas€xtension Records

It may be necessary at times to add fields to already existing widget class structurks per-

mit this to be done without requiring recompilation of all subclasses, the last field in a class part
structure should be an extension pointéno extension fields for a classVveyet been defined,
subclasses should initialize the value of the extension pointer to NULL.

If extension fields exist, as is the case with the Composite, Constraint, and Shell classes, sub-
classes can provide values for these fields by settingxigngsionpointer for the appropriate part

in their class structure to point to a statically declared extension record containing the additional
fields. Settingheexensionfield is never mandatory; code that uses fields in the extension record
must alvays check thextensionfield and tak sosme appropriate default action if it is NULL.

In order to permit multiple subclasses and libraries to chain extension records from exémgle
sionfield, extension records should be declared as a linked list, and each extension record defini-
tion should contain the following four fields at the beginning of the structure declaration:

struct {
XtPointer next_extension;
XrmQuark record_type;
long version;
Cardinal record_size;

%

next_extension Specifies the next record in the list, or NULL.

record_type Specifies the particular structure declaration to which each extension record
instance conforms.

version Specifies a version id symbolic constant supplied by the definer of the struc-
ture.

record_size Specifies the total number of bytes allocated for the extension record.

Therecord_typefield identifies the contents of the extension record and is used by the definer of
the record to locate its particular extension record in the list.r&doed _typefield is normally

assigned the result ®rmStringToQuark for a registered string constant. The Intrinsics reserve
all record type strings beginning with theotaéharacters “XT for future standard uses. The

value NULLQ UARK may also be used by the class part owner in extension records attached to its
own dass part extension field to identify the extension record unique to that particular class.

Theversionfield is an owner-defined constant that may be used to identify binary fileswtbat ha
been compiled with alternate definitions of the remainder of the extension record data structure.
The private header file for a widget class should provide a symbolic constant for subclasses to use
to initialize this field. Theecord_sizefield value includes the four common header fields and

should normally be initialized witkizeof().

Any value stored in the class part extension field€@ipositeClassPart ConstraintClass-
Part , or ShellClassPartmust point to an extension record conforming to this definition.

24

X Toolkit Intrinsics X11 Release 6.8

The Intrinsics provide a utility function for widget writers to locate a particular class extension
record in a linked list, gen a widget class and the offset of tagensionfield in the class record.

To locate a class extension record, ¥$8etClassExtension

XtPointer XtGetClassExtensiantjject_classbyte_offsettype version record_sizé
WidgetClas®bject_class
Cardinalbyte_offset
XrmQuarktype
long version
Cardinalrecord_size

object_class Specifies the object class containing the extension list to be searched.

byte_offset Specifies the d$et in bytes from the base of the class record of xtension
field to be searched.

type Specifies the record_type of the class extension to be located.
version Specifies the minimum acceptable version of the clatension required for a
match.

record_size Specifies the minimum acceptable length of the clasmssion record required
for a match, or O.

The list of extension records at the specified offset in the specified object class will be searched
for a match on the specified type, a version greater than or equal to the specified version, and a
record size greater than or equal the specified record_size if it is noxt&etClassExtension
returns a pointer to a matching extension record or NULL if no match is found. The returned
extension record must not be modified or freed by the caller if the caller is not the extension
owner.

25

X Toolkit Intrinsics X11 Release 6.8

Chapter 2

Widget Instantiation

A hierarcly of widget instances constitutes a widget tree. The shell widget returnéthpy
pCreateShellis the root of the widget tree instance. The widgets with one or more children are
the intermediate nodes of that tree, and the widgets with no childrey bihanare the lezes o

the widget tree With the exception of pop-up children (see Chapter 5), this widget tree instance
defines the associated X Wivdtree.

Widgets can be either composite or priwdti Both kinds of widgets can contain children, but the
Intrinsics provide a set of management mechanisms for constructing and interfacing between
composite widgets, their children, and other clients.

Composite widgets, that is, members of the ctasapositeWidgetClassare containers for an
arbitrary but widget implementation-defined, collection of children, which may be instantiated by
the composite widget itself, by other clients, or by a combination of the @@mpositevidgets

also contain methods for managing the geometry (layout)yoftald widget. Under unusual cir-
cumstances, a composite widget mayehzero children, but it usually has at least one. By con-
trast, primitve widgets that contain children typically instantiate specific children of known
classes themselves and do not expect external clients to do so.venwdgets also do not ke
general geometry management methods.

In addition, the Intrinsics recuxdy perform mawy operations (for example, realization and
destruction) on composite widgets and all their children. Prienitidgets that hae dildren
must be prepared to perform the rectesiperations themselves on behalf of their children.

A widget tree is manipulated byvaeal Intrinsics functionsFor example, XtRealizeWidget tra-
verses the tree downward and recuslyi realizes all pop-up widgets and children of composite
widgets. XtDestroyWidget traverses the tree downward and destroys all pop-up widgets and
children of composite widgets. The functions that fetch and modify resourceséréhe tree
upward and determine the inheritance of resources from a véi@gegstors. XtMake-
GeometryRequesttraverses the tree up oneviband calls the geometry manager that is respon-
sible for a widget child geometry.

To facilitate upward tngersal of the widget tree, each widget has a pointer to its parent widget.
The Shell widget thaXtAppCreateShell returns has parentpointer of NULL.

To facilitate downward trgersal of the widget tree, thahildren field of each composite widget is

a pointer to an array of child widgets, which includes all normal children created, not just the sub-
set of children that are managed by the composite wgdgatimetry managerPrimitive widgets

that instantiate children are entirely responsible for all operations that require downwarshlra
below themseles. Inaddition, @ery widget has a pointer to an array of pop-up children.

2.1. Initializing the X Toolkit

Before an application can callyamtrinsics function other thaXtSetLanguageProcand
XtToolkitThreadlnitialize , it must initialize the Intrinsics by using

. XtToolkitInitialize , which initializes the Intrinsics internals

. XtCreateApplicationContext, which initializes the per-application state

. XtDisplaylnitialize or XtOpenDisplay, which initializes the per-display state
. XtAppCreateShell, which creates the root of a widget tree

Or an application can call the a@nience procedurXtOpenApplication , which combines the
functions of the preceding procedures. An application wishing to use the ANSI C locale

26

X Toolkit Intrinsics X11 Release 6.8

mechanism should caltSetLanguageProcprior to callingXtDisplaylnitialize , XtOpenDis-
play, XtOpenApplication, or XtApplnitialize .

Multiple instances of X Toolkit applications may be implemented in a single address space. Each
instance needs to be able to read input and dispatotsendependently of grother instance.

Further an gplication instance may need multiple display connectionsve Wwagets on multi-

ple displays. From the applicatieoint of view, multiple display connections usually are

treated together as a single unit for purposes@ftalispatching.To accommodate both require-
ments, the Intrinsics define application contexts, each of which provides the information needed
to distinguish one application instance from anotfére major component of an application

context is a list of one or more Bisplay pointers for that application. The Intrinsics handle all
display connections within a single application context simultanedwsigling input in a round-

robin fashion. Thepplication context typ&XtAppContext is opaque to clients.

To initialize the Intrinsics internals, usé&ToolkitInitialize .
void XtToolkitInitialize()

If XtToolkitlnitialize was previously called, it returns immediatelyWWhen XtToolkitThrea-
dinitialize is called beforeXtToolkitlnitialize , the latter is protected against simultaneous acti-
vation by multiple threads.

To aeate an application context, ugeCreateApplicationContext.
XtAppContext XtCreateApplicationContext()

The XtCreateApplicationContext function returns an application context, which is an opaque
type. Eery application must v & least one application context.

To destrgy an gplication context and closeyaremaining display connections in it, useiDe-
stroyApplicationContext .

void XtDestroyApplicationContexépp_context
XtAppContextapp_context

app_context Specifies the application context.
The XtDestroyApplicationContext function destroys the specified application centéf called

from within an @ent dispatch (for example, in a callback procedux¢lDestroyApplication-
Context does not destgothe application context until the dispatch is complete.

To get the application context in which argh widget was created, us@WidgetToApplica-
tionContext.

XtAppContext XtWidgetToApplicationContext]
Widgetw;
w Specifies the widget for which youawt the application conte Mustbe of class
Object or ag subclass thereof.

The XtWidgetToApplicationContext function returns the application context for the specified

27

X Toolkit Intrinsics X11 Release 6.8

widget.

To initialize a display and add it to an application context, XtE#splaylnitialize .

void XtDisplaylInitialize@pp_contextdisplay, application_namgapplication_class
options num_optionsargc, argv)
XtAppContextapp_context
Display *display;
Stringapplication_namg
Stringapplication_class
XrmOptionDescRecdptions
Cardinalnum_options
int *argc;
String *argy,

app_context Specifies the application context.

display Specifies a previously opened display connectidote that a single dis-
play connection can be in at most one application context.

application_name Specifies the name of the application instance.

application_class Specifies the class name of this application, which is usually the generic
name for all instances of this application.

options Specifies hev to parse the command line for yaapplication-specific re-
sources. Theptionsamgument is passed as a parameteKmmParseC-
ommand. For further information, see Section 15.9Xtib — C Lan-
guage X hterfaceand Section 2.4 of this specification.

num_options Specifies the number of entries in the options list.
argc Specifies a pointer to the number of command line parameters.
argv Specifies the list of command line parameters.

The XtDisplaylnitialize function retri&es the language string to be used for the specified display
(see Section 11.11), calls the language procedure (if set) with that language string, builds the
resource database for the default screen, calls thexxiiti’arseCommand function to parse

the command line, and performs other per-display initialization. AfterParseCommand has
been calledargc andargv contain only those parameters that were not in the standard option ta-
ble or in the table specified by thptionsargument. Ifthe modifiedargcis not zero, most appli-
cations simply print out the modifiedlgv along with a message listing the alible options. On
POSIX-based systems, the application name is usually the final compoaen@f. If the syn-
chronous resource & ue, XtDisplaylnitialize calls the XlibXSynchronize function to put

Xlib into synchronous mode for this display connection arydo#tmers currently open in the
application contet. SeeSections 2.3 and 2.4 for details on épplication_namegapplica-
tion_classoptions and num_optionarguments.

XtDisplaylnitialize calls XrmSetDatabaseto associate the resource database of the default
screen with the display before returning.

28

X Toolkit Intrinsics X11 Release 6.8

To gpen a displayinitialize it, and then add it to an application context, Xig@penDisplay.

Display *XtOpenDisplayépp_contextdisplay_stringapplication_namgapplication_class
options num_optionsargc, argv)
XtAppContextapp_context
Stringdisplay_string
Stringapplication_namg
Stringapplication_class
XrmOptionDescRecdptions
Cardinalnum_options
int *argc;
String *argyv;

app_context Specifies the application context.
display_string Specifies the display string, or NULL.
application_name Specifies the name of the application instance, or NULL.

application_class Specifies the class name of this application, which is usually the generic
name for all instances of this application.

options Specifies hev to parse the command line for yampplication-specific re-
sources. Theptions argument is passed as a parametridParseC-
ommand.

num_options Specifies the number of entries in the options list.

argc Specifies a pointer to the number of command line parameters.

argv Specifies the list of command line parameters.

The XtOpenDisplay function callsXOpenDisplay with the specifiedlisplay_string If dis-
play_stringis NULL, XtOpenDisplay uses the current value of the —display option specified in
argv. If no display is specified iargv, the uses default display is retrieed from the environ-
ment. OnNPOSIX-based systems, this is the value ofQI&PLAY environment variable.

If this succeedsXtOpenDisplay then callsXtDisplaylnitialize and passes it the opened display
and the value of the —name option specifiedrgv as the application name. If no —name option
is specified andpplication_names non-NULL, application_namés passed tXtDisplayIni-

tialize. If application_nameés NULL and if the environment variabRESOURCE_NAME is

set, the value ORESOURCE_NAME is used. Otherwise, the application name is the name used
to invoke the program. On implementations that conform to ANSI C Hosted Environment sup-
port, the application name will lz@g\{0] less aw directory and file type components, that is, the
final component o&rg\0], if specified. Ifargv[0] does not exist or is the empty string, the appli-
cation name is “main”. XtOpenDisplay returns the newly opened display or NULL if it failed.

See Section 7.12 for informatiorgeeding the use oKtOpenDisplay in multiple threads.

To dose a display and reme it from an application context, us@CloseDisplay.

void XtCloseDisplaydisplay)
Display *display;

display Specifies the display.

The XtCloseDisplay function callsXCloseDisplay with the specifiedlisplayas soon as it is
safe to do so. If called from within ameat dispatch (for example, a callback procedure),
XtCloseDisplay does not close the display until the dispatch is complete. Note that applications

29

X Toolkit Intrinsics X11 Release 6.8

need only callXtCloseDisplay if they are to continueecuting after closing the display; other-
wise, thg should callXtDestroyApplicationContext.

See Section 7.12 for informatiorgeeding the use oKtCloseDisplay in multiple threads.

2.2. Establishingthe Locale

Resource databases are specified to be created in the current process locale. During display ini-
tialization prior to creating the per-screen resource database, the Intrinsics will call out to a speci-
fied application procedure to set the locale according to options found on the command line or in
the per-display resource specifications.

The callout procedure provided by the application is of ftenguageProc.

typedef String (*XtLanguageProc)(Display*, String, XtPointer);
Display *display;
Stringlanguage
XtPointerclient_data

display Passes the display.

language Passes the initial language value obtained from the command line er gew
display resource specifications.

client_data Passes the additional client data specified in the calt&etLanguageProc

The language procedure allows an application to set the locale to the value of the language
resource determined B¥tDisplaylnitialize . The function returns a melanguage string that

will be subsequently used IXtDisplaylnitialize to establish the path for loading resource files.
The returned string will be copied by the Intrinsics intes meemory.

Initially, no language procedure is set by the Intrinsits st the language procedure for use by
XtDisplaylnitialize , use XtSetLanguageProc

XtLanguageProc XtSetLanguagePrmf_contextproc, client_datg
XtAppContextapp_context
XtLanguageProgroc;
XtPointerclient_data

app_context Specifies the application context in which the language procedure is to be used,

or NULL.

proc Specifies the language procedure.

client_data Specifies additional client data to be passed to the language procedure when it is
called.

XtSetLanguageProcsets the language procedure that will be called dd@Bisplaylinitialize

for all subsequent Displays initialized in the specified application xionté app_contexis

NULL, the specified language procedure is registered in all application contexts created by the
calling process, including girffuture application contexts that may be createdord€is NULL,

a default language procedure is registerédSetLanguageProcreturns the previously regis-

tered language procedure. If a language procedure has not yet been registered, the return value is
unspecified, but if this return value is used in a subsequent céibeil anguageProg it will

cause the default language procedure to be registered.

The default language procedure does the following:

30

X Toolkit Intrinsics X11 Release 6.8

. Sets the locale according to thevennment. OnANSI C-based systems this is done by
calling setlocald LC_ALL , language). If an error is encountered, a warning message is
issued withXtWarning .

. Calls XSupportsLocale to verify that the current locale is supported. If the locale is not
supported, a warning message is issued ¥itarning and the locale is set to “C".

. Calls XSetLocaleMaodifiers specifying the empty string.

. Returns the value of the current locale. On ANSI C-based systems this is the return value
from a final call tosetlocalg LC_ALL , NULL).

A client wishing to use this mechanism to establish locale can do so by céiietf anguage-
Proc prior to XtDisplaylnitialize , as in he following example.

Widget top;
XtSetLanguageProc(NULL, NULL, NULL);
top = XtOpenApplication(...);

2.3. Loadingthe Resource Database

The XtDisplaylnitialize function first determines the language string to be used for the specified
display It then creates a resource database for the default screen of the display by combining the
following sources in ordewith the entries in the first named source having highest precedence:

. Application command lineagc, argv).
. Per-host user environment resource file on the local host.
. Per-screen resource specifications from the server.

. Per-display resource specifications from the server or from
the user preference file on the local host.

. Application-specific user resource file on the local host.
. Application-specific class resource file on the local host.

When the resource database for a particular screen on the display is needed (either,iaternally
when XtScreenDatabaseis called), it is created in the following manner using the sources listed
above in the same order:

. A temporary database, the “server resource database”, is created from the string returned
by XResourceManagerStringor, if XResourceManagerStringreturns NULL, the con-
tents of a resource file in the usamme directory On POSIX-based systems, the usual
name for this user preference resource file is $HOXAEfaults.

. If a language procedure has been X#displaylnitialize first searches the command line
for the option “-xnlLanguage”, or for a -xrm option that specifies the xnlLanguage/Xnl-
Language resource, as specified by Section 2.4. If such a resource is found, the value is
assumed to be entirely in XPCS, the X Portable Character Set. If neither option is specified
on the command linetDisplaylnitialize queries the server resource database (which is
assumed to be entirely in XPCS) for the resonaraexnlLanguage classClassXnlLan-
guagewherenameandClassare theapplication_namendapplication_classpecified to
XtDisplaylnitialize . The language procedure is thendked with the resource value if
found, else the empty string. The string returned from the language proceduesl ifbsa
all future references in the Intrinsics that require the per-display language string.

31

X Toolkit Intrinsics X11 Release 6.8

. The screen resource database is initialized by parsing the command line in the manner
specified by Section 2.4.

. If a language procedure has not been set, the initial database is then queried for the resource
namexnlLanguage classClassXnlLanguage as specified alve. If this database query
fails, the server resource database is queried; if this query also fails, the language is deter-
mined from the environment; on POSIX-based systems, this is done by retrieving the value
of the LANG environment griable. Ifno language string is found, the empty string is
used. Thidanguage string is sed for all future references in the Intrinsics that require the
per-display language string.

. After determining the language string, the usarironment resource file is then merged
into the initial resource database if the fikésts. Thisfile is user-, host-, and process-spe-
cific and is expected to contain user preferences that avertale those specifications in
the per-display and per-screen resources. On POSIX-based systems, shewvisan-
ment resource file name is specified by the value cXKENVIRONMENT environment
variable. Ifthis environment variable does not exist, the sd®rme directory is searched
for a file namedXdefaults-host, wherehostis the host name of the machine on which the
application is running.

. The per-screen resource specifications are then merged into the screen resource database, if
they exist. Thesespecifications are the string returnedXfycreenResourceStringor the
respectie creen and are owned entirely by the user.

. Next, the server resource database created earlier is merged into the screen resource data-
base. Theerver propertyand corresponding user preference file, are owned and con-
structed entirely by the user.

. The application-specific user resource file from the local host is then merged into the screen
resource database. This file contains user customizations and is stored in a directory owned
by the user Either the user or the application or both can store resource specifications in
the file. Each should be prepared to find and respect entries made by th& lo¢ghide
name is found by callinkrmSetDatabasewith the current screen resource database, after
preserving the original display-associated database, then cétitesolvePathnamewith
the parametersi{splay, NULL, NULL, NULL, path NULL, O, NULL), wherepathis
defined in an operating-system-specific weyn POSIX-based systempathis defined to
be the value of the environment variall@SERFILESEARCHPATH if this is defined. If
XUSERFILESEARCHPATH is not defined, an implementation-dependent default value is
used. Thigefault value is constrained in the following manner:

- If the environment variablBAPPLRESDIR is not defined, the defaulUSERFILE-
SEARCHPATH must contain at least six entries. These entries must contain $HOME as
the directory prefix, plus the following substitutions:

%C,%N, %L or %C,%N, %I, %t, %c
%C,%N, %l

%C,%N

%N, %L or %N, %l, %t, %c

%N, %l

%N

ok wnpE

The order of these six entries within the path must bevas gbove. The order and
use of substitutions within awgin entry are implementation-dependent.

32

X Toolkit Intrinsics X11 Release 6.8

— If XAPPLRESDIR is defined, the defaukUSERFILESEARCHPATH must contain at
least seen entries. Thesentries must contain the following directory prefixes and sub-

stitutions:

1. $XAPPLRESDIR with %C,%N, %L or %C,%N, %I, %t, %c
2. $XAPPLRESDIR with %C, %N, %l

3. $XAPPLRESDIR with %C, %N

4. $XAPPLRESDIR with %N, %L or %N, %l, %t, %c
5. $XAPPLRESDIR with %N, %l

6. $XAPPLRESDIR with %N

7. $HOME with %N

The order of these gen entries within the path must be as@i ébove. The order and
use of substitutions within awgin entry are implementation-dependent.

. Last, the application-specific class resource file from the local host is merged into the
screen resource database. This file is owned by the application and is usually installed in a
system directory when the application is installed. It may contain sitewide customizations
specified by the system manag&he name of the application class resource file is found
by calling XtResolvePathnamewith the parametersisplay, “app-defaults”, NULL,

NULL, NULL, NULL, O, NULL). This file is expected to be provided by thevéleper of

the application and may be required for the application to function progedimple

application that wants to be assured of having a minimal set of resources in the absence of
its class resource file can declare fallback resource specificationktjihSetFallback-
Resources Note that the customization substitution string is reédedynamically by
XtResolvePathnameso that the resolved file name of the application class resource file

can be affected by grof the earlier sources for the screen resource datalvesgheugh

the contents of the class resource fileehlawest precedence. After calliigtRe-
solvePathname the original display-associated database is restored.

To dbtain the resource database for a particular screerstGseeenDatabase

XrmDatabase XtScreenDatabaszéen)
Screen screen

screen Specifies the screen whose resource database is to be returned.

The XtScreenDatabasefunction returns the fully merged resource database as specifiegl abo
associated with the specified screen. If the spedfiezkndoes not belong to Bisplay initial-
ized by XtDisplaylnitialize , the results are undefined.

To dbtain the default resource database associated with a particular,displdtDatabase.

XrmDatabase XtDatabask$play)
Display *display;

display Specifies the display.

The XtDatabasefunction is equialent to XrmGetDatabase. It returns the database associated
with the specified displapr NULL if a database has not been set.

33

X Toolkit Intrinsics X11 Release 6.8

To ecify a default set of resource values that will be used to initialize the resource database if no
application-specific class resource file is found (the last of the six sources liste}] abe
XtAppSetFallbackResources

void XtAppSetFallbackResourceg(p_contextspecification_list
XtAppContextapp_context
String *specification_list

app_context Specifies the application context in which thébfack specifications will be
used.

specification_list Specifies a NULL-terminated list of resource specifications to preload the
database, or NULL.

Each entry irspecification_lispoints to a string in the format efrmPutLineResource. Fol-

lowing a call toXtAppSetFallbackResources when a resource database is being created for a
particular screen and the Intrinsics are not able to find or read an application-specific class
resource file according to the ruleseayi above and if specification_lists not NULL, the resource
specifications irspecification_listvill be merged into the screen resource database in place of the
application-specific class resource fiktAppSetFallbackResourcesis not required to copy
specification_listthe caller must ensure that the contents of the list and of the strings addressed
by the list remain valid until all displays are initialized or uXtiRppSetFallbackResourcesis

called agin. Thevalue NULL for specification_listemoves any previous fallback resource spec-
ification for the application conte Theintended use for fallback resources is to provide a mini-
mal number of resources that will neakke application usable (or at least terminate with helpful
diagnostic messages) when some problem exists in finding and loading the application defaults
file.

2.4. Rarsing the Command Line
The XtOpenDisplay function first parses the command line for the following options:

—display Specifiethe display name foXOpenDisplay.
—name Setthe resource name prefix, whicherrides the application name passed to
XtOpenDisplay.

—xnllanguage Specifighe initial language string for establishing locale and for finding appli-
cation class resource files.

XtDisplaylnitialize has a table of standard command line options that are passadfar-
seCommandfor adding resources to the resource database, and it takes as a parameter additional
application-specific resource abliagions. Theformat of this table is described in Section 15.9

in Xlib — C Languge X hterface

34

X Toolkit Intrinsics X11 Release 6.8

typedef enum {

XrmoptionNoA, /* Value is specified in OptionDescRec.value */
XrmoptionIsAmg, [* Value is the option string itself */
XrmoptionStickyAn, [* Value is characters immediately following option */
XrmoptionSepAg, /* Value is next argument in argv */
XrmoptionResAg, /* Use the next argument as input to XrmPutLineResource*/
XrmoptionSkipAg, /* Ignore this option and the next argument in argv */
XrmoptionSkipNAgs, /*1gnore this option and the next */
/* OptionDescRec.value arguments in argv */

XrmoptionSkipLine [*Ignore this option and the rest of argv */

} X rmOptionKind,;

typedef struct {

char *option;
char *specifier;

/* Option name in argv */

/* Resource name (without application name) */
XrmOptionKind agKind, [* Location of the resource value */
XPointer \alue; [*Value to provide if XrmoptionNoAg */

} XrmOptionDescRec, *XrmOptionDescList;

The standard table contains the following entries:

Resource Name Resource Value

Option String

Argument Kind

—background *background SepAg next argument
-bd *borderColor SepAg next argument
-bg *packground SepAg next argument
—borderwidth .border\dth SepAg next argument
—bordercolor *borderColor SepAg next argument
—bw .borderVidth SepAg next argument
—display display SepAyr next argument
—fg *foreground SepAy next argument
—fn *font SepAg next argument
—font *font SepAg next argument
—foreground *forground SepAy next argument
—geometry .geometry Sep@\r next argument
—iconic .iconic NoAg “true”

—name .name Sepér next argument
—-reverse reerseMdeo NoAg “on”

-rv reverseMdeo NoAg “on”

+rv reverseMdeo NoAg “off"”
—selectionTmeout .selectionTimeout Sep@\r next argument
—synchronous .synchronous Na@Ar “on”
+synchronous .synchronous Na@Ar “off"”

—title title SepAg next argument
—xnllanguage xnlLanguage SepAg next argument
=Xrm net agument ResAy next argument
—xtsessionID .sessionlD SepAg next argument

Note that ap unique abbreviation for an option name in the standard table or in the application
table is accepted.

35

X Toolkit Intrinsics X11 Release 6.8

If reverseVideo isTr ue, the values oXtDefaultForeground and XtDefaultBackground are
exchanged for all screens on the Display.

The value of the synchronous resource specifies whether or not Xlib is put into synchronous
mode. Ifavalue is found in the resource database during display initializati@nsplaylnitial-

ize makes a call t&(Synchronize for all display connections currently open in the application
contt. Thereforewhen multiple displays are initialized in the same application context, the

most recent value specified for the synchronous resource is used for all displays in the application
context.

The value of the selectionTimeout resource applies to all displays opened in the same application
context. Whenmultiple displays are initialized in the same application context, the most recent
value specified is used for all displays in the application context.

The —xrm option provides a method of setting essource in an application. The next argument
should be a quoted string identical in format to a line in the user resourdedfilexample, to

give a ed background to all command buttons in an application naméd you can start it up

as

xmh —xrm '’xmh*Command.background: red’

When it parses the command lin@Displayinitialize merges the application option table with

the standard option table before calling the XitmParseCommand function. Anentry in the
application table with the same name as an entry in the standardviabiées the standard table

entry If an gption name is a prefix of another option name, both names are kept in the merged ta-
ble. Thelntrinsics resere dl option names beginning with the characters “-r future stan-

dard uses.

2.5. Creating Widgets
The creation of widget instances is a three-phase process:

1. Thewidgets are allocated and initialized with resources and are optionally added to the
managed subset of their parent.

2. All composite widgets are notified of their managed children in a bottomwepstathof the
widget tree.

3. Thewidgets create X windows, which then are mapped.

To dart the first phase, the application caliCreateWidget for all its widgets and adds some

(usually most or all) of its widgets to their respetiparents’ managed set by calliMan-

ageChild. To avoid anO(n?) creation process where each composite widget lays itself out each

time a widget is created and managed, parent widgets are not notified of changes in their managed
set during this phase.

After all widgets hge keen created, the application caXlitRealizeWidget with the top-lee

widget to eecute the second and third phasedRealizeWidget first recursiely traverses the
widget tree in a postorder (bottom-up)Vesal and then notifies each composite widget with one
or more managed children by means of its change_managed procedure.

Notifying a parent about its managed s&bives geometry layout and possibly geometry negoti-
ation. Aparent deals with constraints on its size imposed fromeafor example, when a user
specifies the application windsize) and suggestions made from beldor example, when a

primitive diild computes its preferred size). One difference between theamvcause geometry
changes to ripple in both directions through the widget tree. The parent may force some of its
children to change size and position and may issue geometry requests to its own parent in order to
better accommodate all its childre¥ou cannot predict where anything will go on the screen

until this process finishes.

36

X Toolkit Intrinsics X11 Release 6.8

Consequentlyin the first and second phases, no X windows are actually created, because it is
likely that they will get moved aound after creation. Thisvaids unnecessary requests to the X
server.

Finally, XtRealizeWidget starts the third phase by making a preorder (top-dowersal of the
widget tree, allocates an X winddo each widget by means of its realize procedure, and finally
maps the widgets that are managed.

2.5.1. Ceating and Merging Argument Lists

Marny Intrinsics functions may be passed pairs of resource nameslaed.vThesare passed as
an arglist, a pointer to an array Afg structures, which contains

typedef struct {
String name;
XtArgVal value;
} Arg, *ArgList;

whereXtArgVal is as defined in Section 1.5.

If the size of the resource is less than or equal to the sizeXifagVal , the resource value is
stored directly irvalue otherwise, a pointer to it is storedvalue

To =t values in arArgList , use XtSetArg.

void XtSetArg@rg, name valug
Arg arg;
Stringname
XtArgVal value
arg Specifies th@ame/valugair to set.
name Specifies the name of the resource.
value Specifies the value of the resource if it will fit in 4tArgVal , ese the address.

The XtSetArg function is usually used in a highly stylized manner to minimize the probability of
making a mistake; for example:

Arg ags[20];

int n;

n=0

XtSetArg(args[n], XtNheight, 100); n++;
XtSetArg(args[n], XtNwidth, 200); n++;

XtSetValues(widget, args, n);
Alternatively, an gplication can statically declare the argument list andXiseimber :
static Args args[] = {

{XtNheight, (XtArgVal) 100},
{XtNwidth, (XtArgVal) 200},

¢
XtSetValues(Widget, args, XtNumber(args));

37

X Toolkit Intrinsics X11 Release 6.8

Note that you should not use expressions with side effects such as auto-increment or auto-decre-
ment within the first argument ¥tSetArg. XtSetArg can be implemented as a macro that
evduates the first argument twice.

To merge tvo aglist arrays, useXtMergeArgLists .

ArgList XtMergeArgLists@rgsl, num_argslargs2 num_args2
ArgList argst,
Cardinalnum_argsi
ArgList args2
Cardinalnum_args2

argsl Specifies the first argument list.

num_argsl Specifies the number of entries in the first argument list.
args2 Specifies the second argument list.

num_args2 Specifies the number of entries in the second argument list.

The XtMergeArgLists function allocates enough storage to hold the combined arglist arrays and
copies them into it. Note that it does not check for duplicate entries. The length of the returned
list is the sum of the lengths of the specified lists. When it is no longer needed, free the returned
storage by using(tFree.

All Intrinsics interfaces that requirkrgList arguments hae analogs conforming to the ANSI C
variable argument list (traditionally called “varargs”) calling eention. Thename of the analog
is formed by prefixing “Va’'to the name of the correspondiAggList procedure; e.g.,
XtVaCreateWidget. Each procedure namettVasomethingakes as its last arguments, in place
of the correspondindrgList / Cardinal parameters, a variable parameter list of resource name
and value pairs where each name is of {$freng and each value is of typé&ArgVval . The end

of the list is identified by aameentry containing NULL. Deelopers writing in the C language
wishing to pass resource name and value pairsytofghese interfaces may use thgyList and
varargs forms interchangeably.

Two special names are defined for use only in varargs Ks$¥&TypedArg and XtVaNest-
edList.

#define XtVaTypedAg "XtVaTypedArg"

If the nameXtVaTypedArg is specified in place of a resource name, then the following four
arguments are interpreted asame/type/value/sizaplewherename is of typeString, typeis of
type String, valueis of typeXtArgVal , andsizeis of type int. When a varargs list containing
XtVaTypedArg is processed, a resource typewvassion (see Section 9.6) is performed if neces-
sary to cowert the value into the format required by the associated resourtygel XtRString,
thenvaluecontains a pointer to the string asidecontains the number of bytes allocated, includ-
ing the trailing null byte. Itypeis not XtRString, theif size is less than or equal to
sizeo{XtArgVal), the value should be the data cast to the ¥tgegVal , otherwisevalueis a
pointer to the data. If the type a@nsion fails for ag reason, a warning message is issued and
the list entry is skipped.

38

X Toolkit Intrinsics X11 Release 6.8

#define Xt\ANestedList "XtdNestedList"

If the nameXtVaNestedList is specified in place of a resource name, then the following argu-
ment is interpreted as aftVarArgsList value, which specifies another varargs list that is logi-
cally inserted into the original list at the point of declaration. The end of the nested list is identi-
fied with a name entry containing NULMarargs lists may nest to yadepth.

To dynamically allocate a varargs list for use wXtVaNestedList in multiple calls, use
XtVaCreateArgsList .

typedef XtPointer XtVarArgsList;

XtVarArgsList XtVaCreateArgsList(nused...)
XtPointerunused

unused This argument is not currently used and must be specified as NULL.
Specifies variable parameter list of resource name and value pairs.

The XtVaCreateArgsList function allocates memory and copies its arguments into a single list
pointer which may be used witXtVaNestedList. The end of both lists is identified byname

entry containing NULL. Aw entries of typeXtVaTypedArg are copied as specified without
applying conersions. Datgassed by reference (including Strings) are not copied, only the
pointers themselves; the caller must ensure that the data remain valid for the lifetime of the cre-
ated varargs list. The list should be freed usftigree when no longer needed.

Use of resource files and of the resource database is generally encoueadeagtty arglist or
varargs lists whener possible in order to permit modification without recompilation.

2.5.2. Ceating a Widget Instance
To aeate an instance of a widget, &€ reateWidget.

Widget XtCreateWidgem@me object_classparent args, num_arg}
Stringname
WidgetClas®bject_class
Widgetparent
ArgList args
Cardinalnum_args

name Specifies the resource instance name for the created widget, which is used for re-
trieving resources and, for that reason, should not be the samg athenwid-
get that is a child of the same parent.

object_class Specifies the widget class pointer for the created obMast beobjectClassor
ary subclass thereof.

parent Specifies the parent widget. Must be of class Objectysi#class thereof.
args Specifies the argument list tvaoride ary other resource specifications.
num_args Specifies the number of entries in the argument list.

39

X Toolkit Intrinsics X11 Release 6.8

The XtCreateWidget function performs all the boilerplate operations of widget creation, doing
the following in order:

. Checks to see if the class_initialize procedure has been called for this class and for all
superclasses and, if not, calls those necessary in a superclass-to-subclass order.

. If the specified class is nobreWidgetClassor a subclass thereof, and the pasedéss is
a abclass ofcompositeWidgetClassand either no extension record in the paseaim-
posite class part extension field exists withrdwerd_typeNULLQ UARK or the
accepts_objectield in the extension record isalse, XtCreateWidget issues a fatal error;
see Section 3.1 and Chapter 12.

. If the specified class contains an extension record in the object clasggyeionfield
with record_typeNULLQ UARK and theallocatefield is not NULL, the procedure is
invoked to dlocate memory for the widget instance. If the parent is a member of the class
constraintWidgetClass, the procedure also allocates memory for the parenmtistraints
and stores the address of this memory intactrestraintsfield. If no allocate procedure is
found, the Intrinsics allocate memory for the widget and, when applicable, the constraints,
and initializes theonstraintsfield.

. Initializes the Core nonresource data fiedel§ parent widget_classbeing_destroyed
name manaed, window; visible popup_list and num_popups

. Initializes the resource fields (for examfdackground_pixélby using theCoreClassPart
resource lists specified for this class and all superclasses.

. If the parent is a member of the classistraintWidgetClass, initializes the resource

fields of the constraints record by using @enstraintClassPart resource lists specified
for the parens dass and all superclasses ugtmstraintWidgetClass.

. Calls the initialize procedures for the widget starting at the Object initialize procedure on
down to the widges initialize procedure.

. If the parent is a member of the classistraintWidgetClass, calls theConstraintClass-
Part initialize procedures, starting abnstraintWidgetClasson down to the parent’s
ConstraintClassPart initialize procedure.

. If the parent is a member of the classnpositeWidgetClass puts the widget into its par-
ent’s children list by calling its parerst'insert_child procedurer-or further information,
see Section 3.1.

To aeate an instance of a widget using varargs listsXtigaCreateWidget.

Widget XtVaCreateWidget@me object_classparent ...)
Stringname
WidgetClas®bject_class
Widgetparent
name Specifies the resource name for the created widget.

object_class Specifies the widget class pointer for the created obMast beobjectClassor
ary subclass thereof.

parent Specifies the parent widget. Must be of class Objectys#class thereof.
Specifieshe variable argument list tov@ride ary other resource specifications.

The XtVaCreateWidget procedure is identical in function ¥XtCreateWidget with theargsand
num_arggparameters replaced by a varargs list, as described in Section 2.5.1.

40

X Toolkit Intrinsics X11 Release 6.8

2.5.3. Crating an Application Shell Instance

An application can hee nultiple top-level widgets, each of which specifies a unique widget tree
that can potentially be on different screens or displays. An applicatiorXtispsCreateShell
to create independent widget trees.

Widget XtAppCreateSheliame application_classwidget_classdisplay, args num_arg}
Stringname
Stringapplication_class
WidgetClassvidget_class
Display *display;
ArgList args
Cardinalnum_args

name Specifies the instance name of the shell wid¢fehameis NULL, the appli-
cation name passed ¥iDisplaylnitialize is used.

application_class Specifies the resource class string to be used in place of the widget
class_namestring whenwidget_clasds applicationShellwidgetClassor a
subclass thereof.

widget_class Specifies the widget class for the topeewidget (e.g.,applicationShell-
WidgetClasy.

display Specifies the display for the default screen and for the resource database used
to retrieve the shell widget resources.

args Specifies the argument list tvaoride ary other resource specifications.

num_args Specifies the number of entries in the argument list.

The XtAppCreateShell function creates a meshell widget instance as the root of a widget tree.
The screen resource for this widget is determined by first scaargafpr the XtNscreen argu-
ment. Ifno XtNscreen argument is found, the resource database associated with the default
screen of the specified display is queried for the resmancescreen, clasSlassScreen where
Classis the specifie@pplication_classf widget_classs applicationShellwidgetClassor a
subclass thereof. Widget_classs notapplicationShellWidgetClassor a subclas<lassis the
class_namdeld from theCoreClassPartof the specifiedvidget_class If this query fails, the
default screen of the specified display is used. Once the screen is determined, the resource data-
base associated with that screen is used tovetdleremaining resources for the shell widget not
specified inargs The widget name an@lassas determined abe ae used as the leftmost (i.e.,
root) components in all fully qualified resource names for objects within this widget tree.

If the specified widget class is a subclass of WMShell, the nam€lassias determined abe
will be stored into th&vM_CLASS property on the widget'window when it becomes realized.
If the specifiedvidget_classs applicationShellWidgetClassor a subclass thereof, the
WM_COMMAND property will also be set from the values of the XtNargv and XtNargc
resources.

To aeate multiple top-kel shells within a single (logical) application, you can use one of two
methods:

. Designate one shell as the real togelshell and create the others as pop-up children of it
by usingXtCreatePopupShell

. Haveall shells as pop-up children of an unrealized tagtighell.

The first method, which is best used when there is a clear choice for what is the maim windo
leads to resource specificationslike following:

41

X Toolkit Intrinsics X11 Release 6.8

xmail.geometry:... (thenain window)
xmail.read.geometry:... (thread window)
xmail.compose.geometry:... (ttempose window)

The second method, which is best if there is no main wingads to resource specifications like
the following:

xmail.headers.geometry:... (theaders window)
xmail.read.geometry:... (thread window)
xmail.compose.geometry:... (teempose window)

To aeate a top-hel widget that is the root of a widget tree using varargs listsXtgaAppCre-
ateShell

Widget XtVaAppCreateShelieme application_classwidget_classdisplay; ...)
Stringname
Stringapplication_class
WidgetClassvidget_class

Display *display,

name Specifies the instance name of the shell widdehameis NULL, the
application name passedX¢Displaylnitialize is used.

application_class Specifies the resource class string to be used in place of the widget
class_namestring whenwidget_classs applicationShellWidgetClass
or a subclass thereof.

widget_class Specifies the widget class for the topdavidget.

display Specifies the display for the @eft screen and for the resource database

used to retrige the shell widget resources.

Specifieshe variable argument list toveride ary other resource specifi-
cations.

The XtVaAppCreateShell procedure is identical in function XtAppCreateShell with theargs
andnum_arggarameters replaced by a varargs list, as described in Section 2.5.1.

2.5.4. Cowenience Procedue to Initialize an Application

To initialize the Intrinsics internals, create an application context, open and initialize a display,
and create the initial root shell instance, an application maXi@eenApplication or
XtVaOpenApplication .

42

X Toolkit Intrinsics X11 Release 6.8

Widget XtOpenApplicatiorgpp_context_returrapplication_classoptions num_options
argc_in_outargv_in_out fallback_resourceswvidget_classargs num_arg3
XtAppContext "app_context_return
Stringapplication_class
XrmOptionDescLisbptions
Cardinalnum_options
int *argc_in_out
String *argv_in_out
String *fallback_resources
WidgetClassvidget_class
ArgList args
Cardinalnum_args

app_context_return Returns the application context, if non-NULL.

application_class Specifies the class name of the application.

options Specifies the command line options table.

num_options Specifies the number of entriesoptions

argc_in_out Specifies a pointer to the number of command line arguments.
argv_in_out Specifies a pointer to the command line arguments.

fallback_resources Specifies resourcealues to be used if the application class resource file
cannot be opened or read, or NULL.

widget_class Specifies the class of the widget to be creaMdst be shell\WdgetClass
or a subclass.

args Specifies the argument list twvedride ary other resource specifications
for the created shell widget.

num_args Specifies the number of entries in the argument list.

The XtOpenApplication function callsXtToolkitInitialize followed by XtCreateApplication-
Context, then callsXtOpenDisplay with display_stringNULL and application_naméNULL,
and finally callsXtAppCreateShell with nameNULL, the specifiedvidget_classan agument
list and count, and returns the created shell. The recommerdget_ classs sessionShellwid-
getClass The argument list and count are created by merging the spexiieandnum_args
with a list containing the specifiedlgc andargv. The modifiedargc andargvreturned by
XtDisplaylnitialize are returned imrgc_in_outandargv_in_out If app_context_returis not
NULL, the created application context is also returned. If the display specified by the command
line cannot be opened, an error message is issuekt@p@nApplication terminates the appli-
cation. Iffallback_resources non-NULL, XtAppSetFallbackResourcesss called with the
value prior to callingXtOpenDisplay.

43

X Toolkit Intrinsics X11 Release 6.8

Widget XtVaOpenApplicatiompp_context_returrapplication_classoptions num_options
argc_in_outargv_in_out fallback _resourceswvidget_class...)
XtAppContext "app_context_return
Stringapplication_class
XrmOptionDescLisbptions
Cardinalnum_options
int *argc_in_out
String *argv_in_out
String *fallback_resources
WidgetClassvidget_class

app_context_return Returns the application context, if non-NULL.

application_class Specifies the class name of the application.

options Specifies the command line options table.

num_options Specifies the number of entriesoptions

argc_in_out Specifies a pointer to the number of command line arguments.
argv_in_out Specifies the command line arguments array.

fallback_resources Specifies resourcealues to be used if the application class resource file

cannot be opened, or NULL.

widget_class Specifies the class of the widget to be creaMdst be shellWdgetClass

or a subclass.

Specifieshe variable ayjument list to verride ary other resource specifi-

cations for the created shell.

The XtVaOpenApplication procedure is identical in function XtOpenApplication with the
argsandnum_arggparameters replaced by a varargs list, as described in Section 2.5.1.

2.5.5. Wdget Instance Allocation: The allocate Procedure

A widget class may optionally provide an instance allocation procedure @bjleetClassEx-
tension record.

When the call to create a widget includes a varargs list contaitaglypedArg , these argu-
ments will be passed to the allocation procedure iKtdgpedArgList .

typedef struct {
String name;
String type;
XtArgVal value;
int size;
} X tTypedArg, *XtTypedArgList;

The allocate procedure pointer in &jectClassExtensionrecord is of typeXtAllocateProc.

44

X Toolkit Intrinsics X11 Release 6.8

typedef void (*XtAllocateProc)(WidgetClass, Cardinal*, Cardinal*, ArgList, Cardinal*,
XtTypedArgList, Cardinal*, Widget*, XtPointer*);
WidgetClassvidget_class
Cardinal*constraint_size
Cardinal*more_bytes
ArglList args
Cardinal*num_args
XtTypedArgListtyped_args
Cardinal*num_typed_args
Widget* new_return
XtPointer* more_bytes_return

widget_class Specifies the widget class of the instance to allocate.

constraint_size Specifies the size of the constraint record to allocate, or 0.

more_bytes Specifies the number of auxiliary bytes of memory to allocate.

args Specifies the argument list as@i in the call to create the widget.

num_args Specifies the number of arguments.

typed_args Specifies the list of typed guments gien in the call to create the wid-
get.

num_typed_args Specifies the number of typed arguments.

new_return Returns a pointer to the newly allocated instance, or NULL in case of er
ror.

more_bytes_return Returns the auxiliary memory if itag requested, or NULL if requested
and an error occurred; otherwise, unchanged.

At widget allocation time, if an extension record wiaord_typeequal toNULLQ UARK is
located through the object class patensionfield and theallocatefield is not NULL, theXtAl-
locateProcwill be invoked to dlocate memory for the widget. If no ObjectClassPart extension
record is declared wittecord_type equaio NULLQ UARK , then XtInheritAllocate and XtIn-
heritDeallocate are assumed. If n¥tAllocateProc is found, the Intrinsics will allocate mem-
ory for the widget.

An XtAllocateProc must perform the following:

. Allocate memory for the widget instance and return fiteéw_return The memory must be
at leaswc->core_class.widget_sizg/tes in length, double-word aligned.

. Initialize thecore.constraintsfield in the instance record to NULL or to point to a con-
straint record. Itonstraint_sizés not 0, the procedure must allocate memory for the con-
straint record. The memory must be double-word aligned.

. If more_bytess not 0, then the address of a block of memory at teast_bytesn size,
double-word aligned, must be returned inihare_bytes_returparameteror NULL to
indicate an error.

A class allocation procedure thatvelops the allocation procedure of a superclass must rely on

the eneloped procedure to perform the instance and constraint allocation. Allocation procedures
should refrain from initializing fields in the widget record except to store pointers to newly allo-
cated additional memarynder no circumstances should an allocation procedure thelbpes

its superclass allocation procedure modify fields in the instance past sd@erclass.

45

X Toolkit Intrinsics X11 Release 6.8

2.5.6. Wdget Instance Initialization: The initialize Procedure
The initialize procedure pointer in a widget class is of t{faitProc .

typedef void (*XtInitProc)(Widget, Widget, ArgList, Cardinal*);

Widgetrequest
Widgetnew
ArgList args
Cardinal num_args
request Specifies a copof the widget with resourcealues as requested by thgument
list, the resource database, and the widget defaults.
new Specifies the widget with thewevalues, both resource and nonresource, that are
actually allowed.
args Specifies the argument list passed by the client, for computingedieeisource

values. Ifthe client created the widget usingaraxgs form, ag resources speci-
fied via XtVaTypedArg are conerted to the widget representation and the list is
transformed into thérgList format.

num_args Specifies the number of entries in the argument list.

An initialization procedure performs the following:

. Allocates space for and copieyaasources referenced by address that the client is
allowed to free or modify after the widget has been credtedexample, if a widget has a
field that is aString, it may choose not to depend on the characters at that address remain-
ing constant but dynamically allocate space for the string andittapthe nev space.
Widgets that do not cgmne or more resources referenced by address should clearly so
state in their user documentation.

Note
It is not necessary to allocate space for or toy @aiback lists.

. Computes values for unspecified resource fiekts.example, ifwidth andheightare zero,
the widget should compute an appropriate width and height based on its other resources.

Note

A widget may directly assign only its owvidth andheightwithin the initial-
ize, initialize_hook, set_values, and set_values_hook procedures; see Chapter
6.

. Computes values for uninitialized nonresource fields that aneeddrom resource fields.
For example, graphics contexts (GCs) that the widget uses avedi&om resources like
background, foreground, and font.

An initialization procedure also can check certain fields for internal congistBocexample, it
makes no sense to specify a colormap for a depth that does not support that colormap.

Initialization procedures are called in superclass-to-subclass order after all fields specified in the
resource lists hae been initialized. The initialize procedure does not need to exaanysand
num_argsf all public resources are declared in the resource list. Most of the initialization code
for a specific widget class deals with fields defined in that class and not with fields defined in its
superclasses.

If a subclass does not need an initialization procedure because it does not need to pgdbrm an
the aboe erations, it can specify NULL for theitialize field in the class record.

46

X Toolkit Intrinsics X11 Release 6.8

Sometimes a subclass may wantverarite values filled in by its superclass. In particusae
calculations of a superclass often are incorrect for a subclass, and in this case, the subclass must
modify or recalculate fields declared and computed by its superclass.

As an example, a subclass can visually surround its superclass.disytaig case, the width and
height calculated by the superclass initialize procedure are too small and need to be incremented
by the size of the surround. The subclass needs tw iknts superclass’sze was calculated by

the superclass or was specified explicityl widgets must place themselves into whetesize is
explicitly given, but thg should compute a reasonable size if no size is requested.

Therequestandnewarguments provide the necessary information for a subclass to determine the
difference between an explicitly specified field and a field computed by a superclassqudst

widget is a cop of the widget as initialized by the arglist and resource databasenevheidget

starts with the values in the request, but it has been updated by all superclass initialization proce-
dures called so farA subclass initialize procedure can compare theegdwesohe any potential
conflicts.

In the aboe example, the subclass with the visual surround can seewithie andheightin the
requestwidget are zero. If so, it adds its surround size tontiskh andheightfields in thenew
widget. Ifnot, it must ma& do wth the size originally specified.

Thenewwidget will become the actual widget instance record. Therefore, the initialization pro-
cedure should do all its work on thewwidget; therequestwidget should neer be nodified. If

the initialize procedure needs to calyaoutines that operate on a widget, it should speufy

as the widget instance.

2.5.7. Constraintinstance Initialization: The ConstraintClassPart initialize Procedure

The constraint initialization procedure pointierund in theConstraintClassPart initialize field

of the widget class record, is of typ@lnitProc . The values passed to the parent constraint ini-
tialization procedures are the same as those passed to the @ags'widget initialization proce-
dures.

Theconstraintsfield of therequestwidget points to a cgpof the constraints record as initialized
by the arglist and resource database.

The constraint initialization procedure should computecanstraint fields deved from con-
straint resources. It can mafkurther changes to threewwidget to mak the widget and gnother
constraint fields conform to the specified constraints, for example, changing the s\ddgeair
position.

If a constraint class does not need a constraint initialization procedure, it can specify NULL for
theinitialize field of theConstraintClassPart in the class record.

2.5.8. NonwidgetData Initialization: The initialize_hook Procedure

Note

The initialize_hook procedure is obsolete, as the same informatiow iaveiable
to the initialize procedure. The procedure has been retained for those widgets that
used it in previous releases.

The initialize_hook procedure pointer is of tygArgsProc:

47

X Toolkit Intrinsics X11 Release 6.8

typedef void (*XtArgsProc)(Widget, ArgList, Cardinal*);
Widgetw;
ArgList args
Cardinal num_args

w Specifies the widget.

args Specifies the argument list passed by the cliéinthe client created the widget
using a arags form, agy resources specified vidtVaTypedArg are cownerted
to the widget representation and the list is transformed intAuteist format.

num_args Specifies the number of entries in the argument list.

If this procedure is not NULL, it is called immediately after the corresponding initialize proce-
dure or in its place if thimitialize field is NULL.

The initialize_hook procedure allows a widget instance to initialize nonresource data using infor-
mation from the specified argument list as if it were a resource.

2.6. RealizingWidgets
To realize a widget instance, uxX¢RealizeWidget.

void XtRealizeWidgety)
Widgetw;

w | Specifies the widget. Must be of class Core grsaclass thereof.

If the widget is already realizeXtRealizeWidget simply returns. Otherwise it performs the fol-
lowing:
. Binds all action names in the widget'anslation table to procedures (see Section 10.1.2).

. Makes a postorder wrersal of the widget tree rooted at the specified widget and calls each
non-NULL change_managed procedure of all composite widgets trethe or more
managed children.

. Constructs arKSetWindowAttributes structure filled in with information desed from
the Core widget fields and calls the realize procedure for the widget, which gdeislan
get-specific attributes and creates the X wimdo

. If the widget is not a subclass aimpositeWidgetClass XtRealizeWidget returns; oth-
erwise it continues and performs the following:

- Descends recunsdly to each of the widget'managed children and calls the realize
procedures. Primite widgets that instantiate children are responsible for realizing
those children themselves.

- Maps all of the managed children windows thattraapped_when_maged Tr ue.
If a widget is managed butapped_when_maged is False, the widget is allocated
visual space but is not displayed.

If the widget is a top-leel shell widget (that is, it has no parent), andpped_when_maged is
True, XtRealizeWidget maps the widget winda

XtCreateWidget, XtVaCreateWidget, XtRealizeWidget, XtManageChildren,
XtUnmanageChildren, XtUnrealizeWidget, XtSetMappedWhenManaged and XtDestroy-
Widget maintain the following imariants:

. If a composite widget is realized, then all its managed children are realized.

48

X Toolkit Intrinsics X11 Release 6.8

. If a composite widget is realized, then all its managed children tkat ha
mapped_when_maged Tr ue are mapped.

All Intrinsics functions and all widget routines should accept either realized or unrealized wid-
gets. Whertalling the realize or change_managed procedures for children of a composite wid-
get, XtRealizeWidget calls the procedures inu&se order of appearance in t@empositePart

children list. By default, this ordering of the realize procedures will result in the stacking order of
ary newly created subwindows being top-to-bottom in the order of appearance on the list, and the
most recently created child will be at the bottom.

To dcheck whether or not a widget has been realizedXtisRealized.

Boolean XtlsRealizedy)
Widgetw;

w Specifies the widget. Must be of class Object grsabclass thereof.

The XtlsRealized function returnsTr ue if the widget has been realized, that is, if the widget has
a mnzero windw ID. If the specified object is not a widget, the state of the nearest widget
ancestor is returned.

Some widget procedures (for example, set_values) might wish to operate differently after the wid-
get has been realized.

2.6.1. Wdget Instance Window Creation: The realize Procedure
The realize procedure pointer in a widget class is of KfpeealizeProc.

typedef void (*XtRealizeProc)(Widget, XtValueMask*, XSetWindowAttributes*);
Widgetw;
XtValueMask *value_mask
XSetWindowAttributes attributes

w Specifies the widget.
value_mask Specifies which fields in thetributesstructure are used.
attributes Specifies the winde attributes to use in th¥CreateWindow call.

The realize procedure must create the widgatidow.

Before calling the class realize procedure, the genéRealizeWidget function fills in a mask
and a correspondingSetWindowAttributes structure. lisets the following fields iattributes
and corresponding bits iralue_maslkased on information in the widget core structure:

. Thebackground_pixmafor background_pixelf background_pixmas XtUnspecified-
Pixmap) is filled in from the corresponding field.

. Theborder_pixmagor border_pixelif border_pixmaps XtUnspecifiedPixmap) is filled
in from the corresponding field.

. Thecolormapis filled in from the corresponding field.

. Theewent_masls filled in based on thevent handlers registered, theeat translations
specified, whether theposefield is non-NULL, and whetharisible_interests Tr ue.

. Thebit_gravityis set toNorthWestGravity if the exposefield is NULL.

These or apnother fields in attributes and the corresponding bitealne_maskan be set by the
realize procedure.

49

X Toolkit Intrinsics X11 Release 6.8

Note that because realize is not a chained operation, the widget class realize procedure must
update theXSetWindowAttributes structure with all the appropriate fields from non-Core super-
classes.

A widget class can inherit its realize procedure from its superclass during class initialization. The
realize procedure defined fooreWidgetClasscalls XtCreateWindow with the passed
value_maslandattributesand withwindow_clas@andvisualset toCopyFromParent. Both
compositeWidgetClassand constraintWidgetClassinherit this realize procedure, and most

new widget subclasses can do the same (see Section 1.6.10).

The most common noninherited realize procedureBiseravityin the mask and attributes to

the appropriate value and then create the windér example, depending on its justification,

Label might sebit_gravityto WestGravity , CenterGravity , or EastGravity. Consequently,
shrinking it would just mee the bits appropriatelynd no exposurevent is needed for repaint-

ing.

If a composite widge$' children should be realized in an order other than that specified (to control
the stacking ordefor example), it should caKtRealizeWidget on its children itself in the
appropriate order from within its own realize procedure.

Widgets that hae dildren and whose class is not a subclassoofipositeWidgetClassare
responsible for calling(tRealizeWidget on their children, usually from within the realize proce-
dure.

Realize procedures cannot manage or unmanage their descendants.

2.6.2. Window Creation Convenience Routine

Rather than call the XliiXCreateWindow function explicitly a realize procedure should nor-
mally call the Intrinsics analo¥tCreateWindow, which simplifies the creation of windows for
widgets.

void XtCreateWindowy, window_classvisual value_maskattributeg
Widgetw;
unsigned intvindow_class
Visual *visuat
XtValueMaskvalue _mask
XSetWindowAttributes attributes

w Specifies the widget that defines the additional windtiributed. Mustbe of
class Core or gnsubclass thereof.

window_class Specifies the Xlib winde class (for &le, InputOutput , InputOnly , or

CopyFromParent).
visual Specifies the visual type (usuallopyFromParent).
value_mask Specifies which fields in thetributesstructure are used.
attributes Specifies the winde attributes to use in th¥CreateWindow call.

The XtCreateWindow function calls the XlibXCreateWindow function with values from the
widget structure and the passed parameters. Then, it assigns the creatediavthdavidget’'s
windowfield.

XtCreateWindow evduates the following fields of the widget core structaiepth screen par-
ent->corewindow X, y, width, height and border_width

50

X Toolkit Intrinsics X11 Release 6.8

2.7. Obtaining Window Information from a Widget

The Core widget class definition contains the screen and wiitito Thewindowfield may be
NULL for a while (see Sections 2.5 and 2.6).

The display pointethe parent widget, screen pointard windav of a widget are aailable to the
widget writer by means of macros and to the application writer by means of functions.

Display *XtDisplay{w)
Widgetw;

w Specifies the widget. Must be of class Core grsaclass thereof.

XtDisplay returns the display pointer for the specified widget.

Widget XtParentf)
Widgetw;

w Specifies the widget. Must be of class Object grsabclass thereof.

XtParent returns the parent object for the specified widget. The returned object will be of class
Object or a subclass.

Screen *XtScreem()
Widgetw;

w Specifies the widget. Must be of class Core grsaclass thereof.

XtScreenreturns the screen pointer for the specified widget.

Window XtWindow(w)
Widgetw;

w Specifies the widget. Must be of class Core grsaclass thereof.
XtWindow returns the winde of the specified widget.

The display pointeiscreen pointerand windav of a widget or of the closest widget ancestor of a
nonwidget object arevailable by means oKtDisplayOfObject, XtScreenOfObject, and
XtwWindowOfObiject .

Display *XtDisplayOfObject¢bjec)
Widgetobject

object Specifies the object. Must be of class Object grsabclass thereof.

XtDisplayOfObiject is identical in function toXtDisplay if the object is a widget; otherwise
XtDisplayOfObject returns the display pointer for the nearest ancestobjettthat is of class
Widget or a subclass thereof.

51

X Toolkit Intrinsics X11 Release 6.8

Screen *XtScreenOfObjedtjec)
Widgetobject

object Specifies the object. Must be of class Object grsabclass thereof.

XtScreenOfObject is identical in function toXtScreen if the object is a widget; otherwise
XtScreenOfObject returns the screen pointer for the nearest ancesuadj@dtthat is of class
Widget or a subclass thereof.

Window XtWindowOfObjectobjec)
Widgetobject

object Specifies the object. Must be of class Object grsabclass thereof.

XtwWindowOfObiject is identical in function toXtWindow if the object is a widget; otherwise
XtwWindowOfObject returns the winde for the nearest ancestorafjectthat is of class Widget
or a subclass thereof.

To retrieve the instance name of an object, dXddlame.

String XtNamegbjec)
Widgetobject

object Specifies the object whose name is desired. Must be of class Objegtsuban
class thereof.

XtName returns a pointer to the instance name of the specified object. The storage is owned by
the Intrinsics and must not be modified. The name is not qualified by the namgbfren
objects ancestors.

Several window attributes are locally cached in the widget instance. Thug,ddme be set by the
resource manager andSetValuesas well as used by routines that dergructures from these
values (for examplegepthfor deriving pixmapsbackground_pixeflor deriving GCs, and so on)
or in theXtCreateWindow call.

Thex, y, width, height and border_widthwindow attributes are ailable to geometry managers.
These fields are maintained synchronously inside the Intrinsics. Whe@amfigureWindow

is issued by the Intrinsics on the widgetindow (on request of its parent), these values are
updated immediately rather than some time later when the server geneatggyareNotify

evant. (Infact, most widgets do not seleBubstructureNotify events.) Thisensures that all
geometry calculations are based on the internally consistent toolkit world rather than on either an
inconsistent world updated by asynchron@anfigureNotify events or a consistent, but sp

world in which geometry managers ask the server for wirgipes wheneer they need to lay out

their managed children (see Chapter 6).

2.7.1. Unrealizing Widgets

To destrgy the windows associated with a widget and its non-pop-up descendarntsUmseal-
izeWidget.

52

X Toolkit Intrinsics X11 Release 6.8

void XtUnrealizeWidgetf)
Widgetw;

w Specifies the widget. Must be of class Core grsaclass thereof.

If the widget is currently unrealizeXtUnrealizeWidget simply returns. Otherwise it performs
the following:

. Unmanages the widget if the widget is managed.

. Makes a postorder (child-to-parentvaesal of the widget tree rooted at the specified wid-
get and, for each widget that has declared a callback list resource named “unrealizeCall-
back”, executes the procedures on the XtNunrealizeCallback list.

. Destroys the widget'window and ary subwindows by callingKDestroyWindow with the
specified widget'svindowfield.

Any events in the queue or which arei following a call toXtUnrealizeWidget will be dis-
patched as if the window(s) of the unrealized widget(s) haer eeisted.

2.8. Destoying Widgets
The Intrinsics provide support

. To destrq all the pop-up children of the widget being destroyed and deatlrohildren of
composite widgets.

. To remove (@and unmap) the widget from its parent.

. To call the callback procedures thatvedeen registered to trigger when the widget is
destroyed.

. To minimize the number of things a widget has to deallocate when destroyed.
. To minimize the number oKDestroyWindow calls when destroying a widget tree.

To destrgy a widget instance, us¥tDestroyWidget.

void XtDestroyWidget{)
Widgetw;

w Specifies the widget. Must be of class Object grsabclass thereof.

The XtDestroyWidget function provides the only method of destroying a widget, including wid-
gets that need to desyrthemseles. ltcan be called at griime, including from an application
callback routine of the widget being destd. Thisrequires a two-phase destnarocess in

order to &oid dangling references to destroyed widgets.

In phase 1XtDestroyWidget performs the following:
. If thebeing_destroyetleld of the widget islIt ue, it returns immediately.

. Recursvely descends the widget tree and setditiag_destroyetield to Tr ue for the
widget and all normal and pop-up children.

. Adds the widget to a list of widgets (the degtlist) that should be destroyed when it is
safe to do so.

Entries on the destydist satisfy the imariant that if w2 occurs after wl on the degthst, then
w2 is not a descendent, either normal or pop-up, of wl.

Phase 2 occurs when all procedures that showltliee as a result of the currentet have keen
called, including all procedures registered with theneand translation managers, that is, when

53

X Toolkit Intrinsics X11 Release 6.8

the current imocation of XtDispatchEvent is about to return, or immediately if not XtDis-
patchEvent.

In phase 2XtDestroyWidget performs the following on each entry in the degtist in the
order specified:

. If the widget is not a pop-up child and the widgetrent is a subclass cbmposite-
WidgetClass and if the parent is not being destroyed, it cXit8inmanageChild on the
widget and then calls the widgeparents delete_child procedure (see Section 3.3).

. Calls the destrpcallback procedures registered on the widget and all normal and pop-up
descendants in postorder (it calls child callbacks before parent callbacks).

The XtDestroyWidget function then makes secondvieesal of the widget and all normal and
pop-up descendants to perform the following three items on each widget in postorder:

. If the widget is not a pop-up child and the widgetrent is a subclass obnstraint-
WidgetClass it calls theConstraintClassPart destry procedure for the parent, then for
the parens auperclass, until finally it calls th€onstraintClassPart destry procedure for
constraintWidgetClass.

. Calls theCoreClassPartdestry procedure declared in the widget class, then the destroy
procedure declared in its superclass, until finally it calls the ggstpcedure declared in
the Object class record. Callback lists are deallocated.

. If the widget class object class part contain®ajectClassExtensionrecord with the
record_typeNULLQ UARK and thedeallocatefield is not NULL, calls the deallocate pro-
cedure to deallocate the instance and if one exists, the constraint record. Otherwise, the
Intrinsics will deallocate the widget instance record and if one exists, the constraint record.

. Calls XDestroyWindow if the specified widget is realized (that is, has an X wi)ddrhe
server recurgely destroys all normal descendant wingo (Wndows of realized pop-up
Shell children, and their descendants, are destroyed by a shell clasg plestedure.)

2.8.1. Addingand Removing Destroy Callbacks

When an application needs to perform additional processing during the destruction of a widget, it
should register a desyr@allback procedure for the widget. The degtrallback procedures use

the mechanism described in Chapter 8. The desaitback list is identified by the resource

name XtNdestroyCallback.

For example, the following adds an application-supplied dgstatiback procedur€lientDe-
stroywith client data to a widget by callingtAddCallback .

XtAddCallbackv, XtNdestroyCallbackClientDestroy client_datg

Similarly, the following remees the application-supplied desyroallback procedur€lientDe-
stroyby calling XtRemoveCallback.

XtRemoveCallback{v, XtNdestroyCallbackClientDestroy client_datg

TheClientDestroyargument is of typetCallbackProc ; see Section 8.1.

2.8.2. DynamicData Deallocation: The destroy Procedure

The destrg procedure pointers in th@bjectClassPart, RectObjClassPart, and CoreClass-
Part structures are of typ¥tWidgetProc.

54

X Toolkit Intrinsics X11 Release 6.8

typedef void (*XtWidgetProc)(Widget);
Widgetw;

w Specifies the widget being destroyed.

The destrg procedures are called in subclass-to-superclass. oftierefore, a widges'destroy
procedure should deallocate only storage that is specific to the subclass and should ignore the
storage allocated by wrmwf its superclasses. The degtprocedure should deallocate only

resources that kra been explicitly created by the subclass.yAesource that was obtained from

the resource database or passed in an argument list was not created by the widget and therefore
should not be destroyed by it. If a widget does not need to deallogaseye, the destroy
procedure entry in its class record can be NULL.

Deallocating storage includes, but is not limited to, the following steps:

. Calling XtFree on dynamic storage allocated wittMalloc , XtCalloc, and so on.
. Calling XFreePixmap on pixmaps created with direct X calls.

. Calling XtReleaseGCon GCs allocated witiKtGetGC.

. Calling XFreeGC on GCs allocated with direct X calls.

. Calling XtRemoveEventHandler on evzent handlers added to other widgets.

. Calling XtRemoveTimeOut on timers created witKtAppAddTimeOut .

. Calling XtDestroyWidget for each child if the widget has children and is not a subclass of
compositeWidgetClass

During destry phase 2 for each widget, the Intrinsics remine widget from the modal cascade,
unregister all eent handlers, reme dl key, keyboard, button, and pointer grabs and reendl
callback procedures registered on the widgety dutstanding selection transfers will time out.

2.8.3. DynamicConstraint Data Deallocation: The ConstraintClassPart destroy Procedure

The constraint destyqorocedure identified in th€onstraintClassPart structure is called for a
widget whose parent is a subclassofstraintWidgetClass. This constraint destyoprocedure
pointer is of typeXtWidgetProc. The constraint destygrocedures are called in subclass-to-
superclass ordegtarting at the class of the widgeparent and ending &bnstraint-

WidgetClass Therefore, a parerst'oionstraint destipprocedure should deallocate only storage
that is specific to the constraint subclass and not storage allocateg dfyitarsuperclasses.

