Extending X for Double-Buffering, Multi-Buffering, and Stereo

Jeffrey Friedberg
Larry Seiler
Jeff Vroom

Version 3.3
January 11, 1990

TheMulti-Buffering exension described hemas a draft standar of the
X Consortium prior to Release 6.1. It has been superseded by the Double Buffer
Extension (DBE). DBE is an X Consortium Stamdas of Rlease 6.1.

Introduction

Several proposals hae been written that address some of the issues surrounding the support of double-
buffered, multi-buffered, and stereo windows in the X Win@ystem:

. Extending X for Double-Bufferingeffrey Friedberg, Larry SeileiRandi Rost.

. (Proposal for) Double-Buffering Extensiqrleff Vroom.

. An Extension to X.11 for Displays with Multiple Bufféayid S.H. Rosenthal.
. A Multiple Buffering/Stereo ProposdWlark Patrick.

The authors of this proposalveatied to unify the abee documents to yield a proposal that incorpo-
rates support for double-buffering, multi-buffering, and stereo in a way that is acceptable to all con-
cerned.

Goals
Clients should be able to:

Copyright © 1989 Digital Equipment Corporation.

Permission to use, cppmodify, and distribute this documentation foryapurpose and without fee is hereby granted, pro-
vided that the ah@ pyright notice and this permission notice appear in all copies. Digital Equipment Corporation
makes no representations about the suitability fgr @mpose of the information in this document. This documentation is
provided "as is" without express or implied warranthis document is subject to change.

Copyright © 1989, 1994 X Consortium

Permission is hereby granted, free of charge, yoparson obtaining a cgpof this software and associated documentation files (the

“ Software’), to deal in the Software without restriction, including without limitation the rights to usg, coglify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The aboe mpyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PRVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANRBILITY, FITNESS FOR A RRTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OH-
ER LIABILITY, WHETHER IN AN ACTION OF CONTRAT, TORT OR OrHERWISE, ARISING FROM, OUT OF OR IN CON-
NECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to promote the sale, use
or other dealings in this Software without prior written authorization from the X Consortium.

X Window Systers a trademark of X Consortium, Inc.

. Associate multiple buffers with a windo

. Paint in aty buffer associated with a windo

. Display aty buffer associated with a windo

. Display a series of buffers in a winddn rapid succession to acki@asmoothanimation.
. Request simultaneous display of different buffers in different windows.

In addition, the extension should:
. Allow existing X applications to run unchanged.
. Support a range of implementation methods that can capitalize on existing hardware features.

Image Buffers
Normal windows are created using the stan@shteWindow request:

CreateWindow
parent WINDOW
w_id :WINDOW
depth ‘CARDS8
visual :VISUALID or CopyFromParent
X,y tINT16

width, height : INT16
border_width INT16
vaue_mask BITMASK
vaue_list :LISTofVALUE

This request allocates a set of windattributes and a buffer into which an image can b&draThe
contents of thismage huffer will be displayed when the windois mapped to the screen.

To support double-buffering and multi-buffering, we introduce the notion that additional image
buffers can be created and bound together to form groups. The following rules will apply:

. All image buffers in a group will va the same visual type, depth, and geometry (ie: width and

height).
. Only one image buffer per group can be displayed at a time.
. Draw operations can occur toyaimage buffer at gntime.

. Window management requestgldpWindow, DestroyWindow, ConfigureWindow, etc...)
affect all image buffers associated with a windo

. Appropriate resize and exposuxer@s will be generated fovery image buffer that is affected
by a windav management operation.

By allowing drav operations to occur on gmimage buffer at gntime, a client could, on a multi-
threaded multi-processor serygmultaneously build up images for displajo support this, each

buffer must heae its own resource ID. Since buffers are different than windows and pixmaps (buffers
are not hierarchical and pixmaps cannot be displayedyaesourceBuffer, is introduced. Fur
thermore, @8uffer is also aDrawable, thus drav operations may also be performed on buffers sim-
ply by passing a buffer ID to the existing pixmap/wiwdaterface.

