The X Keyboar d Extension:
Protocol Specification

Protocol V ersion 1.0 / Document Re vision 1.0
X Consor tium Standar d

X Version 11, Release 6.4

Erik Fortune
Silicon Graphics, Inc.

Copyright © 1995, 1996 X Consortium Inc.

Copyright © 1995, 1996 Silicon Graphics Inc.
Copyright © 1995, 1996 Helett-Packard Compan
Copyright © 1995, 1996 Digital Equipment Corporation

Permission is hereby granted, free of geato agy person obtaining a cgf this softvare and
associated documentation files (the “Saiite/), to deal in the Softare without restriction,
including without limitation the rights to use, gopnodify, mege, publish, distribte, sublicense,
and/or sell copies of the Softme, and to permit persons to whom the Saifens furnished to do
S0, subject to the folming conditions:

The abwee copyright notice and this permission notice shall be included in all copies or substantial
portions of the Softare.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A RRTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE X CONSORIUM BE LIABLE FOR ANY CLAIM,
DAMAGES OR QHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FFOM, OUT OF OR IN CONNECTION WITH THE SOFTAMRE OR
THE USE OR QHER DEALINGS IN THE SOFT\XRE.

Except as contained in this notice, the names of the X Consortium, Silicon Graphics Inc.,
Hewlett-Packard Compay and Digital Equipment Corporation shall not be used iewiding or
otherwise to promote the sale, use or other dealings in thisé@eftvithout prior written authori-
zation.

Acknowledgments

| am grateful for all of the comments and suggestionsé heceved over the years. | could not
possibly list @eryone who has helpedjta fev people hae gone well abee and bgond the call
of duty and simply must be listed here.

My managers here at SGlorh Raquin (nev at Netscape) and Gianni Mariani werenslerful.
Rather than insisting on some relaty quick, specialized proprietary solution to tleghoard
problems we were kang, both Dm and Gianni understood the importance of solving them in a
general vy and for the community as a whole. Thasva dificult position to tak and it vas

even harder to maintain when the scope of the projgreled bygond arything we imagined

was possible. Gianni anebih were unflagging in their support and their desire to “do the right
thing” despite the schedule anddget pressure that intenved from time to time.

Will Walker, at Digital Equipment Corporation, has been a longtime supporter of XKB. His help
and input vas essential to ensure that tlkeeasion as a whole fits andvks together well. His
focus was AccessX it the entire etension has benefited from his input and haodaWWithout
his unflagging good cheer and willingness to lend a hand, X&Bdwot be where it is today

Matt Landau, at the X Consortium, stood behind XKB during some tough spots in the release and
standardization process.iibut Matt’s support, XKB wuld likely not be a standard for a long

time to come. When it became clear that we had too much to do for the amount of time we had
remaining, Matt did aantastic job of finding people to help finish therkvneeded for standard-
ization.

One of those peopleas Geage Sachs, at hidett-Packard, who jumped in to help out. His help
was essential in getting thetension into this release. AnotheasvDonna Corerse, who helped
figure out hav to explain all of this stufto someone who hadrad their headusied in it for
years.

Amber Benson and Gary Ak were simply phenomenal. Fhemped into a huge and compli-
cated project with good cheer and unbaltde enegy. They were “up to speed” and contuting
within days. | stand invee of the amount that tiienanaged to achre in such a short time.
Thanks to Gary and Amheahe XKB library specification is aavk of art and a thousand times
easier to use and more useful thanauld otherwise be.

| truly cannot &press my gratitude to all of you, without whom thisuld not hae been possible.
Erik Fortune

Silicon Graphics, Inc.
5 February 1996

The X Keyboard Extension Protocol Specification

O T O 1V =T o SO ...
1.1 Conventions and ASSUMPLIONS.covcuriiiiriireeeeeeessesee e e e e e e e e s e s snnrnrrrereeeeeeeenas 1.
2.0 Keyboard STAte........ccoueiiiiiuiiiiiie e 2.
21 Locking and Latching Modifiers and GrOUPS...........ccuuveveriiiiieeeiiiiieeesniiiee e 2.
2.2 Fundamental Components of XKBayboard State..........cccveeeeeviiiiiiiiieieeeee e 2.
2.2.1 Computing Efective Modifier and Group..........ccceeeeiiiieie e 3.
2.2.2 Computing A State Field from an XKB State.............ccccccvvvviiireeieeeriniinnns 3.
2.3 Derived Components of XKB &/board State...............ccooieiiiiiiiiiiiiiiieeeeii 3....
2.3.1 Sener Internal Modifiers and Ignore Locks B&H@A..............cccccvvveeeeeeeeennn 4.
2.4 Compatibility Components ofégboard State............cceeveiiiiiiieiiiiiiiieeee e 4...
3.0 Virtual MOGIfIEIS.....coeeeeeiiieecee e e e e e e e e e 5.
3.1 MoOdifier DEfINITIONS......eeiieiiieei e e e e e e e e G........
3.1.1 Inactive Modifier DefinitioNS..........ooocuiiiiiiieiiee e I.....
3.2 Virtual Modifier MapPinNgc.veeeeeiiiieeee ittt e T.......
4.0 Global Keyboard Controls............cccceeeiiiiiiiieeeiiiicieeeiciess e e eeeeeeeeeeesnenne
4.1 The RepeatBys CONTIOL.........ccuiiiiiiiiiie e T
4.1.1 The PerkoyRepeat CONtral.........ccoooiiiiiiiiiiiiiiiiiiie e 8......
4.1.2 Detectable AULOrEPEAL........cccuuuiiiiiiiiie e B
4.2 The SIAVKEYS CONTIOL.....ciiiiiiiieiiiiee et = T
4.3 The BounCel€ys CONIOL.........cooi i e e e 8.
4.4 The SCKRKEYS CONLIOL.....uiiiiiiiiiiicie e e e 9.
4.5 The MOUSEKYS CONLIOL......ccoiiiiiieiiie e [R
4.6 The MoUSeYSACCElI CONLIOL......euiiiiiee e 10.....
4.6.1 Relative POINter MOION..........ciiiiiiiiiee i 10....
4.6.2 Absolute POINter MOLION..........cuuiiiiiiiiiie e 10....
4.7 The ACCESSXIEYS CONIIOL......vviiiiiiiiiiieiee et e e 10.....
4.8 The AccessSXIMEOUL CONIIOL..........uuiiiiiiiiei i e e 11....
49 The AccessXFeedback CONtrOL..........oiiiiiiiiiiiiiie e 11....
4.10 The Owerlayl and O8rlay2 CONtrolS..........cccoeieiiiiiiiiieeeeeeee e 12...
411 “Boolean” Controls and The EnabledControls Contral..........cccccceeeeiiiiiiiiiiiennnen. 12
4.12 Automatic Reset of Boolean COoNtrolS........c.eeveiiiiiiiiiiiiiiiee e 12...
5.0 Key Event ProCcessing @WVIBN........ccoooieeeiiiiiiiiiiiiiiiieiae e eeeeeeeeeanneens 13...
6.0 Key Event Processing in the SerV...........cccccceeiiiiiiiiiiiiiiiiieeeeeee e 14...
6.1 Applying Global CoNtrolS...........cccuviiiiiiiieee e e e e ennees 14....
6.2 (=Y = T T /o) 14.......
6.3 KBY ACTIONS. ...ttt etttk e e et e e e st e e e e s aabe e e e e s abbeee e e e 15.......
6.4 Delivering a Key or Button Eentto a Client.........cveveeeiiiiicciiiieccce e 22..
6.4.1 XKB Interactions Vith Core Protocol Grahs............ccccceevviiieieiiniienee e, 22,
7.0 Key Event Processing inthe Clent............cooiiie e 23...
7.1 Notation and BIMINOIOGY.......eeviiiiiiiiieiii e 23.....
7.2 Determining the K&ySym Associated with adg Event.........cccccccooovviviiiiiieeneeeeeennn, 24.
T.2. 1 KBY TYPBS ittt ettt e e e e et e e e e e 24......
7.2.2 Key SYMBOl MA.......ccoiiiiiieee e e e 25.....
7.3 Transforming the KySym Associated with adg Event.................ccooevvviiiinnn. 26
7.4 Client Map EXamPIE.....cooo et 27......

11/6/97 Protocol \érsion 1.0/Document Rision 1.0 TOC-1

The X Keyboard Extension Protocol Specification
8.0 SYMDOIIC NAIMES... .ot 28......
9.0 Keyboard INAICALOrS.cccoeiiieieeeec e 29......
9.1 Global Information About INAICALOIS.ceiiiiiiieiiiiee e 29...
9.2 PerIndicator INfOrMation.............eeiiiiiiiiiiie e 30.....
9.2.1 INAICAION MAPS. ..ceeiietiiie ettt e e 30......
10.0 Keyboard BellS........ccoooeiiiiiiiieeeeeeeee e 33......
10.1 Client Notification of BellS............uuuiiiiiiiiiiii e 33.....
10.2 Disabling Serer Generated BellS.............ooviiiiiiiiiiiii e 33....
10.3 Generating Named BellS.........cooi i 33.....
10.4 Generating Optional Named Bells...........cooiiiiiiiiii e 33....
10.5 Forcing a Sergr Generated Bell............oooiiiiiiiiiiiii s 34....
11.0 Keyboard GEOMEINY......uuuueiie e i i e eee e e e e s 34......
11.1 Shapes and OULINES........uuiiiiiiiiei et e e e e e e e e 35......
5 1< T3 1T L T PEPPT TR 35........
5O T I T To To =T PR PPT 36........
11.4 Keyboard Geometry EXamMPIE.......couiiiiiiiiiieeie et 31.....
12.0 Interactions Between XKB and the Core ProtocOl...........ccceeeeeevivvivienininnns 38.
12.1 Group Compatibility Map........uueeeeierieeeieeiiiiieeer e e e e e e e s 38.....
12.1.1 Setting a Bssve Grab for an XKB State.........ccccccveeeeiiiiiiiiiiiiiieeeee e 39.
12.2 Changing the Kyboard Mapping Using the Core Protocol............ccccvveeevieieeennnnns 39
12.2.1 Explicit Keyboard Mapping COMPONENLS..........cooviuvriiiiiiieieeeeieeriiiieeeeen 39.
12.2.2 Assigning SYMbDOIS @ GrOUPS.....cooiuieiiiiiiieeee et 40...
12.2.3 Assigning pes D Groups of Symbols for agl............ccccevveeeiiiiiiiiininnn. 41
12.2.4 AsSIgning ACtIONS @ KEYS......oiieiiieieiiiieeeeeeeeeeeeeeeeeeeevsns e A2
12.2.5 Updating Eerything EISe...........cccoiiiiiiiiieeee e 43....
12.3 Effects of XKB on Core Protocol EWMtS.............ceeiiiiiiiiiiiiiiiiieeeeeee e 43...
12.4 Effect of XKB on Core Protocol ReqUESLS.........ccccvvvvvevieeeeeiiiiiiiieeeeeee e 44
125 Sending ENtS 10 CHENLS......uuuuiiiii i 45.....
13.0 The Serer Database of &/board COmMpPONENtS............ccoecvvviiiiiiiiiiiiieceeenn. 45.
R 0 @0 o o o] 1= o 1 V=V 0 0= 45......
13.2 Partial Components and Combining Multiple Components.............cccceeeeeeeeeennnnns 46
13.3 ComPONENt HINES......coiiiiiiiiiiieiiiiieee et e e siiere e e snneee e s ssenneeeessnneeees e Bl
13.4 Keyboard COMPONENTS.....cccceeiiiiiiiiiiieiieeeeeee e s ssssninereeeeeseeessssssnsnsnnneesseesesesensnnnss Bilennnn,
13.4.1 The Keycodes COMPONENL............cocccvvvrieireieeeeeeiesscienieeneeeeeeeeesennnnnennnn il
13.4.2 The TYPeS COMPONENL....ciiiieeiiiiccctiiiiie e e e e e e e e s e s s e e e e e e e e e s s e e nnnrnreeeeeees 47.....
13.4.3 The Compatibility Map COMPONENL.........cccccviiiieeiieee e e e 48..
13.4.4 The Symbols COMPONEIL..........uuviiiiiiieeeeeeiieciiiiee e e e s e e ee s 48....
13.4.5 The Geometry COMPONENL.......ccoviuviiieiiiiiiieeeiiiieeeesniieeeeesnireeeeesneneeeee e 480
13.5 CoMPIete KoYMaPS. ..ottt 49......
14.0 Replacing the Kyboard “On-the-Fly"...........ccooiiiiieeee . 4O
15.0 Interactions Between XKB and the X Input Extensian...............ccccccevvvvnnne 49
15.1 Using XKB Functions with Input Extensionsfboards............cccceeeeeiiiniiiiiieeeeeenn. 50.
15.2 Pointer and D@Ce BUON ACHONS..........uuuiiiiiiiiieeeie e 50....
15.3 Indicator Maps for EXtENSION DREES...........cccvviiiiieieiee e h1...
15.4 Indicator Names for EXteNSION EES........ccooiiiiiiiiiiiiiiiiiieie e 51..
11/6/97 Protocol \érsion 1.0/Document Rision 1.0 TOC-2

The X Keyboard Extension

16.0 XKB ProtoCOlI REQUESTS.......ccceeeieiiiieiieeeiiiie s 51.....
TR R o 1 (o] £ ST PP PP PP PP PPPPPPPPPPN 51........
16.1.1 Keyboard ErTOrS.........uuuueiiiiieeeiie ittt e e e e s s s e e e e e e e e e s e e nnnnnsaneee e 52.....
16.1.2 Side-EfeCtS Of EITOIS....ccueiiiiiiiiiie e 52....
16.2 COMMON TPES. .. i e e e e e e e e e e e et et e e e e e b e e bbb s 52.......
L16.3 REQUESTES.. ...ttt ettt e e e e et e e e e n e 56........
16.3.1 Initializing the X Keyboard EXtENSION.........cooccuuiiiiiiiiiiie e 56..
16.3.2 SeleCtiNng ERNIS.....oiiiiiiiiiiiiee e 57.....
16.3.3 Generating Namedégboard BellS............coooiiiiiiiiiiiiiiiee e 58..
16.3.4 Querying and Changingafboard State............cccocuvvereiiiiiiiiiiniiieee e 59..
16.3.5 Querying and Changingeagboard Controls............c.ccceveeiiiiiiriiiiiiineeee 61.
16.3.6 Querying and Changing thesfboard Mapping.........ccccceeeviveveeinniieeeennenen. 66
16.3.7 Querying and Changing the Compatibility Map............cccccovvveeeeiiiiieeennns 72
16.3.8 Querying and Changing INdIiCAtOrS.............ueeeviiiiieeiiiiiiee e 74..
16.3.9 Querying and Changing Symbolic Names..........ccoccoeveeiiiiiiieinniieee e, 78.
16.3.10 Querying and Changingagboard GEometry..........cccoocuveeeeiiiiieeeeiiiiieeeenas 82.
16.3.11 Querying and Changing R&lient FIags........cccoocvevieiiiiiiiiiiiiieiee e 84..
16.3.12 Using the Semr’s Database of &/board Components...........c..cccveveerinneen. 85
16.3.13 Querying and Changing Input EXtENSIOMVIBeS............ccvveeeiiiiiieeeiiiiieeeens 89
16.3.14 Dehugging the X Keyboard EXtENSION...........eevieiiiiiiieiiiiiiee e 92..
G R YT o 1 (N a3........
16.4.1 Tracking Keyboard Replacement............cvvvveeeeiiiiiciiiiieieneee e 93...
16.4.2 Tracking Keyboard Mapping Changes........ccccccveeeeeiiiiiciiiineeeeeee e 95..
16.4.3 Tracking Keyboard State Changes..........ccccvvvieeiiiee e 96...
16.4.4 Tracking Keyboard Control Changes........cccccvveeeeeiiivciviiiieeeee e a97..
16.4.5 Tracking Keyboard Indicator State Changes.........cccccvvveeeviviicciviiiineneeeeenn, 98.
16.4.6 Tracking Keyboard Indicator Map Changes..........cccccvviveeeeieeeie i, 98.
16.4.7 Tracking Keyboard Name ChangesS.......ccuveeeeiiiiiciiiiiiiiieieeee e e s ssesesnveeeeeens 99..
16.4.8 Tracking Compatibility Map Changes.........ccccovvvereeee e, 100
16.4.9 Tracking Application Bell REQUESLS.........ccuvviriiiiieee e e 101
16.4.10 Tracking Messages Generated byHACtioNS.........covveeeeiiiiiiciiiiieieeeeeee, 102
16.4.11 Tracking Changes to AccessX State amfiK.........ccevvvreeerrviiiiivinineeereeennn. 102
16.4.12 Tracking ChangesoTEXtension DECES........cccvvveeieeeeeeeeeiicriiiieeeeee e e 103

Appendix A. Default Symbol Transformations A-1

1.0 Interpreting the Control Modifier..............ouvuviiiiiiiiiiee e A:l.
2.0 Interpreting the LOCk MOdIfi€r............coiiiiiiiiiiii e, A-l.
21 Locale-Sensitie CapitaliZation...........c..eeeeiiiiiiiieiiiiii e A:l.
2.2 Locale-Insensitie CapitaliZation.............cvveeeeiiiiiiiiiiieeere e A-l..

2.2.1 Capitalization Rules for Latin-1@SYMS.......cccceeeviiiiiiiiiiiiireeeeeeeesensnennns A:2

2.2.2 Capitalization Rules for Latin-2@SYMS........cccceeviiiiiiiiiieiieereeeee s eesnennns A:2

2.2.3 Capitalization Rules for Latin-3@SYMS.........cceeeviiiiiiiiiiiiirerieeeeeseesennns A:2

2.2.4 Capitalization Rules for Latin-4@¢SYMS.......c.cceeeviiiiiiiniiiiieereeeeeeseeseennns A:2

2.2.5 Capitalization Rules for Cyrillic BySyms.........ccccccvvieeivieeeeiiiiiciiieeeeeee A:3

2.2.6 Capitalization Rules for GreekefSYms.........cccccvvveieeeeee e A:3

2.2.7 Capitalization Rules for OthergfSyms...........cccccvvviieeeeeeeee e, A4

Appendix B. Canonical Key TypesB-1

1.0

Protocol Specification

CanoNICal KoY TYPES....coeeeiiiiiicieei et e e e e e e e e e e e e e B-1...
1.1 The ONE_LEVEL Ky TYPE.....oeeiiriieiiiiieieisiseieieieeie s B-1...

11/6/97 Protocol \érsion 1.0/Document Rision 1.0 TOC-3

The X Keyboard Extension Protocol Specification

1.2 The TWO_LEVEL KEY TYPE....uiiiiiiie ettt et e stee et e s stee e snaee e nnreeesnnee e B-1...
1.3 The ALPHABETIC KBY TYPE...uuiiiiiiiiiiee e s ciiete e ettt e e s st e e s sitaee e e s sntaaaa e s anraeaae e B-1...
1.4 The KEYFAD KEY TY P ..uuttiiiiiieiee e e i s i eitetieeee et e e e e e e s sssetee e e e e e e e e e s e s nnnnennneeenaeeeees B-1...

Appendix C. New KeySyms C-1

1.0 NEW KB SYIMS .. it e e et e e e e e e aa e e eenan C-1....
1.1 KeySyms Used by the 1ISO9995 Standard..........ccccceeeeiiiiiiiiiiiieiiiiieieeeeeeeiiininn C-1
1.2 KeySyms Used to Control The Core POINtEL...........coocuveeiiiiiiiee e C-2
1.3 KeySyms Used to Changesfboard CoNntrols...........cceeeevveeeeeiiiiiciiiiiiieeeeee e C-2
1.4 KeySyms Used @ Control THe SEBuuuueiiiiiiieii i eee e C-3.
15 KeySyms for Non-Spacing DiacritiCalegs.............ccvevveiiiiiiiiiiiiiicieeec e C-3

Appendix D. Protocol Encoding D-1

1.0 SyntactiC COMENTIONS.cceiiiiiiiiittiie ettt e e e e e eeees D-1..
2.0 COMMON P PS.. ettt e et e e e e a e e ea e e D-2...
G T O = 1 (o] £ TR UPPPPTTRR D-7....
4.0 KEY ACHONS ...ttt e e e e e e e e e e e e e e D-8....
5.0 KeY BENaIOrS.....cooveeiieiiiiee e D-12.
6.0 REQUESTES ...t D-13..
7.0 EVBNIS . eeeaa e e aeeed D-32...

11/6/97 Protocol \érsion 1.0/Document Rision 1.0 TOC-4

The X Keyboard Extension Protocol Specification

1.0 Overview

This extension provides a number of new capabilities and controls for text keyboards.

The core X protocol specifies the ways that$hef t , Cont r ol andLock modifi-

ers and the modifiers bound to tMede_switch or Num_Lock keysyms interact to

generate keysyms and characters. The core protocol also allows users to specify that a
key affects one or more modifiers. This behavior is simple and fairly flexible, but it

has a number of limitations that make it difficult or impossible to properly support

many common varieties of keyboard behavior. The limitations of core protocol sup-
port for keyboards include:

» Use of a single, uniform, fotsymbol mapping for alléyboard keys males it dificult
to properly supportdyboard werlays, PC-style brealeks or keyboards that comply
with 1ISO9995 or a host of other national and international standards.

» Use of a modifier to specify a secorgyhoard group has sidefetts that wreak hac
with client grabs and X toolkit translations and limit us to t®yboard groups.

» Poorly specified lockingdy behaior requires X serers to look for a fe “magic” key-
syms to determine whickeks should lock when pressed. This leads to incompatibili-
ties between X seers with no vay for clients to detect implementationfdiences.

» Poorly specified capitalization and control bébarequires modifications to X library
source code to supportme&haracter sets or locales and can lead to incompatibilities
between system-wide and X library capitalization béra

» Limited interactions between modifiers specified by the core protoca maky com-
mon keyboard behaors difficult or impossible to implementoF example, there is no
reliable way to indicate whether or not using shift should “cancel” the lock madifier

» The lack of ag explicit descriptions for indicators, most modifiers and other aspects of
the keyboard appearance requires clients that wish to clearly describeyteakd to a
user to resort to a mishmash of prior Whexge and heuristics.

This extension makes it possible to clearly and explicitly specify most aspects of key-
board behavior on a per-key basis. It adds the notion of a numeric keyboard group to
the global keyboard state and provides mechanisms to more closely track the logical
and physical state of the keyboard. For keyboard control clients, this extension pro-
vides descriptions and symbolic names for many aspects of keyboard appearance and
behavior. It also includes a number of keyboard controls designed to make keyboards
more accessible to people with movement impairments.

The X Keyboard Extension essentially replaces the core protocol definition of a key-
board. The following sections describe the new capabilities of the extension and the
effect of the extension on core protocol requests, events and errors.

1.1 Conventions and Assumptions
This document uses the syntactic conventions, common types, and errors defined in
sections two through four of the specification of the X Window System Protocol. This
document assumes familiarity with the fundamental concepts of X, especially those
related to the way that X handles keyboards. Readers who are not familiar with the
meaning or use of keycodes, keysyms or modifiers should consult (at least) the first
five chapters of the protocol specification of the X Window System before continuing.

11/6/97 Protocol \érsion 1.0/Document Rision 1.0 1

The X Keyboard Extension Protocol Specification

2.0

2.1

2.2

Keyboar d State

The core protocol description of keyboard state consists of righifiers (Shi f t ,
Lock, Cont r ol , andMbd1-Mod5). A modifier reports the state of one or modifier
keys, which are similar to qualifier keys as defined by the ISO9995 standard:

Qualifier ey A key whose operation has no immediatieet, kut which, for as long as it is
held davn, modifies the ééct of other kys. A qualifier lkey may be, for
example, a shift &y or a control ky.

Whenever a modifier key is physically or logically depressed, the modifier it controls
is set in the keyboard state. The protocol implies that certain modifier keys lock (i.e.
affect modifier state after they have been physically released) but does not explicitly
discuss locking keys or their behavior. The current modifier state is reported to clients
in a number of core protocol events and can be determined usiQgehg -

Poi nt er request.