If a parent does not need to deallocate @mstraint storage, the constraint degipmcedure
entry in its class record can be NULL.

2.8.4. Wdget Instance Deallocation: The deallocate Procedure

The deallocate procedure pointer in BbjectClassExtensionrecord is of typeXtDeallo-
cateProc.

55

X Toolkit Intrinsics X11 Release 6.8

typedef void (*XtDeallocateProc)(Widget, XtPointer);
Widgetwidget
XtPointermore_bytes

widget Specifies the widget being destroyed.

more_bytes Specifies the auxiliary memory reeed from the corresponding allocator along
with the widget, or NULL.

When a widget is destroyed, if @bjectClassExtensionrecord exists in the object class part
exensionfield with record_typeNULLQ UARK and thedeallocatefield is not NULL, the
XtDeallocateProcwill be called. If no ObjectClassPart extension record is declared with
record_typeequal toNULLQ UARK, then XtInheritAllocate andXtinheritDeallocate are

assumed. Theesponsibilities of the deallocate procedure are to deallocate the memory specified
by more_bytedf it is not NULL, to deallocate the constraints record as specified by the widget's
core constraintsfield if it is not NULL, and to deallocate the widget instance itself.

If no XtDeallocateProcis found, it is assumed that the Intrinsics originally allocated the memory
and is responsible for freeing it.

2.9. Exiting from an Application

All X Toolkit applications should terminate by callingDestroyApplicationContext and then

exiting using the standard method for their operating system (typibglalling exit for

POSIX-based systems). The quickest way toeria& windows disappear while exiting is to call
XtUnmapWidget on each top-hkel shell widget. The Intrinsics v ro resources beyond those

in the program image, and the X server will free its resources when its connection to the applica-
tion is broken.

Depending upon the widget set in use, it may be necessary to explicitlyydedtwdual wid-

gets or widget trees witKtDestroyWidget before callingXtDestroyApplicationContext in

order to ensure that gnequired widget cleanup is properbyeeuted. Theapplication deeloper

must refer to the widget documentation to learn if a widget needs to perform cleanup beyond that
performed automatically by the operating system. If the client is a session participant (see Sec-
tion 4.2), then the client may wish to resign from the session befibrege SeeSection 4.2.4 for
details.

56

X Toolkit Intrinsics X11 Release 6.8

Chapter 3
Composite Widgets and Their Children

Composite widgets (widgets whose class is a subclaszngpositeWidgetClas$ can hae an
arbitrary number of children. Consequenthgy are responsible for much more than prirati
widgets. Theiresponsibilities (either implemented directly by the widget class or indirectly by
Intrinsics functions) include:

. Overall management of children from creation to destruction.
. Destruction of descendants when the composite widget is destroyed.

. Physical arrangement (geometry management) of a displayable subset of children (that is,
the managed children).

. Mapping and unmapping of a subset of the managed children.

Overall management is handled by the generic procedii€reateWidget and XtDestroyWid-
get. XtCreateWidget adds children to their parent by calling the pageinsert_child proce-
dure. XtDestroyWidget removes dhildren from their parent by calling the parerdtlete_child
procedure and ensures that all children of a destroyed composite widget also get destroyed.

Only a subset of the total number of children is actually managed by the geometry manager and
hence possibly visibleFor example, a composite editor widget supporting multiple editing

buffers might allocate one child widget for each file butbat it might display only a small num-

ber of the existing bédrs. Wdgets that are in this displayable subset are called managed widgets
and enter into geometry manager calculations. The other children are called unmanaged widgets
and, by definition, are not mapped by the Intrinsics.

Children are added to and reved from their parens managed set by usingtManageChild,
XtManageChildren, XtUnmanageChild, XtUnmanageChildren, and XtChangeManaged-

Set, which notify the parent to recalculate the physical layout of its children by calling the par-
ent’s change_managed procedure. TXt€reateManagedWidget corvenience function calls
XtCreateWidget and XtManageChild on the result.

Most managed children are mapped, but some widgets can be in a state whiaie tine ghysi-
cal space but do not sh@nything. Managedavidgets are not mapped automatically if their
map_when_mared field is False. The default isTr ue and is changed by usir¥tSetMapped-
WhenManaged

Each composite widget class declares a geometry mamdgeh is responsible for figuring out
where the managed children should appear within the composite widigetow. Geometry
management techniques fall into four classes:

Fixed boxes Fired boxes ha a fked humber of children created by the parent. All
these children are managed, and nome makes geometry manager
requests.

Homogeneous bes Homogeneousoxes treat all children equally and apply the same
geometry constraints to each child. Mafients insert and delete wid-
gets freely.

Heterogeneous bes Heterogeneoumxes hae a pecific location where each child is
placed. Thidocation usually is not specified in pixels, because the
window may be resized, but is expressed rather in terms of the relation-
ship between a child and the parent or between the child and other spe-
cific children. The class of heterogeneous boxes is usually a subclass
of Constraint.

57

X Toolkit Intrinsics X11 Release 6.8

Shell boxes Shelboxes typically hae anly one child, and the chilg'sze is usually
exactly the size of the shell. The geometry manager must communicate
with the windav managerif it exists, and the box must also accept
ConfigureNotify events when the winde size is changed by the win-
dow manager.

3.1. Addition of Children to a Composite Widget: The insert_child Procedure

To add a child to the paremtlist of children, theXtCreateWidget function calls the parent’s
class routine insert_child. The insert_child procedure pointer in a composite widget is of type
XtwidgetProc.

typedef void (*XtWidgetProc)(Widget);
Widgetw;

w Passes the newly created child.

Most composite widgets inherit their superclasperation. Thensert_child routine irCom-
positeWidgetClasalls and inserts the child at the specified position ircliédren list, expand-
ing it if necessary.

Some composite widgets define their own insert_child routine so tlyataherder their children
in some cowenient way create companion controller widgets for ameidget, or limit the num-
ber or class of their child widget& composite widget class that wishes toallwnwidget chil-
dren (see Chapter 12) must specif@@npositeClassExtensiorextension record as described in
Section 1.4.2.1 and set thecepts_objectield in this record tdrr ue. If the CompositeClas-
sExtensionrecord is not specified or tlaecepts_objecteld is False, the composite widget can
assume that all its children are of a subclass of Core without an explicit subclass test in the
insert_child procedure.

If there is not enough room to insert awahild in thechildren array (that isnum_childreris

equal tonum_slot} the insert_child procedure must first reallocate the array and update
num_slots The insert_child procedure then places the child at the appropriate position in the
array and increments tmeim_childrerfield.

3.2. Insertion Order of Children: The insert_position Procedure

Instances of composite widgets sometimes need to specify more about the order in which their
children are kpt. For example, an application may want a set of command buttons in some logi-
cal order grouped by function, and it may want buttons that represent file names to be kept in
alphabetical order without constraining the order in which the buttons are created.

An application controls the presentation order of a set of children by supplying an XtNinsertPosi-
tion resource. The insert_position procedure pointer in a composite widget instance is of type
XtOrderProc .

typedef Cardinal (*XtOrderProc)(Widget);
Widgetw;

w Passes the newly created widget.
Composite widgets that alloclients to order their children (usually homogeneous boxes) can call
their widget instance’insert_position procedure from the classsert_child procedure to deter-

mine where a ne child should go in ithildren array Thus, a client using a composite class can
apply different sorting criteria to widget instances of the class, passing in a different

58

X Toolkit Intrinsics X11 Release 6.8

insert_position procedure resource when it creates each composite widget instance.

The return value of the insert_position procedure indicateseary children should go before
the widget. Returning zero indicates that the widget should go before all other children, and
returningnum_childrerindicates that it should go after all other children. The default
insert_position function returmsum_childrerand can bewerridden by a specific composite wid-
get’s resource list or by the argument list provided when the composite widget is created.

3.3. Deletionof Children: The delete_child Procedure

To remove the child from the parentshildren list, the XtDestroyWidget function ezentually
causes a call to the Composite paredtiss delete_child procedure. The delete_child procedure
pointer is of typeXtWidgetProc .

typedef void (*XtWidgetProc)(Widget);
Widgetw;

w Passes the child being deleted.

Most widgets inherit the delete_child procedure from their superclass. Composite widgets that
create companion widgets define their own delete_child procedure teerdrase companion
widgets.

3.4. Addingand Removing Children from the Managed Set

The Intrinsics provide a set of generic routines to permit the addition of widgets to or thvelremo
of widgets from a composite widgetranaged set. These generic routinemwially call the
composite widget dhange_managed procedure if the procedure pointer is non-NULL. The
change_managed procedure pointer is of fWidgetProc. The widget argument specifies the
composite widget whose managed child set has been modified.

3.4.1. ManagingChildren

To add a list of widgets to the geometry-managed (and hence displayable) subset of their Com-
posite parent, us&tManageChildren.

typedef Widget *WidgetList;

void XtManageChildrerghildren, num_childrei
WidgetListchildren;
Cardinalnum_children

children Specifies a list of child widget€ach child must be of class RectObj oy anb-
class thereof.
num_children Specifies the number of children in the list.

The XtManageChildren function performs the following:

. Issues an error if the children do not ald#ne same parent or if the paramass is not a
subclass otompositeWidgetClass

. Returns immediately if the common parent is being destroyed; otherwise, for each unique
child on the list XtManageChildren ignores the child if it already is managed or is being
destroyed, and marks it if not.

59

X Toolkit Intrinsics X11 Release 6.8

. If the parent is realized and after all childremenbeen marked, it makes some of the newly
managed children wesble:
- Calls the change_managed routine of the widgets’ parent.
- Calls XtRealizeWidget on each previously unmanaged child that is unrealized.
- Maps each previously unmanaged child thatrhags_when_marged Tr ue.

Managing children is independent of the ordering of children and independent of creating and
deleting children. The layout routine of the parent should consider children wiaosged field

is True and should ignore all other children. Note that some composite widgets, especially fixed
boxes, callXtManageChild from their insert_child procedure.

If the parent widget is realized, its change_managed procedure is called to notify it that its set of
managed children has changed. The parent can reposition and rgotéschildren. It mees

each child as needed by calliXgMo veWidget, which first updates theandy fields and which

then callsXMoveWindow.

If the composite widget wishes to change the size or border widtly of &s children, it calls
XtResizeWidget, which first updates theidth, height and border_widthfields and then calls
XConfigureWindow. Smultaneous repositioning and resizing may be done Xt€@onfig-
ureWidget; see Section 6.6.

To add a single child to its parent widge#et of managed children, ud@ManageChild .

void XtManageChild¢hild)
Widgetchild;

child Specifies the child. Must be of class RectObj grsubclass thereof.

The XtManageChild function constructs &VidgetList of length 1 and callXtManageChil-
dren.

To aeate and manage a child widget in a single proceduret@eateManagedWidget or
XtVaCreateManagedWidget

Widget XtCreateManagedWidgeime widget_classparent args num_arg$
Stringname
WidgetClassvidget_class
Widgetparent
ArgList args
Cardinalnum_args
name Specifies the resource instance name for the created widget.

widget_class Specifies the widget class pointer for the created widget. Musich®bjClass
or ary subclass thereof.

parent Specifies the parent widget. Must be of class Compositeyosudnclass thereof.
args Specifies the argument list tvaoride ary other resource specifications.
num_args Specifies the number of entries in the argument list.

The XtCreateManagedWidget function is a comenience routine that callXtCreateWidget
and XtManageChild.

60

X Toolkit Intrinsics X11 Release 6.8

Widget XtVaCreateManagedWidge#{me widget_classparent ...)
Stringname
WidgetClassvidget_class
Widgetparent
name Specifies the resource instance name for the created widget.

widget_class Specifies the widget class pointer for the created widgeist berectObjClass
or ary subclass thereof.

parent Specifies the parent widgelust be of class Composite oryasubclass thereof.
Specifieshe variable argument list tov@ride ary other resource specifications.

XtVaCreateManagedWidget s identical in function tXtCreateManagedWidget with the
argsandnum_arggparameters replaced by a varargs list, as described in Section 2.5.1.

3.4.2. UnmanagingChildren
To remove a Ist of children from a parent widgstmanaged list, us&tUnmanageChildren.

void XtUnmanageChildrerpildren, num_childrei
WidgetListchildren;
Cardinalnum_children

children Specifies a list of child widget€ach child must be of class RectObj oy anb-
class thereof.
num_children Specifies the number of children.

The XtUnmanageChildren function performs the following:
. Returns immediately if the common parent is being destroyed.

. Issues an error if the children do not ald#ne same parent or if the parent is not a sub-
class ofcompositeWidgetClass

. For each unique child on the listtUnmanageChildren ignores the child if it is unman-
aged; otherwise it performs the following:

- Marks the child as unmanaged.
- If the child is realized and tmeap_when_margd field is True, it is unmapped.

. If the parent is realized and ifyachildren hae become unmanaged, calls the change_man-

aged routine of the widgets’ parent.
XtUnmanageChildren does not destgothe child widgets. Removing widgets from a parent’s

managed set is often a temporary banishment, and some time later the client may manage the

children agin. To destrgy widgets entirelyXtDestroyWidget should be called instead; see Sec-
tion 2.9.

To remove a #ngle child from its parent widgetmanaged set, usétUnmanageChild.

61

X Toolkit Intrinsics X11 Release 6.8

void XtUnmanageChildthild)
Widgetchild;

child Specifies the child. Must be of class RectObj grsubclass thereof.

The XtUnmanageChild function constructs a widget list of length 1 and cXlignman-
ageChildren.

These functions are lowsd routines that are used by generic composite widget building rou-
tines. Inaddition, composite widgets can provide widget-specific, higé-t®rnvenience proce-
dures.

3.4.3. BundlingChanges to the Managed Set

A client may simultaneously unmanage and manage children with a single call to the Intrinsics.

In this same call the client may provide a callback procedure that can modify the geometries of
one or more children. The composite widget class defines whether this single client call results in
separate wocations of the change_managed method, one to unmanage and the other to manage,
or in just a single wocation.

To amultaneously remee from and add to the geometry-managed set of children of a composite
parent, us&XtChangeManagedSet

void XtChangeManagedSetimanae_children num_unmange_children

do_change_praclient_data
manae_children num_mange_children

WidgetListunmange_children

Cardinalnum_unmange_children

XtDoChangeProdo_change_pragc

XtPointerclient_data

WidgetListmanage _children

Cardinalnum_mange_children

unmanae_children Specifies the list of widget children to initially reweofrom the
managed set.

num_unmange_children Specifies the number of entries in themange_childrenlist.

do_change_proc Specifies a procedure tovoke between unmanaging and managing
the children, or NULL.

client_data Specifies client data to be passed to the do_change_proc.

manaye_children Specifies the list of widget children to finally add to the managed
set.

num_mange_children Specifies the number of entries in thanaye_childrenlist.

The XtChangeManagedSetfunction performs the following:
. Returns immediately itum_unmange_childrenandnum_mange_childrenare both O.

. Issues a warning and returns if the widgets specified imémage_childrenand the
unmange_childrenlists do not all hee the same parent or if that parent is not a subclass of
compositeWidgetClass

. Returns immediately if the common parent is being destroyed.

. If do_change_prots not NULL and the parent€ompositeClassExtension
allows_change_maiged_seffield is False, then XtChangeManagedSetperforms the

62

X Toolkit Intrinsics X11 Release 6.8

following:
- Calls XtUnmanageChildren (unmange_children num_unmange_children).
- Calls thedo_change_prac
- Calls XtManageChildren (manage_children num_mange_children).
. Otherwise, the following is performed:

- For each child on thenmanae_childrenlist; if the child is already unmanaged it is
ignored, otherwise it is marked as unmanaged, and if it is realized and its
map_when_marmged field is Tr ue, it is unmapped.

- If do_change_prots non-NULL, the procedure isvoked.

- For each child on thmanaye_childrenlist; if the child is already managed or is
being destroyed, it is ignored; otherwise it is marked as managed.

- If the parent is realized and after all childremenbeen marked, the change_managed
method of the parent isvoked, and subsequently some of the newly managed chil-
dren are made weable by callingXtRealizeWidget on each previously unmanaged
child that is unrealized and mapping each previously unmanaged child that has
map_when_marged Tr ue.

If no CompositeClassExtensionecord is found in the pareattomposite class paettension
field with record typeNULLQ UARK and version greater than 1, an&itnheritChangeMan-
agedwas Pecified in the parerg’dass record during class initialization, the value of the
allows_change_mamad_seffield is inherited from the superclass. The value inherited from
compositeWidgetClasdor theallows_change_margad_seffield is False.

It is not an error to include a child in both temange_childrenand themanage_childrenlists.
The effect of such a call is that the child remains managed following the call, but the
do_change_prots able to affect the child while it is in an unmanaged state.

Thedo_change_prots of type XtDoChangeProc.

typedef void (*XtDoChangeProc)(Widget, WidgetList, Cardinal*, WidgetList, Cardinal*, XtPointer);
Widgetcomposite_parent
WidgetListunmange_children
Cardinal "num_unmange_children
WidgetListmanage_children
Cardinal num_mange_children
XtPointerclient_data

composite_parent Passes the composite parent whose managed set is being altered.
unmanae_children Passes the list of children just ressol from the managed set.
num_unmange _children Passes the number of entries in tirenange_childrenlist.
manae_children Passes the list of children about to be added to the managed set.
num_mange_children Passes the number of entries in thanaye_childrenlist.

client_data Passes the client data passeXt€hangeManagedSet

Thedo_change_proprocedure is used by the callerXtChangeManagedSeto male changes

to one or more children at the point when the managed set contains the fewest entries. These
changes may uolve geometry requests, and in this case the callétGhangeManagedSet

may tale advantage of the fact that the Intrinsics internally grant geometry requests made by
unmanaged children withoutvoking the parens geometry managerTo achieve this advantage,

if the do_change_proprocedure changes the geometry of a child or of a descendant of a child,
then that child should be included in tmemange_childrenandmanage_childrenlists.

63

X Toolkit Intrinsics X11 Release 6.8

3.4.4. Determiningif a Widget Is Managed
To determine the managed state of\aegichild widget, useXtisManaged.

Boolean XtlsManage#()
Widgetw;

w Specifies the widget. Must be of class Object grsabclass thereof.

The XtlsManaged function returnsTr ue if the specified widget is of class RectObj oy anb-
class thereof and is managed Fatse otherwise.

3.5. Controlling When Widgets Get Mapped

A widget is normally mapped if it is managed. Hewrethis behavior can beverridden by set-
ting the XtNmappedWhenManaged resource for the widget when it is created or by setting the
map_when_marged field to False.

To change the value of avgn widget'smap_when_margd field, useXtSetMappedWhen-
Managed.

void XtSetMappedWhenManaged(map_when_marggd)
Widgetw;
Booleanmap_when_marugd;

w Specifies the widget. Must be of class Core grsaclass thereof.

map_when_marggzd
Specifies a Boolearalue that indicates the wevalue that is stored into the wid-
get'smap_when_marued field.

If the widget is realized and managed, amddip_when_marged is Tr ue, XtSetMapped-
WhenManaged maps the winde. If the widget is realized and managed, and if
map_when_marmggd is False, it unmaps the winde. XtSetMappedWhenManagedis a con-
venience function that is equalent to (but slightly faster than) callingtSetValuesand setting

the naev value for the XtNmappedwWhenManaged resource then mapping the widget as appropri-
ate. Asan alternatie © using XtSetMappedWhenManagedto control mapping, a client may
setmapped_when_maged to False and useXtMapWidget and XtUnmapWidget explicitly.

To map a widget explicitlyuse XtMapWidget .
XtMapWidget{w)
Widgetw;

w Specifies the widget. Must be of class Core grsaclass thereof.

To unmap a widget explicitlyuse XtUnmapWidget .

64

X Toolkit Intrinsics X11 Release 6.8

XtUnmapWidget{)
Widgetw;

w Specifies the widget. Must be of class Core grsaclass thereof.

3.6. ConstrainedComposite Widgets

The Constraint widget class is a subclassahpositeWidgetClass The name is dered from

the fact that constraint widgets may manage the geometry of their children based on constraints
associated with each child. These constraints can be as simple as the maximum width and height
the parent will allav the child to occupor can be as complicated aswother children should

change if this child is med or resized. Constrainvidgets let a parent define constraints as
resources that are supplied for their childrEor example, if the Constraint parent defines the
maximum sizes for its children, thesewn®ze resources are retviegl for each child as if they

were resources that were defined by the child widgketss. Accordinglyconstraint resources

may be included in the argument list or resource file justdily ather resource for the child.

Constraint widgets hva dl the responsibilities of normal composite widgets and, in addition,
must process and act upon the constraint information associated with each of their children.

To make it easy for widgets and the Intrinsics to keep track of the constraints associated with a
child, every widget has &onstraintdield, which is the address of a parent-specific structure that
contains constraint information about the child. If a chifgirent does not belong to a subclass
of constraintWidgetClass, then the child'sonstraintsfield is NULL.

Subclasses of Constraint can add constraint data to the constraint record defined by their super-
class. © dlow this, widget writers should define the constraint records in theaterih file by

using the same cwentions as used for widget recordsor example, a widget class that needs to
maintain a maximum width and height for each child might define its constraint record as fol-
lows:

typedef struct {
Dimension max_width, max_height;
} M axConstraintPart;

typedef struct {
MaxConstraintPart max;
} M axConstraintRecord, *MaxConstraint;

A subclass of this widget class that also needs to maintain a minimum size would define its con-
straint record as follows:

typedef struct {
Dimension min_width, min_height;
} MinConstraintPart;

typedef struct {
MaxConstraintPart max;
MinConstraintPart min;

} M axMinConstraintRecord, *MaxMinConstraint;

Constraints are allocated, initialized, deallocated, and otherwise maintained insofar as possible by
the Intrinsics. The Constraint class record part heeraleentries that facilitate this. All entries

in ConstraintClassPart are fields and procedures that are defined and implemented by the par-
ent, but thg are called wheneer actions are performed on the parsrdiildren.

65

X Toolkit Intrinsics X11 Release 6.8

The XtCreateWidget function uses theonstraint_sizdield in the parens dass record to allo-

cate a constraint record when a child is creab¢iCreateWidget also uses the constraint

resources to fill in resource fields in the constraint record associated with a child. It then calls the
constraint initialize procedure so that the parent can compute constraint fields thawvade deri

from constraint resources and can possiblyenm resize the child to conform to thevgn con-

straints.

When theXtGetValues and XtSetValuesfunctions are xecuted on a child, theuse the con-
straint resources to get the values or set the values of constraints associated with that child.
XtSetValuesthen calls the constraint set_values procedures so that the parent can recompute
derived constraint fields and nve a resize the child as appropriate. If a Constraint widget class
or ary of its superclasses V@ ceclared aConstraintClassExtensionrecord in theConstraint-
ClassPart exensionfields with a record type oULLQ UARK and theget_values_hoofkield in

the extension record is non-NULKtGetValues calls the get_values_hook procedure(s) to allow
the parent to return deed constraint fields.

The XtDestroyWidget function calls the constraint desgrprocedure to deallocate ydynamic
storage associated with a constraint record. The constraint record itself must not be deallocated
by the constraint destygrocedure XtDestroyWidget does this automatically.

66

X Toolkit Intrinsics X11 Release 6.8

Chapter 4
Shell Widgets

Shell widgets hold an applicati@ibp-level widgets to allav them to communicate with the win-
dow manager and session manag@hnells hae been designed to be as nearly invisible as possi-
ble. Clientshave o areate them, but tlyeshould ne&er haveto worry about their sizes.

If a shell widget is resized from the outside (typically by a wmdwmnager), the shell widget

also resizes its managed child widget automatic&imilarly, if the shells child widget needs to
change size, it can malka ggometry request to the shell, and the shell negotiates the size change
with the outer evironment. Clientshould neer attempt to change the size of their shells

directly.

The five types of public shells are:

OverrideShell Used for shell windows that completely bypass the wind@anager
(for example, pop-up menu shells).

TransientShell Used for shell windows that & the WM_TRANSIENT_FOR prop-
erty set. The effect of this property is dependent upon the window
manager being used.

TopLevelShell Used for normal top-iesl windows (for example, gnadditional top-
level widgets an application needs).

ApplicationShell Formerly used for the single main topAgwindow that the window
manager identifies as an application instance and made obsolete by
SessionShell.

SessionShell Used for the single main topvi@ window that the winder manager

identifies as an application instance and that interacts with the ses-
sion manager.

4.1. Shellwidget Definitions

Widgets negotiate their size and position with their parent widget, that is, the widget that directly
contains themWidgets at the top of the hierayctio not have parent widgets. Instead, thenust

deal with the outside avrld. To provide for this, each topel widget is encapsulated in a special
widget, called a shell widget.

Shell widgets, whose class is a subclass of the Composite class, encapsulate other widgets and
can allav a widget to aoid the geometry clipping imposed by the parent-child windselation-
ship. The also can provide a layer of communication with the wimdoanager.

The eight different types of shells are:

Shell The base class for shell widgets; provides the fields needed for all types
of shells. Shell is a direct subclassomimpositeWidgetClass

OverrideShell A subclass of Shell; used for shell windows that completely bypass the
window manager.

67

X Toolkit Intrinsics X11 Release 6.8

WMShell A subclass of Shell; contains fields needed by the common wingm-
ager protocol.

VendorShell A subclass of WMShell; contains fields used by vendor-specific window
managers.

Tr ansientShell A subclass of VendorShell; used for shell windows that desire the
WM_TRANSIENT_FOR property.

TopLevelShell A subclass of VendorShell; used for normal togelevindows.

ApplicationShell A subclass of TopLe=lShell; may be used for an applicatisadditional
root windows.

SessionShell A subclass of ApplicationShell; used for an applicasamin root win-
dow.

Note that the classes Shell, WMShell, and VendorShell are internal and should not be instantiated
or subclassed. Only OverrrideShell, TransientShell, TegBhell, ApplicationShell, and Ses-
sionShell are intended for public use.

4.1.1. ShellClass&rt Definitions

Only the Shell class has additional class fields, which are all containedShe¢h€lassExten-
sionRec None of the other Shell classev&any aditional class fields:

typedef struct {
XtPointer extension;
} ShellClassPart, OverrideShellClassPart,
WMShellClassPart, VendorShellClassPart, TransientShellClassPart,
TopLevelShellClassPart, ApplicationShellClassPart, SessionShellClassPart;

The full Shell class record definitions are:

typedef struct _ShellClassRec {

CoreClassért core_class;
CompositeClassitt composite_class;
ShellClassBrt shell_class;

} ShellClassRec;

typedef struct {
XtPointer net_extension; Se&ection 1.6.12
XrmQuark record_type; See Section 1.6.12
long \ersion; Seé&ection 1.6.12
Cardinal record_size; See Section 1.6.12
XtGeometryHandler root_geometry_manager; See below

} ShellClassExtensionRec, *ShellClassExtension;

typedef struct _OverrideShellClassRec {

CoreClassért core_class;
CompositeClassitt composite_class;
ShellClassBrt shell_class;
OverrideShellClassit override_shell_class;

} OverrideShellClassRec;

68

X Toolkit Intrinsics

typedef struct _WMShellClassRec {
CoreClassért
CompositeClassitt
ShellClassBrt
WMShellClassBart

} WMShellClassRec;

X11 Release 6.8

core_class;
composite_class;
shell_class;
wm_shell_class;

typedef struct _VendorShellClassRec {

CoreClassért

CompositeClassitt

ShellClassBrt

WMShellClassRart

VendorShellClassétt
} VendorShellClassRec;

core_class;
composite_class;
shell_class;
wm_shell_class;
vendor_shell_class;

typedef struct _TransientShellClassRec {

CoreClassért

CompositeClassitt

ShellClassBrt

WMShellClassRart

VendorShellClassétt

TransientShellClassit
} TransientShellClassRec;

core_class;
composite_class;
shell_class;
wm_shell_class;
vendor_shell_class;
transient_shell_class;

typedef struct _TopheiShellClassRec {

CoreClassirt

CompositeClassitt

ShellClassBrt

WMShellClasshart

VendorShellClassitt

TopLevelShellClassBrt
} TopLevelShellClassRec;

core_class;
composite_class;
shell_class;
wm_shell_class;
vendor_shell_class;
top_lee_shell_class;

typedef struct _ApplicationShellClassRec {

CoreClassirt
CompositeClassitt
ShellClassBrt
WMShellClassBArt
VendorShellClass#tt
TopLevelShellClassBrt
ApplicationShellClassitt
} A pplicationShellClassRec;

core_class;
composite_class;
shell_class;
wm_shell_class;
vendor_shell_class;
top_leel_shell_class;
application_shell_class;

typedef struct _SessionShellClassRec {

CoreClassért
CompositeClassitt
ShellClassBrt
WMShellClassRart
VendorShellClassétt
TopLevelShellClassBrt
ApplicationShellClassitt
SessionShellClasai

} SessionShellClassRec;

core_class;
composite_class;
shell_class;
wm_shell_class;
vendor_shell_class;
top_leel_shell_class;
application_shell_class;
session_shell_class;

69

X Toolkit Intrinsics X11 Release 6.8

The single occurrences of the class records and pointers for creating instances of shells are:

extern ShellClassRec shellClassRec;

extern OverrideShellClassRewarideShellClassRec;

extern WMShellClassRec wmShellClassRec;

extern VendorShellClassRec vendorShellClassRec;

extern TransientShellClassRec transientShellClassRec;
extern TopLe&elShellClassRec toplelShellClassRec;

extern ApplicationShellClassRec applicationShellClassRec;
extern SessionShellClassRec sessionShellClassRec;

extern WidgetClass shellWidgetClass;

extern WidgetClasswerrideShellWidgetClass;
extern WidgetClass wmShellWidgetClass;

extern WidgetClass vendorShellWidgetClass;
extern WidgetClass transientShellWidgetClass;
extern WidgetClass tophelShellWidgetClass;
extern WidgetClass applicationShellwidgetClass;
extern WidgetClass sessionShellWidgetClass;

The folloving opaque types and opaque variables are defined for generic operations on widgets
whose class is a subclass of Shell.

Types \ariables

ShellWidget shellwWidgetClass
OverrideShellWidget overrideShellWidgetClass
WMShellWidget wmShellWidgetClass
VendorShellWidget vendorShellWidgetClass
TransientShellWidget transientShellWidgetClass
TopLevelShellWidget topLevelShellWidgetClass
ApplicationShellWidget applicationShellWidgetClass
SessionShellWidget sessionShellWidgetClass

ShellWidgetClass
OverrideShellWidgetClass
WMShellWidgetClass
VendorShellWidgetClass
TransientShellWidgetClass
TopLevelShellWidgetClass
ApplicationShellWidgetClass
SessionShellWidgetClass

The declarations for all Intrinsics-defined shells except VendorShell app8helich and
ShellP.h. VendorShell has separate public andgpe .h files which are included [$hell.h and
ShellP.h.

Shell.h uses incomplete structure definitions to ensure that the compiler catches attempts to
access pviate data in ayof the Shell instance or class data structures.

The symbolic constant for tHehellClassExtensiorversion identifier isXtShellExtensionVer-
sion (see Section 1.6.12).

70

X Toolkit Intrinsics X11 Release 6.8

The root_geometry_manager procedure acts as the parent geometry manager for geometry
requests made by shell widgets. When a shell widget calls &tMakeGeometryRequestor
XtMakeResizeRequestthe root_geometry_manager procedurevskad to negotiate the new
geometry with the winde manager If the windav manager permits the wegeometrythe
root_geometry_manager procedure should reXi@eometryYes; if the windav manager

denies the geometry request or does not change thewvgedometry within some timeout inter-
val (equal towm_timeoutn the case of WMShells), the root_geometry_manager procedure
should returrXtGeometryNo. If the windav manager makes some altermatgeometry change,
the root_geometry_manager procedure may return effi@eometryNo and handle the new
geometry as a resize gtGeometryAlmost in anticipation that the shell will accept the compro-
mise. Ifthe compromise is not accepted, thevisZze must then be handled as a resize. Sub-
classes of Shell that wish to provide their own root_geometry_manager procedures are strongly
encouraged to use\eoping to irvoke their superclass’root_geometry_manager procedure
under most situations, as the wimdmanager interaction may be very complex.

If no ShellClassPartextension record is declared witcord_typeequal toNULLQ UARK, then
XtInheritRootGeometryManager is assumed.

4.1.2. ShellRrt Definition

The various shell widgets Y& the following additional instance fields defined in their widget
records:

typedef struct {
String geometry;
XtCreatePopupChildProc create_popup_child_proc;
XtGrabKind grab_kind;
Boolean spring_loaded,
Boolean popped_up;
Boolean allov_shell_resize;
Boolean client_specified;
Boolean see_under;
Boolean werride_redirect;
XtCallbackList popup_callback;
XtCallbackList popdaern_callback;
Visual * visual;
} ShellPart;
typedef struct {
int empty;
} OverrideShellPart;
typedef struct {
String title;
int wm_timeout;
Boolean vait_for_wm;
Boolean transient;
Boolean ugency;
Widget client_leader;
String windav_role;
struct _OIldXSizeHints {
long flags;
int X, Y,
int width, height;

71

X Toolkit Intrinsics X11 Release 6.8

int min_width,min_height;
int max_width,max_height;
int width_inc,height_inc;
struct {
int X;
int Y;
} min_aspect, max_aspect;
} size_hints;
XWMHints wm_hints;
int base_widthbase_height, win_gravity;
Atom title_encoding;

} WMShellPart;

typedef struct {
int vendor_specific;
} VendorShellPart;

typedef struct {
Widget transient_for;
} TransientShellPart;

typedef struct {
String icon_name;
Boolean iconic;
Atom icon_name_encoding;

} TopLevelShellPart;

typedef struct {
char * class;
XrmClass xrm_class;
int amgc;
char ** argv;

} A pplicationShellPart;

typedef struct {
SmcConn connection;
String session_id;
String * restart_command,;
String * clone_command;
String * discard_command;
String * resign_command;
String * shutdown_command;
String * environment;
String current_dir;
String program_path;
unsigned char restart_style;
Boolean join_session;
XtCallbackList sae_callbacks;
XtCallbackList interact_callbacks;
XtCallbackList cancel_callbacks;
XtCallbackList s&e_complete_callbacks;
XtCallbackList die_callbacks;
XtCallbackList error_callbacks;

} SessionShellPart;

72

X Toolkit Intrinsics

The full shell widget instance record definitions are:

typedef struct {
CoreRart core;
Compositefrt composite;
ShellRart shell;

} ShellRec, *ShellWidget;

typedef struct {
CoreRart core;
CompositefBrt composite;
ShellRart shell;
OverrideShellart override;

} OverrideShellRec, *OverrideShellWidget;

typedef struct {
CoreRart core;
CompositefBrt composite;
ShellRart shell;
WMShellPart wm;

} WMShellRec, *\WMShellWidget;

typedef struct {
CoreRart core;
CompositefBrt composite;
ShellRart shell;
WMShellPart wm;
VendorShellRurt vendor;

} VendorShellRec, *VendorShellWidget;

typedef struct {
CoreRart core;
CompositefBrt composite;
ShellRart shell;
WMShellPart wm;
VendorShellRurt vendor;
TransientShell&rt transient;

} TransientShellRec, *TransientShellwidget;

typedef struct {
CoreRart core;
CompositeBrt composite;
ShellRart shell;
WMShellPart wm;
VendorShellRurt vendor;
TopLevelShellPart topLevel;

} TopLevelShellRec, *TopLeelShellwidget;

73

X11 Release 6.8

X Toolkit Intrinsics X11 Release 6.8

typedef struc{

CoreRart core;
CompositefBrt composite;
ShellRart shell;
WMShellPart wm;
VendorShellRurt vendor;
TopLevelShellPart topLevel;
ApplicationShellRrt application;

} A pplicationShellRec, *ApplicationShellWidget;

typedef struc{

CoreRart core;
CompositefBrt composite;
ShellRart shell;
WMShellPart wm;
VendorShellRurt vendor;
TopLevelShellPart topLevel;
ApplicationShellRrt application;
SessionShellt session;

} SessionShellRec, *SessionShellWidget;

4.1.3. ShelResources

The resource names, classes, and representation types specifieshigllblassReaesource list
are:

Name Class Representation
XtNallowShellResize XtCAllvShellResize XtRBoolean
XtNcreatePopupChildProc XtCCreatePopupChildProcXtRFunction
XtNgeometry XtCGeometry XtRString
XtNoverrideRedirect XtCOerrideRedirect XtRBoolean
XtNpopdovnCallback XtCCallback XtRCallback
XtNpopupCallback XtCCallback XtRCallback
XtNsaveUnder XtCSaeUnder XtRBoolean
XtNvisual XtCMsual XtRVisual

OverrideShell declares no additional resources beyond those defined by Shell.

The resource names, classes, and representation types specifiadrimShellClassRec
resource list are:

Name Class Representation
XtNbaseHeight XtCBaseHeight XtRInt
XtNbaseWdth XtCBaseVitith XtRInt
XtNclientLeader XtCClientLeader XtRWidget
XtNheightinc XtCHeightinc XtRInt
XtNiconMask XtClconMask XtRBitmap
XtNiconPixmap XtClconPixmap XtRBitmap

74

X Toolkit Intrinsics

XtNiconWindow
XtNiconX
XtNiconY
XtNinitialState
XtNinput
XtNmaxAspectX
XtNmaxAspectY
XtNmaxHeight
XtNmaxWidth
XtNminAspectX
XtNminAspectY
XtNminHeight
XtNminWidth
XtNtitle
XtNtitleEncoding
XtNtransient

XtNwaitforwm, XtNwaitForWWm

XtNwidthinc
XtNwindowRole
XtNwinGravity
XtNwindowGroup
XtNwmTimeout
XtNurgeng

XtClconWindav
XtClconX
XtClconY
XtClnitialState
XtClnput
XtCMaxAspectX
XtCMaxAspectY
XtCMaxHeight
XtCMaxWdth
XtCMinAspectX
XtCMinAspectY
XtCMinHeight
XtCMinWidth
XtCTitle
XtCTtleEncoding
XtCTansient

XtCWaitforwm, XtCWaitForwm

XtCWidthinc
XtCWindowRole
XtCWinGravity
XtCWndowGroup
XtCWmTmeout
XtCUrgeny

X11 Release 6.8

XtRWindow
XtRInt
XtRInt
XtRInitialState
XtRBool
XtRInt
XtRInt
XtRInt
XtRInt
XtRInt
XtRInt
XtRInt
XtRInt
XtRString
XtRAtom
XtRBoolean
XtRBoolean
XtRInt
XtRString
XtRGravity
XtRVindow
XtRInt
XtRBoolean

The class resource list for VendorShell is implementation-defined.

The resource names, classes, and representation types that are specifitedrigiémg-
ShellClassReaesource list are:

Name Class Representation

XtNtransientfor XtCTransientier XtRWidget

The resource names, classes, and representation types that are specifiepirettetShell-
ClassRecresource list are:

Name Class Representation
XtNiconName XtClconName XtRString
XtNiconNameEncoding XtClconNameEncoding XtRAtom
XtNiconic XtClconic XtRBoolean

The resource names, classes, and representation types that are specifiapphciduson-
ShellClassReaesource list are:

Name Class Representation
XtNargc XtCArgc XtRInt
XtNargv XtCArgv XtRStringArray

75

X Toolkit Intrinsics

The resource names, classes, and representation types that are specifisdssieh&hellClass-

Recresource list are:

X11 Release 6.8

Name Class Representation
XtNcancelCallback XtCCallback XtRCallback
XtNcloneCommand XtCCloneCommand XtRCommandArgArray
XtNconnection XtCConnection XtRSmcConn
XtNcurrentDirectory XtCCurrentDirectory XtRDirectoryString
XtNdieCallback XtCCallback XtRCallback
XtNdiscardCommand XtCDiscardCommand XtRCommandArgArray
XtNernvironment XtCERironment XtRERironmentArray
XtNerrorCallback XtCCallback XtRCallback
XtNinteractCallback XtCCallback XtRCallback
XtNjoinSession XtCJoinSession XtRBoolean
XtNprogramPRth XtCProgramé&th XtRString
XtNresignCommand XtCResignCommand XtRCommandArgArray
XtNrestartCommand XtCRestartCommand XtRCommandArgArray
XtNrestartStyle XtCRestartStyle XtRRestartStyle
XtNsaveCallback XtCCallback XtRCallback
XtNsaveCompleteCallback XtCCallback XtRCallback
XtNsessionID XtCSessionlD XtRString
XtNshutdavnCommand XtCShutdenCommand XtRCommandgArray

4.1.4. Shell”rt Default Values

The default values for fields common to all classes of public shells (filled in by the Shell resource

lists and the Shell initialize procedures) are:

Field Defuwult Value
geometry NULL
create_popup_child_proc NULL
grab_kind (none)
spring_loaded (none)
popped_up False
allow_shell_resize False
client_specified (internal)

save_under

override_redirect

Tr ue for OverrideShell and TransientShell,

False otherwise

Tr ue for OverrideShell False otherwise

popup_callback NULL
popdavn_callback NULL
visual CopyFromParent

Thegeometryfield specifies the size and position and is usualgngonly on a command line or

in a defaults file. If thgeometryfield is non-NULL when a widget of class WMShell is realized,
the geometry specification is parsed uskWyMGeometry with a default geometry string con-
structed from the values gfy, width, height width_ing and height_incand the size and position
flags in the winde manager size hints are set. If the geometry specifies an x or y position, then
USPositionis set. If the geometry specifies a width or height, li&%izeis set. Ary fields in

the geometry specificatiorverride the corresponding values in the Cang, width, and height

fields. Ifgeometryis NULL or contains only a partial specification, then the Goyewidth, and

76

X Toolkit Intrinsics X11 Release 6.8

heightfields are used andPosition and PSizeare set as appropriate. The geometry string is not
copied by an of the Intrinsics Shell classes; a client specifying the string in an arglist or varargs
list must ensure that the value remains valid until the shell widget is reakpeturther infor-
mation on the geometry string, see Section 16X4im— C Languge X hterface

Thecreate_popup_child_progrocedure is called by thétPopup procedure and may remain
NULL. Thegrab_kind spring_loadedand popped_ugields maintain widget state information
as described undettPopup, XtMenuPopup, XtPopdown, and XtMenuPopdown. The
allow_shell_resizéield controls whether the widget contained by the shell is allowed to try to
resize itself. If allow_shell_resize alse, any geometry requests made by the child witals
return XtGeometryNo without interacting with the winde manager Settingsave_undeilr ue
instructs the server to attempt tovsdhe contents of windows obscured by the shell when it is
mapped and to restore those contents automatically when the shell is unmapped. It is useful for
pop-up menus. Settingerride_redirectTr ue determines whether the wingtananager can
intercede when the shell windas mapped. Br further information onerride_redirect, see
Section 3.2 irXlib — C Languge X hterfaceand Sections 4.1.10 and 4.2.2 in thier-Client
Communication Conventions Manudthe pop-up and pop-down callbacks are called during
XtPopup and XtPopdown. The default value of theisualresource is the symbolic value
CopyFromParent. The Intrinsics do not need to query the paswsual type when the default
value is used; if a client usingtGetValues to examine the visual type reces the valueCopy-
FromParent, it must then usXGetWindowAttributes if it needs the actual visual type.

The default values for Shell fields in WMShell and its subclasses are:

Field Defult Value

title Icon name, if specified, otherwise the applicasoame
wm_timeout Fie conds, in units of milliseconds
wait_for_wm True

transient Tr ue for TransientShellFalse otherwise
urgency False

client_leader NULL

window_role NULL

min_width XtUnspecifiedShellint

min_height XtUnspecifiedShellint

max_width XtUnspecifiedShellint

max_height XtUnspecifiedShellint

width_inc XtUnspecifiedShellint

height_inc XtUnspecifiedShellint

min_aspect_x
min_aspect_y
max_aspect_x
max_aspect_y

XtUnspecifiedShellint
XtUnspecifiedShellint
XtUnspecifiedShellint
XtUnspecifiedShellint

input False

initial_state Normal

icon_pixmap None

icon_windav None

icon_x XtUnspecifiedShellint
icon_y XtUnspecifiedShellint
icon_mask None

window_group XtUnspecifiedWindow
base width XtUnspecifiedShellint
base height XtUnspecifiedShellint

77

X Toolkit Intrinsics X11 Release 6.8

win_gravity XtUnspecifiedShellint
title_encoding Setext

Thetitle andtitle_encodindields are stored in th&/M_NAME property on the shef’'window

by the WMShell realize procedure. If ttite_encodindield is None, thetitle string is assumed

to be in the encoding of the current locale and the encoding #¥heNAME property is set to
XStdICCTextStyle. If a language procedure has not been set the default vatitle afncoding

is XA_STRING, otherwise the default value done. Thewm_timeoufield specifies, in millisec-
onds, the amount of time a shell is to wait for confirmation of a geometry request to the window
manager If none comes back within that time, the shell assumes the wimamager is not
functioning properly and setgait_for_wmto False (later ezents may reset thisalue). When
wait_for_wmis False, the shell does not wait for a response, but relies on asynchronous notifica-
tion. If transientis True, the WM_TRANSIENT_FOR property will be stored on the shell win-

dow with a value as specified balo The interpretation of this property is specific to the window
manager under which the application is run; seéntee-Client Communication Conventions
Manualfor more details.

The realize and set_values procedures of WMShell stor&/theCLIENT_LEADER property

on the shell winde. Whenclient_leaderis not NULL and the client leader widget is realized,
the property will be created with the value of the wimad the client leader widget. When
client_leadetis NULL and the shell widget has a NULL parent, the widgeihdow is used as

the value of the propertywhenclient_leadelis NULL and the shell widget has a non-NULL
parent, a search is made for the closest shell ancestor with a nondleiil leadey and if none

is found the shell ancestor with a NULL parent is the result. If the resulting widget is realized,
the property is created with the value of the widgethdow.

When the value ofvindow_roleis not NULL, the realize and set_values procedures store the
WM_WINDOW_ROLE property on the shefi'window with the value of the resource.

All other resources specify fields in the wimdmanager hints and the wingdonanager size

hints. Therealize and set_values procedures of WMShell set the corresponding flag bits in the
hints if ary of the fields contain nondefaulales. Inaddition, if a flag bit is set that refers to a
field with the valueXtUnspecifiedShellint, the value of the field is modified as follows:

Field Replacement

base_width, base_height 0

width_inc, height_inc 1

max_width, max_height 32767

min_width, min_height 1

min_aspect_x, min_aspect_y -1

max_aspect_x, max_aspect_y -1

icon_x, icon_y -1

win_gravity Value returned byXWMGeometry if called,
elseNorthWestGravity

If the shell widget has a non-NULL parent, then the realize and set_values procedures replace the
value XtUnspecifiedWindow in thewindow_grougield with the windav id of the root widget

of the widget tree if the root widget is realized. The symbolic con3iurispecifiedWindow-

Group may be used to indicate that tindow_grouphint flag bit is not to be set. tfansientis

True, the shells dass is not a subclass of TransientShell,waimdlow_grougs not XtUnspeci-
fiedWindowGroup, the WMShell realize and set_values procedures then stovgNh&@RAN-
SIENT_FOR property with the value ofindow_group

78

X Toolkit Intrinsics X11 Release 6.8

Transient shells ha the following additional resource:

Field Defuult Value

transient_for NULL

The realize and set_values procedures of TransientShell stoMMhERANSIENT_FOR prop-
erty on the shell winde if transientis True. If transient_foris non-NULL and the widget speci-
fied bytransient_foris realized, then its windois used as the value of thigM_TRAN-
SIENT_FOR property; otherwise, the value window_grougs used.

TopLevel shells hae the the following additional resources:

Field Defult Value
icon_name Sheilidget's nrame
iconic False

icon_name_encoding Seaxt

Theicon_namendicon_name_encodiniields are stored in th&/M_ICON_NAME property on
the shells window by the TopL&elShell realize procedure. If theon_name_encodiniield is
None, theicon_namestring is assumed to be in the encoding of the current locale and the encod-
ing of theWM_ICON_NAME property is set tXStdICCTextStyle. If a language procedure has
not been set, the default valuei@dn_name_encodinig XA_STRING, otherwise the default

value isNone. Theiconicfield may be used by a client to request that the windanager

iconify or deiconify the shell; the ToplkeShell set_values procedure will send the appropriate
WM_CHANGE_STATE message (as specified by theer-Client Communication Conventions
Manual) if this resource is changed frdralse to Tr ue and will call XtPopup specifying
grab_kindas XtGrabNone if iconicis changed fronTr ue to False. The XtNiconic resource is
also an alternate way to set the XtNinitialState resource to indicate that a shell should be ini-
tially displayed as an icon; the ToplatShell initialize procedure will senmitial_stateto Iconic-
State if iconicis True.

Application shells hee the following additional resources:

Field Detult Value

amgc 0
amgv NULL

Theargcandargvfields are used to initialize the standard prop&rty COMMAND . See the
Inter-Client Communication Conventions Mantmi more information.

The default values for the SessionShell instance fields, which are filled in from the resource lists
and by the initialize procedure, are

Field Dehult Value
cancel_callbacks NULL
clone_command Sdext
connection NULL
current_dir NULL
die_callbacks NULL

79

X Toolkit Intrinsics X11 Release 6.8

discard_command NULL
ervironment NULL
error_callbacks NULL
interact_callbacks NULL
join_session True
program_path Sdext
resign_command NULL
restart_command Seext
restart_style SmRestartlfRunning
save_callbacks NULL
sarze_complete_callbacks NULL
session_id NULL
shutdavn_command NULL

Theconnectiorfield contains the session connection object or NULL if a session connection is
not being managed by this widget.

Thesession_ids an identification assigned to the session participant by the session manager.
Thesession_idvill be passed to the session manager as the client identifier of the previous ses-
sion. Whera mnnection is established with the session man#geclient id assigned by the
session manager is stored in session_idield. Whennot NULL, thesession_idf the Session

shell widget that is at the root of the widget tree of the client leader widget will be used to create
the SM_CLIENT_ID property on the client leadervindow.

If join_sessions False, the widget will not attempt to establish a connection to the session man-
ager at shell creation time. See Sections 4.2.1 and 4.2.4 for more information on the functionality
of this resource.

Therestart_commangdclone_commandliscard_commandesign_commandhutdown_com-
mand environmentcurrent_dir, program_path and restart_stylefields contain standard session
properties.

When a session connection is established or newly managed by the shell, the shell initialize and
set_values methods check the values oféb@rt_commandclone_commandnd pro-
gram_pathresources. Athat time, ifrestart_commands NULL, the value of thargvresource

will be copied taestart_commandWhether or notestart_commanavas NULL, if “-xtses-

sionID” *‘<session id>'does not already appear in tlestart_commangdt will be added by the
initialize and set_values methods at the beginning of the command arguments; if the “-xtses-
sionID” argument already appears with an incorrect session id in the following argument, that
argument will be replaced with the current session id.

After this, the shell initialize and set_values procedures cheaktdhe commandif
clone_commanis NULL, restart_commanavill be copied tcclone_commandxcept the
“ -xtsessionlD’and following argument will not be copied.

Finally, the shell initialize and set_values procedures checgridgeam_path If program_path
is NULL, the first element akstart_commands copied tqrogram_path

The possible values ofstart_styleare SmRestartlifRunning, SmRestartAnyway, SmRestar-
timmediately, and SmRestartNever . A resource corerter is registered for this resource; for
the strings that it recognizes, see Section 9.6.1.

The resource type EnvironmentArray is a NULL-terminated array of pointers to strings; each
string has the format "nameadue”. The'=" character may not appear in the name, and the string
is terminated by a null character.

80

X Toolkit Intrinsics X11 Release 6.8

4.2. SessioParticipation

Applications can participate in a usegéssion, exchanging messages with the session manager as
described in th& Session Mangement Protocolnd theX Session Mangement Library

When a widget oessionShellWidgetClassr a subclass is created, the widget provides support
for the application as a session participant and continues to provide support until the widget is
destroyed.

4.2.1. dining a Session

When a Session shell is created;ahnectioris NULL, and ifjoin_sessions Tr ue, and if argv
or restart_commands not NULL, and if in POSIX environments tIS£SSION_MANAGER envi-
ronment variable is defined, the shell will attempt to establiskvaoenection with the session
manager.

To transfer management of an existing session connection from an application to the shell at wid-
get creation time, pass the existing session connection ID asrthectiorresource value when
creating the Session shell, and if the other creation-time conditions on session participation are
met, the widget will maintain the connection with the session manaberapplication must

ensure that only one Session shell manages the connection.

In the Session shell set_values procedugejnf sessiorthanges fronfalse to Tr ue andcon-
nectionis NULL and when in POSIX environments tBESSION_MANAGER environment vari-
able is defined, the shell will attempt to open a connection to the session mahegenection
changes from NULL to non-NULL, the Session shell willgaier management of that session
connection and will sgbin_sessiorto True. If join_sessiorthanges fronfFalse to True and
connectioris not NULL, the Session shell will talover management of the session connection.

When a successful connection has been establisbedectiorcontains the session connection

ID for the session participant. When the shell begins to manage the connection, it WitAgall
pAddinput to register the handler which watches for protocol messages from the session man-
ager When the attempt to connect fails, a warning message is issuedrarettioris set to

NULL.

While the connection is being managed, 8aeYourself, SaveYourselfPhaseZ Interact,
ShutdownCancelled SaveComplete, or Die message is recad from the session managére
Session shell will call out to application callback procedures registered on the wes@dittack

list of the Session shell and will seB@dveYourselfPhase2RequestinteractRequest, Interact-

Done, SaveYourselfDone, and ConnectionClosedmessages as appropriate. Initiady of the

client’s s2ssion properties are undefined. Whepnafithe session property resource values are
defined or change, the Session shell initialize and set_values procedures will update the client’s
session property value bySetPropertiesor a DeletePropertiesmessage, as appropriate. The
session ProcessID and UserID properties avayal set by the shell when it is possible to deter-
mine the value of these properties.

4.2.2. Saing Application State

The session manager instigates an application checkpoint by sertsingyaurself request.
Applications are responsible for saving their state in response to the request.

When theSaveYourself request arvies, the procedures registered on the Sessionsksiécall-
back list are called. If the application does not registgisavecallback procedures on thevea
callback list, the shell will report to the session manager that the application failed its sa
state. Eaclprocedure on the ga allback list receies a bken in thecall_dataparameter.

81

X Toolkit Intrinsics X11 Release 6.8

The checkpoint token in treall_dataparameter is of typ&tCheckpointToken.

typedef struct {
int sare_type;
int interact_style;
Boolean shutden;
Boolean ast;
Boolean cancel_shutdm
int phase;
int interact_dialog_type; [* return */
Boolean request_cancel, /* return */
Boolean request_wre phase; Ireturn */
Boolean S@e Ssuccess; [feturn */

} XtCheckpointTokenRec, *XtCheckpointToken;

Thesave_typginteract_styleshutdownand fastfields of the token contain the parameters of the
SaveYourself message. Theossible values cfave_typare SmSaveLocal, SmSaveGlobal,

and SmSaveBoth; these indicate the type of information to beesla Thepossible values of
interact_styleare SminteractStyleNone SminteractStyleErrors, and SminteractStyleAny;

these indicate whether user interaction would be permitted and, if so, what kind of interaction. If
shutdownis Tr ue, the checkpoint is being performed in preparation for the end of the session. If
fastis Tr ue, the client should perform the checkpoint as quickly as possibtantfel_shutdown

is Tr ue, a ShutdownCancelledmessage has been reeelifor the current see goeration. (See
Section 4.4.4.) Thphases used by manager clients, such as a winshanagerto dstinguish
between the first and second phase olva gaeration. Thehasewill be either 1 or 2. The
remaining fields in the checkpoint token structure are provided for the application to communi-
cate with the shell.

Upon entry to the first applicationv&allback procedure, the return fields in the tokereHae
following initial values:interact_dialog_types SmDialogNormal; request_cancek False;
request_next_phase False; and save_success True. When a token is returned withyaof

the four return fields containing a noninitial value, and when the field is applicable, subsequent
tokens passed to the application during the curreset geeration will alvays contain the nonini-

tial value.

The purpose of the tokerssive_succedgeld is to indicate the outcome of the entire operation to
the session manager and ultimatédythe user ReturningFalse indicates some portion of the
application state could not be successfuliyeda If any token is returned to the shell with
save_succedsalse, tokens subsequently reeed by the application for the currentveagera-

tion will showsave_successs False. When the shell sends the final status of the checkpoint to
the session managérwill indicate failure to see gplication state if antoken was returned

with save_succedsalse.

Session participants that manage ane d@ state of other clients should structure theie sa
interact callbacks to setquest_next_phade Tr ue when phase is 1, which will cause the shell
to send theéSaveYourselfPhase2Requesivhen the first phase is complete. When $ageYour-
selfPhase2message is recgd, the shell will inoke the sae allbacks a second time withase
equal to 2. Manager clients shouldasdhe state of other clients when the callbacks arekiu
the second time anghaseequal to 2.

The application may request additional tokens while a checkpoint is undeangaiese addi-
tional tokens must be returned by an explicit call.

82

X Toolkit Intrinsics X11 Release 6.8

To request an additional token for aveaallback response that has a deferred outcome, use
XtSessionGetToken

XtCheckpointToken XtSessionGetTokemndge)
Widgetwidget

widget Specifies the Session shell widget which manages session participation.

The XtSessionGetTokenfunction will return NULL if no checkpoint operation is currently un-
der way.

To indicate the completion of checkpoint processing including user interaction, the application
must signal the Session shell by returning aletek (See&ections 4.2.2.2 and 4.2.2.4Jo re-
turn a token, usXtSessionReturnToken

void XtSessionReturnToketoker)
XtCheckpointTokertoken

token Specifies a token that was rewei as hecall_databy a procedure on the interact
callback list or a token that was rec®l by a @ll to XtSessionGetToken

Tokens passed a=ll_datato save @llbacks are implicitly returned when thessaallback pro-
cedure returnsA savecallback procedure should not cXiSessionReturnTokenon the token
passed in itsall_data

4.2.2.1. Requestingnteraction

When the tokeinteract_styleallows user interaction, the application may interact with the user
during the checkpoint, but must wait for permission to interact. Applications request permission
to interact with the user during the checkpointing operation by registering a procedure on the Ses-
sion shells interact callback list. When all\aaallback procedures ka returned, and each time

a token that was granted by a callXtéSessionGetTokenis returned, the Session shell examines

the interact callback list. If interaction is permitted and the interact callback list is not émapty

shell will send arinteractRequestto the session manager when an interact request is not already
outstanding for the application.

The type of interaction dialog that will be requested is specified byptdract_dialog_typdield

in the checkpoint tadn. Thepossible values fanteract_dialog_typ&re SmDialogError and
SmbDialogNormal. If a token is returned witmteract_dialog_typeontainingSmDialogError ,

the interact request andyasubsequent interact requests will be for an error dialog; otherwise, the
request will be for a normal dialog with the user.

When a token is returned wiiave_succedsalse or interact_dialog_typeSmDialogError,

tokens subsequently passed to callbacks during the saweSateYourself response will

reflect these changed values, indicating that an error condition has occurred during the check-
point.

Therequest_cancdield is a return value for interact callbacks onljpon return from a proce-
dure on the see @llback list, the value of the tokemsquest_cancdield is not examined by the
shell. Thisis also true of tokens reeed through a call toXtSessionGetToken

83

X Toolkit Intrinsics X11 Release 6.8

4.2.2.2. Interactingwith the User during a Checkpoint

When the session manager grants the applicatiequest for user interaction, the Session shell
receves an Interact message. Thprocedures registered on the interact callback list are

executed, but not as ifxecuting a typical callback list. These procedures are individually

executed in sequence, with a checkpoint token functioning as the sequencing mechanism. Each
step in the sequence begins by removing a procedure from the interact callback kstatidge

it with a token passed in tlwall_data The interact callback will typically pop up a dialog box

and return. When the user interaction and associated application checkpointing has completed,
the application must return the token by callXipessionReturnToken Returning the token
completes the current step and triggers the next step in the sequence.

During interaction the client may request cancellation of a shuntd&Vhena token passed as
call_datato an interact procedure is returnedgshtitdowris Tr ue andcancel_shutdowis False,
request_cancedhdicates whether the application requests that the pending shutdown be cancelled.
If request_cancdk Tr ue, the field will also béelr ue in ary tokens subsequently granted during

the checkpoint operation. When a token is returned requesting cancellation of the session shut-
down, pending interact procedures will still be called by the Session shell. When all interact pro-
cedures hae been remwued from the interact callback listxecuted, and the final interact token
returned to the shell, dnteractDone message is sent to the session manaugicating whether

a pending session shutdown is requested to be cancelled.

4.2.2.3. Respondingo a Shutdown Cancellation

Callbacks registered on the cancel callback list arekad when the Session shell processes a
ShutdownCancelledmessage from the session managévis may occur during the processing
of save @llbacks, while waiting for interact permission, during user interaction, or aftenthe sa
operation is complete and the application is expectiBgvaComplete or aDie message. The
call_datafor these callbacks is NULL.

When the shell notices that a pending shutdown has been cancelled, theatateinshutdown
field will be True in tokens subsequentlyvgn to the application.

Receiving notice of a shutdown cancellation does not cancel the perduugen of sae all-
backs or interact callbacks. After the cancel callbagksige, ifinteract_stylds not Sminter-
actStyleNoneand the interact list is not emptiie procedures on the interact callback list will be
executed and passed a token witteract_styleSminteractStyleNone The application should
not interact with the usgand the Session shell will not send lateractDone message.

4.2.2.4. Completinga Save

When there is no user interaction, the shgimds the application as having finished saving state
when all callback procedures on theesallback list hae returned, and anadditional tokens
passed out bXtSessionGetTokenhave been returned by corresponding callstSessionRe-
turnToken . If the s&e qperation iwolved user interaction, the a@mampletion conditions

apply and in addition, all requests for interactiorvldeen granted or cancelled, and all tokens
passed to interact callbacks/adeen returned through calls ¥aSessionReturnToken If the

save eration ivolved a manager client that requested the second phase, tieecaibditions

apply to both the first and second phase of tlie gaeration.

When the application has finished saving state, the Session shell will report the result to the ses-
sion manager by sending tBeveYourselfDone message. lfthe session is continuing, the shell

will receive the SaveComplete message when all applicationsseaompleted saving state. This
message indicates that applications may agaiw @ha@anges to their state. The shell witkeute

the sae_complete callbacks. Treall_datafor these callbacks is NULL.

84

X Toolkit Intrinsics X11 Release 6.8

4.2.3. Respondingo a Shutdown

Callbacks registered on the die callback list aveked when the session manager sendse
message. Theallbacks on this list should do whageis gopropriate to quit the application.

Before executing procedures on the die callback list, the Session shell will close the connection to
the session manager and will rearadne handler that watches for protocol messages. The
call_datafor these callbacks is NULL.

4.2.4. Resigningrom a Session

When the Session shell widget is destroyed, the destethod will close the connection to the
session manager by sendin@annectionClosedprotocol message and will ren®the input
callback that was watching for session protocol messages.

When XtSetValuesis used to sgbin_sessiono False, the set_values method of the Session
shell will close the connection to the session manager if one exists by sel@bngection-
Closedmessage, ancbnnectiorwill be set to NULL.

Applications that exit in response to user actions and that do not wait for phase Y tdesmno-
plete on the Session shell shouldjegt_sessiorio False before exiting.

When XtSetValuesis used to setonnectiorto NULL, the Session shell will stop managing the
connection, if onexasts. Havever, that session connection will not be closed.

Applications that wish to ensure continuation of a session connection beyond the destruction of
the shell should first retie the connectiorresource value, then set tt@nnectiorresource to

NULL, and then thg may safely destipthe widget without losing control of the session connec-
tion.

The error callback list will be called if an unreemble communications error occurs while the
shell is managing the connection. The shell will close the connectiargresdctiorto NULL,
remove the input callback, and call the procedures registered on the error callback list. The
call_datafor these callbacks is NULL.

85

X Toolkit Intrinsics X11 Release 6.8

Chapter 5
Pop-Up Widgets

Pop-up widgets are used to create windows outside of the wimdcarcty defined by the wid-
get tree. Each pop-up child has a wiwdbat is a descendant of the root wingleo that the
pop-up windw is not clipped by the pop-up widgstparent windw. Therefore, pop-ups are cre-
ated and attached differently to their widget parent than normal widget children.

A parent of a pop-up widget does not @i manage its pop-up children; in fact, it usually does

not operate upon them inyaway. Thepopup_listfield in theCorePart structure contains the

list of its pop-up children. This pop-up list exists mainly to provide the proper place in the widget
hierarcly for the pop-up to get resources and to provide a placétiestroyWidget to look for

all extant children.

A composite widget can ka oth normal and pop-up childre’ pop-up can be popped up from
almost anywhere, not just by its parent. The tehid always refers to a normal, geometry-man-
aged widget on the composite widgdist of children, and the terpop-up childalways refers to

a widget on the pop-up list.

5.1. Pop-Up Widget Types

There are three kinds of pop-up widgets:

. Modeless pop-ups
A modeless pop-up (for example, a dialog box that does narireontinued interaction
with the rest of the application) can usually be manipulated by the windmager and

looks like any ather application winde from the uses point of view. The application
main windav itself is a special case of a modeless pop-up.

. Modal pop-ups
A modal pop-up (for example, a dialog box that requires user input to continue) can some-

times be manipulated by the windonanagerand except for eents that occur in the dia-
log box, it disables userent distribution to the rest of the application.

. Spring-loaded pop-ups
A spring-loaded pop-up (for example, a menu) can seldom be manipulated by the window

managerand except for eents that occur in the pop-up or its descendants, it disables user-
event distribution to all other applications.

Modal pop-ups and spring-loaded pop-ups are very similar and should be codedyawéfréhe

the same. In fact, the same widget (for example, a ButtonBox or Menu widget) can be used both
as a modal pop-up and as a spring-loaded pop-up within the same application. The main differ-
ence is that spring-loaded pop-ups are brought up with the pointer and, because of the grab that
the pointer button causes, require different processing by the Intrinsics. Furthermore, all user
input remap eents occurring outside the spring-loaded pop-up (e.g., in a descendant) are also
delivered to the spring-loaded pop-up aftenthavebeen dispatched to the appropriate descen-
dant, so that, for example, button-up caretadwn a ring-loaded pop-up no matter where the
button-up occurs.

Any kind of pop-up, in turn, can pop up other widgets. Modal and spring-loaded pop-ups can
constrain usen@nts to the most recent such pop-up onallzer &ents to be dispatched to any
of the modal or spring-loaded pop-ups currently mapped.

Regardless of their type, all pop-up widget classes are responsible for communicating with the X
window manager and therefore are subclasses of one of the Shell widget classes.

86

X Toolkit Intrinsics X11 Release 6.8

5.2. Creating a Pop-Up Shell

For a widget to be popped up, it must be the child of a pop-up shell widget. None of the Intrin-
sics-supplied shells will simultaneously manage more than one child. Both the shell and child
taken together are referred to as the pop-up. When you need to use a pop-upay®teéér to

the pop-up by the pop-up shell, not the child.

To aeate a pop-up shell, u3@CreatePopupShell

Widget XtCreatePopupShel{me widget_classparent args num_arg$
Stringname
WidgetClassvidget_class
Widgetparent
ArgList args
Cardinalnum_args

name Specifies the instance name for the created shell widget.
widget_class Specifies the widget class pointer for the created shell widget.

parent Specifies the parent widget. Must be of class Coreysurclass thereof.
args Specifies the argument list tvaoride ary other resource specifications.
num_args Specifies the number of entries in the argument list.

The XtCreatePopupShellfunction ensures that the specified class is a subclass of Shell and,

rather than using insert_child to attach the widget to the pacéiitieen list, attaches the shell to

the parent'popup_listdirectly.

The screen resource for this widget is determined by first scaargafpr the XtNscreen argu-

ment. Ifno XtNscreen argument is found, the resource database associated with the parent’s

screen is queried for the resour@mescreen, clasSlassScreen wher€lassis theclass_name

field from theCoreClassPartof the specifiedvidget_class If this query fails, the parent’s

screen is used. Once the screen is determined, the resource database associated with that screen is
used to retriee dl remaining resources for the widget not specifiedrgs

A spring-loaded pop-up uwoked from a translation table vigtMenuPopup must already exist at

the time that the translation is/oked, so the translation manager can find the shell by name.
Pop-ups imoked in ather ways can be created when the pop-up actually is needed. This delayed
creation of the shell is particularly useful when you pop up an unspecified number of pop-ups.
You can look to see if an appropriate unused shell (that is, not currently popped up) exists and
create a n& shell if needed.