To dlow existing X applications to work unchanged, we assume a winBgassed in a draw
request, for a multi-buffered windop will be analiasfor the ID of the currently displayed image
buffer. Any draw requests (ed>etlimage) on the windav will be relatve o the displayed image
buffer.

In window management requests, only a wind® will be accepted. Requests likrieryTree, will
continue to return only windoID’s. Mostevents will return just the winde ID. Somenew events,
described in a subsequent section, will return a buffer ID.

When a windw has backing store the contents of the wimdoe saed off-screen. Likewise, when
the contents of an image buffer of a multi-buffer wiwds saved off-screen, it is said to ke back-
ing store. This applies to all image buffers, whether or ngtdaheselected for display.

In some multi-buffer implementations, undisplayed buffers might be implemented using pixmaps.
Since the contents of pixmaps exist off-screen and are not affected by occlusion, these image buffers
in effect hae backing store.

On the other hand, both the displayed and undisplayed image buffers might be implemented using a
subset of the on-screen pIg. Inthis case, unless the contents of an image buffer eed off-
screen, these image buffers in effect do neeHhacking store.

Output to ag image buffer of an unmapped multi-buffered wiwdbat does not ha backing store
is discarded. Output to gimmage buffer of a mapped multi-buffer wivdavill be performed; how-
eva, portions of an image buffer may be occluded or clipped.

When an unmapped multi-buffered widbecomes mapped, the contents of amage buffer

buffer that did not hae backing store is tiled with the background and zero or more exposans e

are generated. If no background is defined for the winthen the screen contents are not altered

and the contents of gindisplayed image buffers are undefined. If backing store was maintained for
an image bufferthen no exposurevents are generated.

New Requests

The nev requestCreatelmageBuffers creates a group of image buffers and associates them with a
normal X window:

CreatelmageBuffers
w_id : WINDOW
buffers :LISTofBUFFER
update_action {Undefined,Background,Untouched,Copied}
update_hint {Frequent,Intermittent,Static}
=
number_buffers : CARD16

(Errors: Windav, IDChoice, Value)

One image buffer will be associated with each ID passbdfiers The first buffer of the list is
referred to as buffer[0], the next buffer[1], and so on. Each buffer wi# the same visual type and
geometry as the wineo Buffer[0] will refer to the image buffer already associated with the window
ID and its contents will not be modified. The displayed image buffer attribute is set to buffer[0].

Image buffers for the remaining ID{uffer[1],...) are allocated. If the windais mapped, or if these
image buffers ha backing store, their contents will be tiled with the windaackground (if no
background is defined, the buffer contents are undefined), and zero or more ezpizs@it be
generated for each of thesefeu$. Thecontents of an image buffer is undefined when the wirido
unmapped and the buffer does noténbacking store.

If the window aready has a group of image buffers associated with it (ie: from a preé@ieageIm-
ageBuffersrequest) the actions described BrestroylmageBuffersare performed first (this will
delete the association of the previous buffesl&@d their buffers as well as de-allocate all buffers
except for the one already associated with the wintp).

To dlow a erver implementation to efficiently allocate the buffers, the total number of buffers
required and the update action\fhihey will behave during an update) is specified "up front" in the
request. Ithe server cannot allocate all the buffers requested, the total number of buffers actually
allocated will be returned. Nalloc errors will be generated — buffer[0] camvays be associated

with the existing displayed image buffer.

For example, an application that wants to animate a short movie loop may request 64 image buffers.
The server may only be able to support 16 image buffers of this type, size, and depth. The applica-
tion can then decide 16 buffers is sufficient and may truncate the movie loop, or it may decide it
really needs 64 and will free the buffers and complain to the user.

One might be tempted to provide a request that inquires wirethufiers of a particular type, size,
and depttcouldbe allocated. But if the query is decoupled from the actual allocation, another client
could sneak in and takhe buffers before the original client has allocated them.

While ary buffer of a group can be selected for dispkmyne applications may display buffers in a
predictable order (ie: the movie loop application). Tisieorder (buffer[0], buffer[1], ...) will be
used as a hint by the server as to which buffer will be displayed Aelient displaying buffers in
this order may see a performance inygroent.

update_actionindicates what should happen to a previously displayed buffer when a different buffer
becomes displayed. Possible actions are:

Undefined The contents of the buffer that was last displayed will become undefined after the
update. Thiss the most efficient action since it allows the implementation to trash

the contents of the buffer if it needs to.