The XKB extension retains the eight “real” modifiers defined by the core protocol but
extends the core protocol notionkef/board stateto include up to foukeysym goups
as defined by the 1ISO9995 standard:

Group: A logical state of adyboard preiding access to a collection of characters. A
group usually contains a set of characters which logically belong together and
which may be arranged onveeal shift lerels within that group.

For example, keyboard group can be used to select between multiple alphabets on a
single keyboard, or to access less-commonly used symbols within a character set.

Locking and Latc hing Modifier s and Gr oups

With the core protocol, there is no way to tell whether a modifier is set due to a lock or
because the user is actually holding down a key; this can make for a clumsy user-inter-
face as locked modifiers or group state interfere with accelerators and translations.

XKB adds explicit support for locking and latching modifiers and groups. Locked
modifiers or groups apply to all future key events until they are explicitly changed.
Latched modifiers or groups apply only to the next key event that does not change
keyboard state.

Fundamental Components of XKB K eyboar d State
The fundamental components of XKB keyboard state include:

The locled modifiers and group

The latched modifiers and group

The base modifiers and group (for whidykare plsically or logically devn)

The efective modifiers and group (the cumulatiefect of the base, logd and latched
modifier and group states).

» State of the core pointeuttons.

The latched and locked state of modifiers and groups can be changed in response to
keyboard activity or under application control usingXkéLat chLockSt at e

request. The base modifier, base group and pointer button states always reflect the log-
ical state of the keyboard and pointer and chamyein response to keyboard or

pointer activity.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 2

The X Keyboard Extension Protocol Specification

221

2.2.2

2.3

Computing Eff ective Modifier and Gr oup

The effective modifiers and group report the cumulative effects of the base, latched
and locked modifiers and group respectively, and cannot be directly changed. Note
that the effective modifiers and effective group are computed differently.

The effective modifiers are simply the bitwise union of the base, latched and locked
modifiers.

The effective group is the arithmetic sum of the base, latched and locked groups. The
locked and effective keyboard group must fall in the ra&geup1-G oup4, so they
are adjusted into range as specified by the gl@balipsW ap control as follows:

» IftheRedi r ect | nt oRange flag is set, the four least significant bits of the groups
wrap control specify the indeof a group to which all iligal groups correspond. If the
specified group is also out of range, allgdegroups map t& oupl.

» Ifthed anpl nt oRange flag is set, out-of-range groups correspond to the nearest
legal group. Effective groups lager than the highest supported group are mapped to the
highest supported group;fettive groups less tha® oupl are mapped t& oupl.

For example, a ky with two groups of symbols us€ oup?2 type and symbols if the
global efective group is eitheG oup3 or G oup4.

» If neither flag is set, group is wrapped into range using@ntaodulus. &r example, a
key with two groups of symbols for which groups wrap uSesupl symbols if the
global efective group iS<3r oup3 or G oup2 symbols if the global &kctive group is
G oup4.

The base and latched keyboard groups are unrestricted eight-bit integer values and are
not affected by th& oupsW ap control.

Computing A State Field fr om an XKB State

Many events report the keyboard state in a sisgtgte field. Using XKB, a state field
combines modifiers, group and the pointer button state into a single sixteen bit value
as follows:

» Bits 0 through 7 (the least significant eight bits) of tlieati’e state comprise a mask
of type KEYMASK which reports the state modifiers.

» Bits 8 through 12 comprise a mask of typd T BAASK which reports pointeruiton
state.

» Bits 13 and 14 are interpreted as a4t unsigned numericalue and report the state
keyboard group.

» Bit 15 (the most significant bit) is resed/and must be zero.

It is possible to assemble a state field from any of the components of the XKB key-
board state. For example, the effective keyboard state would be assembled as
described above using the effective keyboard group, the effective keyboard modifiers
and the pointer button state.

Derived Components of XKB K eyboar d State

In addition to the fundamental state components, XKB keeps track of and reports a
number of state components which are derived from the fundamental components but
stored and reported separately to make it easier to track changes in the keyboard state.
These derived components are updated automatically whenever any of the fundamen-
tal components change but cannot be changed directly.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 3

The X Keyboard Extension Protocol Specification

23.1

2.4

The first pair of derived state components control the way that passive grabs are acti-
vated and the way that modifiers are reported in core protocol events that report state.
The server uses ttger ver | nt er nal Modi fi ers, | gnoreLocksModifiers

andl gnor eGr oupLock controls, described in section 2.3.1, to derive these two
states as follows:

» The lookup state is the state used to determine the symbols associatedeywighemk
and consists of thefettive state minus arsener internal modifiers.

» The grab state is the state used to decide whether a parti@iatriggers a pasa
grab and consists of the lookup state minysraambers of the ignore locks modifiers
that are not either latched or logically depressed. If the ignore group locks control is
set, the grab state does not include thfeces of ag locked groups.

Server Internal Modifier s and Ignore Loc ks Beha vior
The core protocol does not provide any way to exclude certain modifiers from client
events, so there is no way to set up a modifier which affects only the server.

The modifiers specified in the mask of thet er nal Mods control are not reported

in any core protocol events, are not used to determine grabs and are not used to calcu-
late compatibility state for XKB-unaware clients. Server internal modifiers affect only
the action applied when a key is pressed.

The core protocol does not provide any way to exclude certain modifiers from grab
calculations, so locking modifiers often have unanticipated and unfortunate side-
effects. XKB provides another mask which can help avoid some of these problems.

The locked state of the modifiers specified in mask of greor eLockMods control

is not reported in most core protocol events and is not used to activate grabs. The only
core events which include the locked state of the modifiers in the ignore locks mask
are key press and release events that do not activate a passive grab and which do not
occur while a grab is active. If thgnor eG oupLock control is set, the locked

state of the keyboard group is not considered when activating passive grabs.

Without XKB, the passive grab set by a translation @.4.<KeyPr ess>space)

does not trigger if any modifiers other than those specified by the translation are set,
with the result that many user interface components do not react when either Num
Lock or when the secondary keyboard group are active. The ignore locks mask and the
ignore group locks control make it possible to avoid this behavior without exhaus-
tively grabbing every possible modifier combination.

Compatibility Components of K eyboar d State

The core protocol interpretation of keyboard modifiers does not include direct support
for multiple groups, so XKB reports the effective keyboard group to XKB-aware cli-
ents using some of the reserved bits in the state field of some core protocol events, as
described in section 2.2.2.

This modified state field would not be interpreted correctly by XKB-unaware clients,
so XKB provides a@roup compatibility mapping (see section 12.1) which remaps the
keyboard group into a core modifier mask that has similar effects, when possible.
XKB maintains three compatibility state components that are used to make non-XKB
clients work as well as possible:

» Thecompatibility state corresponds to thefettive modifier and dééctive group state.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 4

The X Keyboard Extension Protocol Specification

3.0

» Thecompatibility lookup state is the core-protocol equalent of the lookup state.
» Thecompatibility grab state is the nearest core-protocol egalent of the grab state.

Compatibility states are essentially the corresponding XKB state, but with keyboard
group possibly encoded as one or more modifiers; section 12.1 describes the group
compatibility map, which specifies the modifier(s) that correspond to each keyboard

group.

The compatibility state reported to XKB-unaware clients for any given core protocol
event is computed from the modifier state that XKB-capable clients would see for that
same event. For example, if the ignore group locks control is set and group 2 is locked,
the modifier bound tMode_switch is not reported in any event except (Device)Key-
Press and (Device)KeyRelease events that do not trigger a passive grab.

Note Referring to clients as “XKB-capable” is sowlgat misleading in this conte The
sample implementation of XKB wisibly extends the X library to use theyboard
extension if it is present. This means that most clients canadéantage of all of
XKB without modification, lot it also means that the XKB state can be reported to cli-
ents that hee not &plicitly requested thedyboard &tension. Clients thatirectly
interpret the state field of core protoceésts or that interpret theakmap directly
may be dkcted by some of the XKB dérences; clients that use library or toolkit
routines to interpretdyboard @ents automatically use all of the XKB features.

XKB-aware clients can query the keyboard state at any time or request immediate
notification of a change to any of the fundamental or derived components of the key-
board state.

Virtual Modifier s

The core protocol specifies that certain keysyms, when bound to modifiers, affect the
rules of keycode to keysym interpretation for all keys; for example, When Lock

is bound to some modifier, that modifier is used to choose shifted or unshifted state for
the numeric keypad keys. The core protocol does not provide a convenient way to
determine the mapping of modifier bits, in particiWad1 throughMod5, to keysyms

such aNum_Lock andMode_switch. Clients must retrieve and search the modifier

map to determine the keycodes bound to each modifier, and then retrieve and search
the keyboard mapping to determine the keysyms bound to the keycodes. They must
repeat this process for all modifiers whenever any part of the modifier mapping is
changed.

XKB provides a set of sixteen named virtual modifiers, each of which can be bound to
any set of the eight “real” modifierSiii f t , Lock, Cont r ol andMbd1-Mod5 as

reported in the keyboard state). This makes it easier for applications and keyboard lay-
out designers to specify to the function a modifier key or data structure should fulfill
without having to worry about which modifier is bound to a particular keysym.

The use of a single, server-driven mechanism for reporting changes to all data struc-
tures makes it easier for clients to stay synchronized. For example, the core protocol
specifies a special interpretation for the modifier bound toitime_Lock key. When-

ever any keys or modifiers are rebound, every application has to check the keyboard
mapping to make sure that the bindingNlom_Lock has not changed. Mum_Lock is
remapped when XKB is in use, the keyboard description is automatically updated to

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 5

The X Keyboard Extension Protocol Specification

3.1

reflect the new binding, and clients are notified immediately and explicitly if there is a
change they need to consider.

The separation of function from physical modifier bindings also makes it easier to
specify more clearly the intent of a binding. X servers do not all assign modifiers the
same way — for exampl&lum_Lock might be bound t&bd2 for one vendor and to
Mod4 for another. This makes it cumbersome to automatically remap the keyboard to
a desired configuration without some kind of prior knowledge about the keyboard lay-
out and bindings. With XKB, applications simply use virtual modifiers to specify the
behavior they want, without regard for the actual physical bindings in effect.

XKB puts most aspects of the keyboard under user or program control, so it is even
more important to clearly and uniformly refer to modifiers by function.

Modifier Definitions

Use anXKB modifier definitiorio specify the modifiers affected by any XKB control

or data structure. An XKB modifier definition consists of a set of real modifiers, a set
of virtual modifiers, and an effective mask. The mask is derived from the real and vir-
tual modifiers and cannot be explicitly changed — it contains all of the real modifiers
specified in the definitioplus any real modifiers that are bound to the virtual modifi-
ers specified in the definition. For example, this modifier definition specifies the
numeric lock modifier if thélum_Lock keysym is not bound to any real modifier:

{ real_mods= None, virtual_mods= NumLock, mask= None }
If we assignvbd?2 to theNum_Lock key, the definition changes to:
{ real_mods= None, virtual_mods= NumLock, mask= Mod2 }

Using this kind of modifier definition makes it easy to specify the desired behavior in
such a way that XKB can automatically update all of the data structures that make up a
keymap to reflect user or application specified changes in any one aspect of the key-
map.

The use of modifier definitions also makes it possible to unambiguously specify the
reason that a modifier is of interest. On a system for whichltl@ndMeta keysyms
are bound to the same modifier, the following definitions behave identically:

{ real_mods= None, virtual_mods= Alt, mask= Mod1 }
{ real_mods= None, virtual_mods= Meta, mask= Mod1 }

If we rebind one of the modifiers, the modifier definitions automatically reflect the
change:

{ real_mods= None, virtual_mods= Alt, mask= Mod1 }
{ real_mods= None, virtual_mods= Meta, mask= Mod4 }

Without the level of indirection provided by virtual modifier maps and modifier defi-
nitions, we would have no way to tell which of the two definitions is concerned with
Alt and which is concerned wiMeta.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 6

The X Keyboard Extension Protocol Specification

3.1.1

3.2

4.0

4.1

Inactive Modifier Definitions
Some XKB structures ignore modifier definitions in which the virtual modifiers are
unbound. Consider this example:

if (state matches { Shift }) Do OneThing;
if (state matches { Shift+NumLock }) Do Another;

If the Nunmiock virtual modifier is not bound to any real modifiers, these effective
masks for these two cases are identical (i.e. they contairsbhnlyt). When it is
essential to distinguish betwe®meThingand Another, XKB considers only those
modifier definitions for which all virtual modifiers are bound.

Virtual Modifier Mapping

XKB maintains avirtual modifier mappingwhich lists the virtual modifiers associ-

ated with each key. The real modifiers bound to a virtual modifier always include all
of the modifiers bound to any of the keys that specify that virtual modifier in their vir-
tual modifier mapping.

For example, ivbd3 is bound to thé&lum_Lock key by the core protocol modifier
mapping, and thBlunLock virtual modifier is bound to theljum_Lock key by the
virtual modifier mappinglvbd3 is added to the set of modifiers associated with the
Nunmiock virtual modifier.

The virtual modifier mapping is normally updated automatically whenever actions are
assigned to keys (see section 12.2 for details) and few applications should need to
change the virtual modifier mapping explicitly.

Global K eyboar d Contr ols

The X Keyboard Extension supports a numbeglobal key contols, which affect the

way that XKB handles the keyboard as a whole. Many of these controls make the key-
board rréore accessible to the physically impaired and are based on the AccessDOS
package.

The RepeatK eys Contr ol

The core protocol only allows control over whether or not the entire keyboard or indi-
vidual keys should autorepeat when held down.Répzat Keys control extends this
capability by adding control over the delay until a key begins to repeat and the rate at
which it repeatsRepeat Keys is also coupled with the core autorepeat control,
changes to one are always reflected in the other.

TheRepeat Keys control has two parameters. Tégtorepeat delaypecifies the

delay between the initial press of an autorepeating key and the first generated repeat
event in milliseconds. Theutorepeat intervakpecifies the delay between all subse-
guent generated repeat events in milliseconds.

1. AccessDOS prides access to the DOS operating system for people witigahimpairments andas deel-
oped by the flace R&D Center at the Urgrsity of Wsconsin. IBr more information on AccessDOS, contact the
Trace R&D CentefWaisman Center and Department of Industrial Engineeringelsity of Wsconsin-Madison
WI 53705-2280. Phone: 608-262-6966. e-mail: info@trace.wisc.edu.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 7

The X Keyboard Extension Protocol Specification

41.1

4.1.2

4.2

4.3

The PerKeyRepeat Control

WhenRepeat Keys are active, th®er KeyRepeat control specifies whether or
not individual keys should autorepeat when held down. XKB provideRBeh&ey -
Repeat for convenience only, and it always parallelsab-repeats field of the
core protocofcet Keyboar dCont r ol request — changes to one are always
reflected in the other.

Detectable Autorepeat

The X server usually generates both press and release events whenever an autorepeat-
ing key is held down. If an XKB-aware client enables@aéect abl eAut or e-

peat per-client option for a keyboard, the server sends that client a key release event
only when the key iphysically released. For example, holding down a key to generate
three characters without detectable autorepeat yields:

Press— Release- Press— Release- Press- Release
If detectable autorepeat is enabled, the client instead receives:
Press- Press- Press- Release

Note that only clients that request detectable autorepeat are affected; other clients con-
tinue to receive both press and release events for autorepeating keys. Also note that
support for detectable autorepeat is optional; servers are not required to support detect-
able autorepeat, but they must correctly report whether or not it is supported.

Section 16.3.11 describes thebPer Cl i ent Fl ags request, which reports or
changes values for all of the per-client flags, and which lists the per-client flags that
are supported.

The SlowKeys Control

Some users often bump keys accidentally while moving their hand or typing stick
toward the key they want. Usually, the keys that are bumped accidentally are hit only
for a very short period of time. TI8 owKeys control helps filter these accidental

bumps by telling the server to wait a specified period, calle8ltveéeys acceptance

delay, before delivering key events. If the key is released before this period elapses, no
key events are generated. The user can then bump any number of keys on their way to
the one they want without generating unwanted characters. Once they have reached
the key they want, they can then hold it long enouglsifawKeys to accept it.

TheSl owKeys control has one parameter; #hew keys delay specifies the length of
time, in milliseconds, that a key must be held down before it is accepted.

WhenS| owKeys are active, the X Keyboard Extension reports the initial press,
acceptance, rejection or release of any key to interested clientsdosiags XNo-
tify events. ThéccessXNoti fy event is described in more detail in section
16.4.

The BounceKeys Control

Some people with physical impairments accidentally “bounce” on a key when they
press it. That is, they press it once, then accidentally press it again immediately. The
BounceKeys control temporarily disables a key after it has been pressed, effectively
“debouncing” the keyboard.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 8

The X Keyboard Extension Protocol Specification

TheBounceKeys has a single parameter. TBaunceKeys delay specifies the period
of time, in milliseconds, that the key is disabled after it is pressed.

WhenBounceKeys are active, the server reports the acceptance or rejection of any
key to interested clients by sendingMctessXNot i fy event. TheAccessXNo-
tify eventis described in more detail in section 16.4.

4.4 The StickyKeys Control
Some people find it difficult or impossible to press two keys at onceSiThek -
yKeys control makes it easier for them to type by changing the behavior of the modi-
fier keys. Whertst i ckyKeys are enabled, a modifier is latched when the user
presses it just once, so the user can first press a modifier, release it, then press another
key. For example, to get an exclamation point (!) on a PC-style keyboard, the user can
press theshift key, release it, then press thkey.

By default,St i ckyKeys also allows users to lock modifier keys without requiring
special locking keys. The user can press a modifier twice in a row to lock it, and then
unlock it by pressing it one more time.

Modifiers are automatically unlatched when the user presses a non-modifier key. For
instance, to enter the sequeiste ft +Ct r | +Z the user could press and release the
Shift key to latch thé&hi f t modifier, then press and release @ key to latch the

Cont r ol modifier — theCtrl key is a modifier key, so pressing it does not unlatch
theShi f t modifier, but leaves both tt&hi f t andCont r ol modifiers latched,
instead. When the user presseszlkey, it will be as though the user pressed

Shi ft +Ct r | +Z simultaneously. Thg key is not a modifier key, so tighi ft and

Cont r ol modifiers are unlatched after the event is generated.

A locked a modifier remains in effect until the user unlocks it. For example, to enter
the sequence (“XKB”) on a PC-style keyboard with a typical US/ASCII layout, the
user could press and release $hét key twice to lock thé&hi f t modifier. Then,

when the user presses e, x, k, b, ‘, and0 keys in sequence, it will generate
(“XKB”). To unlock the Shi f t modifier, the user can press and releasstifekey.

Two option flags modify the behavior of téi ckyKeys control:

» Ifthe XkbAX_TwoKeys flag is set, XKB automatically turi@& i ckyKeys off if the
user presses twor more kys at once. This seeg to automatically disable Stidgkeys
when a user who does not require stikkys is using the éyboard.

» TheXkbAX Lat chToLock controls the locking beki#or of St i ckyKeys; the
St i ckyKeys control only locks modifiers as described abd the
XkbAX Lat chToLock flag is set.

4.5 The MouseKeys Control
TheMbuseKeys control lets a user control all the mouse functions from the key-
board. WherbuseKeys are enabled, all keys wittbuseKeys actions bound to
them generate core pointer events instead of normal key press and release events.

TheMbuseKeys control has a single parameter, thause keys default button, which
specifies the core pointer button to be used by mouse keys actions that do not explic-
itly specify a button.

11/6/97 Protocol \érsion 1.0/Document Rision 1.0 9

The X Keyboard Extension Protocol Specification

4.6

4.6.1

4.6.2

4.7

The MouseKeysAccel Control

If the MouseKeysAccel controlis enabled, the effect of a pointer motion action
changes as a key is held down. Timise keys delay specifies the amount of time
between the initial key press and the first repeated motion evennolise keys inter-

val specifies the amount of time between repeated mouse keys everdieps e
maximum acceleration field specifies the total number of events before the key is trav-
elling at maximum speed. Thmeaximum acceleration field specifies the maximum
acceleration. Theurve parameter controls the ramp used to reach maximum accelera-
tion.

WhenMouseKeys are active and 8A_MovePt r key action (see section 6.3) is
activated, a pointer motion event is generated immediaté¥pus eKeysAccel is

enabled and if acceleration is enabled for the key in question, a second event is gener-
ated aftemouse keys delay milliseconds, and additional events are generated every
mouse keys interval milliseconds for as long as the key is held down.

Relative Pointer Motion

If the SA_MovePt r action specifies relative motion, events are generated as follows:
The initial event always moves the cursor the distance specified in the action; after
steps to maximum acceleration events have been generated, all subsequent events
move the pointer the distance specified in the action timesdkienum acceleration.

Events after the first but before maximum acceleration has been achieved are acceler-
ated according to the formula:

d(step = action_deltax u max_accel O

% urveFactor
Qﬁteps to maskrveFactor] steff

Whereaction_delta is the offset specified by the mouse keys acteax_accel and
steps to_max are parameters to tiMouseKeysAccel ctrl, and the curveFactor is
computed using thebuseKeysAccel curve parameter as follows:

curve

+
curveFactor(curveF 1 1000

With the result that aurve of O causes the distance moved to increase linearly from
action_delta to (max_accek action_delta , and the minimum legalrve of -1000 causes

all events after the first move @mbx_accel. A negativecurve causes an initial sharp
increase in acceleration which tapers off, while a positive curve yields a slower initial
increase in acceleration followed by a sharp increase as the number of pointer events
generated by the action approactteps to_max.

Absolute Pointer Motion

If an SA_MovePt r action specifies an absolute position for one of the coordinates

but still allows acceleration, all repeated events contain any absolute coordinates spec-
ified in the action.

The AccessXKeys Control
If AccessXKeys is enabled many controls can also be turned on or off from the key-
board by entering the following standard key sequences:

» Holding dawvn a shift key by itself for eight seconds toggles tBleowKeys control.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 10

The X Keyboard Extension Protocol Specification

4.8

4.9

» Pressing and releasing a shifiyKive times in a nv without ary intervening ley
events and with less than 30 seconds delay between consguasses toggles the
state of thest i ckyKeys control.

» Simultaneously operating twor more modifier &ys deactiates theSt i ckyKeys
control.

Some of these key sequences optionally generate audible feedback of the change in
state, as described in section 4.9, or cakdAccessXNot i f y events as described
in section 16.4.

The AccessXTimeout Control

In environments where computers are shared, features sBtloakeys present a
problem: ifSI owKeys is on, the keyboard can appear to be unresponsive because
keys have no effect unless they are held for a certain period of time. To help address
this problem, XKB provides aAccessXTi neout control to automatically change

the value of any global controls or AccessX options if the keyboard is idle for a speci-
fied period of time.

The AccessXTimeout control has a number of parameters which affect the duration of
the timeout and the features changed when the timeout expires.

The AccessX Timeout field specifies the number of seconds the keyboard must be idle
before the global controls and AccessX options are modifiedAddessX Options

Mask field specifies which values in tiecessX Options field are to be changed, and
the AccessX Options Values field specifies the new values for those options. The
AccessX Controls Mask field specifies which controls are to be changed in the global
set ofenabled controls, and theAccessX Controls Values field specifies the new val-

ues for those controls.

The AccessXFeedback Control

If AccessXFeedback is enabled, special beep-codes indicate changes in keyboard
controls (or some key events whginowKeys or St i ckyKeys are active). Many

beep codes sound as multiple tones, but XKB reports a s{kgBel | Not i f y

event for the entire sequence of tones.