To aeate a pop-up shell using varargs lists, Xt&@aCreatePopupShell

87

X Toolkit Intrinsics X11 Release 6.8

Widget XtVaCreatePopupShelfme widget_classparent ...)

Stringname

WidgetClassvidget_class

Widgetparent
name Specifies the instance name for the created shell widget.
widget_class Specifies the widget class pointer for the created shell widget.
parent Specifies the parent widget. Must be of class Coreysurclass thereof.

Specifieshe variable argument list tov@ride ary other resource specifications.

XtVaCreatePopupShellis identical in function toXtCreatePopupShellwith theargs and
num_arggarameters replaced by a varargs list as described in Section 2.5.1.

5.3. Creating Pop-Up Children

Once a pop-up shell is created, the single child of the pop-up shell can be created either statically
or dynamically.

At startup, an application can create the child of the pop-up shell, which is appropriate for pop-up
children composed of a fixed set of widgets. The application can change the state of the subparts
of the pop-up child as the application state changesexample, if an application creates a static
menu, it can calKtSetSensitive (or, in general XtSetValues) on any o the buttons that malup

the menu. Creating the pop-up child early means that pop-up time is minimized, especially if the
application callsXtRealizeWidget on the pop-up shell at startup. When the menu is needed, all

the widgets that makup e menu already exist and need only be mapped. The menu should pop
up as quickly as the X server can respond.

Alternatively, an gplication can postpone the creation of the child until it is needed, which mini-
mizes application startup time and allows the pop-up child to reconfigure itself each time it is
popped up. In this case, the pop-up child creation routine might poll the application to find out if
it should change the sensitivity ofyaof its subparts.

Pop-up child creation does not map the pop-ug & you create the child and caltReal-
izeWidget on the pop-up shell.

All shells hare pop-up and pop-down callbacks, which provide the opportunity either to make
last-minute changes to a pop-up child before it is popped up or to change it after it is popped
down. Notethat excesse wse of pop-up callbacks can negopping up occur more slowly.

5.4. Mappinga Pop-Up Widget
Pop-ups can be popped up throughesd mechanisms:
. A call to XtPopup or XtPopupSpringLoaded.

. One of the supplied callback procedubg€allbackNone, XtCallbackNonexclusive, or
XtCallbackExclusive.

. The standard translation actidttMenuPopup.
Some of these routines @kn agument of typeXtGrabKind , which is defined as

typedef enum {XtGrabNone, XtGrabNonexchesiXtGrabExclusie} X tGrabKind,;

88

X Toolkit Intrinsics X11 Release 6.8

The create_popup_child_proc procedure pointer in the shell widget instance record is of type
XtCreatePopupChildProc.

typedef void (*XtCreatePopupChildProc)(Widget);
Widgetw;

w Specifies the shell widget being popped up.

To map a pop-up from within an application, us#&opup.

void XtPopuppopup_sheligrab_king
Widgetpopup_shell
XtGrabKindgrab_kind
popup_shell Specifies the shell widget.
grab_kind Specifies the way in which usereats should be constrained.

The XtPopup function performs the following:
. Calls XtCheckSubclassto ensurgpopup_shel$ class is a subclass shellWidgetClass
. Raises the winde and returns if the shell’sopped_ugield is alreadyTr ue.

. Calls the callback procedures on the sh@lBpup_callbackist, specifying a pointer to the
value ofgrab_kindas thecall_dataargument.

. Sets the shelbopped_upield to Tr ue, the shellspring_loadedield to False, and the shell
grab_kindfield fromgrab_kind

. If the shell'screate_popup_child_proieeld is non-NULL, XtPopup calls it with
popup_shelas the parameter.

. If grab_kindis eitherXtGrabNonexclusive or XtGrabExclusive, it calls
XtAddGrabpopup_shell(grab_kind== XtGrabExclusie), False)

. Calls XtRealizeWidget with popup_shelkpecified.
Calls XMapRaised with the windav of popup_shell

To map a spring-loaded pop-up from within an application,Xtf®pupSpringLoaded.

void XtPopupSpringLoade@dbpup_she)l
Widgetpopup_shell

popup_shell Specifies the shell widget to be popped up.
The XtPopupSpringLoaded function performs exactly astPopup except that it sets the shell

spring_loadedield to Tr ue and alvays callsXtAddGrab with exclusiveTr ue andspring-
loadedTr ue.

To map a pop-up from agen widget's allback list, you also can register one of ¥i€allbac-
kNone, XtCallbackNonexclusive, or XtCallbackExclusive corvenience routines as callbacks,
using the pop-up shell widget as the client data.

89

X Toolkit Intrinsics X11 Release 6.8

void XtCallbackNonef, client_data call_datg
Widgetw;
XtPointerclient_data
XtPointercall_datg

w Specifies the widget.
client_data Specifies the pop-up shell.
call_data Specifies the callback data argument, which is not used by this procedure.

void XtCallbackNonexclusie(w, client_data call_datg
Widgetw;
XtPointerclient_data
XtPointercall_datg

w Specifies the widget.
client_data Specifies the pop-up shell.
call_data Specifies the callback data argument, which is not used by this procedure.

void XtCallbackExclusie(w, client_data call_datg
Widgetw;
XtPointerclient_data
XtPointercall_datg

w Specifies the widget.
client_data Specifies the pop-up shell.
call_data Specifies the callback data argument, which is not used by this procedure.

The XtCallbackNone, XtCallbackNonexclusive, and XtCallbackExclusive functions call

XtPopup with the shell specified by tteient_dataargument angrab_kindset as the name
specifies. XtCallbackNone, XtCallbackNonexclusive, and XtCallbackExclusive specify
XtGrabNone, XtGrabNonexclusive, and XtGrabExclusive, respectiely. Each function then

sets the widget thakecuted the callback list to be insensttiby calling XtSetSensitve. Using

these functions in callbacks is not required. In particalapplication must provide customized
code for callbacks that create pop-up shells dynamically or that must do more than desensitizing
the button.

Within a translation table, to pop up a menu wheayadk pointer button is pressed or when the
pointer is meed into a widget, us&tMenuPopup, or its synonymMenuPopup. From a trans-
lation writer’s point of view, the definition for this translation action is

void XtMenuPopupghell_namg
Stringshell_nameg

shell_name Specifies the name of the shell widget to pop up.
XtMenuPopup is known to the translation managehich registers the corresponding built-in
action procedurXtMenuPopupAction using XtRegisterGrabAction specifyingowner_events

True, event_maskButtonPressMask | ButtonReleaseMaskand pointer_modend
keyboard_modesrabModeAsync.

90

X Toolkit Intrinsics X11 Release 6.8

If XtMenuPopup is invoked on ButtonPress, it calls XtPopupSpringLoaded on the specified
shell widget. IfXtMenuPopup is invoked on KeyPressor EnterWindow , it calls XtPopup on
the specified shell widget witjrab_kindset toXtGrabNonexclusive. Otherwise, the transla-
tion manager generates a warning message and ignores the action.

XtMenuPopup tries to find the shell by searching the widget tree starting at the widget in which
it is invoked. If it finds a shell with the specified name in the pop-up children of that widget, it
pops up the shell with the appropriate parameters. Otherwiseyésmp he parent chain to find

a pop-up child with the specified name. XftMenuPopup gets to the application topwe shell
widget and has not found a matching shell, it generates a warning and returns immediately.

5.5. Unmappinga Pop-Up Widget

Pop-ups can be popped down througleisd mechanisms:
. A call to XtPopdown

. The supplied callback proceduxéCallbackPopdown
. The standard translation actiditMenuPopdown

To unmap a pop-up from within an application, o&®opdown.

void XtPopdownpopup_she)l
Widgetpopup_shell

popup_shell Specifies the shell widget to pop down.

The XtPopdown function performs the following:
. Calls XtCheckSubclassto ensurgpopup_shel$ class is a subclass shellWidgetClass
. Checks that thpopped_ugdield of popup_shelis Tr ue; otherwise, it returns immediately.

. Unmapspopup_shels window and, if override_redirectis False, sends a synthetic
UnmapNotify event as specified by thater-Client Communication Conventions Manual

. If popup_shels grab_kindis eitherXtGrabNonexclusive or XtGrabExclusive, it calls
XtRemoveGrab.
. Setspopup_shel popped_ugdield to False.

. Calls the callback procedures on the sh@lipdown_callbackst, specifying a pointer to
the value of the shellgrab_kindfield as thecall_dataargument.

To pop down a pop-up from a callback list, you may use the call&ckllbackPopdown.

void XtCallbackPopdowny, client_data call_datg
Widgetw;
XtPointerclient_data
XtPointercall_datg

w Specifies the widget.
client_data Specifies a pointer to thétPopdownlID structure.
call_data Specifies the callback data argument, which is not used by this procedure.

The XtCallbackPopdown function casts thelient_dataparameter to a pointer of typ&Pop-
downID.

91

X Toolkit Intrinsics X11 Release 6.8

typedef struct {
Widget shell_widget;
Widget enable_widget;
} XtPopdownIDRec, *XtPopdownID;

Theshell_widgets the pop-up shell to pop down, and émable_widgeis usually the widget
that was used to pop it up in one of the pop-up callbacken@nce procedures.

XtCallbackPopdown calls XtPopdown with the specifiedhell_widgetnd then callXtSet-
Sensitive to resensitizenable_widget

Within a translation table, to pop down a spring-loaded menu whex @ gointer button is
released or when the pointer isvag into a widget, us&tMenuPopdown or its synonym,
MenuPopdown. From a translation writes’'point of view, the definition for this translation
action is

void XtMenuPopdowrghell_namg
Stringshell_nameg

shell_name Specifies the name of the shell widget to pop down.

If a shell name is not gén, XtMenuPopdown calls XtPopdown with the widget for which the
translation is specified. #hell_names specified in the translation tabtMenuPopdown tries

to find the shell by looking up the widget tree starting at the widget in which violseth If it

finds a shell with the specified name in the pop-up children of that widget, it pops down the shell;
otherwise, it maes up te parent chain to find a pop-up child with the specified name. If
XtMenuPopdown gets to the application topve shell widget and cannot find a matching shell,

it generates a warning and returns immediately.

92

X Toolkit Intrinsics X11 Release 6.8

Chapter 6

Geometry Management

A widget does not directly control its size and location; ratteeparent is responsible for con-
trolling them. Although the position of children is usually left up to their parent, the widgets
themselves often ka the best idea of their optimal sizes and, possjioferred locations.

To resohe physical layout conflicts between sibling widgets and between a widget and its parent,
the Intrinsics provide the geometry management mechanism. Almost all composite witlgets ha
a geometry manager specified in tp@metry_manger field in the widget class record that is
responsible for the size, position, and stacking order of the wsdddtiren. Theonly exception

is fixed boxes, which create their children themselves and can ensure that their childreremwill ne
make a ggometry request.

6.1. Initiating Geometry Changes

Paents, children, and clients each initiate geometry changes differ&atause a parent has

absolute control of its childreneometry it changes the geometry directly by calling

XtMo veWidget, XtResizeWidget, or XtConfigureWidget. A child must ask its parent for a
geometry change by callingtMakeGeometryRequestor XtMakeResizeRequest An aopli-

cation or other client code initiates a geometry change by califgtValueson the appropriate
geometry fields, thereby giving the widget the opportunity to modify or reject the client request
before it gets propagated to the parent and the opportunity to respond appropriately to the parent’s
reply.

When a widget that needs to change its size, position, border width, or stacking depth asks its par-
ent's geometry manager to makhe desired changes, the geometry manager cam thiko

request, disalle the request, or suggest a compromise.

When the geometry manager is asked to change the geometry of a child, the geometry manager
may also rearrange and resizg andl of the other children that it controls. The geometry man-
ager can mee dhildren around freely usin¥tMo veWidget. When it resizes a child (that is,

changes the width, height, or border width) other than the one making the request, it should do so
by calling XtResizeWidget The requesting child may bevgn special treatment; see Section

6.5. Itcan simultaneously nve and resize a child with a single call ¥xaConfigureWidget.

Often, geometry managers find thatytlean satisfy a request only if hean reconfigure a wid-
get that thg are not in control of; in particulathe composite widget may want to change its own
size. Inthis case, the geometry manager makes a request to its pgeentetry manager.
Geometry requests can cascade this way to arbitrary depth.

Because such cascaded arbitration of widget geometry wandrextended negotiation, windows
are not actually allocated to widgets at application startup until all widgets are satisfied with their
geometry; see Sections 2.5 and 2.6.

Notes

1. Thelntrinsics treatment of stacking requests is deficientiarabareas. Stacking
requests for unrealized widgets are granted but witk lma effect. Inaddition, there
is ho way to do aiXtSetValuesthat will generate a stacking geometry request.

2. Aftera auccessful geometry request (one that retuikiggieometryYes), a widget
does not knw whether its resize procedure has been caNgilgets should he
resize procedures that can be called more than once without ill effects.

93

X Toolkit Intrinsics X11 Release 6.8

6.2. GeneralGeometry Manager Requests
When making a geometry request, the child specifiestéfidgetGeometry structure.

typedef unsigned long XtGeometryMask;

typedef struct {
XtGeometryMask request_mode;
Position x, y;
Dimension width, height;
Dimension border_width;
Widget sibling;
int stack_mode;

} XtWidgetGeometry;

To make a general geometry manager request from a widgetXtglakeGeometryRequest

XtGeometryResult XtMakeGeometryRequestequest reply_return
Widgetw;
XtwidgetGeometry fequest
XtwidgetGeometry feply_return

w Specifies the widget making the request. Must be of class RectOby sulan
class thereof.

request Specifies the desired widget geometry (size, position, border width, and stacking
order).

reply_return Returns the allowed widget size, or may be NULL if the requesting widget is not

interested in handlingitGeometryAlmost.

Depending on the conditioiXtMakeGeometryRequestperforms the following:

. If the widget is unmanaged or the widggtrent is not realized, it makes the changes and
returnsXtGeometryYes.
. If the parens dass is not a subclass cdmpositeWidgetClassor the parent'geome-

try_manaer field is NULL, it issues an error.
. If the widget'sbeing_destroyefield is Tr ue, it returnsXtGeometryNo.

. If the widgetx, y, width, height and border_widthfields are all equal to the requested val-
ues, it returnXtGeometryYes; otherwise, it calls the parestgeometry_manager proce-
dure with the gien parameters.

. If the parens geometry manager return@GeometryYes and if XtCWQueryOnly is not
set inrequest->request_modmnd if the widget is realizeXtMakeGeometryRequest
calls theXConfigureWindow Xlib function to reconfigure the widgstivindow (set its
size, location, and stacking order as appropriate).

. If the geometry manager returkgGeometryDone, the change has been apgedand
actually has been done. In this casdylakeGeometryRequestdoes no configuring and
returnsXtGeometryYes. XtMakeGeometryRequestnever returnsXtGeometryDone.

. Otherwise XtMakeGeometryRequestjust returns the resulting value from the parent’s
geometry manager.

Children of primitive widgets are avays unmanaged; therefor&iMakeGeometryRequest
always returnsXtGeometryYes when called by a child of a primi widget.

94

X Toolkit Intrinsics X11 Release 6.8

The return codes from geometry managers are

typedef enum {
XtGeometryYes,
XtGeometryNo,
XtGeometryAlmost,
XtGeometryDone

} XtGeometryResult;

Therequest_modeefinitions are from X11/X.h>.

#define CWX (1<<0)
#define CWY (1<<1)
#define ~ CWWidth (1<<2)
#define CWHeight (1<<3)
#define CWBorderWidth (1<<4)
#define CWSibling (1<<5)
#define CWStackMode (1<<6)

The Intrinsics also support the following value.

#define XtCWQueryOnly (1<<7)

XtCWQueryOnly indicates that the corresponding geometry request is only a query as to what
would happen if this geometry request were made and that no widgets should actually be
changed.

XtMakeGeometryRequest like the XConfigureWindow Xlib function, usesequest_modé&
determine which fields in th€tWidgetGeometry structure the caller wants to specify.

Thestack_modelefinitions are from X11/X.h>:

#define Above 0
#define Below 1
#define Toplf 2
#define Bottomlf 3
#define Opposite 4
The Intrinsics also support the following value.

#define XtSMDontChange 5

For definition and behavior aAbove, Below, Toplf , BottomlIf , and Opposite, see Section 3.7
in Xlib — C Languge X hterface XtSMDontChange indicates that the widget wants its cur-
rent stacking order preserved.

95

X Toolkit Intrinsics X11 Release 6.8

6.3. ResizeRequests

To make a smple resize request from a widget, you can XiddakeResizeRequests an alter-
native b XtMakeGeometryRequest

XtGeometryResult XtMakeResizeRequestfiidth, height width_return height_return
Widgetw;
Dimensionwidth, height
Dimension #width_return *height_return

w Specifies the widget making the request. Must be of class RectOby sulan
class thereof.

width Specify the desired widget width and height.

height

width_return Return the allowed widget width and height.
height_return

The XtMakeResizeRequesfunction, a simple interface t§tMakeGeometryRequest creates

an XtWidgetGeometry structure and specifies that width and height should change by setting
request_modé&é CWWidth | CWHeight. The geometry manager is free to modify afithe

other windaev attributes (position or stacking order) to satisfy the resize request. If the return
value is XtGeometryAlmost, width_returnandheight_returncontain a compromise width and
height. Ifthese are acceptable, the widget should immediatel)XtdihkeResizeRequesiagain

and request that the compromise width and height be applied. If the widget is not interested in
XtGeometryAlmost replies, it can pass NULL favidth_returnandheight_return

6.4. Potential Geometry Changes

Sometimes a geometry manager cannot respond to a geometry request from a child without first
making a geometry request to the widgetin parent (the original request®grandparent). If

the request to the grandparent wouldwaltbe parent to satisfy the original request, the geometry
manager can makhe intermediate geometry request as if it were the origin@othe other

hand, if the geometry manager already has determined that the original request cannot be com-
pletely satisfied (for example, if itvadys denies position changes), it needs to tell the grandparent

to respond to the intermediate request without actually changing the geometry because it does not
know if the child will accept the compromis&o accomplish this, the geometry manager uses
XtCWQueryOnly in the intermediate request.

When XtCWQueryOnly is used, the geometry manager needs to cache enough information to
exactly reconstruct the intermediate request. If the grandpsaresponse to the intermediate

guery wasXtGeometryAlmost, the geometry manager needs to cache the entire reply geometry
in the event the child accepts the parentbmpromise.

If the grandparend’response waXtGeometryAlmost, it may also be necessary to cache the
entire reply geometry from the grandparent wh@@WQueryOnly is not used. If the geometry
manager is still able to satisfy the original request, it may immediately accept the grandparent’s
compromise and then act on the childquest. Ithe grandparerg’compromise geometry is
insufficient to allev the childs request and if the geometry manager is willing to offer a different
compromise to the child, the grandparstimpromise should not be accepted until the child has
accepted the mecompromise.

Note that a compromise geometry returned WitG&eometryAlmost is guaranteed only for the
next call to the same widget; therefore, a cache of size 1 is sufficient.

96

X Toolkit Intrinsics X11 Release 6.8

6.5. Child Geometry Management: The geometry_manager Procedure

The geometry_manager procedure pointer in a composite widget class is ¥t@gmmetry-
Handler.

typedef XtGeometryResult (*XtGeometryHandler)(Widget, XtWidgetGeometry*, XtWidgetGeometry*);
Widgetw;
XtwidgetGeometry fequest
XtwidgetGeometry eometry_return

w Passes the widget making the request.

request Passes the ve geometry the child desires.

geometry _return Passes a geometry structure in which the geometry manager may store a com-
promise.

A class can inherit its superclasgeometry manager during class initialization.

A bit set to zero in the requestisquest_modéeld means that the child widget does not care
about the value of the corresponding field, so the geometry manager can change this field as it
wishes. Abit set to 1 means that the child wants that geometry element set to the value in the
corresponding field.

If the geometry manager can satisfy all changes requested ét@hifQueryOnly is not speci-
fied, it updates the widgetsy, width, height and border_widthfields appropriately Then, it
returnsXtGeometryYes, and the values pointed to by tgeometry_returrargument are unde-
fined. Thewidget's window is moved and resized automatically bytMakeGeometryRequest

Homogeneous composite widgets often find itvearent to treat the widget making the request
the same as grother widget, including reconfiguring it usinggConfigureWidget or XtRe-
sizeWidgetas part of its layout process, unled€WQueryOnly is specified. If it does this, it
should returnXtGeometryDone to inform XtMakeGeometryRequestthat it does not need to
do the configuration itself.

Note

To remain compatible with layout techniques used in older widgets (b¥f@eom-
etryDone was added to the Intrinsics), a geometry manager showditi aising
XtResizeWidgetor XtConfigureWidget on the child making the request because
the layout process of the child may be in an intermediate state in which it is not pre-
pared to handle a call to its resize procedérself-contained widget set may

choose this alternatt geometry management scheme, heseeprovided that it

clearly warns widget delopers of the compatibility consequences.

Although XtMakeGeometryRequestresizes the widget'window (if the geometry manager
returnsXtGeometryYes), it does not call the widget classésize procedure. The requesting
widget must perform whater resizing calculations are needed explicitly.

If the geometry manager disallows the request, the widget cannot change its ge®dhestrgi-
ues pointed to bgeometry_returrare undefined, and the geometry manager reiit@some-
tryNo .

Sometimes the geometry manager cannot satisfy the request exactly but may be able to satisfy a
similar request. That is, it could satisfy only a subset of the requests (for example, size but not
position) or a lesser request (for example, it cannoertrekchild as big as the request but it can
male the child bigger than its current size). In such cases, the geometry manager fills in the
structure pointed to bgeometry_returrwith the actual changes it is willing to make, including

an appropriateequest_modenask, and returnxtGeometryAlmost. If a bit in geome-
try_return->request_modis zero, the geometry manager agrees not to change the corresponding

97

X Toolkit Intrinsics X11 Release 6.8

value if geometry_returns used immediately in a werequest. Ifa bt is 1, the geometry man-
ager does change that element to the corresponding vajeenmetry_return More bits may be
set ingeometry_return->request_modkean in the original request if the geometry manager
intends to change other fields should the child accept the compromise.

When XtGeometryAlmost is returned, the widget must decide if the compromise suggested in
geometry_returris acceptable. If it is, the widget must not change its geometry directly;, iather
must mak another call toXtMakeGeometryRequest

If the next geometry request from this child usegymenetry returrvalues filled in by the
geometry manager with axtGeometryAlmost return and if there & been no intervening
geometry requests on either its parent grafnts other children, the geometry manager must
grant the request, if possible. That is, if the child asks immediately with the returned geimetry
should get an answer gftGeometryYes. Howeve, dynamic behavior in the usermMndow
manager may affect the final outcome.

To return XtGeometryYes, the geometry manager frequently rearranges the position of other
managed children by callingtMo veéWidget. Howeve, a ew geometry managers may some-
times change the size of other managed children by calliRgsizeWidgetor XtConfig-
ureWidget. If XtCWQueryOnly is specified, the geometry manager must return data describ-
ing hav it would react to this geometry request without actually moving or resizingidgets.

Geometry managers must not assume thaetieestandgeometry_returrarguments point to
independent storage. The caller is permitted to use the same field for both, and the geometry
manager must allocate its own temporary storage, if necessary.

6.6. Widget Placement and Sizing

To move a #ling widget of the child making the geometry request, the parentibtsveWwid-
get.

void XtMoveWidgetfv, X, y)
Widgetw;
Positionx;
Positiony;

Specifies the widget. Must be of class RectObj grsabclass thereof.

X
y Specify the ne& widget x and y coordinates.

The XtMo veWidget function returns immediately if the specified geometry fields are the same as
the old alues. OtherwiseXtMo veWidget writes the newx andy values into the object and, if

the object is a widget and is realized, issues an XWlto veWindow call on the widges win-

dow.

To resize a sibling widget of the child making the geometry request, the pareditRges
sizeWidget

98

X Toolkit Intrinsics X11 Release 6.8

void XtResizeWidgewy, width, height border_widt)
Widgetw;
Dimensionwidth;
Dimensionheight
Dimensionborder_width

w Specifies the widget. Must be of class RectObj grsabclass thereof.

width
height
border_width Specify the ne widget size.

The XtResizeWidgetfunction returns immediately if the specified geometry fields are the same
as the old &lues. OtherwiseXtResizeWidgetwrites the newwidth, height and border_width
values into the object and, if the object is a widget and is realized, issx&SoafigureWindow

call on the widges window.

If the nev width or height is different from the old value&ResizeWidgetcalls the object’s
resize procedure to notify it of the size change.

To move and resize the sibling widget of the child making the geometry request, the parent uses
XtConfigureWidget .

void XtConfigureWidget, x, y, width, height border_widtf)
Widgetw;
Positionx;
Positiony;
Dimensionwidth;
Dimensionheight
Dimensionborder_width

w Specifies the widget. Must be of class RectObj grsabclass thereof.
X

y Specify the ne& widget x and y coordinates.

width

height

border_width Specify the ne widget size.

The XtConfigureWidget function returns immediately if the specifiedwngeometry fields are
all equal to the currenalues. OtherwiseXtConfigureWidget writes the newx, y, width,
height and border_widthvalues into the object and, if the object is a widget and is realized,
makes an XlibXConfigureWindow call on the widges window.

If the nev width or height is different from its old valugtConfigureWidget calls the object’s
resize procedure to notify it of the size change; otherwise, it simply returns.

To resize a child widget that already has the malues of its width, height, and border width, the
parent useXtResizeWindow.

99

X Toolkit Intrinsics X11 Release 6.8

void XtResizeWindowg)
Widgetw;

w Specifies the widget. Must be of class Core grsaclass thereof.

The XtResizeWindow function calls theXConfigureWindow Xlib function to male the win-

dow of the specified widget match its width, height, and border width. This request is done
unconditionally because there is no inexpemsiay to tell if these values match the current val-
ues. Notdhat the widges resize procedure is not called.

There are very fg times to useXtResizeWindow;, instead, the parent should useResizeWid-
get.

6.7. Preferred Geometry

Some parents may be willing to adjust their layouts to accommodate the preferred geometries of
their children. Thg can useXtQueryGeometry to obtain the preferred geometry and, as they
see fit, can use or ignoreygportion of the response.

To query a child widges preferred geometryse XtQueryGeometry .

XtGeometryResult XtQueryGeometw,(intended preferred_returi
Widgetw;
XtwWidgetGeometry intended
XtwWidgetGeometry preferred_return

w Specifies the widget. Must be of class RectObj grsabclass thereof.
intended Specifies the ve geometry the parent plans tosgito the child, or NULL.
preferred_returnReturns the child widget'preferred geometry.

To dscover a dhild’s preferred geometryghe childs parent stores the megeometry in the corre-
sponding fields of the intended structure, sets the correspondingibisnded.request_mode

and callsXtQueryGeometry. The parent should set only those fields that are important to it so
that the child can determine whether it may be able to attempt changes to other fields.

XtQueryGeometry clears all bits in thereferred_return->request._modield and checks the
guery_geometrfield of the specified widget'dass record. Ifjuery_geometris not NULL,
XtQueryGeometry calls the query_geometry procedure and passes as arguments the specified
widget,intended and preferred_returrstructures. Itheintendedargument is NULL XtQuery-
Geometry replaces it with a pointer to &XtWidgetGeometry structure withrequest_mode

equal to zero before calling the query_geometry procedure.

Note

If XtQueryGeometry is called from within a geometry_manager procedure for the
widget that issue&XtMakeGeometryRequestor XtMakeResizeRequestthe

results are not guaranteed to be consistent with the requested changes. The change
request passed to the geometry manager takes precegentteegreferred geome-

try.

The query_geometry procedure pointer is of typ&eometryHandler.

100

X Toolkit Intrinsics X11 Release 6.8

typedef XtGeometryResult (*XtGeometryHandler)(Widget, XtWidgetGeometry*, XtWidgetGeometry*);
Widgetw;
XtwidgetGeometry fequest
XtwidgetGeometry preferred_return

w Passes the child widget whose preferred geometry is required.
request Passes the geometry changes that the parent plans to make.
preferred_return Passes a structure in which the child returns its preferred geometry.

The query_geometry procedure is expected to examine the bitsapidést->request_mode

evduate the preferred geometry of the widget, and store the reguéiferred_return(setting the

bits in preferred_return->request_mod®rresponding to those geometry fields that it cares

about). Ifthe proposed geometry change is acceptable without modification, the query_geometry
procedure should retunitGeometryYes. If at least one field ipreferred_returrwith a bit set

in preferred_return->request_mod different from the corresponding fieldriequestor if a bit

was st inpreferred_return->request_modkat was not set in the request, the query_geometry
procedure should retunitGeometryAlmost. If the preferred geometry is identical to the cur-

rent geometrythe query_geometry procedure should reiitGeometryNo.

Note

The query_geometry procedure may assume thttklakeResizeRequesbr
XtMakeGeometryRequestis in progress for the specified widget; that is, it is not
required to construct a reply consistent with the requested geometry if such a request
were actually outstanding.

After calling the query_geometry procedure or if tluery _geometrfield is NULL, XtQuery-
Geometry examines all the unset bits jmmeferred_return->request._modand sets the corre-
sponding fields ipreferred_returrto the current values from the widget instanceC\f/Stack-
Mode is not set, thstack_moddield is set toXtSMDontChange. XtQueryGeometry returns
the value returned by the query_geometry proceduk®eometryYes if the query_geometry
field is NULL.

Therefore, the caller can interpret a returrXteometryYes as not needing tosdluate the con-

tents of the reply and, more important, not needing to modify its layout plareturn of XtGe-
ometryAlmost means either that both the parent and the child expressed interest in at least one
common field and the chilsljfreference does not match the parmeimfentions or that the child
expressed interest in a field that the parent might need to conéideturn value oXtGeome-

tryNo means that both the parent and the child expressed interest in a field and that the child sug-
gests that the field'aurrent value in the widget instance is its preferr@de. Inaddition,

whether or not the caller ignores the return value or the reply mask, it is guaranteedgieat the
ferred_returnstructure contains complete geometry information for the child.

Paents are expected to cdtQueryGeometry in their layout routine and where else the
information is significant after change_managed has been called. The first timedkesl jrthe
changed_managed procedure may assume that thesahilcdint geometry is its preferred geom-
etry. Thus, the child is still responsible for storing values into its own geometry during its initial-
ize procedure.

6.8. SizeChange Management: The resize Procedure

A child can be resized by its parent ay éime. Wdgets usually need to kmowvhen thg have
changed size so that thean lay out their displayed data again to match thesme. Whena
parent resizes a child, it caldResizeWidget, which updates the geometry fields in the widget,

101

X Toolkit Intrinsics X11 Release 6.8

configures the windm if the widget is realized, and calls the clsleisize procedure to notify the
child. Theresize procedure pointer is of typ#WidgetProc.

If a class need not recalculate anything when a widget is resized, it can specify NULL for the
resizefield in its class record. This is an unusual case and should occur only for widgets with

very trivial display semantics. The resize procedure takes a widget as its gumyeant. Thex,

y, width, height and border_widthfields of the widget contain thewealues. Theesize proce-

dure should recalculate the layout of internal data as needed. (For example, a centered Label in a
window that changes size should recalculate the starting position oktl)e Thewidget must

obey resize as a command and must not treat it as a requestiget must not issue an
XtMakeGeometryRequestor XtMakeResizeRequestall from its resize procedure.

102

X Toolkit Intrinsics X11 Release 6.8

Chapter 7

Event Management

While Xlib allows the reading and processing oérgs anywhere in an application, widgets in the
X Toolkit neither directly readvents nor grab the server or point&¥idgets register procedures
that are to be called when areet or class ofeents occurs in that widget.

A typical application consists of startup code followed bywentdoop that readsvents and dis-
patches them by calling the procedures that widgets legstered. Thealefault &ent loop pro-
vided by the Intrinsics iXtAppMainLoop .

The event manager is a collection of functions to perform the following tasks:

. Add or remwee erent sources other than X serveeets (in particulartimer interrupts, file
input, or POSIX signals).

. Query the status ofvent sources.
. Add or remwee procedures to be called when arer@ occurs for a particular widget.

. Enable and disable the dispatching of user-initiatexdts (keyboard and pointenvents)
for a particular widget.

. Constrain the dispatching ofents to a cascade of pop-up widgets.
. Regster procedures to be called when specifants arrve.

. Regster procedures to be called when the Intrinsics will block.

. Enable safe operation in a multi-threaded environment.

Most widgets do not need to callyeaf the event handler functions explicitlyThe normal inter-
face to X @ents is through the higherdd translation managewhich maps sequences of X
events, with modifiers, into procedure calls. Applications rarely ugeoathe event manager
routines besideXtAppMainLoop .

7.1. Addingand Deleting Additional Event Sources

While most applications are den only by X events, some applications need to incorporate other
sources of input into the Intrinsicgeat-handling mechanism. Th&ent manager provides rou-
tines to integrate notification of timevemts and file data pending into this mechanism.

The next section describes functions that provide input gathering from files. The application reg-
isters the files with the Intrinsics read routine. When input is pending on one of the files, the reg-
istered callback procedures areaked.

7.1.1. Addingand Removing Input Sources
To regster a n& file as an input source for avgn goplication context, us&tAppAddinput .

103

X Toolkit Intrinsics X11 Release 6.8

Xtinputld XtAppAddInput@pp_contextsource condition proc, client_datg
XtAppContextapp_context
int source
XtPointercondition
XtInputCallbackProroc,
XtPointerclient_data

app_context Specifies the application context that identifies the application.

source Specifies the source file descriptor on a POSIX-based system or other operating-
system-dependent device specification.

condition Specifies the mask that indicates a read, write xoemion condition or some
other operating-system-dependent condition.

proc Specifies the procedure to be called when the condition is found.

client_data Specifies an argument passed to the specified procedure when it is called.

The XtAppAddinput function registers with the Intrinsics read routine & seurce of gents,
which is usually file input but can also be file output. Notefileashould be loosely interpreted
to mean aysink or source of dataxXtAppAddinput also specifies the conditions under which
the source can generatesets. Wheran eent is pending on this source, the callback procedure
is called.

The lggd values for theeonditionargument are operating-system-dependent. On a POSIX-based
systemgsourceis a file number and the condition is some union of the following:

XtinputReadMask Specifies thaprocis to be called whesourcehas data to be read.
XtInputWriteMask Specifies thaprocis to be called whesourceis ready for writing.
XtinputExceptMask Specifies thaprocis to be called whesourcehas exception data.
Callback procedure pointers used to handle fiats are of typeXtinputCallbackProc .

typedef void (*XtInputCallbackProc)(XtPointant*, Xtinputld*);
XtPointerclient_data
int *source
Xtinputld *id;

client_data Passes the client datagarment that was registered for this procedur&titypp-
Addinput .

source Passes the source file descriptor generating thete
id Passes the id returned from the correspondiyppAddinput call.

See Section 7.12 for informatiorgeeding the use oKtAppAddinput in multiple threads.

To discontinue a source of input, u¥gRemovelnput .

void XtRemorvelnput(id)
Xtinputldid,;

id Specifies the id returned from the corresponc{iyppAddinput call.

The XtRemovelnput function causes the Intrinsics read routine to stop watchingéntsfrom
the file source specified ly.

104

X Toolkit Intrinsics X11 Release 6.8

See Section 7.12 for informatiorgeeding the use oKtRemovelnput in multiple threads.

7.1.2. Addingand Removing Blocking Notifications

Occasionally it is desirable for an application to reeebtification when the Intrinsicsrent
manager detects no pending input from file sources and no pending input from Xwawer e
sources and is about to block in an operating system call.

To regster a hook that is called immediately prior W@ blocking, useXtAppAddBlockHook .

XtBlockHookld XtAppAddBlockHooképp_contextproc, client_datg
XtAppContextapp_context
XtBlockHookProcproc;
XtPointerclient_data

app_context Specifies the application context that identifies the application.

proc Specifies the procedure to be called before blocking.

client_data Specifies an argument passed to the specified procedure when it is called.

The XtAppAddBlockHook function registers the specified procedure and returns an identifier
for it. The hook procedurgrocis called at aptime in the future when the Intrinsics are about to
block pending some input.

The procedure pointers used to provide notificatiorverfteblocking are of typ&tBlock-
HookProc.

typedef void (*XtBlockHookProc)(XtPointer);
XtPointerclient_data

client_data Passes the client datagarment that was registered for this procedur&titypp-
AddBlockHook.

To dscontinue the use of a procedure for blocking notification XtBemoveBlockHook.

void XtRemoreBlockHook(d)
XtBlockHookld id;

id Specifies the identifier returned from the corresponding catAppAddBlock-
Hook.

The XtRemoveBlockHook function remees the specified procedure from the list of procedures
that are called by the Intrinsics read routine before blockingyent sources.

7.1.3. Addingand Removing Timeouts
The timeout facility notifies the application or the widget through a callback procedure that a
specified time interval has elapselmeout values are uniquely identified by an interval id.

To regster a timeout callback, us&AppAddTimeOut .

105

X Toolkit Intrinsics X11 Release 6.8

Xtintervalld XtAppAddTimeOutépp_contextinterval, proc, client_datg
XtAppContextapp_context
unsigned longnterval,
XtTimerCallbackProroc,
XtPointerclient_data
app_context Specifies the application context for which the timer is to be set.
interval Specifies the time interval in milliseconds.
proc Specifies the procedure to be called when the time expires.

client_data Specifies an argument passed to the specified procedure when it is called.

The XtAppAddTimeOut function creates a timeout and returns an identifier for it. The timeout
value is set tanterval. The callback proceduigocis called whernXtAppNextEvent or
XtAppProcessEventis next called after the time interval elapses, and then the timeout is
removed.

Callback procedure pointers used with timeouts are of fpenerCallbackProc .

typedef void (*XtTimerCallbackProc)(XtPointextintervalld*);
XtPointerclient_data
XtIntervalld *timer;

client_data Passes the client data argument that was registered for this proce v
AddTimeOut.
timer Passes the id returned from the correspondiyppAddTimeOut call.

See Section 7.12 for informatiorgeeding the use oKtAppAddTimeOut in multiple threads.

To dear a timeout value, useRemoveTimeOut.

void XtRemoreTimeOutfimer)
XtIntervalld timer;

timer Specifies the id for the timeout request to be cleared.

The XtRemoveTimeOut function remees the pending timeout. Note that timeouts are automat-
ically removed once thg trigger.

Please refer to Section 7.12 for informatiogarding the use oKtRemoveTimeOut in multiple
threads.

7.1.4. Addingand Removing Signal Callbacks

The signal facility notifies the application or the widget through a callback procedure that a signal
or other external asynchronousset has occurred. The registered callback procedures are
uniquely identified by a signal id.

Prior to establishing a signal handlire application or widget should ca{tAppAddSignal and
store the resulting identifier in a place accessible to the signal havdien a signal awes, the
signal handler should ca¥tNoticeSignal to notify the Intrinsics that a signal has occuré&d.
register a signal callback u@AppAddSignal .

106

X Toolkit Intrinsics X11 Release 6.8

XtSignalld XtAppAddSignalipp_contextproc, client_datg
XtAppContextapp_context
XtSignalCallbackProgroc,
XtPointerclient_data
app_context Specifies the application context that identifies the application.
proc Specifies the procedure to be called when the signal is noticed.

client_data Specifies an argument passed to the specified procedure when it is called.

The callback procedure pointers used to handle sigeatsare of typeXtSignalCallbackProc.

typedef void (*XtSignalCallbackProc)(XtPoinfettSignalld*);
XtPointerclient_data

XtSignalld *id;
client_data Passes the client data argument that was registered for this procedXi#spin
pAddSignal.
id Passes the id returned from the correspondbgppAddSignal call.

To notify the Intrinsics that a signal has occured, X#fdoticeSignal.

void XtNoticeSignalid)
XtSignalldid;

id Specifies the id returned from the correspondiMyppAddSignal call.

On a POSIX-based systeixiNoticeSignal is the only Intrinsics function that can safely be
called from a signal handletf XtNoticeSignal is invoked multiple times before the Intrinsics
are able to imoke the registered callback, the callback is only called once. Logitiadiyintrin-
sics maintain “pendingfl ag for each registered callback. This flag is initifglse and is set to
True by XtNoticeSignal. When XtAppNextEvent or XtAppProcessEvent(with a mask
including XtIMSignal) is called, all registered callbacks with “pendind’t ue are irvoked and
the flags are reset tealse.

If the signal handler wants to trackvihaary times the signal has been raised, it can keep its own
private counter Typically the handler would not do yaother work; the callback does the actual
processing for the signal. The Intrinsicvareblock signals from being raised, so if aei sgnal

can be raised multiple times before the Intrinsics caskanthe callback for that signal, the call-
back must be designed to deal with this. In another case, a signhal might be raised just after the
Intrinsics sets the pending flag False but before the callback can get control, in which case the
pending flag will still beTr ue after the callback returns, and the Intrinsics wilioke the call-

back again, en though all of the signal raisesvgaleen handled. The callback must also be
prepared to handle this case.

To remove a egstered signal callback, calltRemoveSignal.

107

X Toolkit Intrinsics X11 Release 6.8

void XtRemaveSignal(d)
XtSignalldid;

id Specifies the id returned by the corresponding calltAppAddSignal .

The client should typically disable the source of the signal before caltRgmoveSignal. If

the signal could hee been raised again before the source was disabled and the client wants to
process it, then after disabling the source but before ca{liRgmoveSignal the client can test

for signals withXtAppPending and process them by callingAppProcessEventwith the mask
XtIMSignal .

7.2. ConstrainingEvents to a Cascade of Widgets

Modal widgets are widgets that, except for the input directed to them, lock out user input to the
application.

When a modal menu or modal dialog box is popped up usiRgpup, user eents (keyboard
and pointer gents) that occur outside the modal widget should beetelil to the modal widget
or ignored. In no case will usevents be delrered to a widget outside the modal widget.

Menus can pop up submenus, and dialog boxes can pop up further dialog boxes to create a pop-up
cascade. lthis case, usewrents may be defered to one of seral modal widgets in the cas-
cade.

Display-related eents should be delered outside the modal cascade so that exposentseand

the like keep the applicatiog’dsplay up-to-date. Aypevent that occurs within the cascade is
delivered as usual. The usereats delvered to the most recent spring-loaded shell in the cascade
when thg occur outside the cascade are called remapte and ar&KeyPress KeyRelease
ButtonPress, and ButtonRelease The user eents ignored when tlysoccur outside the cascade
are MotionNotify andEnterNotify . All other events are deliered normally In particulat note

that this is one way in which widgets can reedieaveNotify events without first receiving
EnterNotify events; the should be prepared to deal with this, typically by ignoring any
unmatched_eaveNotify events.

XtPopup uses theXtAddGrab and XtRemoveGrab functions to constrain usevents to a
modal cascade and subsequently to reegab when the modal widget is popped down.

To oonstrain or redirect user input to a modal widget, XigeddGrab .

void XtAddGrabgv, exclusive spring_loaded
Widgetw;
Booleanexclusive
Booleanspring_loaded

w Specifies the widget to add to the modal cascade. Must be of class Coye or an
subclass thereof.
exclusive Specifies whether usevents should be dispatchesotusively to this widget or

also to previous widgets in the cascade.

spring_loaded Specifies whether this widgetaw popped up because the user pressed a pointer
button.

The XtAddGrab function appends the widget to the modal cascade and checkscihatveis
True if spring_loadeds True. If this condition is not metAddGrab generates a warning

108

X Toolkit Intrinsics X11 Release 6.8

message.

The modal cascade is used ¥tDispatchEvent when it tries to dispatch a usereat. Whenat

least one modal widget is in the widget casc&dBjspatchEvent first determines if thevent

should be deliered. Itstarts at the most recent cascade entry and follows the cascade up to and
including the most recent cascade entry added witextiesiveparameteir ue.

This subset of the modal cascade along with all descendants of these widgets comprise the acti
subset. Useevents that occur outside the widgets in this subset are ignored or remapped. Modal
menus with submenus generally add a submenu widget to the cascaeelgive False.

Modal dialog boxes that need to restrict user input to the most deeply nested dialog box add a
subdialog widget to the cascade waticlusiveTrue. User &ents that occur within the avé

subset are delered to the appropriate widget, which is usually a child or further descendant of
the modal widget.

Regardless of where in the application yhaccur, remap gents are aliays delvered to the most
recent widget in the ag® aubset of the cascade registered giphing_loadedTr ue, if any such
widget eists. Ifthe event occurred in the aeie 2ibset of the cascade but outside the spring-
loaded widget, it is datered normally before being dedired also to the spring-loaded widget.
Regardless of where it is dispatched, the Intrinsics do not modify the contents oEtite e

To remove the redirection of user input to a modal widget, ¥#eemoveGrab.

void XtRemoveGrabw)
Widgetw;

w Specifies the widget to rem® from the modal cascade.

The XtRemoveGrab function remees widgets from the modal cascade starting at the most
recent widget up to and including the specified widget. It issues a warning if the specified widget
is not on the modal cascade.

7.2.1. Requestindey and Button Grabs

The Intrinsics provide a set oé% and button grab interfaces that are parallel to those provided by
Xlib and that allev the Intrinsics to modify\ent dispatching when necessary Toolkit applica-

tions and widgets that need to padsi grab leys or luttons or actiely grab the kyboard or

pointer should use the following Intrinsics routines rather than the corresponding Xlib routines.

To passvely grab a single &y d the keyboard, useXtGrabKey .

109

X Toolkit Intrinsics X11 Release 6.8

void XtGrabKey(widget keycode modifiers owner_eventgointer_modekeyboard _modg
Widgetwidget
KeyCodekeycode
Modifiersmodifiers
Booleanowner_events
int pointer_modekeyboard_modg

widget Specifies the widget in whose winwdthe ley is to be gabbed. Musbe of class
Core or ag subclass thereof.

keycode

modifiers

owner_events

pointer_mode

keyboard_mod&pecify arguments tXGrabKey ; see Section 12.2 iXlib — C Languge X h-
terface

XtGrabKey calls XGrabKey specifying the widges window as te grab windw if the widget

is realized. The remaining arguments are exactly ax@mabKey . If the widget is not realized,
or is later unrealized, the call ¥GrabKey is performed (again) when the widget is realized and
its window becomes mapped. In the future XifDispatchEvent is called with aKeyPressevent
matching the specifieceiicode and modifiers (which may BewyKey or AnyModifier , respec-
tively) for the widgets window, the Intrinsics will callXtUngrabKeyboard with the timestamp
from theKeyPressevent if either of the following conditions is true:

* There is a modal cascade and the widget is not in theeashset of the cascade and the
keyboard was not previously grabbed, or

+ XFilterEvent returnsTrue.

To cancel a pasge key gab, useXtUngrabKey .

void XtUngrabkey(widget keycode modifiery
Widgetwidget
KeyCodekeycode
Modifiersmodifiers

widget Specifies the widget in whose windthe ley was grabbed.

keycode
modifiers Specify arguments tXUngrabKey; see Section 12.2 iXlib — C Languge X
Interface

The XtUngrabKey procedure callXUngrabKey specifying the widges window as he ungrab
window if the widget is realized. The remaining arguments are exactly ¥dJiograbKey. If
the widget is not realizeXtUngrabKey removes a eferredXtGrabKey request, if ap, for the
specified widget, &ycode, and modifiers.

To ectively grab the kyboard, useXtGrabKeyboard .

110

X Toolkit Intrinsics X11 Release 6.8

int XtGrabKeyboardvidget owner_eventgpointer_modgekeyboard_modgtime)
Widgetwidget
Booleanowner_events
int pointer_modekeyboard_modg
Timetime

widget Specifies the widget for whose winddhe keyboard is to be grabbedust be
of class Core or gnsubclass thereof.

owner_events

pointer_mode

keyboard_mode

time Specify arguments tXGrabKeyboard ; see Section 12.2 iXlib — C Languge
X Interface

If the specified widget is realizedtGrabKeyboard calls XGrabKeyboard specifying the wid-
get’s window as he grab winde. The remaining arguments and return value are exactly as for
XGrabKeyboard . If the widget is not realizeXtGrabKeyboard immediately return&rab-
NotViewable. No future automatic ungrab is implied b§GrabKeyboard .

To cancel an acte keyboard grab, usXtUngrabKeyboard .

void XtUngrabKkeyboardvidget time)
Widgetwidget
Timetime

widget Specifies the widget that has the aeteyboard grab.

time Specifies the additional gument toXUngrabKeyboard; see Section 12.2 in
Xlib — C Languge X hterface

XtUngrabKeyboard calls XUngrabKeyboard with the specified time.

To passvely grab a single pointer button, u¥¢GrabButton .

111

X Toolkit Intrinsics X11 Release 6.8

void XtGrabButtongidget button, modifiers owner_eventevent_maskpointer_mode
keyboard_modgeconfine_tocursor)
Widgetwidget
int button;
Modifiersmodifiers
Booleanowner_events
unsigned inevent_mask
int pointer_modekeyboard_modg
Windowconfine_to

Cursorcursor,
widget Specifies the widget in whose winddhe hutton is to be grabbed. Must be of
class Core or gnsubclass thereof.
button
modifiers
owner_events
event_mask

pointer_mode

keyboard_mode

confine_to

cursor Specify arguments tXGrabButton ; see Section 12.1 iXlib — C Languge X
Interface

XtGrabButton calls XGrabButton specifying the widge$' window as he grab windw if the
widget is realized. The remaining arguments are exactly asGoabButton . If the widget is
not realized, or is later unrealized, the calKi@rabButton is performed (again) when the wid-
get is realized and its windobecomes mapped. In the future XifDispatchEvent is called with
a ButtonPress event matching the specified button and modifiers (which ma&rpdutton or
AnyModifier , respectrely) for the widgets window, the Intrinsics will callXtUngrabPointer
with the timestamp from thButtonPressevent if either of the following conditions is true:

* There is a modal cascade and the widget is not in theeashset of the cascade and the
pointer was not previously grabbed, or

* XFilterEvent returnsTrue.

To cancel a pasgeé hutton grab, us&tUngrabButton .

void XtUngrabButtonfidget button, modifierg
Widgetwidget
unsigned inbutton;
Modifiersmodifiers

widget Specifies the widget in whose windthe button was grabbed.

button

modifiers Specify arguments t&XUngrabButton ; see Section 12.1 iXlib — C Languge
X Interface

The XtUngrabButton procedure callXUngrabButton specifying the widget window as te
ungrab winduw if the widget is realized. The remaining arguments are exactly ¥dJiograb-
Button. If the widget is not realize&tUngrabButton removes a ceferredXtGrabButton
request, if ap for the specified widget, button, and modifiers.

112

X Toolkit Intrinsics X11 Release 6.8

To ectively grab the pointese XtGrabPointer .

int XtGrabPointenfiidget owner_eventewent_maskpointer_modegkeyboard_mode
confine_tocursor, time)
Widgetwidget
Booleanowner_events
unsigned inevent_mask
int pointer_modekeyboard_modg
Windowconfine_to
Cursorcursor,
Timetime

widget Specifies the widget for whose winddhe pointer is to be grabbed. Must be of
class Core or gnsubclass thereof.

owner_events

event_mask

pointer_mode

keyboard_mode

confine_to

cursor

time Specify arguments t&XGrabPointer ; see Section 12.1 iXlib — C Languge X
Interface

If the specified widget is realize¥tGrabPointer calls XGrabPointer, specifying the widget’s
window as he grab windw. The remaining arguments and return value are exactly as for
XGrabPointer . If the widget is not realizektGrabPointer immediately return&rab-
NotViewable. No future automatic ungrab is implied byGrabPointer .

To cancel an acte pointer grab, us&tUngrabPointer .

void XtUngrabPointerfidget time)
Widgetwidget
Timetime
widget Specifies the widget that has the ae{ointer grab.

time Specifies the time argument ¥dJngrabPointer; see Section 12.1 iXlib — C
Languae X hterface

XtUngrabPointer calls XUngrabPointer with the specified time.

7.3. Focusing Events on a Child

To redirect lkeyboard input to a normal descendant of a widget without caXiBgtinputFocus,
useXtSetKeyboardFocus

113

X Toolkit Intrinsics X11 Release 6.8

void XtSetkeyboardFocusubtree descendgnt
Widgetsubtree descendant

subtree Specifies the subtree of the hierarébr which the kyboard focus is to be set.
Must be of class Core orysubclass thereof.

descendant Specifies either the normal (non-pop-up) descendansubftree to which
keyboard eents are logically directed, dlNone. It is not an error to specify
None when no input focus &s previously set. Must be of class Object or an
subclass thereof.

XtSetKeyboardFocuscausesXtDispatchEvent to remap kyboard @ents occurring within the
specified subtree and dispatch them to the specified descendant widget or to an dhtiestor
descendard’dass is not a subclass of Core, the descendant is replaced by its closest windowed
ancestor.

When there is no modal cascadeyoard @ents can be dispatched to a widget in one of five
ways. Assumehe server deliered the gent to the windw for widget E (because of X input
focus, ley a keyboard grabs, or pointer position).

» If neither E nor ayof E's ancestors hee redirected the é&yboard focus, or if thevent acti-
vated a grab for E as specified by a calKtrabKey with ary value ofowner_eventsor if
the leyboard is actiely grabbed by E witlowner_eventgalse via XtGrabKeyboard or
XtGrabKey on a previous &y ress, theeent is dispatched to E.

* Begnning with the ancestor of E closest to the root that has redirectedytneakd focus or
E if no such ancestor exists, if the target of that focus redirection has in turn redirected the
keyboard focus, recungly follow this focus chain to find a widget F that has not redirected
focus.

- If Eisthe final focus target widget F or a descendant tiféd~eent is dispatched to E.

- If Eis not F an acestor of For a cescendant of,Fand the gent actvated a grab for E as
specified by a call t&XtGrabKey for E, XtUngrabKeyboard is called.

- If Eis an ancestor of Fand the gent is a ley press, and either
+ Ehas grabbed theslg with XtGrabKey andowner_event§alse, or

+ E has grabbed thesl with XtGrabKey andowner_eventdr ue, and the coordinates
of the &ent are outside the rectangle specified byyggometry,
then the eent is dispatched to E.

— Otherwise, define A as the closest common ancestor of E and F:

+ Ifthere is an aote keyboard grab for anwidget via eitheiXtGrabKeyboard or
XtGrabKey on a previous &y pess, or if no widget between F and A (noninaleksi
has grabbed thesly and modifier combination witiXtGrabKey and awy value of
owner_eventghe eent is dispatched to F.

+ Else, the gent is dispatched to the ancestor of F closest to A that has grabbexy the k
and modifier combination witXtGrabKey .

When there is a modal cascade, if the final destination widget as identifiedi@bothe actve
subset of the cascade, therd is dispatched; otherwise theest is remapped to a spring-loaded
shell or discarded. Ryerdless of where it is dispatched, the Intrinsics do not modify the contents
of the eent.

Whensubtreeor one of its descendants acquires the X input focus or the pointes mt the
subtree such thaekboard @ents would nav be celivered to the subtree, Bocusin event is gen-
erated for the descendanfibcusChangeevents hae keen selected by the descendant. Simi-
larly, whensubtredoses the X input focus or theyboard focus for one of its ancestors$;acu-
sOut event is generated for descendanEdcusChangeevents hae keen selected by the

114

X Toolkit Intrinsics X11 Release 6.8

descendant.
A widget tree may also aedly manage the X server input focufo do 0, a widget class speci-

fies an accept_focus procedure.
The accept_focus procedure pointer is of ti{p&cceptFocusProc

typedef Boolean (*XtAcceptFocusProc)(Widget, Time?*);

Widgetw;
Time *time
w Specifies the widget.
time Specifies the X time of thevent causing the accept focus.

Widgets that need the input focus can &&ketinputFocus explicitly, pursuant to the restrictions

of thelnter-Client Communication Conventions Manudb dlow outside agents, such as the
parent, to cause a widget to ¢ake input focus, \eery widget exports an accept_focus procedure.
The widget returns a value indicating whether it actually took the focus or not, so that the parent
can gve the focus to another widgetVidgets that need to kmowvhen thg lose the input focus

must use the Xlib focus notification mechanism explicitly (typically by specifying translations for
Focusin and FocusOut events). Wdgets classes thatwves want the input focus should set the
accept_focusield to NULL.

To call a widgets accept_focus procedure, u¥éCallAcceptFocus.

Boolean XtCallAcceptFocug(time)

Widgetw;

Time *time
w Specifies the widget. Must be of class Core grsaclass thereof.
time Specifies the X time of thevent that is causing the focus change.

The XtCallAcceptFocus function calls the specified widgetccept_focus procedure, passing it
the specified widget and time, and returns what the accept_focus procedure returns. If
accept_focuss NULL, XtCallAcceptFocus returnsFalse.

7.3.1. Eents for Drawables That Are Not a Widget's Window

Sometimes an application must handiengs for dravables that are not associated with widgets
in its widget tree. Examples include handli@gaphicsExposeand NOExposeevents on
Pixmaps, and handlinBropertyNotify events on the root winde.

To regster a dravable with the Intrinsics\eent dispatching, usXtRegisterDrawable.

115

X Toolkit Intrinsics X11 Release 6.8

void XtRegisterDravable(display, drawable widge)
Display *display;
Drawable drawable
Widgetwidget
display Specifies the dwable’s dsplay.
drawable Specifies the dwable to register.
widget Specifies the widget to register thewiahle for.

XtRegisterDrawable associates the specified wable with the specified widget so that future
calls toXtwindowToWidget with the dravable will return the widget. The defaultent dis-
patcher will dispatch futurevents that arse for the dravable to the widget in the same manner
as @ents that contain the widgstivndow.

If the drawable is already registered with another widget, or if thevelote is the windw of a
widget in the client widget tree, the results of callii{fRegisterDrawable are undefined.

To unregister a draable with the Intrinsics\eent dispatching, usXtUnregisterDrawable.

void XtUnregisterDravable(display, drawable
Display *display;
Drawable drawable
display Specifies the dwable’s dsplay.
drawable Specifies the dwable to unregister.

XtUnregisterDrawable removes an @sociation created witktRegisterDrawable. If the draw-
able is the winde of a widget in the cliens widget tree the results of callilgtUnregister-
Drawable are undefined.

7.4. QueryingEvent Sources

The event manager provides#al functions to examine and reagbets (including file and
timer events) that are in the queue. The next three functions are Intrinsiasleqts of the
XPending, XPeekEvent, and XNextEvent Xlib calls.

To determine if there are grevents on the input queue for asgn goplication, useXtAppPend-
ing.

XtinputMask XtAppPending(pp_context
XtAppContextapp_context

app_context Specifies the application context that identifies the application to check.

The XtAppPending function returns a nonzero value if there arenés pending from the X
servertimer pending, other input sources pending, or signal sources pending. The value returned
is a bit mask that is the OR #tIMXEvent , XtIMTimer , XtIMAlternatelnput , and XtIM-

Signal (seeXtAppProcessEven). If there are nowents pendingXtAppPending flushes the

output buffers of each Display in the application context and returns zero.

116

X Toolkit Intrinsics X11 Release 6.8

To return the eent from the head of a\gn goplications input queue without removing input
from the queue, usktAppPeekEvent.

Boolean XtAppPeekEverpp_contextevent_returr)
XtAppContextapp_context
XEvent *event_return

app_context Specifies the application context that identifies the application.
ewvent_return Returns theent information to the specifiedrent structure.

If there is an X gent in the queueXtAppPeekEvent copies it intoevent_returnand returns
True. If no X input is on the queu&tAppPeekEvent flushes the output buffers of each Dis-
play in the application context and blocks until some inputasadle (possibly calling some
timeout callbacks in the interim). If the nextdable input is an Xeent, XtAppPeekEvent fills
in event_returnand returnslr ue. Otherwise, the input is for an input source registered with
XtAppAddinput , and XtAppPeekEvent returnsFalse.

To remove and return thewent from the head of agn goplication’s X event queue, usXtApp-
NextEvent.

void XtAppNextEventapp_contextevent_returr)
XtAppContextapp_context
XEvent *event_return

app_context Specifies the application context that identifies the application.
ewvent_return Returns theent information to the specifiedrent structure.

If the X event queue is empty<tAppNextEvent flushes the X output buffers of each Display in
the application context and waits for an et while looking at the other input sources and time-
out values and calling gircallback procedures triggered by them. This wait time can be used for
background processing; see Section 7.8.

7.5. DispatchingEvents

The Intrinsics provide functions that dispatefergs to widgets or other application code. Every
client interested in Xwents on a widget usestAddEventHandler to register whichents it is
interested in and a proceduredet handler) to be called when theset happens in that windo
The translation manager automatically registeentehandlers for widgets that use translation
tables; see Chapter 10.

Applications that need direct control of the processing of different types of input should use
XtAppProcessEvent

The sample implementations provides XtAppPeekEvent as desciibedout callbacks are called while blocking for input. If some input
for an input source isvailable, XtAppPeekEvent will return Tr ue without returning anent.

117

X Toolkit Intrinsics X11 Release 6.8

void XtAppProcessEverapp_contextmask
XtAppContextapp_context
XtinputMaskmask

app_context Specifies the application context that identifies the application for which to
process input.

mask Specifies what types ofents to process. The mask is the bitwise inelI<IR
of ary combination of XtIMXEvent , XtIMTimer , XtIMAlternatelnput , and
XtIMSignal . As a ©nvenience, Intrinsic.h defines the symbolic namxtl-
MAIl to be the bitwise inclugeé OR of these four eent types.

The XtAppProcessEventfunction processes one timarput source, signal source, or ¥est.

If there is no eent or input of the appropriate type to process, tkekppProcessEventblocks
until there is. If there is more than one type of inpailable to process, it is undefined which
will get processed. Usuallthis procedure is not called by client applications;$&gpMain-
Loop. XtAppProcessEventprocesses timewents by calling ay appropriate timer callbacks,
input sources by calling grappropriate input callbacks, signal source by calling agpropriate
signal callbacks, and Xents by callingXtDispatchEvent.

When an X gent is receved, it is passed tXtDispatchEvent, which calls the appropriaterent
handlers and passes them the widget, ¥leteand client-specific data registered with each pro-
cedure. Ifno handlers for thatvent are registered, theent is ignored and the dispatcher simply
returns.

To dspatch anent returned byXtAppNextEvent, retrieved drrectly from the Xlib queue, or
synthetically constructed, toanegstered gent filters or @ent handlers, calKtDispatchEvent.

Boolean XtDispatchEverdg(en)
XEvent *event

ewent Specifies a pointer to theant structure to be dispatched to the appropriagate
handlers.

The XtDispatchEvent function first callsXFilterEvent with theewentand the windwe of the
widget to which the Intrinsics intend to dispatch tiieng or the gent window if the Intrinsics
would not dispatch thevent to ary handlers. IfXFilterEvent returnsTrue and the eent acti-
vated a server grab as identified by a previous cafit@rabKey or XtGrabButton , XtDis-
patchEvent calls XtUngrabKeyboard or XtUngrabPointer with the timestamp from thevent
and immediately return®rue. If XFilterEvent returnsTrue and a grab was not agted,
XtDispatchEvent just immediately return3rue. Otherwise, XtDispatchEvent sends thewent
to the @ent handler functions that fx@ been previously registered with the dispatch routine.
XtDispatchEvent returnsTr ue if XFilterEvent returnedTr ue, or if the event was dispatched
to some handleand False if it found no handler to which to dispatch thesgt. XtDis-
patchEvent records the last timestamp inyagvent that contains a timestamp (Ségast-
TimestampProcesse) regardless of whether it was filtered or dispatched. If a modal cascade is
active with spring_loadedTr ue, and if the @ent is a remapwent as defined byXtAddGrab ,
XtDispatchEvent may dispatch thevent a second time. If it does s¥tDispatchEvent will

call XFilterEvent again with the winde of the spring-loaded widget prior to the second dis-
patch, and iiXFilterEvent returnsTr ue, the second dispatch will not be performed.

118

X Toolkit Intrinsics X11 Release 6.8

7.6. TheApplication Input Loop

To process all input from agen gpplication in a continuous loop, use thewanence procedure
XtAppMainLoop .

void XtAppMainLoop@pp_context
XtAppContextapp_context

app_context Specifies the application context that identifies the application.

The XtAppMainLoop function first reads the next incoming ¥eat by calling XtAppNex-

tEvent and then dispatches theeat to the appropriate registered procedure by caMitigjs-
patchEvent. This constitutes the main loop of X Toolkit applications. There is nothing special
aboutXtAppMainLoop ; it simply calls XtAppNextEvent and thenXtDispatchEvent in a con-
ditional loop. At the bottom of the loop, it checks to see if the specified application context’s
destry flag is set. If the flag is set, the loop breaks. The whole loop is enclosed between a
matchingXtAppLock andXtAppUnlock .

Applications can provide their own version of this loop, which tests some global termination flag
or tests that the number of topdewidgets is larger than zero before circling back to the call to
XtAppNextEvent.

7.7. Settingand Checking the Sensitivity State of a Widget

Many widgets hae a node in which thg assume a different appearance (for example, are grayed
out or stippled), do not respond to usesrgs, and become dormant.

When dormant, a widget is considered to be inseasitf a widget is insensitie, the ezent man-
ager does not dispatchyagvents to the widget with arvent type ofKeyPress KeyRelease
ButtonPress, ButtonRelease MotionNotify , EnterNotify , LeaveNotify , Focusin, or Focu-
sOut.

A widget can be insensre kecause itsensitiveield is False or because one of its ancestors is
insensitve and thus the widget'ancestor_sensitivigeld also isFalse. A widget can but does not
need to distinguish thesedawases visually.

Note

Pop-up shells will hae ancestor_sensitivEalse if the parent was insensié when

the shell was created. SinZgSetSensitive on the parent will not modify the

resource of the pop-up child, clients are advised to include a resource specification of
the form “*TransientShell.ancestorSengiti True” in the application defaults

resource file or to otherwise ensure that the parent is senaliten creating pop-up

shells.

To st the sensitivity state of a widget, ustsSetSensitize.

void XtSetSensitie(w, sensitivg
Widgetw;,
Booleansensitive

w Specifies the widget. Must be of class RectObj grsabclass thereof.
sensitive Specifies whether the widget should reedeyboard, pointerand focus gents.

The XtSetSensitive function first callsXtSetValueson the current widget with an argument list

119

X Toolkit Intrinsics X11 Release 6.8

specifying the XtNsensite resource and the wevalue. Ifsensitivas False and the widget’s
class is a subclass of Composi¢SetSensitive recursvely propagates the mevalue down the
child tree by callingXtSetValueson each child to seincestor_sensitivie False. If sensitivas
True and the widges dass is a subclass of Composite and the widgetestor_sensitivigeld
is True, XtSetSensitve sets theancestor_sensitivef each child tolr ue and then recurgely
calls XtSetValueson each normal descendant that i&/1sensitive setancestor_sensitivi®
True.

XtSetSensitve calls XtSetValuesto change theensitiveandancestor_sensitivields of each
affected widget. Therefore, when one of these changes, the widget/alues procedure should
take whatever display actions are needed (for example, graying out or stippling the widget).

XtSetSensitive maintains the ieriant that, if the parent has eitts@ansitiveor ancestor_sensitive
False, then all children hae ancestor_sensitivEalse.

To dheck the current sensitivity state of a widget, ¥#sSensitive.

Boolean XtlsSensite(w)
Widgetw;

w Specifies the object. Must be of class Object grsabclass thereof.

The XtlsSensitive function returnsTr ue or False to indicate whether user inputeats are being
dispatched. Ibbjects dass is a subclass of RectObj and Is®hsitiveandancestor_sensitive
are Tr ue, XtlsSensitive returnsTr ue; otherwise, it returngalse.

7.8. AddingBackground Work Procedures

The Intrinsics hee sme limited support for background processing. Because most applications
spend most of their time waiting for input, you can register an idle-time work procedure that is
called when the toolkit would otherwise blockXmAppNextEvent or XtAppProcessEvent

Work procedure pointers are of typ@WorkProc .

typedef Boolean (*XtWorkProc)(XtPointer);
XtPointerclient_data

client_data Passes the client data specified when the work procedure was registered.

This procedure should retufiit ue when it is done to indicate that it should be reedo If the
procedure returnkalse, it will remain registered and called again when the application is next
idle. Work procedures should be very judicious abowt hwch the do. If they run for more
than a small part of a second, intenateel is likely to suffer.

To regster a work procedure for avgn gpplication, useXtAppAddWorkProc .

120

X Toolkit Intrinsics X11 Release 6.8

XtWorkProcld XtAppAddWorkProapp_contextproc, client_datg
XtAppContextapp_context
XtWorkProcproc;
XtPointerclient_data

app_context Specifies the application context that identifies the application.

proc Specifies the procedure to be called when the application is idle.
client_data Specifies the argument passed to the specified procedure when it is called.