Background The contents of the buffer that was last displayed will be set to the background of
the windav after the update. The background action allows devices to use a fast
clear capability during an update.

Untouched The contents of the buffer that was last displayed will be untouched after the
update. Usegrimarily when cycling through images thawvbalready been
drawn.

Copied The contents of the buffer that was last displayed will become the same as those

that are being displayed after the update. This is useful when incrementally
adding to an image.

update_hinindicates hw often the client will request a different buffer to be displayed. This hint

will allow smart server implementations to choose the most efficient means to support a multi-
buffered windav based on the current need of the application (dumb implementations may choose to
ignore this hint). Possible hints are:

Frequent An animation or movie loop is being attempted and the fastest, most efficient
means for multi-buffering should be employed.

Intermittent The displayed image will be changeay so often. This is common for images
that are displayed at a rate slower than a secbadexample, a clock that is
updated only once a minute.

Static The displayed image buffer will not be changey tame soon. Typically set by
an application whener there is a pause in the animation.

To dsplay an image buffer the following request can be used:

DisplaylmageBuffers
buffers LISTofBUFFER
min_delay @ :CARD16
max_delay nCARD16

(Errors: Buffer Match)

The image buffers listed will become displayed as simultaneously as possible and the update action,
bound atCreatelmageBufferstime, will be performed.

A list of buffers is specified to allothe server to efficiently change the display of more than one
window at a tme (ie: when a global screen swap method is used). Attempting to simultaneously dis-
play multiple image buffers from the same winds an eror (Match) since it violates the rule that

only one image buffer per group can be displayed at a time.

If a specified buffer is already displayedy @elays and update action will still be performed for that
buffer. In this instance, only the update actiorBafckgroundand possiblyndefined will have ay
affect on the contents of the displayed buffEhese semantics alloan animation application to suc-
cessfully aecute @en when there is only a single bufferaable for a windav.

When aDisplaylmageBuffersrequest is made to an unmapped multi-buffered winttee effect of
the update action depends on whether the image buffetged hare backing store. When the tar-
get of the update action is an image buffer that does rmetbaaking store, output is discarded.
When the target image buffer doevééacking store, the update is performed; hesgenhen the
source of the update is an image buffer does nat backing store (as in the case of update action
Copied, the contents of target image buffer will become undefined.

min_delayandmax_delayut a bound on helong the server should wait before processing the dis-
play requestFor each of the windows to be updated by this request, atr@astelaymilli-seconds
should elapse since the last timg ahthe windows were updated; a@nsely, no window should

have o wait more thammax_delaymilli-seconds before being updated.

min_delayallows an application telow dowran animation or movie loop so that it appears synchro-
nized at a rate the server can suppamgthe current loadFor example, anin_delayof 100

indicates the server should wait at least 1/10 of a second since the lastytioh¢éhanvindows were
updated. Amin_delayof zero indicates no waiting is necessary.

max_delaycan be thought of as an additional delay beyoid delaythe server is allowed to wait to
facilitate such things as efficient update of multiple wingo If max_delaywould require an update
beforemin_delayis satisfied, then the server should process the display request as soon as the
min_delayrequirement is metA typical value formax_delays zero.

To implement the ahe@ functionality the time since the last update bRiaplaylmageBuffers

request for each multi-buffered windmeeds to be sad as $ate by the serverThe server may

delay eecution of theDisplaylmageBuffersrequest until the appropriate time (e.g. by requeuing the
request after computing the timeout); hoerethe entire request must be processed in one operation.
Request xecution indivisibility must be maintained. When a server is implemented with internal
concurreng, the extension must adhere to the same concyreemcantics as those defined for the
core protocol.