All feedback tones are governed by theli bl eBel | control. Individual feedback
tones can be explicitly enabled or disabled usingtiiessX options mask or set to
deactivate after an idle period using #reessX timeout options mask. XKB defines
the following feedback tones:

Feedback Name Bell Name Default Sound Indicates
FeatureFB AX_FeatureOn rising tone Keyboard control enabled
AX_FeatureOf falling tone Keyboard control disabled
AX_FeatureChange two tones Several controls changed state
IndicatorFB AX_IndicatorOn high tone Indicator Lit
AX_IndicatorOf low tone Indicator Extinguished
AX_IndicatorChange two high tones Several indicators changed state
SlowWarnFB AX_SlowKeysWarningthree high tones Shift key held for four seconds
SKPressFB AX_SlowKeyPress single tone Key press whileS| owKeys are on
SKReleaseFB AX_SlowKeyRelease single tone Key release whil&Sl owKeys are on
SKAcceptFB AX_SlowKeyAccept single tone Key event accepted bgl owKeys
SKRejectFB AX_SlowKeyReject low tone Key event rejected byl owKeys

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 11

The X Keyboard Extension Protocol Specification

4.10

411

412

Feedback Name Bell Name Default Sound Indicates
StickyKeysFB ~ AX_StickyLatch low tone then Modifier latched byst i ckyKeys
high tone
AX_StickyLock high tone Modifier locked bySt i ckyKeys

AX_StickyUnlock low tone Modifier unlocled bySt i ckyKeys
BKRejectFB AX_BouncekeysReject low tone Key event rejected bBounceKeys

Implementations that cannot generate continuous tones may generate multiple beeps
instead of falling and rising tones; for example, they can generate a high-pitched beep
followed by a low-pitched beep instead of a continuous falling tone.

If the physical keyboard bell is not very capable, attempts to simulate a continuous
tone with multiple bells can sound horrible. SetBoebBel | FB AccessX option to
inform the server that the keyboard bell is not very capable and that XKB should use
only simple bell combinations. Keyboard capabilities vary wildly, so the sounds gen-
erated for the individual bells when tBanbBel | FB option is set are implementa-

tion specific.

The Overlayl and Overla y2 Contr ols

A keyboard overlay allows some subset of the keyboard to report alternate keycodes
when the overlay is enabled. For example a keyboard overlay can be used to simulate
a numeric or editing keypad on keyboard that does not actually have one by generating
alternate of keycodes for some keys when the overlay is enabled. This technique is
very common on portable computers and embedded systems with small keyboards.

XKB includes direct support for two keyboard overlays, usingiher | ay1 and

Over | ay2 controls. Wher©ver | ay1l is enabled, all of the keys that are members

of the first keyboard overlay generate an alternate keycode. Qtearl ay?2 is

enabled, all of the keys that are members of the second keyboard overlay generate an
alternate keycode.

To specify the overlay to which a key belongs and the alternate keycode it should gen-
erate when that overlay is enabled, assign it eithekBhé&ver | ayl or
KB_Over | ay2 key behaviors, as described in section 6.2.

“Boolean” Contr ols and The Enab ledContr ols Contr ol

All of the controls described above, along with Aueli bl eBel | control (described

in section 10.2) and thegnor eG oupLock control (described in section 2.3.1)
comprise thdoolean controls. In addition to any parameters listed in the descriptions
of the individual controls, the boolean controls can be individually enabled or disabled
by changing the value of tiinabl edCont r ol s control.

The followingnon-boolean controls are always active and cannot be changed using
theEnabl edCont r ol s control or specified in any context that accepts only bool-
ean controlsG oupsW ap (section 2.2.1)nabl edCont r ol s, I nt er nal Mods
(section 2.3.1), anddgnor eLockMods (section 2.3.1) anBer KeyRepeat (sec-

tion 4.1)

Automatic Reset of Boolean Contr ols

Theauto-reset controls are a per-client value which consist of two masks that can con-
tain any of the boolean controls (see section 4.11). Whenever the client exits for any
reason, any boolean controls specified indlite-reset mask are set to the correspond-

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 12

The X Keyboard Extension Protocol Specification

ing value from theuto-reset values mask. This makes it possible for clients to “clean
up after themselves” automatically, even if abnormally terminated.

For example, a client that replace the keyboard bell with some other audible cue might
want to turn off theAudi bl eBel | control (section 10.2) to prevent the server from
also generating a sound and thus avoid cacophony. If the client were to exit without
resetting thedudi bl eBel | control, the user would be left without any feedback at
all. SettingAudi bl eBel | in both the auto-reset mask and auto-reset values guaran-
tees that the audible bell will be turned back on when the client exits.

5.0 Key Event Processing Overview

There are three steps to processing each key event in the X server, and at least three in
the client. This section describes each of these steps briefly; the following sections
describe each step in more detail.

1. First, the serer applies globaldyboard controls to determine whether tleg &vent
should be processed immediatalgferred, or ignored.df example, theSl owKeys
control can cause a&kevent to be deferred until the sidkeys delay has elapsed while
theRepeat Keys control can cause multiple Xents from a single pisical key press
if the key is held davn for an eétended period. The globa&kboard controls &kct all
of the leys on the kyboard and are described in section 4.0.

2. Next, the serer applies pekey behaior. Per ley-behaior can be used to simulate or indi-
cate some special kinds aykbehaior. For ekample, leyboard werlays, in which a dy
generates an alternateykode under certain circumstances, can be implemented using per
key behaior. Every key has a single bekeor, so the d&ct of key behaior does not
depend on &/board modifier or group state, though it might depend on glaghblard
controls. Pekey behaiors are described in detail in section 6.2.

3. Finally, the serer applies ky actions. Logicallyevery keysym on the &board has some
action associated with it. Thekaction tells the seer what to do when arvent which
yields the correspondingksym is generated.dy actions might change or suppress the
event, generate some otheeat, or change some aspect of the exeiey actions are
described in section 6.3.

If the global controls, per-key behavior and key action combine to cause a key event,
the client which receives the event processes it in several steps.

1. First the client gtracts the déctive keyboard group and a set of modifiers from the
state field of thewent. See section 2.2.2 for details.

2. Using the modifiers andfettive keyboard group, the client selects a symbol from the list
of keysyms bound to theeg. Section 7.2 discusses symbol selection.

3. If necessarythe client transforms the symbol and resulting string usipgrentifiers that
are “left over” from the process of looking up a symbair Example, if theLock modifier
is left over, the resulting &sym is capitalized according to the capitalization rules speci-
fied by the system. See section 7.3 for a more detailed discussion of the transformations
defined by XKB.

4. Finally, the client uses thesksym and remaining modifiers in an application-speciég w
For example, applications based on the X toolkit might apply translations based on the
symbol and modifiers reported by the first three steps.

11/6/97 Protocol \érsion 1.0/Document Rision 1.0 13

The X Keyboard Extension Protocol Specification

6.0

6.1

6.2

Key Event Processing in the Server

This section describes the steps involved in processing a key event within the server
when XKB is present. Key events can be generated due to keyboard activity and
passed to XKB by the DDX layer, or they can be synthesized by another extension,
such as XTEST.

Applying Global Controls

When the X Keyboard Extension receives a key event, it first checks the global key
controls to decide whether to process the event immediately or at all. The global key
controls which might affect the event, in descending order of priority, are:

» If a key is pressed while thBounceKeys control is enabled, thex&nsion generates
the event only if the key is actve. When a & is released, the sawvdeactiiates the &y
and starts @ounce keys timer with an interal specified by the debounce delay

If the bounce &ys timer &pires or if some otherey is pressed before the timer
expires, the semr reactiates the correspondingykand deactiates the timemMNeither
expiration nor deactiation of a bouncedys timer causes avent.

» If the SI owKeys control is enabled, thexcension sets dow keys timer with an inter-
val specified by the slokeys delay but does not process theykevent immediately
The correspondingdy release deaetites this timer

If the slav keys timer &pires, the semlr generates ak press for the corresponding
key, sends aixkbAccessXNot i fy and deactiates the timer

» The etension processegkpress eents normally whether or not tikepeat Keys
control is actie, lut if Repeat Keys are enabled and pkey autorepeat is enabled
for the eent ley, the extension processegkpress gents normallybut it also initiates
anautorepeat timer with an interal specified by the autorepeat del@le correspond-
ing key release deacfhtes the timer

If the autorepeat timexpires, the seer generates e release and agl press for the
corresponding &y and reschedules the timer according to the autorepeatnterv

Key events are processed by each global control in turn: BabheceKeys control
accepts a key evergl owKeys considers it. Onc8l owKeys allows or synthesizes
an event, th®epeat Keys control acts on it.

Key Behavior

Once an event is accepted by all of the controls or generated by a timer, the server
checks the per-key behavior of the corresponding key. This extension currently
defines the following key behaviors:

Behavior Effect
KB_Def aul t Press and releaseemts are processed normally
KB Lock If a key is logically up (i.e. the corresponding bit of the cosg kap

is cleared) when it is pressed, they bress is processed normally
and the corresponding release is ignored. If gyaklogically davn
when pressed, thexkpress is ignoredub the corresponding release
is processed normally

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 14

The X Keyboard Extension Protocol Specification

6.3

Behavior Effect

KB_Radi oG oup If another member of the radio group specifiedrgx is logically
flags: CARDS8 down when a ky is pressed, the sawsynthesizes aek release for
index: CARD8 the member that is logically dm and then processes thewviaey

press eent normally

If the key itself is logically devn when pressed, th&kpress eent
is ignored, ot the processing of the corresponditey kelease
depends on thealue of theRGAI | owNone bit in flags. If it is set,
the key release is processed normally; otherwise dyeré&lease is
also ignored.

All other key release wents are ignored.

KB Overl ayl If the Over | ay1 control is enabledvents from this gy are
key: KEYCODE reported as if thecame from the dy specified irkey. Otherwise,
press and releasgeants are processed normally

KB_Overl ay?2 If the Over | ay2 control is enabledvents from this &y are
key: KEYCODE reported as if thecame from the dy specified irkey. Otherwise,
press and releasgeants are processed normally

The X server uses key behavior to determine whether to process or filter out any given
key event; key behavior is independent of keyboard modifier or group state (each key
has exactly one behavior.

Key behaviors can be used to simulate any of these types of keys or to indicate an
unmodifiable physical, electrical or software driver characteristic of a key. An
optionalpermanent flag can modify any of the supported behaviors and indicates that
behavior describes an unalterable physical, electrical or software aspect of the key-
board. Permanent behaviors cannot be changed or set XyliBet Map request.

The permanent flag indicates a characteristic of the underlying system that XKB can-
not affect, so XKB treats all permanent behaviors as if they Kg@r®ef aul t and

does not filter key events described in the table above.

Key Actions

Once the server has applied the global controls and per-key behavior and has decided
to process a key event, it appliey actions to determine the effects of the key on the
internal state of the server. A key action consists of an operator and some optional
data. XKB supports actions which:

change base, latched or leckmodifiers or group

move the core pointer or simulate core pointgitdn ezents
change most aspects aykoard behaor

terminate or suspend the serv

send a message to interested clients

simulate gents on otherdys

Each key has an optional list of actions. If present, this list parallels the list of symbols
associated with the key (i.e. it has one action per symbol associated with the key). For
key press events, the server looks up the action to be applied from this list using the
key symbol mapping associated with the event key, just as a client looks up symbols
as described in section 7.2; if the event key does not have any actions, the server uses
theSA NoAct i on event for that key regardless of modifier or group state.

Key actions have essentially two halves; the effects on the server when the key is
pressed and the effects when the key is released. The action applied for a key press

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 15

The X Keyboard Extension

Protocol Specification

event determines the further actions, if any, that are applied to the corresponding
release event or to events that occur while the key is held down. Clients can change the
actions associated with a key while the key is down without changing the action
applied next time the key is released; subsequent press-release pairs will use the newly
bound key action.

Most actions directly change the state of the keyboard or server; some actions also
modify other actions that occur simultaneously with them. Two actions occur simulta-
neously if the keys which invoke the actions are both logically down at the same time,
regardless of the order in which they are pressed or delay between the activation of
one and the other.

Most actions which affect keyboard modifier state accept a modifier definition (see
section 3.0) nameahods and a boolean flag namieeModMap among their argu-

ments. These two fields combine to specify the modifiers affected by the action as fol-
lows: If useModMap is Tr ue, the action sets any modifiers bound by the modifier
mapping to the key that initiated the action; otherwise, the action sets the modifiers
specified bymods. For brevity in the text of the following definitions, we refer to this

combination ouseModMap andmods as the “action modifiers.”

The X Keyboard Extension supports the following actions:

Action Effect
SA NoAction » No direct efect, thoughSA NoAct i on events may change
the efect of other semr actions (see bel).
SA_Set Mods » Key press adds graction modifiers to thedgboards base

mods: MOD_DEF
useModMap: BOOL
clearLocks: BOOL

SA Lat chMods
mods: MOD_DEF
useModMap: BOOL
clearLocks: BOOL
latchToLock: BOOL

SA LockMods
mods: MOD_DEF
useModMap: BOOL
noLock: BOOL
noUnlock: BOOL

modifiers

Key release clears wraction modifiers in thedgboards base
modifiers, preided that no otherdy which afects the same
modifiers is logically dan.

If no keys were operated simultaneously with theg nd
clearLocks is set, release unlocksyaaction modifiers.

Key press and releaseants hae the same #dct as for

SA Set Mods; if no keys were operated simultaneously with
the latching modifier ¢y, key release eents hae the follaving
additional efects:

Modifiers that were unlo@d due talearLocks have no further
effect.

If latchToLock is set, key release locks and then unlatcheg an
remaining action modifiers that are already latched.

Finally, key release latches nmaction modifiers that were not
used by thelearLocks or latchToLock flags.

Key press sets the base and possibly theelbcitate of an
action modifiers. IhoLock is Tr ue, only the base state is
changed.

For key release eents, clears anaction modifiers in theey-
boards base modifiers, pvaed that no otherdy which

affects the same modifiers iswdo. If noUnlock is Fal se and
ary of the action modifiers were loe#t before the correspond-
ing key press occurred gy release unlocks them.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 16

The X Keyboard Extension Protocol Specification

Action Effect
SA Set Group « If groupAbsolute is set, ley press gents change the baseyk
group: INT8 board group tgroup; otherwise, thg addgroup to the base
groupAbsolute: BOOL keyboard group. In either case, the resultirfgaive keyboard
clearLocks: BOOL group is brought back into range depending on #heevof the

G oupsW ap control for the kyboard.

» IfanSA | SOLock key is pressed while thissl is held davn,
key release has nofett, otherwise it cancels thdfexdts of the
press.

* If no keys were operated simultaneously with thég knd
clearLocks is set, ley release also sets the leckkeyboard

group toG oupl.

SA Lat chG oup » Key press and releasgants hae the same &dct as an
group: INT8 SA _Set G oup action; if no leys were operated simulta-
groupAbsolute: BOOL neously with the latching groumkand theclearLocks flag
clearLocks: BOOL was not set or had nofett, key release has the follong addi-

latchToLock: BOOL tional efects:

« If latchToLock is set and the latche@}board group is
non-zero, the ky release adds the delta applied by the corre-
sponding ky press to the lo&d keyboard group and subtracts
it from the latched &/board group. The lo&d and dective
keyboard group are brought back into range according to the
value of the globaly oupsW ap control for the kyboard.

» Otherwise, ky release adds thexkpress delta to the latched
keyboard group.

SA LockG oup « If groupAbsolute is set, ley press sets the loell keyboard
group: INT8 group togroup. Otherwise, ky press addgroup to the locled
groupAbsolute: BOOL keyboard group. In either case, the resulting émtknd dec-

tive group is brought back into range depending onahes\of
theG oupsW ap control for the kyboard.
» Key release has nofett.

SA MovePtr If MouseKeys are not enabled, this action bebs like
X, ¥: INT16 SA NoAct i on, otherwise this action cancelsygrending
noAccel: BOOL repeat ky timers for this ky and has the follwing additional
absoluteX: BOOL effects.
absoluteYBOOL » Key press generates a core poiriibt i onNot i fy event

instead of the usu#leyPr ess. If absoluteX is Tr ue, X speci-
fies the n& pointer X coordinate, otherwisas added to the
current pointer X coordinatapsoluteY andy specify the ne
Y coordinate in the sameay

* If noAccel isFal se, and thevbuseKeysAccel keyboard
control is enabled,dy press also initiates the moussy&timer
for this key; every time this timer epires, the cursor mes
again. The distance the cursor ves in these subsequent
events is determined by the mousgkacceleration as
described in section 4.6.

» Key release disables the mousgktimer (if it was initiated by
the correspondingey press) bt has no other ffct and is
ignored (does not generate aemt of ary type).

11/6/97 Protocol \érsion 1.0/Document Rision 1.0 17

The X Keyboard Extension

Protocol Specification

Action

Effect

SA PtrBtn
button: CARD8
count: CARDS8
useDfltBtn: BOOL

SA LockPtrBtn
button: BUTTON
noLock: BOOL
noUnlock: BOOL
useDfltBtn; BOOL

SA SetPtrDflt
affect: CARDS
value: CARDS
dfltBtnAbs: BOOL

If MouseKeys are not enabled, this action beba like

SA NoActi on.

If useDfltBtnis set, theent is generated for the current
default core btton. Otherwise, thevent is generated for the
button specified byutton

If the mouse btton specified for this action is logicallywiln,

the lkey press and corresponding release are ignored aed ha
no efect.

Otherwise, ky press causes one or more core pointéoh
events instead of the usuadkpress. Ifcountis 0, key press
generates a singlBut t onPr ess event; if countis greater
than0, key press generatesuntpairs ofBut t onPr ess and
But t onRel ease events.

If countis O, key release generates a core poilert onRe-

| ease which matches thevent generated by the correspond-
ing key press; if count is non-zerogkrelease does not cause a
But t onRel ease event. Key release neer causes agy

release eent.

If MouseKeys are not enabled, this action beés like

SA NoActi on.

Otherwise, if the btton specified buseDfltBtnandbuttonis
not locked, ley press causesBut t onPr ess instead of ady
press and locks thautton. If the lntton is already load or if
noLod is Tr ue, key press is ignored and has néeef.

If the correspondingdy press vas ignored, and iioUnlod is
Fal se, key release generateBat t onRel ease event
instead of a & release ent and unlocks the specifiedtton.
If the correspondingdy press lockd a lutton, ley release is
ignored and has nofett.

If MouseKeys are not enabled, this action beés like

SA NoActi on.

Otherwise, both ¢y press anddy release are ignorediibkey
press changes the pointalwe specified bgffectto value as
follows:

If whichis SA_Af f ect Df | t Bt n, valueanddfltBtnAbsspec-
ify the defwult pointer itton used by thearious pointer
actions as follev; If dfltBtnAbsis True, \alue specifies theul-
ton to be used, otherwisegluespecifies the amount to be
added to the current deflt kutton. In either case, i@l button
choices are wrapped back into range.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 18

The X Keyboard Extension Protocol Specification

Action Effect
SA | SOLock « If dfitisGroupis Tr ue, key press sets the base group specified
dfltisGroup Fal se by groupAbsoluteandgroup. Otherwise, Ry press sets the
mods MOD_DEF action modifiers in thedyboards base modifiers.
useModMap BOOL » Key release clears the base modifiers or group that were set by
noLock BOOL the key press; it may hae additional d&cts if no other appro-
noUnlock BOOL priate actions occur simultaneously with 8& | SCLock

noAffectMods BOOL operation.
noAffectGrg BOOL « If noAfectModsis Fal se, ary SA_Set Mods or

noAffectPtr BOOL SA Lat chMbds actions that occur simultaneously with the
noAffectCtrls BOOL | SOLock action are treated &\ LockMods instead.

or « If noAffectGrpis Fal se, ary SA_Set G oup or
dfitisGroup Tr ue SA Lat chGr oup actions that occur simultaneously with this
group INT8 action are treated &\ LockG oup actions instead.

groupAbsoluteBOOL ¢ If noAfectPtris Fal se, SA Pt r Bt n actions that occur
noAffectMods BOOL simultaneously with th&A | SOLock action are treated as
noAffectGrg BOOL SA_LockPt r Bt n actions instead.
noAffectPtr BOOL « If noAfectCtrisis Fal se, ary SA_Set Cont r ol s actions
noAffectCtrls BOOL that occur simultaneously with ti82 | SOLock action are
treated aSA LockCont r ol s actions instead.
« If no other actions were transformed by 8f& | SOLock
action, ley release locks the group or modifiers specified by the
action aguments.

SA Term nat eServer ¢ Key press terminates the serKey release is ignored.
» This action is optional; seevs are free to ignore it. If ignored,
it behares like SA_NoAct i on.

SA SwitchScreen « If the sener supports this action and multiple screens or dis-

num: INT8 plays (either virtual or real), this action changes to theecti
switchApp: BOOL screen indicated byumandscreenAbsIf screenAbdgs Tr ue,
screenAbs: BOOL num specifies the indeof the n&v screen; otherwise, num

specifies an d@et from the current screen to thewscreen.

« If switchAppis Fal se, it should switch to another screen on
the same seer. Otherwise it should switch to another X sarv
or application which shares the samggbal display

* This action is optional; seevs are free to ignore the action or
ary of its flags if thg do not support the requested beba If
the action is ignored, it betxs like SA_NoAct i on, other-
wise neither Ry press nor release generate wné

SA SetControls » Key press enables wboolean controls that are specified in
controls: controlsand not already enabled at the time of thefkess.
KB BOOLCTRLMASK Key release disables yaontrols that were enabled by the cor-
- responding Ry press. This action can caudebCont r ol s-
Not i fy events.

SA LockControls * If noLodk is Fal se, key press locks and enablesyarontrols
that are specified ioontrolsand not already lo@d at the time

controls: 1h

KB_BOOLCTRLMASK Of the ley press. .
noLock: BOOL * If noUnlokis Fal se, key release unlocks and disabley an
noUnlock: BOOL controls that are specified @ontrolsand were not enabled at

the time of the correspondingykpress.

11/6/97 Protocol \érsion 1.0/Document Rision 1.0 19

The X Keyboard Extension

Protocol Specification

Action Effect

SA ActionMessage: -
pressMsg: BOOL
releaseMsg: BOOL
genEwent: BOOL .
message: STRING

SA Redi r ect Key .
newvKey: KEYCODE
modsMask: KEYMASK
mods: KEYMASK
vmodsMask: CARD16
vmods: CARD16

SA Devi ceBtn .
count: CARDS
button: BUTTON
device: CARDS8

if pressMsg is Tr ue, key press generates xkbAct i on-
Message event which reports thedgcode, gent type and the
contents ofnessage.

If releaseMsg is Tr ue, key release generates ZkbAct i on-
Message event which reports theekcode, gent type and
contents ofmessage.

If genEvent is Tr ue, both press and release generatepgtess
and ley releaseeents, rgardless of whether thi@lso cause an
XkbAct i onMessage.

Key press causes akpress eent for the ky specified by
newKey instead of for the actuabk The state reported in this
event reports of the currentfettive modifiers changed as fol-
low: Any real modifiers specified imodsMask are set to corre-
sponding ®alues frommods. Any real modifiers bound to the
virtual modifiers specified immodsMask are either set or
cleared, depending on the correspondialgie invmods. If the
real and virtual modifier definitions specify conflictirgjues
for a single modifierthe real modifier definition has priority
Key release causes aykrelease went for the ky specified by
newKey; the state field for thisvent consists of the fefctive
keyboard modifiers at the time of the release, changed as
described abee.

TheSA Redi r ect Key action normally redirects to another
key on the same d&e as the & or button which caused the
event, unless that dee does not belong to the inpxt@nsion
KEYCLASS, in which case this action causes @néon the
core leyboard deice.

Thedevice field specifies the ID of anxeension deice; the
button field specifies the indeof a lutton on that déce. If the
button specified by this action is logicallywio, the ley press
and corresponding release are ignored and ha efect. If the
device or lutton specified by this action are @i, this action
behaes like SA_NoActi on.

Otherwise, ky press causes one or more inpdeasion deice
button events instead of the usuahkpress eent. Ifcount is 0,
key press generates a sinfflevi ceBut t onPr ess event; if
count is greater thaf, key press generatesunt pairs of
Devi ceBut t onPr ess andDevi ceBut t onRel ease
events.

If count is O, key release generates an inpytemsionDevi -
ceBut t onRel ease which matches thevent generated by
the correspondingey press; if count is non-zerogkrelease
does not causel2evi ceBut t onRel ease event. Key
release neer causes ady release eent.

11/6/97 Protocol \érsion 1.0/Document Rision 1.0 20

The X Keyboard Extension Protocol Specification

Action Effect
SA LockDevi ceBtn < Thedevice field specifies the ID of arxension deice; the
button: BUTTON button field specifies the indeof a lutton on that déce. If the
device: CARDS device or lutton specified by this action are @i, it behaes
noLock: BOOL like SA_NoAct i on.
noUnlock: BOOL » Otherwise, if the specifiedition is not lockd and ifnoLock is

Fal se, key press causes an inputensionDevi ceBut -

t onPr ess event instead of ady press eent and locks the
button. If the lutton is already load or ifnoLock is Tr ue,
key press is ignored and has néeet.