The XtAppAddWorkProc function adds the specified work procedure for the application identi-
fied byapp_contexand returns an opaque unique identifier for this work procedure. Multiple
work procedures can be registered, and the most recently added avaysstak one that is

called. Havever, if a work procedure adds another work procedure, the newly added one has
lower priority than the current one.

To remove a work procedure, either retuffr ue from the procedure when it is called or use
XtRemoveWorkProc outside of the procedure.

void XtRemoreWorkProc(d)
XtWorkProcldid;

id Specifies which work procedure to remo

The XtRemoveWorkProc function explicitly remwes the specified background work procedure.

7.9. XEvent Filters

The event manager provides filters that can be applied to specifieide Thefilters, which
screen out\eents that are redundant or are temporarily unwanted, handle pointer motion compres-
sion, enter/leae ompression, and exposure compression.

7.9.1. Pinter Motion Compression

Widgets can ha a fard time keeping up with a rapid stream of pointer motients. Further
more, thg usually do not care abouv@y motion eent. To throw out redundant motionvents,
the widget class fieldompress_motioshould beTrue. When a request for awvent would
return a motioneent, the Intrinsics check if there areyasther motion gents for the same wid-
get immediately following the current one and, if so, skip all but the last of them.

7.9.2. Enter/Leave Compression

To throw out pairs of enter and lea events that hae ro intervening gents, as can happen when
the user mees the pointer across a widget without stopping in it, the widget classcbetld
press_enterleavehould beTrue. These enter and le@ events are not delfered to the client if
they are found together in the input queue.

7.9.3. Exposue Compression

Many widgets prefer to process a series of exposumete as a single expose region rather than
as individual rectangleswidgets with compbedisplays might use the expose region as a clip list
in a graphics context, and widgets with simple displays might ignore the region entirely and

121

X Toolkit Intrinsics X11 Release 6.8

redisplay their whole winde or might get the bounding box from the region and redisplay only
that rectangle.

In either case, these widgets do not care about getting partial expesuse &hecom-
press_exposurield in the widget class structure specifies the type and number of exposure
events that are dispatched to the widgeXpose procedure. This field must be initialized to one
of the following values:

#define XtExposeNoCompress ((XtEnum)False)
#define XtExposeCompressSeries ((XtEnum)True)
#define XtExposeCompressMultiple <implementation-defined>
#define XtExposeCompressMaximal <implementation-defined>

optionally ORed with ancombination of the following flags (all with implementation-defined
values): XtExposeGraphicsExpose XtExposeGraphicsExposeMerged XtExposeNoExpose
and XtExposeNoRegion

If the compress_exposufield in the widget class structure does not speXtixposeNoCom-
press, the ezent manager calls the widge#xpose procedure only once for a series of exposure
events. Inthis case, alExposeor GraphicsExposeevents are accumulated into ayien. When
the final @ent is receved, the @ent manager replaces the rectangle in tretewith the bounding
box for the region and calls the widgegkpose procedure, passing the modified exposter e
and (unless<tExposeNoRegionis specified) the ggon. For more information on regions, see
Section 16.5 irXlib — C Languge X hterface)

The values ha te following interpretation:

XtExposeNoCompress

No exposure compression is performede selectedeent is individually dispatched to
the expose procedure withr@gion argument of NULL.

XtExposeCompressSeries

Each series of exposureenats is coalesced into a singheest, which is dispatched when an
exposure gent with count equal to zero is reached.

XtExposeCompressMultiple

Consecutie ries of exposurevents are coalesced into a single, which is dispatched
when an exposuresent with count equal to zero is reached and eithervbet gueue is
empty or the nextvent is not an exposurerent for the same widget.

XtExposeCompressMaximal

All expose series currently in the queue for the widget are coalesced into asngle e
without regard to intervening nonexposureents. Ifa partial series is in the end of the
queue, the Intrinsics will block until the end of the series isvedei

The additional flags a the following meaning:
XtExposeGraphicsExpose

Specifies thaGraphicsExposeevents are also to be dispatched to the expose procedure.
GraphicsExposeevents are compressed, if specified, in the same manrierpse

122

X Toolkit Intrinsics X11 Release 6.8

events.

XtExposeGraphicsExposeMerged

Specifies in the case oftExposeCompressMultiple and XtExposeCompressMaximal
that series ofsraphicsExposeand Exposeevents are to be compressed togethgth the
final event type determining the type of theeat passed to the expose procedure. If this
flag is not set, then only series of the sanemietype as thevent at the head of the queue
are coalesced. This flag also impliétdExposeGraphicsExpose

XtExposeNoExpose

Specifies thaNoExposeevents are also to be dispatched to the expose procebiatEx-
poseevents are neer coalesced with other exposuneents or with each other.

XtExposeNoRegion

Specifies that the final region argument passed to the expose procedure is NULL. The rec-
tangle in the eent will still contain bounding box information for the entire series of com-
pressed exposureeants. Thisoption s&es processing time when the region is not needed

by the widget.

7.10. Wdget Exposure and Visibility

Every primitve widget and some composite widgets display data on the screen by means of direct
Xlib calls. Widgets cannot simply write to the screen and forget whatrineedone. Thg must

keep enough state to redisplay the wiwdwr parts of it if a portion is obscured and then reex-

posed.

7.10.1. Redisplayf a Widget: The expose Procedure
The expose procedure pointer in a widget class is of Xy&poseProc.

typedef void (*XtExposeProc)(Widget, XEvent*, Region);
Widgetw;
XEvent *event
Regionregion;
w Specifies the widget instance requiring redisplay.
ewent Specifies the exposureeat giving the rectangle requiring redisplay.
region Specifies the union of all rectangles in this exposure sequence.

The redisplay of a widget upon exposure is the responsibility of the expose procedure in the wid-
get's dass record. If a widget has no display semantics, it can specify NULL fextbeefield.

Many composite widgets seevonly as containers for their children and/éao expose proce-

dure.

Note

If the exposeprocedure is NULL XtRealizeWidget fills in a default bit gravity of
NorthWestGravity before it calls the widget'realize procedure.

If the widget'scompress_exposundass field specifieXtExposeNoCompressor XtEx-
poseNoRegionor if the event type isNOExpose(see Section 7.9.3)gionis NULL. If XtEx-
poseNoCompresss not specified and theant type is notNoOExpose the event is the final eent

123

X Toolkit Intrinsics X11 Release 6.8

in the compressed series Buy, width, and heightcontain the bounding box for all the com-
pressedwents. Theregion is created and destroyed by the Intrinsics, but the widget is permitted
to modify the region contents.

A small simple widget (for example, Label) can ignore the bounding box information inefie e

and redisplay the entire windo A more complicated widget (for exampleexd) can use the

bounding box information to minimize the amount of calculation and redisplay it 8oesy

comple widget uses the region as a clip list in a GC and ignores/émé¢ ieformation. The

expose procedure is not chained and is therefore responsible for exposure of all superclass data as
well as its own.

However, it often is possible to anticipate the display needs\wraklevels of subclassingFor
example, rather than implement separate display procedures for the widgets Label, Pushbutton,
and Toggle, you could write a single display routine in Label that uses display state fields like

Boolean iwvert;
Boolean highlight;
Dimension highlight_width;

Label would hae invertandhighlight always False andhighlight_widthzero. Pushiiton would
dynamically sehighlightandhighlight_width but it would leae invert always False. Finally,

Toggle would dynamically set all three. In this case, the expose procedures for Pushbutton and
Toggle inherit their superclass&pose procedure; see Section 1.6.10.

7.10.2. Wdget Visibility

Some widgets may use substantial computing resources to produce theydail tlieplay.
However, this effort is wasted if the widget is not actually visible on the screen, that is, if the wid-
get is obscured by another application or is iconified.

Thevisiblefield in the core widget structure provides a hint to the widget that it need not compute
display data. This field is guaranteed toToee by the time an exposureent is processed if
ary part of the widget is visible, but iBalse if the widget is fully obscured.

Widgets can use or ignore thigiblehint. If they ignore it, thg should hae visible_interestn
their widget class record setlse. In such cases, thasiblefield is initialized Tr ue and neer
changes. I¥isible_interests True, the ezent manager asks forisibilityNotify events for the
widget and setsisibleto Tr ue on VisibilityUnobscured or VisibilityPartiallyObscured events
andFalse on VisibilityFullyObscured events.

7.11. XEvent Handlers

Event handlers are procedures called when specifeedseoccur in a widget. Most widgets need
not use eent handlers explicitly Instead, thguse the Intrinsics translation manag&vent han-
dler procedure pointers are of the tygEventHandler .

124

X Toolkit Intrinsics X11 Release 6.8

typedef void (*XtEventHandler)(Widget, XtPoinfé¢tEvent*, Boolean*);
Widgetw;
XtPointerclient_data
XEvent *event
Boolean tontinue_to_dispatch

w Specifies the widget for which theeat arrived.
client_data Specifies anclient-specific information registered with theeat handler.
event Specifies the triggeringsent.

continue_to_dispatch
Specifies whether the remainingest handlers registered for the curremerg
should be called.

After receiving aneent and before calling grevent handlers, the Boolean pointed todmn-
tinue_to_dispatctls initialized toTrue. When an eent handler is called, it may decide that fur-
ther processing of thevent is not desirable and may stdfalse in this Boolean, in which case
ary handlers remaining to be called for thexg are ignored.

The circumstances under which the Intrinsics may aedtéandlers to a widget are currently
implementation-dependent. Cliemsist therefore benaare that storing=alse into thecon-
tinue_to_dispatclargument can lead to portability problems.

7.11.1. Eent Handlers That Select Events
To regster an gent handler procedure with the dispatch mechanismXt&ddEventHandler .

void XtAddEventHandlenf, event_masknonmaskableproc, client_datg
Widgetw;
EventMaskevent_mask
Booleannonmaskable
XtEventHandlelproc;
XtPointerclient_data

w Specifies the widget for which thisemt handler is being gistered. Musbe of
class Core or gnsubclass thereof.

ewent_mask Specifies thevent mask for which to call this procedure.

nonmaskable Specifies whether this procedure should be called on the nonmaskanie e
(GraphicsExpose NoExpose SelectionClear, SelectionRequest Selection-
Notify , ClientMessage and MappingNotify).

proc Specifies the procedure to be called.
client_data Specifies additional data to be passed to teetdandler.

The XtAddEventHandler function registers a procedure with the dispatch mechanism that is to
be called when anvent that matches the mask occurs on the specified widget. Each widget has a
single registeredvent handler list, which will contain gprocedure/client_data pair exactly once
regardless of the manner in which it isyistered. lfthe procedure is already registered with the
sameclient_datavalue, the specified mask augments the existing mask. If the widget is realized,
XtAddEventHandler calls XSelectinput, if necessary The order in which this procedure is

called relatre © other handlers registered for the samengis not defined.

125

X Toolkit Intrinsics X11 Release 6.8

To remove a peviously registeredvent handleruse XtRemoveEventHandler.

void XtRemoreEventHandlenf, event_masknonmaskableproc, client_datg
Widgetw;
EventMaskevent_mask
Booleannonmaskable
XtEventHandlelproc;
XtPointerclient_data

w Specifies the widget for which this procedure giseered. Musbe of class Core
or ary subclass thereof.

ewent_mask Specifies thevent mask for which to unregister this procedure.

nonmaskable Specifies whether this procedure should be x@thon he nonmaskablevents
(GraphicsExpose NoExpose SelectionClear, SelectionRequest Selection-
Notify , ClientMessage and MappingNotify).

proc Specifies the procedure to be remh
client_data Specifies the registered client data.

The XtRemoveEventHandler function unregisters arvent handler registered witKtAddE-
ventHandler or XtinsertEventHandler for the specifiedwents. Therequest is ignored if
client_datadoes not match the valuevgh when the handler wasgistered. Ifthe widget is real-

ized and no othervent handler requires thevent, XtRemoveEventHandler calls XSelectin-

put. If the specified procedure has not been registered or if it has been registered with a different
value ofclient_data XtRemoveEventHandler returns without reporting an error.

To dop a procedure registered wiXtAddEventHandler or XtinsertEventHandler from
receiving all selectedvents, callXtRemoveEventHandler with anewent_maslof XtAllEvents
andnonmaskabldr ue. The procedure will continue to regeiany gents that hee been speci-
fied in calls toXtAddRawEventHandler or XtinsertRawEventHandler .

To regster an gent handler procedure that reaes events before or after all previously registered
event handlers, usXtinsertEventHandler .

typedef enum {XtListHead, XtListTail} XtListPosition;

void XtinsertEventHandlew, event_masknonmaskablgproc, client_data positior)
Widgetw;
EventMaskevent_mask
Booleannonmaskable
XtEventHandlelproc;
XtPointerclient_data
XtListPositionpositior

w Specifies the widget for which thisemt handler is being registered. Must be of
class Core or gnsubclass thereof.
ewent_mask Specifies thevent mask for which to call this procedure.

nonmaskable Specifies whether this procedure should be called on the nonmaskeaxtte e
(GraphicsExpose NoExpose SelectionClear, SelectionRequest Selection-
Notify , ClientMessage and MappingNotify).

proc Specifies the procedure to be called.

126

X Toolkit Intrinsics X11 Release 6.8

client_data Specifies additional data to be passed to the dierght handler.

position Specifies when thevent handler is to be called rekati o ather previously regis-
tered handlers.

XtinsertEventHandler is identical toXtAddEventHandler with the additionapositionargu-
ment. Ifpositionis XtListHead , the event handler is registered so that it is called before any
event handlers that were previously registered for the same widgedsitfonis XtListTail , the
event handler is registered to be called after previously registeredvent handlers. If the pro-
cedure is already registered with the sairent_datavalue, the specified mask augments the
existing mask and the procedure is repositioned in the list.

7.11.2. Eent Handlers That Do Not Select Events

On occasion, clients need to register @nehandler procedure with the dispatch mechanism
without explicitly causing the X server to select for thané To do his, useXtAddRawEven-
tHandler .

void XtAddRawEventHandlew(, event_masknonmaskablgproc, client_datg
Widgetw;
EventMaskevent_mask
Booleannonmaskable
XtEventHandlelproc;
XtPointerclient_data

w Specifies the widget for which thisemt handler is being gistered. Must be of
class Core or gnsubclass thereof.
ewent_mask Specifies thevent mask for which to call this procedure.

nonmaskable Specifies whether this procedure should be called on the nonmaskanie e
(GraphicsExpose NoExpose SelectionClear, SelectionRequest Selection-
Notify , ClientMessage and MappingNotify).

proc Specifies the procedure to be called.
client_data Specifies additional data to be passed to the dierght handler.

The XtAddRawEventHandler function is similar toXtAddEventHandler except that it does
not affect the widges' event mask and ner causes arXSelectinput for its events. Notethat the
widget might already h& those mask bits set because of other nem@nt handlers registered
on it. If the procedure is already registered with the salieet_data the specified mask aug-
ments the existing mask. The order in which this procedure is callededtatther handlers
registered for the sameent is not defined.

To remove a peviously registered vaevent handleruse XtRemoveRawEventHandler.

127

X Toolkit Intrinsics X11 Release 6.8

void XtRemoreRawEventHandlew(, event_masknonmaskablgproc, client_datg
Widgetw;
EventMaskevent_mask
Booleannonmaskable
XtEventHandlelproc;
XtPointerclient_data

w Specifies the widget for which this procedure giseered. Musbe of class Core
or ary subclass thereof.

ewent_mask Specifies thevent mask for which to unregister this procedure.

nonmaskable Specifies whether this procedure should be x@thon he nonmaskablevents
(GraphicsExpose NoExpose SelectionClear, SelectionRequest Selection-
Notify , ClientMessage and MappingNotify).

proc Specifies the procedure to be registered.
client_data Specifies the registered client data.

The XtRemoveRawEventHandler function unregisters arvent handler registered withtAd-
dRawEventHandler or XtinsertRawEventHandler for the specifiedwents without changing
the windav event mask. The request is ignoredtifent_datadoes not match the valuevgn

when the handler wasgistered. lfthe specified procedure has not been registered or if it has
been registered with a different valuectiént_data XtRemoveRawEventHandler returns with-
out reporting an error.

To dop a procedure registered wiXtAddRawEventHandler or XtinsertRawEventHandler
from receiving all nonselectedents, callXtRemoveRawEventHandler with anevent_maslof
XtAllEvents andnonmaskabldrue. The procedure will continue to regeiany gents that
have een specified in calls t§tAddEventHandler or XtinsertEventHandler .

To regster an gent handler procedure that reees events before or after all previously registered
event handlers without selecting for theeats, useXtinsertRawEventHandler .

void XtinsertRawEventHandler event_masknonmaskablgproc, client_data position
Widgetw;
EventMaskevent_mask
Booleannonmaskable
XtEventHandlelproc;
XtPointerclient_data
XtListPositionpositior

w Specifies the widget for which thisemt handler is being gistered. Must be of
class Core or gnsubclass thereof.
ewent_mask Specifies thevent mask for which to call this procedure.

nonmaskable Specifies whether this procedure should be called on the nonmaskatie e
(GraphicsExpose NoExpose SelectionClear, SelectionRequest Selection-
Notify , ClientMessage and MappingNotify).

proc Specifies the procedure to be registered.
client_data Specifies additional data to be passed to the dierght handler.
position Specifies when thevent handler is to be called rekaito other previously rgis-

tered handlers.

128

X Toolkit Intrinsics X11 Release 6.8

The XtinsertRawEventHandler function is similar toXtinsertEventHandler except that it
does not modify the widgeterent mask and n&r causes arXSelectinput for the specified
evants. Ifthe procedure is already registered with the selrapt_datavalue, the specified mask
augments the existing mask and the procedure is repositioned in the list.

7.11.3. Current Event Mask
To retrieve the event mask for a gien widget, useXtBuildEventMask .

EventMask XtBuildEventMask()
Widgetw;

w Specifies the widget. Must be of class Core grsaclass thereof.

The XtBuildEventMask function returns thevent mask representing the logical OR of aibr&
masks for eent handlers registered on the widget witAddEventHandler and XtIn-
sertEventHandler and all @ent translations, including accelerators, installed on the widget.
This is the samevent mask stored into th¥SetWindowAttributes structure byXtRealizeWid-
get and sent to the server wherest handlers and translations are installed or kechon he
realized widget.

7.11.4. Eent Handlers for X11 Protocol Extensions

To regster an gent handler procedure with the Intrinsics dispatch mechanism according to an
event type, useXtinsertEventTypeHandler .

void XtinsertEventTypeHandlesjdget event_typeselect_dataproc, client_data position)
Widgetwidget
int event_type
XtPointerselect_data
XtEventHandlelproc;
XtPointerclient_data
XtListPositionpositior

widget Specifies the widget for which thisemt handler is being gistered. Musbe of
class Core or gnsubclass thereof.

ewent_type Specifies thewent type for which to call thisvent handler.

select_data Specifies data used to requegéngs of the specified type from the servor

NULL.
proc Specifies thewvent handler to be called.
client_data Specifies additional data to be passed to teetdandler.
position Specifies when thevent handler is to be called rekaito other previously rgis-

tered handlers.

XtinsertEventTypeHandler registers a procedure with the dispatch mechanism that is to be
called when anwent that matches the specifie@nt_typeas dispatched to the specifiaddget

If event_typespecifies one of the core X protocukets, therselect_datanust be a pointer to a
vaue of typeEventMask, indicating the eent mask to be used to select for the desivedte
This event mask is included in the value returnediBuildEventMask . If the widget is real-
ized, XtInsertEventTypeHandler calls XSelectinput if necessary Specifying NULL for
select_datas equvalent to specifying a pointer to ameat mask containing 0. This is similar to

129

X Toolkit Intrinsics X11 Release 6.8

the XtinsertRawEventHandler function.

If event_typespecifies an extensionent type, then the semantics of the data pointed to by
select_dataare defined by the extension selector registered for the spevtiddype.

In either case the Intrinsics are not required to/¢bp data pointed to select_dataso he
caller must ensure that it remains valid as long asvityg Bandler remains registered with this
value ofselect_data

Thepositionargument allows the client to control the order ebgation of @ent handlers regis-
tered for the samevent type. If the client does not care about the giitlshould normally spec-
ify XtListTail , which registers thisvent handler after gnpreviously registered handlers for this
event type.

Each widget has a single registeredne handler list, which will contain grproce-
dure/client_data pair exactly once if it is registered WitimsertEventTypeHandler , regadless

of the manner in which it is registered andgadless of the value(s) sklect_data If the proce-
dure is already registered with the sashent_datavalue, the specified mask augments the exist-
ing mask and the procedure is repositioned in the list.

To remove an event handler registered witktinsertEventTypeHandler , use XtRemoveEvent-
TypeHandler.

void XtRemoveEventTypeHandlewjidget event_typeselect_dataproc, client_datg
Widgetwidget
int event_type
XtPointerselect_data
XtEventHandlelproc;
XtPointerclient_data

widget Specifies the widget for which theeat handler was gistered. Musbe of class
Core or ag subclass thereof.
ewent_type Specifies thewent type for which the handler was registered.

select_data Specifies data used to deseleotnés of the specified type from the sepvor
NULL.

proc Specifies thewent handler to be renved.
client_data Specifies the additional client data with which the procedure was registered.

The XtRemoveEventTypeHandler function unregisters arvent handler registered witKtin-
sertEventTypeHandler for the specifiedwent type. The request is ignoredcifent_datadoes
not match the value ¥gn when the handler was registered.

If event_typespecifies one of the core X protocukets,select_datanust be a pointer to a value
of type EventMask,indicating mask to be used to deselect for the appropueate. elf the wid-
get is realizedXtRemoveEventTypeHandler calls XSelectinput if necessary Specifying

NULL for select_datas equvalent to specifying a pointer to ameat mask containing 0. This is
similar to theXtRemoveRawEventHandler function.

If event_typespecifies an extensioneant type, then the semantics of the data pointed to by
select_dataare defined by the extension selector registered for the spevtiddype.

To regster a procedure to select extensivengs for a widget, usXtRegisterExtensionSelec-
tor .

130

X Toolkit Intrinsics X11 Release 6.8

void XtRegisterExtensionSelectdigplay, min_event_typanax_event_typeroc,

client_datg

Display*display;

int min_event_type

int max_event_type

XtExtensionSelectProgroc;

XtPointerclient_data
display Specifies the display for which the extension selector is to be registered.
min_event_type
max_event_type Specifies the range ofent types for the extension.
proc Specifies the extension selector procedure.
client_data Specifies additional data to be passed to the extension selector.

The XtRegisterExtensionSelectorfunction registers a procedure to arrange for theatglof
extension gents to widgets.

If min_event_typandmax_event_typeatch the parameters to a previous caKtBegisterEx-
tensionSelectorfor the samalisplay, thenproc andclient_datareplace the previously registered
values. Ifthe range specified byin_event_typandmax_event_typeverlaps the range of the
parameters to a previous call for the same displayyirotrer way an eror results.

When a widget is realized, after tbererealize method is called, the Intrinsics check to see if
ary event handler specifies awent type within the range of a registered extension seletteo,
the Intrinsics call each such selecttiran event type handler is added or reved, the Intrinsics
check to see if thevent type falls within the range of a registered extension seeaoiif it

does, calls the selecton dther case the Intrinsics pass a list of all the widg@ent types that
are within the select@’range. Theorresponding select data are also passed. The selector is
responsible for enabling the dediy of extension eents required by the widget.

An extension selector is of typé@ExtensionSelectProc

typedef void (*XtExtensionSelectProc)(Widget, int *, XtPointer *, int, XtPointer);
Widgetwidget
int *event_types
XtPointer *select_data
int count
XtPointerclient_data

widget Specifies the widget that is being realized or is havingvamt édandler added or
removed.
ewent_types Specifies a list ofvent types that the widget has registereeng handlers for.

select_data Specifies a list of the select_data parameters specifiédimsertEventType-
Handler.

count Specifies the number of entries in thent_typesindselect_datdists.
client_data Specifies the additional client data with which the procedure was registered.

Theewent_typesandselect_datdists will always hare the same number of elements, specified by
count Each eent type/select data pair represents one caflttnsertEventTypeHandler .

131

X Toolkit Intrinsics X11 Release 6.8

To regster a procedure to dispatchents of a specific type withiXtDispatchEvent, use
XtSetEventDispatcher.

XtEventDispatchProc XtSetEventDispatcligsplay, event_typeproc)
Display *display;
int event_type
XtEventDispatchProproc;

display Specifies the display for which theeat dispatcher is to be registered.
ewent_type Specifies thewent type for which the dispatcher should beoked.
proc Specifies thewent dispatcher procedure.

The XtSetEventDispatcherfunction registers thevent dispatcher procedure specifieddrgc
for events with the typevent_type The previously registered dispatcher (or the default dis-
patcher if there was no previously registered dispatcher) is returngabc I NULL, the default
procedure is restored for the specified type.

In the future, wherXtDispatchEvent is called with aneent type ofevent_typethe specified
proc (or the default dispatcher) isvioked to determine a widget to which to dispatch therg.

The default dispatcher handles the Intrinsics modal cascadeyrmhkd focus mechanisms,
handles the semantics @dmpress_enterleadcompress_motigrand discards all extension
evants.

An event dispatcher procedure pointer is of tyfventDispatchProc.

typedef Boolean (*XtEventDispatchProc)(XEvent*)
XEvent *event

ewent Passes thewent to be dispatched.

The event dispatcher procedure should determine whetherbig & of a type that should be
dispatched to a widget.

If the event should be dispatched to a widget, thenédispatcher procedure should determine the
appropriate widget to reea the event, call XFilterEvent with the windav of this widget, or

None if the esent is to be discarded, andXfFilterEvent returnsFalse, dispatch the eent to the
widget usingXtDispatchEventToWidget. The procedure should retufimue if either XFil-
terEvent or XtDispatchEventToWidget returnedTr ue and False otherwise.

If the event should not be dispatched to a widget, Wenedispatcher procedure should attempt
to dispatch thewvent elsewhere as appropriate and reflirne if it successfully dispatched the
evant andFalse otherwise.

Some dispatchers for extensioregts may wish to forwardvents according to the Intrinsics’
keyboard focus mechanisnTo determine which widget is the end result eftkoard @ent for-
warding, useXtGetKeyboardFocusWidget

Widget XtGetkeyboardFocusWidgeifidge)
Widgetwidget

widget Specifies the widget to get forwarding information for.

The XtGetKeyboardFocusWidget function returns the widget that would be the end result of
keyboard &ent forwarding for a kEyboard @ent for the specified widget.

132

X Toolkit Intrinsics X11 Release 6.8

To dspatch anent to a specified widget, uséDispatchEventToWidget.

Boolean XtDispatchEventToWidgetidget eveni)
Widgetwidget
XEvent *event

widget Specifies the widget to which to dispatch thiené
ewent Specifies a pointer to theent to be dispatched.

The XtDispatchEventToWidget function scans the list of registeredbiet handlers for the speci-
fied widget and calls each handler that has been registered for the speeiftagpe, subject to
thecontinue_to_dispatchalue returned by each handléfhe Intrinsics behae s if event han-

dlers were registered at the head of the lisExpose NoExpose GraphicsExpose and Visi-
bilityNotify events to irvoke the widgets expose procedure according to the exposure compres-
sion rules and to update the widgef'siblefield if visible_interests True. These internalvent
handlers neer setcontinue_to_dispatcto False.

XtDispatchEventToWidget returnsTr ue if any event handler was called arfehlse otherwise.

7.12. Usingthe Intrinsics in a Multi-Threaded Environment

The Intrinsics may be used in environments that offer multiple threadeaiften within the
context of a single proces# multi-threaded application using the Intrinsics must explicitly ini-
tialize the toolkit for mutually excluge acess by calling{tToolkitThreadlnitialize .

7.12.1. Initializing a Multi-Threaded Intrinsics Application

To test and initialize Intrinsics support for mutually excheshread access, caltToolkit-
Threadinitialize .

Boolean XtToolkitThreadinitialize()

XtToolkitThreadlnitialize returnsTrueif the Intrinsics support mutually exclusi thread
access, otherwise it returRalse XtToolkitThreadlnitialize must be called befor¥tCre-
ateApplicationContext, XtApplnitialize , XtOpenApplication, or XtSetLanguageProcis
called.XtToolkitThreadlinitialize may be called more than once; heerethe application writer
must ensure that it is not called simultaneously lydwmore threads.

7.12.2. LockingX Toolkit Data Structures

The Intrinsics employs twlevds of locking: application context and process. Locking an appli-
cation context ensures mutually excligsaccess by a thread to the state associated with the appli-
cation context, including all displays and widgets associated with it. Locking a process ensures
mutually excluste access by a thread to Intrinsics process global data.

A client may acquire a lock multiple times and the effect is cunwvelafihe client must ensure
that the lock is released an equal number of times in order for the lock to be acquired by another
thread.

Most application writers will hee little need to use locking as the Intrinsics performs the neces-
sary locking internally Resource corerters are anxeeption. Thg require the application con-
text or process to be locked before the application can safely call them dimratiyample:

133

X Toolkit Intrinsics X11 Release 6.8

.).(.tAppLock(app_context);
XtCvtStringToPixel(dp, args, num_args, fromVal, toVal, closure_ret);
XtAppUnlock(app_context);

When the application relies upatiConvertAndStore or a cowerter to provide the storage for
the results of a caersion, the application should acquire the process lock before calling out and
hold the lock until the results Y% keen copied.

Application writers who write their own utility functions, such as one which vesitie
being_destroyed field from a widget instance, must lock the application context before accessing
widget internal dataFor example:

#include <X11/CoreP.h>

Boolean BeingDestroyed (widget)
Widget widget;

{

Boolean ret;
XtAppLock(XtWidgetToApplicationContext(widget));
ret = widget->core.being_destroyed,;
XtAppUnlock(XtWidgetToApplicationContext(widget));
return ret;

}

A client that wishes to atomically call baor more Intrinsics functions must lock the application
contet. For example:

XtAppLock(XtWidgetToApplicationContext(widget));
XtUnmanageChild (widgetl);

XtManageChild (widget2);
XtAppUnlock(XtWidgetToApplicationContext(widget));

7.12.2.1. Lockingthe Application Context

To ensure mutual exclusion of application context, disptayvidget internal state, us&Ap-
pLock.

void XtAppLock(@pp_context
XtAppContextapp_context

app_context Specifies the application context to lock.

XtAppLock blocks until it is able to acquire the lock. Locking the application context also
ensures that only the thread holding the lock makes Xlib calls from within Xt. An application
that makes its own direct Xlib calls must either lock the application context areenyccall or
enable thread locking in Xlib.

To wnlock a locked application context, useAppUnlock.

134

X Toolkit Intrinsics X11 Release 6.8

void XtAppUnlock@pp_context
XtAppContextapp_context

app_context Specifies the application context that was previously locked.

7.12.2.2. Lockingthe Process

To ensure mutual exclusion of X Toolkit process global data, a widget writer muxttBse
cessLock.

void XtProcessLock()

XtProcessLockblocks until it is able to acquire the locWidget writers may use XtProcessLock
to guarantee mutually exclusiaccess to widget static data.

To unlock a locked process, u¥gProcessUnlock
void XtProcessUnlock()

To lock both an application context and the process at the same timétAqglock first and
then XtProcessLock To release both locks, calltProcessUnlockfirst and therXtAppUn-
lock. The order is important toveid deadlock.

7.12.3. BEent Management in a Multi-Threaded Environment

In a nonthreaded environment an application writer could reasonably assume that it is safe to exit
the application from a quit callback. This assumption may no longer hold true in a multi-threaded
environment; therefore it is desirable to provide a mechanism to terminatentipecessing

loop without necessarily terminating its thread.

To indicate that thevent loop should terminate after the currevdre dispatch has completed,
use XtAppSetExitFlag .

void XtAppSetExitFlagépp_context
XtAppContextapp_context

app_context Specifies the application context.

XtAppMainLoop tests the value of the flag and will return if the flagrise.

Application writers who implement their own main loop may test the value of the exit flag with
XtAppGetExitFlag .

Boolean XtAppGetExitFlagpp_context
XtAppContextapp_context

app_context Specifies the application context.

XtAppGetExitFlag will normally returnFalse indicating that eent processing may continue.
When XtAppGetExitFlag returnsTr ue, the loop must terminate and return to the calidich

135

X Toolkit Intrinsics X11 Release 6.8

might then destipthe application context.

Application writers should benare that, if a thread is blocked KtAppNextEvent,
XtAppPeekEvent, or XtAppProcessEventand another thread in the same application context
opens a n& display, adds an alternate input, or a timeouty arw urce(s) will not normally be
"noticed" by the blocked thread. ymew urces are "noticed" the next time one of these func-
tions is called.

The Intrinsics manage access vergs on a last-in, first-out basis. If multiple threads in the same
application context block iXtAppNextEvent, XtAppPeekEvent, or XtAppProcessEvent the
last thread to call one of these functions is the first thread to return.

136

X Toolkit Intrinsics X11 Release 6.8

Chapter 8
Callbacks

Applications and other widgets often need to register a procedure with a widget that gets called
under certain prespecified conditiori2or example, when a widget is destroyedery procedure
on the widget'slestroy_callbacksst is called to notify clients of the widgstimpending doom.

Every widget has an XtNdestroyCallbacks callback list resoudedgets can define additional
callback lists as thyesee fit. For example, the Pushbutton widget has a callback list to notify
clients when the button has beenatéd.

Except where otherwise noted, it is the intent that all Intrinsics functions may be called at any
time, including from within callback procedures, action routines, geat @andlers.

8.1. UsingCallback Procedure and Callback List Definitions
Callback procedure pointers for use in callback lists are ofXggallbackProc.

typedef void (*XtCallbackProc)(Widget, XtPointettPointer);
Widgetw;
XtPointerclient_data
XtPointercall_datg

w Specifies the widget owning the list in which the callback is registered.

client_data Specifies additional data supplied by the client when the procedure giss re
tered.

call_data Specifies ay callback-specific data the widgetamts to pass to the clienEor

example, wherScrollbar gecutes its XtNthumbChanged callback list, it passes
the nev position of the thumb.

Theclient_dataargument provides a way for the client registering the callback procedure also to
register client-specific data, for example, a pointer to additional information about the widget, a
reason for imoking the callback, and so on. Thikent_datavaue may be NULL if all necessary
information is in the widget. Theall_dataargument is a caenience to &oid having simple

cases where the client could otherwiseagb call XtGetValues or a widget-specific function to
retrieve data from the widgetWidgets should generallyaid putting complg state information

in call_data The client can use the more general data wetnmeethods, if necessary.

Wheneer a dient wants to pass a callback list as an argument Kt@reateWidget, XtSetVal-
ues, or XtGetValues call, it should specify the address of a NULL-terminated array of type
XtCallbackList .

typedef struct {
XtCallbackProc callback;
XtPointer closure;

} X tCallbackRec, *XtCallbackList;

For example, the callback list for procedures A and B with client data clientDataA and client-
DataB, respecttly, is

137

X Toolkit Intrinsics X11 Release 6.8

static XtCallbackRec callbacks[] = {
{A, (XtPointer) clientDataA},
{B, (XtPointer) clientDataB},
{(XtCallbackProc) NULL, (XtPointer) NULL}

Although callback lists are passed by address in arglists and varargs lists, the Intrinsics recognize
callback lists through the widget resource list and willyahie contents when necessawidget

initialize and set_values procedures should not allocate memory for the callback list contents.
The Intrinsics automatically do this, potentially using a different structure for their internal repre-
sentation.

8.2. Identifying Callback Lists

Wheneer a widget contains a callback list for use by clients, it also exports in its public .h file the
resource name of the callback list. Applications and client widgets aecess callback list

fields directly Instead, theaways identify the desired callback list by using the exported
resource name. All the callback manipulation functions described in this chapter ¥tCalht
CallbackList check to see that the requested callback list is indeed implemented by the widget.

For the Intrinsics to find and correctly handle callback listsy thest be declared with a resource
type of XtRCallback . The internal representation of a callback list is implementation-depen-
dent; widgets may ma&kno asumptions about the value stored in this resource if it is non-NULL.
Except to compare the value to NULL (which is egleint to XtCallbackStatus XtCallback-
HasNone), access to callback list resources must be made through other Intrinsics procedures.

8.3. AddingCallback Procedures
To add a callback procedure to a widgatallback list, useXtAddCallback .

void XtAddCallbackgy, callback_namecallback client_datg
Widgetw;,
Stringcallback_namg
XtCallbackProacallback
XtPointerclient_data

w Specifies the widget. Must be of class Object grsabclass thereof.
callback_nameSpecifies the callback list to which the procedure is to be appended.
callback Specifies the callback procedure.

client_data Specifies additional data to be passed to the specified procedure when it is in-
voked, or NULL.

A callback will be ivoked as marny times as it occurs in the callback list.

To add a list of callback procedures to aemi widget's callback list, usextAddCallbacks .

138

X Toolkit Intrinsics X11 Release 6.8

void XtAddCallbacksg, callback_namgcallbackg
Widgetw;
Stringcallback_namg
XtCallbackListcallbacks

w Specifies the widget. Must be of class Object grsabclass thereof.

callback_nameSpecifies the callback list to which the procedures are to be appended.

callbacks Specifies the null-terminated list of callback procedures and corresponding client
data.

8.4. Remwing Callback Procedures
To delete a callback procedure from a widgetillback list, useXtRemoveCallback.

void XtRemoveCallback{v, callback_namgcallback client_datg
Widgetw;
Stringcallback_namg
XtCallbackProacallback
XtPointerclient_data

w Specifies the widget. Must be of class Object grsabclass thereof.
callback_nameSpecifies the callback list from which the procedure is to be deleted.
callback Specifies the callback procedure.

client_data Specifies the client data to match with the registered callback entry.

The XtRemoveCallback function remees a @allback only if both the procedure and the client
data match.

To delete a list of callback procedures from eegiwidget’s callback list, useXtRemoveCall-
backs.

void XtRemoreCallbacksy, callback_namgcallbackg
Widgetw;
Stringcallback_namg
XtCallbackListcallbacks

w Specifies the widget. Must be of class Object grsabclass thereof.

callback_nameSpecifies the callback list from which the procedures are to be deleted.

callbacks Specifies the null-terminated list of callback procedures and corresponding client
data.

To celete all callback procedures from aegi widget's allback list and free all storage associ-
ated with the callback list, us@&RemoveAllCallbacks.

139

X Toolkit Intrinsics X11 Release 6.8

void XtRemoreAllCallbacksfv, callback_namg
Widgetw;
Stringcallback_namg

w Specifies the widget. Must be of class Object grsabclass thereof.
callback_nameSpecifies the callback list to be cleared.

8.5. ExecutingCallback Procedures

To execute the procedures in avgn widget's allback list, specifying the callback list by
resource name, uséCallCallbacks.

void XtCallCallbacksg, callback_namecall_datg
Widgetw;
Stringcallback_namg
XtPointercall_datg

w Specifies the widget. Must be of class Object grsabclass thereof.
callback_nameSpecifies the callback list to breeuted.
call_data Specifies a callback-list-specific da@uwe to pass to each of the callback proce-

dure in the list, or NULL.

XtCallCallbacks calls each of the callback procedures in the list namezliyack_namén the
specified widget, passing the client data registered with the procedurallbdata

To execute the procedures in a callback list, specifying the callback list by addre3&Qadie
CallbackList .

void XtCallCallbackList(vidget callbacks call_datg
Widgetwidget
XtCallbackListcallbacks
XtPointercall_datg

widget Specifies the widget instance that contains the callback list. Must be of class Ob-
ject or ay subclass thereof.

callbacks Specifies the callback list to breeuted.

call_data Specifies a callback-list-specific da@uwe to pass to each of the callback proce-

dures in the list, or NULL.

Thecallbacksparameter must specify the contents of a widget or object resource declared with
representation typ¥tRCallback . If callbacksis NULL, XtCallCallbackList returns immedi-
ately; otherwise it calls each of the callback procedures in the list, passing the client data and
call_data

8.6. Checkingthe Status of a Callback List
To find out the status of avgn widget's callback list, useXtHasCallbacks.

140

X Toolkit Intrinsics X11 Release 6.8

typedef enum {XtCallbackNoList, XtCallbackHasNone, XtCallbackHasSome} XtCallbackStatus;

XtCallbackStatus XtHasCallbacks(callback_namg

Widgetw;

Stringcallback_namg
w Specifies the widget. Must be of class Object grsabclass thereof.
callback_nameSpecifies the callback list to be checked.

The XtHasCallbacks function first checks to see if the widget has a callback list identified by
callback_name If the callback list does not existfHasCallbacks returnsXtCallbackNoList .

If the callback list exists but is emptyreturnsXtCallbackHasNone. If the callback list exists
and has at least one callback registered, it reit@allbackHasSome

141

X Toolkit Intrinsics X11 Release 6.8

Chapter 9

Resource Management

A resource is a field in the widget record with a corresponding resource entryaadheedist

of the widget or ayof its superclasses. This means that the field is settab{¢drgateWidget

(by naming the field in the argument list), by an entry in a resource file (by using either the name
or class), and btSetValues. In addition, it is readable bXtGetValues. Not all fields in a

widget record are resources. Some are for bookkeeping use by the generic routineandike

aged andbeing_destroyed Otherscan be for local bookkeeping, and still others areveeri

from resources (mgmgraphics contexts and pixmaps).

Widgets typically need to obtain a large set of resources at widget creation time. Some of the
resources come from the argument list supplied in the cXliGoeateWidget, some from the

resource database, and some from the internal defaults specified by the widget. Resources are
obtained first from the argument list, then from the resource database for all resources not speci-
fied in the argument list, and last, from the internal default, if needed.

9.1. Resouce Lists

A resource entry specifies a field in the widget, the textual name and class of the field that argu-
ment lists and external resource files use to refer to the field, and a default value that the field
should get if no value is specified. The declaration foidtikesource structure is

typedef struct {
String resource_name;
String resource_class;
String resource_type;
Cardinal resource_size;
Cardinal resource_offset;
String default_type;
XtPointer default_addr;

} XtResource, *XtResourcelList;

When the resource list is specified as @uweClassPart, ObjectClassPart, RectObjClass-

Part , or ConstraintClassPart resourcedield, the strings pointed to bgsource_name
resource_clasgesource_typeand default_typamust be permanently allocated prior to or during
the eecution of the class initialization procedure and must not be subsequently deallocated.

Theresource_naméeld contains the name used by clients to access the field in the widget. By
corvention, it starts with a lowercase letter and is spelled exac#ytigfield name, except all
underscores (_) are deleted and the next letter is replaced by its uppercase couRtegxa-

ple, the resource name for background_pixel becomes backgroehdResourc@ames begin-

ning with the two-character sequence “xt”, and resource classes beginning with the two-character
sequence “Xt'are reserved to the Intrinsics for future standard and implementation-dependent
uses. Vilget header files typically contain a symbolic name for each resource name. All

resource names, classes, and types used by the Intrinsics are nadigdl/BtingDefs.h>. The
Intrinsics’s ymbolic resource names begin with “XtNind are followed by the string name (for
example, XtNbackgroundPixel for backgroundPixel).

142

X Toolkit Intrinsics X11 Release 6.8

Theresource_clas§ield contains the class string used in resource specification files to identify
the field. A resource class providesdvunctions:

. It isolates an application from different representations that widgets can use for a similar
resource.
. It lets you specify values forvaal actual resources with a single nameresource class

should be chosen to span a group of closely related fields.

For example, a widget can i@ sveaal pixel resources: background, foreground, botdeck

cursor pointer cursorand so on.Typically, the background defaults to white anergthing else

to black. The resource class for each of these resources in the resource list should be chosen so
that it takes the minimal number of entries in the resource databaseadmakckgroundsory

and eerything else darkblue.

In this case, the background pixel shouldena esource class of “Backgroun@nd all the other
pixel entries a resource class of “Foregroun@hen,the resource file needs onlydwnes to
change all pixels tosory or darkblue:

*Background: vory
*Foreground: darkblue

Similarly, a widget may hae sveaal font resources (such as normal and bold), but all fonts
should hae the class Bnt. Thuschanging all fonts simply requires only a single line in the
default resource file:

*Font: 6x13

By convention, resource classes areajs spelled starting with a capital letter to distinguish
them from resource names. Their symbolic names are preceded with (‘¥iGxample,
XtCBackground).

Theresource_typdield gives the physical representation type of the resource and also encodes
information about the specific usage of the field. Byention, it starts with an uppercase letter

and is spelled identically to the type name of the field. The resource type is used when resources
are fetched to camert from the resource database format (usudtlyng) or the format of the

resource default value (almost anything, but oféémng) to the desired physical representation

(see Section 9.6). The Intrinsics define the following resource types:

Resource Ype Structurer Field Type
XtRAcceleratorTable XtAccelerators
XtRAtom Atom

XtRBitmap Pixmap, depth=1
XtRBoolean Boolean
XtRBool Bool
XtRCallback XtCallbackList
XtRCardinal Cardinal
XtRColor XColor
XtRColormap Colormap
XtRCommandArgArray String*
XtRCursor Cursor
XtRDimension Dimension
XtRDirectoryString String
XtRDisplay Display*
XtREnum XtEnum
XtREnvironmentArray String*

143

X Toolkit Intrinsics

X11 Release 6.8

Resource ype

Structurer Field Type

XtRFile FILE*
XtRFloat float
XtRFont Font
XtRFontSet XFontSet
XtRFontStruct XFontStruct*
XtRFunction ™0
XtRGeometry char*, format as defined byParseGe-
ometry
XtRGravity int
XtRInitialState int
XtRInt int
XtRLongBoolean long
XtRObject Object
XtRPixel Pixel
XtRPixmap Pixmap
XtRPointer XtPointer
XtRPosition Position
XtRRestartStyle unsigned char
XtRScreen Screen*
XtRShort short
XtRSmcConn XtPointer
XtRString String
XtRStringArray String*
XtRStringTable String*
XtRTranslationTable XtTranslations
XtRUnsignedChar unsigned char
XtRVisual Visual*
XtRWidget Widget
XtRWidgetClass WidgetClass
XtRWidgetList WidgetList
XtRWindow Window

<X11/StringDefs.h> dso defines the following resource types as aieaence for widgets,
although thg do not have any orresponding data type assignedREditMode , XtRJustify ,

and XtROrientation .
Theresource_sizdield is the size of the physical representation in bytes; you should specify it as

sizeof(type so that the compiler fills in thealue. Theaesource_offséfield is the offset in bytes
of the field within the widgetYou should use theXtOffsetOf macro to retriee this value. The
default_typdield is the representation type of the default resountieev Ifdefault_typas differ-
ent fromresource_typand the default value is needed, the resource managkesra ©rnver-
sion procedure frordefault_typeo resource_type Wheneer possible, the default type should
be identical to the resource type in order to minimize widget creation time. vidoteere are
sometimes no values of the type that the program can easily sgadifys case, it should be a
value for which the coverter is guaranteed to work (for examp¥DefaultForeground for a
pixel resource). Thdefault_addifield specifies the address of the default resousieey Asa
special case, dlefault_typds XtRString , then the value in théefault_addfield is the pointer

to the string rather than a pointer to the poinfére default is used if a resource is not specified

in the argument list or in the resource database or if theaion from the representation type
stored in the resource database fails, which can happen for various reasons (for example, a mis-
spelled entry in a resource file).

144

X Toolkit Intrinsics X11 Release 6.8

Two special representation types (XtRImmediate and XtRCallProc) are usable only as default
resource types. XtRImmediate indicates that the value iddfsilt_addfield is the actual value
of the resource rather than the address ofdhesv Thevalue must be in the correct representa-
tion type for the resource, coerced toXdRointer. No corversion is possible, since there is no
source representation type. XtRCallProc indicates that the valuedeféndt addrfield is a
procedure pointerThis procedure is automaticallywioked with the widgetyesource_offsetand

a pointer to anXrmValue in which to store the result. XtRCallProc procedure pointers are of
type XtResourceDefaultProc

typedef void (*XtResourceDefaultProc)(Widget, int, XrmValue?*);

Widgetw;

int offset

XrmValue *value
w Specifies the widget whose resource value is to be obtained.
offset Specifies the offset of the field in the widget record.
value Specifies the resource value descriptor to return.

The XtResourceDefaultProcprocedure should fill in thealue->addrfield with a pointer to the
resource value in its correct representation type.

To get the resource list structure for a particular classX#SetResourceList

void XtGetResourceList{ass resources_returnnum_resources_retuyn
WidgetClaslass
XtResourceList fesources_retumn
Cardinal "num_resources_return

class Specifies the object class to be queried. It musbljectClassor ary
subclass thereof.
resources_return Returns the resource list.

num_resources_returnReturns the number of entries in the resource list.

If XtGetResourcelListis called before the class is initialized, it returns the resource list as speci-
fied in the class record. If it is called after the class has been initiat@dfResourceList

returns a merged resource list that includes the resources for all superclasses. The list returned by
XtGetResourceList should be freed usingtFree when it is no longer needed.

To get the constraint resource list structure for a particular widget clas t@s€ConstraintRe-
sourceList.

145

X Toolkit Intrinsics X11 Release 6.8

void XtGetConstraintResourceListss resources_returnnum_resources_retuyn
WidgetClaslass
XtResourceList fesources_retumn
Cardinal "num_resources_return

class Specifies the object class to be queriéidmust beobjectClass or ary
subclass thereof.
resources_return Returns the constraint resource list.

num_resources_returnReturns the number of entries in the constraint resource list.

If XtGetConstraintResourcelList is called before the widget class is initialized, the resource list
as specified in the widget class Constraint part is returnextGiétConstraintResourceList is
called after the widget class has been initialized, the merged resource list for the class and all
Constraint superclasses is returned. If the specified class is not a subclasstiaintWidget-
Class, *resources_returms set to NULL and ium_resources_retutis set to zero. The list
returned byXtGetConstraintResourceList should be freed usingtFree when it is no longer
needed.

The routinesXtSetValuesand XtGetValues also use the resource list to set and get widget state;
see Sections 9.7.1 and 9.7.2.

Here is an abbreviated version of a possible resource list for a Label widget:

/* Resources specific to Label */

static XtResource resources[] ={

{XtNforeground, XtCForeground, XtRPixel, sizeof(Pixel),
XtOffsetOf(LabelRec, label.foreground), XtRString, XtDefaultForeground},

{XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct*),
XtOffsetOf(LabelRec, label.font), XtRString, XtDefaultFont},

{XtNlabel, XtCLabel, XtRString, sizeof(String),
XtOffsetOf(LabelRec, label.label), XtRString, NULL},

}

The complete resource name for a field of a widget instance is the concatenation of the applica-
tion shell name (fronXtAppCreateShell), the instance names of all the widggfirents up to

the top of the widget tree, the instance name of the widget itself, and the resource name of the
specified field of the widget. Similarlthe full resource class of a field of a widget instance is the
concatenation of the application class (frst\ppCreateShell), the widget class names of all

the widgets parents up to the top of the widget tree, the widget class name of the widget itself,
and the resource class of the specified field of the widget.

9.2. ByteOffset Calculations
To determine the byte offset of a field within a structure type Xi€dfsetOf .

146

X Toolkit Intrinsics X11 Release 6.8

Cardinal XtOffsetOf§tructure_typefield_namé
Type structure_type
Field field_namg

structure_type Specifies a type that is declared as a structure.
field_name Specifies the name of a member within the structure.

The XtOffsetOf macro expands to a constant expression thas ge offset in bytes to the spec-
ified structure member from the beginning of the structure. Itis normally used to statically ini-
tialize resource lists and is more portable tXaOffset, which serves the same function.

To determine the byte offset of a field within a structure pointer typeXtQ#set.

Cardinal XtOffsetfointer_typefield_namg
Type pointer_type
Field field_namg

pointer_type Specifies a type that is declared as a pointer to a structure.
field_name Specifies the name of a member within the structure.

The XtOffset macro expands to a constant expression thas gie offset in bytes to the speci-
fied structure member from the beginning of the structure. It may be used to statically initialize
resource lists XtOffset is less portable thaKtOffsetOf .

9.3. Supeclass-to-Subclass Chaining of Resource Lists

The XtCreateWidget function gets resources as a superclass-to-subclass chained operation.
That is, the resources specified in digectClassresource list are fetched, then thosegatOb-
jClass, and so on down to the resources specified for this wisigats. Within a class, resources
are fetched in the order there declared.

In general, if a widget resource field is declared in a superclass, that field is included in the super-
classs resource list and need not be included in the subsleessiurce list.For example, the
Core class contains a resource entrybfckground_pixel Consequentlythe implementation of
Label need not also @ a esource entry fdpackground_pixel Howeve, a sibclass, by specify-
ing a resource entry for that field in its own resource list, garmide the resource entry for any
field declared in a superclass. This is most often doneetoide the defaults provided in the
superclass with meones. Atclass initialization time, resource lists for that class are scanned
from the superclass down to the class to look for resources with the daete Aimatching
resource in a subclass will be reorderedvaride the superclass entrif reordering is neces-
sary a opy of the superclass resource list is madevtmdaaffecting other subclasses of the
superclass.

Also at class initialization time, the Intrinsics produce an internal representation of the resource
list to optimize access time when creating widgets. In ordev®rsamory the Intrinsics may
overwrite the storage allocated for the resource list in the class record; therefore, widgets must
allocate resource lists in writable storage and must not access the list contents directly after the
class_initialize procedure has returned.

147

X Toolkit Intrinsics X11 Release 6.8

9.4. Subesources

A widget does not do anything to retgeits own resources; insteadtCreateWidget does this
automatically before calling the class initialize procedure.

Some widgets he sibparts that are not widgets but for which the widget woutdtbketch
resources. Suahidgets callXtGetSubresourcesto accomplish this.

void XtGetSubresources(base name class resourcesnum_resourcesrgs, hum_args
Widgetw;
XtPointerbase
Stringname
Stringclass
XtResourcelListesources
Cardinalnum_resources
ArgList args
Cardinalnum_args

w Specifies the object used to qualify the subpart resource name andvlssse
of class Object or gmsubclass thereof.

base Specifies the base address of the subpart data structure into which the resources
will be written.

name Specifies the name of the subpart.

class Specifies the class of the subpart.

resources Specifies the resource list for the subpart.

num_resourcesSpecifies the number of entries in the resource list.

args Specifies the argument list tvaoride ary other resource specifications.

num_args Specifies the number of entries in the argument list.

The XtGetSubresourcesfunction constructs a hname and class list from the application name and
class, the names and classes of all the objautestors, and the object itself. Then it appends to
this list thenameandclasspair passed in. The resources are fetched from the argument list, the
resource database, or the default values in the resource list. Theretieepied into the subpart
record. Ifargsis NULL, num_arganust be zero. Hower, if num_argds zero, the argument

list is not referenced.

XtGetSubresourcesmay o/erwrite the specified resource list with an eglént representation

in an internal format, which optimizes access time if the list is used repeaibeélyesource list

must be allocated in writable storage, and the caller must not modify the list contents after the call
if the same list is to be usedadg. Resourcefetched byXtGetSubresourcesare reference-

counted as if thewere referenced by the specified object. Subresources might therefore be freed
from the cowmersion cache and destroyed when the object is destroyed, but not before then.

To fetch resources for widget subparts using varargs listXtWs€5etSubresources

148

X Toolkit Intrinsics X11 Release 6.8

void XtVaGetSubresources(base name class resourcesnum_resources..)
Widgetw;
XtPointerbase
Stringname
Stringclass
XtResourcelListesources
Cardinalnum_resources

w Specifies the object used to qualify the subpart resource name andvlsshe
of class Object or gmsubclass thereof.

base Specifies the base address of the subpart data structure into which the resources
will be written.

name Specifies the name of the subpart.

class Specifies the class of the subpart.

resources Specifies the resource list for the subpart.

num_resourcesSpecifies the number of entries in the resource list.
Specifieshe variable argument list tov@ride ary other resource specifications.

XtVaGetSubresourcesis identical in function toXtGetSubresourceswith theargsand
num_arggparameters replaced by a varargs list, as described in Section 2.5.1.

9.5. Obtaining Application Resources

To retrieve resources that are not specific to a widget but apply tovéwalbapplication, use
XtGetApplicationResources

void XtGetApplicationResources(base resourcesnum_resourcesrgs, num_args
Widgetw;
XtPointerbase
XtResourcelListesources
Cardinalnum_resources
ArgList args
Cardinalnum_args

w Specifies the object that identifies the resource database to search (the database is
that associated with the display for this object). Must be of class Objecy or an
subclass thereof.

base Specifies the base address into which the resource values will be written.
resources Specifies the resource list.

num_resourcesSpecifies the number of entries in the resource list.

args Specifies the argument list tvaoride ary other resource specifications.

num_args Specifies the number of entries in the argument list.

The XtGetApplicationResourcesfunction first uses the passed object, which is usually an appli-
cation shell widget, to construct a resource name and class list. The full name and class of the
specified object (that is, including its ancestors, if any) is logically added to the front of each
resource name and class. Then it re&dhe resources from the argument list, the resource data-
base, or the resource list defawdtues. Afteradding base to each addreXt;etApplication-
Resourcescopies the resources into the addresses obtained by dddietg eachoffsetin the

149

X Toolkit Intrinsics X11 Release 6.8

resource list. largsis NULL, num_arganust be zero. Hower, if num_argss zero, the argu-
ment list is not referenced. The portable way to specify application resources is to declare them
as members of a structure and pass the address of the structureasedingument.

XtGetApplicationResourcesmay overwrite the specified resource list with an eglént repre-
sentation in an internal format, which optimizes access time if the list is used repe@tedly

resource list must be allocated in writable storage, and the caller must not modify the list contents
after the call if the same list is to be useding Ary per-display resources fetched ByGetAp-
plicationResourceswill not be freed from the resource cache until the display is closed.

To retrieve resources for theverall application using varargs lists, us&/aGetApplicationRe-
sources

void XtVaGetApplicationResources(base resourcesnum_resources..)
Widgetw;
XtPointerbase
XtResourcelListesources
Cardinalnum_resources

w Specifies the object that identifies the resource database to search (the database is
that associated with the display for this object). Must be of class Objecy or an
subclass thereof.

base Specifies the base address into which the resource values will be written.
resources Specifies the resource list for the subpart.
num_resourcesSpecifies the number of entries in the resource list.

Specifieshe variable argument list tov@ride ary other resource specifications.

XtVaGetApplicationResourcesis identical in function toXtGetApplicationResourceswith the
argsandnum_arggparameters replaced by a varargs list, as described in Section 2.5.1.

9.6. Resouce Corversions

The Intrinsics provide a mechanism for registering representatioertens that are automati-
cally invoked by the resource-fetching routines. The Intrinsics additionally provide and register
several commonly used cemlrters. Thisresource corersion mechanism servesysgl purposes:

. It permits user and application resource files to contain textual representations of nontextual
values.

. It allows textual or other representations of default resource values that are dependent on
the displayscreen, or colormap, and thus must be computed at runtime.

. It caches coversion source and result data. @ersions that require much computation or

space (for example, string-to-translation-table) or that require round-trips to the server (for
example, string-to-font or string-to-color) are performed only once.

9.6.1. Pedefined Resource Corerters

The Intrinsics define all the representations used in the Object, RectObj, Core, Composite, Con-
straint, and Shell widget classes. The Intrinsics register the following resouvegtemmthat
accept input values of representation tyftRString .

Target Representation Coarter Name Additional Args

150

X Toolkit Intrinsics X11 Release 6.8

XtRAcceleratorTable XtCvtStringToAcceleratorTable

XtRAtom XtCvtStringToAtom Display*
XtRBoolean XtCvtStringToBoolean

XtRBool XtCvtStringToBool

XtRCommandArgArray XtCvtStringToCommandArgArray

XtRCursor XtCvtStringToCursor Display*
XtRDimension XtCvtStringToDimension

XtRDirectoryString XtCvtStringToDirectoryString

XtRDisplay XtCvtStringToDisplay

XtRFile XtCvtStringToFile

XtRFloat XtCvtStringToFloat

XtRFont XtCvtStringToFont Display*
XtRFontSet XtCvtStringToFontSet Display*, Stringlocale
XtRFontStruct XtCvtStringToFontStruct Display*
XtRGravity XtCvtStringToGravity

XtRInitialState XtCvtStringTolnitialState

XtRInt XtCvtStringTolnt

XtRPixel XtCvtStringToPixel colorConvertArgs
XtRPosition XtCvtStringToPosition

XtRRestartStyle XtCvtStringToRestartStyle

XtRShort XtCvtStringToShort

XtRTranslationTable XtCvtStringToTranslationTable

XtRUnsignedChar XtCvtStringToUnsignedChar

XtRVisual XtCvtStringToVisual Screen*, Cardinalepth

The String-to-Pixel corersion has tw predefined constants that are guaranteed to work and con-
trast with each otheXtDefaultForeground and XtDefaultBackground. They evaluate to the

black and white pixel values of the widgegreen, respeatily. If the application resource
reverseVideo isTr ue, they evaluate to the white and black pixel values of the widget'een,
respectiely. Similarly, the String-to-Font and String-to-FontStruct eenters recognize the con-
stantXtDefaultFont and eauate this in the following manner:

Query the resource database for the resource whose full name is “xtDefaultFont”, class
“ XtDefaultFont’ (that is, no widget name/class prefixes), and use aXyp8tring value
returned as the font name or a tyfRFont or XtRFontStruct value directly as the
resource value.

If the resource database does not contain a value for xtDefaultFont, class XtDefaultFont, or
if the returned font name cannot be successfully opened, an implementation-defined font in
ISO8859-1 character set encoding is opened. (One possible algorithm is to perform an
XListFonts using a wildcard font name and use the first font in the list. This wildcard font
name should be as broad as possible to maximize the probability of locating a useable font;
for example, "-*-*-*-R-*-*.*_120-*-*-*.*.|SO8859-1".)

If no suitable 1ISO8859-1 font can be found, issue a warning message andHaten

The String-to-FontSet cwarter recognizes the constaXtDefaultFontSet and eauate this in
the following manner:

Query the resource database for the resource whose full name is “xtDefaultFontSet”, class
“ XtDefaultFontSet'(that is, no widget name/class prefixes), and use axX{R8tring

value returned as the base font name list or a Kfg-ontSet value directly as the

resource value.

If the resource database does not contain a value for xtDefaultFontSet, class XtDefault-
FontSet, or if a font set cannot be successfully created from this resource, an implementa-
tion-defined font set is created. (One possible algorithm is to perfoddCeateFontSet

151

X Toolkit Intrinsics X11 Release 6.8

using a wildcard base font name. This wildcard base font name should be as broad as pos-
sible to maximize the probability of locating a useable font; for example,
"_*_*_*_R_*_*_*_lzo_*_*_*_*".)

. If no suitable font set can be created, issue a warning message and-gésern

If a font set is created buatissing_charset_liss not emptya warning is issued and the partial
font set is returned. The Intrinsics register the String-to-FontSeetenwith a comersion
argument list that extracts the current process locale at the time tleeteois irvoked. This
ensures that the ceerter is irvoked agan if the same corersion is required in a different locale.

The String-to-Gravity corersion accepts string values that are the names of wiadd bit grav-
ities and their numerical eqalents, as defined iKlib — C Languge X hterface ForgetGrav-
ity , UnmapGravity , NorthWestGravity , NorthGravity , NorthEastGravity , WestGravity ,
CenterGravity , EastGravity, SouthWestGravity, SouthGravity , SouthEastGravity, and
StaticGravity . Alphabetic case is not significant in the wasion.

The String-to-CommandArgArray ceersion parses a String into an array of strings. White
space characters separate elements of the command line. Vhgerarcognizes the backslash
character “\' as an scape character to allcdhe following white space character to be part of the
array element.

The String-to-DirectoryString ceersion recognizes the string “XtCurrentDirectdrghd returns
the result of a call to the operating system to get the current directory.

The String-to-RestartStyle cearsion accepts the valu€&estartifRunning , RestartAnyway,
Restartimmediately, and RestartNever as defined by th¥ Session Mangement Protocal

The String-to-InitialState coersion accepts the valuérmalState or IconicState as defined
by thelnter-Client Communication Conventions Manual

The String-to-Visual corersion callsXMatchVisuallnfo using thescreenanddepthfields from

the core part and returns the first matching Visual on the list. The widget resource list must be
certain to specify anresource of typeXtRVisual after the depth resource. The allowed string
values are the visual class names definedi Window System Protocdbection 8;StaticGray,
StaticColor, TrueColor, GrayScale, PseudoColor, and DirectColor .

The Intrinsics register the following resource water that accepts an input value of representa-
tion type XtRColor .

Target Representation Coarter Name Additional Args

XtRPixel XtCvtColorToPixel

The Intrinsics register the following resource waters that accept input values of representation
type XtRInt .

Target Representation Coater Name Additional Args
XtRBoolean XtCvtintToBoolean

XtRBool XtCvtintToBool

XtRColor XtCvtIintToColor colorCon vertArgs
XtRDimension XtCvtIntToDimension

XtRFloat XtCvtintToFloat

XtRFont XtCvtintToFont

XtRPixel XtCvtIntToPixel

152

X Toolkit Intrinsics X11 Release 6.8

XtRPixmap XtCvtintToPixmap
XtRPosition XtCvtIintToPosition
XtRShort XtCvtintToShort
XtRUnsignedChar XtCvtIntToUnsignedChar

The Intrinsics register the following resource water that accepts an input value of representa-
tion type XtRPixel.

Target Representation Cuoater Name Additional Args

XtRColor XtCvtPixelToColor

9.6.2. NewResource Conerters

Type cowerters use pointers tdirmValue structures (defined inX11/Xresource.h>; see Sec-
tion 15.4 inXlib — C Languge X hterfac§ for input and output values.

typedef struct {
unsigned int size;
XPointer addr;

} XrmValue, *XrmValuePtr;

Theaddrfield specifies the address of the data, andittedield gives the total number of signifi-
cant bytes in the datd=or values of typeString, addris the address of the first character size
includes the NULL-terminating byte.

A resource corerter procedure pointer is of typ&TypeConverter .

153

X Toolkit Intrinsics X11 Release 6.8

typedef Boolean (*XtTypeCaerter)(Display*, XrmValue*, Cardinal*,
XrmValue*, XrmValue*, XtPointer*);
Display *display;
XrmValue *args
Cardinal num_args
XrmValue *from;
XrmValue *o;
XtPointer *converter_data

display Specifies the display connection with which thisvasion is associated.

args Specifies a list of additiona{rmValue armguments to the ceerter if additional
contet is needed to perform the a@nsion, or NULL. For example, the String-
to-Font cowerter needs the widgstdisplay, and the String-to-Pixel caerter
needs the widget'screerandcolormap

num_args Specifies the number of entriesargs.
from Specifies the value to cosrt.
to Specifies a descriptor for a location into which to store theecteal value.

converter_dataSpecifies a location into which the erter may store comrter-specific data as-
sociated with this comrsion.

Thedisplayargument is normally used only when generating error messages, to identify the
application context (with the functioXtDisplayToApplicationContext).

Theto argument specifies the size and location into which theed®n should store the con-

verted \alue. Iftheaddrfield is NULL, the comerter should allocate appropriate storage and

store the size and location into tieedescriptor If the type cowerter allocates the storage, it

remains under the ownership of thewster and must not be modified by the call€he type
corverter is permitted to use static storage for this purpose, and therefore the caller must immedi-
ately coyy the data upon return from the eerter. If theaddrfield is not NULL, the cowverter

must check thsizefield to ensure that sufficient space has been allocated before storing the con-
verted \alue. Ifinsufficient space is specified, the eenter should update thezefield with the
number of bytes required and retlralse without modifying the data at the specified location.

If sufficient space was allocated by the callee cowerter should update thezefield with the

number of bytes actually occupied by thewsted \alue. For corverted values of type

XtRString , the size should include the NULL-terminating byte, iy.afhe cowerter may store

ary value in the location specified @onverter_datathis value will be passed to the destrugitor

ary, when the resource is freed by the Intrinsics.

The cowerter must returnfr ue if the corversion was successful aréhise otherwise. Itthe con-
version cannot be performed because of an improper source value, a warning message should also
be issued witiXtAppWarningMsg .

Most type cowerters just tak the data described by the specifies argument and return data
by writing into the location specified in theargument. Afew need other information, which is
available inargs A type cowerter can inoke another type coverter, which allows differing
sources that may ceert into a common intermediate result to reakaximum use of the type
corverter cache.

Note that if an address is written irite>addr, it cannot be that of a local variable of the con-
verter because the data will not be valid after theveder returns. Static variables may be used,
as in the following xample. Ifthe cowerter modifies the resource database, the changes affect
ary in-progress widget creatioXtGetApplicationResources or XtGetSubresourcesin an
implementation-defined manner; haxge insertion of ne entries or changes to existing entries
is allowed and will not directly cause an error.