To explicitly clear a rectangular area of an image buffer to the wirtsikground, the following
request can be used:

ClearimageBufferArea

buffer :BUFFER
X,y tINT16
w, h : CARD16

exposures BOOL

(Errors: Buffer Value)

Like the X ClearArea requestx andy are relatie the windows arigin and specify the upper-left
corner of the rectangle. Widthis zero, it is replaced with the current wimdeidth minusx. If
heightis zero it is replaced with the current wimdbeight minusy. If the windav has a defined
background tile, the rectangle is tiled with a plane mask of all ones, a func@apyfand a sub-
window-mode ofClipByChildren If the windav has backgrountliong the contents of the buffer are
not changed. In either caseeiposuress true, then one or more exposuvergs are generated for
regions of the rectangle that are either visible or are being retained in backing store.

The group of image buffers allocated b@@atelmageBuffersrequest can be destroyed with the
following request:

DestroylmageBuffers
w_id :WINDOW

(Error: Window)

The association between the bufferd@id their corresponding image buffers are deleted. Any
image buffers not selected for display are de-allocated. If the wirsdaot multi-buffered, the
request is ignored.

Attributes
The following attributes will be associated with each wimdloat is multi-buffered:

displayed_buffer : CARD16

update_action {Undefined,Background,Untouched,Copied}
update_hint {Frequent,Intermittent,Static}

windov_mode {Mono,Stereo}

buffers :LISTofBUFFER

displayed_buffers set to thendexof the currently displayed image buffer (for stereo windows, this
will be the inde of the left buffer — the indeof the right buffer is simplyndex+1). window_mode
indicates whether this windois Monoor Stereo The ID for each buffer associated with the window

is recorded in thbufferslist. Theabove dtributes can be queried with the following request:

GetMultiBufferAttributes
w_id :WINDOW
=>
displayed_buffer : CARD16
update_action {Undefined,Background,Untouched,Copied}
update_hint {Frequent,Intermittent,Static}
windov_mode {Mono,Stereo}
buffers LISTofBUFFER

(Errors: Windav, Access, Value)

If the windaw is not multi-buffered, aAccesserror will be generated. The only multi-buffer attribute
that can be explicitly set igpdate_hint Rather than hae a pecific request to set this attribute, a
generic set request is provided to allfr future expansion:

SetMultiBufferAttributes
w_id :WINDOW
vaue_mask BITMASK
vaue_list :LISTofVALUE

(Errors: Windav, Match, Value)

If the windaw is not multi-buffered, aMatch error will be generated. The following attributes are
maintained for each buffer of a multi-buffered window:

window : WINDOW
event_mask SETofEVENT
index : CARD16

side :{Mono,Left,Right}

windowindicates the windw this buffer is associated witlevent_maslspecifies whichwents, rele-
vant to buffers, will be sent back to the client via the associated buffer ID (initiallyentseare
selected).indexis the list position (0, 1, ...) of the buffesideindicates whether this buffer is associ-
ated with the left side or right side of a stereo wimd&or non-stereo windows, this attribute will be
set toMono. These attributes can be queried with the following request:

GetBufferAttributes
buffer :BUFFER
=
window : WINDOW
event_mask SETofEVENT
index : CARD16
side :{Mono,Left,Right}

(Errors: Buffer Value)

The only buffer attribute that can be explicitly setvent_mask The only @ents that are valid are
Exposeand the nevClobberNotify andUpdateNotify event (see Events section befp A Value
error will be generated if arvent not selectable for a buffer is specified in eenemask. Rather
than hae a pecific request to set this attribute, a generic set request is providedwdoalfature
expansion:

SetBufferAttributes
buffer :BUFFER
vaue_mask BITMASK
vaue_list :LISTofVALUE

(Errors: Buffer Value)

Clients may want to query the server about basic multi-buffer and stereo capability on a per screen
basis. Thdollowing request returns a large list of information that would most likely be read once
by Xlib for each screen, and used as a data base for other Xlib queries:

GetBufferInfo

root :WINDOW
=>
info : LISTOfSCREEN_INFO

WhereSCREEN_INFO andBUFFER_INFO are defined as:

SCREEN_INFO [normal_info : LISTofBUFFER_INFO,
stereo_info : LISTOfBUFFER_INFO]

BUFFER_INFO J[visual :VISUALID,
max_buffers : CARD16,
depth ‘CARDS]

Information rgyarding multi-buffering of normal (mono) windows is returned intloemal_infolist.
Thestereo_infdist contains information about stereo wimgo If thestereo_infdist is empty,
stereo windows are not supported on the screema¥ buffergs zero, the maximum number of
buffers for the depth and visual is a function of the size of the createdwvandiocurrent memory
limitations.