* If the correspondingdy press was ignored, and ioUnlock is
Fal se, key release generates an inpxtemsionDevi ce-
But t onRel ease event instead of a core protocol or input
extension ley releasewent and unlocks the specifiedtton. If
the correspondingely press lockd a lutton, ley release is
ignored and has nofett.

SA Devi ceVal uat or « Thedevice field specifies the ID of arx&nsion deice; vall

device: CARDS8 andval2 specify \aluators on that déce. If device is illegal or
vallWhat: SA_DVOP if neitherval 1 norval2 specifies a lgal valuator this action
vall: CARD8 behaes like SA_NoAct i on.

vallValue: INT8 * If valn specifies a Igal valuator andzalnWhat is not

vallscale: 0...7 SA | gnor eVal , the specifiedalue is adjusted as specified
val2What: BOOL by valnWhat:

val2: CARDS8 * If vainWhat is SA_Set Val M n, valn is set to its minimum
val2Value: INT8 legal value.

val2cale: 0...7 * If valnWhat is SA_Set Val Cent er, valn is centered (to

(max-min)/2).

« If valnWhat is SA_Set Val Max, valn is set to its maximum
legal value.

« if valnWhat is SA_Set Val Rel at i ve, valnvaluex 2vainScale jg
added tovaln.

« if valnWhat is SA_Set Val Absol ut e, valn is set to
valnValuex 2vainScale,

* lllegal values forSA_Set Val Rel ati ve or
SA Set Val Absol ut e are clamped into range.

If Sti ckyKeys are enabled, aBA_Set Mbds andSA_Set G- oup actions act like
SA Lat chiMbds andSA Lat chG oup respectively. If theeat chToLock
AccessX option is set, either action behaves as if botBAh€l ear Locks and

SA Lat chToLock flags are set.

Actions which cause an event from another key or from a button on another device
immediately generate the specified event. These actions do not consider the behavior
or actions (if any) that are bound to the key or button to which the event is redirected.

Core events generated by server actions contain the keyboard state that was in effect at
the time the key event occurred; the reported state does not reflect any changes in state
that occur as a result of the actions bound to the key event that caused them.

Events sent to clients that have not issuellldrniJseExt ensi on request contain a
compatibility state in place of the actual XKB keyboard state. See section 12.3 for a
description of this compatibility mapping.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 21

The X Keyboard Extension Protocol Specification

6.4

6.4.1

Delivering a Key or Button Event to a Client

The window and client that receive core protocol and input extension key or button
events are determined using the focus policy, window hierarchy and passive grabs as
specified by the core protocol and the input extension, with the following changes:

» A passve grab triggers if the modifier state specified in the grab matches the grab com-
patibility state (described in section 2.4). Clients can choose to use the XKB grab state
instead by setting thér abs UseXKBSt at e perclient flag. This flag &écts all pas-
sive grabs that are requested by the client which sais dides not déct passie grabs
that are set by grother client.

» The state field ofvents which trigger a passi grab reports the XKB or compatibility
grab state in éfct at the time the grab is triggered; the state field of the corresponding
release eent reports the corresponding grab statefecefvhen the &y or kutton is
released.

» IftheLookupSt at eWhenG abbed perclient flag is set, alldy or button events
that occur while adyboard or pointer grab is aeti contain the XKB or compatibility
lookup state, depending on thalwe of theGr absUseXKBSt at e perclient flag. If
LookupSt at eWhenGr abbed is not set, theinclude the XKB or compatibility grab
state, instead.

» Otherwise, the state field ofents that do not trigger a pagsigrab report is desrd
from the XKB efective modifiers and group, as described in section 2.2.2.

» If a key releasewent is the result of an autorepeatirgy khat is being held dan, and
the client to which thevent is reported has requested detectable autorepeat (see sec-
tion 4.1.2), theent is not deliered to the client.

The following section explains the intent of the XKB interactions with core protocol
grabs and the reason that the per-client flags are needed.

XKB Interactions With Core Protocol Grabs

XKB provides the separate lookup and grab states to help work around some difficul-
ties with the way the core protocol specifies passive grabs. Unfortunately, many cli-
ents work around those problems differently, and the way that XKB handles grabs and
reports keyboard state can sometimes interact with those client workarounds in unex-
pected and unpleasant ways.

To provide more reasonable behavior for clients that are aware of XKB without caus-
ing problems for clients that are unaware of XKB, this extension provides two per-cli-
ent flags that specify the way that XKB and the core protocol should interact.

» The lagest problems arise from thact that an XKB state field encodes aplieit
keyboard group in bits 13-14 (as described in section 2.2.2), while pre-XKB clients use
one of the eightdyboard modifiers to select an alternagghioard group. @ male
existing clients behae reasonablyXKB normally uses the compatibility grab state
instead of the XKB grab state to determine whether or not avpagsib is triggered.
XKB-aware clients can set tli& absUseXKBSt at e perclient flag to indicate that
they are specifying pass grabs using an XKB state.

» Some toolkits start an aeti grab when a passi grab is triggered, in order tovea
more control wer the conditions under which the grab is terminated. Unfortun#tely
fact that XKB reports a ddrent state invents that trigger or terminate grabs means
that this grab simulation caaifto terminate the grab under some conditionswdrk
around this problem, XKB normally reports the grab state irvalits wheneer a grab

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 22

The X Keyboard Extension Protocol Specification

7.0

7.1

is actve. Clients which do not use aatigrabs lile this can set theookupSt at e-
WhenG abbed perclient flag in order to rece? the same state component whether or
not a grab is acte.

TheG absUseXKBSt at e perclient flag also applies to the state edets sent while
a grab is actie. If it is set, gents during a grab contain the XKB lookup or grab state;
by default, events during a grab contain the compatibility lookup or grab state.

The state used to trigger a passive grab is controlled by the settingGofathe Us -
eXKBSt at e per-client flag at the time the grab is registered. Changing this flag does
not affect existing passive grabs.

Key Event Processing in the Client

The XKB client map for a keyboard is the collection of information a client needs to
interpret key events that come from that keyboard. It contains a globaldegttgbes,
described in section 7.2.1, and an arrakegfsymbol maps, each of which describes
the symbols bound to one particular key and the rules to be used to interpret those
symbols.

Notation and Terminology

XKB associates a two-dimensional array of symbols with each key. Symbols are
addressed by keyboard group (see section 2.0) and shift level, where level is defined as
in the 1ISO9995 standard:

Level: One of seeral states (normally 2 or 3) whichwgen which graphic character
is produced when a graphieykis actuated. In certain cases theslenay also
affect function leys.

Note that shift level is derived from the modifier state, but not necessarily in the same
way for all keys. For example, ti$hi f t modifier selects shift level 2 on most keys,
but for keypad keys the modifier boundNtom_Lock (i.e. theNuniock virtual mod-

ifier) also selects shift level 2.gray symbols on a key

We use the notationrkn to specify the position of a symbol on a key or in memory:

N

% gitgzi L1 L2 L1 12 L1 L2

- = GlalA

£ GoLl=z ajA|= |k

= GoLo = [E Glea |E Gl @2
Group -

Physical Key Symbols XKB Symbols Core Symbols

The gray characters indicate symbols that are implied or expected but are not actually
engraved on the key.

Note Unfortunately the “natural” orientation of symbols on eykand the natural orienta-
tion in memory are rersed from one anothexo leyboard group refers to a column
on the key and a rav in memory Theres no real help for it,ut we try to minimize
confusion by using “group” and ‘Yel” (or “shift level”) to refer to symbols gard-
less of contet.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 23

The X Keyboard Extension Protocol Specification

7.2

7.2.1

Determining the KeySym Associated with a Key Event
To look up the symbol associated with an XKB key event, we need to know the group
and shift level that correspond to the event.

Group is reported in bits 13-14 of the state field of the key event, as described in sec-
tion 2.2.2. The keyboard group reported in the event might be out-of-range for any
particular key because the number of groups can vary from key to key. The XKB
description of each key containgm@up infofield which is interpreted identically to

the global groups wrap control (see section 2.2.1) and which specifies the interpreta-
tion of groups that are out-of-range for that key.

Once we have determined the group to be used for the event, we have to determine the
shift level. The description of a key includekest typefor each group of symbols

bound to the key. Given the modifiers from the key event, this key type yields a shift
level and a set of “leftover” modifiers, as described in section 7.2.1 below.

Finally, we can use the effective group and the shift level returned by the type of that
group to look up a symbol in a two-dimensional array of symbols associated with the
key.

Key Types

Each entry of a key typefaapfield specifies the shift level that corresponds to some
XKB modifier definition; any combination of modifiers that is not explicitly listed
somewhere in the map yields shift level one. Map entries which specify unbound vir-
tual modifiers (see section 3.1.1) are not considered; each entry contains an automati-
cally-updatedactivefield which indicates whether or not it should be used.

Each key type includes a few fields that are derived from the contents of the map and
which report some commonly used values so they don’t have to be constantly recalcu-
lated. ThenumLeelsfield contains the highest shift level reported by any of its map
entries; XKB usesumLeveldo insure that the array of symbols bound to a key is

large enough (the number of levels reported by a key type is also referred to as its
width). Themodifies field reports all real modifiers considered by any of the map
entries for the type. BotmodifiersandnumLevelsre updated automatically by XKB

and neither can be changed explicitly.

Any modifiers specified imodifiersare normallyjconsumedsee section 7.3), which

means that they are not considered during any of the later stages of event processing.
For those rare occasions that a modsteouldbe considered despite having been used

to look up a symbol, key types include an optigrakervefield. If apreservdist is

present, each entry corresponds to one of the key type’s map entries and lists the mod-
ifiers that shoulahot be consumed if the matching map entry is used to determine shift
level.

For example, the following key type implements caps lock as defined by the core pro-
tocol (using the second symbol bound to the key):

type ‘ALPHABETIC” {
modifiers = Shift+Lock;
map[Shift]= Level2;
map|[Lock]= Level2;
map[Shift+Lock]= Leel2;

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 24

The X Keyboard Extension Protocol Specification

The problem with this kind of definition is that we could assign completely unrelated
symbols to the two shift levels, and “Caps Lock” would choose the second symbol.
Another definition for alphabetic keys uses system routines to capitalize the keysym:

type “ALPHABETIC” {
modifiers= Shift;
map[Shift]= Level2;

When caps lock is applied using this definition, we take the symbol from shift level
one and capitalize it using system-specific capitalization rules. If shift and caps lock
are both set, we take the symbol from shift level two and try to capitalize it, which usu-
ally has no effect.

The following key type implements shift-cancels-caps lock behavior for alphabetic
keys:

type ‘ALPHABETIC” {
modifiers = Shift+Lock;
map[Shift] = Level2;
presere[Lock]= Lock;

Consider the four possible states that can affect alphabetic keys: no modifiers, shift
alone, caps lock alone or shift and caps lock together. The map contains no explicit
entry forNone (no modifiers), so if no modifiers are set, any group with this type
returns the first keysym. The map entry & ft reportsLevel 2, so any group

with this type returns the second symbol wBanf t is set. There is no map entry for
Lock alone, but the type specifies that theck modifier should be preserved in this
case, sh.ock alone returns the first symbol in the group but first applies the capitali-
zation transformation, yielding the capital form of the symbol. In the final case, there
is no map entry foBhi ft +Lock, so it returns the first symbol in the group; there is
no preserve entry, so the@ck modifier is consumed and the symbol is not capital-
ized.

7.2.2 Key Symbol Map
Thekey symbol map for a key contains all of the information that a client needs to pro-
cess events generated by that key. Each key symbol mapping reports:

The number of groups of symbols bound to tee (kumGroups).

The treatment of out-of-range grougsauplnfo).

The inde of the ley type to for eaclpossible group kt_index] MaxKbdGroups]).

The width of the widest type associated with thg (groups\Width).

The two-dimensional (numGroupsgroupsVidth) array of symbols bound to theyk

It is legal for a key to have zero groups, in which case it also has zero symbols and all
events from that key yieldoSymbol. The array of key types is of fixed width and is
large enough to hold key types for the maximum legal number of grivag&pd-

G oups, currently four); if a key has fewer thddaxKbdGr oups groups, the extra

key types are reported but ignored. TheupsWidth field cannot be explicitly

changed; it is updated automatically whenever the symbols or set of types bound to a
key are changed.

11/6/97 Protocol \érsion 1.0/Document Rision 1.0 25

The X Keyboard Extension Protocol Specification

7.3

If, when looking up a symbol, the effective keyboard group is out-of-range for the key,
thegrouplnfofield of the key symbol map specifies the rules for determining the cor-
responding legal group as follows:

» IftheRedi r ect | nt oRange flag is set, the tavleast significant bits afrouplinfo
specify the inde of a group to which all iligal groups correspond. If the specified
group is also out of range, all ijjal groups map t& oupl.

» If d anpl nt oRange flag is set, out-of-range groups correspond to the neagast le
group. Efective groups lager than the highest supported group are mapped to the high-
est supported group;fettive groups less tha®& oupl are mapped t& oupl. For
example, a ky with two groups of symbols us€ oup2 type and symbols if the glo-
bal efective group is eithe@ oup3 or G oup4.

» If neither flag is set, group is wrapped into range using@ntaodulus. & example, a
key with two groups of symbols for which groups wrap uSesupl symbols if the
global efective group iS<3r oup3 or G oup2 symbols if the global &ctive group is
G oup4.

The client map contains an array of key symbol mappings, with one entry for each key
between the minimum and maximum legal keycodes, inclusive. All keycodes which
fall in that range have key symbol mappings, whether or not any key actually yields
that code.

Transforming the KeySym Associated with a Key Event

Any modifiers that were not used to look up the keysym, or which were explicitly pre-
served, might indicate further transformations to be performed on the keysym or the
character string that is derived from it. For example, IlLthek modifier is set, the

symbol and corresponding string should be capitalized according to the locale-sensi-
tive capitalization rules specified by the system. If@bat r ol modifier is set, the
keysym is not affected, but the corresponding character should be converted to a con-
trol character as described in Appendix A.

This extension specifies the transformations to be applied whé&ottie ol or
Lock modifiers are active but were not used to determine the keysym to be used:

Modifier Transformation

Contr ol Report the control character associated with the symbol. Xten-e
sion defines the control characters associated with the ASCII alpha-
betic characters (both upper andiés case) and for a small set of
punctuation characters (see Appendix A). Applications are free to
associate control characters wittyaymbols that are not specified
by this extension.

Lock Capitalize the symbol either according to capitalization rules appro-
priate to the application locale or using the capitalization rules
defined by this)@ension (see Appendix A).

Interpretation of other modifiers is application dependent.

Note This definition of capitalization is fundamentallyfdifent from the core protocsl’
which uses the lock modifier to select from the symbols bound tegh€&nsider
key 9 in the @ample leyboard on page 27; the core protocolies no vay to gen-
erate the capital form of either symbol bound to tleis KKB specifies that we first
look up the symbol and then capitalize, so XKB yields the capital form of the tw
symbols when caps lock is aadi

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 26

The X Keyboard Extension Protocol Specification

XKB specifies the behavior dfock andCont r ol , but interpretation of other modi-
fiers is left to the application.

7.4 Client Map Example
Consider a simple, if unlikely, keyboard with the following keys (gray characters indi-
cate symbols that are implied or expected but are not actually engraved on the key):

? 1 Num Enter
B\ End Lock

Keycode: 8 9 10 11 12 13 15

Q e A E
0

Key: @ ’

The core protocol represents this keyboard as a simple array with one row per key and
four columns (the widest key, key 10, determines the width of the entire array).

Key G1L1 G1L2 G2L1 G2L2
8 Q NoSymbol at NoSymbol
9 odiaeresis egrave NoSymbol NoSymbol
10 A NoSymbol £ NoSymbol
11 ssharp question backslash questiondown
12 KP_End KP_1 NoSymbol NoSymbol
13 Num_Lock NoSymbol NoSymbol NoSymbol
14 NoSymbol NoSymbol NoSymbol NoSymbol
15 Return NoSymbol NoSymbol NoSymbol

The row to be used for a given key event is determined by keycode; the column to be
used is determined by the symbols bound to the key, the stateShfithe andLock
Modifiers and the state of the modifiers bound toNben_Lock andMode_switch

keys as specified by the core protocol.

The XKB description of this keyboard consists of six key symbol maps, each of which
specifies the types and symbols associated with each keyboard group for one key:

Key | Group: Type L1 L2

8 | G1ALPHABETIC q Q
G2:ONE_LEVEL @ NoSymbol

9 |GLTWO_LEVEL| odiaeresis egrave

10 | G1:ALPHABETIC a A
G2:ALPHABETIC ae AE

11 |G1TWO_LEVEL ssharp question
G2:ONE LEVEL backslash questiondown

12 Gl;KEYEAD KP_End KP_1

13 | G1:ONE_LEVEL | Num_Lock

14 | No Groups

15 | G1:ONE_LEVEL Return

The keycode reported in a key event determines the row to be used for that event; the
effective keyboard group determines the list of symbols and key type to be used. The
key type determines which symbol is chosen from the list.

11/6/97 Protocol \érsion 1.0/Document Rision 1.0 27

The X Keyboard Extension Protocol Specification

8.0

Section 7.2 details the procedure to map from a key event to a symbol and/or a string.

Symbolic Names

The core protocol does not provide any information to clients other than that actually
used to interpret events. This makes it difficult to write a client which presents the
keyboard to a user in an easy-to-understand way. Such applications have to examine
the vendor string and keycodes to determine the type of keyboard connected to the
server and have to examine keysyms and modifier mappings to determine the effects
of most modifiers (th&hi f t , Lock andCont r ol modifiers are defined by the core
protocol but no semantics are implied for any other modifiers).

This extension provides such applications with symbolic names for most components
of the keyboard extension and a description of the physical layout of the keyboard.

Thekeycodes name describes the range and meaning of the keycodes returned by the
keyboard in question; tHeyboard geometry name describes the physical location,

size and shape of the various keys on the keyboard. As an example to distinguish
between these two names, consider function keys on PC-compatible keyboards. Func-
tion keys are sometimes above the main keyboard and sometimes to the left of the
main keyboard, but the same keycode is used for the key that is logitathgardless

of physical position. Thus, all PC-compatible keyboards might share a keycodes name
but different geometry names.

Note The keycodes name is intended to beemyvgeneral description of theyjcodes
returned by adyboard; A single &ycodes name might ger keyboards with difiering
numbers of kys prorided that the &ys that all leys have the same semantics when
present. Br exkample, 101 and 102k PC leyboards might use the same name.
Applications can use thekboard geometry to determine which subset of the named
keyboard type is in use.

The symbols name identifies the symbols bound to the keys. The symbols name is a
human or application-readable description of the intended locale or usage of the key-
board with these symbols. Thhysical symbols name describes the symbols actually
engraved on the keyboard, which might be different than the symbols currently being
used.

Thetypes name provides some information about the set of key types that can be asso-
ciated with the keyboard keys. Tb@mpat name provides some information about the
rules used to bind actions to keys changed using core protocol requests.

Thecompat, types, keycodes, symbols andgeometry names typically correspond to the
keyboard components from which the current keyboard description was assembled.
These components are stored individually in the server’s database of keyboard compo-
nents, described in section 13.0, and can be combined to assemble a complete key-
board description.

Each key has a four-byte symbolic name. The key name links keys with similar func-
tions or in similar positions on keyboards that report different scan déelealiases

allow the keyboard layout designer to assign multiple names to a single key, to make it
easier to refer to keys using either their posigotheir “function.”

For example, consider the common keyboard customizations:

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 28

The X Keyboard Extension Protocol Specification

9.0

9.1

» Set the “ley to the left of the letter a” to be a contrayk
» Change the “caps lock’dy, whererer it might be, to a controley.

If we specify key names by position, the first customization is simple but the second is
impossible; if we specify key names by function, the second customization is simple
but the first is impossible. Using key aliases, we can specify both function and position
for “troublesome” keys, and both customizations are straightforward.

Key aliases can be specified both in the symbolic names component and in the key-
board geometry (see section 11.0). Both sets of aliases are always valid, but key alias
definitions in the keyboard geometry have priority; if both symbolic names and geom-
etry include aliases, applications should consider the definitions from the geometry
before considering the definitions from the symbolic names section.

XKB provides symbolic names for each of the four keyboard groups, sixteen virtual
modifiers, thirty-two keyboard indicators, and ugMex Radi oG- oups (32) radio
groups.

XKB allows keyboard layout designers or editors to assign names to each key type and
to each of the levels in a key type. For example, the second position on an alphabetic
key might be called the “Caps” level while the second position on a numeric keypad
key might be called the “Num Lock” level.

Keyboard Indicators

Although the core X protocol supports thirty-two LEDs on a keyboard, it does not pro-
vide any way to link the state of the LEDs and the logical state of the keyboard. For
example, most keyboards have a “Caps Lock” LED, but X does not provide any stan-
dard way to make the LED automatically follow the logical state of the modifier
bound to theCaps Lock key.

The core protocol also gives no way to determine which bits iredhenask field of

the keyboard state map to the particular LEDs on the keyboard. For example, X does
not provide a method for a client to determine which bit to set itethenask to turn

on the “Scroll Lock” LED, or even if the keyboard has a “Scroll Lock” LED.

Most X servers implement some kind of automatic behavior for one or more of the
keyboard LEDs, but the details of that automatic behavior are implementation-specific
and can be difficult or impossible to control.

XKB provides indicator names and programmable indicators to help solve these prob-
lems. Using XKB, clients can determine the names of the various indicators, deter-
mine and control the way that the individual indicators should be updated to reflect
keyboard changes, and determine which of the 32 keyboard indicators reported by the
protocol are actually present on the keyboard. Clients may also request immediate
notification of changes to the state of any subset of the keyboard indicators, which
makes it straightforward to provide an on-screen “virtual” LED panel.

Global Information About Indicators
XKB provides only two pieces of information about the indicators as a group.

Thephysical indicators mask reports which of the 32 logical keyboard indicators sup-
ported by the core protocol and XKB corresponds to some actual indicator on the key-

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 29

The X Keyboard Extension Protocol Specification

9.2

9.2.1

board itself. Because the physical indicators mask describes a physical characteristic
of the keyboard, it cannot be directly changed under program control. It is possible,
however, for the set of physical indicators to be change if a new keyboard is attached
or if a completely new keyboard description is loaded byikiteGet Keyboar d-

By Name request (see section 16.3.12).

Theindicator state mask reports the current state of the 32 logical keyboard indica-
tors. This field and the core protocol indicator state (as reported bgdth@sk field
of the core protocabet Keyboar dCont r ol request) are always identical.

Per-Indicator Information

Each of the thirty-two keyboard indicators has a symbolic name, of type ATOM. The
XkbGet Nanes request reports the symbolic names for all keyboard components,
including the indicators. Use thébSet Nanes request to change symbolic names.
Both requests are described in section 16.3.9.

Indicator Maps
XKB also provides amdicator map for each of the thirty-two keyboard indicators; an
indicator map specifies:

The conditions under which theyjboard modifier state f&fcts the indicator

The conditions under which theyjboard group state fatcts the indicator

The conditions under which the state of the boolean contfelssthe indicator

The efect (if ary) of attempts toxlicitly change the state of the indicator using the
core protocoBet Keyboar dCont r ol request.

If 1 M_NoAut onat i c is set in thdlags field of an indicator map, that indicator never
changes in response to changes in keyboard state or controls, regardless of the values
for the other fields of the indicator mapl I NoAut omat i ¢ is not set irflags, the

other fields of the indicator map specify the automatic changes to the indicator in
response to changes in the keyboard state or controls.