154

X Toolkit Intrinsics X11 Release 6.8

The following is an example of a cgenter that takes atring and conerts it to aPixel. Note
that thedisplayparameter is used only to generate error messageSctbencorversion argu-
ment is still required to inform the Intrinsics that thevewted value is a function of the particu-
lar display (and colormap).

#define done(type, value) \

\
if (toVal->addr != NULL) { \
if (toVal->size < sizeof(type)) { \
toVal->size = sizeof(type); \
return Rlse; \
} \
(type)(toVal->addr) = (alue); \
\
else { \
static type static_al; \
static_val = (alue); \
toVal->addr = (XPointer)&static_al; \
} \
toVal->size = sizeof(type); \
return Tue; \

}

static Boolean CvtStringToPixel(dpergs, num_args, fromVal, toVal, ceerter_data)
Display *dpy;
XrmValue *ags;
Cardinal *num_ags;
XrmValue *from\al;
XrmValue *to\al;
XtPointer *cowverter_data;

{
static XColor screenColor;
XColor exactColor;
Screen *screen;
Colormap colormap;
Status status;

if (*num_args != 2)
XtAppWarningMsg(XtDisplayToApplicationContext(dpy),
"wrongParameters", "cvtStringToPixel", "XtToolkitError",
"String to pixel comersion needs screen and colormap arguments”,
(String *)NULL, (Cardinal *)NULL);

screen = *((Screen**) args[0].addr);
colormap = *((Colormap *) args[1].addr);

if (ComparelSOLatin1(stiXtDefaultBackground) == 0) {
*closure_ret = False;
done(Pixel, WhitePixelOfScreen(screen));

}
if (ComparelSOLatin1(stiXtDefaultForeground) == 0) {

*closure_ret = False;
done(Pixel, BlackPixelOfScreen(screen));

155

X Toolkit Intrinsics X11 Release 6.8

status = XAllocNamedColor(DisplayOfScreen(screen), colormap, (char*)fromVal->addr,
&screenColor&exactColor);

if (status == 0) {
String params[1];
Cardinal num_params = 1;
params[0] = (String)fromVal->addr;
XtAppWarningMsg(XtDisplayToApplicationContext(dpy),
"noColormap”, "cvtStringToPixel", "XtToolkitError",
"Cannot allocate colormap entry for \"%s\"", params, &num_params);
*converter_data = (char *) False;
return False;
}else {
*converter_data = (char *) True;
done(Pixel, &screenColor.pixel);

}

All type corverters should define some set of wasion values for which tlyeare guaranteed to
succeed so these can be used in the resourmeltdefThisssue arises only with coeersions,

such as fonts and colors, where there is no string representation that all server implementations
will necessarily recognizef-or resources lik these, the carerter should define a symbolic con-
stant in the same mannerX@PefaultForeground, XtDefaultBackground, and XtDefault-

Font.

To dlow the Intrinsics to deallocate resources produced by typeiters, a resource destructor
procedure may also be provided.

A resource destructor procedure pointer is of tffig@estructor .

typedef void (*XtDestructor) (XtAppContext, XrmValue*, XtPoint&rmValue*, Cardinal*);
XtAppContextapp
XrmValue *o;
XtPointerconverter_data
XrmValue *args
Cardinal num_args

app Specifies an application context in which the resource is being freed.

to Specifies a descriptor for the resource produced by the typertan
converter_dataSpecifies the caerter-specific data returned by the type\cster.

args Specifies the additional cearter arguments as passed to the typeeter when

the cowersion was performed.
num_args Specifies the number of entriesargs.

The destructor procedure is responsible for freeing the resource specifieddogrthement,
including ary auxiliary storage associated with that resource, but not the memory directly
addressed by the size and location intth@rgument or the memory specifieddogs

9.6.3. IssuingConversion Warnings

The XtDisplayStringConversionWarning procedure is a ceenience routine for resource type
corverters that covert from string values.

156

X Toolkit Intrinsics X11 Release 6.8

void XtDisplayStringComersionWarningdisplay from_valueto_typg
Display *display;
Stringfrom_valueto_type

display Specifies the display connection with which theveosion is associated.
from_value Specifies the string that could not be wsted.
to_type Specifies the target representation type requested.

The XtDisplayStringConversionWarning procedure issues a warning message UXtAgpp-
WarningMsg with name" corversionError”, type“ string”, class* XtToolkitError”, and the
default message “Cannot ogent "from_valué to typeto_typé .

To issue other types of warning or error messages, the typer@srshould us&XtAppWarn-
ingMsg or XtAppErrorMsg .

To retrieve the application context associated withgegidisplay connection, usktDisplay-
ToApplicationContext.

XtAppContext XtDisplayToApplicationContextlisplay)
Display *display;

display Specifies an open and initialized display connection.

The XtDisplayToApplicationContext function returns the application context in which the spec-
ified displaywas initialized. Ifthe display is not known to the Intrinsics, an error message is
issued.

9.6.4. Registeringa New Resource Cowerter

When registering a resource wgerter, the client must specify the manner in which thevemsion
cache is to be used when there are multiple calls to thverten Corversion cache control is
specified via arXtCacheType

argument.

typedef int XtCacheType;

An XtCacheType field may contain one of the following values:

XtCacheNone

Specifies that the results of a previousveosion may not be reused to satisfy ather
resource requests; the specifiedvanier will be called each time the a@nted value is
required.

XtCacheAll
Specifies that the results of a previousveosion should be reused foryaresource request
that depends upon the same source value andrs@n arguments.

XtCacheByDisplay

157

X Toolkit Intrinsics X11 Release 6.8

Specifies that the results of a previousveosion should be used as f§tCacheAll but the
destructor will be called, if specified, XtCloseDisplay is called for the display connection
associated with the ceerted value, and the value will be remed from the cowrersion
cache.

The qualifierXtCacheRefCountmay be ORed with grof the abee values. IfXtCacheRef-
Count is specified, calls tXtCreateWidget, XtCreateManagedWidget, XtGetApplication-
Resources and XtGetSubresourcesthat use the cagrted value will be counted. When a wid-
get using the carerted value is destroyed, the count is decremented, and, if the count reaches
zero, the destructor procedure will be called and theectmd value will be remeed from the
conversion cache.

To regster a type corerter for all application contexts in a process, ¥$8etTypeCorverter ,
and to register a type casrter in a single application context, ustAppSetTypeCorverter .

158

X Toolkit Intrinsics X11 Release 6.8

void XtSetTypeCowerter(from_typeto_type converter convert_argsnum_args
cache_typgedestructo)
Stringfrom_type
Stringto_type
XtTypeCorverter converter
XtCorvertArgList convert_args
Cardinalnum_args
XtCacheTypecache_type
XtDestructordestructor

from_type Specifies the source type.

to_type Specifies the destination type.

converter Specifies the resource type werter procedure.
convert_args Specifies additional cemrsion arguments, or NULL.
num_args Specifies the number of entriesconvert_args

cache_type Specifies whether or not resources produced by thigadenare sharable or dis-
play-specific and when tiashould be freed.

destructor Specifies a destyoprocedure for resources produced by thisvemion, or
NULL if no additional action is required to deallocate resources produced by the
corverter.

void XtAppSetTypeCoverter(@pp_contextirom_typeto_type converter convert_args
num_argscache_typgedestructo)
XtAppContextapp_context
Stringfrom_type
Stringto_type
XtTypeCorverter converter
XtCorvertArgList convert_args
Cardinalnum_args
XtCacheTypecache_type
XtDestructordestructor

app_context Specifies the application context.

from_type Specifies the source type.

to_type Specifies the destination type.

converter Specifies the resource type werter procedure.
convert_args Specifies additional cemrsion arguments, or NULL.
num_args Specifies the number of entriesconvert_args

cache_type Specifies whether or not resources produced by thigedenare sharable or dis-
play-specific and when tiashould be freed.

destructor Specifies a destyoprocedure for resources produced by thisvemion, or
NULL if no additional action is required to deallocate resources produced by the
corverter.

XtSetTypeCorverter registers the specified type eerter and destructor in all application con-
texts created by the calling process, includingfature application contexts that may be created.
XtAppSetTypeCorverter registers the specified type eerter in the single application context
specified. Ithe samdrom_typeandto_typeare specified in multiple calls to either function, the
most recenterrides the previous ones.

159

X Toolkit Intrinsics X11 Release 6.8

For the fev type cowerters that need additional arguments, the Intrinsicseesion mechanism
provides a method of specifyingwdhese arguments should be computed. The enumerated type
XtAddressMode and the structurXtConvertArgRec specify hev each argument is deed.

These are defined ind.1/Intrinsic.h >.

typedef enum {

[* address mode parameter representation */

XtAddress, [*address */
XtBaseOfset, [* offset */
Xtimmediate, [*constant */
XtResourceString, [fesource name string */
XtResourceQuark, /tesource name quark */
XtWidgetBaseOEet, [* offset */
XtProcedureAg /¥ procedure to call */

} X tAddressMode;

typedef struct {

XtAddressMode address_mode;
XtPointer address_id;
Cardinal size;

} X tCorvertArgRec, *XtCorvertArgList;

Thesizefield specifies the length of the data in bytes. athdress_modgeld specifies hwe the
address_idield should be interpreted{tAddress causesddress_ido be interpreted as the
address of the dataXtBaseOffsetcausesaddress_ido be interpreted as the offset from the wid-
get base.Xtimmediate causesiddress_ido be interpreted as a constaditResourceString
causesddress_ido be interpreted as the name of a resource that is to berteshinto an offset
from the widget baseXtResourceQuark causesddress_ido be interpreted as the result of an
XrmStringToQuark cornversion on the name of a resource, which is to beeted into an off-
set from the widget baseXtWidgetBaseOffsetis similar toXtBaseOffsetexcept that it

searches for the closest windowed ancestor if the object is not of a subclass of Core (see Chapter
12). XtProcedureArg specifies thaaddress_ids a pointer to a procedure to bgadked to

return the coversion agument. IfXtProcedureArg is specifiedaddress_idnust contain the
address of a function of typ&@ConvertArgProc .

typedef void (*XtCowertArgProc)(Widget, Cardinal*, XrmValue?*);

Widgetobject
Cardinal *size
XrmValue *value
object Passes the object for which the resource is beingested, or NULL if the con-
verter was inoked by XtCallConverter or XtDirectConvert .
size Passes a pointer to treizefield from theXtConvertArgRec .
value Passes a pointer to a descriptor into which the procedure must store tiee con

sion argument.

When irvoked, the XtConvertArgProc procedure must dere a onversion argument and store
the address and size of the argument in the location pointed/adugy

In order to permit reentrapcthe XtConvertArgProc should return the address of storage whose
lifetime is no shorter than the lifetime olbject If objectis NULL, the lifetime of the corersion
argument must be no shorter than the lifetime of the resource with which tleesgam argument

160

X Toolkit Intrinsics X11 Release 6.8

is associated. The Intrinsics do not guarantee tg top storage but do guarantee not to refer-
ence it if the resource is renan from the cowersion cache.

The following example illustrates o regster the CvtStringToPixel routinevgh earlier:

static XtCowertArgRec colorCowertArgs[] ={
{XtWidgetBaseOffset, (XtPointer)XtOffset(Widget, core.screen), sizeof(Screen*)},
{XtWidgetBaseOffset, (XtPointer)XtOffset(Widget, core.colormap),sizeof(Colormap)}

g

XtSetTypeCowuerter(XtRString, XtRPixel, CvtStringToPixel,
colorCorvertArgs, XtNumber(colorCovertArgs), XtCacheByDisplayNULL);

The cowersion argument descriptoc®lorConvertArgs andscreenCoivertArg are predefined

by the Intrinsics. Both takthe values from the closest windowed ancestor if the object is not of a
subclass of Core. ThecreenComwertArg descriptor puts the widgetsreerfield intoargq0].

The colorConvertArgs descriptor puts the widgetsreerfield intoargq0], and the widget’s
colormapfield intoarggq1].

Corversion routines should not just put a descriptor for the address of the base of the widget into
arggq0], and use that in the routine. Hhehould pass in the actual values on which theveen

sion depends. By keeping the dependencies of theion procedure specific, it is more likely
that subsequent ceersions will find what the need in the corersion cache. This way the cache

is smaller and has fewer and more widely applicable entries.

If any corversion arguments of typ¥tBaseOffset, XtResourceString, XtResourceQuark, and
XtwWidgetBaseOffsetare specified for caersions performed bXtGetApplicationResources
XtGetSubresources XtVaGetApplicationResources or XtVaGetSubresources the argu-

ments are computed with respect to the specified widget, not the base address or resource list
specified in the call.

If the XtConvertArgProc modifies the resource database, the changes affet-pnogress
widget creationXtGetApplicationResources or XtGetSubresourcesin an implementation-
defined manner; hower, insertion of ne entries or changes to existing entries are allowed and
will not directly cause an error.

9.6.5. Resouce Corverter In vocation

All resource-fetching routines (for exampktGetSubresources XtGetApplicationResources
and so on) call resource c@rers if the resource database or varargs list specifies a value that
has a different representation from the desired representation or if the svilig@ilt resource
value representation is different from the desired representation.

To invoke explicit resource coversions, useXtConvertAndStore or XtCallConverter .

typedef XtPointer XtCacheRef;

Boolean XtCallCowerter(display, converter conversion_argshum_argsfrom, to_in_out
cache_ref _returp
Display* display;
XtTypeCorverter converter
XrmValuePtrconversion_args
Cardinalnum_args
XrmValuePtrfrom;
XrmValuePtrto_in_out
XtCacheRef tache_ref return

161

X Toolkit Intrinsics X11 Release 6.8

display Specifies the display with which the eersion is to be associated.

converter Specifies the carmersion procedure to be called.

conversion_args Specifies the additional ceersion arguments needed to perform the con-
version, or NULL.

num_args Specifies the number of entriesconversion_args

from Specifies a descriptor for the source value.

to_in_out Returns the carerted value.

cache_ref return Returns a carersion cache id.

The XtCallConverter function looks up the specified type werter in the application context
associated with the display and, if the water was not registered or was registered with cache
type XtCacheAll or XtCacheByDisplay, looks in the coversion cache to see if this aansion
procedure has been called with the specified@sion aguments. Ifs0, it checks the success
status of the prior call, and if the a@nsion failed,XtCallConverter returnsFalse immediately;
otherwise it checks the size specified intthargument, and, if it is greater than or equal to the
size stored in the cache, copies the information stored in the cache into the location specified by
to->addr, gores the cache size ini@->size and returnsTr ue. If the size specified in the
argument is smaller than the size stored in the cati@glliConverter copies the cache size into
to->sizeand returnd=alse. If the cowerter was registered with cache ty&CacheNoneor no
vaue was found in the coarsion cacheXtCallConverter calls the cowerter, and if it was not
registered with cache typ&CacheNone enters the result in the cach&tCallConverter then
returns what the caemrter returned.

Thecache_ref_returifield specifies storage allocated by the caller in which an opaque value will
be stored. If the type cuater has been registered with tiiCacheRefCount modifier and if

the value returned ibache_ref returtis non-NULL, then the caller should store the
cache_ref_returtvalue in order to decrement the reference count when therted value is no
longer required. Theache_ref_returrmrgument should be NULL if the caller is unwilling or
unable to store the value.

To explicitly decrement the reference counts for resources obtained{tGadlConverter , use
XtAppReleaseCacheRefs

void XtAppReleaseCacheReégip_contextrefs)
XtAppContextapp_context
XtCacheRef tefs;

app_context Specifies the application context.
refs Specifies the list of cache references to be released.

XtAppReleaseCacheRefslecrements the reference count for thevemion entries identified by
therefsamgument. Thisargument is a pointer to a NULL-terminated lisbaCacheRefvalues.

If any reference count reaches zero, the destrui€tmy, will be called and the resource reved
from the cowmersion cache.

As a comenience to clients needing to explicitly decrement reference counts via a callback func-
tion, the Intrinsics define wvcallback procedures{tCallbackReleaseCacheReand XtCall-
backReleaseCacheRefList

162

X Toolkit Intrinsics X11 Release 6.8

void XtCallbackReleaseCacheRalject client_data call_datg
Widgetobject
XtPointerclient_data
XtPointercall_datg

object Specifies the object with which the resource is associated.
client_data Specifies the carersion cache entry to be released.
call_data Is ignored.

This callback procedure may be added to a callback list to release a previously returned
XtCacheRefvalue. Whenadding the callback, the callbackent_dataargument must be speci-
fied as the value of thétCacheRefdata cast to typ&tPointer .

void XtCallbackReleaseCacheRefLiject client_data call_datg
Widgetobject
XtPointerclient_data
XtPointercall_datg

object Specifies the object with which the resources are associated.
client_data Specifies the carersion cache entries to be released.
call_data Is ignored.

This callback procedure may be added to a callback list to release a list of previously returned
XtCacheRefvalues. Wheradding the callback, the callbackent_dataargument must be spec-
ified as a pointer to a NULL-terminated list ¥fCacheRefvalues.

To lookup and call a resource arter, copy the resulting value, and free a cached resource
when a widget is destroyed, useConvertAndStore .

Boolean XtComertAndStorefpbject from_typefrom, to_typeto_in_ou)
Widgetobject
Stringfrom_type
XrmValuePtrfrom;
Stringto_type
XrmValuePtrto_in_out

object Specifies the object to use for additional arguments,)ifasg needed, and the
destrqy callback list. Must be of class Object oryasubclass thereof.

from_type Specifies the source type.

from Specifies the value to be a@nted.
to_type Specifies the destination type.
to_in_out Specifies a descriptor for storage into which theveed value will be returned.

The XtConvertAndStore function looks up the type coerter registered to ceert from_typeto
to_type computes ayadditional arguments needed, and then cétfSallConverter (or XtDi-
rectConvert if an old-style cowerter was registered witKtAddConverter or XtAppAddCon-
verter ; see Appendix C) with théom andto_in_outarguments. Théo_in_outargument speci-
fies the size and location into which the waited value will be stored and is passed directly to
the cowerter. If the location is specified as NULL, it will be replaced with a pointer t@teri
storage and the size will be returned in the descriftoe caller is expected to gpfhis private

163

X Toolkit Intrinsics X11 Release 6.8

storage immediately and must not modify it ity avay. If a non-NULL location is specified, the
caller must allocate sufficient storage to hold theveded value and must also specify the size of
that storage in the descriptorhesizefield will be modified on return to indicate the actual size
of the conerted data. If the carersion succeeds{tConvertAndStore returnsTr ue; otherwise,

it returnsFalse.

XtConvertAndStore addsXtCallbackReleaseCacheRefo the destroyCallback list of the spec-
ified object if the coversion returns aiXtCacheRefvaue. Theresulting resource should not be
referenced after the object has been destroyed.

XtCreateWidget performs processing egalent to XtConvertAndStore when initializing the
object instance. Because there is extra memesshead required to implement reference count-
ing, clients may distinguish those objects that avenrdestroyed before the application exits
from those that may be destroyed and whose resources should be deallocated.

To gecify whether reference counting is to be enabled for the resources of a particular object
when the object is created, the client can specify a value f@dbkeanresource XtNinitialRe-
sourcesPersistent, class XtClnitialResourcesPersistent.

When XtCreateWidget is called, if this resource is not specifiedratse in either the arglist or

the resource database, then the resources referenced by this object are not reference-counted,
regardless of hw the type cowerter may hse keen rgistered. Theffective default value is

Tr ue; thus clients that expect to destrmne or more objects and want resources deallocated must
explicitly specify False for XtNinitialResourcesPersistent.

The resources are still freed and destructors called WiheloseDisplay is called if the cower-
sion was registered agCacheByDisplay.

9.7. Readingand Writing Widget State

Any resource field in a widget can be read or written by a client. On a write operation, the widget
decides what changes it will actually alend updates all dered fields appropriately.

9.7.1. ObtainingWidget State
To retrieve the current values of resources associated with a widget instanc&Get¥alues.

void XtGetValuesgbject args num_arg}
Widgetobject
ArgList args
Cardinalnum_args

object Specifies the object whose resouredues are to be returned. Must be of class
Object or ag subclass thereof.

args Specifies the argument list of name/address pairs that contain the resource names
and the addresses into which the resource values are to be Stheedesource
names are widget-dependent.

num_args Specifies the number of entries in the argument list.

The XtGetValues function starts with the resources specified for the Object class and proceeds
down the subclass chain to the class of the object.valefield of a passed argument list must
contain the address into which to gdhe contents of the corresponding object instance field. If
the field is a pointer type, the lifetime of the pointed-to data is defined by the objectrdiatte
Intrinsics-defined resources, the following lifetimes apply:

* Not valid following aty operation that modifies the resource:

164

X Toolkit Intrinsics X11 Release 6.8

— XtNchildren resource of composite widgets.

— All resources of representation type XtRCallback.
* Remain valid at least until the widget is destroyed:

— XtNaccelerators, XtNtranslations.
* Remain valid until the Display is closed:

— XtNscreen.

It is the callers responsibility to allocate and deallocate storage for the copied data according to
the size of the resource representation type used within the object.

If the class of the objestiparent is a subclass obnstraintWidgetClass, XtGetValues then
fetches the values for yionstraint resources requested. It starts with the constraint resources
specified forconstraintWidgetClassand proceeds down the subclass chain to the psuent’
straint resources. If the argument list contains a resource name that is not foundfithan
resource lists searched, the value at the corresponding address is not modifigdetf\al-
ues_hook procedures in the objedass or superclass records are non-NULLy #we called in
superclass-to-subclass order after all the resource valuesden fetched bXtGetValues.

Finally, if the object parent is a subclass obnstraintWidgetClass, and if ary of the parent’s
class or superclass recordvdakclaredConstraintClassExtensionrecords in the Constraint
class parexensionfield with a record type oRULLQ UARK, and if thegel_values_hookield in

the extension record is non-NULKtGetValues calls the get_values_hook procedures in super-
class-to-subclass orderhis permits a Constraint parent to provide nonresource daXt@et-
Values.

Get_values_hook procedures may modify the data stored at the location addressemdlbg the
field, including (but not limited to) making a cppf data whose resource representation is a
pointet None of the Intrinsics-defined object classesyaigia in this mannerAny operation
that modifies the queried object resource magliglate the pointed-to data.

To retrieve the current values of resources associated with a widget instance using varargs lists,
use XtVaGetValues.

void XtVaGetValuesgbject ...)
Widgetobject

object Specifies the object whose resouredues are to be returned. Must be of class
Object or ag subclass thereof.

Specifieshe variable argument list for the resources to be returned.

XtVaGetValues is identical in function toXtGetValues with theargsandnum_arggarameters
replaced by a varargs list, as described in Section 2.5.1. All value entries in the list must specify
pointers to storage allocated by the caller to which the resource value will be copied. Itis the
caller’s responsibility to ensure that sufficient storage is allocatedt\MaTypedArg is speci-

fied, thetypeargument specifies the representation desired by the calléieside argument
specifies the number of bytes allocated to store the result of thergion. Ifthe size is insuffi-

cient, a warning message is issued and the list entry is skipped.

9.7.1.1. Wdget Subpart Resource Data: The get_values_hook Procedure

Widgets that hae sibparts can return resource values from them throiGetValues by sup-
plying a get_values_hook procedure. The get_values_hook procedure pointer is of type
XtArgsProc.

165

X Toolkit Intrinsics X11 Release 6.8

typedef void (*XtArgsProc)(Widget, ArgList, Cardinal*);
Widgetw;
ArgList args
Cardinal num_args

w Specifies the widget whose subpart resource values are to beedetrie

args Specifies the gument list that was passed X#GetValues or the transformed
varargs list passed t¥tVaGetValues.

num_args Specifies the number of entries in the argument list.

The widget with subpart resources should gabetSubvaluesin the get_values_hook proce-
dure and pass in its subresource list anditggandnum_arggparameters.

9.7.1.2. Wdget Subpart State

To retrieve the current values of subpart resource data associated with a widget instance, use
XtGetSubvalues. For a discussion of subpart resources, see Section 9.4.

void XtGetSulvaluespase resourcesnum_resourcesargs, hum_args
XtPointerbase
XtResourcelListesources
Cardinalnum_resources
ArgList args
Cardinalnum_args

base Specifies the base address of the subpart data structure for which the resources
should be retrieed.

resources Specifies the subpart resource list.

num_resourcesSpecifies the number of entries in the resource list.

args Specifies the argument list of name/address pairs that contain the resource names

and the addresses into which the resource values are to be stored.
num_args Specifies the number of entries in the argument list.

The XtGetSubvalues function obtains resource values from the structure identifiezhby The
valuefield in each argument entry must contain the address into which to store the corresponding
resource &lue. ltis the callers responsibility to allocate and deallocate this storage according to

the size of the resource representation type used within the subpart. If the argument list contains
a resource name that is not found in the resource list, the value at the corresponding address is not
modified.

To retrieve the current values of subpart resources associated with a widget instance using varargs
lists, useXtVaGetSubvalues.

166

X Toolkit Intrinsics X11 Release 6.8

void XtVaGetSubauesfpase resourcesnum_resources..)
XtPointerbase
XtResourcelListesources
Cardinalnum_resources

base Specifies the base address of the subpart data structure for which the resources
should be retrieed.
resources Specifies the subpart resource list.

num_resourcesSpecifies the number of entries in the resource list.

Specifiesa variable argument list of name/address pairs that contain the resource
names and the addresses into which the resource values are to be stored.

XtVaGetSubvalues s identical in function tXtGetSubvalues with theargsandnum_args
parameters replaced by a varargs list, as described in Section2t%allypedArg is not sup-
ported forXtVaGetSubvalues. If XtVaTypedArg is specified in the list, a warning message is
issued and the entry is then ignored.

9.7.2. SettingwWidget State
To modify the current values of resources associated with a widget instancéSesealues.

void XtSetValuesgbject args num_arg}
Widgetobject
ArgList args
Cardinalnum_args

object Specifies the object whose resources are to be modiedt be of class Object
or ary subclass thereof.

args Specifies the argument list of name/value pairs that contain the resources to be
modified and their e values.

num_args Specifies the number of entries in the argument list.

The XtSetValuesfunction starts with the resources specified for the Object class fields and pro-
ceeds down the subclass chain to the object. At each stage, it replaaige¢hesource fields

with ary values specified in the argument ligttSetValuesthen calls the set_values procedures

for the object in superclass-to-subclass ordliethe object has gmon-NULL set_values_hook

fields, these are called immediately after the corresponding set_values procedure. This procedure
permits subclasses to set subpart datxXv&etValues.

If the class of the objestparent is a subclass obnstraintWidgetClass, XtSetValuesalso

updates the objestoonstraints. Istarts with the constraint resources specifieccéorstrain-
tWidgetClass and proceeds down the subclass chain to the padads. Ateach stage, it

replaces the constraint resource fields wihaues specified in the argument list. It then calls

the constraint set_values procedures faamstraintWidgetClassdown to the parerd’dass.

The constraint set_values procedures are called with widget arguments, as for all set_values pro-
cedures, not just the constraint records, so thgtddne male adjustments to the desired values

based on full information about the widget. yfarguments specified that do not match a resource
list entry are silently ignored.

If the object is of a subclass of RectO¥jSetValuesdetermines if a geometry request is needed
by comparing the old object to themebject. Ifany geometry changes are requiredSetVal-
uesrestores the original geometry and makes the request on behalf of the widget. If the geometry

167

X Toolkit Intrinsics X11 Release 6.8

manager returnXtGeometryYes, XtSetValuescalls the objecs resize procedure. If the geom-
etry manager returnstGeometryDone, XtSetValuescontinues, as the objestiesize procedure
should hae keen called by the geometry managéthe geometry manager returigGeome-

tryNo , XtSetValuesignores the geometry request and continues. If the geometry manager
returnsXtGeometryAlmost, XtSetValuescalls the set_values_almost procedure, which deter-
mines what should be don&tSetValuesthen repeats this process, deciding once more whether
the geometry manager should be called.

Finally, if any of the set_values procedures returfiede, and the widget is realizektSetVal-
uescauses the widgetexpose procedure to bevisked by alling XClearArea on the widget's
window.

To modify the current values of resources associated with a widget instance using varargs lists,
use XtVaSetValues.

void XtVaSetValuesgbject ...)
Widgetobject

object Specifies the object whose resources are to be modiedt be of class Object
or ary subclass thereof.

Specifieshe variable argument list of namalie pairs that contain the resources
to be modified and their nevalues.

XtVaSetValuesis identical in function toXtSetValueswith theargsandnum_argsparameters
replaced by a varargs list, as described in Section 2.5.1.

9.7.2.1. Wdget State: The set_values Procedure
The set_values procedure pointer in a widget class is oiXpetValuesFunc

typedef Boolean (*XtSetValuesFunc)(Widget, Widget, Widget, ArgList, Cardinal*);

Widgetcurrent,
Widgetrequest
Widgetnew
ArgList args
Cardinal num_args
current Specifies a copof the widget as it was before th@SetValuescall.
request Specifies a copof the widget with all elues changed as asked for by KiSet-
Values call before an class set_values proceduresd&een called.
new Specifies the widget with thewevalues that are actually allowed.
args Specifies the argument list passedXt$etValues or the transformed gument

list passed tXtVaSetValues
num_args Specifies the number of entries in the argument list.

The set_values procedure should recompudiatd derved from resources that are changed (for
example, mayp GCs depend on foreground and backgroundlp)x Ifno recomputation is neces-
sary and if none of the resources specific to a subclass require thewiod® edisplayed

when their values are changed, you can specify NULL fos¢hevaluedield in the class record.

Like the initialize procedure, set_values mostly deals only with the fields defined in the subclass,
but it has to resole conflicts with its superclass, especially conflictgsravidth and height.

168

X Toolkit Intrinsics X11 Release 6.8

Sometimes a subclass may wantverarite values filled in by its superclass. In particusae
calculations of a superclass are often incorrect for a subclass, and, in this case, the subclass must
modify or recalculate fields declared and computed by its superclass.

As an example, a subclass can visually surround its superclass.disytaig case, the width and

height calculated by the superclass set_values procedure are too small and need to be incremented
by the size of the surround. The subclass needs tw iknts superclass’sze was calculated by

the superclass or was specified explicityl widgets must place themselves into whetesize is

explicitly given, but thg should compute a reasonable size if no size is requestes.déls a

subclass knw the difference between a specified size and a size computed by a superclass?

Therequestandnewparameters provide the necessary information. rétpeestwidget is a copy

of the widget, updated as originally requested. idwwidget starts with the values in the

request, but it has additionally been updated by all superclass set_values procedures called so far.
A subclass set_values procedure can compare these tesole any potential conflicts. The
set_values procedure need not refer ta¢haestwidget unless it must res@wonflicts between
thecurrentandnewwidgets. Ary changes the widget needs to make, including geometry

changes, should be made in tesvwidget.

In the aboe example, the subclass with the visual surround can seewithie andheightin the
requestwidget are zero. If so, it adds its surround size tontiskh andheightfields in thenew
widget. Ifnot, it must ma& do wth the size originally specified. In this case, zero is a special
value defined by the class to permit the applicationvoke tis behavior.

Thenewwidget is the actual widget instance record. Therefore, the set_values procedure should
do all its work on th@mewwidget; therequestwidget should neéer be nodified. Ifthe set_values
procedure needs to callyaroutines that operate on a widget, it should spewifyas the widget
instance.

Before calling the set_values procedures, the Intrinsics modify the resourcesequswidget
according to the contents of the arglist; if the widget names all its resources in the class resource
list, it is never necessary to examine the contentargs

Finally, the set_values procedure must return a Boolean that indicates whether the widget needs to
be redisplayed. Note that a change in the geometry fields alone does not require the set_values
procedure to returiir ue; the X server will gentually generate akxposeevent, if necessary.

After calling all the set_values procedursSetValuesforces a redisplay by callingClear-

Area if any of the set_values procedures returfiede. Therefore, a set_values procedure

should not try to do its own redisplaying.

Set_values procedures should not dpwark in response to changes in geometry because
XtSetValues eventually will perform a geometry request, and that request might be denied. If
the widget actually changes size in response to a cAliSetValues, its resize procedure is
called. Wdgets should do grgeometry-related work in their resize procedure.

Note that it is permissible to catltSetValuesbefore a widget is realized. Therefore, the set_val-
ues procedure must not assume that the widget is realized.

9.7.2.2. Wdget State: The set_values_almost Procedure
The set_values_almost procedure pointer in the widget class record is stAlp@stProc.

169

X Toolkit Intrinsics X11 Release 6.8

typedef void (*XtAlmostProc)(Widget, Widget, XtWidgetGeometry*, XtWidgetGeometry*);
Widgetold;
Widgetnew
XtwidgetGeometry fequest
XtwidgetGeometry Feply;

old Specifies a copof the object as it was before th@SetValuescall.
new Specifies the object instance record.

request Specifies the original geometry request thaswent to the geometry manager
that causeXtGeometryAlmost to be returned.

reply S_pecifies the compromise geometry thasweturned by the geometry manager
with XtGeometryAlmost.

Most classes inherit the set_values_almost procedure from their superclass by sp¥tifiying
heritSetValuesAlmostin the class initialization. The set_values_almost procedurect®bj-
Classaccepts the compromise suggested.

The set_values_almost procedure is called when a client tries to set asgdgetétry by

means of a call tiXtSetValuesand the geometry manager cannot satisfy the request but instead
returnsXtGeometryNo or XtGeometryAlmost and a compromise geometryhe newobject is

the actual instance record. They, width, height and border_widthfields contain the original
values as thgwere before thXtSetValuescall, and all other fields contain thewnealues. The
requestparameter contains themgeometry request that was made to the parent.rdpig
parameter contairreply->request_modequal to zero if the parent return&tdseometryNo and
contains the paremstaiompromise geometry otherwise. The set_values_almost procedure takes
the original geometry and the compromise geometry and determines if the compromise is accept-
able or whether to try a different compromise. It returns its results redqbestparameter,

which is then sent back to the geometry manager for anothéfagccept the compromise, the
procedure must cgpthe contents of theeply geometry into theequestgeometry; to attempt an
alternatve geometrythe procedure may modify apart of therequestargument; to terminate the
geometry negotiation and retain the original geom#te/procedure must set
request->request_mode zero. The geometry fields of thlel andnewinstances must not be
modified directly.

9.7.2.3. Wdget State: The ConstraintClassPart set_values Procedure

The constraint set_values procedure pointer is of ¥tetValuesFunc The values passed to
the parens constraint set_values procedure are the same as those passed to thdagsld’
set_values procedurd class can specify NULL for theet_valuesield of theConstraintPart

if it need not compute anything.

The constraint set_values procedure should recomputenastraint fields deved from con-

straint resources that are changed. Furthermore, it may modify other widget fields as appropriate.
For example, if a constraint for the maximum height of a widget is changed to a value smaller

than the widges aurrent height, the constraint set_values procedure may redai¢hfield in

the widget.

9.7.2.4. \Wdget Subpart State

To =t the current values of subpart resources associated with a widget instant&etSeb-
values. For a discussion of subpart resources, see Section 9.4.

170

X Toolkit Intrinsics X11 Release 6.8

void XtSetSulauesfpase resourcesnum_resourcesargs num_argy
XtPointerbase
XtResourcelListesources
Cardinalnum_resources
ArgList args
Cardinalnum_args

base Specifies the base address of the subpart data structure into which the resources
should be written.

resources Specifies the subpart resource list.

num_resourcesSpecifies the number of entries in the resource list.

args Specifies the argument list of name/value pairs that contain the resources to be

modified and their e values.
num_args Specifies the number of entries in the argument list.

The XtSetSubvalues function updates the resource fields of the structure identifiedd®y Any
specified arguments that do not match an entry in the resource list are silently ignored.

To st the current values of subpart resources associated with a widget instance using varargs
lists, useXtVaSetSubvalues.

void XtVaSetSubaluespase resourcesnum_resources..)
XtPointerbase
XtResourceListesources
Cardinalnum_resources

base Specifies the base address of the subpart data structure into which the resources
should be written.
resources Specifies the subpart resource list.

num_resourcesSpecifies the number of entries in the resource list.

Specifieshe variable ayjument list of name/value pairs that contain the resources
to be modified and their nevalues.

XtVaSetSubvaluesis identical in function toXtSetSubvalues with theargsandnum_args
parameters replaced by a varargs list, as described in Section2t%allypedArg is not sup-
ported forXtVaSetSubvalues. If an entry containingXtVaTypedArg is specified in the list, a
warning message is issued and the entry is ignored.

9.7.2.5. Wdget Subpart Resource Data: The set_values_hook Procedure

Note

The set_values_hook procedure is obsolete, as the same informatiareisitable
to the set_values procedure. The procedure has been retained for those widgets that
used it in versions prior to Release 4.

Widgets that hae a sibpart can set the subpart resource values thrgt@étValues by supply-
ing a set_values_hook procedure. The set_values_hook procedure pointer in a widget class is of
type XtArgsFunc.

171

X Toolkit Intrinsics X11 Release 6.8

typedef Boolean (*XtArgsFunc)(Widget, Arglist, Cardinal*);
Widgetw;
Arglist args
Cardinal num_args
w Specifies the widget whose subpart resource values are to be changed.

args Specifies the argument list that was passedt®etValues or the transformed
varargs list passed tdtVaSetValues.

num_args Specifies the number of entries in the argument list.

The widget with subpart resources may eédtbetValuesfrom the set_values_hook procedure
and pass in its subresource list anddigsandnum_argarameters.

172

X Toolkit Intrinsics X11 Release 6.8

Chapter 10

Translation Management

Except under unusual circumstances, widgets do not hardwire the mapping eEnteinéo
widget behavior by using theent manager Instead, thg provide a default mapping ofents
into behavior that you carverride.

The translation manager provides an interface to specify and manage the mappingrf X e
sequences into widget-supplied functionality example, calling procedufdcwhen they key
is pressed.

The translation manager use®tkinds of tables to perform translations:

. The action tables, which are in the widget class structure, specify the mapping of externally
awailable procedure name strings to the corresponding procedure implemented by the wid-
get class.

. A translation table, which is in the widget class structure, specifies the mappieptof e
sequences to procedure name strings.

You can override the translation table in the class structure for a specific widget instance by sup-
plying a different translation table for the widget instance. The resources XtNtranslations and
XtNbaseTranslations are used to modify the class default translation table; see Section 10.3.

10.1. ActionTables

All widget class records contain an action table, an arragtA€tionsRec entries. Inaddition,

an application can register its own action tables with the translation manager so that the transla-
tion tables it provides to widget instances can access application functionality diféelyrans-

lation action procedure pointer is of ty@eActionProc .

typedef void (*XtActionProc)(Widget, XEvent*, String*, Cardinal*);
Widgetw;
XEvent *event
String *params
Cardinal num_params

w Specifies the widget that caused the action to be called.
ewent Specifies thevent that caused the action to be calléfcthe action is called after
a ®equence of\ents, then the lastvent in the sequence is used.
params Specifies a pointer to the list of strings that were specified in the translation table

as arguments to the action, or NULL.
num_params Specifies the number of entriesparams
typedef struct _XtActionsRec {
String string;
XtActionProc proc;
} X tActionsRec, *XtActionList;

Thestringfield is the name used in translation tables to access the procedungrodfield is a
pointer to a procedure that implements the functionality.

173

X Toolkit Intrinsics X11 Release 6.8

When the action list is specified as thereClassPartactionsfield, the string pointed to by
string must be permanently allocated prior to or during tteewtion of the class initialization
procedure and must not be subsequently deallocated.

Action procedures should not assume that the widget in whigratbeénvoked is realized; an
accelerator specification can cause an action procedure to be called for a widget that does not yet
have a wndow. Widget writers should also note which of a widgetillback lists are woked

from action procedures and warn clients not to assume the widget is realized in those callbacks.

For example, a Pushbutton widget has procedures wttakfollowing actions:
. Set the button to indicate it is azted.

. Unset the button back to its normal mode.

. Highlight the button borders.

. Unhighlight the button borders.

. Notify arny callbacks that the button has been\attid.

The action table for the Pushbutton widget class makes these funetidalla to translation

tables written for Pushbutton oryasubclass. Theatring entry is the name used in translation
tables. Therocedure entry (usually spelled identically to the string) is the name of the C proce-
dure that implements that function:

XtActionsRec actionTable[] ={
{"Set", Set},
{"Unset", Unset},
{"Highlight", Highlight},
{"Unhighlight", Unhighlight}
{"Notify", Notify},

¥

The Intrinsics reseevdl action names and parameters starting with the characterd txfuture
standard enhancements. Users, applications, and widgets should not declare action names or pass
parameters starting with these characters exceptakdrgpecified built-in Intrinsics functions.

10.1.1. ActionTable Registration

Theactionsandnum_actiondields of CoreClassPartspecify the actions implemented by a wid-
get class. These are automatically registered with the Intrinsics when the class is initialized and
must be allocated in writable storage prior to Core class_part initialization, eadleallocated.

To savememory and optimize access, the Intrinsics magyverite the storage in order to compile

the list into an internal representation.

To declare an action table within an application and register it with the translation masager
XtAppAddActions .

void XtAppAddActions@pp_contextactions num_actiong
XtAppContextapp_context
XtActionList actions
Cardinalnum_actions
app_context Specifies the application context.
actions Specifies the action table to register.

num_actions Specifies the number of entries in this action table.

If more than one action is registered with the same name, the most recently registered action is

174

X Toolkit Intrinsics X11 Release 6.8

used. Ifduplicate actions exist in an action table, the first is used. The Intrinsics register an
action table containiniXtMenuPopup and XtMenuPopdown as part ofXtCreateApplication-
Context.

10.1.2. ActionNames to Procedue Translations

The translation manager uses a simple algorithm to reg¢wwname of a procedure specified in a
translation table into the actual procedure specified in an action table. When the widget is real-
ized, the translation manager performs a search for the name in the following tables, in order:

. The widgets dass and all superclass action tables, in subclass-to-superclass order.

. The parens dass and all superclass action tables, in subclass-to-superclasshemien
up the ancestor tree.

. The action tables registered wi¥tAppAddActions and XtAddActions from the most
recently added table to the oldest table.

As soon as it finds a name, the translation manager stops the search. If it cannot find a name, the
translation manager generates a warning message.

10.1.3. ActionHook Registration

An application can specify a procedure that will be called just beterg action routine is dis-
patched by the translation managéo do ©, the application supplies a procedure pointer of type
XtActionHookProc .

typedef void (*XtActionHookProc)(Widget, XtPointe®tring, XEvent*, String*, Cardinal*);
Widgetw;
XtPointerclient_data
Stringaction_name

XEvent* event
String* params
Cardinal*num_params
w Specifies the widget whose action is about to be dispatched.
client_data Specifies the application-specific closure that was passgtifgpAddAction-
Hook.
action_name Specifies the name of the action to be dispatched.
ewent Specifies thewent argument that will be passed to the action routine.
params Specifies the action parameters that will be passed to the action routine.

num_params Specifies the number of entriesparams

Action hooks should not modify gof the data pointed to by the arguments other than the
client_dataargument.

To add an action hook, usstAppAddActionHook .

175

X Toolkit Intrinsics X11 Release 6.8

XtActionHookld XtAppAddActionHookapp, proc, client_datg
XtAppContextapp
XtActionHookProcproc,
XtPointerclient_data

app Specifies the application context.

proc Specifies the action hook procedure.
client_data Specifies application-specific data to be passed to the action hook.

XtAppAddActionHook adds the specified procedure to the front of a list maintained in the
application contet. In the future, when an action routine is about to beked for ary widget in
this application context, either through the translation manager &it@iallActionProc , the
action hook procedures will be called ivexse order of registration just prior tosoking the
action routine.

Action hook procedures are rewed automatically and theXtActionHookld is destroyed when
the application context in which th&vere added is destroyed.

To remove an action hook procedure without destroying the application context, use
XtRemoveActionHook .

void XtRemoreActionHook(d)
XtActionHookld id;

id Specifies the action hook id returned XtAppAddActionHook .

XtRemoveActionHook remores the specified action hook procedure from the list in which it
was regstered.

10.2. Translation Tables

All widget instance records contain a translation table, which is a resource with a default value
specified elsewhere in the class recokdranslation table specifies what action procedures are
invoked for an @ent or a sequence ofents. Atranslation table is a string containing a list of
translations from anvent sequence into one or more action procedure calls. The translations are
separated from one another by newline characters (ASCII LF). The complete syntax of transla-
tion tables is specified in Appendix B.

As an example, the default behavior of Pushbutton is

. Highlight on enter winde.

. Unhighlight on exit winda.

. Invert on left button down.

. Call callbacks and reumrt on left button up.

The following illustrates Pushbuttanéiefault translation table:

static String defaultTranslations =
"<EnterWindow>:Highlight()\n\
<LeaveWindow>:Unhighlight()\n\
<Btn1Down>: Set()\n\
<BtnlUp>: Notify()Unset()";

176

X Toolkit Intrinsics X11 Release 6.8

Thetm_tablefield of theCoreClassPartshould be filled in at class initialization time with the
string containing the classtefault translations. If a class wants to inherit its superclassisla-
tions, it can store the special vald@nheritTranslations into tm_table In Core’s dass part ini-
tialization procedure, the Intrinsics compile this translation table into an efficient internal form.
Then, at widget creation time, this default translation table is combined with the XtNtranslations
and XtNbaseTranslations resources; see Section 10.3.

The resource coersion mechanism automatically compiles string translation tables that are
specified in the resource database. If a client uses translation tables that are vext vidree
resource corersion, it must compile them itself usingfParseTranslationTable.

The Intrinsics use the compiled form of the translation table to register the neceestsyvh
the eent manager Widgets need do nothing other than specify the action and translation tables
for events to be processed by the translation manager.

10.2.1. Eent Sequences

An event sequence is a comma-separated list ofeXtedescriptions that describes a specific
sequence of Xwents to map to a set of program actions. Eaclvedtedescription consists of
three parts: The Xvent type, a prefix consisting of the X modifier bits, andamiespecific suf-
fix.

Various abbreviations are supported to m#iknslation tables easier to read. Thenés must
match incomingeents in left-to-right order to trigger the action sequence.

10.2.2. ActionSequences

Action sequences specify what program or widget actions éotaksponse to incoming X

events. An action sequence consists of space-separated action procedure call specifications. Each
action procedure call consists of the name of an action procedure and a parenthesized list of zero
or more comma-separated string parameters to pass to that procedure. The actioolssdna in
left-to-right order as specified in the action sequence.

10.2.3. Multi-Click Time

Translation table entries may specify actions that are taken whbesr twore identical eents

occur consecutely within a short time interval, called the multi-click time. The multi-click time
value may be specified as an application resource with name “multiClickTame:'class “Mul-
tiClickTime” and may also be modified dynamically by the application. The multi-click time is
unique for each Display value and is ratezfrom the resource database Xtpisplaylnitial-

ize. If no value is specified, the initial value is 200 milliseconds.

To st the multi-click time dynamicallyise XtSetMultiClick Time .

void XtSetMultiClick Time(isplay, time)

Display *display;
int time
display Specifies the display connection.
time Specifies the multi-click time in milliseconds.

XtSetMultiClickTime sets the time interval used by the translation manager to determine when
multiple events are interpreted as a repeateghe Whena repeat count is specified in a transla-
tion entry the interval between the timestamps in each pair of repeatets ée.g., between two
ButtonPress events) must be less than the multi-click time in order for the translation actions to

177

X Toolkit Intrinsics X11 Release 6.8

be taken.

To read the multi-click time, us¥tGetMultiClickTime .

int XtGetMultiClickTime(display)
Display *display;

display Specifies the display connection.

XtGetMultiClickTime returns the time in milliseconds that the translation manager uses to
determine if multiple eents are to be interpreted as a repeatedtdor purposes of matching a
translation entry containing a repeat count.

10.3. Translation Table Management

Sometimes an application needs to merge its own translations with a widgetlations. 6r
example, a winde manager provides functions to m®a wndow. The windav manager wishes
to bind this operation to a specific pointer button in the title bar without the possibility of user
overide and bind it to other buttons that may berndden by the user.

To accomplish this, the wind® manager should first create the title bar and then should merge
the two translation tables into the title batranslations. On&anslation table contains the trans-
lations that the windes manager wants only if the user has not specified a translation for a partic-
ular event or event sequence (i.e., those that may beredden). Theother translation table con-
tains the translations that the windmanager wants gardless of what the user has specified.

Three Intrinsics functions support this merging:
XtParseTranslationTable Compiles a translation table.

XtAugmentTranslations Merges a compiled translation table into a widgetmpiled
translation table, ignoring gmew translations that conflict
with existing translations.

XtOverrideTranslations Merges a compiled translation table into a widgetmpiled
translation table, replacing yexisting translations that con-
flict with new translations.

To compile a translation table, us@ParseTranslationTable.

XtTranslations XtParseTranslationTalbdyle)
Stringtable

table Specifies the translation table to compile.

The XtParseTranslationTable function compiles the translation table, provided in the format
given in Appendix B, into an opaque internal representation of Xtpeanslations. Note that if
an empty translation table is required foy @arpose, one can be obtained by calliigarse-
TranslationTable and passing an empty string.

To merge additional translations into an existing translation tableXtsegmentTranslations.

178

X Toolkit Intrinsics X11 Release 6.8

void XtAugmentTranslationsy, translation3
Widgetw;
XtTranslationdranslations

w Specifies the widget into which thewéranslations are to be nged. Mustbe
of class Core or gnsubclass thereof.

translations Specifies the compiled translation table to merge in.

The XtAugmentTranslations function merges the metranslations into the existing widget
translations, ignoring angreplace, #augment, or #override directive that may hee keen speci-

fied in the translation string. The translation table specifigdamglationsis not altered by this
process. XtAugmentTranslations logically appends the string representation of thve tnensla-

tions to the string representation of the widgeatrrent translations and reparses the result with

no warning messages about duplicate left-hand sides, then stores the result back into the widget
instance; i.e., if the metranslations contain avent or e/ent sequence that already exists in the
widget’s ranslations, the metranslation is ignored.

To overwrite existing translations with metranslations, us&tOverrideTranslations .

void XtOverrideTranslationsg, translationg
Widgetw;
XtTranslationdranslations

w Specifies the widget into which thewmé&anslations are to be merged. Must be of
class Core or gnsubclass thereof.

translations Specifies the compiled translation table to merge in.

The XtOverrideTranslations function merges the metranslations into the existing widget
translations, ignoring angreplace, #augment, or #override directive that may hee keen speci-

fied in the translation string. The translation table specifigddmglationsis not altered by this
process. XtOverrideTranslations logically appends the string representation of the widget’s
current translations to the string representation of thetramslations and reparses the result with

no warning messages about duplicate left-hand sides, then stores the result back into the widget
instance; i.e., if the metranslations contain avent or e/ent sequence that already exists in the
widget's ranslations, the metranslation werrides the widges translation.

To replace a widgesd'ranslations completelyse XtSetValueson the XtNtranslations resource
and specify a compiled translation table as the value.

To make it possible for users to easily modify translation tables in their resource files, the string-
to-translation-table resource type eener allows the string to specify whether the table should
replace, augment, owverride ary existing translation table in the widgeto gecify this, a pound

sign (#) is gen as he first character of the table followed by one of tanords “replace”,
“augment”, or “override” to indicate whether to replace, augment,\@riade the existing table.

The replace or merge operation is performed during the Core instance initialization. Each merge
operation produces awdranslation resource value; if the original tables were shared by other
widgets, thg are unafected. Ifno directve is ecified, “#replace’is assumed.

At instance initialization the XtNtranslations resource is first fetched. Then, if it was not speci-
fied or did not contain “#replace”, the resource database is searched for the resource XtNbase-
Translations. IXtNbaseTranslations is found, it is merged into the widget class translation table.
Then the widgetranslationsfield is merged into the result or into the class translation table if
XtNbaseTranslations was not found. This final table is then stored into the wadggations

179

X Toolkit Intrinsics X11 Release 6.8

field. If the XtNtranslations resource specified “#replace”, no merge is done. If neither
XtNbaseTranslations or XtNtranslations are specified, the class translation table is copied into the
widget instance.

To completely remwae exsting translations, usktUninstallTranslations .

void XtUninstallTranslationsy)
Widgetw;

w Specifies the widget from which the translations are to bewemoMustbe of
class Core or gnsubclass thereof.

The XtUninstallTranslations function causes the entire translation table for the widget to be
removed.

10.4. UsingAccelerators

It is often desirable to be able to bingbets in one widget to actions in anothém particular it

is often useful to be able tovicke menu actions from thegyboard. Thdntrinsics provide a

facility, called accelerators, that lets you accomplish this. An accelerator table is a translation ta-
ble that is bound with its actions in the context of a particular widgesotveewidget. The
accelerator table can then be installed on one or destinationwidgets. Wheran event

sequence in the destination widget would cause an accelerator action to be taken, and if the
source widget is sensig, the actions arexecuted as though triggered by the savmne

sequence in the accelerator source widget. Vhet és passed to the action procedure without
modification. Theaction procedures used within accelerators must not assume that the source
widget is realized nor that prfields of the gent are in reference to the source widgetndow if

the widget is realized.

Each widget instance contains that widgetported accelerator table as a resource. Each class

of widget exports a method that takes a displayable string representation of the accelerators so
that widgets can display their current accelerators. The representation is the accelerator table in
canonical translation table form (see Appendix B). The display_accelerator procedure pointer is
of type XtStringProc .

typedef void (*XtStringProc)(Widget, String);

Widgetw;
Stringstring;
w Specifies the source widget that supplied the accelerators.
string Specifies the string representation of the accelerators for this widget.

Accelerators can be specified in resource files, and the string representation is the same as for a
translation table. Hower, the interpretation of th#éaugmentand#override directives gplies

to what will happen when the accelerator is installed; that is, whether or not the accelerator trans-
lations will override the translations in the destination widget. The defa#higyment, which

means that the accelerator translationghawer priority than the destination translations. The
#replacedirective is ignored for accelerator tables.

To parse an accelerator table, v&arseAcceleratorTable.

180

X Toolkit Intrinsics X11 Release 6.8

XtAccelerators XtParseAcceleratorTalsie(rce
Stringsource

source Specifies the accelerator table to compile.

The XtParseAcceleratorTable function compiles the accelerator table into an opaque internal
representation. Thelient should set the XtNaccelerators resource of each widget that is to be
activated by these translations to the returned value.

To install accelerators from a widget on another widget XibestallAccelerators.

void XtinstallAcceleratorsi{estination source
Widgetdestination
Widgetsource

destination Specifies the widget on which the accelerators are to be instélagt be of
class Core or gnsubclass thereof.

source Specifies the widget from which the accelerators are to come. Must be of class
Core or ag subclass thereof.

The XtinstallAccelerators function installs thecceleratorgesource value frorsourceonto
destinationby merging the source accelerators into the destination translations. If thedisurce
play_acceleratofield is non-NULL, XtInstallAccelerators calls it with the source widget and a
string representation of the accelerator table, which indicates that its accelenstdrseima
installed and that it should display them appropriat&lye string representation of the accelera-
tor table is its canonical translation table representation.

As a comenience for installing all accelerators from a widget and all its descendants onto one
destination, us&tinstallAllAccelerators .

void XtinstallAllAcceleratorsdestination source
Widgetdestination
Widgetsource

destination Specifies the widget on which the accelerators are to be instilagt be of
class Core or gnsubclass thereof.

source Specifies the root widget of the widget tree from which the accelerators are to
come. Musbe of class Core or grsubclass thereof.

The XtinstallAllAccelerators function recursiely descends the widget tree rooted@irceand
installs the accelerators resource value of each widget encounteret®stimation A common
use is to caliXtinstallAllAccelerators and pass the application main wimdas te source.

10.5. KeyCode-to-KeySym Cowuersions

The translation manager provides support for automatically translagiyigodes in incoming
key events into KeySyms. KeyCode-to-KeySym translator procedure pointers are of type
XtKeyProc.

181

X Toolkit Intrinsics X11 Release 6.8

typedef void (*XtkeyProc)(Display*, keyCode, Maodifiers, Modifiers*, EySym®*);
Display *display;
KeyCodekeycode
Modifiersmodifiers
Modifiers *modifiers_return
KeySym *keysym_return

display Specifies the display that theyCode is from.
keycode Specifies the ByCode to translate.
modifiers Specifies the modifiers to thesyCode.

modifiers_returnSpecifies a location in which to store a mask that indicates the subset of all
modifiers that are examined by theykranslator for the specifiecicode.

keysym_return Specifies a location in which to store the resultieg3ym.

This procedure takes eeCode and modifiers and producesey8ym. For ary given key tans-
lator function and &yboard encodingnodifiers_returrwill be a constant per&Code that indi-
cates the subset of all modifiers that are examined byethieahslator for that KyCode.

The KeyCode-to-KeySym translator procedure must be implemented such that multiple calls with
the samalisplay, keycode and modifiersreturn the same result until either arease cowerter,
an XtCaseProc, is installed or dMappingNotify event is receied.

The Intrinsics maintain tables internally to magyRodes to kySyms for each open display.
Translator procedures and other clients may share a singl®ttys table to perform the same
mapping.

To return a pointer to thed¢Sym-to-KeyCode mapping table for a particular displase
XtGetKeysymTable.

KeySym *XtGetKeysymTabledisplay, min_leycode_returnkeysyms_per_dycode_returi
Display *display;
KeyCode "'min_leycode_return
int *keysyms_per_dycode_return

display Specifies the display whose table is required.
min_leycode_return
Returns the minimum é&yCode valid for the display.

keysyms_per_dycode_return
Returns the number ofdySyms stored for eachegCode.

XtGetKeysymTable returns a pointer to the Intrinsics’ gopf the serves KeyCode-to-keySym
table. Thigable must not be modified. There &ggsyms_per dycode_returrkKeySyms associ-
ated with each 8yCode, located in the table with indices starting at index

(test_leycode - min_kycode_return) * kysyms_per_&ycode_return

for KeyCodetest_leycode Any entries that hee o KeySyms associated with them contain the
value NoSymbol. Clients should not cache thesySym table but should call

XtGetKeysymTable each time the value is needed, as the table may change prior to dispatching
each gent.

For more information on this table, see Section 12 Xlib — C Languge X hterface

182

X Toolkit Intrinsics X11 Release 6.8

To regster a ley ranslatoyuse XtSetKeyTranslator .

void XtSetKeyTranslatordisplay, proc)
Display *display;
XtKeyProcproc;

display Specifies the display from which to translate thents.
proc Specifies the procedure to perforeykranslations.

The XtSetKeyTranslator function sets the specified procedure as the curssnt&nslator The
default translator iXtTranslateKey, an XtKeyProc that uses the Shift, Lock, numlock, and
group modifiers with the interpretations defineXiwindow System Protocobection 5. It is
provided so that nmetranslators can call it to get defaukyCode-to-keySym translations and so
that the default translator can be reinstalled.

To invoke the currently registereddyCode-to-keySym translatqruse XtTranslateKeycode.

void XtTranslatekeycodegisplay, keycode modifiers modifiers_returpkeysym_returin
Display *display;
KeyCodekeycode
Modifiersmodifiers
Modifiers *modifiers_return
KeySym *keysym_return

display Specifies the display that theyCode is from.

keycode Specifies the ByCode to translate.

modifiers Specifies the modifiers to theeyCode.

modifiers_returnReturns a mask that indicates the modifiers actually used to generate the
KeySym.

keysym_return Returns the resultingd¢Sym.

The XtTranslateKeycode function passes the specified arguments directly to the currently regis-
tered keyCode-to-keySym translator.

To handle capitalization of nonstandaréysyms, the Intrinsics alle clients to register case con-
version routines. Case cegrter procedure pointers are of tygeCaseProc.

typedef void (*XtCaseProc)(Display*,d¢Sym, KeySym*, KeySym®*);
Display *display;
KeySymkeysym
KeySym *lower_return
KeySym *upper_return
display Specifies the display connection for which theveosion is required.
keysym Specifies the BySym to comert.
lower_return Specifies a location into which to store thevdocase equalent for the keySym.
upper_return Specifies a location into which to store the uppercaseaeni for the keySym.

If there is no case distinction, this procedure should storeai®yin into both return values.

183

X Toolkit Intrinsics X11 Release 6.8

To regster a case comrter, use XtRegisterCaseConerter .

void XtRegisterCaseCawerter(display, proc, start, stop
Display *display,
XtCaseProgroc,
KeySymstart,
KeySymstop

display Specifies the display from which theykesents are to come.
proc Specifies theXtCaseProcto do the cowversions.

start Specifies the first &Sym for which this coverter is valid.
stop Specifies the lastd§/Sym for which this coverter is valid.

The XtRegisterCaseConerter registers the specified case water. Thestartandstopargu-
ments provide the inclug range of KySyms for which this corerter is to be called. The new
corverter overrides aly previous comerters for KeySyms in that range. No interface exists to
remove onverters; you need to register an identity water. When a ne corverter is registered,
the Intrinsics refresh theelboard state if necessaryhe default coverter understands case con-
version for all Latin kySyms defined itX Window System ProtocoAppendix A.

To determine uppercase and lowercase\algmts for a KySym, useXtConvertCase.

void XtCorvertCasedlisplay, keysym lower_return upper_return
Display *display,
KeySymkeysym
KeySym *lower_return
KeySym *upper_return
display Specifies the display that theySym came from.
keysym Specifies the BySym to comert.
lower_return Returns the lowercase egaent of the keySym.
upper_return Returns the uppercase egaiént of the kKeySym.

The XtConvertCase function calls the appropriate ognter and returns the resulté. user-sup-
plied XtKeyProc may need to use this function.

10.6. Obtaininga KeySym in an Action Procedure

When an action procedure ivaked on aKeyPressor KeyReleaseevent, it often has a need to
retrieve the KeySym and modifiers corresponding to tierg that caused it to bevioked. In

order to &oid repeating the processing that was just performed by the Intrinsics to match the
translation entrythe KeySym and modifiers are stored for the duration of the action procedure
and are madevailable to the client.

To retrieve the KeySym and modifiers that matched the fingng specification in the translation
table entryuse XtGetActionKeysym.

184

X Toolkit Intrinsics X11 Release 6.8

KeySym XtGetActionkeysym(vent modifiers_returi
XEvent *event
Modifiers *modifiers_return

ewent Specifies thewent pointer passed to the action procedure by the Intrinsics.
modifiers_return Returns the modifiers that caused the match, if non-NULL.

If XtGetActionKeysym is called after an action procedure has beeoked by the Intrinsics and
before that action procedure returns, and if treatepointer has the same value as tene

pointer passed to that action routine, and if themieis aKeyPressor KeyReleaseevent, then
XtGetActionKeysym returns the K€ySym that matched the finalemt specification in the trans-
lation table and, imodifiers_returris non-NULL, the modifier state actually used to generate this
KeySym; otherwise, if thevent is aKeyPressor KeyReleaseevant, thenXtGetActionKeysym

calls XtTranslateKeycode and returns the results; else it retuN®Symbol and does not exam-

ine modifiers_return

Note that if an action procedurevoked by the Intrinsics imokes a sibsequent action procedure

(and so on) viatCallActionProc , the nested action procedure may also X&BetAction-
Keysym to retrieve the Intrinsics’ keySym and modifiers.

10.7. KeySym-to-KeyCode Cowmersions

To return the list of keyCodes that map to a particulaeySym in the keyboard mapping table
maintained by the Intrinsics, ud¢KeysymToKeycodelList.

void XtKeysymToKeycodeListflisplay, keysym keycodes_returpnkeycount_returi
Display *display;
KeySymkeysym
KeyCode **keycodes_returmn
Cardinal *keycount_return

display Specifies the display whose table is required.

keysym Specifies the BySym for which to search.

keycodes_return Returns a list of KyCodes that hae keysymassociated with them, or NULL
if keycount_returris 0.

keycount_return Returns the number ofdgCodes in the &ycode list.

The XtKeysymToKeycodeList procedure returns all theeCodes that hae keysymin their

entry for the keyboard mapping table associated wdtbplay. For each entry in the table, the first
four KeySyms (groups 1 and 2) are interpreted as specified\Wipdow System Protocdbec-

tion 5. If no KeyCodes map to the specifie@ySym,keycount_returris zero and
*keycodes_returis NULL.

The caller should free the storage pointed t&dygodes_returmsing XtFree when it is no
longer useful. If the caller needs to examine tleg@ode-to-keySym table for a particular
KeyCode, it should calKtGetKeysymTable.

10.8. RegisteringButton and Key Grabs for Actions

To regster button andéy gabs for a widges window according to the went bindings in the
widget’s ranslation table, usktRegisterGrabAction.

185

X Toolkit Intrinsics X11 Release 6.8

void XtRegisterGrabActiorgction_pro¢ owner_eventewent_maskpointer_modekeyboard_modg
XtActionProcaction_prog
Booleanowner_events
unsigned inevent_mask
int pointer_modekeyboard_modg

action_proc Specifies the action procedure to search for in translation tables.

owner_events

event_mask

pointer_mode

keyboard_mod&pecify arguments t&tGrabButton or XtGrabKey .

XtRegisterGrabAction adds the specifieakction_procto a list known to the translation man-

ager When a widget is realized, or when the translations of a realized widget or the accelerators
installed on a realized widget are modified, its translation table gndstalled accelerators are
scanned for action procedures on this list. if am invoked on ButtonPressor KeyPress

evants as the only or finalvent in a sequence, the Intrinsics will cXiGrabButton or

XtGrabKey for the widget with eery button or KeyCode which maps to theent detail field,
passing the specifiemlvner_eventewvent_maskpointer_modeand keyboard_mode For But-
tonPressevents, the modifiers specified in the grab are determined directly from the translation
specification andonfine_taandcursorare specified aSlone. For KeyPressevents, if the trans-
lation table entry specifies colon (:) in the modifier list, the modifiers are determined by calling
the lkey ranslator procedure registered for the display and cali@yabKey for every combi-
nation of standard modifiers which map they®ode to the specified/ent detail keySym, and
ORing aty modifiers specified in the translation table engnd event_masks ignored. If the
translation table entry does not specify colon in the modifier list, the modifiers specified in the
grab are those specified in the translation table entry Golyboth ButtonPressand KeyPress
events, don’t-care modifiers are ignored unless the translation entry explicitly spé&ifigsin
themodifiersfield.

If the specifiedaction_procis already registered for the calling process, thre vedues will
replace the previously specified values foy amdgets that become realized following the call,
but existing grabs are not altered on currently realized widgets.

When translations or installed accelerators are modified for a realized widgpte@ous lkey o
button grabs registered as a result of the old bindings are releasgddbthet appear in the new
bindings and are not explicitly grabbed by the client WitGrabKey or XtGrabButton .

10.9. Invoking Actions Directly

Normally action procedures are/aked by the Intrinsics when arvent or e/ent sequence aues
for a widget. © invoke an action procedure directlwithout generating (or synthesizing)eats,
use XtCallActionProc .

186

X Toolkit Intrinsics X11 Release 6.8

void XtCallActionProc{vidget action, event params hum_paramyg
Widgetwidget
Stringactior
XEvent *event
String *params
Cardinalnum_paramys

widget Specifies the widget in which the action is to beked. Mustbe of class Core
or ary subclass thereof.

action Specifies the name of the action routine.

event Specifies the contents of teeentpassed to the action routine.

params Specifies the contents of tharamspassed to the action routine.

num_params Specifies the number of entriesparams

XtCallActionProc searches for the named action routine in the same manner and order as trans-
lation tables are bound, as described in Section 10.1.2, except that application action tables are
searched, if necessags of he time of the call tXtCallActionProc . If found, the action rou-

tine is irvoked with the specified widgetyent pointer and parameters. It is the responsibility of

the caller to ensure that the contents ofefent params and num_paramsrguments are appro-
priate for the specified action routine and, if neces#aay the specified widget is realized or sen-
sitive. If the named action routine cannot be foudtCallActionProc generates a warning mes-
sage and returns.

10.10. Obtaininga Widget's Action List

Occasionally a subclass will require the pointers to one or more of its superatties’ proce-
dures. Thisvould be needed, for example, in order teabop the superclasseaction. To retrieve
the list of action procedures registered in the superclass@nsfield, useXtGetActionList .

void XtGetActionList@vidget_classactions_returnnum_actions_retumn
WidgetClassvidget_class
XtActionList *actions_return
Cardinal "num_actions_return

widget_class Specifies the widget class whose actions are to be returned.

actions_return Returns the action list.
num_actions_return Returns the number of action procedures declared by the class.