The following request returns the major and minor version numbers of this extension:

GetBufferVersion
=
major_number CARDS8
minor_number CARDS8

The version numbers are an escape hatch in case future revisions of the protocol are.nbtessary
general, the major version would increment for incompatible changes, and the minor version would
increment for small upward compatible changes. Barring changes, the major version will be 1, and
the minor version will be 1.

Events

All events normally generated for single-buffered windows are also generated for multi-buffered win-
dows. Mostof these gents (ie:ConfigureNotify) will only be generated for the windoand not for
each buffer These eents will return a winde ID.

Exposeevents will be generated for both the windand ary buffer afected. Whenhis e/ent is
generated for a buffethe sameeent structure will be used but a buffer ID is returned instead of a
window ID. Clients,when processing theseeats, will knov whether an ID returned in ament

structure is for a winde or a huffer by comparing the returned ID to the ones returned when the win-
dow and buffer were created.

GraphicsExposureandNoExposureare generated using whegeID is specified in the graphics
operation. Ifa window ID is specified, the eent will contain the windw ID. If a kuffer ID is speci-
fied, the gent will contain the buffer ID.

In some implementations, moving a wimdover a multi-buffered windev may cause one or more of
its buffers to geteerwritten or become unwritablelo dlow a dient drawing into one of these
buffers the opportunity to stop drawing until some portion of the buffer is writable, the following
evant is added:

ClobberNotify
buffer : BUFFER
state {Unclobbered,PartiallyClobbered,FullyClobbered}

The ClobberNotify event is reported to clients selecti@obberNotifyon a buffer When a buffer

that was fully or partially clobbered becomes unclobberedyant @ith Unclobbereds generated.
When a buffer that was unclobbered becomes partially clobberederarméth PartiallyClobberedis
generated. Whea huffer that was unclobbered or partially clobbered becomes fully clobbered, an
event with FullyClobbereds generated.

ClobberNotify events on a gien buffer are generated before aByposeevents on that bufferut it
is not required that aClobberNotify events on all buffers be generated beforeEaiboseevents on
all buffers.

The ordering oClobberNotify events with respect t¥isibilityNotify events is not constrained.

If multiple buffers were used as an image FIFO between an image server and the X display server,
then the FIFO manager woulddiko know when a buffer that was previously displayed, has been
undisplayed and updated, as the side effect§playlmageBuffersrequest. Thisllows the FIFO
manager to load up a future frame as soon as a buffer beceagitalsle. To support this, the follow-

ing event is added:

UpdateNotify
buffer : BUFFER

The UpdateNotify event is reported to clients selectibipdateNotifyon a buffer Whenever a buffer
becomesipdated(e.qg. its update action is performed as part DisplaylmageBuffersrequest), an
UpdateNotify event is generated.

Errors
The following error type has been added to support this extension:
Buffer A value for a BUFFER argument does not name a defined BUFFER.

-10 -

Double-Buffering Normal Windows
The following pseudo-code fragment illustratesvhio create and display a double-buffered image:

/*

* Create a normal window
*/

CreateWindow(W...)

/*

* Create tvo image bufers. Assumaefter displaybuffer

* contents become "undefined". Assume we will "frequently”
* update the displayAbort if we dont get two buffers,

*

n = CreatelmageBuffers(WWBO0,B1], Undefined, Frequent)

if (n I=2) <abort>

/*

* M ap windav to the screen
*

MapWindow(W)

/*

* Draw images using alternate buffers, displagre
*1/10 of a second. Note we ava1 first so it will
*"pop" on the screen

*

while animating

{
<draw picture using B1>
DisplaylmageBuffers([B1], 100, 0)
<draw picture using BO>
DisplaylmageBuffers([B0], 100, 0)

}

/*

* Strip image buffers and lga window with
* contents of last displayed image buffer.
*

DestroylmageBuffers(W)

-11 -

Multi-Buffering Normal Windows

Multi-buffered images are also supported by these requests. The following pseudo-code fragment
illustrates hov to create a a multi-buffered image and cycle through the images to simulate a movie

loop:
/*
* Create a normal window
*/
CreateWindow(W...)