Thewhich_groups and thegroups fields of an indicator map determine how the key-
board group state affects the corresponding indicatorwitel_groupsfield controls
the interpretation afiroups and may contain any one of the following values:

Value Interpretation of the Groups Field
I M _UseNone Thegroups field and the currentégboard group state are ignored.
| M UseBase If groupsis non-zero, the indicator is lit wherez the basedyboard

group is non-zero. kfroups is zero, the indicator is lit whewner the
base kyboard group is zero.

| M_UselLat ched If groups is non-zero, the indicator is lit wheres the latcheddy-
board group is non-zero. dfoupsis zero, the indicator is lit when-
ever the latcheddyboard group is zero.

| M_UseLocked Thegroupsfield is interpreted as a mask. The indicator is lit when
the current lockd keyboard group matches one of the bits that are
set ingroups.

| M UseEf fecti ve Thegroupsfield is interpreted as a mask. The indicator is lit when
the current déctive keyboard group matches one of the bits that are
set ingroups.

Thewhich_mods andmods fields of an indicator map determine how the state of the
keyboard modifiers affect the corresponding indicator. mbds field is an XKB

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 30

The X Keyboard Extension Protocol Specification

modifier definition, as described in section 3.1, which can specify both real and virtual
modifiers. The mods field takes effect even if some or all of the virtual indicators
specified inmods are unbound.

Thewhich_mods field can specify one or more components of the XKB keyboard
state. The corresponding indicator is lit whenever any of the real modifiers specified in
themask field of themods modifier definition are also set in any of the current key-
board state components specified bywthieeh_mods. Thewhich_mods field may have

any combination of the following values:

Value Keyboard Sate Component To Be Considered
| M_UseBase Base modifier state
| M UselLat ched Latched modifier state
| M_UseLocked Locked modifier state
| M UseEf fective Effective modifier state
| M_UseConpat Modifier compatibility state

Thecontrols field specifies a subset of the boolean keyboard controls (see section
4.11). The indicator is lit whenever any of the boolean controls specifcattirols
are enabled.

An indicator is lit whenever any of the conditions specified by its indicator map are
met, unless overridden by thé1 NoAut omat i ¢ flag (described above) or an
explicit indicator change (described below).

Effects of Explicit Changes on Indicators
If thel M_NoExpl i cit flag is set in an indicator map, attempts to change the state
of the indicator are ignored.

If bothl M_NoExpl i cit andl M_NoAut omat i ¢ are both absent from an indicator
map, requests to change the state of the indicator are honored but might be immedi-
ately superseded by automatic changes to the indicator state which reflect changes to
keyboard state or controls.

If the | M_LEDDrx i vesKB flag is set and theM NoExpl i ci t flag is not, the key-

board state and controls are changed to reflect the other fields of the indicator map, as
described in the remainder of this section. Attempts to explicitly change the value of
an indicator for which M_LEDDr i vesKB is absent or for whichM_NoExpl i ci t

is present do not affect keyboard state or controls.

The effect on group state of changing an explicit indicator which drives the keyboard
is determined by the value which_groups andgroups, as follows:

which_groups New State Effect on Keyboard Group Sate

I M _UseNone, or On or Of No Effect

| M UseBase

| M UselLat ched On Thegroups field is treated as a group mask. Tleg-k

board group latch is changed to thevdést numbered
group specified igroups; if groups is empty the ley-
board group latch is changed to zero.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 31

The X Keyboard Extension Protocol Specification

which_groups New State Effect on Kyboad Group State

IM_UseLatched Off Thegroupsfield is treated as a group mask. If the indi-
cator is a@plicitly extinguished, kyboard group latch is
changed to the West numbered group not specified in
groups if groupsis zero, the &board group latch is set
to the inde of the highest lgal keyboard group.

I M UselLocked,or On If the groupsmask is emptygroup is not changed, oth-

I M UseEffective erwise the lock&d keyboard group is changed to thevlo
est numbered group specifiedgroups

I M UselLocked, or Off Locked keyboard group is changed to theviest num-

I M UseEf fective bered group that is not specified in greupsmask, or
to Gr oupl if the groupsmask contains alldyboard
groups.

The effect on the keyboard modifiers of changing an explicit indicator which drives
the keyboard is determined by the values that are sewhioh_modsndmods as
follows:

Set in whib_mods New State Effect on Kyboard Modifiers

I M UseBase On or Of No Effect

I M _Uselat ched On Any madifiers specified in thmaskfield of modsare
added to the latched modifiers.

| M_UselLat ched Off Any modifiers specified in theaskfield of modsare
removed from the latched modifiers.

I M UselLocked, On Any moadifiers specified in thmaskfield of modsare

| M _UseConpat , or added to the lodd modifiers.

| M UseEffective

| M UseLocked Off Any modifiers specified in thmaskfield of modsare
removed from the lockd modifiers.

I M_UseConpat , or Off Any madifiers specified in thmaskfield of modsare

| M UseEffective removed from both the loadd and latched modifiers.

Lighting an explicit indicator which drives the keyboard also enables all of the bool-
ean controls specified in tle@ntrolsfield of its indicator map. Explicitly extinguish-
ing such an indicator disables all of the boolean controls specifeahtrols

The effects of changing an indicator which drives the keyboard are cumulative; it is
possible for a single change to affect keyboard group, modifiers and controls simulta-
neously.

If an indicator for which both theM LEDDr i vesKB andl M_NoAut onat i ¢ flags

are specified is changed, the keyboard changes specified above are applied and the
indicator is changed to reflect the state that was explicitly requested. The indicator will
remain in the new state until it is explicitly changed again.

If the | M_NoAut omat i ¢ flag is not set for an indicator which drives the keyboard,

the changes specified above are applied and the state of the indicator is set to the val-
ues specified by the indicator map. Note that it is possible in this case for the indicator
to end up in a different state than the one that was explicitly requested. For example,
an indicator withwhich_mod®f | M_UseBase andmodsof Shi f t is not extin-

guished if one of th&hift keys is physically depressed when the request to extinguish
the indicator is processed.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 32

The X Keyboard Extension Protocol Specification

10.0

10.1

10.2

10.3

10.4

Keyboar d Bells

The core protocol provides requests to control the pitch, volume and duration of the
keyboard bell and a request to explicitly sound the bell.

The X Keyboard Extension allows clients to disable the audible bell, attach a symbolic
name to a bell request or receive an event when the keyboard bell is rung.

Client Notification of Bells

Clients can ask to receivékbBel | Not i fy event when a bell is requested by a cli-
ent or generated by the server. Bells can be sounded due to core @etdcol
requests, X Input Extensiddevi ceBel | requests, X Keyboard Extensi&kb-

Bel | requests or for reasons internal to the server such as theA\X&ds s XFeed-
back control.

Bell events caused by thé&bBel | request or by thAccessXFeedback control

include an optional window and symbolic name for the bell. If present, the window
makes it possible to provide some kind of visual indication of which window caused
the sound. The symbolic name can report some information about the reason the bell
was generated and makes it possible to generate a distinct sound for each type of bell.

Disabling Ser ver Generated Bells

The globalAudi bl eBel | boolean control for a keyboard indicates whether bells

sent to that device should normally cause the server to generate a sound. Applications
which provide “sound effects” for the various named bells will typically disable the
server generation of bells to avoid burying the user in sounds.

When theAudi bl eBel | control is active, all bells caused by core protdzdl |

and X Input Extensiobevi ceBel | requests cause the server to generate a sound, as
do all bells generated by the XK cessXFeedback control. Bells requested via

the XkbBel | request normally cause a server-generated sound, but clients can ask
the server not to sound the default keyboard bell.

When theAudi bl eBel | control is disabled, the server generates a sound only for
bells that are generated using ¥kbBel | request and which specify forced delivery
of the bell.

Generating Named Bells

TheXkbBel | request allows clients to specify a symbolic name which is reported in
the bell events they cause. Bells generated bjdkessXFeedback control of this
extension also include a symbolic name, but all kinds of feedback cause a single event
even if they sound multiple tones.

The X server is permitted to use symbolic bell names (when present) to generate
sounds other than simple tones, but it is not required to do so.

Aside from those used by the XK cessXFeedback control (see section 4.9),
this extension does not specify bell names or their interpretation.

Generating Optional Named Bells

Under some circumstances, some kind of quiet audio feedback is useful, but a normal
keyboard bell is not. For example, a quiet “launch effect” can be helpful to let the user
know that an application has been started, but a loud bell would simply be annoying.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 33

The X Keyboard Extension Protocol Specification

10.5

11.0

To simplify generation of these kinds of effects, XkdBel | request allows clients
to specify “event only” bells. The X server never generates a normal keyboard bell for
“event only” bells, regardless of the setting of the glghali bl eBel | control.

If the X server generates different sounds depending bell name, it is permitted to gen-
erate a sound even for “event only” bells. This field is intended simply to weed out
“normal” keyboard bells.

Forcing a Server Generated Bell

Occasionally, it is useful to force the server to generate a sound. For example, a client
could “filter” server bells, generating sound effects for some but sounding the normal
server bell for others. Such a client needs a way to tell the server that the requested bell
should be generated regardless of the setting dfulde bl eBel | control.

To simplify this process, clients which call tklebBel | request can specify that a

bell is forced. A forced bell always causes a server generated sound and never causes a
XkbBel | Not i fy event. Because forced bells do not cause bell notify events, they
have no associated symbolic name or event window.

Keyboard Geometry

The XKB description of a keyboard includes an optional keyboard geometry which
describes the physical appearance of the keyboard. Keyboard geometry describes the
shape, location and color of all keyboard keys or other visible keyboard components
such as indicators. The information contained in a keyboard geometry is sufficient to
allow a client program to draw an accurate two-dimensional image of the keyboard.

The components of the keyboard geometry include the following:

» A symbolic name to help users identify theekboard.

» Thewidth andheight of the leyboard, in“;—m. For non-rectangulardyboards, the
width and height describe the smallest Bounding-box that encloses the outline of the
keyboard.

» Alist of up toMaxCol or s (32) color names. A color name is a string whose interpre-
tation is not specified by XKB. Other geometry components refer to colors using their
indices in this list.

» Thebasecolor of the leyboard is the predominant color on tregtikoard and is used as
the de&ult color for ag components whose color is nepécitly specified.

» Thelabel color is the color used to drathe labels on most of theyboard leys.

» Thelabel font is a string which describes the font used tavdebels on mostdys;

XKB does not specify a format or name space for font names.

» A list of geometry properties. A geometry property associates an arbitrary string with
an equally arbitrary name. Geometry properties can be usedvidephints to pro-
grams that display images a#fboards, bt they are not interpreted by XKB. No other
geometry structures refer to geometry properties.

» Alist of key aliases, as described in section 8.0.

» Alist of shapes; other leyboard components refer to shapes by theindmal¢his list. A
shape consists of a name and one or more closed-polygonsocdlilees. Shapes and
outlines are described in detail in section 11.1.

Unless otherwise specified, geometry measurements umits. The origin (0,0)
is in the top left corner of the keyboard image. Some geometry components can be
drawn rotated; all such objects rotate about their origigcinncrements.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 34

The X Keyboard Extension Protocol Specification

11.1

11.2

All geometry components includepaority, which indicates the order in which over-
lapping objects should be drawn. Objects are drawn in order from highest pfrity (
to lowest 255).

The description of the actual appearance of the keyboard is subdivided into named
sections of related keys andoodads. A adoodad describes some visible aspect of the
keyboard that is not a key. A section is a collection of keys and doodads that are phys-
ically close together and logically related.

Shapes and Outlines

An outline is a list of one or more points which describes a single closed-polygon, as
follows:

» Alist with a single point describes a rectangle with one corner at the origin of the shape
(0,0) and the opposite corner at the specified point.

» A list of two points describes a rectangle with one corner at the position specified by
the first point and the opposite corner at the position specified by the second point.

» Alist of three or more points describes an arbitrary polygon. If necesisanyolygon
is automatically closed by connecting the last point in the list with the first.

* A non-zero walue for thecornerRadius field specifies that the corners of the polygon
should be dnan as circles with the specified radius.

All points in an outline are specified relative to the origin of the enclosing shape.
Points in an outline may have negative values for the X and Y coordinate.

One outline (usually the first) is the primary outline; a keyboard display application
can generate a simpler but still accurate keyboard image by displaying only the pri-
mary outlines for each shape. Non-rectangular keys must include a rectangular
approximation as one of the outlines associated with the shape; the approximation is
not normally displayed but can be used by very simple keyboard display applications
to generate a recognizable but degraded image of the keyboard.

Sections

Each section has its own coordinate system — if a section is rotated, the coordinates of
any components within the section are interpreted relative to the edges that were on
the top and left before rotation. The components that make up a section include:

» Alist of rows. A row is a list of horizontally or ertically adjacent &ys. Horizontal
rows parallel the (pre-rotation) top of the section aediwal ravs parallel the (pre-
rotation) left of the section. Alldys in a horizontal v share a common top coordi-
nate; all leys in a \ertical rav share a left coordinate.

A key description consists of akname, ashape, a key color, and agap. The ley
name should correspond to one of they& named in thedyboard names description,
the shape specifies the appearance of tleg, land the ky color specifies the color of
the key (not the label on theey). Keys are normally dran immediately adjacent to
one another from left-to-right (or top-to-bottom) within avrdhegap field specifies
the distance between aykand its predecessor

» An optional list of doodads; gnype of doodad can be enclosed within a section. Posi-
tion and angle of rotation are relagito the origin and angle of rotation of the sections
that contain them. Priority is rela# to the other components of the section, not to the
keyboard as a whole.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 35

The X Keyboard Extension Protocol Specification

» An optional list ofoverlay keys. Each @erlay lkey definition indicates ady that can
yield multiple scan codes and consists of a field namder, which specifies the pri-
mary name of thedy and a field nameadver, which specifies the name for theyk
when the wgerlay keycode is selected. Th&kspecified irunder must be a member of
the section that contains theeolay key definition, while the &y specified in @er must
not.

11.3 Doodads
Doodads can be global to the keyboard or part of a section. Doodads have symbolic
names of arbitrary length. The only doodad name whose interpretation is specified by
XKB is “Edges”, which describes the outline of the entire keyboard, if present.

All doodads report their origin in fields namisft andtop. XKB supports five kinds
of doodads:

» Anindicator doodad describes one of the ysical keyboard indicators. Indicator doo-
dads specify the shape of the indicatbe indicator color when it is libf_color) and
the indicator color when it is darkf{_color).

» An outline doodad describes some aspect of tleghdoard to be dran as one or more
hollow, closed polygons. Outline doodads specify the shape, apldrangle of rota-
tion about the doodad origin at which yrshould be dnan.

» A solid doodad describes some aspect of tleghioard to be dran as one or more
filled polygons. Solid doodads specify the shape, color and angle of rotation about the
doodad origin at which tlyeshould be dnan.

» A text doodad describes a 1 label somehere on the éyboard. Ext doodads specify
the label string, the font and color to use whenvirg the label, and the angle of rota-
tion of the doodad about its origin.

* A logo doodad is a catch-all, which describes some other visible element oéyhe k
board. A logo doodad is essentially an outline doodad with an additional symbolic
name that describes the element to bevdra

If a keyboard display program recognizes the symbolic hame, it cansdnaething
appropriate within the boundinggien of the shape specified in the doodad. If the
symbolic name does not describe a recognizable image, it showidw@utline using
the specified shape, outline, and angle of rotation.

The XKB extension does not specify the interpretation of logo names.

11/6/97 Protocol \érsion 1.0/Document Rision 1.0 36

The X Keyboard Extension Protocol Specification

114

Keyboard Geometry Example
Consider the following example keyboard:

m’ T ﬁ’ ‘M. Py
.) . .
il <KPEN>
<AE11>
,

> || | <BKSL>

<AE12> <AE01s| || [

TAB> | I | aorts| | |

<CAPS> D <AC11>

<acots||| [

<LFSH> ! || | <RTSH>

E8e]8]
ninn

)5]¢]

<ABO1>|

[<TLDE>|

This keyboard has six sections: The left and right function sections (at the very top)
each have one horizontal row with eight keys. The left and right alphanumeric sections
(the large sections in the middle) each have six vertical rows, with four or five keys in
each row. The left and right editing sections each have three vertical rows with one to
three keys per row; the left editing section is rotated 20° clockwise about its origin
while the right editing section is rotated 20° counterclockwise.

This keyboard has four global doodads: Three small, round indicators and a rectangu-
lar logo. The program which generated this image did not recognize the logo, so it dis-
plays an outline with an appropriate shape in its place.

This keyboard has seven shapes: All of the keys in the two function sections use the
“FKEY” shape. Most of the keys in the alphanumeric sections, as well as four of the
keys in each of the editing sections use the “NORM” shape. The keys in the first col-
umn of the left alphanumeric section and the last column of the right alphanumeric
section all use the “WIDE” shape. Two keys in each of the editing sections use the
“TALL” shape. The “LED” shape describes the three small, round indicators between
the function and alphabetic sections. The “LOGQO” shape describes the keyboard logo,
and the “EDGE” shape describes the outline of the keyboard as a whole.

The keyboard itself is white, as are all of the keys except for the eight keys that make
up the home row, which use the “grey20” color. It isn’t really visible in this picture,

but the three indicators have an “on” color of “green” and are “green30” when they are
turned off. The keys in the alphanumeric and editing sections all have a (vertical) gap
of 0.5mm); the keys in the two function sections have a (horizontal) gap of 3mm.

Many of the keys in the right alphanumeric section, and the rightmost key in the right
editing section are drawn with two names in this image. Those are overlay keys; the
bottom key name is the normal name while the overlay name is printed at the top. For
example, the right editing section has a single overlay key entry, which specifies an
under name okSPCE> and arover name okKP0O>, which indicates that the key in
guestion is usually the shift key, but can behave lik@® tkey on the numeric keypad
when an overlay is active.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 37

The X Keyboard Extension Protocol Specification

12.0 Interactions Between XKB and the Core Pr otocol

In addition to providing a number of new requests, XKB replaces or extends existing
core protocol requests and events. Some aspects of the this extension, such as the abil-
ity to lock any key or modifier, are visible even to clients that are unaware of the XKB
extension. Other capabilities, such as control of keysym selection on a per-key basis,
are available only to XKB-aware clients.

Though they do not have access to some advanced extension capabilities, the XKB
extension includes compatibility mechanisms to ensure that non-XKB clients behave
as expected and operate at least as well with an XKB-capable server as they do today.

There are a few significant areas in which XKB state and mapping differences might
be visible to XKB-unaware clients:

» The core protocol uses a modifier to choose betweehkeyboard groups, while this
extension preides eplicit support for multiple groups.

» The order of the symbols associated with given key by XKB might not match the
ordering demanded by the core protocol.

To minimize problems that might result from these differences, XKB includes ways to
specify the correspondence between core protocol and XKB modifiers and symbols.

This section describes the differences between the core X protocol’s notion of a key-
board mapping and XKB and explains the ways they can interact.

12.1 Group Compatibility Map
As described in section 2.0, the current keyboard group is reported to XKB-aware cli-
ents in bits 13-14 of the state field of many core protocol events. XKB-unaware clients
cannot interpret those bits, but they might use a keyboard modifier to implement sup-
port for a single keyboard group. To ensure that pre-XKB clients continue to work
when XKB is present, XKB makes it possible to map an XKB state field, which
includes both keyboard group and modifier state into a pre-XKB state field which con-
tains only modifiers.

A keyboard description includes ogeup compatibility map per keyboard group

(four in all). Each such map is a modifier definition (i.e. specifies both real and virtual
modifiers) which specifies the modifiers to be set in the compatibility states when the
corresponding keyboard group is active. Here are a few examples to illustrate the
application of the group compatibility map:

Group Effective State for XKB Compatibility State for non-

Group Compat Map Modifier s Clients Modifier s XKB Clients
1 Group1=None Shift X00xxxxx00000001 Shift Xxxxxxxx00000001
2 Group2=Mod3 None x01xxxxx00000000 Mod3 xxxxxxxx00100000
3 Group3=Mod2 Shift x10xxxxx00000001 Shift+Mod2 xxxxxxxx00010001
4 Group4=None Control x11xxxxx00000100 Control Xxxxxxxx00000100

Note that non-XKB clients (i.e. clients that are linked with a version of the X library
that does not support XKB) cannot detect the fact@atup4 is active in this exam-
ple because the group compatibility map@woup4 does not specify any modifiers.

11/6/97 Protocol \érsion 1.0/Document Rision 1.0 38

The X Keyboard Extension Protocol Specification

12.1.1

12.2

12.2.1

Setting a Passive Grab for an XKB State

The fact that thetate field of an event might look different when XKB is present can
cause problems with passive grabs. Existing clients specify the modifiers they wish to
grab using the rules defined by the core protocol, which use a normal modifier to indi-
cate keyboard group. If we used an XKB state field, the high bits of the state field
would be non-zero whenever the keyboard was in any group othe&tbapl, and

none of the passive grabs set by clients could ever be triggered.

To avoid this behavior, the X server normally uses the compatibility grab state to
decide whether or not to activate a passive grab, even for XKB-aware clients. The
group compatibility map attempts to encode the keyboard group in one or more modi-
fiers of the compatibility state, so existing clients continue to work exactly the way
they do today. By default, there is no way to directly specify a keyboard group in a

G abbed or GrabBut t on request, but groups can be specified indirectly by cor-
rectly adjusting the group compatibility map.

Clients that wish to specify an XKB keyboard state, including a separate keyboard
group, can set thér absUseXKBSt at e per-client flag which indicates that all sub-
sequent key and button grabs from the requesting clients are specified using an XKB
state.

Whether the XKB or core state should be used to trigger a grab is determined by the
setting of the&r absUseXKBSt at e flag for the requesting client at the time the key

or button is grabbed. There is no way to change the state to be used for a grab that is
already registered or for grabs that are set by some other client.

Changing the Keyboard Mapping Using the Core Protocol

An XKB keyboard description includes a lot of information that is not present in the
core protocol description of a keyboard. Whenever a client remaps the keyboard using
core protocol requests, XKB examines the map to determine likely default values for
the components that cannot be specified using the core protocol.

Some aspects of this automatic mapping are configurable, and make it fairly easy to
take advantage of many XKB features using existing toolsdiiemap, but much of

the process of mapping a core keyboard description into an XKB description is
designed to preserve compatible behavior for pre-XKB clients and cannot be redefined
by the user. Clients or users that want behavior that cannot be described using this
mapping should use XKB functions directly.

Explicit Keyboard Mapping Components

This automatic remapping might accidentally replace definitions that were explicitly
requested by an application, so the XKB keyboard description defines aegatof
components for each key; any components that are listed in the explicit components
for a key are not changed by the automatic keyboard mapping. The explicit compo-
nents field for a key can contain any combination of the following values:

Bit in Explicit Mask Protects Against

ExplicitKeyTypel Automatic determination of thesk type associated with
G oupl (see section 12.2.3)

ExplicitKeyType2 Automatic determination of thesk type associated with

Group2 (see section 12.2.3)

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 39

The X Keyboard Extension Protocol Specification

12.2.2

Bit in Explicit Mask Protects Against

ExplicitkeyType3 Automatic determination of thesi type associated with
Group3 (see section 12.2.3).

ExplicitkeyType4 Automatic determination of thesk type associated with
Group4 (see section 12.2.3).

Explicitinterpret Application of aiy of the fields of a symbol interpretation to
the key in question (see section 12.2.4).

ExplicitAutoRepeat Automatic determination of autorepeat status for #ye &s
specified in a symbol interpretation (see section 12.2.4).

ExplicitBehavior Automatic assignment of théB_Lock behaior to the ley,

if the Locki ngKey flag is set in a symbol interpretation
(see section 12.2.4).

ExplicitVModMap Automatic determination of the virtual modifier map for the
key based on the actions assigned to #eand the symbol
interpretations which match theyk(see section 12.2.4).

Assigning Symbols To Groups

The first step in applying the changes specified by a core pra@hemigeKey-

boar dMappi ng request to the XKB description of a keyboard is to determine the
number of groups that are defined for the key and the width of each group. The XKB
extension does not change key types in response to core pisebdddi f i er -

Mappi ng requests, but it does choose key actions as described in section 12.2.4.

Determining the number of symbols required for each group is straightforward. If the
key type for some group is not protected by the correspoitipti ci t KeyType
component, that group has two symbols. If any of the explicit components for the key
includeExpl i ci t KeyType3 orExpl i ci t KeyType4, the width of the key type
currently assigned to that group determines the number of symbols required for the
group in the core protocol keyboard description. The explicit type components for

G oupl andG oup2 behave similarly, but for compatibility reasons the first two
groups must have at least two symbols in the core protocol symbol mapping. Even if
an explicit type assigned to either of the first two keyboard groups has fewer than two
symbols, XKB requires two symbols for it in the core keyboard description.