XtGetActionList returns the action table defined by the specified widget class. This table does
not include actions defined by the superclassesidifet _classs not initialized, or is not
coreWidgetClassor a subclass thereof, or if the class does not definactions,

*actions_returrwill be NULL and *num_actions_returmill be zero. If *actions_returris non-
NULL the client is responsible for freeing the table usktgree when it is no longer needed.

187

X Toolkit Intrinsics X11 Release 6.8

Chapter 11

Utility Functions

The Intrinsics provide a number of utility functions that you can use to
. Determine the number of elements in an array.
. Translate strings to widget instances.

. Manage memory usage.

. Share graphics contexts.

. Manipulate selections.

. Merge exposurevents into a region.

. Translate widget coordinates.

. Locate a widget gen a window id.

. Handle errors.

. Set the WM_COLORMAP_WINDOWS property.
. Locate files by name with string substitutions.

. Regster callback functions for external agents.

. Locate all the displays of an application context.

11.1. Determiningthe Number of Elements in an Array
To determine the number of elements in a fixed-size ausXtNumber .

Cardinal XtNumberray)
ArrayType array

array Specifies a fixed-size array of arbitrary type.

The XtNumber macro returns the number of elements allocated to the array.

11.2. Translating Strings to Widget Instances
To translate a widget name to a widget instance XisiameToWidget.

Widget XtNameToWidgetéference name}
Widgetreference
Stringnames

reference Specifies the widget from which the search is to stdst be of class Core or
ary subclass thereof.
names Specifies the partially qualified name of the desired widget.

The XtNameToWidget function searches for a descendant ofréifierencewidget whose name
matches the specified names. Tlaenegarameter specifies a simple object name or a series of
simple object name components separated by periods or astettSleameToWidget returns the

188

X Toolkit Intrinsics X11 Release 6.8

descendant with the shortest name matching the specification according to the following rules,
where child is either a pop-up child or a normal child if the widg#dss is a subclass of Com-
posite :

. Enumerate the object subtree rooted at the reference widget in breadth-firsfuoatifgr
ing the name of each object with the names of all its ancestors up to, but not including, the
reference widget. The ordering between children of a common parent is not defined.

. Return the first object in the enumeration that matches the specified name, where each com-
ponent olnamesmatches exactly the corresponding component of the qualified object
name and asterisk matchey aaries of components, including none.

. If no match is found, return NULL.

Since breadth-first tvarsal is specified, the descendant with the shortest matching name (i.e., the
fewest number of components), ifyamill always be returned. Hower, snce the order of enu-
meration of children is undefined and since the Intrinsics do not require that all children of a wid-
get hae wmique namesxXtNameToWidget may return ay child that matches if there are multi-

ple objects in the subtree with the same name. Congecafiarators (periods or asterisks)
including at least one asterisk are treated as a single asterisk. Coespmiads are treated as a
single period.

11.3. ManagingMemory Usage

The Intrinsics memory management functions provide uniform checking for null pointers and
error reporting on memory allocation errors. These functions are completely compatible with
their standard C language runtime counterpaidioc, calloc, realloc, and free with the fol-
lowing added functionality:

. XtMalloc , XtCalloc, and XtRealloc give an error if there is not enough memory.
. XtFree simply returns if passed a NULL pointer.
. XtRealloc simply allocates ne storage if passed a NULL pointer.

See the standard C library documentationm@lloc, calloc, realloc, and free for more informa-
tion.

To dlocate storage, usktMalloc .

char *XtMalloc(sizg
Cardinalsize

size Specifies the number of bytes desired.

The XtMalloc function returns a pointer to a block of storage of at least the spexsfednytes.
If there is insufficient memory to allocate thevnglock, XtMalloc calls XtErrorMsg .

To dlocate and initialize an arrayse XtCalloc.

char *XtCallocfium siz
Cardinalnum
Cardinalsize

num Specifies the number of array elements to allocate.
size Specifies the size of each array element in bytes.

The XtCalloc function allocates space for the specified number of array elements of the specified

189

X Toolkit Intrinsics X11 Release 6.8

size and initializes the space to zero. If there is insufficient memory to allocatevtbioole,
XtCalloc calls XtErrorMsg . XtCalloc returns the address of the allocated storage.

To dhange the size of an allocated block of storage XtRealloc.

char *XtReallocptr, num

char *ptr;
Cardinalnum
ptr Specifies a pointer to the old storage allocated Witialloc, XtCalloc, or
XtRealloc, or NULL.
num Specifies number of bytes desired invrsiorage.

The XtRealloc function changes the size of a block of storage, possibly moving it. Then it
copies the old contents (or as much as will fit) into tive Ileck and frees the old block. If there
is insufficient memory to allocate thewblock, XtRealloc calls XtErrorMsg . If ptris NULL,
XtRealloc simply callsXtMalloc . XtRealloc then returns the address of thevrigock.

To free an allocated block of storage, b&Eree.

void XtFreeftr)
char *ptr;

ptr Specifies a pointer to a block of storage allocated Xtialloc , XtCalloc, or
XtRealloc, or NULL.

The XtFree function returns storage, allowing it to be reusedtiis NULL, XtFree returns
immediately.

To dlocate storage for a meinstance of a type, usé&New.

type*XtNew(type
type
type Specifies a previously declared type.

XtNew returns a pointer to the allocated storage. If there is insufficient memory to allocate the
new block, XtNew calls XtErrorMsg . XtNew is a comenience macro that calstMalloc
with the following arguments specified:

((type *) XtMalloc((unsigned) sizeof(type)))

The storage allocated ¥tNew should be freed usingtFree.

To ocopy an instance of a string, us&NewString .

190

X Toolkit Intrinsics X11 Release 6.8

String XtNewStringétring)
Stringstring;

string Specifies a previously declared string.

XtNewsString returns a pointer to the allocated storage. If there is insufficient memory to allo-
cate the ne block, XtNewString calls XtErrorMsg . XtNewString is a comenience macro
that callsXtMalloc with the following arguments specified:

(strepy(XtMalloc((unsigned)strlen(str) + 1), str))

The storage allocated B$tNewString should be freed usingtFree.

11.4. SharingGraphics Contexts

The Intrinsics provide a mechanism whereby cooperating objects can share a graphics context
(GC), thereby reducing both the number of GCs created and the total number of server calls in
ary given goplication. Themechanism is a simple caching scheme and allows for clients to
declare both modifiable and nonmodifiable fields of the shared GCs.

To dbtain a shareable GC with modifiable fields, XéallocateGC.

GC XtAllocateGCyidget depth value_maskvalues dynamic_maskinused_magk
Widgetobject
Cardinaldepth
XtGCMaskvalue _mask
XGCValues walues
XtGCMaskdynamic_mask
XtGCMaskunused _mask

object Specifies an object, giving the screen for which the returned Gélids Wust
be of class Object or grsubclass thereof.

depth Specifies the depth for which the returned GC is valid, or 0.

value_mask Specifies fields of the GC that are initialized freatues

values Specifies the values for the initialized fields.

dynamic_maskSpecifies fields of the GC that will be modified by the caller.
unused_mask Specifies fields of the GC that will not be needed by the caller.

The XtAllocateGC function returns a shareable GC that may be modified by the client. The
screerfield of the specified widget or of the nearest widget ancestor of the specified object and
the specifiedlepthargument supply the root and d&ble depths for which the GC is to be valid.

If depthis zero, the depth is taken from ttiepthfield of the specified widget or of the nearest
widget ancestor of the specified object.

Thevalue_maslargument specifies fields of the GC that are initialized with the regpeatim-

ber of thevaluesstructure. Thelynamic_maskrgument specifies fields that the caller intends to
modify during program»ecution. Thecaller must ensure that the corresponding GC field is set
prior to each use of the GC. Thaused_masirgument specifies fields of the GC that are of no
interest to the callerThe caller may makno asumptions about the contents oy &éields speci-
fied inunused_maskThe caller may assume that at all times all fields not specified in either
dynamic_maskr unused_maskave their default value if not specified talue_maslor the

value specified byalues If a field is specified in bothalue_maslknddynamic_maskhe effect

is as if it were specified only mlynamic_masknd then immediately set to the valuezatues If

191

X Toolkit Intrinsics X11 Release 6.8

a field is set irunused_masénd also in eitheralue_maslor dynamic_maskhe specification in
unused_masis ignored.

XtAllocateGC tries to minimize the number of uniqgue GCs created by comparing the arguments
with those of previous calls and returning an existing GC when there are no conftilie-
cateGC may modify and return an existing GC if it was allocated with a nonzersed_mask

To obtain a shareable GC with no modifiable fields, XigeetGC.

GC XtGetGC¢bject value_maskvalueg
Widgetobject
XtGCMaskvalue _mask
XGCValues walues

object Specifies an object, \gng the screen and depth for which the returned GC is
valid. Mustbe of class Object or grsubclass thereof.

value_mask Specifies which fields of thealuesstructure are specified.

values Specifies the actual values for this GC.

The XtGetGC function returns a shareable, read-only GC. The parameters to this function are
the same as those fiCreateGC except that an Object is passed instead of a Display.
XtGetGC is equvalent to XtAllocateGC with depth dynamic_maskand unused_maséll zero.

XtGetGC shares only GCs in which all values in the GC returnel®seateGC are the same.

In particular it does not use thealue_maslprovided to determine which fields of the GC a wid-
get considers redant. Thevalue_masks used only to tell the server which fields should be filled
in from valuesand which it should fill in with default values.

To deallocate a shared GC when it is no longer neededXtikeleaseGC

void XtReleaseGQybject gc)

Widgetobject
GCggc;
object Specifies ay object on the Display for which the GC was created. Must be of
class Object or ansubclass thereof.
gc Specifies the shared GC obtained with eitkgxllocateGC or XtGetGC.

References to shareable GCs are counted and a free request is generated to the server when the
last user of a gen GC rleases it.

11.5. ManagingSelections

Arbitrary widgets in multiple applications can communicate with each other by means of the
Intrinsics global selection mechanism, which conforms to the specificationsimah€lient
Communication Conventions Manudrhe Intrinsics supply functions for providing and receiv-

ing selection data in one logical piece (atomic transfers) or in smaller logical segments (incremen-
tal transfers).

The incremental interface is provided for a selection owner or selection requestor that cannot or
prefers not to pass the selection value to and from the Intrinsics in a singléocatistance,

either an application that is running on a machine with limited memory may not be able to store
the entire selection value in memory or a selection owner may alreaglyhbaselection value
available in discrete chunks, and it would be more efficient notue badlocate additional

192

X Toolkit Intrinsics X11 Release 6.8

storage to copthe pieces contiguoushAny owner or requestor that prefers to deal with the

selection value in segments can use the incremental interfaces to do so. The transfer between the
selection owner or requestor and the Intrinsics is not required to match the underlying transport
protocol between the application and the X server; the Intrinsics will break too large a selection
into smaller pieces for transport if necessary and will coalesce a selection transmitted incremen-
tally if the value was requested atomically.

11.5.1. Settingand Getting the Selection Timeout Value
To =t the Intrinsics selection timeout, uUSEAppSetSelectionTimeout

void XtAppSetSelectionTimeouwtpp_contexttimeouj
XtAppContextapp_context
unsigned longimeout

app_context Specifies the application context.

timeouL Specifies the selection timeout in milliseconds.

To get the current selection timeout value, X¢AppGetSelectionTimeout.

unsigned long XtAppGetSelectionTimeayp_context
XtAppContextapp_context

app_context Specifies the application context.

The XtAppGetSelectionTimeout function returns the current selection timeout value in millisec-
onds. Theselection timeout is the time within which theotaommunicating applications must
respond to one anothefhe initial timeout value is set by the selectionTimeout application
resource as retwed by XtDisplaylnitialize . If selectionTimeout is not specified, the default is
five conds.

11.5.2. UsingAtomic Transfers

When using atomic transfers, the owner will completely process one selection request at a time.
The owner may consider each request individushge there is no possibility foverlap
between ealuation of two requests.

11.5.2.1. AtomicTr ansfer Procedures

The following procedures are used by the selection owner when providing selection data in a sin-
gle unit.

The procedure pointer specified by the owner to supply the selection data to the Intrinsics is of
type XtConvertSelectionProc.

193

X Toolkit Intrinsics X11 Release 6.8

typedef Boolean (*XtCovertSelectionProc)(Widget, Atom*, Atom*, Atom*,
XtPointer*, unsigned long*, int*);
Widgetw;
Atom *selection
Atom *targd;
Atom *type_return
XtPointer *value_return
unsigned long tength_return
int *format_return

w Specifies the widget that currently owns this selection.

selection Specifies the atom naming the selection requestedx@n@e, XA_PRIMARY
or XA_SECONDARY).

target Specifies the tget type of the selection that has been requested, which indicates
the desired information about the selection (fareple, File Name, &xt, Win-
dow).

type_return Specifies a pointer to an atom into which the property type of therted \alue
of the selection is to be storeBor instance, either File Name oext might have
property typeXA_STRING .

value_return Specifies a pointer into which a pointer to theveted value of the selection is
to be stored. The selectiowper is responsible for allocating this storage. If the
selection owner has provided aftSelectionDoneProcfor the selection, this
storage is owned by the selection owner; otherwise, iwviged by the Intrinsics
selection mechanism, which frees it by callXtFree when it is done with it.

length_return Specifies a pointer into which the number of elementgloe_return each of
size indicated byjormat_return is to be $ored.

format_return Specifies a pointer into which the size in bits of the data elements of the selection
value is to be stored.

This procedure is called by the Intrinsics selection mechanism to get the value of a selection as a

given type from the current selection ownét returnsTr ue if the owner successfully ceerted

the selection to the target typefealse otherwise. lfthe procedure returrisalse, the values of

the return arguments are undefined. EXtBonvertSelectionProc should respond to target

value TARGETS by returning a value containing the list of the targets into which it is prepared
to corvert the selection. The value returneddanmat_returnmust be one of 8, 16, or 32 to allow
the server to byte-swap the data if necessary.

This procedure does not need to worry about responding to the MULTIPLE or the TIMESTAMP
target values (see Section 2.6.2 inltiter-Client Communication Conventions Manuah

selection request with the MULTIPLE target type is transparently transformed into a series of
calls to this procedure, one for each target type, and a selection request with the TIMESTAMP
target value is answered automatically by the Intrinsics using the time specified in the call to
XtOwnSelection or XtOwnSelectionincremental.

To retrieve the SelectionRequesevent that triggered th&tConvertSelectionProc procedure,
useXtGetSelectionRequest

194

X Toolkit Intrinsics X11 Release 6.8

XSelectionRequestEvent *XtGetSelectionReqwestélectionrequest_id
Widgetw;
Atom selection
XtRequestldequest_id

w Specifies the widget that currently owns this selection. Must be of class Core or
ary subclass thereof.
selection Specifies the selection being processed.

request_id Specifies the requestor id in the case of incremental selections, or NULL in the
case of atomic transfers.

XtGetSelectionRequesimay be called only from within a¥tConvertSelectionProc procedure
and returns a pointer to ti8electionRequesevent that caused the cesrsion procedure to be
invoked. Request_idpecifies a unique id for the individual request in the case that multiple
incremental transfers are outstandif@r atomic transferstequest_idmust be specified as
NULL. If no SelectionRequesevant is being processed for the specifiegdget selectionand
request_id XtGetSelectionRequesteturns NULL.

The procedure pointer specified by the owner when it desires notification upon losing ownership
is of typeXtLoseSelectionProc

typedef void (*XtLoseSelectionProc)(Widget, Atom®*);
Widgetw;,
Atom *selection

w Specifies the widget that has lost selection ownership.
selection Specifies the atom naming the selection.

This procedure is called by the Intrinsics selection mechanism to inform the specified widget that
it has lost the gien slection. Notehat this procedure does not ask the widget to relinquish the
selection ownership; it is merely informai

The procedure pointer specified by the owner when it desires notification of receipt of the data or
when it manages the storage containing the data is oMfeectionDoneProc

typedef void (*XtSelectionDoneProc)(Widget, Atom*, Atom*);
Widgetw;
Atom *selection
Atom *targd;

w Specifies the widget that owns the weted selection.
selection Specifies the atom naming the selection that wasecieal.
target Specifies the target type to which thew®sion was done.

This procedure is called by the Intrinsics selection mechanism to inform the selection owner that
a ®lection requestor has successfully retiea ®lection alue. Ifthe selection owner has regis-
tered anXtSelectionDoneProg it should expect it to be called once for eachversion that it
performs, after the coprted value has been successfully transferred to the requidtoe selec-

tion owner has registered &itSelectionDoneProg it also owns the storage containing the con-
verted selection value.

195

X Toolkit Intrinsics X11 Release 6.8

11.5.2.2. Gettinghe Selection Value

The procedure pointer specified by the requestor tovetes selection data from the Intrinsics is
of type XtSelectionCallbackProc.

typedef void (*XtSelectionCallbackProc)(Widget, XtPointstom*, Atom*, XtPointer unsigned long*, int*);
Widgetw;
XtPointerclient_data
Atom *selection
Atom *type
XtPointervalue
unsigned long tength

int *format

w Specifies the widget that requested the selection value.

client_data Specifies a value passed in by the widget when it requested the selection.

selection Specifies the name of the selection that was requested.

type Specifies the representation type of the selection value (kamme,
XA_STRING). Notethat it is not the target thatas requested (which the client
must remember for itself), but the type that is used to represent gie¢ tdihe
special symbolic constaXT_CONVERT_FAIL is used to indicate that the se-
lection cowersion failed because the selectiomner did not respond within the
Intrinsics selection timeout interval.

value Specifies a pointer to the selectialue. Therequesting clientwns this storage
and is responsible for freeing it by calliXgFree when it is done with it.

length Specifies the number of elementvalue

format Specifies the size in bits of the data in each elemersdloé

This procedure is called by the Intrinsics selection mechanism terdbk requested selection
to the requestor.

If the SelectionNotify event returns a property dflone, meaning the corersion has been

refused because there is no owner for the specified selection or the owner carenbtreon
selection to the requested target foy esason, the procedure is called with a value of NULL and
a length of zero.

To dbtain the selection value in a single logical unit, ¥§8etSelectionValueor XtGetSelec-
tionValues.

196

X Toolkit Intrinsics X11 Release 6.8

void XtGetSelectionValuey, selectiontarge, callback client_datatime)

Widgetw;

Atom selection

Atom target;
XtSelectionCallbackProcallback
XtPointerclient_data

Timetime

w
selection

target
callback

client_data
time

Specifies the widget making the request. Must be of class Corg sulaciass
thereof.

Specifies the particular selection desired; for examfte,PRIMARY .
Specifies the type of information needed about the selection.

Specifies the procedure to be called when the selection value has been obtained.
Note that this is he the selection value is communicated back to the client.

Specifies additional data to be passed to the specified procedure when it is called.

Specifies the timestamp that indicates when the selection reqagshiiated.
This should be the timestamp of thee@ that triggered this request; thalwe
CurrentTime is not acceptable.

The XtGetSelectionValuefunction requests the value of the selectiorvedad to the target
type. Thespecified callback is called at some time aK#BetSelectionValueis called, when
the selection value is rewed from the X serverlt may be called before or aftétGetSelec-
tionValue returns. Br more information abowelectiontarget, andtime, see Section 2.6 in the
Inter-Client Communication Conventions Manual

void XtGetSelectionValuesy, selectiontarges, count callback client_data time)

Widgetw;

Atom selection
Atom *targds,

int count

XtSelectionCallbackProcallback
XtPointer *client_data

Timetime

w

selection
targets
count
callback

client_data

time

Specifies the widget making the request. Must be of class Core sulaciass
thereof.

Specifies the particular selection desired (that is, primary or secondary).
Specifies the types of information needed about the selection.
Specifies the length of thargets andclient_datalists.

Specifies the callback procedure to be called with each selection value obtained.
Note that this is h@ the selection values are communicated back to the client.

Specifies a list of additional datalues, one for each target type, that are passed
to the callback procedure when it is called for that target.

Specifies the timestamp that indicates when the selection request was initiated.
This should be the timestamp of theer that triggered this request; thalwe
CurrentTime is not acceptable.

The XtGetSelectionValuesfunction is similar to multiple calls t¥tGetSelectionValueexcept

197

X Toolkit Intrinsics X11 Release 6.8

that it guarantees that no other client can assert ownership between requests and therefore that all
the cowersions will refer to the same selecticswe. Thecallback is inoked once for each tar-

get value with the corresponding client dafear more information abowgelectiontarget, and

timeg see Section 2.6 in thater-Client Communication Conventions Manual

11.5.2.3. Settinghe Selection Owner

To st the selection owner and indicate that the selection value will be provided in one piece, use
XtOwnSelection.

Boolean XtOwnSelectiom(, selectiontime, convert_pro¢lose_selectiordone_prog
Widgetw;
Atom selection
Timetime
XtCorvertSelectionProconvert_pro¢
XtLoseSelectionProlose _selection
XtSelectionDoneProdone_pro¢

w Specifies the widget that wishes to become thieeo Must be of class Core or
ary subclass thereof.

selection Specifies the name of the selection (for examyke, PRIMARY).

time Specifies the timestamp that indicates when thieeoship request was initiated.

This should be the timestamp of theest that triggered ownership; thealue
CurrentTime is not acceptable.

convert_proc Specifies the procedure to be called wkena dient requests the currenalue
of the selection.

lose_selection Specifies the procedure to be called whenthe widget has lost selectiomwn-
ership, or NULL if the owner is not interested in being called back.

done_proc Specifies the procedure called after the requestor hasegtee selection alue,
or NULL if the owner is not interested in being called back.

The XtOwnSelection function informs the Intrinsics selection mechanism that a widget wishes

to own a selection. It returng ue if the widget successfully becomes the owner Balde oth-

erwise. Thavidget may fail to become the owner if some other widget has asserted ownership at
a time later than this widget. The widget can lose selection ownership either because some other
widget asserted later ownership of the selection or because the widget voluatzilp gwner-

ship of the selection. The lose_selection procedure is not called if the widget fails to obtain selec-
tion ownership in the first place.

If a done_proc is specified, the client owns the storage allocated for passing the value to the
Intrinsics. Ifdone_prods NULL, the cowert_proc must allocate storage usi¥tMalloc ,
XtRealloc, or XtCalloc, and the value specified is freed by the Intrinsics when the transfer is
complete.

Usually, a lection owner maintains ownership indefinitely until some other widget requests
ownership, at which time the Intrinsics selection mechanism informs the previous owner that it
has lost ownership of the selection. Hearein response to some user actions (for example,
when a user deletes the information selected), the application may wish to explicitly inform the
Intrinsics by usingXtDisownSelectionthat it no longer is to be the selection owner.

198

X Toolkit Intrinsics X11 Release 6.8

void XtDisownSelectionf, selectiontime)
Widgetw;
Atom selection
Timetime

w Specifies the widget that wishes to relinquish ownership.

selection Specifies the atom naming the selection beirgngip.

time Specifies the timestamp that indicates when the request to relinquish selection
ownership was initiated.

The XtDisownSelectionfunction informs the Intrinsics selection mechanism that the specified
widget is to lose ownership of the selection. If the widget does not currently own the selection,
either because it lost the selection or becausevér had the selection to begin witKiDis-
ownSelectiondoes nothing.

After a widget has calleXtDisownSelection its corvert procedure is not calledven if a request
arrives later with a timestamp during the period that this widget owned the selectionvédowe
its done procedure is called if a ersion that started before the callXtDisownSelectionfin-
ishes after the call tXtDisownSelection

11.5.3. Usindgncremental Transfers

When using the incremental interface, an owner mag lmgprocess more than one selection
request for the same selection, waited to the same target, at the same time. The incremental
functions tak arequest_idargument, which is an identifier that is guaranteed to be unique among
all incremental requests that are aetioncurrently.

For example, consider the following:
. Upon receiving a request for the selection value, the owner sends the first segment.

. While waiting to be called to provide the next segment value but before sending it, the
owner receres another request from a different requestor for the same selection value.

. To distinguish between the requests, the owner uses the requedtiad Yhisallows the
owner to distinguish between the first requesidrich is asking for the second segment,
and the second requestahich is asking for the first segment.

11.5.3.1. Incemental Transfer Procedures

The following procedures are used by selection owners who wish to provide the selection data in
multiple segments.

The procedure pointer specified by the incremental owner to supply the selection data to the
Intrinsics is of typeXtConvertSelectionincrProc.

typedef XtPointer XtRequestld;

199

X Toolkit Intrinsics X11 Release 6.8

typedef Boolean (*XtCovertSelectionincrProc)(Widget, Atom*, Atom*, Atom*, XtPointer*,
unsigned long*, int*, unsigned long*, XtPointétRequestid*);
Widgetw;
Atom *selection
Atom *targd;
Atom *type_return
XtPointer *value_return
unsigned long tength_return
int *format_return
unsigned long fax_length
XtPointerclient_data
XtRequestld request _id

w Specifies the widget that currently owns this selection.
selection Specifies the atom that names the selection requested.
target Specifies the type of information required about the selection.

type_return Specifies a pointer to an atom into which the property type of therted value
of the selection is to be stored.

value_return Specifies a pointer into which a pointer to theveoted value of the selection is
to be stored. The selection owner is responsible for allocating this storage.

length_return Specifies a pointer into which the number of elementsilime_return each of
size indicated byjormat_return is to be $ored.

format_return Specifies a pointer into which the size in bits of the data elements of the selection
value is to be stored so that the server may byte-swap the data if necessary.

max_length Specifies the maximum number of bytes which may be transferrey et@n
time.

client_data Specifies the value passed in by the widget when it took ownership of the selec-
tion.

request_id Specifies an opaque identification for a specific request.

This procedure is called repeatedly by the Intrinsics selection mechanism to get the next incre-
mental chunk of data from a selection owner who has cXli@idvnSelectionincremental. It

must returnTr ue if the procedure has succeeded inveoting the selection data étalse other-

wise. Onthe first call with a particular request id, the owner must begimvan@emental trans-

fer for the requested selection andy&r Onsubsequent calls with the same request id, the owner
may assume that the previously supplied value is no longer needed by the Intrinsics; that is, a
fixed transfer area may be allocated and returnedlue_returnfor each segment to be trans-
ferred. Thisprocedure should store a non-NULL valuevaiue_returnand zero irlength_return

to indicate that the entire selection has beeweatelil. Afterreturning this final segment, the
request id may be reused by the Intrinsics to begimwanaasfer.

To retrieve the SelectionRequesevent that triggered the selection egrsion procedure, use
XtGetSelectionRequestdescribed in Section 11.5.2.1.

The procedure pointer specified by the incremental selection owner when it desires notification
upon no longer having ownership is of ty)ig. oseSelectionincrProc.

200

X Toolkit Intrinsics X11 Release 6.8

typedef void (*XtLoseSelectionincrProc)(Widget, Atom*, XtPointer);
Widgetw;
Atom *selection
XtPointerclient_data

w Specifies the widget that has lost the selection ownership.

selection Specifies the atom that names the selection.

client_data Specifies the value passed in by the widget when it tasleship of the selec-
tion.

This procedure, which is optional, is called by the Intrinsics to inform the selection owner that it
no longer owns the selection.

The procedure pointer specified by the incremental selection owner when it desires notification of
receipt of the data or when it manages the storage containing the data isXiSg[@etion-
DonelncrProc.

typedef void (*XtSelectionDonelncrProc)(Widget, Atom*, Atom*, XtRequestld*, XtPointer);
Widgetw;
Atom *selection
Atom *targd;
XtRequestld request_id
XtPointerclient_data

w Specifies the widget that owns the selection.
selection Specifies the atom that names the selection being transferred.
target Specifies the target type to which thew®sion was done.

request_id Specifies an opaque identification for a specific request.

client_data Specified the value passed in by the widget when it teolecship of the selec-
tion.

This procedure, which is optional, is called by the Intrinsics after the requestor hasddiee

final (zero-length) segment of the incremental transfer to indicate that the entire transfer is com-
plete. Ifthis procedure is not specified, the Intrinsics will free only the final value returned by the
selection owner usinXtFree.

The procedure pointer specified by the incremental selection owner to notify it if a transfer should
be terminated prematurely is of typ@CancelCornvertSelectionProc.

201

X Toolkit Intrinsics X11 Release 6.8

typedef void (*XtCancelCarertSelectionProc)(Widget, Atom*, Atom*, XtRequestld*, XtPointer);
Widgetw;
Atom *selection
Atom *targd;
XtRequestld request_id
XtPointerclient_data

w Specifies the widget that owns the selection.
selection Specifies the atom that names the selection being transferred.
target Specifies the target type to which thew®sion was done.

request_id Specifies an opaque identification for a specific request.

client_data Specifies the alue passed in by the widget when it took ownership of the selec-
tion.

This procedure is called by the Intrinsics when it has been determined by means of a timeout or
other mechanism that wnemaining segments of the selection no longer need to be transferred.
Upon receiving this callback, the selection request is considered complete and the owner can free
the memory and agmother resources that b been allocated for the transfer.

11.5.3.2. Gettinghe Selection Value Incrementally

To dbtain the value of the selection using incremental transfers{t@etSelectionValuelncre-
mental or XtGetSelectionValuesincremental

void XtGetSelectionValuelncremental(selectiontarget, selection_callbackclient_data time)
Widgetw;
Atom selection
Atom target;
XtSelectionCallbackProselection_callback
XtPointerclient_data

Timetime
w Specifies the widget making the request. Must be of class Core sulaciass
thereof.
selection Specifies the particular selection desired.
target Specifies the type of information needed about the selection.

selection_callback
Specifies the callback procedure to be called tove@ach data segment.

client_data Specifies client-specific data to be passed to the specified callback procedure
when it is irvoked.

time Specifies the timestamp that indicates when the selection request was initiated.
This should be the timestamp of theer@ that triggered this request; thalwe
CurrentTime is not acceptable.

The XtGetSelectionValuelncrementalfunction is similar toXtGetSelectionValueexcept that

the selection_callback procedure will be called repeatedly uporeryedif multiple segments of

the selection @lue. Theend of the selection value is indicated wiketection_callbacks called

with a non-NULL value of length zero, which must still be freed by the client. If the transfer of
the selection is aborted in the middle of a transfer (for example, because of a timeout), the selec-
tion_callback procedure is called with a type value equal to the symbolic constant

202

X Toolkit Intrinsics X11 Release 6.8

XT_CONVERT_FAIL so that the requestor can dispose of the partial selection value it has col-
lected up until that point. Upon receiviogl_CONVERT_FAIL , the requesting client must
determine for itself whether or not a partially completed data transfer is meanifgfuhore
information abouselectiontarget, andtime see Section 2.6 in thater-Client Communication
Conventions Manual

void XtGetSelectionValuesincrementa|(selectiontargets, count selection_callbackclient_datatime)
Widgetw;
Atom selection
Atom *targes,
int count
XtSelectionCallbackProselection_callback
XtPointer *client_data

Timetime
w Specifies the widget making the request. Must be of class Corg sulaciass
thereof.
selection Specifies the particular selection desired.
targes Specifies the types of information needed about the selection.
count Specifies the length of thargets andclient_datalists.

selection_callback
Specifies the callback procedure to be called tove@ach selection value.

client_data Specifies a list of client data (one for each target type) values that are passed to
the callback procedure when it izaked for the corresponding target.

time Specifies the timestamp that indicates when the selection request was initiated.
This should be the timestamp of theer@ that triggered this request; thalwe
CurrentTime is not acceptable.

The XtGetSelectionValuesincrementalfunction is similar toXtGetSelectionValuelncremen-

tal except that it takes a list of targets and client dateGetSelectionValuesincrementalis

equialent to callingXtGetSelectionValuelncrementalsuccessiely for eachtarget/client_data

pair except thakKtGetSelectionValuesincrementaldoes guarantee that all the eersions will

use the same selection value because the ownership of the selection cannot change in the middle
of the list, as would be possible when calliXifsetSelectionValuelncrementalrepeatedly For

more information aboidelectiontarget, andtime, see Section 2.6 in thater-Client Communi-

cation Conventions Manual

11.5.3.3. Settinghe Selection Owner for Incremental Transfers
To st the selection owner when using incremental transfers{i@®&nSelectionincremental.

203

X Toolkit Intrinsics X11 Release 6.8

Boolean XtOwnSelectionincrementa|(selectiontime, convert_callbacklose_callback
done_callbackcancel_callbackclient_datg
Widgetw;
Atom selection
Timetime
XtCorvertSelectionincrProconvert_callback
XtLoseSelectionincrProlose callback
XtSelectionDonelncrProdone_callback
XtCancelComertSelectionProcancel_callback
XtPointerclient_data

w Specifies the widget that wishes to become tineeo Must be of class Core
or ary subclass thereof.

selection Specifies the atom that names the selection.

time Specifies the timestamp that indicates when the seleatrarrehip request

was initiated. Thisshould be the timestamp of theest that triggered wn-
ership; the valu€urrentTime is not acceptable.

convert_callback Specifies the procedure to be called wenéhe current &lue of the selec-
tion is requested.

lose_callback Specifies the procedure to be called whenéhe widget has lost selection
ownership, or NULL if the owner is not interested in being notified.

done_callback Specifies the procedure called after the requestor haseagdtee entire se-
lection, or NULL if the owner is not interested in being notified.

cancel_callback Specifies the callback procedure to be called when a selection request aborts
because a timeoukpgires, or NULL if the owner is not interested in being
notified.

client_data Specifies the argument to be passed to each of the callback procedures when
they are called.

The XtOwnSelectionIncremental procedure informs the Intrinsics incremental selection mecha-
nism that the specified widget wishes to own the selection. It refurresif the specified widget
successfully becomes the selection owndfalse otherwise. Br more information abowelec-

tion, targe, andtime, see Section 2.6 in thater-Client Communication Conventions Manual

If a done_callback procedure is specified, the client owns the storage allocated for passing the
value to the Intrinsics. Ione_callbacks NULL, the conert_callback procedure must allocate
storage usintMalloc , XtRealloc, or XtCalloc, and the final value specified is freed by the
Intrinsics when the transfer is complete. After a selection transfer has started, only one of the
done_callback or cancel_callback proceduresvigkigd to indicate completion of the transfer.

The lose_callback procedure does not indicate completionyahagrogress transfers; it is
invoked at he time aSelectionClearevent is dispatched gerdless of an active ransfers, which
are still expected to continue.

A widget that becomes the selection owner ut@wnSelectionincremental may useXtDis-
ownSelectionto relinquish selection ownership.

11.5.4. Settingand Retrieving Selection Target Parameters

To ecify target parameters for a selection request with a single targétSetSelectionPa-
rameters.

204

X Toolkit Intrinsics X11 Release 6.8

void XtSetSelectionParameterfuestor selectiontype value length formaf
Widgetrequestor
Atom selection
Atom type
XtPointervalue
unsigned londgength

int format

requestor Specifies the widget making the request. Must be of class Core sulaciass
thereof.

selection Specifies the atom that names the selection.

type Specifies the type of the property in which the parameters are passed.

value Specifies a pointer to the parameters.

length Specifies the number of elements containing datalimg each element of a size
indicated byformat

format Specifies the size in bits of the data in the elementalaé

The specified parameters are copied and stored iw gnoperty of the specified type and format

on the request@’window. To initiate a selection request with a target and these parameters, a
subsequent call tXtGetSelectionValueor to XtGetSelectionValuelncremental specifying the

same requestor widget and selection atom will gener&ermertSelection request referring to

the property containing the parametelfs XtSetSelectionParameterss called more than once

with the same widget and selection without a call to specify a request, the most recently specified
parameters are used in the subsequent request.

The possible values édrmatare 8, 16, or 32. If the format is 8, the elementgatdieare
assumed to be sizeof(char); if 16, sizeof(short); if 32, sizeof(long).

To generate a MULTIPLE target request with parameters fpioathe multiple targets of the
selection request, precede individual callXtGetSelectionValueand XtGetSelectionValueln-
cremental with corresponding individual calls %tSetSelectionParametersand enclose these
all within XtCreateSelectionRequesand XtSendSelectionRequest. XtGetSelectiorlues

and XtGetSelectionValuesincrementalcannot be used to malslection requests with parame-
terized targets.

To retrieve any arget parameters needed to perform a selectiorexon, the selection owner
calls XtGetSelectionParameters

205

X Toolkit Intrinsics X11 Release 6.8

void XtGetSelectionParameteos(ner, selectionrequest_idtype_returnvalue_return
length_returnformat_returr
Widgetowner,
Atom selection
XtRequestldequest_id
Atom *type_return
XtPointer *value_return
unsigned long tength_return
int *format_return

owner Specifies the widget that owns the specified selection.

selection Specifies the selection being processed.

request_id Specifies the requestor id in the case of incremental selections, or NULL in the
case of atomic transfers.

type_return Specifies a pointer to an atom in which the property type of the parameters is
stored.

value_return Specifies a pointer into which a pointer to the parameters is to be stred.
NULL is stored if no parameters accompdime request.

length_return Specifies a pointer into which the number of data elemengsliue_returnof
size indicated byjormat_returnare stored.

format_return Specifies a pointer into which the size in bits of the parameter data in the ele-
ments ofvalueis stored.

XtGetSelectionParametersmay be called only from within aXtConvertSelectionProc or
from within the first call to aixXtConvertSelectionincrProc with a nev request _id.

It is the responsibility of the caller to free the returned parameters Xtfinge when the param-
eters are no longer needed.

11.5.5. GeneratingMULTIPLE Requests

To havethe Intrinsics bundle multiple calls to meatelection requests into a single request using
aMULTIPLE target, useXtCreateSelectionRequestind XtSendSelectionRequest

void XtCreateSelectionRequesijuestor selection
Widgetrequestor
Atom selection

requestor Specifies the widget making the request. Must be of class Corg sulaciass
thereof.
selection Specifies the particular selection desired.

When XtCreateSelectionRequests called, subsequent calls X¢GetSelectionValug XtGetS-
electionValuelncremental, XtGetSelectionValues and XtGetSelectionValuesincrementa)
with the requestor and selection as specifiedt@reateSelectionRequestare bundled into a
single selection request with multipledats. Theequest is made by callingtSendSelection-
Request

206

X Toolkit Intrinsics X11 Release 6.8

void XtSendSelectionRequestquestor selectiontime)
Widgetrequestor
Atom selection
Timetime

requestor Specifies the widget making the request. Must be of class Core sulaciass
thereof.

selection Specifies the particular selection desired.

time Specifies the timestamp that indicates when the selection request was initiated.
The valueCurrentTime is not acceptable.

When XtSendSelectionRequesis called with a value akquestorandselectionmatching a pre-
vious call toXtCreateSelectionRequesta lection request is sent to the selection owifea

single target request is queued, that request is made. If multiple targets are qugeel bine-

dled into a single request with a target of MULTIPLE using the specified timestamp. As the val-
ues are returned, the callbacks specifiedti@etSelectionValug XtGetSelectionValuelncre-
mental, XtGetSelectionValues and XtGetSelectionValuelncrementalare irvoked.

Multi-threaded applications should lock the application context before cXti@pateSelec-
tionRequestand release the lock after calliXgSendSelectionRequesto ensure that the thread
assembling the request is safe from interference by another thread assembling a different request
naming the same widget and selection.

To relinquish the composition of a MULTIPLE request without sending itXi€ancelSelec-
tionRequest

void XtCancelSelectionRequesgquestor selection
Widgetrequestor
Atom selection

requestor Specifies the widget making the request. Must be of class Corg sulaciass
thereof.
selection Specifies the particular selection desired.

When XtCancelSelectionRequests called, ay requests queued since the last caKtGreate-
SelectionRequesfor the same widget and selection are discarded anckaaurces reserved are
released. Asubsequent call tXtSendSelectionRequestwill not result in ag request being
made. Subsequeaoalls toXtGetSelectionValug XtGetSelectionValues XtGetSelectionVal-
uelncremental, or XtGetSelectionValuesincrementalwill not be deferred.

11.5.6. Auxiliary Selection Properties

Certain uses of parameterized selections require clients to name othewpingerties within a
selection parameteiTo permit reuse of temporary property names in these circumstances and
thereby reduce the number of unique atoms created in the, $eevintrinsics provides twinter-
faces for acquiring temporary property hames.

To acquire a temporary property name atom for use in a selection request, the client may call
XtResewvePropertyAtom .

207

X Toolkit Intrinsics X11 Release 6.8

Atom XtReservePropertyAtom
Widgetw;

w Specifies the widget making a selection request.

XtReservePropertyAtom returns an atom that may be used as a property name during selection
requests imolving the specified widget. As long as the atom remains reserved, it is unique with
respect to all other reserved atoms for the widget.

To return a temporary property name atom for reuse and to delete the property named by that
atom, useXtReleasePropertyAtom

void XtReleasePropertyAtomy atom

Widgetw;
Atom atom
w Specifies the widget used to resetve property name atom.
atom Specifies the property name atom returnedXbigeservePropertyAtom that is

to be released for reuse.

XtReleasePropertyAtommarks the specified property name atom as no longer in use and
ensures that grmproperty having that name on the specified widgethdow is deleted. Ifatom
does not specify a value returnedXyReservePropertyAtom for the specified widget, the
results are undefined.

11.5.7. Retrieving the Most Recent Timestamp

To retrieve the timestamp from the most recent calkiispatchEvent that contained a time-
stamp, useXtLastTimestampProcessed

Time XtLastTimestampProcessdisplay)
Display *display;

display Specifies an open display connection.
If no KeyPress KeyRelease ButtonPress, ButtonRelease MotionNotify , EnterNotify ,

LeaveNotify , PropertyNotify , or SelectionClearevent has yet been passedXtDis-
patchEvent for the specified displaytLastTimestampProcessedeturns zero.

11.5.8. Retrieving the Most Recent Event

To retrieve the event from the most recent call &tDispatchEvent for a specific displayuse
XtLastEventProcessed

XEvent *XtLastEventProcessati§play)
Display *display;

display Specifies the display connection from which to re@itie event.

Returns the lastvent passed tXtDispatchEvent for the specified displayReturns NULL if
there is no suchvent. Theclient must not modify the contents of the returneshe

208

X Toolkit Intrinsics X11 Release 6.8

11.6. Memging Exposute Events into a Region

The Intrinsics provide aXtAddExposureToRegion utility function that mergegxposeand
GraphicsExposeevents into a region for clients to process at once rather than processing indi-
vidual rectanglesFor further information about regions, see Section 16Xim— C Languge

X Interface

To mergeExposeand GraphicsExposeevents into a region, us¥tAddExposureToRegion.

void XtAddExposureToRegior{ent region)
XEvent *event

Regionregion;
ewent Specifies a pointer to tHexposeor GraphicsExposeevent.
region Specifies the region object (as defined XiL&/Xutil.h >).

The XtAddExposureToRegion function computes the union of the rectangle defined by the
exposure gent and the specifiedgeon. Thent stores the results backriegion. If the event
argument is not akExposeor GraphicsExposeevent, XtAddExposureToRegion returns with-
out an error and without modifyirrggion.

This function is used by the exposure compression mechanism; see Section 7.9.3.

11.7. Translating Widget Coordinates

To translate an x-y coordinate pair from widget coordinates to root wiallsolute coordinates,
useXtTranslateCoords.

void XtTranslateCoordsy, X, y, rootx_return rooty_return
Widgetw;
Positionx, y;
Position *rootx_return *rooty_return

w Specifies the widget. Must be of class RectObj grsabclass thereof.

X
y Specify the widget-relate x and y coordinates.

rootx_return
rooty_return Return the root-relate x and y coordinates.

While XtTranslateCoords is similar to the XlibXTranslateCoordinates function, it does not
generate a server request because all the required information already is in the datpet’
structures.

11.8. Translating a Window to a Widget

To translate a gien window and display pointer into a widget instance, X¢&/indowToWid-
get.

209

X Toolkit Intrinsics X11 Release 6.8

Widget XtWindowToWidgetisplay, window)

Display *display;

Windowwindow
display Specifies the display on which the windis defined.
window Specifies the dwable for which you want the widget.

If there is a realized widget whose windis the specified dmaable on the specifiedisplay,
XtwWindowToWidget returns that widget. If not and if the drable has been associated with a
widget throughXtRegisterDrawable, XtWindowToWidget returns the widget associated with
the dravable. Inother cases it returns NULL.

11.9. HandlingErrors

The Intrinsics allav a dient to register procedures that are called where fatal or nonfatal
error occurs. These facilities are intended for both error reporting and logging and for error cor-
rection or recoery.

Two levels of interface are provided:

. A high-level interface that takes an error name and class andsesttie error message
text from an error resource database.

. A low-level interface that takes a simple string to display.

The high-leel functions construct a string to pass to the lowegtiaterface. Thestrings may
be specified in application code and arerndden by the contents of an external systemwide file,
the “error database file’ Thelocation and name of this file are implementation-dependent.

Note

The application-context-specific error handling is not implemented oy sgatems,
although the interfaces arenalys present. Most implementations wilMegust one
set of error handlers for all application contexts within a process. yifitbeset for
different application contexts, the ones registered last wilkjre

To dbtain the error database (for example, to merge with an application- or widget-specific data-
base), usXtAppGetErrorDatabase .

XrmDatabase *XtAppGetErrorDatabaspf_context
XtAppContextapp_context

app_context Specifies the application context.
The XtAppGetErrorDatabase function returns the address of the error database. The Intrinsics

do a lazy binding of the error database and do not merge in the database file until the first call to
XtAppGetErrorDatabaseText.

For a oomplete listing of all errors and warnings that can be generated by the Intrinsics, see Ap-
pendix D.

The high-leel error and warning handler procedure pointers are of KfggrorMsgHandler .

210

X Toolkit Intrinsics X11 Release 6.8

typedef void (*XtErrorMsgHandler)(String, String, String, String, String*, Cardinal*);
Stringname
Stringtype
Stringclass
Stringdefaultp
String *params
Cardinal num_params

name Specifies the name to be concatenated with the specified type to form the re-
source name of the error message.

type Specifies the type to be concatenated with the name to form the resource name of
the error message.

class Specifies the resource class of the error message.

defaultp Specifies the default message to use if no error database entry is found.

params Specifies a pointer to a list of parameters to be substituted in the message.

num_params Specifies the number of entriesparams

The specified name can be a general kind of diker“invalidParametersor *‘invalidWindow”,
and the specified typewgs extra information such as the name of the routine in which the error
was cetected. Standanprintf notation is used to substitute the parameters into the message.

An error message handler can obtain the error database text for an error or a warning by calling
XtAppGetErrorDatabaseText.

void XtAppGetErrorDatabase&ki(app_contextname type class default buffer_return nbytes databasg
XtAppContextapp_context
Stringname type class
Stringdefault
Stringbuffer_return
int nbytes
XrmDatabaselatabase

app_context Specifies the application context.

name

type Specify the name and type concatenated to form the resource name of the error
message.

class Specifies the resource class of the error message.

default Specifies the default message to use if an error database entry is not found.

buffer_return Specifies the buffer into which the error message is to be returned.

nbytes Specifies the size of the buffer in bytes.

database Specifies the name of the altermatthtabase to be used, or NULL if the applica-

tion contexts aror database is to be used.

The XtAppGetErrorDatabaseText returns the appropriate message from the error database or
returns the specified default message if one is not found in the error databésen the full
resource name and class when querying the databaseeandtypeare concatenated with a
single “." between them and thatassis concatenated with itself with a singlé I'f it does not
already contain a ..

211

X Toolkit Intrinsics X11 Release 6.8

To return the application name and class as pass¥tDisplaylinitialize for a particular Dis-
play, use XtGetApplicationNameAndClass.

void XtGetApplicationNameAndClasgisplay, name_returnclass_returi
Display* display;
String* name_return
String* class_return

display Specifies an open display connection that has been initializetisplayIni-
tialize.

name_return Returns the application name.

class_return Returns the application class.

XtGetApplicationNameAndClass returns the application name and class passtDis-

playlnitialize for the specified displayif the display was rer initialized or has been closed,

the result is undefined. The returned strings are owned by the Intrinsics and must not be modified
or freed by the caller.

To regster a procedure to be called on fatal error conditionsXtsppSetErrorMsgHandler .

XtErrorMsgHandler XtAppSetErrorMsgHandlagp_contextmsg_handler
XtAppContextapp_context
XtErrorMsgHandlemsg_handler

app_context Specifies the application context.
msg_handler Specifies the vefatal error procedure, which should not return.

XtAppSetErrorMsgHandler returns a pointer to the previously installed highelléatal error
handler The default high-leel fatal error handler provided by the Intrinsics is nam&tDe-
faultErrorMsg and constructs a string from the error resource database andt€atisr . Fatal

error message handlers should not return. If one does, subsequent Intrinsics behavior is unde-
fined.

To call the high-leel error handleruse XtAppErrorMsg .

212

X Toolkit Intrinsics X11 Release 6.8

void XtAppErrorMsg@pp_contextname type class default params num_paramps
XtAppContextapp_context
Stringname
Stringtype
Stringclass
Stringdefault
String *params
Cardinal num_params

app_context Specifies the application context.

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not found.
params Specifies a pointer to a list of values to be stored in the message.

num_params Specifies the number of entriesparams
The Intrinsics internal errors all & dass “XtToolkitError”.

To regster a procedure to be called on nonfatal error conditionsXufggSetWarningMs-
gHandler.

XtErrorMsgHandler XtAppSetWarningMsgHandlapp_contextmsg_handler
XtAppContextapp_context
XtErrorMsgHandlemsg_handler

app_context Specifies the application context.
msg_handler Specifies the ve nonfatal error procedure, which usually returns.

XtAppSetWarningMsgHandler returns a pointer to the previously installed higkellevarning
handler The default high-teel warning handler provided by the Intrinsics is namédDefault-
WarningMsg and constructs a string from the error resource database andtgiming .

To call the installed high-leel warning handleruse XtAppWarningMsg .

213

X Toolkit Intrinsics X11 Release 6.8

void XtAppWarningMsgépp_contextname type class default params num_paramk
XtAppContextapp_context
Stringname
Stringtype
Stringclass
Stringdefault
String *params
Cardinal num_params

app_context Specifies the application context.

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not found.
params Specifies a pointer to a list of values to be stored in the message.

num_params Specifies the number of entriesparams
The Intrinsics internal warnings allVedass “XtToolkitError”.

The low-lesel error and warning handler procedure pointers are of KiggrorHandler .

typedef void (*XtErrorHandler)(String);
Stringmessge

messge Specifies the error message.
The error handler should display the message string in some appropriate fashion.

To regster a procedure to be called on fatal error conditionsXtsppSetErrorHandler .

XtErrorHandler XtAppSetErrorHandlexnpp_contexthandler
XtAppContextapp_context
XtErrorHandlerhandler,

app_context Specifies the application context.
handler Specifies the vefatal error procedure, which should not return.

XtAppSetErrorHandler returns a pointer to the previously installed loweléatal error han-

dler. The default low-leel error handler provided by the Intrinsics_iXtDefaultError . On
POSIX-based systems, it prints the message to standard error and terminates the application.
Fatal error message handlers should not return. If one does, subsequent Intrinsics behavior is
undefined.

To call the installed fatal error procedure, d8&ppError .

214

X Toolkit Intrinsics X11 Release 6.8

void XtAppError@pp_contextmessge)
XtAppContextapp_context
Stringmessge
app_context Specifies the application context.
messge Specifies the message to be reported.

Most programs should usé&AppErrorMsg , not XtAppError , to provide for customization and
internationalization of error messages.

To regster a procedure to be called on nonfatal error conditionsXufggpSetWarningHan-
dler.

XtErrorHandler XtAppSetWarningHandlefp_contexthandler
XtAppContextapp_context
XtErrorHandlerhandler,

app_context Specifies the application context.

handler Specifies the ve nonfatal error procedure, which usually returns.

XtAppSetWarningHandler returns a pointer to the previously installed lowelevarning han-
dler. The default low-lgel warning handler provided by the Intrinsics XtDefaultWarning .
On POSIX-based systems, it prints the message to standard error and returns to the caller.

To call the installed nonfatal error procedure, X$8ppWarning .

void XtAppWarning@pp_contextmessge)
XtAppContextapp_context
Stringmessge
app_context Specifies the application context.
messge Specifies the nonfatal error message to be reported.

Most programs should usé&AppWarningMsg , not XtAppWarning , to provide for customiza-
tion and internationalization of warning messages.

11.10. SettingM_COLORMAP_WINDOWS

A client may set the value of thgM_COLORMAP_WINDOWSproperty on a widget'window by
calling XtSetwMColormapWindows .

215

X Toolkit Intrinsics X11 Release 6.8

void XtSetWMColormapWindows(idget list, coun)

Widgetwidget
Widget*list;
Cardinalcount
widget Specifies the widget on whose windthe WM_COLORMAP_WINDOWSproper-
ty is stored. Must be of class Core oy aabclass thereof.
list Specifies a list of widgets whose windows are potentially to be listed in the
WM_COLORMAP_WINDOWSproperty.
count Specifies the number of widgetslist.

XtSetWMColormapWindows returns immediately wWvidgetis not realized or i€ountis O.
Otherwise XtSetWMColormapWindows constructs an ordered list of windows by examining
each widget inlist in turn and ignoring the widget if it is not realized, or adding the wisget-
dow to the windav list if the widget is realized and if its colormap resource is different from the
colormap resources of all widgets whose windows are already on themlisto

Finally, XtSetWMColormapWindows stores the resulting windolist in thewM_COL-
ORMAP_WINDOWSproperty on the specified widgetvndow. Refer to Section 4.1.8 in the
Inter-Client Communication Conventions Mantml details of the semantics of tikévi_COL-
ORMAP_WINDOWSproperty.

11.11. FindingFile Names

The Intrinsics provide procedures to look for a file by name, allowing string substitutions in a list
of file specifications.Two routines are provided for thi¥tFindFile and XtResolvePathname
XtFindFile uses an arbitrary set of client-specified substitutions XaReésolvePathnameuses

a et of standard substitutions corresponding tot@pen Portability Guidéanguage localiza-

tion corventions. Mostapplications should uss§tResolvePathname

A string substitution is defined by a list Substitution entries.

typedef struct {
char match;
String substitution;
} SubstitutionRec, *Substitution;

File name eauation is handled in an operating-system-dependent fashion X{FdaPredicate
procedure.

typedef Boolean (*XtFilePredicate)(String);
Stringfilename

filename Specifies a potential filename.

A file predicate procedure is called with a string that is potentially a file name. It should return
True if this string specifies a file that is appropriate for the intended usEaselotherwise.

To sarch for a file using substitutions in a path list, xgendFile .

216

X Toolkit Intrinsics X11 Release 6.8

String XtFindFilepath substitutionsnum_substitutiongredicatg
String path
Substitutionsubstitutions
Cardinalnum_substitutions
XtFilePredicatepredicate

path Specifies a path of file names, including substitution characters.
substitutions Specifies a list of substitutions to neakto the path.
num_substitutionsSpecifies the number of substitutions passed in.

predicate Specifies a procedure called to judge each potential file name, or NULL.

The pathparameter specifies a string that consists of a series of potential file names delimited by
colons. Wthin each name, the percent character specifies a string substitution selected by the fol-
lowing character The character sequence “¥specifies an embedded colon that is not a delim-

iter; the sequence is replaced by a single colon. The character sequencepeégities a per-

cent character that does not introduce a substitution; the sequence is replaced by a single percent
character If a percent character is followed byyaother characterXtFindFile looks through the
specifiedsubstitutiondor that character in thmatchfield and, if found, replaces the percent and
match characters with the string in the corresponsirgtitutionfield. A substitutionfield entry

of NULL is equialent to a pointer to an empty string. If the operating system does not interpret
multiple embedded name separators in the path (i.ein POSIX) the same way as a single sep-
arator, XtFindFile will collapse multiple separators into a single one after performing all string
substitutions. Excepor collapsing embedded separators, the contents of the string substitutions
are not interpreted b}tFindFile and may therefore containyaaperating-system-dependent
characters, including additional name separators. Each resulting string is passed to the predicate
procedure until a string is found for which the procedure rettrros; this string is the return

value for XtFindFile . If no dring yields aTr ue return from the predicattFindFile returns

NULL.

If the predicateparameter is NULL, an internal procedure that checks if the file exists, is read-
able, and is not a directory is used.

It is the responsibility of the caller to free the returned string ustiRgee when it is no longer
needed.

To search for a file using standard substitutions in a path listXtResolvePathname

217

X Toolkit Intrinsics X11 Release 6.8

String XtResolvePathnanw§play, type filename suffix path, substitutionsnum_substitutiongredicatg
Display *display;
Stringtype filename suffix path;
Substitutionsubstitutions
Cardinalnum_substitutions
XtFilePredicatepredicate

display Specifies the display to use to find the language for language substitutions.
type

filename

suffix Specify values to substitute into the path.

path Specifies the list of file specifications, or NULL.

substitutions Specifies a list of additional substitutions to mako the path, or NULL.
num_substitutionsSpecifies the number of entriessmbstitutions

predicate Specifies a procedure called to judge each potential file name, or NULL.

The substitutions specified b§tResolvePathnameare determined from the value of the lan-

guage string retrieed by XtDisplaylnitialize for the specified displayTo st the language for

all applications specify “*xnlLanguagéang’ i n the resource database. The format and content

of the language string are implementation-defined. One suggested syntax is to compose the lan-
guage string of three parts; “language part”, d territory part’ and a “codeset part’ The

manner in which this composition is accomplished is implementation-defined, and the Intrinsics
make no nterpretation of the parts other than to use them in substitutions as descriled belo

XtResolvePathnamecalls XtFindFile with the following substitutions in addition toyapassed
by the caller and returns the value returneXbtyindFile :

%N Thevaue of thefilenameparameteror the applicatiors dass name ifilenameis NULL.
%T Thevaue of thetypeparameter.

%S Thevaue of thesuffixparameter.

%L Thelanguage string associated with the specified display.

%l Thelanguage part of the displaylanguage string.

%t Theterritory part of the displag’language string.

%c Thecodeset part of the displayanguage string.

%C Thecustomization string retned from the resource database associateddistblay.
%D Thevaue of the implementation-specific default path.

If a path is passed tResolvePathname it is passed along tXtFindFile . If the pathargu-

ment is NULL, the value of thEFILESEARCHP ATH environment variable is passedXt~ind-

File. If XFILESEARCHP ATH is not defined, an implementation-specific default path is used that
contains at least six entries. These entries must contain the following substitutions:

%C,%N, %S, %T %L or %C, %N, %S, %T%l, %t, %c
%C,%N, %S, %T %l

%C,%N, %S, %T

%N, %S, %T %L or %N, %S, %T %l, %t, %c
%N, %S, %T %l

%N, %S, %T

ocoukrwnpE

The order of these six entries within the path must bevas ghove. The order and use of sub-
stitutions within a gien entry are implementation-dependent. If the path begins with a colon, it is

218

X Toolkit Intrinsics X11 Release 6.8

preceded by %N%S. If the path include® tjacent colons%N%S is inserted between them.

Thetypeparameter is intended to be a category of files, usually being translated into a directory
in the pathname. Possible values might include “app-defaults”, “help”, and “bitmap”.

Thesuffixparameter is intended to be appended to the file name. Possible values might include
“.txt”, “.dat”, and “.bm”.

A suggested value for the default path on POSIX-based systems is

usr/lib/X11/%L/%T/%N%C%S:/usr/lib/X11/%I/%T/%N%C%S:\
usr/lib/X11/%T/%N%C%S:/usr/lib/X11/%L/%T/%N%S:\
usr/lib/X11/%l/%T/%N%S:/usr/lib/X11/%T/%N%S

Using this example, if the user has specified a language, it is used as a subdirectory of
/usr/lib/X11 that is searched for other files. If the desired file is not found there, the lookup is
tried again using just the language part of the specification. If the file is not there, it is looked for
in /usr/lib/X11. Thetypeparameter is used as a subdirectory of the language directory or of
lusr/lib/X11, andsuffixis appended to the file name.

The %D substitution allows the addition of path elements to the implementation-specific default
path, typically to allev additional directories to be searched withoutvenging resources in the
system directories from being founBor example, a user installing resource files under a direc-
tory called “ourdir’ might setXFILESEARCHP ATH to

%D:ourdir/%T/%N%C:ourdir/%T/%N

The customization string is obtained by querying the resource database currently associated with
the display (the database returneddmynGetDatabase) for the resourcapplication_nameus-
tomization, clasapplication_classCustomization, wherapplication_namendapplica-

tion_classare the values returned DiGetApplicationNameAndClass. If no value is specified

in the database, the empty string is used.

It is the responsibility of the caller to free the returned string ustiRgee when it is no longer
needed.

11.12. Hookdor E xternal Agents

Applications may register functions that are called at a particular control points in the Intrinsics.
These functions are intended to be used to provide notification of an “X Toaghif' esuch as
widget creation, to an external agent, such as an interaetiource editodrag-and-drop server,

or an aid for physically challenged users. The control points containing such registration hooks
are identified in a “hook registratidrobject.

To retrieve the hook registration widget, ud@HooksOfDisplay .

Widget XtHooksOfDisplaydisplay)
Display *display;

display Specifies the desired display.

The class of this object is a yaie, implementation-dependent subclas©bject. The hook

object has no parent. The resources of this object are the callback lists for hooks and the read-
only resources for getting a list of parentless shells. All of the callback lists are initially empty.
When a display is closed, the hook object associated with it is destroyed.

The following procedures can be called with the hook registration object as an argument:
XtAddCallback , XtAddCallbacks, XtRemoveCallback, XtRemoveCallbacks,
XtRemoveAllCallbacks, XtCallCallbacks, XtHasCallbacks, XtCallCallbackList

219

X Toolkit Intrinsics X11 Release 6.8

XtClass, XtSuperclass XtlsSubclass XtCheckSubclass XtlsObject, XtlsRectObj,
XtlsWidget, XtlsComposite, XtlsConstraint , XtisShell, XtlsOverrideShell,
XtIswWMShell , XtlsVendorShell, XtisTransientShell, XtisToplevelShell, XtlsApplica-
tionShell, XtlsSessionShell

XtWidgetToApplicationContext
XtName, XtParent, XtDisplayOfObject, XtScreenOfObject
XtSetValues, XtGetValues, XtVaSetValues, XtVaGetValues

11.12.1. HookObject Resources

The resource names, classes, and representation types that are specified in the hook object
resource list are:

Name Class Representation
XtNcreateHook XtCCallback XtRCallback
XtNchangeHook XtCCallback XtRCallback
XtNconfigureHook XtCCallback XtRCallback
XtNgeometryHook XtCCallback XtRCallback
XtNdestroyHook XtCCallback XtRCallback
XtNshells XtCReadOnly XtRWidgetList
XtNnumShells XtCReadOnly XtRCardinal

Descriptions of each of these resources:

The XtNcreateHook callback list is called froXtCreateWidget, XtCreateManagedWidget,
XtCreatePopupShell XtAppCreateShell, and their corresponding varargs versions.

Thecall_dataparameter in a createHook callback may be cast toXypeeateHookData.

typedef struct {
String type;
Widget widget;
ArgList ags;
Cardinal num_args;
} X tCreateHookDataRec, *XtCreateHookData;

Thetypeis set toXtHcreate, widgetis the newly created widget, antdhsandnum_argsare the
arguments passed to the create function. The callbacks are called before returning from the create
function.

The XtNchangeHook callback list is called from:
XtSetValues, XtVaSetValues
XtManageChild, XtManageChildren, XtUnmanageChild, XtUnmanageChildren
XtRealizeWidget, XtUnrealizeWidget

XtAddCallback , XtRemoveCallback, XtAddCallbacks, XtRemoveCallbacks,
XtRemoveAllCallbacks

XtAugmentTranslations, XtOverrideTranslations, XtUninstallTranslations
XtSetKeyboardFocus XtSetWMColormapWindows

220

X Toolkit Intrinsics X11 Release 6.8

XtSetMappedWhenManaged XtMapWidget , XtUnmapWidget
XtPopup, XtPopupSpringLoaded, XtPopdown

Thecall_dataparameter in a changeHook callback may be cast toXypkangeHookData.

typedef struct {
String type;
Widget widget;
XtPointer eent_data;
Cardinal num_eent_data;
} XtChangeHookDataRec, *XtChangeHookData;

When the changeHook callbacks are called as a result of a a$edvValuesor XtVaSetVal-
ues, typeis set toXtHsetValues, widgetis the nev widget passed to the set_values procedure,
andewent_datamay be cast to typ¥tChangeHookSetValuesData

typedef struct {
Widget oldreq;
ArgList ags;
Cardinal num_args;
} XtChangeHookSetValuesDataRec, *XtChangeHookSetValuesData;

Theold, req, args, and num_argsare the parameters passed to the set_values procedure. The call-
backs are called after the set_values and constraint set_values proceckitegmaalled.

When the changeHook callbacks are called as a result of a ¥@NMamageChild or XtMan-
ageChildren, typeis set toXtHmanageChildren, widgetis the parentevent_datamay be cast
to type WidgetList and is the list of children being managedpand event_dates the length of
the widget list. The callbacks are called after the childree baen managed.

When the changeHook callbacks are called as a result of a #alUtomanageChild or XtUn-
manageChildren, typeis set toXtHunmanageChildren, widgetis the parentvent_datamay
be cast to type WidgetList and is a list of the children being unmanageaBne@vent_dates
the length of the widget list. The callbacks are called after the childuenbhan unmanaged.

The changeHook callbacks are called twice as a result of a ¢éiCteangeManagedSet once

after unmanaging and again after managing. When the callbacks are called the fitgpéise,

set toXtHunmanageSet widgetis the parentgvent_datamay be cast to type WidgetList and is

a list of the children being unmanaged, auin_event_dats the length of the widget list.

When the callbacks are called the second timetyftess set toXtHmanageSet widgetis the
parentevent_datamay be cast to type WidgetList and is a list of the children being managed, and
num_event_dates the length of the widget list.

When the changeHook callbacks are called as a result of a ¥@RéalizeWidget, thetypeis
set toXtHrealizeWidget andwidgetis the widget being realized. The callbacks are called after
the widget has been realized.

When the changeHook callbacks are called as a result of a ¢dlUkwealizeWidget, thetypeis
set toXtHunrealizeWidget, and widgetis the widget being unrealized. The callbacks are called
after the widget has been unrealized.

When the changeHook callbacks are called as a result of a éaAddCallback , typeis set to
XtHaddCallback , widgetis the widget to which the callback is being added,eardt_data

may be cast to type String and is the name of the callback being added. The callbacks are called
after the callback has been added to the widget.

221

X Toolkit Intrinsics X11 Release 6.8

When the changeHook callbacks are called as a result of a ¥dAdaCallbacks, thetypeis

set toXtHaddCallbacks, widgetis the widget to which the callbacks are being added, and
ewent_datamay be cast to type String and is the name of the callbacks being added. The call-
backs are called after the callbacksehbeen added to the widget.

When the changeHook callbacks are called as a result of a ¥@Re&moveCallback, thetype
is set toXtHremo veCallback, widgetis the widget from which the callback is being reweth
andewent_datamay be cast to type String and is the name of the callback beingasgnithe
callbacks are called after the callback has beenveshfoom the widget.

When the changeHook callbacks are called as a result of a daRémoveCallbacks, thetype
is set toXtHremo veCallbacks, widgetis the widget from which the callbacks are being
removed, andevent_datamay be cast to type String and is the name of the callbacks being
removed. Thecallbacks are called after the callbackgehbeen remwued from the widget.

When the changeHook callbacks are called as a result of a ¥daRé&moveAllCallbacks, the
typeis set toXtHremoveAllCallbacks andwidgetis the widget from which the callbacks are
being remeed. Thecallbacks are called after the callbacksehbeen remwued from the widget.

When the changeHook callbacks are called as a result of a gaAdagmentTranslations, the
typeis set toXtHaugmentTranslations andwidgetis the widget whose translations are being
modified. Thecallbacks are called after the widgatanslations hae teen modified.

When the changeHook callbacks are called as a result of a éat@rrideTranslations, the
typeis set toXtHoverrideTranslations andwidgetis the widget whose translations are being
modified. Thecallbacks are called after the widgatanslations hae teen modified.

When the changeHook callbacks are called as a result of a #alUkinstallTranslations, The
typeis XtHuninstallTranslations andwidgetis the widget whose translations are being unin-
stalled. Thecallbacks are called after the widgdtanslations hee been uninstalled.

When the changeHook callbacks are called as a result of a sahedtkeyboardFocus thetype

is set toXtHsetKeyboardFocusandewent_datamay be cast to type Widget and is the value of
the descendant argument passedt&etKeyboardFocus The callbacks are called before return-
ing from XtSetKeyboardFocus

When the changeHook callbacks are called as a result of a saetWWMColormapWin-

dows, typeis set toXtHsetWMColormapWindows , event_datamay be cast to type WidgetList
and is the value of the list argument passext&etWMColormapWindows, and
num_event_dates the length of the list. The callbacks are called before returning from
XtSetWMColormapWindows.