/*

* Create 'N’ image buérs. Assumafter displaybuffer

* contents are "untouched". Assume we will "frequently"

* update the displayAbort if we dont get all the buffers.

*

n = CreatelmageBuffers(WBO0,B1,...,B(N-1)], Untouched, Frequent)
if (n = N) <abort>

/*

* M ap windav to screen
*

MapWindow(W)

/*
* Draw each frame of movie one per buffer
*
foreach frame
<draw frame using B(i)>

/*
* Cycle through frames, one frameegy 1/10 of a second.
*
while animating
{
foreach frame
DisplaylmageBuffers([B(i)], 100, 0)

-12 -

Stereo Windows

How stereo windows are supported on a server is implementation depeAdemter may contain
specialized hardware that allows left and right images to be toggled at field or frame rates. The
stereo affect may only be penread with the aid of special viewing glasses. Tdigplayof a stereo
picture should be independent ofahoften the contents of the picture angdatedoy an application.
Double and multi-buffering of images should be possilijerdéess of whether the image is dis-
played normally or in stereo.

To achieve this goal, a simple extension to normal windows is suggested. Stereo windows are just

like normal windows except the displayed image is made up of a left image buffer and a right image
buffer. To create a stereo windg a dient makes the following request:

CreateStereoWindow
parent WINDOW
w_id :WINDOW
left, right : BUFFER
depth ‘CARDS8
visual :VISUALID or CopyFromParent
X,y tINT16

width, height : INT16
border_width INT16
vaue_mask BITMASK
vaue_list :LISTofVALUE

(Errors: Alloc, Color Cursot Match,
Pixmap, Value, Window)

This request, modeled after tBeeateWindow request, adds just twnew parametersteft andright.

For stereo, it is essential that one can distinguish whethenaapreration is to occur on the left

image or right image. While an internal mode couldehizeen added to achie tis, using two

buffer ID’s dlows clients to simultaneously build up the left and right components of a stereo image.
These IDs dways refer to (are an alias for) the left and right image buffers that are cudiatly

played

Like normal windows, the winde ID is used wheneer a window management operation is to be
performed. Vihdow queries would also return this winddD (eg QueryTree) as would most

evants. Like the windav ID, the left and right buffer I3’ each hae their own &ent mask. Theg can

be set and queried using tBet/GetBufferAttributes requests.

Using the winda ID of a gereo windav in a daw request (egGetimage) results in pixels that are
undefined Possible semantics are that both left and right images get drawn, or just a single side is
operated on (existing applications willMeato be e-written to explicitly use the left and right buffer
ID’s in arder to successfully create, fetch, and store stereo images).

Having an expliciCreateStereoWindowrequest is helpful in that a server implementation will
know from the onset whether a stereo wiwds desired and can return appropriate status to the
client if it cannot support this functionality.

Some hardware may support separate stereo and non-stereo modes, perhaps with different vertical
resolutions. Br example, the vertical resolution in stereo mode may be half that of hon-stereo mode.
Selecting one mode or the other must be done through some means outside of this extension (eg: by
providing a separate screen for each hardware display mode). The screen attributes (ie: x/y resolu-
tion) for a screen that supports normal windows, may differ from a screen that supports stereo win-
dows; howeer, dl windows, rejardless of type, displayed on the same screen musttha same

screen attributes (ie: pixel aspect ratio).

If a screen that supports stereo windows also supports normal windows, then the images presented to
the left and right eyes for normal windows should be the same {ie rhatereo offset).

-13 -

Single-Buffered Stereo Windows
The following shows he to create and display a single-buffered stereo image:
/*
* Create the stereo windp map it the screen,
* and drav the left and right images
*
CreateStereoWindow(W, R, ...)