If the core protocol request contains fewer symbols than XKB needs, XKB adds trail-
ing NoSymbol keysyms to the request to pad it to the required length. If the core proto-
col request includes more symbols than it needs, XKB truncates the list of keysyms to
the appropriate length.

Finally, XKB divides the symbols from the (possibly padded or truncated) list of sym-
bols specified by the core protocol request among the four keyboard groups. In most
cases, the symbols for each group are taken from the core protocol definition in
sequence (i.e. the first pair of symbols is assignésl taupl, the second pair of sym-
bols is assigned t@& oup2, and so forth). If eithe& oupl or G- oup2 has an

explicitly defined key type with a width other than two, it gets a little more compli-
cated.

Assigning Symbolsto Groups One and Two with Explicitly Defined Key Types
The server assigns the first four symbols from the expanded or truncated map to the
symbol positiongG1L1, G1L2, L1 and@&2L2, respectively. If the key type

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 40

The X Keyboard Extension Protocol Specification

12.2.3

assigned t@&x oupl reports more than two shift levels, the fifth and following sym-
bols contain the extra keysyms faroup?2. If the key type assigned @& oup?2

reports more than two shift levels, the extra symbols follow the symbols (if any) for
G oupl in the core protocol list of symbols. Symbols @roup3 andG oup4 are
contiguous and follow the extra symbols, if any,@oupl andG oup?2.

For example, consider a key with a key type that returns three shift levels bound to
each group. The symbols bound to the core protocol are assigned in sequence to the
symbol positions:

GlL1,GlL2, L1, R2L2,GlL3, &2L3, &BL1, BL2, GBL3, AL1,
AL2, andALS3

For a key with a width one key type on group one, a width two key type on group two
and a width three key type on group three, the symbols bound to the key by the core
protocol are assigned to the following key positions:

GlL1, (GlL2),&L1,&RL2,&3L1, G3L2, G3L3

Note that the second and fourth symbols (posit@ris2 and G2L2) can never be
generated if the key type associated with the group yields only one symbol. XKB
accepts and ignores them in order to maintain compatibility with the core protocol.

Assigning Types To Groups of Symbols for a Key

Once the symbols specified BhangeKeyboar dMappi ng have been assigned to

the four keyboard groups for a key, the X server assigns a key type to each group on
the key from a canonical list of key types. The first four key types in any keyboard
map are reserved for these standard key types:

Key Type Name Standad Definition

ONE_LEVEL Describes &ys that hae exactly one symbol per group. Most special
or function leys (such a&et ur n) areONE_LEVEL keys. Ary
combination of modifiers yields\el 0. Index O in ary key symbol
map specifiesdy type ONE_LEVEL.

TWO LEVEL Describes nondypad and non-alphabetieys that hae eactly
two symbols per group. By dailt, theTWO LEVEL type yields col-
umnl if the Shift modifier is set, columh otherwise. Inde 1 in
ary key symbol map specifiessk type TWO _LEVEL.

ALPHABETI C Describes alphabetieks that hae exactly two symbols per group.
The deéult definition of theALPHABETI C type prwides shift-can-
cels-caps belvéor as described in section 7.2.1. Irdein ary key
symbol map specifiessk type ALPHABET! C.

KEYPAD Describes numericegpad leys with two symbols per group.i¥lds
columnl if either of theShi f t modifier or the real modifier bound
to the virtual modifier nameldunlLock are set. ¥lds columnO if
neither or both modifiers are set. IRdin ary key symbol map
specifies ky type KEYPAD.

Users or applications may change these key types to get different default behavior (to
make shift cancel caps lock, for example) but they must always have the specified
number of symbols per group.

Before assigning key types to groups, the X server expands any alphanumeric symbol
definitions as follows:

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 41

The X Keyboard Extension Protocol Specification

12.2.4

If the second symbol of either groupgNeSymbol and the first symbol of that group is

an alphabetic keysym for which both lowercase and uppercase forms are defined, the
X server treats the key as if the first element of the group were the lowercase form of
the symbol and the second element were the uppercase form of the symbol. For the
purposes of this expansion, XKB ignores the locale and uses the capitalization rules
defined in Appendix A.

For each keyboard group that does not have an explicit type definition, XKB chooses a
key type from the canonical key types. If the second symbol assigned to a group is
NoSymbol (after alphabetic expansion), the server assigns keyOyReL EVEL. If

the group contains the lowercase and uppercase forms of a single glyph (after alphanu-
meric expansion), the server assigns key BIpeHABETI C. If either of the symbols

in a group is a numeric keypad keysyP(*), the server assigns key tykEYPAD.
Otherwise, it assigns key tyg&\O LEVEL.

Finally, XKB determines the number of groups of symbols that are actually defined
for the key. Trailing empty groups (i.e. groups that hew8ymbol in all symbol posi-
tions) are ignored.

There are two last special cases for compatibility with the core protocol: If, after trail-
ing empty groups are excluded, all of the groups of symbols bound to the key have
identical type and symbol bindings, XKB assigns only one group to the key. If

G oup2 is empty and either @ oup3 or G oup4 are not, and if neithé&r oupl

nor G oup2 have explicit key types, XKB copies the symbols and key type from

G oupl into G oup?2.

Assigning Actions To Keys

Once symbols have been divided into groups and key types chosen for the keys
affected by &hangeKeyboar dMappi ng request, XKB examines the symbols and
modifier mapping for each changed key and assigns server actions where appropriate.
XKB also automatically assigns server actions to changed keys if the client issues a
core protocoBet Modi fi er Mappi ng request, and does so optionally in response

to XkbSet Map andXkbSet Conpat Map requests.

The compatibility map includes a list fmbol interpretations, which XKB compares
to each symbol associated with any changed keys in turn, unldssgheci t | nt -
er p component is set for a key. Setting Ebepl i ci t | nt er p component prevents
the application of symbol interpretations to that key.

If the modifiers and keysym specified in a symbol interpretation match the modifier
mapping and a symbol bound to a changed key that is not protedigbiy c-

i t1nterp, the server applies the symbol interpretation to the symbol position. The
server considers all symbol interpretations which specify an explicit keysym before
considering any that do not. The server uses the first interpretation which matches the
given combination of keysym and modifier mapping; other matching interpretations
are ignored.

XKB uses four of the fields of a symbol interpretation to decide if it matches one of
the symbols bound to some changed key:

» Thesymbol field is a keysym which matches if it has thalueNoSynbol or is iden-
tical to the symbol in question.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 42

The X Keyboard Extension Protocol Specification

12.2.5

12.3

» The modifiers specified in thaods field are compared to the modifierfeated by the
key in question as indicated lyatch.

« Thematch field can specify anof the comparisondlonef , AnyOf Or None,
AnyOf Al | OF orExact|y.

» ThelevelOneOnly setting, indicates that the interpretation in question should only use
the modifiers bound to thissk by the modifier mapping if the symbol that matches in
level one of its group. Otherwise, if the symbol being considered is not in skift le
one of its group, the sexvbehaes as if the modifier map for theykwere emptyNote
that it is still possible for such an interpretation to apply to a symbol in a steift le
other than one if it matches aykwithout modifiers; théevel OneOnly flag only con-
trols the vay that matches are determined and that égeriodifiers are applied when
an interpretation does match.

Applying a symbol interpretation can affect several aspects of the XKB definition of
the key symbol mapping to which it is applied:

» Theaction specified in the symbol interpretation is bound to the symbol positign; an
key event which yields that symbol will also agite the ne action.

» If the matching symbol is in position G1L1, the autorepeat\ehaf the ley is set
from theautorepeat field of the symbol interpretation. Tl pl i ci t Aut oRepeat
component protects the autorepeat status ef &rim symbol interpretation initiated
changes.

» If the symbol interpretation specifies an associated virtual mqdifagrvirtual modi-
fier is added to the virtual modifier map for theg.KTheExpl i ci t VModMap compo-
nent guards the virtual modifier map forey krom automatic changes. If the
level OneOnly flag is set for the interpretation, and the symbol in question is not in posi-
tion G1L1, the virtual modifier map is not updated.

 If the matching symbol is in position G1L1, and tbeking key field is set in the sym-
bol interpretation, the betiar of the ley is changed t&B_Lock (see section 6.2).
TheExpl i ci t Behavi or component preents this change.

If no interpretations match a given symbol or key, the server 88e®oAct i on,
autorepeat enabled, non-locking key. with no virtual modifiers.

If all of the actions computed for a key && NoAct i on, the server assigns an
length zero list of actions to the key.

If the core protocol modifier mapping is changed, the server regenerates actions for the
affected keys. Th&kbSet Map andXkbSet Conpat Map requests can also cause
actions for some or all keyboard keys to be recomputed.

Updating Everything Else

Changes to the symbols or modifier mapping can affect the bindings of virtual modifi-
ers. If any virtual modifiers change, XKB updates all of its data structures to reflect the
change. Applying virtual modifier changes to the keyboard mapping night result in
changes to types, the group compatibility map, indicator maps, internal modifiers or
ignore locks modifiers.

Effects of XKB on Core Protocol Events

After applying server actions which modify the base, latched or locked modifier or
group state of the keyboard, the X server recomputes the effective group and state.
Several components of the keyboard state are reported toaMiiaBe clients depend-

ing on context (see section 2.0 for a detailed description of each of the keyboard state
components):

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 43

The X Keyboard Extension Protocol Specification

12.4

» The efective modifier state is reported ¥kbSt at eNot i f y events and in response
to XkbGet St at e requests.

» The symbol lookup state is reported to Xi@Bare clients in the state field of core pro-
tocol and input @ension ley press and releaseeamnts that do not astite passie
grabs. Unless theookupSt at eWhenGr abbed perclient flag is set, the lookup
state is only reported in theseeats when no grabs are aeti

» The grab state is reported to XkdBrare clients in the state field of all core protocol
events that reportdyboard state xeeptkeyPr ess andKeyRel ease events that do
not actvate passie grabs.

» The efective group is the sum of the base, latched ancelbélyboard groups. An out
of range dective group is wrapped or truncated into range according to the setting of
thegroupsWrap flag for the lkeyboard.

The server reports compatibility states to any clients that have not issued a successful
XkbUseExt ensi on request. The server computes the compatibility symbol lookup
state and the compatibility effective grab state by applying the compatibility modifier
map to the corresponding computed XKB states.

The compatibility symbol lookup state is reported to X&B clients whenever an
XKB-aware client would receive the XKB lookup state. The compatibility grab state is
reported to XKB-unaware clients whenever an XKB client would receive the XKB
grab state.

If the G- absUseXKBSt at e per-client option is not set, even XKB-aware clients
receive the compatibility grab state in events that trigger or terminate passive grabs. If
this flag is not set, XKB clients also receive the compatibility grab or lookup state
whenever any keyboard grab is active.

If the LookupSt at eWhenGr abbed per-client option is set, clients receive either
the XKB or compatibility lookup state when the keyboard is grabbed, otherwise they
receive either the XKB or compatibility grab state. All non-XKB clients receive the
compatibility form of the appropriate state component; the form that is sent to an
XKB-aware client depends on the setting of GnebsUseXKBSt at e option for

that client.

Effect of XKB on Core Protocol Requests

Whenever a client updates the keyboard mapping using a core protocol request, the
server saves the requested core protocol keyboard mapping and reports it to any clients
that issuezet Keyboar divappi ng or Get Modi fi er Mappi ng requests. When-

ever a client updates the keyboard mapping using XKB requests, the server discards
the affected portion of the stored core keyboard description and regenerates it based on
the XKB description of the keyboard.

The symbols associated with the XKB keyboard description appear in the order:
G1L1 G1L2 G2L1 G2L2 G1L3-n G2L3-n G3L* G4L*

If the type associated withr oupl is width one, the second symboNeSymbol; if
the type associated wit oup?2 is width one, the fourth symbol ioSymbol.

If a key has only one group but the keyboard has several, the symi@iofigrl are
repeated for each group. For example, given a keyboard with three groups and a key
with one group that contains the symboksA4 }, the core protocol description would
contain the six symbols:d Aa A a A}. As a slightly more complicated example, an

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 44

The X Keyboard Extension Protocol Specification

12.5

13.0

13.1

XKB key which had a single width three group with the symbal$ £ } would show
up in the generated core protocol keyboard description with the symbbla p c c
a b c } for a keyboard with three groups.

The generated modifier mapping for a key contains all of the modifiers affected by all
of the actions associated with the key plus all of the modifiers associated with any vir-
tual modifiers bound to the key by the virtual modifier mapping. If any of the actions
associated with a key affect any component of the keyboard group, any modifiers
specified in any entry of the group compatibility map (see section 12.1) are reported in
the modifier mask. Th8A | SCLock action can theoretically affect any modifier,

but the modifier map of aBA | SOLock key contains only the modifiers or group

state that it sets by default.

The server notifies interested clients of keyboard map changes in one of two ways. It
sendsXkbMapNot i f y to clients that have explicitly selected them and core protocol
Mappi ngNot i fy events to clients that have not. Once a client reqdX&&tShp-

Not i f y events, the server stops sendingappi ngNot i fy events to inform it of
keyboard changes.

Sending Events to Clients

XKB normally assumes that events sent to clients using the core prSttdE-

vent request contain a core protocol state, if applicable. If the client which will
receive the event is not XKB-capable, XKB attempts to convert the core state to an
XKB state as follows: if any of the modifiers bounddooup?2 in the group compati-

bility map are set in the event state, XKB clears them in the resulting event but sets the
effective group in the event stateGooup?2.

If the PCF_SendEvent UsesXKBSt at e per-client flag is set at the time of the
SendEvent request, XKB instead assumes that the event reported in the event is an
XKB state. If the receiving client is not XKB-aware, the extension converts the XKB
state (which contains the effective state in bits 13-14) to a core state by applying the
group compatibility map just as it would for actual key events.

The Server Database of Keyboard Components

The X server maintains a database of keyboard components and common keyboard
mappings. This database contains five kinds of components; when combined, these
five components provide a complete description of a keyboard and its behavior.

The X Keyboard Extension provides requests to list the contents of this database, to
assemble and complete keyboard descriptions by merging the current keyboard
description with the contents of this database, or to replace the current keyboard
description with a complete keyboard description assembled as described below.

Component Names

Component and keymap names have the fatas§(member)” whereclass describes

a subset of the available components for a particular type and the opisonizsr

identifies a specific component from that subset. For example, the name “atlan-
tis(acme)” might specify the symbols used for the atlantis national keyboard layout by
the vendor “acme.” Each class has an optidetault member — references which

specify a class but not a member refer to the default member of the class, if one exists.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 45

The X Keyboard Extension Protocol Specification

13.2

Theclass andmember names are both specified using characters from the Latin-1
character set. XKB implementations must accept all alphanumeric characters, minus
(*-) and underscore (‘_’) in class or member names, and must not accept parentheses,
plus, vertical bar, percent sign, asterisk, question mark or white space. The use of
other characters is implementation-dependent.

Partial Components and Combining Multiple Components

Some of the elements in the server database contain describe only a piece of the corre-
sponding keyboard component. Theagtial components should be combined with

other components of the same type to be useful.

For example, a partial symbols map might describe the differences between a common
ASCII keyboard and some national layout. Such a partial map is not useful on its own
because it does not include those symbols that are the same on both the ASCII and
national layouts (such as function keys). On the other hand, this partial map can con-
figure any ASCII keyboard to use a national layout.

Two components can be combined in two ways:

» If the second componeaterrides the first, ag definitions that are present in both
components are tak from the second.

» If the second componeatigments the first, ag definitions that are present in both
components are tak from the first.

Applications can use @mponent expression to combine multiple components of
some time into a complete description of some aspect of the keyboard. A component
expression is a string which lists the components to be combined separated by opera-
tors which specify the rules for combining them. A complete description is assembled
from the listed components, left to right, as follows:
* If the nev elements are being nged with an gisting map, the special component
name ‘%’ refers to the unmodifiediue of the map.
* The '+ operator specifies that thexhspecified component shouldesride the current
assembled definition.
» The ‘|’ operator specifies that thexhepecified component should augment the cur-
rently assembled definition.
» If the nav elements are being nged with an risting map and the componemnxipees-
sion b@ins with an operatpa leading ‘%’ is implied.
» If any unknawn or illegal characters appearyavhere in the string, the entirggres-
sion is irvalid and is ignored.

For example, the component expression “+de” specifies that the default element of the
“de” map should be applied to the current keyboard mapping, overriding any existing
definitions.

A slightly more involved example: the expression “acme(ascii)+de(basic)|is09995-3"
constructs a German (de) mapping for the ASCII keyboard supplied by the “acme”
vendor. The new definition begins with the symbols for the default ASCII keyboard

for Acme, overrides them with any keys that are defined for the default German key-
board layout and then applies the definitions from the is09995-3 to any undefined keys
or groups of keys (part three of the is09995 standard defines a common set of bindings
for the secondary group, but allows national layouts to override those definitions
where necessary).

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 46

The X Keyboard Extension Protocol Specification

13.3

13.4

13.4.1

13.4.2

Component Hints

Each component has a set of flags that provide some additional hints about that com-
ponent. XKB provides these hints for clients that present the keyboard database to
users and specifies their interpretation only loosely. Clients can use these hints to con-
strain the list of components or to control the way that components are presented to the
user.

Hints for a component are reported with its name. The least significant byte of the
hints field has the same meaning for all five types of keyboard components, and can
contain any combination of the following values:

Flag Meaning

LC Hi dden Indicates a component that should not normally be presented to the
user

LC Def aul t Indicates a component that is thead#f member of its class.

LC Parti al Indicates a partial component.

The interpretation of the most significant byte of the hints field is dependent on the
type of component. The hints defined for each kind of component are listed in the sec-
tion below that describes that kind of component.

Keyboard Components

The five types of components stored in the server database of keyboard components
correspond to theymbols, geometry, keycodes, compat andtypes symbolic names
associated with a keyboard.

The Keycodes Component

Thekeycodes component of a keyboard mapping specifies the range and interpretation
of the raw keycodes reported by the device. It setkeoedes symbolic name, the
minimum and maximum legal keycodes for the keyboard, and the symbolic name for
each key. The keycodes component might also contain aliases for some keys, sym-
bolic names for some indicators, and a description of which indicators are physically
present.

The special keycodes component named “computed” indicates that XKB should
assign unused keycodes to any unknown keys referenced by name by any of the other
components. The computed keycodes component is useful primarily when browsing
keymaps because it makes it possible to use the symbols and geometry components
without having to find a set of keycodes that includes keycode definitions for all of the
keys listed in the two components.

XKB defines no hints that are specific to the keycodes component.

The Types Component

Thetypes component of a keyboard mapping specifies the key types that can be asso-
ciated with the various keyboard keys. It affectstyppes symbolic name and the list

of types associated with the keyboard (see section 7.2.1). The types component of a
keyboard mapping can also optionally contain real modifier bindings and symbolic
names for one or more virtual modifiers.

The special types component named “canonical” always contains the types and defini-
tions listed in Appendix B of this document.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 47

The X Keyboard Extension Protocol Specification

13.4.3

13.4.4

13.4.5

XKB defines no hints that are specific to the types component.

The Compatibility Map Component

Thecompatibility map component of a keyboard mapping primarily specifies the rules
used to assign actions to keysyms. It affectcongpat symbolic name, the symbol
compatibility map and the group compatibility map. The compat component might
also specify maps for some indicators and the real modifier bindings and symbolic
names of some virtual modifiers.

XKB defines no hints that are specific to the compatibility map component.

The Symbols Component

Thesymbols component of a keyboard mapping specifies primarily the symbols bound
to each keyboard key. It affects syebols symbolic name, a key symbol mapping for
each key, they keyboard modifier mapping, and the symbolic names for the keyboard
symbol groups. Optionally, treymbols component can contain explicit actions and
behaviors for some keys, or the real modifier bindings and symbolic names for some
virtual modifiers.

XKB defines the following additional hints for the symbols component:

Flag Meaning

LC Al phanuneri cKeys Indicates a symbol component that contains bindings prima-
rily for an alphanumeric section of theykoard.

LC Modi fi er Keys Indicates a symbol component that contains bindings prima-
rily for modifier keys.

LC _KeypadKeys Indicates a symbol component that contains bindings prima-
rily for numeric leypad leys.

LC_Functionkeys Indicates a symbol component that contains bindings prima-
rily for function keys.

LC_AlternateGroup Indicates a symbol component that contains bindings for an
alternate kyboard group.

These hints only apply to partial symbols components; full symbols components are
assumed to specify all of the pieces listed above.

Note The alphanumeric, modifigkeypad or function &ys hints should describe the pri-
mary intent of the component designer and should not simplyreaustie list of the
kinds of leys that are &tcted. for example, national éyboard layouts &éct prima-
rily alphanumeric kys, hut mary affect a fev modifier keys too; such mappings
should set only.C_Al phanuner i cKeys hint. In general, symbol components
should set only one of those four flags (thou@h Al t er nat eG oup may be com-
bined with ag of the other flags).

The Geometry Component

Thegeometry component of a keyboard mapping specifies primarily the geometry of
the keyboard. It contains the geometry symbolic name and the keyboard geometry
description. The geometry component might also contain aliases for some keys or
symbolic names for some indicators and might affect the set of indicators that are
physically present. Key aliases defined in the geometry component of a keyboard
mapping override those defined in the keycodes component.

XKB defines no hints that are specific to the geometry component.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 48

The X Keyboard Extension Protocol Specification

13.5

14.0

15.0

Complete K eymaps

The X server also reports a set of fully specified keymaps. The keymaps specified in
this list are usually assembled from the components stored in the rest of the database
and typically represent the most commonly used keymaps for a particular system.

XKB defines no hints that are specific to complete keymaps.

Replacing the K eyboar d “On-the-Fl y”

XKB supports theXxkbNewKeyboar dNot i f y event, which reports a change in key-
board geometry or the range of supported keycodes. The server can generate an
XkbNewKeyboar dNot i fy event when it detects a new keyboard, or in response to
anXkbGet Keyboar dByNane request (see section 16.3.12) which loads a new key-
board description.

When a client opens a connection to the X server, the server reports the minimum and
maximum keycodes. If the range of supported keycodes is changed, XKB keeps track
of the minimum and maximum keycodes that were reported to each client and filters
out any events that fall outside of that range. Note that these events are simply
ignored; they are not delivered to some other client.

When the server sends gkbNewKeyboar dNot i f y event to a client to inform it

of the new keycode range, XKB resets the stored range of legal keycodes to the key-
code range reported in the event. Non-XKB clients and XKB-aware clients that do not
requesiXkbNewKeyboar dNot i f y events never receive events from keys that fall
outside of the legal range that XKB maintains for that client.

When a client requesk¥kbNewKeyboar dNot i fy events, the server compares the
range of keycodes for the current keyboard to the range of keycodes that are valid for
the client. If they are not the same, the server immediately sends that client an
XkbNewKeyboar dNot i fy event. Even if the “new” keyboard is not new to the
server, it is new to this particular client.

In addition to filtering out-of-range key events, XKB:

» Adjusts core protocdVappi ngNot i f y events to refer only todys that match the
stored lgal range.

» Reports kyboard mappings fordys that match the storedghd range to clients that
issue a core protoc@et Keyboar dMappi ng request.

» Reports modifier mappings only fogyjs that match the storedghd range to clients
that issue a core protodGét Modi f i er Mappi ng request.

» Restricts the core protocBhangeKeyboar dMappi ng andSet Modi fi er Map-
pi ng requests todys that &ll inside the stored ¢l range.

In short, XKB does everything possible to hide the fact that the range of legal key-
codes has changed from clients non-XKB clients, which cannot be expected to deal
with it. The corresponding XKB events and requestaa@ay attention to the legal
keycode range in the same way because XKB makes it possible for clients to track
changes to the keycode range for a device and respond to them.

Interactions Between XKB and the X Input Extension

All XKB interactions with the input extension are optional; implementors are free to
restrict the effects of the X Keyboard Extension to the core keyboard device. The

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 49

The X Keyboard Extension Protocol Specification

15.1

15.2

XkbGet Ext ensi onDevi cel nf o request reports whether or not an XKB imple-
mentation supports a particular capability for input extension devices.