When the changeHook callbacks are called as a result of a ¥a$edvMappedWhenManaged
thetypeis set toXtHsetMappedWhenManagedandewent_datamay be cast to type Boolean

and is the value of the mapped_when_managed argument pa¥s8dttdappedWhenMan-

aged The callbacks are called after setting the widgetipped_when_managed field and before
realizing or unrealizing the widget.

When the changeHook callbacks are called as a result of a aNiapWidget , thetype is set

to XtHmapWidget andwidgetis the widget being mapped. The callbacks are called after map-
ping the widget.

When the changeHook callbacks are called as a result of a 2alUtonapWidget, thetype is

set toXtHunmapWidget andwidgetis the widget being unmapped. The callbacks are called
after unmapping the widget.

When the changeHook callbacks are called as a result of a ZdRopup, thetypeis set to
XtHpopup , widgetis the widget being popped up, aant_datamay be cast to type
XtGrabKind and is the value of the grab_kind argument passe¢tPapup. The callbacks are
called before returning frondtPopup.

When the changeHook callbacks are called as a result of a 2dRPdopupSpringLoaded, the
typeis set toXtHpopupSpringLoaded andwidgetis the widget being popped up. The callbacks
are called before returning froktPopupSpringLoaded.

222

X Toolkit Intrinsics X11 Release 6.8

When the changeHook callbacks are called as a result of a &aPépdown, thetypeis set to
XtHpopdown andwidgetis the widget being poppedwn. Thecallbacks are called before
returning fromXtPopdown.

A widget set that exports interfaces that change application state without employing the Intrinsics
library should inoke the change hook itself. This is done by:

XtCallCallbacks(XtHooksOfDisplay(dpy), XtNchangeHook, call_data);

The XtNconfigureHook callback list is calledyaime the Intrinsics mee, resize, or configure a
widget and wherXtResizeWindow is called.

Thecall_dataparameter may be cast to tyeConfigureHookData.

typedef struct {
String type;
Widget widget;
XtGeometryMask changeMask;
XWindowChanges changes;
} XtConfigureHookDataRec, *XtConfigureHookData;

When the configureHook callbacks are called typeis XtHconfigure, widgetis the widget
being configured, anchangeMaslkandchangesreflect the changes made to the widget. The call-
backs are called after changesdneen made to the widget.

The XtNgeometryHook callback list is called frostiMakeGeometryRequestand XtMakeRe-
sizeRequesbnce before and once after geometry negotiation occurs.

Thecall_dataparameter may be cast to tygg&GeometryHookData.

typedef struct {
String type;
Widget widget;
XtwidgetGeometry* request;
XtwidgetGeometry* reply;
XtGeometryResult result;
} XtGeometryHookDataRec, *XtGeometryHookData;

When the geometryHook callbacks are called prior to geometry negotiatidypéie XtHpre-
Geometry, widgetis the widget for which the request is being made reqaestis the requested
geometry When the geometryHook callbacks are called after geometry negotiatidyyp ¢
XtHpostGeometry, widgetis the widget for which the request was madguests the
requested geometmeply is the resulting geometry granted, aesultis the value returned from
the geometry negotiation.

The XtNdestroyHook callback list is called when a widget is dgstio Thecall_data parameter
may be cast to typgtDestroyHookData.

223

X Toolkit Intrinsics X11 Release 6.8

typedef struct {
String type;
Widget widget;
} X tDestroyHookDataRec, *XtDestroyHookData;

When the destroyHook callbacks are called as a result of a célD&stroyWidget, thetypeis
XtHdestroy andwidgetis the widget being destroyed. The callbacks are called upon completion
of phase one desydor a widget.

The XtNshells and XtnumShells are read-only resources that report a list of all parentless shell
widgets associated with a display.

Clients who use these hooks mustreise caution in calling Intrinsics functions in order void
recursion.

11.12.2. QueryingOpen Displays
To retrieve a Ist of the Displays associated with an application contextXtGetDisplays.

void XtGetDisplaysépp_contextdpy_return num_dpy_returh
XtAppContextapp_context
Display ***dpy_return
Cardinal num_dpy_return

app_context Specifies the application context.

dpy_return Returns a list of open Display connections in the specified application
context.

num_dpy_return Returns the count of open Display connectiordpy_return

XtGetDisplays may be used by an external agent to query the list of open displays that belong to
an application context.olfree the list of displays, uséFree.

224

X Toolkit Intrinsics X11 Release 6.8

Chapter 12

Nonwidget Objects

Although widget writers are free to treat Core as the base class of the widget hji¢harehare

actually three classes almit. Theseclasses are Object, RectObj (Rectangle Object), and
(unnamegl and members of these classes are referred to genericabljeats By corvention,

the termwidgetrefers only to objects that are a subclass of Core, and th@oenmdgetrefers to

objects that are not a subclass of Core. In the preceding portion of this specification, the interface
descriptions indicate explicitly whether the gengrndgetargument is restricted to particular
subclasses of Object. Sections 12.2.5, 12.3.5, and 12.5 summarize the permissible classes of the
arguments to, and return values from, each of the Intrinsics routines.

12.1. DataStructures

In order not to conflict with previous widget code, the data structures used by nonwidget objects
do not follow al the same corentions as those for widgets. In particuldwe class records are

not composed of parts but instead are complete data structures with filler for the widget fields
they do ot use. This allows the static class initializers for existing widgets to remain unchanged.

12.2. ObjectObjects

The Object object contains the definitions of fields common to all objects. It encapsulates the
mechanisms for resource management. All objects and widgets are members of subclasses of
Object, which is defined by thHebjectClassPart and ObjectPart structures.

12.2.1. ObjectClassBrt Structure

The common fields for all object classes are defined iOthjectClassPart structure. Allfields
have the same purpose, function, and restrictions as the corresponding fi€lole{DlassPart
fields whose names are olipr some integen are not used for Object, but exist to pad the data
structure so that it matches Cardass record. The class record initialization must fill alhobj
fields with NULL or zero as appropriate to the type.

225

X Toolkit Intrinsics X11 Release 6.8

typedef struct _ObjectClassPart {
WidgetClass superclass;
String class_name;
Cardinal widget_size;
XtProc class_initialize;
XtwidgetClassProc class_part_initialize;
XtEnum class_inited;
XtInitProc initialize;
XtArgsProc initialize_hook;
XtProc obj1;
XtPointer obj2;
Cardinal obj3;
XtResourcelList resources;
Cardinal num_resources;
XrmClass xrm_class;
Boolean obj4;
XtEnum obj5;
Boolean obj6;
Boolean obj7;
XtwidgetProc destroy;
XtProc obj8;
XtProc obj9;
XtSetValuesFunc set_values;
XtArgsFunc set_values_hook;
XtProc obj10;
XtArgsProc get_values_hook;
XtProc obj11;
XtVersionType version;
XtPointer callback_pviate;
String obj12;
XtProc obj13;
XtProc obj14;
XtPointer extension;

} ObjectClassPart;

The extension record defined f@bjectClassPart with arecord_typeequal toNULLQ UARK is
ObjectClassExtensionRec

typedef struct {
XtPointer next_gtension; Se&ection 1.6.12
XrmQuark record_type; See Section 1.6.12
long \ersion; Seé&ection 1.6.12
Cardinal record_size; See Section 1.6.12
XtAllocateProc allocate; See Section 2.5.5.
XtDeallocateProc deallocate; See Section 2.8.4.

} ObjectClassExtensionRec, *ObjectClassExtension;

The prototypicalObjectClass consists of just th®©bjectClassPart

226

X Toolkit Intrinsics X11 Release 6.8

typedef struct _ObjectClassRec {
ObjectClassPart object_class;
} ObjectClassRec, *ObjectClass;

The predefined class record and pointer@bjectClassRecare
In IntrinsicP.h :

extern ObjectClassRec objectClassRec;

In Intrinsic.h :

extern WidgetClass objectClass;

The opaque type®bject and ObjectClassand the opaque variabtibjectClassare defined for
generic actions on objects. The symbolic constant foOthiectClassExtensionversion identi-
fier is XtObjectExtensionVersion (see Section 1.6.12)ntrinsic.h uses an incomplete structure
definition to ensure that the compiler catches attempts to acceste pata:

typedef struct _ObjectClassRec* ObjectClass;

12.2.2. ObjectRrt Structure

The common fields for all object instances are defined i®thjectPart structure. Allfields
have the same meaning as the corresponding fiel@oirePart.

typedef struct _ObjectPart {
Widget self;
WidgetClass widget_class;
Widget parent;
Boolean being_destroyed;
XtCallbackList destroy_callbacks;
XtPointer constraints;

} ObjectPart;

All object instances ha the Object fields as their first component. The prototypical @pject
is defined with only this set of field&/arious routines can cast object pointers, as needed, to spe-
cific object types.

In IntrinsicP.h :

typedef struct _ObjectRec {
ObjectPart object;
} ObjectRec, *Object;

227

X Toolkit Intrinsics X11 Release 6.8

In Intrinsic.h :

typedef struct _ObjectRec *Object;

12.2.3. ObjectResources

The resource names, classes, and representation types specifieabije¢h@lassRecresource
list are:

Name Class Representation

XtNdestrg/Callback XtCCallback XtRCallback

12.2.4. ObjectRart Default Values
All fields in ObjectPart have the same default values as the corresponding fiel@siaPart.

12.2.5. ObjectArguments to Intrinsics Routines
The WidgetClass arguments to the following procedures mapjeetClassor ary subclass:

XtInitializeWidgetClass, XtCreateWidget, XtVaCreateWidget
XtlsSubclass XtCheckSubclass
XtGetResourceList, XtGetConstraintResourceList

The Widget arguments to the following procedures may be of class Objegtsubafass:

XtCreateWidget, XtVaCreateWidget

XtAddCallback , XtAddCallbacks, XtRemoveCallback, XtRemoveCallbacks,
XtRemoveAllCallbacks, XtCallCallbacks, XtHasCallbacks, XtCallCallbackList

XtClass, XtSuperclass XtlsSubclass XtCheckSubclass XtlsObject, XtlsRectObj,
XtlsWidget, XtlsComposite, XtlsConstraint , XtisShell, XtlsOverrideShell,
XtIsWMShell , XtlsVendorShell, XtisTransientShell, XtisToplevelShell, XtisApplica-
tionShell, XtlsSessionShell

XtlsManaged, XtlsSensitive
(both will returnFalse if argument is not a subclass of RectObj)

XtlsRealized
(returns the state of the nearest windowed ancestor if class of argument is not a subclass of
Core)

XtWidgetToApplicationContext
XtDestroyWidget
XtParent, XtDisplayOfObject, XtScreenOfObject, XtWindowOfObject

228

X Toolkit Intrinsics X11 Release 6.8

XtSetKeyboardFocus(descendant)

XtGetGC, XtReleaseGC

XtName

XtSetValues, XtGetValues, XtVaSetValues, XtVaGetValues

XtGetSubresources XtGetApplicationResources XtVaGetSubresources XtVaGe-
tApplicationResources

XtConvert , XtConvertAndStore
The return value of the following procedures will be of class Object or a subclass:

XtCreateWidget, XtVaCreateWidget
XtParent
XtNameToWidget

The return value of the following procedures willdgectClassor a subclass:

XtClass, XtSuperclass

12.2.6. Usef Objects

The Object class exists to enable programmers to use the Intrinsics’ classing and resource-han-
dling mechanisms for things smaller and simpler than widgets. Objectsdmsidete many
common uses of subresources as described in Sections 9.4, 9.7.2.4, and 9.7.2.5.

Composite widget classes that wish to accept nonwidget children must aetepés_objects
field in theCompositeClassExtensiorstructure toTr ue. XtCreateWidget will otherwise gen-
erate an error message on an attempt to create a nonwidget child.

Of the classes defined by the Intrinsics, ApplicationShell and SessionShell accept nonwidget chil-
dren, and the class ofyanonwidget child must not beectObjClass or ary subclass. Théntent

of allowing Object children of ApplicationShell and SessionShell is to provide clients a simple
mechanism for establishing the resource-naming root of an object hyerarch

12.3. RectangleDbjects

The class of rectangle objects is a subclass of Object that represents rectangular areas. It encap-
sulates the mechanisms for geometry management and is called Rect@lg twaflict with the
Xlib Rectangledata type.

12.3.1. RectObjClassBrt Structure

As with theObjectClassPart structure, all fields in th&ectObjClassPart structure hee the
same purpose and function as the corresponding fieldsreClassPart, fields whose names are
recin for some integen are not used for RectObj, but exist to pad the data structure so that it
matches Core’dass record. The class record initialization must fill allmdiglds with NULL

or zero as appropriate to the type.

229

X Toolkit Intrinsics X11 Release 6.8

typedef struct _RectObjClassPart {
WidgetClass superclass;
String class_name;
Cardinal widget_size;
XtProc class_initialize;
XtwidgetClassProc class_part_initialize;
XtEnum class_inited;
XtInitProc initialize;
XtArgsProc initialize_hook;
XtProc rectl;
XtPointer rect2;
Cardinal rect3;
XtResourcelList resources;
Cardinal num_resources;
XrmClass xrm_class;
Boolean rect4;
XtEnum rect5;
Boolean rect6;
Boolean rect7;
XtwidgetProc destroy;
XtwidgetProc resize;
XtExposeProc expose;
XtSetValuesFunc set_values;
XtArgsFunc set_values_hook;
XtAlmostProc set_values_almost;
XtArgsProc get_values_hook;
XtProc rect9;
XtVersionType version;
XtPointer callback_pviate;
String rect10;
XtGeometryHandler query_geometry;
XtProc rectl1;
XtPointer extension ;

} RectObjClassPart;

The RectObj class record consists of just®eetObjClassPart.

typedef struct _RectObjClassRec {
RectObjClassPart rect_class;
} RectObjClassRec, *RectObjClass;

The predefined class record and pointerRectObjClassRecare
In Intrinsic.h :

extern RectObjClassRec rectObjClassRec;

In Intrinsic.h :

230

X Toolkit Intrinsics X11 Release 6.8

extern WidgetClass rectObjClass;

The opaque typeRectObj and RectObjClassand the opaque variabtectObjClass are

defined for generic actions on objects whose class is RectObj or a subclass of Rietti@bj.

sic.h uses an incomplete structure definition to ensure that the compiler catches attempts to access
private data:

typedef struct _RectObjClassRec* RectObjClass;

12.3.2. RectObjRrt Structure

In addition to theObjectPart fields, RectObj objects ke the following fields defined in the
RectObjPart structure. Allfields hae the same meaning as the corresponding field in
CorePart.

typedef struct _RectObjPart {
Position x, y;
Dimension width, height;
Dimension border_width;
Boolean managed,;
Boolean sensiE;
Boolean ancestor_sensj

} RectObjPart;

RectObj objects hee the RectObj fields immediately following the Object fields.

typedef struct _RectObjRec {
ObjectPart object;
RectObjPart rectangle;
} RectObjRec, *RectObj;

In Intrinsic.h :

typedef struct _RectObjRec* RectObyj;

12.3.3. RectObjResources

The resource names, classes, and representation types that are specifisti@tj€lassRec
resource list are:

Name Class Representation

231

X Toolkit Intrinsics X11 Release 6.8

XtNancestorSensite XtCSensitie XtRBoolean
XtNborderWdth XtCBorderWdth XtRDimension
XtNheight XtCHeight XtRDimension
XtNsensitve XtCSensitie XtRBoolean
XtNwidth XtCWidth XtRDimension
XtNXx XtCPosition XtRPosition
XtNy XtCPosition XtRPosition

12.3.4. RectObjRrt Default Values
All fields in RectObjPart have the same default values as the corresponding fiel@siaPart.

12.3.5. Wdget Arguments to Intrinsics Routines
The WidgetClass arguments to the following procedures magdd®bjClass or ary subclass:

XtCreateManagedWidget, XtVaCreateManagedWidget
The Widget arguments to the following procedures may be of class RectOpjsnibalass:

XtConfigureWidget, XtMo veWidget, XtResizeWidget
XtMakeGeometryRequest XtMakeResizeRequest

XtManageChildren, XtManageChild, XtUnmanageChildren, XtUnmanageChild,
XtChangeManagedSet

XtQueryGeometry
XtSetSensitve
XtTranslateCoords

The return value of the following procedures will be of class RectObj or a subclass:

XtCreateManagedWidget, XtVaCreateManagedWidget

12.3.6. Usef Rectangle Objects

RectObj can be subclassed to provide widgetitijects (sometimes called gadgets) that do not

use windows and do notVetose features that are seldom used in simple widgets. This can

save memory resources both in the server and in applications but requires additional support code
in the parent. In the following discussiaactobjrefers only to objects whose class is RectObj or

a dabclass of RectObj, but not Core or a subclass of Core.

Composite widget classes that wish to accept rectobj children must aetémts_objectield

in the CompositeClassExtensiorextension structure tdrue. XtCreateWidget or XtCreate-
ManagedWidget will otherwise generate an error if called to create a nonwidget child. If the
composite widget supports only children of class RectObj or a subclass (i.e., not of the general
Object class), it must declare an insert_child procedure and check the subclass ofvehdd ne

in that procedure. None of the classes defined by the Intrinsics accept rectobj children.

If gadgets are defined in an object set, the parent is responsible for much more than the parent of a
widget. Theparent must request and handle inpghés that occur for the gadget and is respon-
sible for making sure that when it regesd an &posure eent the gadget children get drawn

232

X Toolkit Intrinsics X11 Release 6.8

correctly Rectobj children may he expose procedures specified in their class records, but the
parent is free to ignore them, instead drawing the contents of the child itself. This can potentially
save gaphics context switching. The precise contents of the exposemreand region argu-

ments to the RectObj expose procedure are not specified by the Intrinsics; a particular rectangle
object is free to define the coordinate system origin (selfvelatiparent-relatie) and whether

or not the rectangle or region is assumed t@ laen intersected with the visible region of the
object.

In general, it is expected that a composite widget that accepts nonwidget children will document
those children it is able to handle, since a gadget cannot be viewed as a completely self-contained
entity, as @n a widget. Since a particular composite widget class is usually designed to handle
nonwidget children of only a limited set of classes, it should check the classes of newly added
children in its insert_child procedure to neakare that it can deal with them.

The Intrinsics will clear areas of a parent windabscured by rectobj children, causing exposure
events, under the following circumstances:

. A rectobj child is managed or unmanaged.

. In a @ll to XtSetValueson a rectobj child, one or more of the set_values procedures
returnsTr ue.

. In a all to XtConfigureWidget on a rectobj child, areas will be cleared corresponding to
both the old and the nechild geometries, including the borgddrthe geometry changes.

. In a all to XtMo veWidget on a rectobj child, areas will be cleared corresponding to both
the old and the mechild geometries, including the borddrthe geometry changes.

. In a all to XtResizeWidgeton a rectobj child, a single rectangle will be cleared corre-
sponding to the larger of the old and thevrohild geometries if theare different.

. In a all to XtMakeGeometryRequest(or XtMakeResizeReques}ton a ectobj child

with XtQueryOnly not set, if the manager returd$GeometryYes, two rectangles will be
cleared corresponding to both the old and thve cield geometries.

Stacking order is not supported for rectobj children. Composite widgets with rectobj children are
free to define ansemantics desired if the child geometri@srtap, including making this an
error.

When a rectobj is playing the role of a widgewal@pers must be reminded tecéd making
assumptions about the object passed in the Widget argument to a callback procedure.

12.4. Undeclaed Class

The Intrinsics define an unnamed class between RectObj and Core for possible future use by the
X Consortium. The only assumptions that may be made about the unnamed class are

. Thecore_class.superclas®ld of coreWidgetClassRecacontains a pointer to the unnamed
class record.

. A pointer to the unnamed class record when dereferenced@isjectClasswill contain a
pointer torectObjClassRecin its object_class.superclasigld.

Except for the abee, the contents of the class record for this class and the result of an attempt to
subclass or to create a widget of this unnamed class are undefined.

12.5. Wdget Arguments to Intrinsics Routines
The WidgetClass arguments to the following procedures must be of class Shell or a subclass:

XtCreatePopupShell, XtVaCreatePopupShell XtAppCreateShell, XtVaAppCre-
ateShell XtOpenApplication, XtVaOpenApplication

233

X Toolkit Intrinsics X11 Release 6.8

The Widget arguments to the following procedures must be of class Conesnbalass:

XtCreatePopupShell, XtVaCreatePopupShell

XtAddEventHandler , XtAddRawEventHandler , XtRemoveEventHandler,
XtRemoveRawEventHandler, XtinsertEventHandler , XtinsertRawEventHandler
XtinsertEventTypeHandler , XtRemoveEventTypeHandler,

XtRegisterDrawable XtDispatchEwentToWidget

XtAddGrab , XtRemoveGrab, XtGrabKey , XtGrabKeyboard , XtUngrabKey , XtUn-
grabKeyboard, XtGrabButton , XtGrabPointer , XtUngrabButton ,
XtUngrabPointer

XtBuildEventMask
XtCreateWindow, XtDisplay, XtScreen, XtWindow
XtNameToWidget

XtGetSelectionValue XtGetSelectionValues XtOwnSelection, XtDisownSelection
XtOwnSelectionlncremental, XtGetSelectionValuelncremental XtGetSelectionVal-
uesincremental,

XtGetSelectionRequest

XtinstallAccelerators, XtinstallAllAccelerators (both destination and source)

XtAugmentTranslations, XtOverrideTranslations , XtUninstallTranslations,
XtCallActionProc

XtMapWidget , XtUnmapWidget

XtRealizeWidget, XtUnrealizeWidget
XtSetMappedWhenManaged

XtCallAcceptFocus, XtSetKeyboardFocus(subtree)
XtResizeWindow

XtSetWMColormapWindows

The Widget arguments to the following procedures must be of class Composiyesobeass:
XtCreateManagedWidget, XtVaCreateManagedWidget
The Widget arguments to the following procedures must be of a subclass of Shell:

XtPopdown, XtCallbackPopdown, XtPopup, XtCallbackNone, XtCallbackNonexclu-
sive, XtCallbackExclusive, XtPopupSpringLoaded

The return value of the following procedure will be of class Core or a subclass:
XtwWindowToWidget
The return value of the following procedures will be of a subclass of Shell:

XtAppCreateShell, XtVaAppCreateShell, XtApplnitialize , XtVaApplnitialize , XtCre-
atePopupShel| XtVaCreatePopupShell

234

X Toolkit Intrinsics X11 Release 6.8

Chapter 13

Evolution of the Intrinsics

The interfaces described by this specificatiovehadergone seeral sets of revisions in the

course of adoption as an X Consortium standard specification. Hawinigeem adopted by the
Consortium as a standard part of the X Wimdystem, it is expected that this and future revi-

sions will retain backward compatibility in the sense that fully conforming implementations of
these specifications may be produced that provide source compatibility with widgets and applica-
tions written to previous Consortium standard revisions.

The Intrinsics do not place yspecial requirement on widget programmers to retain source or
binary compatibility for their widgets as thevolve, but sgeral corventions hae keen estab-
lished to assist thosewi#opers who want to provide such compatibility.

In particular widget programmers may wish to conform to thevention described in Section
1.6.12 when defining class extension records.

13.1. DeterminingSpecification Revision L&el

Widget and application gielopers who wish to maintain a common source pool that will build
properly with implementations of the Intrinsics at different revisioal$eof these specifications
but that tale alvantage of newer features added in later revisions may use the symbolic macro
XtSpecificationRelease

#define XtSpecificationRelease 6

As the symbolXtSpecificationReleasavas rew 0 Release 4, widgets and applications desiring
to build against earlier implementations should test for the presence of this symbol and assume
only Release 3 interfaces if the definition is not present.

13.2. Releas@8 to Release 4 Compatibility

At the data structureVel, Release 4 retains binary compatibility with Release 3 (the first X Con-
sortium standard release) for all data structures exvdpEhellPart, TopLevelShellPart, and
TransientShellPart Release 4 changed the argument type to most proceduresuhiaikeo
arguments of typ&tPointer and structure members that arevraf type XtPointer in order to

avdd potential ANSI C conformance problems. It is expected that most implementations will be
binary compatible with the previous definition.

Two fields in CoreClassPartwere changed frorBooleanto XtEnum to allov implementations
additional freedom in specifying the representations of each. This change should require no
source modification.

13.2.1. Additional Arguments

Arguments were added to the procedure definitionXfmitProc , XtSetValuesFung and
XtEventHandler to provide more information and to alleevent handlers to abort further dis-
patching of the currentzent (caution is advised!). The added arguments&ttaitProc and
XtSetValuesFuncmale the initialize_hook and set_values_hook methods obsolete, but the
hooks hae been retained for those widgets that used them in Release 3.

235

X Toolkit Intrinsics X11 Release 6.8

13.2.2. set_#lues_almost Procedures

The use of the arguments by a set_values_almost procedure was poorly described in Release 3
and was inconsistent with other gentions.

The current specification for the manner in which a set_values_almost procedure returns informa-
tion to the Intrinsics is not compatible with the Release 3 specification, and all widget implemen-
tations should verify that grset_values_almost procedures conform to the current interface.

No known implementation of the Intrinsics correctly implemented the Release 3 interface, so it is
expected that the impact of this specification change is small.

13.2.3. QueryGeometry

A composite widget layout routine that cal$QueryGeometry is nowv expected to store the
complete n& geometry in the intended structure; previously the specification said “store the
changes it intends to makeOnly by storing the complete geometry does the chilc: fzy vay
to knowv what other parts of the geometry may still bgiliee. Existingwidgets should not be
affected by this, except to talkdvantage of the meinformation.

13.2.4. unealizeCallback Callback List

In order to provide a mechanism for widgets to be notified wherbdeme unrealized through

a all to XtUnrealizeWidget, the callback list name “unrealizeCallbadkas been defined by

the Intrinsics. A widget class that requires notification on unrealize may declare a callback list
resource by this name. No class is required to declare this resourcey tlasarthat did so in a

prior revision may find it necessary to modify the resource name if it does not wish to use the new
semantics.

13.2.5. Subclassest WMShell

The formal adoption of thimter-Client Communication Conventions Manaalan X Consortium
standard has meant the addition of four fielde/fdShellPart and one field tdfopLevelShell-
Part . In deference to some widget libraries that haetltged their own additional cgentions
to provide binary compatibilitthese fie rew fields were added at the end of the respechta
structures.

To provide more covenience for TransientShells, a field was added to the previously empty
TransientShellPart On some architectures the size of the part structure will ne¢ ld@anged
as a result of this.

Any widget implementation whose class is a subclass of hafhleell or TransientShell must at
minimum be recompiled with the wedata structure declarations. Becayg®ShellPart no
longer contains a contiguot&SizeHints data structure, a subclass that expected to do a single
structure assignment of a(SizeHints structure to theize_hintdield of WMShellPart must be
revised, though the old fields remain at the same positions WitMShellPart .

13.2.6. Resowe Type Coiverters

A new interface declaration for resource typevaters was defined to provide more information

to corverters, to support caersion cache cleanup with resource reference counting, and to allow
additional procedures to be declared to free resources. The old interfaces remain (in the compati-
bility section), and a meset of procedures was defined that work only with the type con-

verter interface.

In the nav obsolete old type caerter interface, corerters are reminded that thehust return the
size of the coverted value as well as its address. The example indicated this, but the description

236

X Toolkit Intrinsics X11 Release 6.8

of XtConverter was incomplete.

13.2.7. KeySym Case Coversion Procedure

The specification for th&tCaseProcfunction type has been changed to match the Release 3
implementation, which included necessary additional information required by the function (a
pointer to the display connection), and corrects the argument type of the seysgenkparame-
ter. No known implementation of the Intrinsics implemented the previously documented inter-
face.

13.2.8. NonwidgeObjects

Formal support for nonwidget objects ismto Release 4.A prototype implementation was

latent in at least one Release 3 implementation of the Intrinsics, but the specification has changed
someavhat. Themost significant change is the requirement for a composite widget to declare the
CompositeClassExtensiomecord with theaccepts_objectield set toTr ue in order to permit a

client to create a nonwidget child.

The addition of this extension field ensures that composite widgets written under Release 3 will
not encounter unexpected errors if an application attempts to create a nonwidget child. In Release
4 there is no requirement that all composite widgets implement the extra functionality required to
manage windowless children, so Heeepts_objectBeld allows a composite widget to declare

that it is not prepared to do so.

13.3. Releasd to Release 5 Compatibility

At the data structureVel, Release 5 retains complete binary compatibility with Release 4. The
specification of theébjectPart, RectObjPart, CorePart, CompositePart, ShellPart,
WMShellPart, TopLevelShellPart, and ApplicationShellPart instance records was made less
strict to permit implementations to add internal fields to these structurgsmfsiementation

that chooses to do so would, of course, force a recompilation. The Xlib specificatikmmfor
Value and XrmOptionDescRecwas yodated to use a metype, XPointer, for theaddrand
valuefields, respectely, to azoid ANSI C conformance problems. The definition>d®ointer is
binary compatible with the previous implementation.

13.3.1. basefanslations Resource

A new pseudo-resource, XtNbaseTranslations, was defined to permit applicatébwpées to
specify translation tables in application defaults files while still giving end users the ability to
augment or werride individual @ent sequences. This change will affect only those applications
that wish to tak advantage of the mefunctionality or those widgets that mawhgreviously
defined a resource named “baseTranslations”.

Applications wishing to takadvantage of the mefunctionality would change their application
defaults file, e.g., from

app.widget.translationsalue
to
app.widget.baseTranslationslue

If it is important to the application to presersomplete compatibility of the defaults file between
different versions of the application running under Release 4 and Release 5, the full translations
can be replicated in both the “translatidresid the “baseTranslatioris’esource.

237

X Toolkit Intrinsics X11 Release 6.8

13.3.2. Resoure File Search Path

The current specification allows implementations greater flexibility in defining the directory struc-
ture used to hold the application class and per-user application defaults files. Previous specifica-
tions required the substitution strings to appear in the default path in a certajprexdating

sites from collecting all the files for a specific application together in one diredioeyRelease

5 gecification allows the default path to specify the substitution stringsiardar within a sin-

gle path entry Users will need to pay close attention to the documentation for the specific imple-
mentation to kne where to find these files andvinto gpecify their ownXFILESEARCHP ATH

and XUSERFILESEARCHPATH values when werriding the system defaults.

13.3.3. CustomizatiorResource

XtResolvePathnamesupports a ne substitution string, %C, for specifying separate application
class resource files according to arbitrary user-specifiegarégs. Theprimary motvation for

this addition was separate monochrome and color application class defaults files. The substitution
value is obtained by querying the current resource database for the application resource name

“ customization”, class “Customization’ Any application that previously used this resource

name and class will need to bease of the possibly conflicting semantics.

13.3.4. Rer-Screen Resource Database

To dlow a user to specify separate preferences for each screen of a dispgeygcreen resource
specification string has been added and multiple resource databases are created; one for each
screen. Thisvill affect ary application that modified the (formerly unique) resource database
associated with the display subsequent to the Intrinsics database initialization. Such applications
will need to be ware of the particular screen on which each shell widget is to be created.

Although the wording of the specification changed substantially in the description of the process
by which the resource database(s) is initialized, the net effect is the same as in prior releases with
the exception of the added per-screen resource specification and/ttigst@mization substitu-

tion string inXtResolvePathname

13.3.5. Intenationalization of Applications

Internationalization as defined by ANSI is a technology that allows support of an application in a
single locale. In adding support for internationalization to the Intrinsics the restrictions of this
model hae keen follaved. Inparticular the nev Intrinsics interfaces are designed not to pre-

clude an application from using other altervesti For this reason, no Intrinsics routine makes a
call to establish the locale. Howuer, a ®nvenience routine to establish the locale at initialize

time has been provided, in the form of a default procedure that must be explicitly installed if the
application desires ANSI C locale behavior.

As mary objects in X, particularly resource databasesy imtherit the global locale when there
created, applications wishing to use the ANSI C locale model should usewthentgon XtSet-
LanguageProcto do so.

The internationalization additions also definer filters as a part of the Xlib Input Method spec-
ifications. Thentrinsics enable the use ofeat filters through additions t&tDispatchEvent.
Applications that may not be dispatching akms throughXtDispatchEvent should be

reviewed in the context of thiswanput method mechanism.

238

X Toolkit Intrinsics X11 Release 6.8

In order to permit internationalization of error messages, the name and path of the error database
file are nav alowed to be implementation-dependent. No adequate standard mechanism has yet
been suggested to alldhe Intrinsics to locate the database from localization information sup-

plied by the client.

The previous specification for the syntax of the language string specifigdllanguage has
been dropped tovaid potential conflicts with other standards. The language string syntax is now
implementation-defined. Thexample syntax cited is consistent with the previous specification.

13.3.6. Rermanently Allocated Strings

In order to permit additional memory savings, an Xlib interface was addeductiaioesource
manager toaid copying certain string constants. The Intrinsics specification was updated to
explicitly require the Objectlass_namgresource_nameesource_classesource_typge
default_typen resource tables, Coeetions strindield, and Constrainesource_name
resource_clasgesource_typgand default_typeaesource fields to be permanently allocated. This
explicit requirement is expected to affect only applications that may create and dkstses on
the fly.

13.3.7. Aguments to Existing Functions

Theargsargument toXtApplnitialize , XtVaApplnitialize , XtOpenDisplay, XtDisplaylnitial-
ize, and Xtinitialize were changed fronCardinal * to int* to conform to pre-existing coen-
tion and &oid otherwise annoying typecasting in ANSI C environments.

13.4. Releasé to Release 6 Compatibility

At the data structureVel, Release 6 retains binary compatibility with Release 5 for all data struc-
tures exceptWMShellPart. Three resources were added to the specification. The known imple-
mentations had unused space in the data structure, therefore on some architectures and implemen-
tations, the size of the part structure will notdneghanged as a result of this.

13.4.1. Wdget Internals

Two new widget methods for instance allocation and deallocation were added to the Object class.
These n& methods allay widgets to be treated as C++ objects in the C++ environment when an
appropriate allocation method is specified or inherited by the widget class.

The textual descriptions of the processes of widget creation and widget destruatitedra
edited to provide clarification to widget writerg/idgets writers may wa reason to rely on the
specific order of the stages of widget creation and destruction; with thattooti the specifica-
tion nov more exactly describes the process.

As a comenience, an interface to locate a widget class extension record on a linkEtGist;
ClassExtension has been added.

A new qption to allav bundled changes to the managed set of a Composite widget is introduced
in the Composite class extension recoddgets that define a change_managed procedure that
can accommodate additions and deletions to the managed set of children in agingteom

should set allows_change_managed_s@t te in the extension record.

The wording of the process followed ByUnmanageChildren has changed slightly to better
handle changes to the managed set during phase 2ydasitessing.

239

X Toolkit Intrinsics X11 Release 6.8

A new exposure eent compression flag{tExposeNoRegion was added. Manwidgets specify
exposure compression, but either ignore the actual damage region passed to the core expose pro-
cedure or use only the cumulegibounding box datavailable in the gent. Widgets with expose
procedures that do not nalkse of exact exposure region information can indicate that the Intrin-
sics need not compute the region.

13.4.2. Generalpplication Development

XtOpenApplication is a nev corvenience procedure to initialize the toolkit, create an applica-
tion context, open an X display connection, and create the root of the widget instance tree. It is
identical to the interface it replacestApplnitialize , in al respects except that it takes an addi-
tional argument specifying the widget class of the root shell to create. This interfagetieno
recommended one so that clients may easily become session participants. Theeniemmos
procedures appear in the compatibility section.

The toolkit initialization functionXtToolkitInitialize may be called multiple times without
penalty.

In order to optimize changes in geometry to a set of geometry-managed childnennterface,
XtChangeManagedSet has been added.

13.4.3. Communicationwith Window and Session Managers

The revision of thénter-Client Communication Conventions Manaalan X Consortium stan-
dard has resulted in the addition of three fields to the specificatMBhellPart. These are
urgency, client_leader and window_role

The adoption of thX Session Mangement Protocohs an X Consortium standard has resulted in

the addition of a ne shell widget, SessionShelland an accompanying subclass verification

interface, XtlIsSessionShell This widget provides support for communication between an appli-
cation and a session managerwell as a winder manager In order to presery compatibility

with existing subclasses défpplicationShell, the ApplicationShell was sibclassed to create the

new widget class. The session protocol requires a modal response to certain checkpointing opera-
tions by participating applications. TigessionShelktructures the applicatianiotification of

and responses to messages from the session manager by use of various callback lists and by use
of the nev interfacesXtSessionGetTokenand XtSessionReturnToken There is also a new

command line argument, -xtsessionlD, which facilitates the session manager in restarting applica-
tions based on the Intrinsics.

The resource name and class strings defined by the Intrinsics shell widg¥tslitSkell.h> are

now listed in Appendix E. The addition of ameymbol for theWMShell wait_for_wm

resource was made to bring the external symbol and the string it represents into agreement. The
actual resource name stringWiMShell has not changed. The resource representation type of

the XtNwinGravity resource of th&/MShell was changed to XtRGravity in order to register a

type cowerter so that winde gravity resource values could be specified by name.

13.4.4. GeometryManagement

A clarification to the specification was made to indicate that geometry requests may include cur-
rent values along with the requested changes.

13.4.5. Eent Management

In Release 6, support is provided for registering selectorsvaentlfeandlers foreents generated
by X protocol extensions and for dispatching thosis to the appropriate widget. The new
event handler registration interfaces afdnsertEventTypeHandler and

240

X Toolkit Intrinsics X11 Release 6.8

XtRemoveEventTypeHandler. Since the mechanism to indicate selection of extensient® is
specific to the extension being used, the Intrinsics introddtfeegisterExtensionSelector

which allows the application to select for the@s of interest. In order to change the dispatch-
ing algorithm to accommodate extensimergs as well as core X protocoleats, the Intrinsics
event dispatcher may mobe replaced or ereloped by the application witKtSetEventDis-
patcher. The dispatcher may wish to cadtGetKeyboardFocusWidgetto determine the wid-
get with the current Intrinsicseidboard focus.A dispatcherafter determining the destination
widget, may usetDispatchEventToWidget to cause thevent to be dispatched to theeat
handlers registered by a specific widget.

To permit the dispatching ofvents for nonwidget draables, such as pixmaps that are not associ-
ated with a widge$ window, XtRegisterDrawable and XtUnregisterDrawable have been
added to the libraryA related update was made to the descriptiokt@¥indowToWidget .

The library is nav thread-safe, allowing one thread at a time to enter the library and protecting
global data as necessary from concurrent use. Threaded toolkit applications are supported by the
new interfacesXtToolkitThreadlnitialize , XtAppLock , XtAppUnlock , XtAppSetExitFlag,

and XtAppGetExitFlag . Widget writers may also usétProcessLockand XtProcessUnlock

Safe handling of POSIX signals and other asynchronous notifications [gomided by use of
XtAppAddSignal , XtNoticeSignal, and XtRemoveSignal.

The application can reaa motification of an impending block in the Intrinsiogeet manager by
registering interest througktAppAddBlockHook and XtRemoveBlockHook.

XtLastEventProcessedreturns the most recentent passed tXtDispatchEvent for a specified
display.

13.4.6. Resowe Management

Resource corerters are registered by the Intrinsics for wiwdgravity and for three meresource
types associated with session participation: RestartStyle, CommandArgArray and DirectoryS-
tring.

The file search path syntax has been extended te inedsier to include the default search path,
which controls resource database construction, by using wheubstitution string, %D.

13.4.7. Tanslation Management

The default ky ranslator na recognizes the NumLock modifielf NumLock is on and the sec-
ond keysym is a kypad leysym (a standarddysym named with a “KP’prefix or a vendor-spe-
cific keysym in the hexadecimal range 0x11000000 to 0x1100FFFF), then the dejatdinis|a-
tor will use the first &ysym if Shift and/or ShiftLock is on and will use the secoegsim if nei-
ther is on. Otherwise, it will ignore NumLock and apply the normal protocol semantics.

13.4.8. Selections

The targets of selection requests may be parameterized, as described by théntevi€éiént
Communication Conventions Manuahen such requests are mad¢SetSelectionParame-

ters is used by the requestor to specify the target parametepst&edSelectionParametersis

used by the selection owner to retgdne parameters. When a parameterized target is specified

in the context of a bundled request for multiple targét€SreateSelectionRequest XtCancelS-
electionRequest and XtSendSelectionRequesare used to emlop the assembly of the request.
When the parameters themselves are the names of properties, the Intrinsics provides support for
the economical use of property atom names)d8eservePropertyAtom and XtReleaseProp-
ertyAtom .

241

X Toolkit Intrinsics X11 Release 6.8

13.4.9. Extenal Agent Hooks

External agent hooks were added for the benefit of applications that instrument other applications
for purposes of accessibiljtiesting, and customization. The external agent and the application
communicate by a shared protocol which is transparent to the application. The hook callbacks
permit the external agent to register interest in groups or classes of toolkit activity and to be noti-
fied of the type and details of the activity as it occurs. Theingrfaces related to this effort are
XtHooksOfDisplay, which returns the hook registration widget, attGetDisplays, which

returns a list of the X displays associated with an application context.

242

X Toolkit Intrinsics X11 Release 6.8

Appendix A

Resource File Format

A resource file contains text representing the default resource values for an application or set of
applications.

The format of resource files is definedXlib — C Languge X hterfaceand is reproduced here
for convenience only.

The format of a resource specification is

ResourceLine €£omment | IncludeFile | ResourceSpec | <empty line>
Comment = 1" { <ary character except null or newline>}

IncludeFile =" #" WhiteSpace “includé’'W hiteSpace FileName WhiteSpace
FileName =valid filename for operating system>

ResourceSpec WhiteSpace ResourceName WhiteSpaceW:hiteSpace Value
ResourceName [Binding] {Component Binding} ComponentName

Binding SR

WhiteSpace f<space> | <horizontal tab>}

Component = ?” | ComponentName

ComponentName HameChar {NameChar}

NameChar =a™-“z' | “AT-*Z2 | 0 U

Value ={<any character except null or unescaped newline>}

Elements separated by vertical bar (]) are altegatiCurlybraces ({...}) indicate zero or more
repetitions of the enclosed elements. Square brackets ([...]) indicate that the enclosed element is
optional. Quotes¢"..."”) are used around literal characters.

If the last character on a line is a backslash (\), that line is assumed to continue on the next line.

To dlow a Value to begin with whitespace, the two-character sequespacg (backslash fol-
lowed by space) is recognized and replaced by a space chaaadtitre two-character sequence
“\tab” (backslash followed by horizontal tab) is recognized and replaced by a horizontal tab
character.

To dlow a Value to contain embedded newline characters, the two-character sefuerice
recognized and replaced by a newline charadieidiow a Value to be broken across multiple
lines in a text file, the two-character sequenceetiling (backslash followed by newline) is rec-
ognized and remad from the value.

To dlow a Value to contain arbitrary character codes, the four-character sequancg, Where
eachnis a digit character in the range of “0"-"7", is recognized and replaced with a single byte
that contains the octal value specified by the sequence. Fihallyvo-character sequence “\\”

is recognized and replaced with a single backslash.

243

X Toolkit Intrinsics

Notation

X11 Release 6.8

Appendix B

Translation Table Syntax

Syntax is specified in EBNF notation with the following wantions:

[a]

Means either nothing or “a”

{a} M eans zero or more occurrences of “a”
(a|b) Means either “d'or *‘b”
\\n Isthe newline character

All terminals are enclosed in double quotation marks)(* Informal descriptions are enclosed in

angle brackets (< >).

Syntax

The syntax of a translation table is

translation@ble

=[directive] { production }

directive =("#replace’ | “‘#override” | “‘#augment’) ‘‘\\n”
production =hs “’’ rhs “\n”

Ihs =(event | keyseq) { “) (event | keyseq) }

keyseq =" keychar {keychar} “*”

keychar =[] 7$7] *\V] <ISO Latin 1 character>

event =[moadifier_list] “<”event_type“>" [‘(" count[*+"] “)’ '] { detail}
modifier_list =([“ "] [*:"] {modifier}) | “None”

modifier =[*""] modifier_name

count =" 273 AL

modifier_name = @" <keysym> | <see ModifierNames table below>
event_type =<see Event Types table below>

detail =<event specific details>

rhs ={name “(" [params])’ }

name =namechar { namechar }

namechar a2’ | A2 09 T |)

params sstring {“,” string}

string =quoted_string | unquoted_string

guoted_string
escape_char
unquoted_string

="’ {<Latin 1 character> | escape_char} [*\}\' "
=\
f<Latin 1 character except space, talj,,“\\n", “)">}

Theparamsfield is parsed into a list &tring values that will be passed to the named action pro-
cedure. Aquoted stringnay contain an embedded quotation mark if the quotation mark is pre-
ceded by a single backslash (\). The three-character sequencis fi\terpreted as “single
backslash followed by end-of-string”.

Modifier Names

The madifier field is used to specify standardeytdoard and button modifier mask bits. Modi-
fiers are lgd on event typesKeyPress KeyRelease ButtonPress, ButtonRelease MotionNo-
tify , EnterNotify , LeaveNotify , and their abbr@iations. Anerror is generated when a

244

X Toolkit Intrinsics X11 Release 6.8

translation table that contains modifiers foy ather events is parsed.

. If the modifier list has no entries and is not “None”, it means “toare’ on all modi-
fiers.

. If an exclamation point (!) is specified at the beginning of the maodifier list, it means that the
listed modifiers must be in the correct state and no other modifiers can be asserted.

. If any modifiers are specified and an exclamation point (!) is not specified, it means that the
listed modifiers must be in the correct state and “Ocar'e’ about ary other modifiers.

. If a modifier is preceded by a tilde (7), it means that that modifier must not be asserted.

. If ““None” is specified, it means no modifiers can be asserted.

. If a colon (:) is specified at the beginning of the modifier list, it directs the Intrinsics to

apply ary standard modifiers in thevent to map theent keycode into a I€ySym. The
default standard modifiers are Shift and Lock, with the interpretation as defddatnn
dow System Protocabection 5. The resulting &/Sym must exactly match the specified
KeySym, and the nonstandard modifiers in tienemust match the modifier lisEor
example, “:<Key>a” is distinct from “:<Key>A", and “:Shift<Key>A”" i s dstinct from
“<Key>A”.

. If both an exclamation point (!) and a colon (:) are specified at the beginning of the modifier
list, it means that the listed modifiers must be in the correct state and that no other modi-
fiers except the standard modifiers can be asserteglsté&mdard modifiers in thevent are
applied as for colon (:) alse.

. If a colon (@) is not specified, no standard modifiers are applied. Then, for example,
“<Key>A" and “<Key>a" are equvalent.

In key £quences, a circumfg”) is an abbreviation for the Control modifiarcollar sign ($) is
an abbreviation for Meta, and a backslash (\) can be used to quatesaacterin particular a
double quote ("), a circumfte”), a dollar sign ($), and another backslash (\). Briefly:

No modifiers: None <ent> detall

Any modifiers: <@ent> detalil

Only these modifiers: ' mod1l mod2 <eent> detall
These modifiers and pmthers: modimod2 <@ent> detail

The use of “Noné’for a modifier list is identical to the use of an exclamation point with no mod-
ifers.

Modifier Abbreviation Meaning

Cirl c Control modifier bit
Shift S Shift modifier bit
Lock [Lock modifier bit
Meta m Meta key modifier
Hyper h Hyper lkey nodifier
Super su Super ley modifier
Alt a Alt key nodifier
Mod1 Modl1modifier bit
Mod?2 Mod2modifier bit
Mod3 Mod3modifier bit
Mod4 Mod4modifier bit
Mod5 Mod5maodifier bit
Button1 ButtonImodifier bit
Button2 ButtonZmodifier bit
Button3 Button3modifier bit

245

X Toolkit Intrinsics X11 Release 6.8

Modifier Abbreviation Meaning

Button4 Buttondmodifier bit
Button5 ButtonSmodifier bit

None Nomodifiers

Any Any modifier combination

A key nodifier is ary modifier bit one of whose correspondingyCodes contains the corre-
sponding left or right KySym. For example, “m’or ‘‘Meta” means ay modifier bit mapping to
a KeyCode whose KySym list contains XK_Meta_L or XK_Meta_R. Note that this interpreta-
tion is for each displayot global or gen for each application conte TheControl, Shift, and
Lock modifier names refer explicitly to the corresponding modifier bits; there is no additional
interpretation of kkySyms for these modifiers.

Because it is possible to associate arbitraey3yms with modifiers, the set oék nodifiers is
extensible. The @” <keysym> syntax means ymodifier bit whose correspondingeiCode
contains the specifiededgSym name.

A modifier_list/KeySym combination in a translation matches a modifiegldde combination
in an eent in the following ways:

1. If a clon () is used, the Intrinsics call the displa)td<eyProc with the KeyCode and
modifiers. B match, Modifiers& ~modifiers_returjmust equamodifier_list and
keysym_returrmust equal the gen KeySym.

2. If (}) is not used, the Intrinsics maskK alf don’t-care bits from the modifiers. This value
must be equal tmodifier_list Then, for each possible combination of don’t-care modifiers
in the modifier list, the Intrinsics call the displagKsKeyProc with the KeyCode and that
combination ORed with the cared-about modifier bits from tieate Keysym_returmrmust
match the KySym in the translation.

Event Types

The e/ent-type field describes XEvent types. In addition to the standard Xlib symbetittgpe
names, the followingwent type synonyms are defined:

Type Meaning

Key KeyPress
KeyDown KeyPress
KeyUp KeyRelease
BtnDown ButtonPress
BtnUp ButtonRelease
Motion MotionNotify
PtrMoved MotionNotify
MouseMaoed MotionNotify
Enter EnterNotify
EnterWindow EnterNotify
Leave LeaveNotify
LeaveWindow LeaveNotify
Focusin Focusin
FocusOut FocusOut
Keymap KeymapNotify
Expose Expose

GreExp GraphicsExpose

246

X Toolkit Intrinsics

Type Meaning

NoEXxp NoExpose
Visible VisibilityNotify
Create CreateNotify
Destroy DestroyNotify
Unmap UnmapNotify
Map MapNotify
MapReq MapRequest
Reparent ReparentNotify
Configure ConfigureNotify
ConfigureReq ConfigureRequest
Grav GravityNotify
ResReq ResizeRequest
Circ CirculateNotify
CircReq CirculateRequest
Prop PropertyNotify
SelClr SelectionClear
SelReq SelectionRequest
Select SelectionNotify
Clrmap ColormapNotify
Message ClientMessage
Mapping MappingNotify

The supported abbreviations are:

Abbreviation Ewent Type Including

Ctrl KeyPress with Control modifier
Meta KeyPress withMeta modifier
Shift KeyPress with Shift modifier
Btn1Dowvn ButtonPress with Buttonl detail
Btn1lUp ButtonRelease withButtonl detalil
Btn2Dawvn ButtonPress with Button2 detail
Btn2Up ButtonRelease withButton2 detalil
Btn3Dawvn ButtonPress with Button3 detail
Btn3Up ButtonRelease withButton3 detalil
Btn4Down ButtonPress with Button4 detail
Btn4Up ButtonRelease withButton4 detalil
Btn5Dawvn ButtonPress with Button5 detail
Btn5Up ButtonRelease withButton5 detalil
BtnMotion MotionNotify withary button modifier
Btn1Motion MotionNotify withButtonl modifier
Btn2Motion MotionNotify withButton2 modifier
Btn3Motion MotionNotify withButton3 modifier
Btn4Motion MotionNotify withButton4 modifier
Btn5Motion MotionNotify withButton5 modifier

The detail field iseent-specific and normally corresponds to the detail field of the corresponding

X11 Release 6.8

event as described by Window System Protocdbection 11. The detail field is supported for the

following event types:

247

X Toolkit Intrinsics X11 Release 6.8

Event Ewent Field

KeyPress kKySym from @ent detail (keycode)
KeyRelease KySym from @ent detail (keycode)
ButtonPress ltton from @ent detail
ButtonRelease uiton from @ent detail
MotionNotify event detall

EnterNotify e/ent mode

LeaveNotify event mode

Focusin @ent mode

FocusOut gent mode

PropertyNotify atom
SelectionClear selection
SelectionRequest selection
SelectionNotify ~ selection
ClientMessage type
MappingNotify request

If the event type isKeyPressor KeyRelease the detail field specifies ag)Sym name in stan-
dard format which is matched against then¢ as described alse, for example, <l€y>A.

For the PropertyNotify , SelectionClear, SelectionRequestSelectionNotify, and ClientMes-
sageevants the detail field is specified as an atom name; for example, <Message>WM_PRO-
TOCOLS. for theMotionNotify , EnterNotify , LeaveNotify , Focusin, FocusOut, and Map-
pingNotify events, either the symbolic constants as define Byndow System Protocobec-

tion 11, or the numeric values may be specified.

If no detail field is specified, thenyaaalue in the eent detail is accepted as a match.

A KeySym can be specified asyaof the standard &/Sym names, a hexadecimal number pre-
fixed with “Ox”" or *‘0X”, an octal number prefixed with “0”, or a decimal numbek KeySym
expressed as a single digit is interpreted as the corresponding Lagy5¥r, for example, “0”

is the keySym XK_0. Other single characteeySyms are treated as literal constants from Latin
1, for example, “I'is treated as 0x21. Standar@ySym names are as defined in
<X11/keysymdef.h> with the “XK_"’ prefix remaed.

Canonical Representation

Every translation table has a unique, canonical text representation. This representation is passed
to a widget’sdisplay_acceleratorprocedure to describe the accelerators installed on that widget.
The canonical representation of a translation table is (see also “Syntax”)

translation@ble ={ production }

production =hs “’ rhs “\n”

Ihs =event {“,” event }

event =[modifier_list] “<"event_type“>" [‘(" count[*+"] “) '] { detail}
modifier_list =[*1"] [*:"] {modifier}

modifier =[*""] modifier_name

count =(“1 |23 4] L)

modifier_name = @" <keysym> | <see canonical modifier names below>
evant_type =<see canonicalient types below>

detail =<event-specific details>

rhs ={name “(" [params])’ }

name =namechar { namechar }

namechar a2’ V| A2 09 T L)

248

X Toolkit Intrinsics X11 Release 6.8

params sstring {“,” string}

string =quoted_string

quoted_string =" {<Latin 1 character> | escape_char} [“\|\' """
escape_char S\

The canonical modifier names are

Citrl Mod1 Buttonl
Shift Mod2 Button2
Lock Mod3 Button3
Mod4 Button4
Mod5 Button5

The canonicalent types are

KeyPress KeyRelease
ButtonPress ButtonRelease
MotionNotify EnterNotify
LeaveNotify Focusin
FocusOut KeymapNotify
Expose GraphicsExpose,
NoExpose VisibilityNotify
CreateNotify DestroyNotify
UnmapNotify MapNotify
MapRequest ReparentNotify
ConfigureNotify ConfigureRequest
GravityNotify ResizeRequest

CirculateNotify CirculateRequest
PropertyNotify SelectionClear
SelectionRequest SelectionNotify
ColormapNotify ClientMessage

Examples
. Always put more specificvents in the table before more general ones:

Shift <Btn1Down> : twas()\n\
<Btn1Down> : brillig()

. For double-click on Button1 Up with Shift, use this specification:
Shift<Btn1Up>(2) : and()
This is equyalent to the following line with appropriate timers set betweants:
Shift<Btn1Down>,Shift<Btn1Up>,Shift<Btn1Down>,Shift<Btn1Up> : and()
. For double-click on Button1 Down with Shift, use this specification:
Shift<Btn1Down>(2) : the()
This is equyalent to the following line with appropriate timers set betweants:

Shift<Btn1Down>,Shift<Btn1Up>,Shift<Btn1Down> : the()

249

X Toolkit Intrinsics X11 Release 6.8

. Mouse motion is alays discarded when it occurs betwegangs in a table where no
motion event is specified:

<Btn1Down>,<Btn1Up> : slithy()

This is taken, wen if the pointer mees a bt between the down and ugeats. Similarly
ary motion esent specified in a translation matchey anmber of motion eents. Ifthe
motion e/ent causes an action procedure to wekid, the procedure iswoked &ter each
motion event.

. If an event sequence consists of a sequencev@ite that is also a noninitial subsequence
of another translation, it is not taken if it occurs in the context of the longer sequence. This
occurs mostly in sequencesdithe following:

<Btn1Down>,<Btn1Up> : tees()\n\
<Btn1Up>: did()

The second translation is taken only if the button release is not preceded by a button press
or if there are interveningzents between the press and the release. Be particueatg a

of this when using the repeat notation,\ahaevith buttons and &ys, because their expan-

sion includes additionalents; and when specifying motioments, because tgere

implicitly included between antwo ather events. Inparticular pointer motion and double-

click translations cannot coexist in the same translation table.

. For single click on Button1 Up with Shift and Meta, use this specification:
Shift Meta <Btn1Down>, Shift Meta<Btn1Up>: gyre()

. For multiple clicks greater or equal to a minimum numhbggus sign (+) may be appended
to the final (rightmost) count in anent sequence. The actions will beaked on the
countth click and each subsequent one arriving within the multi-click time sidteFor
example:

Shift <Btn1Up>(2+) : and()

. To indicateEnterNotify with ary modifiers, use this specification:
<Enter> : gimble()

. To indicateEnterNotify with no modifiers, use this specification:
None <Enter> : in()

. To indicateEnterNotify with Button1l Down and Button2 Up and “dadrcare’ about the
other modifiers, use this specification:

Button1 "Button2 <Enter> : the()

. To indicateEnterNotify with Button1l down and Button2 down exchmy, use this speci-
fication:

I Button1 Button2 <Enter> : wabe()

You do ot need to use a tilde (V) with an exclamation point (!).

250

X Toolkit Intrinsics X11 Release 6.8

Appendix C

Compatibility Functions

In prototype versions of the X Toolkit each widget class implemented awidgret>Create (for
example,XtLabelCreate) function, in which most of the code was identical from widget to wid-
get. Inthe Intrinsics, a single genenxiCreateWidget performs most of the common work and
then calls the initialize procedure implemented for the particular widget class.

Each Composite class also implemented the proceduré¥idget>Add and an Xt¥Vid-
get>Delete (for examplexXtButtonBoxAddButton and XtButtonBoxDeleteButton). Inthe
Intrinsics, the Composite generic proceduxéislanageChildren and XtUnmanageChildren
perform error checking and screening out of certain children. Thgrcaidhe change_man-
aged procedure implemented for the widg€dmposite class. If the widgstparent has not yet
been realized, the call to the change_managed procedure is delayed until realization time.

Old-style calls can be implemented in the X Toolkit by defining one-line procedures or macros
that invoke a generic routine.For example, you could define the macxtLabelCreate as:

#define XtLabelCreatadme parent args num_arg$\
((LabelWidget) XtCreateWidgatame labelWidgetClass parent args num_arg})

Pop-up shells in some of the prototypes automatically performédManageChild on their
child within their insert_child procedure. Creators of pop-up children need t¥té4din-
ageChild themselves.

XtApplnitialize andXtVaApplnitialize have been replaced b¥tOpenApplication and
XtVaOpenApplication .

To initialize the Intrinsics internals, create an application context, open and initialize a display,
and create the initial application shell instance, an application maxtapelnitialize or
XtVaApplnitialize .

This appendix is part of the formal Intrinsics Specification.

251

X Toolkit Intrinsics X11 Release 6.8

Widget XtApplnitializepp_context_returrapplication_classoptions num_options
argc_in_outargv_in_out fallback_resourcesargs, num_arg$
XtAppContext "app_context_return
Stringapplication_class
XrmOptionDescLisbptions
Cardinalnum_options
int *argc_in_out
String *argv_in_out
String *fallback_resources
ArgList args
Cardinalnum_args

app_context_return Returns the application context, if non-NULL.

application_class Specifies the class name of the application.

options Specifies the command line options table.

num_options Specifies the number of entriesoptions

argc_in_out Specifies a pointer to the number of command line arguments.
argv_in_out Specifies a pointer to the command line arguments.

fallback_resources Specifies resourcealues to be used if the application class resource file
cannot be opened or read, or NULL.

args Specifies the argument list twvedride ary other resource specifications
for the created shell widget.
num_args Specifies the number of entries in the argument list.

The XtApplnitialize function callsXtToolkitInitialize followed by XtCreateApplicationCon-
text, then callsXtOpenDisplay with display_stringNULL and application_naméULL, and
finally calls XtAppCreateShell with application_namd&NULL, widget_classapplicationShell-
WidgetClass and the specifiedrgsandnum_argsand returns the created shell. The modified
argcandargvreturned byXtDisplaylnitialize are returned iargc_in_outandargv_in_out If
app_context_returis not NULL, the created application context is also returned. If the display
specified by the command line cannot be opened, an error message is isskigppirdtialize
terminates the application. fiillback _resourcess non-NULL, XtAppSetFallbackResourcess
called with the value prior to callingtOpenDisplay.

252

X Toolkit Intrinsics X11 Release 6.8

Widget XtVaApplnitializegpp_context_returrapplication_classoptions num_options
argc_in_outargv_in_out fallback_resources..)
XtAppContext "app_context_return
Stringapplication_class
XrmOptionDescLisbptions
Cardinalnum_options
int *argc_in_out
String *argv_in_out
String *fallback_resources

app_context_return Returns the application context, if non-NULL.

application_class Specifies the class name of the application.

options Specifies the command line options table.

num_options Specifies the number of entriesoptions

argc_in_out Specifies a pointer to the number of command line arguments.
argv_in_out Specifies the command line arguments array.

fallback_resources Specifies resourcealues to be used if the application class resource file

cannot be opened, or NULL.

Specifieshe variable argument list toveride ary other resource specifi-
cations for the created shell.

The XtVaApplnitialize procedure is identical in function ¥tApplnitialize with theargsand
num_arggparameters replaced by a varargs list, as described in Section 2.5.1.

As a comenience to people coarting from earlier versions of the toolkit without application
contexts, the following routines existtinitialize , XtMainLoop , XtNextEvent, XtProcessEv-
ent, XtPeekEvent, XtPending, XtAddInput , XtAddTimeOut , XtAddWorkProc , XtCre-
ateApplicationShell, XtAddActions, XtSetSelectionTimeout and XtGetSelectionTimeout

Widget XtlInitialize§hell_nameapplication_classoptions num_optionsargc, argv)
Stringshell_nameg
Stringapplication_class
XrmOptionDescReoptiong];
Cardinalnum_options
int *argc;
Stringarg\];
shell_name This parameter is ignored; therefore, you can specify NULL.

application_class
Specifies the class name of this application.

options Specifies he to parse the command line foryaapplication-specific resources.
Theoptionsargument is passed as a parametertnParseCommand.

num_options Specifies the number of entries in the options list.
argc Specifies a pointer to the number of command line parameters.
argv Specifies the command line parameters.

XtInitialize calls XtToolkitInitialize to initialize the toolkit internals, creates a default applica-
tion context for use by the other eenience routines, callXtOpenDisplay with display_string
NULL andapplication_namélULL, and finally callsXtAppCreateShell with

253

X Toolkit Intrinsics X11 Release 6.8

application_naméNULL and returns the created shell. The semantics of calihgtialize
more than once are undefined. This routine has been replacé®pgnApplication .

void XtMainLoop(void)

XtMainLoop first reads the next alternate input, timarX event by calling XtNextEvent.
Then it dispatches this to the appropriate registered procedure by eédlirgpatchEvent. This
routine has been replaced KyAppMainLoop .

void XtNextEventéwent_returr)
XEvent *event_return

ewvent_return Returns theent information to the specifiedrent structure.

If no input is on the X input queue for the default application con¥itextEvent flushes the X
output buffer and waits for awent while looking at the alternate input sources and timeout val-
ues and calling ancallback procedures triggered by them. This routine has been replaced by
XtAppNextEvent. Xtlnitialize must be called before using this routine.

void XtProcessEventash
XtinputMaskmask

mask Specifies the type of input to process.

XtProcessEventprocesses one X/ent, timeout, or alternate input source (depending on the
value ofmash, blocking if necessaryit has been replaced ¥tAppProcessEvent Xtlinitial-
ize must be called before using this function.

Boolean XtPeekEverdg(ent_returr)
XEvent *event_return

ewent_return Returns theent information to the specifiedrent structure.

If there is an eent in the queue for the default application cont&tBeekEventfills in the event
and returns a nonzeralse. Ifno X input is on the queu&XtPeekEvent flushes the output

buffer and blocks until input isvailable, possibly calling some timeout callbacks in the process.
If the input is aneent, XtPeekEventfills in the e/ent and returns a nonzeralue. Otherwise,

the input is for an alternate input source, &tBeekEventreturns zero. This routine has been
replaced byXtAppPeekEvent. Xtlnitialize must be called before using this routine.

Boolean XtPending()

XtPending returns a nonzero value if there averdgs pending from the X server or alternate
input sources in the default application catitdf there are nowents pending, it flushes the out-
put buffer and returns a zeralue. Ithas been replaced b§tAppPending. Xtinitialize must
be called before using this routine.

254

X Toolkit Intrinsics X11 Release 6.8

Xtinputld XtAddInput&ource condition proc, client_datg
int source
XtPointercondition
XtInputCallbackProroc,
XtPointerclient_data

source Specifies the source file descriptor on a POSIX-based system or other operating-
system-dependent device specification.

condition Specifies the mask that indicates either a read, writexagpdon condition or
some operating-system-dependent condition.

proc Specifies the procedure called when inpuvalable.

client_data Specifies the parameter to be passqudowhen input is aailable.

The XtAddInput function registers in the default application contextva smurce of gents,

which is usually file input but can also be file output. (The vikecdhould be loosely interpreted
to mean aysink or source of data.XtAddInput also specifies the conditions under which the
source can generateeats. Wherinput is pending on this source in the default application con-
text, the callback procedure is called. This routine has been replacé@éyAddinput .
XtInitialize must be called before using this routine.

Xtintervalld XtAddTimeOutinterval, proc, client_datg
unsigned longnterval,
XtTimerCallbackProroc,
XtPointerclient_data
interval Specifies the time interval in milliseconds.
proc Specifies the procedure to be called when time expires.

client_data Specifies the parameter to be passqudowhen it is called.

The XtAddTimeOut function creates a timeout in the default application context and returns an
identifier for it. The timeout value is setitderval. The callback procedure will be called after

the time interval elapses, after which the timeout is keghoThisroutine has been replaced by
XtAppAddTimeOut . Xtlnitialize must be called before using this routine.

XtWorkProcld XtAddWorkProggroc, client_datg
XtWorkProcproc;
XtPointerclient_data

proc Procedure to call to do the work.
client_data Client data to pass fmocwhen it is called.

This routine registers a work procedure in the default application context. It has been replaced by
XtAppAddWorkProc . Xtlnitialize must be called before using this routine.

255

X Toolkit Intrinsics X11 Release 6.8

Widget XtCreateApplicationShefiame widget_classargs num_arg$
Stringname
WidgetClassvidget_class
ArgList args
Cardinalnum_args
name This parameter is ignored; therefore, you can specify NULL.

widget_class Specifies the widget class pointer for the created application shell witlyist.
will usually betopLevelShellWidgetClassor a subclass thereof.

args Specifies the argument list teaoride ary other resource specifications.
num_args Specifies the number of entriesargs.

The procedureXtCreateApplicationShell calls XtAppCreateShell with application_name
NULL, the application class passedXtnitialize , and the default application context created by
XtlInitialize . This routine has been replaced XtAppCreateShell.

An old-format resource type cesrter procedure pointer is of typ&Converter .

typedef void (*XtCowerter)(XrmValue*, Cardinal*, XrmValue*, XrmValue*);
XrmValue *args
Cardinal num_args
XrmValue *from;
XrmValue *o;

args Specifies a list of additiona{rmValue armguments to the ceerter if additional
context is needed to perform the eension, or NULL.

num_args Specifies the number of entriesargs.

from Specifies the value to cosrt.

to Specifies the descriptor to use to return theveded value.

Type cowerters should perform the following actions:
. Check to see that the number of arguments passed is correct.
. Attempt the type cosmrsion.

. If successful, return the size and pointer to the data itothlgument; otherwise, call
XtWarningMsg and return without modifying thi® argument.

Most type cowerters just tak the data described by the specifies argument and return data
by writing into the specifietb algument. Afew need other information, which isalable in the
specified argument listA type cowerter can ioke another type coverter, which allows differ-
ing sources that may ceart into a common intermediate result to reakaximum use of the type
corverter cache.

Note that the address returnedar>addr cannot be that of a local variable of the oster
because this is not valid after the eener returns. It should be a pointer to a static variable.