MapWindow(W)

<draw picture using L,R>

-14 -

Double-Buffering Stereo Windows

Additional image buffers may be added to a stereo wirtdalow double or multi-buffering of
stereo images. Simply use the eeatelmageBuffersrequest. Een numbered buffers (0,2,...)
will be left bufers. Oddnumbered buffers (1,3,...) will be right ferfs. Displayabletereo images
are formed by consecué left/right pairs of image bidrs. For example, (buffer[0],buffer[1]) form
the first displayable stereo image; (buffer[2],buffer[3]) the next; and so on.

The CreatelmageBuffersrequest will only create pairs of left and right image buffers for stereo win-
dows. Byalways pairing left and right image buffers togetherplementations might be able to per-
form some type of optimization. If an odd number of buffers is specifiédlug error is generated.

All the rules mentioned at the start of this proposal still apply to the image buffers supported by a
stereo windw.

To dsplay a image buffer pair of a multi-buffered stereo image, either the left buffer ID or right
buffer ID may be specified in@isplaylmageBuffersrequest, but not both.

To double-buffer a stereo window:

/*

* Create stereo windoand map it to the screen
*

CreateStereoWindow(VI, R, ...)

/*

* Create tvo pairs of image budérs. Assumafter display,

* buffer contents become "undefined". Assume we will "frequently"
* update the displayAbort if we did get all the buffers.

*

n = CreatelmageBuffers(WLO0,R0,L1,R1], Undefined, Frequently)

if (n I=4) <abort>

/*

* M ap windav to the screen
*

MapWindow(W)

/*

* Draw images using alternate buffers,

* display every 1/10 of a second.

*

while animating

{
<draw picture using L1,R1>
DisplaylmageBuffers([L1], 100, 0)

<draw picture using LO,R0>
DisplaylmageBuffers([LO], 100, 0)

-15-

Multi-Buffering Stereo Windows

To ¢ycle throughN stereo images:
/*
* Create stereo window
*
CreateStereoWindow(W, R, ...)

/*

* Create N pairs of image tfefs. Assumafter display,

* buffer contents are "untouched”. Assume we will "frequently
* update the displayAbort if we dont get all the buffers.

*

n = CreatelmageBuffers(WLO,RO0,...,L(N-1),R(N-1)], Untouched, Frequently)
if (n = N*2) <abort>

/*

* M ap windav to screen
*

MapWindow(W)

/*
* Draw the left and right halves of each image
*
foreach stereo image
<draw picture using L(i),R(i)>

/*
* Cycle through imagesvery 1/10 of a second
*
while animating
{
foreach stereo image
DisplaylmageBuffers([L(i)], 100, 0)

Protocol Encoding

-16 -

The official name of this extension is "Multi-Befing". Whenthis string passed QueryExten-
sionthe information returned should be interpreted as follows:

major-opcode Specifies the major opcode of thidension. Thdirst byte of each extension
request should specify this value.

first-event
first-error

Specifies the code that will be returned wiobberNotify events are generated.
Specifies the code that will be returned wBeiffer errors are generated.

The following sections describe the protocol encoding for this extension.