XKB recognizes the following interactions with the X Input Extension:

Name Capability

XI_Keyboards If set, applications can use all XKB requests arahts with
extension leyboards.

XI_ButtonActions If set, clients can assigmkactions to bttons, &en on
input extension deices that are notdgboards.

XI_IndicatorNames If set, clients can assign names to indicators on egn-k
board etension deices.

XI_IndicatorMaps If set, clients can assign indicator maps to indicators on non-
keyboard &tension deices.

XI_IndicatorState If set, clients can change the state oficke indicators using

theXkbSet Ext ensi onDevi cel nf o request.

Attempts to use an XKB feature with an extension device fail wiiyeboar d error

if the server does not support tkeb Xl _Keyboar ds optional feature. If a capabil-

ity particular capability other thaxkb Xl _Keyboar ds is not supported, attempts to

use it fail silently. The replies for most requests that can use one of the other optional
features include a field to report whether or not the request was successful, but such
requests do not cause an error condition.

Clients can also request ZRbExt ensi onDevi ceNot i f y event. This event noti-

fies interested clients of changes to any of the supported XKB features for extension
devices, or if a request from the client that is receiving the event attempted to use an
unsupported feature.

Using XKB Functions with Input Extension Keyboards

All XKB requests and events include a device identifier which can refer to an input
extensiorKeyCl ass device, if the implementation allows XKB to control extension
devices. If the implementation does not support XKB manipulation of extension
devices, the device identifier is ignored but it must be e@fmrUs eCor eKbd.

Implementations which do not support the use of XKB functions with extension key-
boards must not set tbébXl _Keyboar ds flag. Attempts to use XKB features on

an extension keyboard with an implementation that does not support this feature yield
aKeyboar d error.

Pointer and Device Button Actions

The XKB extension optionally allows clients to assign any key action (see section 6.3)
to core pointer or input extension device buttons. This makes it possible to control the
keyboard or generate keyboard key events from extension devices or from the core
pointer.

XKB implementations are required to support actions for the buttons of the core
pointer device, but support for actions on extension devices is optional. Implementa-
tions which do not support button actions for extension devices must not set the
XkbXl _Butt onActi ons flag.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 50

The X Keyboard Extension Protocol Specification

Attempts to query or assign button actions with an implementation that does not sup-
port this feature report failure in the request reply and might cause the server to send
anXkbExt ensi onDevi ceNot i fy event to the client which issued the request

that failed. Such requests never cause an error condition.

15.3 Indicator Maps for Extension Devices
The XKB extension allows applications to assign indicator maps to the indicators of
non-keyboard extension devices. If supported, maps can be assigned to all extension
device indicators, whether they are part of a keyboard feedback or part of an indicator
feedback.
Implementations which do not support indicator maps for extension devices must not
set theXkbXl _| ndi cat or Maps flag.
Attempts to query or assign indicator maps with an implementation that does not sup-
port this feature report failure in the request reply and might cause the server to send
anXkbExt ensi onDevi ceNot i fy event to the client which issued the request
that failed. Such requests never cause an error condition.
If this feature is supported, the maps for the default indicators on the core keyboard
device are visible both as extension indicators and as the core indicators. Changes
made withxkbSet Devi cel nf o are visible viaxkbGet | ndi cat or Map and
changes made witkkbSet | ndi cat or Map are visible viaXxkbGet Devi cel nf o.

15.4 Indicator Names for Extension Devices
The XKB extension allows applications to assign symbolic names to the indicators of
non-keyboard extension devices. If supported, symbolic names can be assigned to all
extension device indicators, whether they are part of a keyboard feedback or part of an
indicator feedback.
Implementations which do not support indicator maps for extension devices must not
set theXkbXl _I ndi cat or Maps flag.
Attempts to query or assign indicator names with an implementation that does not sup-
port this feature report failure in the request reply and might cause the server to send
anXkbExt ensi onDevi ceNot i fy event to the client which issued the request
that failed. Such requests never cause an error condition.
If this feature is supported, the names for the default indicators on the core keyboard
device are visible both as extension indicators and as the core indicators. Changes
made withXkbSet Devi cel nf o are visible viaXxkbGet Nanes and changes made
with XkbSet Nanes are visible viaxkbGet Devi cel nf o.

16.0 XKB Protocol Requests
This document uses the syntactic conventions and common types defined by the spec-
ification of the core X protocol with a number of additions, which are detailed below.

16.1 Errors
If a client attempts to use any other XKB request ex¥kptUseExt ensi on before
the extension is properly initialized, XKB reportsAcess error and ignores the

11/6/97 Protocol \érsion 1.0/Document Rision 1.0 51

The X Keyboard Extension Protocol Specification

16.1.1

16.1.2

16.2

request. XKB is properly initialized oneé&bUseExt ensi on reports that the client
has asked for a supported or compatible version of the extension.

Keyboard Errors

In addition to all of the errors defined by the core protocol, the X Keyboard Extension
defines a single errokeyboar d, which indicates that some request specified an ille-
gal device identifier or an extension device that is not a member of an appropriate.
Unless otherwise noted, any request with an argument of type KB_DEVICESPEC can
causeKeyboar d errors if an illegal or inappropriate device is specified.

When the extension reports a Keyboard error, the most significant byte of the
resource_id is a further refinement of the error cause, as defined in the table below.
The least significant byte contains the device, class, or feedback id as indicated:

high-order byte value meaning low-order byte
XkbErr_BadDeice Oxff device not found device id
XkbErr_BadClass Oxfe device found, ot is the wrong class class id
XkbErr_Badld Oxfd device found, class ok,ub device does noteedback id

have a feedback with the indicated id

Side-Effects of Errors

With the exception ofl | oc orl npl enent at i on errors, which might result in an
inconsistent internal state, no XKB request that reports an error condition has any
effect. Unless otherwise stated, requests which update some aspect of the keyboard
description will not apply only part of a request — if part of a request fails, the whole
thing is ignored.

Common Types
The following types are used in the request and event definitions in subsequent sec-
tions:

Name Value

LISTofITEMs The type LIS®fITEMSs is special. It is similar to the
LISTofVALUE defined by the core protocoljtthe
elements of a LISGfITEMs are not necessarily all the
same size. The use of a BITMASK to indicate which
members are present is optional for a IABTEMs — it is
possible for the set of elements to bedstifrom one or
more fields of the request.

KB_DEVICESPEC 8 bit unsigned intger, UseCor eKbd, or UseCorePtr
KB_LEDCLASSSPEC { KbdFeedbackd ass, LedFeedbackd ass,
Dflt XI d ass,Al'l XI Cl asses, Xl None }
KB_BELLCLASSSPEC { KbdFeedbackd ass, Bel | FeedbackC ass,
Dilt Xl d ass,Al'l XI Cl asses }

KB_IDSPEC 8 bit unsigned intger orDf | t XI | d

KB_VMODMASK CARD16, each bit corresponds to a virtual modifier
KB_GROUPMASK { Goupl, Goup2, Goup3, Goups}
KB_GROUPSWRAP { W apl nt oRange, C anpl nt oRange,

Redi rect | nt oRange }

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 52

The X Keyboard Extension

Protocol Specification

Name

Value

KB_GROUPINFO

KB_NKNDETAILSMASK
KB_STATEMASK
KB_STATERARTMASK

KB_BOOLCTRLMASK

KB_CONTROLSMASK

KB_MAPPARTMASK

KB_CMDETAILMASK

KB_NAMEDETAILMASK

KB_AXNDETAILMASK

KB_AXSKOPTSMASK

KB_AXFBOPTSMASK

KB_AXOPTIONSMASK
KB_GBNDETAILMASK

KB_BELLDETAILMASK
KB_MSGDETAILMASK

{ groupsWrap: KB_ GRUPSWRAP
redirectGroup: 1...4,
numGroups: 1...4}

{ NKN_Keycodes, NKN_GeometryNKN_Devi cel D}
KEYBUTMASK or KB_GROUPMASK

{ Modi fierState, ModifierBase,
Modi fi er Lat ch, Modi fi er Lock, G oupSt at e,
Gr oupBase, Gr ouplLat ch, G oupLock,
Conpat St at e, G abMods, Conpat Gr abMbds,
LookupMbds, Conpat Lookuphbds,
Poi nt er But t ons }

{ Repeat Keys, Sl owKeys, BounceKeys,
Sti ckyKeys, MouseKeys, MbuseKeysAccel ,
AccessXKeys, AccessXTi nmeout ,
AccessXFeedback, Audi bl eBel | ,Overl ay1l,
Overl ay2, 1 gnoreG oupLock }

{ GroupsW ap, | nternal Mods, | gnoreLockMds,
Per KeyRepeat , Cont r ol sEnabl ed } or
KB_BOOLCTRLMASK

{ KeyTypes, KeySyns, Modi fi er Map,

Expl i ci t Conponent s, KeyAct i ons,
KeyBehavi or s, Vi rt ual Mods, Vi rt ual ModMap}

{ Sym nt er p, G oupConpat }

{ KeycodesNane, Geonet r yNanme, Synbol sNane,
PhysSynbol sNane, TypesNane, Conpat Nane,
KeyTypeNanes, KTLevel Nanes,

I ndi cat or Nanes, KeyNanes, KeyAl i ases,
Vi rt ual ModNanes, G oupNanes, RGNanes}

{ AXN_SKPr ess, AXN_SKAccept , AXN_SKRej ect ,
AXN_SKRel ease, AXN BKAccept,

AXN BKRej ect, AXN AXKWArni ng }

{ AX_TwoKeys, AX_Lat chToLock }

{ AX_SKPr essFB, AX_SKAccept FB, AX Feat ur eFB,
AX_S| owar nFB, AX | ndi cat or FB,
AX_Sti ckyKeysFB, AX SKRel easeFB,
AX_SKRej ect FB, AX_BKRej ect FB,
AX_DunbBel | FB}
KB_AXFBOPTSMASK or KB_AXSKOPTSMASK

{ GBN_Types, GBN_Conpat Map,
GBN_d i ent Synbol s, GBN_Ser ver Synbol s,
GBN _I ndi cat or Map, GBN_KeyNanes,
GBN_Geonetry, GBN_ O her Nanes }

{ XkbAl | Bel | Noti fyEvents }
{ XkbAl | Acti onMessages }

Protocol \érsion 1.0/Document Rision 1.0 53

The X Keyboard Extension

Protocol Specification

Name

Value

KB_EVENTTYPE

KB_ACTION

KB_BEHAVIOR
KB_MODDEF

KB_KTMAPENTRY

KB_KTSETMAPENTRY

KB_KEYTYPE

KB_SETKEYTYPE

KB_KEYSYMMAP

KB_KEYVMODMAP
KB_KEYMODMAP
KB_EXPLICITMASK

KB_INDICATORMASK
KB_IMFLAGS

KB_IMMODSWHICH

KB_IMGROUPSWHICH

{ XkbNewKeyboar dNot i fy, XkbMapNoti fy,
XkbSt at eNot i fy, XkbControl sNotify,
Xkbl ndi cat or St at eNot i fy,

Xkbl ndi cat or MapNot i fy, XkbNanesNot i fy,
XkbConpat MapNot i fy, XkbBel | Noti fy,
XkbAct i onMessage, XkbAccessXNot i fy,
XkbExt ensi onDevi ceNotify}

[type: CARDS8
data: LISBfCARDS]

[type: CARDS, data: CARD 8]

[mask: KEYMASK,

mods: KEYMASK,

vmods: KB_VMODMASK]
[active: BOOL,

level: CARDS,

mods: KB_ MODDEF]

[level: CARDS,
mods: KB_MODDEF]

[mods: KB_MODDEF
numLevels: CARDS,
map: LISOfKB_KTMAPENTRY,
presere: LISTofKB_MODDEF]

[realMods: KEYMASK,
vmods: CARD16,
numLevels: CARDS,
map: LISOfKB_KTSETMAPENTRY,
presere: LISTofKB_MODDEF]

[ktindex: LISTofCARDS8, width: CARDS8
numGroups: 0...4,
groupsWrap: KB_GRUPSWRAPR
redirectGroup: 0...3,
syms: LISBfKEYSYM]

[key: KEYCODE, vmods: CARD16]

[key: KEYCODE, mods: KEYMASK]

{ ExplicitKeyTypel, ExplicitKeyType2,
ExplicitKeyType3, ExplicitKeyType4,
Explicitlnterpret,ExplicitAutoRepeat,
Expl i ci t Behavi or, Expl i ci t VMbdMap }
CARD32, each bit corresponds to an indicator

{ M_NoExplicit,| M NoAut omati c,
| M LEDDri vesKB }

{ I M_UseNone, | M UseBase, | M Uselat ched,
I M UselLocked, | M UseEf fective,

I M UseConpat }

{ I M_UseNone, | M UseBase, | M UselLat ched,

I M UselLocked, | M UseEffective}

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 54

The X Keyboard Extension

Protocol Specification

Name

Value

KB_INDICATORMAP

KB_SYMINTERPMATCH

KB_SYMINTERP

KB_PCFMASK

KB_LCFLAGSMASK

[flags: CARDS,
mods: KB_MODDEF
whichMods:
groups: KB_GR®UPMASK,
whichGroups:
ctrls: KB_BOOLCTRLMASK]

{ SI _NoneO , SI _AnyOf Or None, SI _AnyCf
SI_AlO,SI _Exactly}

[sym: KEYSYM,
mods; KEYMASK,
levelOneOnly: BOOL,
match: KB_SYMINTERPMACH,
virtualMod: CARDS,
autoRepeat: BOOL,
lockingKey: BOOL]

{ PCF_Det ect abl eAut or epeat,
PCF_ G absUseXkbSt at e,
PCF_Aut oReset Control s,
PCF_LookupSt at eWhenGr abbed,
PCF_SendEvent UsesXKBSt at e }

{ LC_Hi dden,LC Default,LC Partial }

KB_LCSYMFLAGSMASK { LC Al phanuneri cKeys, LC Mdi fi er Keys,

LC KeypadKeys, LC Functi onKeys,
LC AlternateG oup}

These types are used by KebGet Geonret ry andXkbSet Geonet r y requests:

Name Value
KB_PROPERY [name, alue: STRINGS]
KB_POINT [x,y: CARD16]
KB_OUTLINE [cornerRadius: CARDS, points: LISTKB_POINT]
KB_SHAPE [name: AOM, outlines: LISBfKB_OUTLINE
primaryNdx, approxNdx: CARDS]
KB_KEYNAME [name: LISBfCHAR]
KB_KEYALIAS [real: LISTofCHAR, alias: LISBfCHAR]
KB_KEY [name: KB_KEYMME, gap: INT16,
shapeNdx, colorNdx: CARDS]
KB_ROW [top, left: INT16, \ertical: BOOL, lkeys LISTofKB_KEY]

KB_OVERLAYKEY
KB_OVERLAYROW
KB_OVERLAY

KB_SHAPEDOODAD

[over, under: KB_KEYMME]
[rowUnder: CARDS, kys: LISTofKB_OVERLAYKEY]
[sectionUnder: CARDS,
rows: LISTofKB_OVERLAYROW]
[name: AOM, priority: CARDS, top, left: INT16,
type: { SolidDoodad, OutlineDoodad },
angle: INT16, width, height: CARD16
colorNdx, shapeNdx: CARDS]

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 55

The X Keyboard Extension Protocol Specification

Name Value

KB_TEXTDOODAD [name: AOM, priority: CARDS, top, left: INT16,
angle: INT16, width, height: CARD16,
colorNdx: CARDS, tat: STRINGS, font: STRINGS8]
KB_INDICATORDOODAD [name: AOM, priority: CARDS, top, left: INT16,
angle: INT16,
shapeNdx, onColorNdx, fiolorNdx: CARDS]
KB_LOGODOODMD [name: AOM, priority: CARDS, top, left: INT16,
angle: INT16, colorNdx, shapeNdx: CARDS,
logoName: STRINGS]

KB_DOODAD KB_SHAPEDOOMAD, or KB_TEXTDOODAD, or
KB_INDICATORDOODAD, or KB_LOGODOODAD
KB_SECTION [name: AOM,

top, left, angle: INT16,

width, height: CARD16,
priority: CARDS,

rows: LISTofKB_ROW,
doodads: LIS®fKB_DOODAD,
overlays: LISBfKB_OVERLAY]

These types are used KigbGet Devi cel nf o andXkbSet Devi cel nf o:

Name Value

KB_XIDEVFEATUREMASK { XI _ButtonActi ons, Xl _|I ndi cat or Nanes,

Xl _I'ndi cat or Maps, XI _I ndi cator St at e }
KB_XIFEATUREMASK { KB_XIDEVFEATURES orXl _Keyboar ds
KB_XIDETAILMASK { KB_XIFEATURES orXl _Unsupport edFeat ure}
KB_DEVICELEDINFO [ledClass: KB_LEDCLASSSPEC,

ledID: KB_IDSPEC,

physindicators: CARD32,

state: CARD32,

names: LISOfATOM,

maps: LISBfKB_INDICATORMAP]

16.3 Requests
This section lists all of the requests supported by the X Keyboard Extension, separated
into categories of related requests.

16.3.1 Initializing the X Keyboard Extension

[XkbUseExtension
wantedMajoy wantedMinor:CARD16

supported: BOOL
senerMajor, senerMinor; CARD16

This request enables XKB extension capabilities for the client that issues the request;
thewantedMajor andwantedMinor fields specify the extension version in use by the
requesting client. Theupported field is Tr ue if the server supports a compatible ver-

11/6/97 Protocol \érsion 1.0/Document Rision 1.0 56

The X Keyboard Extension Protocol Specification

16.3.2

sion,Fal se otherwise. TheerverMajor andserverMinor fields return the actual ver-
sion supported by the server.

Until a client explicitly and successfully requests the XKB extension, an XKB capable
server reports compatibility state in all core protocol events and requests. Once a client
asks for XKB extension semantics by issuing this request, the server reports the
extended XKB keyboard state in some core protocol events and requests, as described
in the overview section of this specification.

Clients should issue axkbUseExt ensi on request before using any other exten-
sion requests.

Selecting Events

XkbSelectEvents

deviceSpedKB_DEVICESPEC

affectWhich, clearselectAll: KB_ EVENTTYPE
affectMap, map: KB_MAPRRTMASK

details: LISDfITEMs

Errors:Keyboar d, Mat ch, Val ue

This request updates the event masks of the keyboard indicaded dg5pec for this
client. If deviceSpec specifies an illegal device kKeyboar d error results.

TheaffectMap andmap fields specify changes to the event details mask for the
XkbMapNot i f y event. If any map components are sebap but not inaffectMap, a

Mat ch error results. Otherwise, any map components that areafédatMap are set

or cleared in the map notify details mask, depending on the value of the corresponding
field in map.

TheaffectWhich, clear, andselectAll fields specify changes to any other event details
masks. If any event types are set in boddar andselectAll, aVat ch error results; if

any event types are specified in eitbksar or selectAll but not inaffectWhich, a

Mat ch error results. Otherwise, the detail masks for any event types specified in the
affectWhich field of this request are changed as follows:

» If the event type is also set ntear, the detail mask for the correspondinvgt is set to
0 orFal se, as appropriate.

» If the event type is also set selectAll, the detail mask for the correspondinvga is
set to include all lgal detail \alues for that type.

» If the event type is not set in eithelear or selectAll, the corresponding element of
details lists a set oflicit changes to the details mask for therd, as described
below.

Each entry of théletails list specifies changes to the event details mask for a single
type of event, and consists of aifects mask and &alues mask. All details that are
specified inaffects are set to the corresponding value freatues; if any details are
listed invalues but not inaffects, aMat ch error results.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 57

The X Keyboard Extension Protocol Specification

The detalils list contains entries only for those event types, if any, that are listed in the
affectWhich mask and not in eithetear or selectAll. When present, the items of the
details list appear in the following order:

Event Type Legal Details Type
XkbNewKeyboar dNot i fy KB_NKNDETAI LSVASK CARDL16
XkbSt at eNot i fy KB_STATEPARTMASK CARD16
XkbCont rol sNoti fy KB_CONTROLMASK CARD32
Xkbl ndi cat or MapNoti fy KB_| NDI CATORVASK CARD32
Xkbl ndi cator StateNoti fy KB_|I NDI CATORMASK CARD32
XkbNanesNot i fy KB_NANMEDETAI LMASK CARD16
XkbConpat MapNot i fy KB_CMVDETAI LMASK CARDS
XkbBel | Noti fy KB_BELLDETAI LMASK CARD8
XkbAct i onMessage KB _MSGDETAI LMASK CARD8
XkbAccessXNoti fy KB_AXNDETAI LMASK CARD16
XkbExt ensi onDevi ceNoti fy KB_XI DETAI LMASK CARDL16

Detail masks for event types that are not specifieadfeat\Which are not changed.

If any components are specified in a client’s event masks, the X server sends the client
an appropriate event whenever any of those components change state. Unless explic-
itly modified, all event detail masks are empty. Section 16.4 describes all XKB events
and the conditions under which the server generates them.

16.3.3 Generating Named Keyboard Bells

] XkbBell

deviceSpec: KB_DEVICESPEC
bellClass: KB_BELLCLASSSPEC
belllD: KB_IDSPEC

percent:. INT8

forceSound: BOOL

eventOnly: BOOL

pitch, duration: INT16

name: AOM

window: WINDOW

Errors:Keyboar d, Val ue, Mat ch

This request generates audible bells angkdrBel | Not i f y events for the bell
specified by thdellClass andbellID on the device specified laeviceSpec at the
specifiedpitch, duration and volume gercent). If deviceSpec specifies a device that
does not have a bell or keyboard feedbadieyaboar d error results.

If both forceSound andeventOnly are set, this request yieldd/at ch error. Other-
wise, ifforceSound is Tr ue, this request always generates a sound and never gener-
ates an event; gventOnly is Tr ue, it causes an event but no sound. If neither

11/6/97 Protocol \érsion 1.0/Document Rision 1.0 58

The X Keyboard Extension Protocol Specification

forceSound noreventOnly areTr ue, this request always generates an event; if the
keyboard’s globahudi bl eBel | control is enabled, it also generates a sound.

Any bell event generated by this request contains all of the information about the bell
that was requested, including the symbolic name specifiedrbg and the event win-
dow specified by window. Theame andwindow are not directly interpreted by XKB,

but they must have the valtdene or specify a legal Atom or Window, respectively.
XkbBel | Not i fy events generated in response to core protocol or X input extension
bell requests always repdibne as theimame.

ThebellClass, belllD, andpercent fields are interpreted as for the X input extension

Devi ceBel | request. Ipitch andduration are zero, the server uses the correspond-

ing values for that bell from the core protocol or input extension, othepitcseand

duration are interpreted as for the core protaCongeKeyboar dCont r ol

request; if they do not include legal value¥ah ue error results. Thaindow field

must specify a legal Window or have the vaNeme, or avVal ue error results. The

name field must specify a legal Atom or have the valuee, or anAt omerror

results. If an error occurs, this request has no other effect (i.e. does not cause a sound
or generate an event).

Thepitch, volume, andduration are suggested values for the bell, but XKB does not
require the server to honor them.

16.3.4 Querying and Changing Keyboard State

[] XkbGetState
deviceSpec: KB_DEVICESPEC

devicelD: CARDS

mods, baseMods, latchedMods, ledkods: KEYMASK
group, locledGroup: KB_GRUP

baseGroup, latchedGroup: INT16

compatState: KEYMASK

grabMods, compatGrabMods: KB_GRIP
lookupMods, compatLookupMods: KEYMASK
ptrBtnState: R TMASK

Errors:Keyboar d

This request returns a detailed description of the current state of the keyboard speci-
fied by deviceSpec.

Thedevicel D return value contains the input extension identifier for the specified
device, o010 if the server does not support the input extension.

ThebaseMods return value reports the modifiers that are set because one or more
modifier keys are logically down. ThatchedMods andlockedMods return values
report the modifiers that are latched or locked respectivelymbde return value
reports the effective modifier mask which results from the current combination of
base, latched and locked modifiers.