The procedure typ&EtConverter has been replaced b§tTypeConverter .

The XtStringConversionWarning function is a covenience routine for old-format resource
corverters that covert from strings.

256

X Toolkit Intrinsics X11 Release 6.8

void XtStringCorversionWarninggrc, dst_typé
Stringsrc, dst_type
src Specifies the string that could not be ested.
dst_type Specifies the name of the type to which the string could not lverteah

The XtStringConversionWarning function issues a warning message with name Vexson-
Error”, type “string”, class “XtToolkitError, and the default message string “Cannotveh
"src' to typedst_typé. This routine has been supersededtisplayStringConversion-
Warning.

To regster an old-format cosmrter, use XtAddConverter or XtAppAddConverter .

void XtAddCorverter(from_typeto_type converter convert_argsnum_arg$
Stringfrom_type
Stringto_type
XtCorwverter converter
XtCorvertArgList convert_args
Cardinalnum_args
from_type Specifies the source type.
to_type Specifies the destination type.
converter Specifies the type cuarter procedure.
convert_args Specifies hev to compute the additional arguments to theveoter, or NULL.

num_args Specifies the number of entriesconvert_args

XtAddConverter is equvaent in function toXtSetTypeCorverter with cache_typequal to
XtCacheAll for old-format type coverters. Ithas been superseded XtSetTypeCorverter .

void XtAppAddCorverter(@@pp_contextfrom_typeto_type converter convert_argsnum_arg}
XtAppContextapp_context
Stringfrom_type
Stringto_type
XtCorverter converter
XtCorvertArgList convert_args
Cardinalnum_args
app_context Specifies the application context.
from_type Specifies the source type.
to_type Specifies the destination type.
converter Specifies the type cuarter procedure.
convert_args Specifies hev to compute the additional arguments to theveoter, or NULL.

num_args Specifies the number of entriesconvert_args

XtAppAddConverter is equvalent in function toXtAppSetTypeCorverter with cache_type
equal toXtCacheAll for old-format type coverters. Ithas been superseded XtAppSetType-
Converter .

257

X Toolkit Intrinsics X11 Release 6.8

To invoke resource corersions, a client may usétConvert or, for old-format cowmerters only,
XtDirectConvert .

void XtCorvert(w, from_type from, to_type to_return)
Widgetw;
Stringfrom_type
XrmValuePtrfrom;
Stringto_type
XrmValuePtrto_return

w Specifies the widget to use for additional arguments yibeneeded.
from_type Specifies the source type.
from Specifies the value to be a@nted.
to_type Specifies the destination type.
to_return Returns the carerted value.
void XtDirectCorvert(converter args num_argsfrom, to_return
XtCorverter converter
XrmValuePtrargs

Cardinalnum_args
XrmValuePtrfrom;
XrmValuePtrto_return

converter Specifies the carmersion procedure to be called.

args Specifies the argument list that contains the additiogginaents needed to per
form the comersion (often NULL).

num_args Specifies the number of entriesargs.
from Specifies the value to be a@nted.
to_return Returns the carerted value.

The XtConvert function looks up the type ceerter registered to cemlrt from_typeto to_type
computes anadditional arguments needed, and then cétBirectConvert or XtCallCon-

verter . The XtDirectConvert function looks in the carerter cache to see if this cgision pro-
cedure has been called with the specifigaiisents. 1fso, it returns a descriptor for information
stored in the cache; otherwise, it calls theveaer and enters the result in the cache.

Before calling the specified cearter, XtDirectConvert sets the return value size to zero and the
return value address to NULITo determine if the corersion was successful, the client should
checkto_return.addrfor non-NULL. The data returned bytConvert must be copied immedi-
ately by the calleras it may point to static data in the type werter.

XtConvert has been replaced tConvertAndStore , and XtDirectConvert has been super-
seded byXtCallConverter .

To deallocate a shared GC when it is no longer neededXtiBestroyGC.

258

X Toolkit Intrinsics X11 Release 6.8

void XtDestroyGCyy, go)

Widgetw;
GCggc;
w Specifies ay object on the display for which the shared G&svereated Must
be of class Object or grsubclass thereof.
gc Specifies the shared GC to be deallocated.

References to sharable GCs are counted and a free request is generated to the server when the last
user of a gien GC cestroys it. Note that some earlier versionXtbestroyGC had only agc

argument. Thereforehis function is not very portable, and you are encouraged tXtise
leaseGCinstead.

To declare an action table in the default application context and register it with the translation
manageruse XtAddActions .

void XtAddActionsctions num_actiony
XtActionList actions
Cardinalnum_actions

actions Specifies the action table to register.
num_actions Specifies the number of entriesactions

If more than one action is registered with the same name, the most recently registered action is
used. Ifduplicate actions exist in an action table, the first is used. The Intrinsics register an
action table forxXtMenuPopup and XtMenuPopdown as part of X Toolkit initialization. This
routine has been replaced KyAppAddActions . Xtlnitialize must be called before using this
routine.

To =t the Intrinsics selection timeout in the default application contexiXi&stSelectionTime-
out.

void XtSetSelectionTimeoui(neou)
unsigned longimeout

timeout Specifies the selection timeout in millisecondsis routine has been replaced
by XtAppSetSelectionTimeout Xtlnitialize must be called before using this
routine.

To get the current selection timeout value in the default application contexXtGs¢Selection-
Timeout.

unsigned long XtGetSelectionTimeout()

The selection timeout is the time within which th@m@mmunicating applications must respond
to one anotherlf one of them does not respond within this interval, the Intrinsics abort the selec-
tion request.

259

X Toolkit Intrinsics X11 Release 6.8

This routine has been replaced XtAppGetSelectionTimeout. Xtlnitialize must be called
before using this routine.

To dbtain the global error database (for example, to merge with an application- or widget-specific
database), usktGetErrorDatabase.

XrmDatabase *XtGetErrorDatabase()

The XtGetErrorDatabase function returns the address of the error database. The Intrinsics do a
lazy binding of the error database and do not merge in the database file until the first call to
XtGetErrorDatbaseText. This routine has been replaced ¥tAppGetErrorDatabase .

An error message handler can obtain the error database text for an error or a warning by calling
XtGetErrorDatabaseText.

void XtGetErrorDatabasek(name type class default buffer_return nbyte3
Stringname type class

Stringdefault
Stringbuffer_return
int nbytes
name
type Specify the name and type that are concatenated to form the resource name of the
error message.
class Specifies the resource class of the error message.
default Specifies the default message to use if an error database entry is not found.
buffer_return Specifies the buffer into which the error message is to be returned.
nbytes Specifies the size of the buffer in bytes.

The XtGetErrorDatabaseText returns the appropriate message from the error database associ-
ated with the default application context or returns the specified default message if one is not
found in the error databas@&o form the full resource name and class when querying the data-
base, th@mameandtypeare concatenated with a singlé ‘b etween them and tretassis con-
catenated with itself with a single™i.f it does not already contain & “. This routine has been
superseded btAppGetErrorDatabaseText.

To regster a procedure to be called on fatal error conditionsXtSetErrorMsgHandler .

void XtSetErrorMsgHandlenjsg_handler
XtErrorMsgHandlemsg_handler

msg_handler Specifies the vefatal error procedure, which should not return.

The default error handler provided by the Intrinsics constructs a string from the error resource
database and calltError . Fatal error message handlers should not return. If one does, subse-
quent Intrinsics behavior is undefined. This routine has been supersedetppyetErrorMs-
gHandler.

To call the high-leel error handleruse XtErrorMsg .

260

X Toolkit Intrinsics X11 Release 6.8

void XtErrorMsgfame type class default params num_paramp
Stringname
Stringtype
Stringclass
Stringdefault
String *params
Cardinal num_params

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not found.
params Specifies a pointer to a list of values to be stored in the message.

num_params Specifies the number of entriesparams
This routine has been supersededtppErrorMsg .

To regster a procedure to be called on nonfatal error conditionsXigstWarningMsgHan-
dler.

void XtSetWarningMsgHandlemfsg_handler
XtErrorMsgHandlemsg_handler

msg_handler Specifies the ve nonfatal error procedure, which usually returns.

The default warning handler provided by the Intrinsics constructs a string from the error resource
database and calktWarning . This routine has been supersededdppSetWarningMs-
gHandler.

To call the installed high-lel warning handleruse XtWarningMsg .

void XtWarningMsgfame type class default params num_paramp
Stringname
Stringtype
Stringclass
Stringdefault
String *params
Cardinal num_params

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not found.
params Specifies a pointer to a list of values to be stored in the message.

num_params Specifies the number of entriesparams

This routine has been supersededdppWarningMsg .

261

X Toolkit Intrinsics X11 Release 6.8

To regster a procedure to be called on fatal error conditionsXtSetErrorHandler .

void XtSetErrorHandlef{andle)
XtErrorHandlerhandler,

handler Specifies the e fatal error procedure, which should not return.
The default error handler provided by the IntrinsicsX$Error . On POSIX-based systems, it
prints the message to standard error and terminates the appli¢ediainerror message handlers

should not return. If one does, subsequent X Toolkit behavior is undefined. This routine has been
superseded b)tAppSetErrorHandler .

To call the installed fatal error procedure, U&&rror .

void XtError(messge)
Stringmessge

messge Specifies the message to be reported.

Most programs should usé&AppErrorMsg , not XtError , to provide for customization and
internationalization of error messages. This routine has been supersedgppirror .

To regster a procedure to be called on nonfatal error conditionsXi&stWarningHandler .

void XtSetWarningHandleh@andlej)
XtErrorHandlerhandler,

handler Specifies the ve nonfatal error procedure, which usually returns.
The default warning handler provided by the IntrinsicsX$Warning . On POSIX-based sys-

tems, it prints the message to standard error and returns to the Thiteroutine has been super-
seded byXtAppSetWarningHandler .

To call the installed nonfatal error procedure, X$@é/arning .

void XtWarning(nessge)
Stringmessge

messge Specifies the nonfatal error message to be reported.

Most programs should usé&AppWarningMsg , not XtWarning , to provide for customization
and internationalization of warning messages. This routine has been supersd&pdy
Warning.

262

X Toolkit Intrinsics X11 Release 6.8

Appendix D

Intrinsics Error Messages

All Intrinsics errors and warnings Y&dass “XtToolkitError”. The following two tables sum-
marize the common errors and warnings that can be generated by the Intrinsics. Additional
implementation-dependent messages are permitted.

Error Messages

Name Ype Defult Message

allocError calloc Cannot perform calloc

allocError malloc Cannot perform malloc

allocError realloc Cannot perform realloc

internalError xtMakGeometryRequest internal error; ShellClassExtension is NULL

invalidArgCount xtGet¥lues Argument count > 0 on NULL argument list in XtGetVal-
ues

invalidArgCount xtSetwlues Argument count > 0 on NULL argument list in XtSetVal-
ues

invaidClass applicationShellinsertChild ApplicationShell does not accept RectObj children;
ignored

invaidClass constraintSetlue Subclass of Constraint required in CallConstraintSetVal-
ues

invaidClass xtAppCreateShell XtAppCreateShell requires non-NULL widget class

invaidClass xtCreatePopupShell XtCreatePopupShell requires non-NULL widget class

invalidClass xtCreateWdget XtCreateWidget requires non-NULL widget class

invaidClass xtPopden XtPopdown requires a subclass of shellWidgetClass

invaidClass xtPopup XtPopup requires a subclass of shellWidgetClass

invalidDimension xtCreate\dow Widget %s has zero width and/or height

invalidDimension shellRealize Shell widget %s has zero width and/or height

invalidDisplay xtInitialize Cant open display: %s

invalidGetValues xtGet¥lues NULL ArgVal in XtGetValues

invalidExtension shellClasstinitialize widget class %s hasvatid ShellClassExtension record

invalidExtension xtMakGeometryRequest widget class %s hadlith ShellClassExtension record

invaidGeometryManager xtMaGeometryRequest XtMakeGeometryRequest - parent has no geometry man-
ager

invalidParameter xtAddInput invalid condition passed to XtAddInput

invalidParameter xtAddInput invalid condition passed to XtAppAddinput

invalidParent xtChangeManagedSet Attempt to manage a child when parent is not Composite

invalidParent xtChangeManagedSet Attempt to unmanage a child when parent is not Compos-
ite

invalidParent xtCreatePopupShell XtCreatePopupShell requires non-NULL parent

invalidParent xtCreate\dget XtCreateWidget requires non-NULL parent

invalidParent xtMaleGeometryRequest non-shell has no parent in XtMakeGeometryRequest

invalidParent xtMaleGeometryRequest XtMakeGeometryRequest - parent not composite

invalidParent xtManageChildren Attempt to manage a child when parent is not Composite

invalidParent xtUnmanageChildren Attempt to unmanage a child when parent is not Compos-
ite

263

X Toolkit Intrinsics

invalidProcedure
invalidProcedure
invalidWindow
missingWdget
nonWdget

noPerDisplay
noPerDisplay
noSelectionProperties
noWdgetAncestor
nullDisplay

nullProc
r2versionMismatch
R3wersionMismatch
R4orR5ersionMismatch
rangeError

sessionManagement
subclassMismatch

inheritanceProc

realizeProc
eventHandler
fetchDisplayAg
xtCreate\Mget

closeDisplay

getPerDisplay
freeSelectionProperty

windeedAncestor

xtR@isterExtensionSelector

insertChild
widget
widget
widget

xtRgisterExtensionSelector

SmcOpenConnection
xtCheckSubclass

X11 Release 6.8

Unresolved inheritance operation

No realize class procedure defined

Event with wrong window

FetchDisplayAg called without a widget to reference

attempt to add non-widget child "%s" to parent "%s"

which supports only widgets

Couldnt find per display information

Couldnt find per display information

internal error: no selection property context for display

Object "%s" does notkanindowed ancestor

XtRegisterExtensionSelector requires a non-NULL dis-

play

"%s" parent has NULL insert_child method

Widget class %s must be re-compiled.

Widget class %s must be re-compiled.

Widget class %s must be re-compiled.
Attempt to register multiple selectors for one extension

event type

Tried to connect to session mana§és

Widget class %s found when subclass of %s expected:

%s

Warning Messages

Name

Vpe

Defwult Message

ambiguousBrent
ambiguousBrent
ambiguousBrent

badFormat
badGeometry

bad\alue
communicationError
conversionError
conversionError
corversionFailed
conversionFailed
displayError
grabError

grabError

initializationError
insufficientSpace
internalError
invalidAddressMode

invalidArgCount
invalidCallbackList

xtChangeManagedSet
xtManageChildren
xtUnmanageChildren

xtGetSelectioralue
shellRealize

cvtString®Pixel
select

string

string®Visual

xtCowertVarToArgList

xtGetYpedArg
ivalidDisplay
xtAddGrab

xtRemeeGrab

xtInitialize
xtGewypedArg
shell
computeds

getResources
xtAddCallback

Not all children hae same parent

Not all children hae same parent in XtManageChildren
Not all children hae same parent in XtUnmanageChil-
dren

Selection owner returned type INCR property with for-
mat != 32

Shell widget "%s" has anvelid geometry specification:
"Ops"

Color name "%s" is not defined

Select failed; error code %s

Cannot cowert string "%s" to type %s

Cannot find Visual of class %s for display %s

Type corwersion failed

Type comwersion (%s to %s) failed for widget '%s’

Cant find display structure

XtAddGrab requires exclug gab if spring_loaded is
TRUE

XtRemwoeGrab asked to remve a wdget not on the list

Initializing Resource Lists twice

Insufficient space for ceerted type '%s’ in widget '%s’
Shell's window manager interaction is broken

Cowersion arguments for widget '%s’ contain an unsup-
ported address mode

argument count > 0 on NULL argument list

Cannot find callback list in XtAddCallback

264

X Toolkit Intrinsics

invalidCallbackList
invalidCallbackList
invalidCallbackList
invalidCallbackList
invalidChild
invalidChild
invalidChild
invalidChild
invalidChild
invalidDepth
invalidExtension

invalidExtension

invalidGrab
invalidGrabKind

invalidParameters
invalidParameters
invalidParameters
invalidParameters
invalidParent
invalidPopup
invalidPopup
invalidPopup

invalidPopup

invalidProcedure
invalidProcedure
invalidProcedure
invalidResourceCount
invalidResourceName
invalidShell
invalidSizeOverride

missingCharsetList
noActionProc
noColormap
noFont

noFont

noFont

notinCorvertSelection

notRectObj
notRectObj
nullWidget

r3versionMismatch
translationError
translationError
translationError

xtAddCallback
xtCallCallback
xtRemueAllCallback
xtRemueCallback
xtChangeManagedSet
xtManageChildren
xtManageChildren
xtUnmanageChildren
xtUnmanageChildren
set¥dlues
xtCreateWget

xtCreateWget

ungrabl€yOrButton
xtPopup

freg@nslations
meeTranslations
xtMenuPopadn
xtMenuPopupAction
xtCogFromParent
xtMenuPopup
xtMenuPopden
unsupportedOperation

unsupportedOperation

deleteChild

inputHandler

set alues_almost

getResources

computeds
xtTranslateCoords
xtDependencies

cvtStringFontSet
xtCallActionProc
cvtStringdPixel
cvtStringBFont
cvtString bFontSet
cvtStringDFontStruct

xtGetSelectionRequest

xtChangeManagedSet
xtManageChildren
xtCowertVarToArgList

widget

null@ble

null@ble
ambiguousActions

X11 Release 6.8

Cannot find callback list in XtAddCallbacks
Cannot find callback list in XtCallCallbacks
Cannot find callback list in XtRemeAllCallbacks
Cannot find callback list in XtRere€allbacks
Null child passed to UnmanageChildren
null child passed to ManageChildren
null child passed to XtManageChildren
Null child passed to XtUnmanageChildren
Null child found in argument list to unmanage
Cart'change widget depth
widget "%s" class %s havdlid CompositeClassExten-
sion record
widget class %s hasvatid ConstraintClassExtension
record
Attempt to remee ronexistent pasee gab
grab kind argument hasviaid value; XtGrabNone
assumed
Freeing XtTranslations requires no extra arguments
MergeTM to TranslationTable needs no extra arguments
XtMenuPopdown called with num_params !=0 or 1
MenuPopup wants exactly one argument
CopyFromParent mustdaon-NULL parent
Cant find popup widget "%s" in XtMenuPopup
Cant find popup in widget "%s" in XtMenuPopdown
Pop-up menu creation is only supported on ButtonPress,
KeyPress or EnterNotifyvents.
Pop-up menu creation is only supported on Buttay, K
or EnterNotify @ents.
null delete_child procedure for class %s in XtDestroy
XtRemovelnput: Input handler not found
set_values_almost procedure shauddrlULL
resource count > 0 on NULL resource list
Cannot find resource name %s as argument te@sion
Widget has no shell ancestor
Representation size %d must match supercasser-
ride %s
Missing charsets in String to FontSeteinon
No action proc named "%s" is registered for widget "%s"
Cannot allocate colormap entry for "%s"
Unable to load grusable ISO8859-1 font
Unable to load ymsable fontset
Unable to load yasable 1ISO8859-1 font

XtGetSelectionRequest or XtGetSelectionParameters
called for widget "%s" outside of CeertSelection proc
child "%s", class %s is not a RectObj

child "%s", class %s is not a RectObj

XtVaTypedAg corversion needs non-NULL widget han-
dle

Shell Widget class %s binary compiled for R3

Cart remove acelerators from NULL table

Tried to remwe ronexistent accelerators

Overriding earlier translation manager actions.

265

X Toolkit Intrinsics

translationError
translationError
translationError
translationError
translationError
translationError
translationRrseError
translationRrseError
translationRrseError
translationRrseError
translationRrseError
typeCowersionError
unknownType
unknownType
versionMismatch

wrongRarameters

wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters

wrongRarameters

wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters

wrongRarameters
wrongRarameters
wrongRarameters

wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters

wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters

wrongRarameters

n@Actions
null@ble
null@ble
oldActions
unboundActions
xtianslatelnitialize
missingComma
nonLatinl
parseError
parseString
shoLine
noCoverter
xtCowertVarToArgList
xtGetYpedArg
widget

cvtintOrPelToXColor

cvtindBool
cvtinidBoolean
cvtindFloat
cvtindFont
cvtindPixel
cvtindPixmap
cvtindShort
cvtindUnsignedChar

cvtStringPcceleratorTable

cvtStringAtom
cvtStringBool
cvtStringyBoolean

cvtStringlCommandArgArray

cvtStringCursor
cvtStringdDimension

cvtStringDirectoryString

cvtStringDisplay
cvtStringFile
cvtStringFloat
cvtStringFont
cvtStringFontSet

cvtStringFontStruct
cvtStringGravity
cvtStringlnitialState
cvtStringint
cvtStringPixel

cvtStringRestartStyle

X11 Release 6.8

Nev actions are:%s
table to (un)merge must not be null
Cart translate eent through NULL table
Previous entry was: %s %s
Actions not found: %s
Initializing Translation manager twice.
... possibly due to missing in event sequence.
... probably due to non-Latinl character in quoted string
translation table syntax error: %s
Missing ™.
... found while parsing '%s’
No type cowverter registered for '%s’ to '%s’ caersion.
Unable to find type of resource for gersion
Unable to find type of resource for eension
Widget class %s version mismatch (recompilation
needed):\n widget %d vs. intrinsics %d.
Pixel to color corersion needs screen and colormap
arguments
Integer to Bool corersion needs no extra arguments
Integer to Boolean amnsion needs no extra arguments
Integer to Float cearsion needs no extra arguments
Integer to Font coarsion needs no extra arguments
Integer to Pixel caersion needs no extra arguments
Integer to Pixmap cesrsion needs no extra arguments
Integer to Short ceersion needs no extra arguments
Integer to UnsignedChan@osion needs no extra argu-
ments
String to AcceleratorTablewgion needs no extra
arguments
String to Atom cowversion needs Display argument
String to Bool coversion needs no extra arguments
String to Boolean casision needs no extra arguments
String to CommandArgArray gersion needs no extra
arguments
String to cursor ceersion needs display argument
String to Dimension cegrsion needs no extra arguments
String to DirectoryString casrsion needs no extra argu-
ments

String to Display caersion needs no extra arguments
String to File coversion needs no extra arguments
String to Float caersion needs no extra arguments
String to font corersion needs display argument
String to FontSet a@nsion needs display and locale

arguments

String to font cearsion needs display argument
String to Gravity corersion needs no extra arguments
String to InitialState ceersion needs no extra arguments

String to Integer car@rsion needs no extra arguments

String to pixel corersion needs screen and colormap

arguments

String to RestartStyle eension needs no extra argu-

ments

266

X Toolkit Intrinsics

wrongRarameters
wrongRarameters

wrongRarameters
wrongRarameters

wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters

cvtStringBhort

X11 Release 6.8

String to Integer cuarsion needs no extra arguments

cvtStringlTranslationTable String to TranslationTablew®gion needs no extra

cvtStringUnsignedChar

cvtStringVisual

cvtXColodPixel
freeCursor
freeDirectoryString
freeFile

freednt

freedntSet
freedntStruct
freePéx

arguments
String to Integer e@rsion needs no extra arguments
String to Visual corersion needs screen and depth argu-
ments
Color to Pixel corersion needs no extra arguments
Free Cursor requires display argument
Free Directory String requires no extra arguments
Free File requires no extra arguments
Free Font needs display argument
FreeFontSet needs display and locale arguments
Free FontStruct requires display argument
Freeing a pixel requires screen and colormap arguments

267

X Toolkit Intrinsics X11 Release 6.8

Appendix E
Defined Strings

The StringDefs.h header file contains definitions for the following resource name, class, and rep-
resentation type symbolic constants.

Resource names:

Symbol Definition
XtNaccelerators "accelerators"
XtNallowHoriz "allowHoriz"
XtNallowVert "allovVert"
XtNancestorSensite "ancestorSensie"
XtNbackground "background"
XtNbackgroundPixmap "backgroundPixmap"
XtNbitmap "bitmap"
XtNborder "borderColor"
XtNborderColor "borderColor"
XtNborderPixmap "borderPixmap"
XtNborderWadth "borderWdth"
XtNcallback "callback"
XtNchangeHook "changeHook"
XtNchildren “children”
XtNcolormap "colormap"
XtNconfigureHook "configureHook"
XtNcreateHook "createHook"
XtNdepth "depth"
XtNdestrgCallback "destrgCallback"
XtNdestroyHook "destrgHook"
XtNeditType "editype"

XtNfile "file"

XtNfont "font"

XtNfontSet "fontSet"
XtNforceBars "forceBars"
XtNforeground "forground"
XtNfunction “function”
XtNgeometryHook "geometryHook"
XtNheight "height"
XtNhighlight "highlight"
XtNhSpace "hSpace"
XtNindex "index"
XtNinitialResourcesPersistent "initialResourcesPersistent"
XtNinnerHeight "innerHeight"
XtNinnerWidth "innerWdth"
XtNinnerWindow "innerWindow"
XtNinsertPosition "insertPosition"
XtNinternalHeight "internalHeight"
XtNinternalWdth "internalWdth"

268

X Toolkit Intrinsics

XtNjumpProc
XtNjustify
XtNknobHeight
XtNknoblndent
XtNknobPixel
XtNknobWidth
XtNlabel
XtNlength
XtNlowerRight

XtNmappedWhenManaged

XtNmenuEntry
XtNname
XtNnotify
XtNnumChildren
XtNnumShells
XtNorientation
XtNparameter
XtNpixmap
XtNpopupCallback

XtNpopdavnCallback

XtNresize
XtNreverseMdeo
XtNscreen
XtNscrollProc
XtNscrollDCursor
XtNscroll[HCursor
XtNscrollLCursor
XtNscrollRCursor
XtNscrollUCursor
XtNscrollVCursor
XtNselection
XtNselectionArray
XtNsensitve
XtNsession
XtNshells
XtNshawn
XtNspace
XtNstring
XtNtextOptions
XtNtextSink
XtNtextSource
XtNthickness
XtNthumb
XtNthumbProc
XtNtop
XtNtranslations

XtNunrealizeCallback

XtNupdate
XtNuseBottom
XtNuseRight
XtNvalue
XtNvSpace
XtNwidth

"jumpProc"
"justify”
"knobHeight"
"knobindent"
"knobPiel"
"knobWdth"
"label"
"length”
"loverRight"

"mappedWhenManaged"

"menuEntry"
"name"

"notify"
"numChildren”
"numShells"
"orientation"
"parameter"
"pixmap"
"popupCallback"
"popdenCallback”
"resize"
"reverseVideo"
"screen”
"scrollProc"
"scrollDCursor"
"scroll[HCursor"
"scrollLCursor"
"scrollRCursor"
"scrollUCursor"
"scrollVCursor"
"selection"
"selectionArray"

"sensitve"
"session"
"shells"

"shavn"

"space"

"string"
"textOptions”

"textSink"
"tgtSource"
"thickness"
"thumb"
"thumbProc"

"top”
"translations"

"unrealizeCallback"

"update”
"useBottom"
"useRight"
"\alue"
"vSpace"
"width"

269

X11 Release 6.8

X Toolkit Intrinsics

XtNwindow "window"

XtNXx "x"

XtNy "y"

Resource classes:

Symbol Definition
XtCAccelerators "Accelerators"
XtCBackground "Background"
XtCBitmap "Bitmap"
XtCBoolean "Boolean”
XtCBorderColor "BorderColor"
XtCBorderWdth "BorderWdth"
XtCCallback "Callback"
XtCColormap "Colormap"
XtCColor "Color"
XtCCursor "Cursor"
XtCDepth "Depth"
XtCEditType "EditType"

XtCEventBindings
XtCFile

XtCFont
XtCFontSet
XtCForeground
XtCFraction
XtCFunction
XtCHeight
XtCHSpace
XtClndex

XtClnitialResourcesPersistent

XtClnsertPosition
XtClnterval
XtCJustify
XtCKnoblIndent
XtCKnobPiel
XtCLabel
XtCLength

XtCMappedWhenManaged

XtCMargin
XtCMenuEntry
XtCNotify
XtCOrientation
XtCParameter
XtCPixmap
XtCPosition
XtCReadOnly
XtCResize
XtCReverse\Mideo
XtCScreen
XtCScrollProc
XtCScrollDCursor

n

"EentBindings
"File"
"Font"
"fontSet”
"Foreground”
"Fraction"
"Function”
"Height"
"HSpace"
"Index"

"InitialResourcesPersistent"

"InsertPosition"
"Intenal"
"Justify"

"KnobIndent"
"KnobPiel"
"Label"
"Length”

"MappedWhenManaged"

"Margin”
"MenuEntry"

"Notify"
"Orientation”
"Rrameter"
"Pixmap"
"Position"
"ReadOnly"
"Resize"
"ReverseVideo"
"Screen"
"ScrollProc"
"ScrollDCursor

270

X11 Release 6.8

X Toolkit Intrinsics

XtCScroll[HCursor
XtCScrollLCursor
XtCScrollRCursor
XtCScrollUCursor
XtCScrollVCursor

"Scroll[HCursor"
"ScrollLCursor"

"ScrollRCursor"
"ScrollUCursor"
"ScrollVCursor"

XtCSelection "Selection”
XtCSelectionArray "SelectionArray"
XtCSensitve "Sensitve"
XtCSession "Session"
XtCSpace "Space"
XtCString "String"
XtCTextOptions "EextOptions”
XtCTextPosition "extPosition”
XtCTextSink "TextSink"
XtCTextSource "BxtSource"
XtCThickness "Thickness"
XtCThumb "Thumb"
XtCTranslations "Tanslations"
XtCValue "Value"
XtCVSpace "VSpace"
XtCWidth "Width"
XtCWindow "Window"

XtCX "X"

XtCY "Y"

Resource representation types:

Symbol Definition
XtRAcceleratorable "Acceleratorable"”
XtRAtom "Atom"
XtRBitmap "Bitmap"
XtRBool "Bool"
XtRBoolean "Boolean”
XtRCallback "Callback"
XtRCallProc "CallProc"
XtRCardinal "Cardinal"
XtRColor "Color"
XtRColormap "Colormap"
XtRCommandAgArray "CommandAgArray"
XtRCursor "Cursor"
XtRDimension "Dimension"
XtRDirectoryString "DirectoryString"
XtRDisplay "Display"
XtREditMode "EditMode"
XtREnum "Enum"

XtREnvironmentArray
XtRFile

XtRFloat

XtRFont

XtRFontSet
XtRFontStruct

"

"EnmironmentArray
"File"

"Float"

"Font"

"fontSet”
"ntStruct”

271

X11 Release 6.8

X Toolkit Intrinsics

XtRFunction "Function”
XtRGeometry "Geometry"
XtRGravity "Gravity"
XtRImmediate "Immediate"
XtRInitialState "InitialState"
XtRInt "Int"
XtRJustify "Justify”
XtRLongBoolean XtRBool
XtRObject "Object"
XtROrientation "Orientation”
XtRPixel "Pixel"
XtRPixmap "Pixmap"
XtRPointer "Pointer"
XtRPosition "Position"
XtRRestartStyle "RestartStyle"
XtRScreen "Screen"
XtRShort "Short"
XtRSmcConn "SmcConn"
XtRString "String"
XtRStringArray "StringArray"
XtRStringTable "StringAble"
XtRUnsignedChar "UnsignedChar"
XtRTranslation@ble "TranslationTable"
XtRVisual "Msual"
XtRWidget "Widget"
XtRWidgetClass "WigetClass"
XtRWidgetList "WidgetList"
XtRWindow "Window"
Boolean enumeration constants:

Symbol Definition
XtEoff "off"

XtEfalse "Blse"

XtEno "no"

XtEon "on"

XtEtrue "true"

XtEyes "yes"

Orientation enumeration constants:

Symbol Definition
XtEvertical "vertical"
XtEhorizontal "horizontal"
Tex edit enumeration constants:

Symbol Definition

272

X11 Release 6.8

X Toolkit Intrinsics

X11 Release 6.8

XtEtextRead "read"
XtEtextAppend "append"

XtEtextEdit "edit"

Color enumeration constants:

Symbol Definition
XtExtdefaultbackground "xtdefultbackground"
XtExtdefaultforground "xtdehultforeground"
Font constant:

Symbol Definition
XtExtdefaultfont "xtdehultfont"

Hooks for External Agents constants:

Symbol Definition
XtHcreate "Xtcreate"
XtHset\alues "Xtsetalues"

XtHmanageChildren
XtHunmanageChildren
XtHmanageSet
XtHunmanageSet
XtHrealizeWdget
XtHunrealizeWdget
XtHaddCallback
XtHaddCallbacks
XtHremoveCallback
XtHremoveCallbacks
XtHremoveAllCallbacks
XtHaugmentTanslations
XtHoverrideTranslations
XtHuninstallTranslations
XtHsetKeyboardfcus
XtHsetWMColormapWindws
XtHmapWdget
XtHunmapWdget
XtHpopup
XtHpopupSpringLoaded
XtHpopdown
XtHconfigure
XtHpreGeometry
XtHpostGeometry
XtHdestry

"XtmanageChildren"
"XtunmanageChildren"
"XtmanageSet"
"XtunmanageSet"
"XtrealizeVidget"
"XtunrealizeWdget"
"XtaddCallback"
"XtaddCallbacks"
"XtremeeCallback"
"XtremgeCallbacks"
"XtremaeAllCallbacks"
"Xtaugment@nslations"
"XtgerrideTranslations"
"Xtuninstallfanslations"
"XtsetkeyboardFocus”
"XtsetWMColormapWhdows"
"XtmapWdget"
"XtunmapVidget"
"Xtpopup"
"XtpopupSpringLoaded"
"Xtpopdavn"
"Xtconfigure"
"XtpreGeometry"
"XtpostGeometry"
"Xtdestroy"

273

X Toolkit Intrinsics X11 Release 6.8

The Shell.h header file contains definitions for the following resource name, class, and represen-
tation type symbolic constants.

Resource names:

Symbol Definition
XtNallowShellResize "allvShellResize"
XtNargc "agc"

XtNargv "algv"
XtNbaseHeight "baseHeight"
XtNbaseWdth "baseVidth"

XtNcancelCallback
XtNclientLeader
XtNcloneCommand
XtNconnection

XtNcreatePopupChildProc

XtNcurrentDirectory

"cancelCallback"
“clientLeader"
"cloneCommand"
"connection"

"createPopupChildProc"

"currentDirectory"

XtNdieCallback "dieCallback"
XtNdiscardCommand "discardCommand"
XtNernvironment "erironment"
XtNerrorCallback "errorCallback"
XtNgeometry "geometry"
XtNheightinc "heightinc"
XtNiconMask "iconMask"
XtNiconName "iconName"
XtNiconNameEncoding "iconNameEncoding"
XtNiconPixmap "iconPixmap"
XtNiconWindowv "iconWindow"
XtNiconX "iconX"

XtNiconY "iconY"

XtNiconic "iconic”
XtNinitialState "initialState"
XtNinput "input"
XtNinteractCallback "interactCallback"
XtNjoinSession "joinSession"
XtNmaxAspectX "maxAspectX"
XtNmaxAspectY "maxAspectY"
XtNmaxHeight "maxHeight"
XtNmaxWdth "maxWidth"
XtNminAspectX "minAspectX"
XtNminAspectY "minAspectY"
XtNminHeight "minHeight"
XtNminWidth "minWidth"
XtNoverrideRedirect "gerrideRedirect"”
XtNprogramPRth "programBth”
XtNresignCommand "resignCommand"
XtNrestartCommand "restartCommand"
XtNrestartStyle "restartStyle"
XtNsaveCallback "s@eCallback"

XtNsaveCompleteCallback

"s@CompleteCallback"

XtNsaveUnder "saeUnder"
XtNsessionlD "session|D"
XtNshutdavnCommand "shutdenCommand"

274

X Toolkit Intrinsics

XtNtitle "title"
XtNtitleEncoding "titteEncoding"
XtNtransient "transient”
XtNtransienter "transienter"
XtNurgeny "urgency"
XtNvisual "visual"
XtNwaitForwm "waitforwm"
XtNwaitforwm "waitforwm"
XtNwidthInc "widthlnc"
XtNwindowGroup "windavGroup"
XtNwindowRole "windawvRole"
XtNwinGravity "winGravity"
XtNwmTimeout "wmTmeout"
Resource classes:

Symbol Definition
XtCAllowShellResize "allwShellResize"
XtCArgc "Argc"
XtCArgv "Argv"
XtCBaseHeight "BaseHeight"
XtCBaseWdth "BaseWdth"

XtCClientLeader
XtCCloneCommand
XtCConnection
XtCCreatePopupChildProc
XtCCurrentDirectory
XtCDiscardCommand
XtCEnvironment
XtCGeometry
XtCHeightlnc
XtClconMask
XtClconName
XtClconNameEncoding
XtClconPixmap
XtClconWindow
XtClconX

XtClconY

XtClconic
XtClnitialState
XtClnput
XtCJoinSession
XtCMaxAspectX
XtCMaxAspectY
XtCMaxHeight
XtCMaxWidth
XtCMinAspectX
XtCMinAspectY
XtCMinHeight
XtCMinWidth
XtCOverrideRedirect

"ClientLeader"

"CloneCommand"
"Connection"

"CreatePopupChildProc"
"CurrentDirectory"

"DiscardCommand”
"Environment"
"Geometry"
"HeightInc"
"lconMask"
"lconName"

"lconNameEncoding"
"lconPixmap"

"lconWindow"
"lconX"
"lconY"
"lconic"
"InitialState"
“Input”

"JoinSession"
"MaxAspectX"
"MaxAspectY"
"MaxHeight"
"MaxWidth"
"MinAspectX"
"MinAspectY"
"MinHeight"
"MinWidth"

"OerrideRedirect"

275

X11 Release 6.8

X Toolkit Intrinsics

XtCProgrammth "ProgramBth"
XtCResignCommand "ResignCommand"”
XtCRestartCommand "RestartCommand”
XtCRestartStyle "RestartStyle"
XtCSaveUnder "SaeUnder"
XtCSessionID "Session|D"
XtCShutdevnCommand "ShutdenCommand"
XtCTitle "Title"
XtCTitleEncoding "TtleEncoding”
XtCTransient "Tansient"
XtCTransientler "TransientFor"
XtCUrgeny "Urgency"

XtCVisual "Visual"
XtCWaitForwWwm "Waitforwm"
XtCWaitforwm "Waitforwm"
XtCWidthinc "WidthInc"
XtCWindownGroup "WindowGroup"
XtCWindowRole "WindowRole"
XtCWinGravity "WinGravity"
XtCWmTimeout "WmTmeout"
Resource representation types:

Symbol Definition

XtRAtom "Atom"

276

X11 Release 6.8

X Toolkit Intrinsics X11 Release 6.8

Appendix F

Resource Configuration Management

Setting and changing resources in X applications can be difficult for both the application pro-
grammer and the end usd&esource Configuration Management (RCMpddresses this prob-
lem by changing th& I ntrinsics to immediately modify a resource for a specified widget and
each child widget in the hierarghln this context, immediate means: no sourcing of a resource
file is required; the application does not need to be restarted fomhresmurce values to take
effect; and the change occurs immediately.

The main difference betwe®CM and theEditres protocol is that th&@CM customizing hooks
reside in thentrinsics and thus are linked with other toolkits such as Motif and the Athena wid-
gets. Havever, the EditRes protocol requires the application to link with tBditRes routines in

the Xmu library and Xmu is not used by all applications that use Motif. Alsd&dtBes proto-

col uses ClientMessage, whereasR@M Intrinsics hooks usé’ropertyNotify events.

X Properties and thBropertyNotify events are used to implemeRCM and allav on-the-fly
resource customization. When the X Toolkit is initialized) séoms are interned with the strings
Custom InitandCustom Data Both _XtCreatePopupShelland _XtAppCreateShell register a
PropertyNotify event handler to handle these properties.

A customization tool uses tl@@ustom Initproperty toping an application to get the application’s
toplevel window. When the applicatios’property notify @ent handler is imoked, the handler
deletes the propertyNo data is transferred in this property.

A customization tool uses tli@ustom Datgroperty to tell an application that it should change a
resources value. Thedata in the property contains the length of the resource name (the number
of bytes in the resource name), the resource name andahaloe for the resource. This prop-
erty’s type isXA_STRING and the format of the string is:

1. Thelength of the resource name (the number of bytes in the resource name)
Onespace character

Theresource name

Onespace character

. Theresource value

When setting the applicatianfesource, thevent handler calls functions to walk the application’s
widget tree, determining which widgets are affected by the resource string, and then applying the
value with XtSetValues. As the widget tree is recuvsly descended, at eaclvéin the widget

tree a resource part is tested for a match. When the entire resource string has been matched, the
value is applied to the widget or widgets.

Before a value is set on a widget, it is first determined if the last part of the resource is a valid
resource for that widget. It must also add the resource to the applisaismirce database and
then query it using specific resource strings that is builds from the widget information.

aos W

277

278

Table of Contents

ACKNONMBAGMENTS .. iX.....
ADOUL THIS MANUAL ...t e e e e eaeeas Xii
Chapter 1 — IntrinSics and WIdQeLtS.......cooo e i 1
O O | 1 [OO PP PP PP PPPPPRPRPTPN 1
O - T T U =T = TSP 1
1.3. Procedures and IMBCIOS.coiiuiiiriiitee e e e et e e e e e e e e e e e s nreeaeeeaaans 2
O VYo o = 3R 2
1.4.1. COre WHQELS ..o 2.
1.4.1.1. COreClasSPart SIIUCTUIE...........iiiiiiiiiie et e e e e e e 2
1.4.1.2. COrEPAIT SIIUCIUIE........uuuiiiiiiniiiireireeerer e e e e e e ee e e e e e e e e e e eeeeeeeeeeeeeeeees 4
1.4.1.3. COB RESOUITES. ... cuuuutuueinienrinnreneseesseesseeeseeeeeeeeeeeeeeeeeeteeeee et e ee et e ettt e et ee et teetaeetaaeeaaeeaaeees 5
1.4.1.4. CorePart DefaullBlIESoooiiiiiiiiiiiie e 5.
1.4.2. COMPOSItE VGELS oeiiiiiiiiiiiii it G..
1.4.2.1. CompositeClassSPart StrUCLUIE............oiiiiieeeeeeee e 6
1.4.2.2. COMPOSItEPAIT STIUCLULE.........uuueiiiiiiiiiiiiiiieieieeetees 7
1.4.2.3. COMPOSITE RESOUITES.uuuuuueeueenneeeueenteneeaneeenseeeeeeeseeeeseees 8
1.4.2.4. CompositePart DefauliMescoooiiiiiiiiii e 8

1.4.3. CONSLrAINT WMAGELSeuiiiiiiiiiiiiiieiiit ettt ettt s e s eeeseeeeseeseeeees 9..
1.4.3.1. ConstraintClassPart SIrUCTULEcoiiiiiiiiiii e 9
1.4.3.2. CoNSraINtPArt STIUCHULEcoiiiiiiiie et 10
1.4.3.3. CONSIIAINT RESOUITESceiiiiiiiiiiiiiiiee e ettt e e e e e e e e s e e e e e eeaae s 10
1.5. Implementation-SPECITIC TYPES.....uuuuruureiiieiiieiiiiiieeiees 11
I G VAV o (o = 4 F= 1= T 11
1.6.1. Widget Naming CORENTIONSiieieiieeiaeieaeeeaeeeeeeeeeeeeeeeeeeeeeeeeesseeesseeeeeeeeeeeees 12
1.6.2. Widget Subclassing in Public .n FileS..........ccuiiiiiiii e 13
1.6.3. Widget Subclassing in Pafe .h Files..............ovviiiiiiiiie e 13
1.6.4. Widget Subclassing in .C FIlES..........cuuuiiiiiii e 15
1.6.5. Widget Class and Superclass LOOK.UD......ccooioiiiiiii e 18
1.6.6. Widget SUDCIaSSEYIfICALIONoeviiiiiiiiiiiiiiiee e 18

I G A 1T o= (o F= 1T O g =1 1 o P 19
1.6.8. Class Initialization: class_initialize and class_part_initialize Procedures............ 21
1.6.9. Initializing @ WIdgQet ClasS ittt eeeeeeeeeeeeeeeeeeeeeeeeeeas 22
1.6.10. Inheritance of Superclass OPerations.............coouiieeiieeiieeeeeeeeee e, 22
1.6.11. Ivocation of Superclass OPEerationsS........... ... e ueueeeuueereeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 23
1.6.12. Class EXIENSION RECOMAS........cuiiiiiiiiiiiiie ettt e e 24
Chapter 2 — Widget INStantiation............cooevviiiiiiiiiiii e 26
2.1, Initializing the X TOOIKIt ..o e 26
2.2. EstabliShing the LOCAIE..........uu ittt e e e e e e e e e e e e e e e aeeeeeeeeees 30
2.3. Loading the ReSOUICe DatabaSe...........uuueuueiiiiiiiiiiiiiiieiiieeeeeeeeeeeeee et e e e e e e e e e e eees 31
2.4. Parsing the Command LiNE..........coooiiiiiiiiiiiiii e 34
2.5, Creating Wil QeOtS. ... ettt s e s s e e e e e e e e e e ee e 36
2.5.1. Creating and Merging Argument LiStS........ccooiiiiiiiiii e 37
2.5.2. Creating @ Widget INSTANCE............uuuuuuuiiiiiiiiiiiiiiiiieiiieeiees 39
2.5.3. Creating an Application Shell INSTANCE...........coiiiiiiiiiiii e 41
2.5.4. Corwvenience Procedue to Initialize an Applicationccccocvviiiiiiiiiiiiiiiieeieeeneen, 42
2.5.5. Widget Instance Allocation: The allocate Procedure...........cccooeeiieiiiiiiinniiiiiiiniennes 44
2.5.6. Widget Instance Initialization: The initialize Procedure..............cccccccviviiiiin. 46

2.5.7. Constraint Instance Initialization: The ConstraintClassPart initialize Procedure 47

2.5.8. Nonwidget Data Initialization: The initialize_hook Procedure...............cccooeeiinnnns a7

AT S (=T 114 1o AV T [1] £ USSR 48
2.6.1. Widget Instance WindoCreation: The realize Procedure...........ccccooiiiiiiiiiiiiicinnnns 49
2.6.2. Windav Creation CORENIENCE ROULINE.........coiiiiiiiiiiiee e 50
2.7. Obtaining Window Information from a Widgetccccviiiiiii 51
2.7.2. UNrealizing WItQELS.......ceeiiiiiieiieee ettt 52
P S T B L1110V o AT/ T [T £ R 53
2.8.1. Adding and Removing Destroy Callbacks............ccoovviviiiiiiiii 54
2.8.2. Dynamic Data Deallocation: The degtRoocedureooooooiiiiiiiiiiiciiecces 54

2.8.3. Dynamic Constraint Data Deallocation: The ConstraintClassPartydesice-

[0 [0 TP PP PPPP P PPPPPPPPRPP 55.....
2.8.4. Widget Instance Deallocation: The deallocate Procedure..........ccccccvvvvevvvieniennnnnn. 55
2.9. Exiting from an APPHCALIONcoovviiiiiiiiiii 56
Chapter 3 — Composite Widgets and Their Children...........cccc 57
3.1. Addition of Children to a Composite Widget: The insert_child Procedure.............. 58

3.2. Insertion Order of Children: The insert_position Procedure...............ccooeeeiiiiiiiiienns 58
3.3. Deletion of Children: The delete_child Procedure............cccuiiieiiieeiiiieeiiciie e, 59
3.4. Adding and Removing Children from the Managed Set...........cccooviiiiiiieeeiiiniiiinnn. 59

G g N |V =Yg =T |1 o T4 71 (o [=T o 1SS 59
3.4.2. Unmanaging Children ... 61
3.4.3. Bundling Changes to the Managed SeL...........ccocuiiiiiiiiiiiiiiiieeeee e 62
3.4.4. Determining if a Widget IS Managed..........ccccccuuimmuiiiiiiiiiiiiiiiiiiieeeieeeieeeeeeeeeeeeeeeeeeeees 64
3.5. Controlling When Widgets Get Mapped..........cooo oo 64
3.6. Constrained CoOmMPOSIHEIMYELSooeiiiiiiiiiiiiiiiiii e 65
Chapter 4 — Shell VHGEtSoooiiei e 67..

4.1. Shell Widget DefiNItIONS ..ottt e e e e e e e e e s aennes 67
4.1.1. ShellClassPart DefiNItIONSouuriiieieeeee et 68
4.1.2. ShellPart DefiNITION..........ueiiiieiiiiii e e ee s 71
4.1.3. SNEII RESOUITES......ceeiiiieiiiiiie ittt e e e et e e e e e e e e e e e e annnees 74
4.1.4. ShellPart Default ValUES..........oooi i 76
4.2, SESSION PAITICIPATION.eiiiiiiiiiiiiiei et e aannes 81
4.2.1. JOINING @ SESSION......eutiiiiiiee ettt e e e e e e e e e e e e e e e e e s s r e e e e e e s aannrrnreeeeeesaanne 81
4.2.2. Saving APPIICALION SEALE.ccoiiiiiiiiii e 81
4.2.2.1. Requesting INteracCtioN...........ooueiiiiiiiii e 83
4.2.2.2. Interacting with the User during a Checkpoint...................cc . 84
4.2.2.3. Responding to a Shutdown Cancellation................ccoviiiiiiiiiiiiiiii e 84
A A Ole T] o] [(T =T P 84
4.2.3. Responding to @ SHULAOWIL.........ueiiiiiiiiiiei e e e e 85
4.2.4. Resigning from @ SESSION........ciieiiieieeeeeee e 85
Chapter 5 — POP-UP MJELSooeiiiiiiiiiiiieiieeeieee ettt a e e e e aaaaaaad 86..

5.1. POP-UP WIGQEE TYPES....ceiieiiiiiiieiieee ettt e e 86
5.2. Creating a Pop-Up Shell.......ooo e 87
5.3. Creating Pop-Up Children ... 88
5.4. Mapping @ Pop-Up WIdQeLcoooiii oo 88
5.5. Unmapping @ POP-UP WIQEL.......ooeiiiiieiiieieieieeeeeeeeeeeeeeeee ettt ettt 91
Chapter 6 — Geometry ManagemMENL..uuuuuuueiieiiuiiieneenees 93
6.1. Initiating GEOMELrY CRANQES. i uuiiiiiiiiiiiiiiiietiees 93
6.2. General Geometry Manager REQUESES..........covviiiiiiiieiieeeeeee e 94
5.3, RESIZE REQUESTSuiuuiiiiiiitiiiiiiettetee ettt tet ettt et ettt et s st et e s e e e e s seesseeseeeemeeeeeeeneeeees 96
6.4. Potential Geometry ChangeS.......ooooiii oo e 96
6.5. Child Geometry Management: The geometry_manager Procedure........................ 97

6.6. Widget Placement and SiZiNgG...........eeueieoiiiiiiiiiie et 98
6.7. Preferred GROMEILY.........oi i 100

6.8. Size Change Management: The resize Procedure............cccceevriiiiiiniiiie e 101

Chapter 7 — Event Management........ooooii oo 103
7.1. Adding and Deleting Additional EVENt SOUICES..........ccoiiiiiiiiiiiiiiiieeeeeiiinieeee e 103
7.1.1. Adding and Removing INPUL SOUICES.........uuuuuueieiriieiiieiiiaeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 103
7.1.2. Adding and Removing Blocking Notifications..............ueeeeeiiiiiiiiiiiiiiiiiieeieeeeeeeeeee 105
7.1.3. Adding and Removing TIMEOULS.........coooeeiiiiiii e 105
7.1.4. Adding and Removing Signal Callbacks...........coovviiiii 106
7.2. Constraining Events to a Cascade of WIidgetS..........uuuuriuuieiireiieiiiiiiieiiieiieeeeeeeeeeeeeeeee 108
7.2.1. Requesting Key and Button Grabs...............oooooiiiii s 109
7.3. Focusing Events 0N @ Child..............uuuieeiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee et e e 113
7.3.1. Events for Drawables That Ae Not a Widget's Windowcccoeiiie . 115
7.4. QUEIYING EVENT SOUICES ... oo e 116
7.5, DiSPAlCNING EVENTS ... ittt s e e s ne e e e 117
7.6. The Application INPUL LOOP «.ceeiiiiiiiiiiee ettt 119
7.7. Setting and Checking the Sensitivity State of a Widget...........cccccvveeeiiiiiiiiiiens 119
7.8. Adding Background WOrk ProCeAUIES............uuuuumiiiiiiiiiiiiiiiieiiiieieieeeeeeeeeeeeeeeeeeeeeeeeeeeees 120
7.9, X EVENE FIEEIS ..ottt e e e e e e e e e e e a e 121
7.9.1. Pointer MOtioN COMPIESSION.uuuuuuuuuieutteutieteeeteeeeeeneeeneeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeeeeees 121
7.9.2. ENter/Led@ COMPIESSION ...coiiiiiiiiiiiiieie e e e ettt e e e et r e e e e e e s e e e e e e e e annnnees 121..
7.9.3. EXPOSUIE COMPIESSION.ciiiiiiiiiiiiiiieeieieeeee ettt ettt ettt et et e e e et e et aeeeeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaens 121
7.10. Widget Exposure andSibilitycccooooiiii e 123
7.10.1. Redisplay of a Widget: The expose Procedure.cooooiiioiiiiiiiiiiiiees 123
7.10.2. WIdQet YEIDIIILYeeeeeieeeiiiie et 124.

7. 11 X EVENTHANAIEIS ...t e e e s e e e e 124
7.11.1. Event Handlers That SEIECEERISccooiiiiiiiiiiiiiii e 125
7.11.2. Event Handlers That Do NOt SEIECEEScevveiviiiiiiiiiiiiiie e 127
7.11.3. CUITENt EVENT MASK......coiiiiiiiiieeii e e e 129
7.11.4. Event Handlers for X11 Protocol EXtENSIONS.........cccuvviiiieieeiiiieeeeeee e 129
7.12. Using the Intrinsics in a Multi-ThreadedvEEonmentcccc 133
7.12.1. Initializing a Multi-Threaded Intrinsics Applicationccccccvvvieiiiiiiiiiiiniennnnn.. 133
7.12.2. Locking X ToOolKit Data StrUCIUIESc..uviiiiiieeiiiiiiieiee e 133
7.12.2.1. Locking the Application CONTEXL..........uuuieiiiiiiiiieiiiieieieeeeeeeee e e 134
7.12.2.2. LOCKING thE PrOCESS.....ceiiiiiiiiiiieeieeeeeet ettt e e e e e e e e e 135
7.12.3. Event Management in a Multi-Threaded Environment...................ccccoeee e, 135
Chapter 8 — CallDACKS........eiiieiieeeeeeeeeeee e 137
8.1. Using Callback Procedue and Callback List Definitionsccoooeeiieiiiiiiiiiiiinnnes 137
8.2. Identifying CallDack LiStSoouviiiiiiiiiiiiiee 138
ESTRCT AN (o 10T I @F=11] o T= ol [md {0 Lot =T U] =S 3P 138
8.4. Removing Callback ProCEAUIES..........uuuueiiiiiiiiiieiiiieeeeeeeeee ettt e e e e e e e e e e e e eees 139
8.5. Executing Callback ProCeAUIES..........eeiiiiiiiiiiieiiieeeeeeeeeeeee ettt 140
8.6. Checking the Status of @ Callback LiSL...........cooooiiiiiiiii s 140
Chapter 9 — Resource Management..........oooie e i 142
9.1, RESOUICE LISES....eeiiiiieiiiiiiiite ittt e ettt e e e e e e e e e e e e e e e e e e e s n e e aeeas 142
9.2. Byte OffSet CalCUIALIONS.........uuiiiiiiiiiiiiiiiiiiiiii ettt e e e e e e e e e eeeeeeeeeeeeeeeeeeeeeeeees 146
9.3. Superclass-to-Subclass Chaining of RESOUICe LiStS.........coooiiiiiiiiieiiiiiiiiiiieeeeeee 147
0.4, SUDIESOUITES.cceiiiitiieee ettt e ettt e e et e ettt e e e e e s e e e e e e e e e annbn e e e e e e e e e aannes 148
9.5. Obtaining AppPliCatioN RESOUICES........uuuuueiiieiiiieiiiiiieeiieiees 149
9.6. RESOUICE COBISIONSoeiiiiiiiiiiiiiiiiii e e e e e ettt e e e e e e e e e e e e e et e e e e e e e e e asnnreeeeeeeas 150..
9.6.1. Predefined RESOUICE @EMEISooiuiiiiiiiieeeiiiiie et 150

9.6.2. N8V RESOUICE COVBITEIScciiiie i e 153.

9.6.3. 1SSUING COIBISION VWAININGSuutiuuiiiuieiiiiutinueienieneeeeeeeneenneesneeseesseeesesesseesneesenneeeeeees 156.

9.6.4. Registering a New ReSOUICE COBMTEIuuuuuuuruuenniienenneeeenneeeeeeeeneeeeneeeneeeeeneeeeeees 157
9.6.5. Resource Corerter IN VOCALIONcuuviiieieeees ittt 161
9.7. Reading and Writing Widget SEAte............uuuuuuuuuiiiiiiiiiiiiiiieieiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 164

9.7.1. ObtaiNiNg WIdget STALE.........ccciiiiiiiiiiiiie e 164

9.7.1.1. Widget Subpart Resource Data: The get_values_hook Procedure................... 165
9.7.1.2. Widget SUDPAIT STALE........eeeiiiiiiiiie et 166
0.7.2. Setting WIdQet SEAt.......c.ooviiiiiiiiiiieieeee e 167
9.7.2.1. Widget State: The set_values ProCedure.............ccooiiiiiiiiiiiiiieeeiiiieeee e 168
9.7.2.2. Widget State: The set_values_almost Procedure............cccccceuuuemuiimminmniinniinninnnns 169
9.7.2.3. Widget State: The ConstraintClassPart set_values Procedure.......................... 170
9.7.2.4. Widget SUDPAIT STALE........eeeiiiiiiiiie e 170
9.7.2.5. Widget Subpart Resource Data: The set_values_hook Procedute................... 171
Chapter 10 — Translation ManageMEIL.uuuuueiureeeieeieieiees 173
10.1. ACHON TABIES ... 173
10.1.1. Action Table RegiSIIatiON...........uuuuuuiiiiiiiiiiiiiiiieiiieeeas 174
10.1.2. Action Names to Proced@ Translationscccvveiieeeiiiiiiiiiiieccceeeeeee e 175
10.1.3. Action HOOK REQISIIAtION.uuuuuiiiiiiiiiiiiiiiieiiiieieeas 175
10.2. Translation TaDIES.ooiiiiiii e 176
10.2.0. EVENE SEOUENCES. ... ittt ettt a e e e e e e e et bbbt e e e e e e eeeeebaaa e e e eaaaas 177
10.2.2. ACLION SEOUEBICES.....ceeeiiiuittiieiee e e e ettt e e e e e et et e e e et e e r e et e e e e e e nnb e e e e e e e e e snnnnnees 177
10.2.3. MUII-CHICK TIME ..ottt e e e e e e e e e e e e e e 177
10.3. Translation Table ManagemeNnt..............uuuuuuuuuuuiuuiieiiiiiieeieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 178
O S L= [To I o0 =] [T = 1o) 180
10.5. KeyCode-to-KeySYym CONEISIONScccovviiiiiiiiiiiiiiiieeee e 181

10.6. Obtaining a KeySym in an Action ProCeAUIE............uuuuueiiieeieiiiieeeieeeeeeeeeeeeee e eeee e 184
10.7. KeySym-t0-KeyCode COMEISIONScoveviiiiiiiiiiiiiiiee ettt e e e e 185

10.8. Registering Button and Key Grabs for ACtIONS.........ccoooiiiiiiiiiiees 185
ORI [0 V(o (] g To [N ox i o) 0 ES 3N I = Tox 1 Y P 186
10.10. Obtaining a Widget’/ACtion LiStcoooiriiii i, 187
Chapter 11 — ULility FUNCHONS.......uuiiiieiiiiiieeiieeeeeeeeeeeee ettt a e e e e e e 188
11.1. Determining the Number of Elements in an Array..........cooooeeeeeieeieeeeeeeeeeeeeeees 188
11.2. Translating Strings to Widget INSTaNCeS.........covvvvviiiiiiiiiiieee 188
11.3. Managing MemMOIrY USABQEcuiiiiiiiiieiieieee ettt 189
11.4. Sharing GraphiCS CONIEXESuuuuuuuuuuuiuueiuniieieiieeeueeeeeeeeeeeeaeeeeeeeeeeeeeseeseeeeeeeeeeeeeeeeeeeeeees 191
R =T g =T [o JRST=] =Tt £ o L 192
11.5.1. Setting and Getting the Selection Timeout Value.............ccccccoviiiiiiiiiiieeinniiieeee, 193
11.5.2. Using AtOMIC MANSTEISoeiiiiiiiiiieeeeeeee e 193.
11.5.2.1. AtomicC TranSfer PrOCEAUIES........cociiiiiiiiiieie et 193
11.5.2.2. Getting the SeleCtiomNEovviiiiiiii e 196
11.5.2.3. Setting the SeleCtion OWNEL.........ouiii it 198
11.5.3. Using Incrementak@NnSTersoooovviiiiiiiiiii 199.
11.5.3.1. Incremental Transfer PrOCEAUIES...........ouiiiiiiiiiiiieeee et 199
11.5.3.2. Getting the Selection Value Incrementally...........ccooooiimiiiiiiiiiniiiee 202
11.5.3.3. Setting the Selection Owner for Increment@h3Terscccoeeeeeiiiiiiiiineeeen. 203
11.5.4. Setting and Retrieving Selection Targ@BRetersccccovviiiiiiiiieeiiniiiiiieeeeenn 204
11.5.5. Generating MULTIPLE REQUESLES.........uuuuuuiiiiiiiiiiiiiiieienieieieneieeeeeseeeeeeeseeneseeeeeeseeeeees 206
11.5.6. Auxiliary Selection Properties...........ouuviieiiiiiieieee e 207
11.5.7. Retrieving the Most ReCentiBstampoooviiiiiiiiiiii e, 208
11.5.8. Retrieving the MOSt RECENTEENuuuuuiiiiiiiiiiiiiiiiiiieiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeee 208

11.6. Merging Exposure EVents iNtO a0ccoiiiiiiii e 209

11.7. Translating Widget COOrdiNateS........c.ovviiiiiiiiiiiiei e, 209
11.8. Translating a Windav t0 @ WIdQetoooeiiiiiiiiee e, 209
11.9. HANAING EFTOFS oo, 210
11.10. Setting WM_COLORMAP_WINDOWS ..ot 215
11.11. FINdiNg File NAMES.....c oo 216
11.12. HOOKS fOr EXIEIrNal AQENTS.......uueiiieiieiiieiiiiiiieeieeeeeee ettt eee et e e e ee e e e e eeeeeeeeeeeeeeeeeeeeeeeeeees 219
11.12.1. HOOK ODJECt RESOUICES......cceeeeeeeeee e 220

Vi

11.12.2. QUEIYING OPEN DiSPIAYS uuuuuuuiununnuiiniiiuieiiieeueeeeeeeeeeeeeeeeeeeeeeeeeeseeseeeeeeeeeeeeeeeeeeeeeees 224

Chapter 12 — NonwWidget ODJECLS.......cuviiiiiiiiieeeee e 225
N T D - e] (U o (0= R 225
12.2. ObDJECE ODJECES. ... e 225
12.2.1. ODbJeCtClasSPart STIUCIULE...........cuuiiiieeiiiiiiie e a e 225
12.2.2. ObJECIPAIT SITUCTULR.o 227
12.2.3. ObDJECE RESOUICES ... oot eenennnenne 228
12.2.4. ObjectPart Default ValUES...........ueeieiiieiiiiiiieiieeeeeee ettt e e e e e e e e e 228
12.2.5. Object Arguments to INtriNSICS ROULINES.........oovviiiiiiiiiiie 228
12.2.6. USE Of ODJECLS.uteeiiiiiiiiiiiiiiiieeee ettt ettt ettt ettt ettt ettt e e et e et e et e e e e e et eaaaaaaaaaaaaaaaaaaaaaaaans 229
12.3. RECLANGIE ODJECES ... ettt ettt et e ettt e et e e e e e e e e e e e e e e eeaeaaaaaaaaaaaaans 229
12.3.1. ReCtODjCIasSPart StrUCIULE...........cuuiiiiiii e 229
12.3.2. ReCtODJPArt SITUCTULE.....cco e 231
12.3.3. RECIOD] RESOUICESo 231
12.3.4. RectODbjPart Default ValUES...........uuuuuieiiiiiiiiiiiiiiiiiiiiieeiiieieeeeeeeeeeee e e e e e eeeeeeeeeeeeeas 232
12.3.5. Widget Arguments to IntrinSicS ROULINES............euuiiiiiiiiiiiiiiiiieeeeeeeeeeeeee e 232
12.3.6. Use of Rectangle ODJECLS........uuu ittt e e e eeeeeeeeeeeeeeas 232
12.4. UNAECIArEd CIASS.......eueeiiiiiiiiiiiie ittt e e e e s e e e e e e e 233
12.5. Widget Arguments to INtrinSiCS ROULINES...........oooiiiii i 233
Chapter 13 — Evolution of the INtNSICS.......coooeeiiie e 235
13.1. Determining Specification Revision Dl ... 235
13.2. Release 3 to Release 4 Compatibility............cooviiiiiiiiiiie 235
13.2.1. Additional AQUMENTScoiiiiiiieiieie e 235..
13.2.2. set_values_almost ProCEAUIES.........ciii it e e e e e e e e e eeaeees 236
13.2.3. QUETY GBOMEBILY. .ttt e ettt ettt e e e ettt et b e e e e e e e e e e ebbb e e e e aaaeeeebbbna e e aeaas 236
13.2.4. unrealizeCallback CallDACK LiSL..........ccoiiiiiiiiiiiieieieeee e 236
13.2.5. Subclasses of WIMSHEIL............ooiiii e 236
13.2.6. ResSoUrce TYPe GUHILEIScooiiiieiieie e eeeeeeittie e e e e e e ettt e e e e e e e eeseba e e e e e aaeeeennnas 236
13.2.7. KySym Case Corersion ProCeaUre..........oooviieiiiiiieeeeeeeeeeeeee e, 237
MRS 072 S T N[0 1Y/ T [=] A @][o £ 237
13.3. Release 4 to Release 5 Compatibility............coovriiiiiiiiiii 237
13.3.1. baseTranslatioNS RESOUICE.ciiii it e e 237
13.3.2. Resource File Search Path.............ccoooiiiiiiiiiiceeeee e 238
13.3.3. CUSIOMIZAtION RESOUICE. ...ttt e e e e e eaeeeas 238
13.3.4. Per-Screen Resource Database............ooccuviiiiiiiiiiiiiccc e 238
13.3.5. Internationalization of APPlICALIONS............uuuuuiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeee 238
13.3.6. Permanently AllOCAted STINGS.........cuvrriiieieeiiiiiieie e e 239
13.3.7. Arguments to EXiSting FUNCHONS....... ..o 239
13.4. Release 5 to Release 6 Compatibility............coovriiiiiiiiiii 239
R I VYT [= [T =T = 239
13.4.2. General Application DEOPMENToiiiiiiiiiiiiiiee e 240
13.4.3. Communication with Wingloand Session Managers..........ccooeveeeieeeieeeieeeeeeeeee, 240
13.4.4. Geometry ManagemENL.........cooi it e et e e e e e e ae e eaaaaeeee 240
13.4.5. EVENE MANAGEIMEILL....coetitii ettt e e e e e e et ee b a e e e e e e e eeaebba s e e e eaaaeennnnns 240
13.4.6. RESOUICE MANAGEIMEINL......coiiiiiiei ettt e e ettt e e e e e e e eebtb b e e e e e eeeesnenaaan s 241
13.4.7. Translation ManagemeNnt...........oooiiiiiiiiiiii e 241
13.4.8. SEIBCHONS ...ttt ettt e e e e et e e e e e e e e 241
13.4.9. External AQent HOOKScooiiiiiiieeee e 242
Appendix A — Resource File FOrmMat...........oooooiiiiiiiiii e 243
Appendix B — Translation Table SyntaxX ... 244
Appendix C — Compatibility FUNCLIONScouiiiiiiiiiiiiiiiiiieeeeeeee e 251
Appendix D — INtriNSIiCS ErrOr MESSAQES.coii e i e e iee e 263
Appendix E — Defined StriNgS.......ooviiiiiiiiiiiieeie e 268
Appendix F — Resource Configuration Management............ooooooiiioiiieiieee e 277

Vii

viii