TYPES
BUFFER_INFO

4 VISUALID
2 CARD16
1 CARDS8

1

SETofBUFFER_EVENT

#x00008000
#x02000000
#x04000000

EVENTS
ClobberNotify

xefirst-event

CARD16
BUFFER

P ANRP R

0 Unclobbered
1 PartiallyClobbered
2 RullyClobbered

23

UpdateNotify

1 first-event1
1

2 CARD16

4 BUFFER
24

ERRORS

Buffer

1 0

1 sefirst-error
2 CARD16

4 CARD32

2 CARD16

1 CARDS

visual
max-tuffers
depth
unused

Exposure
ClobberNotify
UpdateNotify

code

unused
sequencaumber
luffer

date

unused

code

unused
sequencaumber
luffer

unused

Eror

code
sequencaumber
badresource id
minoropcode
majoropcode

21

-17 -

unused

REQUESTS
GetBufferVersion
femajor-opcode

0
1

| MNP P

1

CARD16
0
CARDS8
CARDS8

N R BANRE R

2

CreatelmageBuffers

sfemajor-opcode
1

3+n

WINDOW

P ANRE R

0 Undefined
1 Background
2 Untouched
3 Copied

0 Frequent
1 Intermittent
2 Satic

BN
>

LISTofBUFFER

l

1

CARD16
0
CARD16

NNPANPEP P

2

DestroylmageBuffers

1 sfemajor-opcode
1 2

2 2

4 WINDOW

DisplaylmageBuffers

femajor-opcode
3
2+n
CARD16
CARD16

n LISTofBUFFER

A NNNPFPPFE

-18 -

major-opcode
ninor-opcode
request length

Reply

unused
sequencaumber
reply length
majorversion number
minorversion number
unused

major-opcode
ninor-opcode
requestength
wid

update-action

update-hint

unused
luffer-list

Reply

unused
sequencaumber
reply length
numbeibuffers
unused

major-opcode
ninor-opcode
request length
wid

major-opcode
ninor-opcode
requestength
min-delay
max-delay
luffer-list

SetMultiBufferAttributes

1 *emajor-opcode
1 4

2 3+n

4 WINDOW

4 BITMASK
#x00000001 update-hint

4n LISTofVALUE

VALUEs

1
0 Frequent
1 Intermittent
2 Satic

GetMultiBufferAttributes

femajor-opcode
5

2

WINDOW

1
CARD16

n
CARD16

PNBRNRER | ANBRPR

0 Undefined
1 Background
2 Untouched

3 Copied
1
0 Frequent
1 Intermittent
2 Satic
1
0 Mono
1 Sereo
19

4n LISTofBUFFER

-19 -

major-opcode
ninor-opcode
requestength
wid

value-mask (has n bits set to 1)

value-list

update-hint

major-opcode
ninor-opcode
request length
wid

Reply

unused
sequencaumber
reply length
displayed-bffer
update-action

update-hint

window-mode

unused
luffer list

SetBufferAttributes

1
1
2
4
4
4n

VALUEs
4

*emajor-opcode
6

3+n

BUFFER

BITMASK
#x00000001 went-mask

LISTofVALUE

SETofBUFFER_EVENT

GetBufferAttributes

I—\l\)bbbl\)l—\l—\l AN PR P

13

sfemajor-opcode
7

2

BUFFER

1

CARD16

0

WINDOW
SETofBUFFER_EVENT
CARD16

0 Mono
1 Left
2 Right

GetBufferinfo

NNRARNRR | RNRP

sfemajor-opcode
8

2

WINDOW

1

CARD16
2(n+m)

n

m

LISTofBUFFER_INFO
LISTofBUFFER_INFO

-20 -

major-opcode
ninor-opcode
requestength
lwffer

value-mask (has n bits set to 1)

value-list

gent-mask

major-opcode
ninor-opcode
request length
luffer

Reply
unused
sequencaumber
reply length
wid
gent-mask
index
dde

unused

major-opcode
ninor-opcode
request length
root

Reply

unused
sequencaumber
replylength

rumber BUFFER_INFO in normal-info
rumber BUFFER_INFO in stereo-info

unused
normal-info
stereo-info

CreateStereoWindow

femajor-opcode
9
11+n

CARDS8
WINDOW
WINDOW
BUFFER
BUFFER
INT16
INT16
CARD16
CARD16
CARD16

NNNNNNBAMRMIMDMNPRPWONPR PR

0 CopyFromParent
1 InputOutput
2 InputOnly

4 VISUALID
0 CopyFromParent

4 BITMASK

encodings a the same

as for CreateWindow

4n LISTofVALUE

encodings a the same

as for CreateWindow

ClearimageBufferArea

femajor-opcode
10

5

WINDOW

INT16

INT16

CARD16
CARD16

P WNNNNBAEANRE P

BOOL

-21 -

major-opcode
ninor-opcode
requeskength
unused
depth
wid

parent

left

right

X

y

width

height
bordeswidth
dass

visual

value-mask (has n bits set to 1)

value-list

major-opcode
minor-opcode
request length
buffer

X

y

width

height

unused
exposures