11/6/97 Protocol \érsion 1.0/Document Rision 1.0 59

The X Keyboard Extension Protocol Specification

ThebaseGroup return value reports the group state selected by group shift keys that
are logically down. Th&atchedGroup andlockedGroup return values detail the effects

of latching or locking group shift keys aX#bLat chLock St at e requests. The

group return value reports the effective keyboard group which results from the current
combination of base, latched and locked group values.

ThelookupMods return value reports the lookup modifiers, which consist of the cur-
rent effective modifiers minus any server internal modifiers.grabMods return

value reports the grab modifiers, which consist of the lookup modifiers minus any
members of the ignore locks mask that are not either latched or logically depressed.
Section 2.0 describes the lookup modifiers and grab modifiers in more detail.

TheptrBtnSate return value reports the current logical state of up to five buttons on
the core pointer device.

ThecompatSate return value reports the compatibility state that corresponds to the
effective keyboard group and modifier state. ThmpatLookupMods andcompat-
GrabMods return values report the core protocol compatibility states that correspond
to the XKB lookup and grab state. All of the compatibility states are computed by
applying the group compatibility mapping to the corresponding XKB modifier and
group states, as described in Section 12.1.

XkbLatchL ock State

deviceSpec: KB_DEVICESPEC
affectModLocks, modLocks: KEYMASK
lockGroup: BOOL

groupLock: KB_GROUP
affectModLatches,modLatches: KEYMASK
latchGroup: BOOL

groupLatch: INT16

Errors:Keyboar d, Val ue

This request locks or latches keyboard modifiers and group state for the device speci-
fied by deviceSpec. If deviceSpec specifies an illegal or non-keyboard devic&ey -
boar d error occurs.

The locked state of any modifier specified in #fiectModLocks mask is set to the
corresponding value frommodLocks. If lockGroup is Tr ue, the locked keyboard
group is set to the group specifieddypupLock. If any modifiers are set imodLocks
but notaffectModLocks, aMat ch error occurs.

The latched state of any modifier specified inadffectModLatches mask is set to the
corresponding value fromodLatches. If latchGroup is Tr ue, the latched keyboard
group is set to the group specifieddrpupLatch. if any modifiers are set imod-
Latches but not inaffectModLatches, aMat ch error occurs.

If the locked group exceeds the maximum number of groups permitted for the speci-
fied keyboard, it is wrapped or truncated back into range as specified by the global
G oupsW ap control. No error results from an out-of-range group specification.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 60

The X Keyboard Extension Protocol Specification

16.3.5

After changing the locked and latched modifiers and groups as specified, the X server
recalculates the effective and compatibility keyboard state and genécates

St at eNot i f y events as appropriate if any state components have changed. Chang-
ing the keyboard state might also turn indicators on or off which can cause

Xkbl ndi cat or St at eNot i fy events as well.

If any errors occur, this request has no effect.

Querying and Changing Keyboard Controls

XkbGetControls
deviceSpec: KB_DEVICESPEC

devicelD: CARDS

mousekeysDfltBtn: CARDS

numGroups: CARDS

groupsWrap: KB_GRUPINFO
internalMods,ignoreLockMods: KB_MODDEF
repeatDelayepeatinteral: CARD16

slowKeysDelay debounceDelay: CARD16
mousekeysDelay mousekgysintenal: CARD16
mousekeysTimeToMax, mouseldysMaxSpeed: CARD16
mousekeysCune: INT16

accessXOptions: KB_AXOPTIONMASK
accessXimeout: CARD16
accessXimeoutOptionsMask, accessiNTeoutOption\dlues: CARD16
accessXimeoutMask,accessXfeout\alues;: CARD32
enabledControls: KB_ BOOLCTRLMASK
perKeyRepeat: LISGfCARDS8

Errors:Keyboar d

This request returns the current values and status of all controls for the keyboard spec-
ified by deviceSpec. If deviceSpec specifies an illegal devicekeyboar d error

results. On return, thdevicel D specifies the identifier of the requested device or zero

if the server does not support the input extension.

ThenumGroups return value reports the current number of groupsgemgpsWrap

reports the treatment of out-of-range groups, as described in Section 7.4r&efFhe
nalMods andignoreLockMods return values report the current values of the server
internal and ignore locks modifiers as described in section 2.0. Both are modifier defi-
nitions (section 3.1) which report the real modifiers, virtual modifiers, and the result-
ing combination of real modifiers that are bound to the corresponding control.

TherepeatDelay, repeatinterval, slowKeysDelay anddebounceDelay fields report the
current values of the for the autorepeat delay, autorepeat interval, slow keys delay and
bounce keys timeout, respectively. TheuseKeysDelay, mouseKeyslnterval,
mouseKeysTimeToMax andmouseKeysMaxSpeed andmouseKeysCurve return values

report the current acceleration applied to mouse keys, as described in section 4.6. All
times are reported in milliseconds.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 61

The X Keyboard Extension Protocol Specification

The mouseKeysDfltBtn return value reports the current default pointer button for
which events are synthesized by the mouse keys server actions.

TheaccessXOptions return value reports the current settings of the various AccessX
options flags which govern the behavior of 8te ckyKeys control and of AccessX
feedback.

TheaccessXTimeout return value reports the length of time, in seconds, that the key-
board must remain idle before AccessX controls are automatically changed; an
accessXTimeout of O indicates that AccessX controls are not automatically changed.
TheaccessXTimeoutMask specifies the boolean controls to be changed if the AccessX
timeout expires; thaccessXTimeoutValues field specifies new values for all of the
controls in the timeout mask. ThecessXTimeoutOptionsMask field specifies the
AccessX options to be changed when the AccessX timeout expirescassXTime-
outOptionValues return value reports the values to which they will be set.

TheenabledControls return value reports the current state of all of the global boolean
controls.

The perKeyRepeat array consists of one bit per key and reports the current autorepeat
behavior of each keyboard key; if a bit is sepenKeyRepeat, the corresponding key
repeats if it is held down while global keyboard autorepeat is enabled. This array par-
allels the core protocol and input extension keyboard controls, if the autorepeat behav-
ior of a key is changed via the core protocol or input extension, those changes are
automatically reflected in thaerKeyRepeat array.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 62

The X Keyboard Extension

Protocol Specification

XkbSetControls

deviceSpec: KB_DEVICESPEC

affectinternalRealMods, internalRealMods: KEYMASK
affectinternal\irtualMods,internal¥ftualMods: KB_ VMODMASK
affectignoreLockRealMods,ignoreLockRealMods: KB_MODMASK
affectignoreLock\VttualMods,ignoreLockWtualMods: KB_VMODMASK

mousekeysDfltBtn: CARDS

groupsWrap: KB_GRUPINFO

accessXOptions: CARD16

affectEnabledControls: KB_ BOOLCTRLMASK
enabledControls: KB_BOOLCTRLMASK
changeControls: KB_CONT®R.MASK
repeatDelayepeatinteral: CARD16

slowKeysDelay debounceDelay: CARD16
mousekeysDelay mousekeysintenal: CARD16
mousekeysTimeToMax, mouseldysMaxSpeed: CARD16

mousekeysCune: INT16

accessXimeout: CARD16

accessXimeoutMask, accessXmeout\alues: KB_BOOLCTRLMASK
accessXimeoutOptionsMask,accesskieoutOptions¥lues: CARD16

perKeyRepeat: LISOfCARDS

Errors: Keyboar d, Val ue

This request sets the keyboard controls indicatetlangeControls for the keyboard
specified bydeviceSpec. Each bit that is set ichangeControls indicates that one or
more of the other request fields should be applied, as follows:

Bit in changeControls

Field(s) to be Applied

XkbRepeat KeysMask
XkbSl owKeysMask
XkbSt i ckyKeysMask

XkbBounceKeysMask
XkbMouseKeysMask
XkbMouseKeysAccel Mask

XkbAccessXKeysMask
XkbAccessXTi neout Mask
XkbAccessXFeedbackMask

XkbG oupsW apMask
Xkbl nt er nal ModsMask

Xkbl gnor eLockMbdsMask

repeatDelay, repeatinterval
slowKeysDelay

accessXOptions (only theXkbAX_TwoKeys and the
XkbAX _ Lat chToLock options are &écted)

debounceDelay
mouseKeysDflItBtn

mouseKeysDelay, mouseKeysl nterval,
mouseKeysCurve, mouseKeysTimeToMax,
mouseK eysMaxSpeed

accessXOptions (all options)

accessXTimeout, accessXTimeoutMask,
accessXTimeoutVal ues, accessXTimeoutOptionsMask,
accessXTimeoutOptionsValues

accessXOptions (all options &cept those &écted by the
XkbSt i ckyKeysMask bit)

groupswWrap

affectl nternalRealMods, inter nal Real Mods,
affectInternal Virtual Mods, internal VirtualMods

affectlgnorel.ockRealMods, ignorelockReal Mods,
affectlgnorelockVirtualMods, ignorelockVirtualMods

Protocol \érsion 1.0/Document Rision 1.0 63

The X Keyboard Extension Protocol Specification

Bit in changeControls Field(s) to be Applied
XkbPer KeyRepeat Mask per KeyRepeat
XkbCont r ol sEnabl edivask affectEnabledControls, enabledControls

If any other bits are set ohangeControls, aVal ue error results. If any of the bits
listed above are not setehangeControls, the corresponding fields must have the
valueO, or aMat ch error results.

If applied,repeatDelay andrepeatinterval change the autorepeat characteristics of the
keyboard, as described in section 4.1. If specifiqutatDelay andrepeatinterval
must both be non-zero oNal ue error results.

If applied, theslowKeysDelay field specifies a new delay for tis owKeys control,
as defined in section 4.2. If specifisthwKeysDelay must be non-zero, or\éal ue
error results.

If applied, thedebounceDelay field specifies a new delay for tB®unceKeys con-
trol, as described in section 4.3. If present,démunceDelay must be non-zero or a
Val ue error results.

If applied, themouseKeysDfltBtn field specifies the core pointer button for which
events are generated whenev&a Pt r Bt n or SA_LockPt r Bt n key action is
activated. If presentmouseKeysDfltBtn must specify a legal button for the core
pointer device, or &al ue error results. Section 6.3 describes$ide Pt r Bt n and
SA LockPt r Bt n actions in more detail.

If applied, themouseKeysDelay, mouseKeysl nterval, mouseKeysTimeToMax,
mouseKeysMaxSpeed andmouseKeysCurve fields change the rate at which the pointer
moves when a key which generatedfa MovePt r action is held down. Section 4.6
describes theddbuseKeysAccel parameters in more detail. If defined, the
mouseKeysDelay, mouseKeysl nterval, mouseKeysTimeToMax andmouseKeysMax-

Soeed values must all be greater than zero, Wahue error results. ThenouseKey-
sCurve value must be greater that000 or aVal ue error results.

If applied, theaccessXOptions field sets the AccessX options, which are described in
detail in section 4.7. If either one XkbSt i ckyKeysMask andXkbAccessX-
FeedbackMask are set irchangeControls andXkbAccessXKeysMask is not,

only a subset of the AccessX options are changed, as described in the table above; if
both are set or if thAccessXKeys bit is set inchangeControls, all of the AccessX
options are updated. Any bit accessXOptions whose interpretation is undefined

must be zero, or¥al ue error results.

If applied, theaccessXTimeout, accessXTimeoutMask, accessXTimeoutValues,
accessXTimeoutOptionsMask andaccessXTimeoutOptionsValues fields change the
behavior of the AccessX Timeout control, as described in section 4.&cdéssX-
Timeout must be greater than zero, ova ue error results. ThaccessXTimeout-
Mask or accessXTimeoutValues fields must specify only legal boolean controls, or a
Val ue error results. ThaccessXTimeoutOptionsMask andaccessXTimeoutOptions-
Values fields must contain only legal AccessX options dad ue error results. If any
bits are set in either values field but not in the corresponding m&sk,ch error
results.

11/6/97 Protocol \érsion 1.0/Document Rision 1.0 64

The X Keyboard Extension Protocol Specification

If present, thgroupsWrap field specifies the treatment of out-of-range keyboard
groups, as described in section 7.2.2. Ifgi@upsWrap field does not specify a legal
treatment for out-of-range groupsyal ue error results.

If present, theffectlnternalRealMods field specifies the set of real modifiers to be
changed in the internal modifier definition and thier nalRealMods field specifies

new values for those modifiers. ThiectInternal VirtualMods andinternal Virtual M-

ods fields update the virtual modifier component of the modifier definition that
describes the internal modifiers in the same way. If any bits are set in either values
field but not in the corresponding mask fieldvit ch error results.

If present, thaffectlgnorelLockRealMods field specifies the set of real modifiers to be
changed in the ignore locks modifier definition anditim®rel.ockRealMods field
specifies new values for those modifiers. &fectlgnorelLockVirtualMods and
ignoreLockVirtualMods fields update the virtual modifier component of the ignore
locks modifier definition in the same way. If any bits are set in either values field but
not in the corresponding mask fieldiat ch error results.

If present, theperKeyRepeat array specifies the repeat behavior of the individual key-
board keys. The corresponding core protocol or input extension per-key autorepeat
information is updated to reflect any changes specifigeriieyRepeat. If the bits

that correspond to any out-of-range keys are sadrikeyRepeat, aVal ue error

results.

If present, theffectEnabledControls andenabledControls field enable and disable

global boolean controls. Any controls set in both fields are enabled; any controls that
are set iraffectEnabledControls but not inenabledControls are disabled. Controls that

are not set in either field are not affected. If any controls are specifadhbledCon-

trols but not inaffectEnabledControls, alat ch error results. If either field contains
anything except boolean controlsyal ue error results.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 65

The X Keyboard Extension Protocol Specification

16.3.6
[]

Querying and Changing the Keyboard Mapping

XkbGetM ap

deviceSpec: KB_DEVICESPEC

full, partialKB_MAPPARTMASK

firstType, nypes: CARD8

firstKeySym, firstkeyAction: KEYCODE
nKeySyms, nkyActions: CARD8
firstkeyBehavior,firstkeyExplicit: KEYCODE
nKeyBehaviors,nKeyExplicit: CARDS8
firstModMapkKey,firstVModMapKey: KEYCODE
nModMapkKeys, nVModMapkeys: CARDS8
virtualMods: KB_VMODMASK

devicelD: CARDS

minKeyCode, maxkyCode: KEYCODE
present: KB_MAPRRTMASK

firstType, nypes, ndtalTypes: CARDS
firstKeySym, firstkeyAction: KEYCODE
nKeySyms, nkyActions: CARD8

totalSyms, totalActions: CARD16
firstkeyBehavior, firstkeyExplicit: KEYCODE
nKeyBehaviors, nkeyExplicit: CARD8
totalKeyBehaviors, totalkeyExplicit: CARD8
firstModMapkKey, firstVModMapKkey: KEYCODE
nModMapkeys, nVModMapkeys: CARDS8
totalModMapkeys, totalVModMapkeys: CARDS
virtualMods: KB_VMODMASK

typesRtrn: LISSfKB_KEYTYPE

symsRtrn: LIS6fKB_KEYSYMMAP

actsRtrn: { count: LIS®fCARDS, acts: LIS®fKB_ACTION }
behaiorsRtrn: LISTofKB_SETBEHA/IOR
vmodsRtrn: LIS6fSETofKEYMASK
explicitRtrn: LISTofKB_SETEXPLICIT
modmapRtrn: LIS®fKB_KEYMODMAP
vmodMapRtrn: LIS6fKB_KEYVMODMAP

Errors:Keyboar d, Val ue, Mat ch, Al | oc

This request returns the indicated components of the server and client maps of the key-
board specified bgeviceSpec. Thefull mask specifies the map components to be
returned in full; thepartial mask specifies the components for which some subset of

the legal elements are to be returned. The server retiviisch error if any compo-

nent is specified in botlull andpartial, or avVal ue error if any undefined bits are set

in eitherfull or partial.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 66

The X Keyboard Extension Protocol Specification

Each bit in thepartial mask controls the interpretation of one or more of the other
request fields, as follows:

Bit in the Rartial Mask Type Corresponding feld(s)
XkbKey TypesMask key types firstTypg nTypes
XkbKey Sy ns Mask keycodes firstkeySymnKeySyms
XkbKeyAct i onsMask keycodes firstKeyAction nKeyActions
XkbKeyBehavi or sMask keycodes firstkeyBehavior nKeyBehavios
XkbExpl i ci t Conponent sMask keycodes firstkeyExplicit, nKeyExplicit
XkbModi fi er MapMask keycodes firstModMapky, nModMapkeys
XkbVi rt ual ModMapMask keycodes firstVModMaphky, nVModMapkeys
XkbVi rt ual ModsMask virtual virtualMods

modifiers

If any of these keyboard map components are specifipdrtral, the corresponding

values must specify a valid subset of the requested components or this request reports
aVal ue error. If a keyboard map component is not specifiguhntial, the corre-

sponding fields must contain zeroes, dvbad ch error results.

If any error is generated, the request aborts and does not report any values.

On successful return, thievicelDfield reports the X input extension device ID of the
keyboard for which information is being returned(Qaf the server does not support
the X input extension. ThminKeyCodeandmaxKeyCodeeturn values report the
minimum and maximum keycodes that are legal for the keyboard in question.

Thepresentreturn value lists all of the keyboard map components contained in the
reply. The bits irpresentaffect the interpretation of the other return values as follows:

If XkbKeyTypesMask is set inpresent
firstTypeandnTypesspecify the types reported in the reply

» nTotalTypeseports the total number of types defined for thdkard

» typesRtrrhasnTypeslements of type KB_KEYTYPE which describe conseeuty
types starting fronfirstType

If XkbKey SynsMask is set inpresent
firstkeySymandnKeySymspecify the subset of theyboard leys for which symbols
will be reported.

» totalSymgeports the total number of,syms bound to theegs returned in this reply

» symsRtrrhasnKeySymelements of type KB_KEYSYMMARvhich describe the
symbols bound to consect#ikeys starting fronfirstKeySym

If XkbKeyAct i onsMask is set inpresent

« firstkeyActionandnKeyActionsspecify the subset of theys for which actions are
reported.

 totalActionsreports the total number of actions bound to the retureed k

» Thecountfield of theactsRtrnreturn alue hasi\KeyActionsentries of type CARDS,
which specify the number of actions bound to conseelsys starting fronfirstkey-
Action Theactsfield of actsRtrnhastotalActionselements of type KB_&TION and
specifies the actions bound to theyk

If XkbKeyBehavi or sMask is set inpresent
» ThefirstkeyBehaviomndnKeyBehaviorseturn \alues report the range ofjboard
keys for which behaors will be reported.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 67

The X Keyboard Extension Protocol Specification

» ThetotalKeyBehaviors return \alue reports the number ofjs in the range to be
reported that hae non-dedult values.

» ThebehaviorsRirn value hasotalKeyBehaviors entries of type KB_ BEH®IOR. Each
entry specifies ady in the range for which betiars are being reported and the beha
ior associated with thael. Any keys in that range that do notweaan entry irbehav-
iorsRtrn have the dediult behaior, KB_Def aul t .

If XkbExpl i cit Conponent sMask is set inpresent:

» ThefirstKeyExplicit andnKeyExplicit return \alues report the range ofjboard lkeys
for which the set of»licit components is to be returned.

» ThetotalKeyExplicit return \alue reports the number offs in the range specified by
firstkeyExplicit andnKeyExplicit that hae one or morexlicit components.

» TheexplicitRtrn return \alue hagotal KeyExplicit entries of type KB_KEYEXPLICIT
Each entry specifies the aykin the range for whichxplicit components are being
reported and thexelicit components that are bound to it.yAkeys in that range that do
not have an entry irexplicitRtrn have no &plicit components.

If XkbModi fi er MapMask is set inpresent:

» ThefirstModMapKey andnModMapKeys return \alues report the range ofjboard
keys for which the modifier map is to be reported.

» ThetotalModMapKeys return \alue reports the number ofyfs in the range specified
by firstModMapKey andnModMapKeys that are bound with to one or more modifiers.

» ThemodmapRtrn return \alue hagotalModMapKeys entries of type
KB_KEYMODMAP. Each entry specifies the eykin the range for which the modifier
map is being reported and the set of modifiers that are bound t@thani keys in
that range that do notvaan entry ilmodmapRtrn are not associated withyamodifi-
ers by the modifier mapping.

If XkbVi rt ual ModMapMask is set inpresent:

» ThefirstVModMapKey andnVModMapKeys return \alues report the range o#jboard
keys for which the virtual modifier map is to be reported.

* ThetotalVModMapKeys return \alue reports the number ofys in the range specified
by firstVModMapKey andnVModMapKeys that are bound with to or more virtual mod-
ifiers.

» ThevmodmapRtrn return \alue hagotal VModMapKeys entries of type
KB_KEYVMODMAP. Each entry specifies the eykn the range for which the virtual
modifier map is being reported and the set of virtual modifiers that are bound to that
key. Any keys in that range that do notygaan entry irvmodmapRtrn are not associ-
ated with ag virtual modifiers,

If XkbVi rt ual ModsMask is set inpresent:

» ThevirtualMods return \alue is a mask with one bit per virtual modifier which speci-
fies the virtual modifiers for which a set of corresponding real modifiers is to be
returned.

» ThevmodsRtrn return \alue is a list with one entry of type KEXYBHMASK for each
virtual modifier that is specified mrtualMods. The entries iwmodsRtrn contain the
real modifier bindings for the specified virtual modifiergyibring with the lavest-
numbered virtual modifier that is presentirtualMods and proceeding to the highest.

If any of these bits are not setgresent, the corresponding numeric fields all have the
value zero, and the corresponding lists are all of length zero.

11/6/97 Protocol \érsion 1.0/Document Rision 1.0 68

The X Keyboard Extension Protocol Specification

[XkbSetM ap

deviceSpec: KB_DEVICESPEC

flags: {Set MapResi zeTypes, Set MapReconput eActions }
present. KB MAPRRTMASK

minKeyCode, maxiyCode: KEYCODE
firstType, nypes: CARD8

firstKeySym, firstkeyAction: KEYCODE
nKeySyms, nkyActions: CARD8

totalSyms, totalActions: CARD16
firstkeyBehavior, firstkeyExplicit: KEYCODE
nKeyBehaviors, nkeyExplicit: CARD8
totalKeyBehaviors, totalkeyExplicit: CARD8
firstModMapKey, firstVModMapKey: KEYCODE
nModMapkeys, nVModMapkeys: CARDS8
totalModMapkeys, totalVModMapkeys: CARDS
virtualMods: VMODMASK

types: LISDfKB_KEYTYPE

syms: LISDBfKB_KEYSYMMAP

actions: { count: LIS®BfCARDS, actions: LIS®fKB_ACTION }
behaiors: LISTofKB_BEHAVIOR

vmods: LISDIKEYMASK

explicit: LISTofKB_EXPLICIT

modmap: LIS6fKB_KEYMODMAP

vmodmap: LIS8fKB_KEYVMODMAP

Errors:Keyboar d, Val ue, Mat ch, Al | oc

This request changes the indicated parts of the keyboard specitiedibgSpedNith

XKB, the effect of a key release is independent of the keyboard mapping at the time of
the release, so this request can be processed regardless of the logical state of the modi-
fier keys at the time of the request.

Thepresentfield specifies the keyboard map components contained to be changed.
The bits inpresentaffect the interpretation of the other fields as follows:

If XkbKeyTypesMask is set inpresentfirstTypeandnTypesspecify a subset of the

key types bound to the keyboard to be changed or created. The index of the first key
type to be changed must be less than or equal to the unmodified length of the list of
key types or &al ue error results.

If XkbKeyTypesMask is set inpresentandSet MapResi zeTypes is set inflags

the server resizes the list of key types bound to the keyboard so that the last key type
specified by this request is the last element in the list. If the list of key types is shrunk,
any existing key definitions that use key types that eliminated are automatically
assigned key types from the list of canonical key types as described in Section 12.2.3.
The list of key types bound to a keyboard must always include the four canonical types
and cannot have more thakbMax TypesPer Key (32) types; any attempt to reduce

the number of types bound to a keyboard below four or akkk&bx Ty pesPer -

Key causes &al ue error. Symbolic names for newly created key types or levels
within a key type are initialized tdone.

11/6/97 Protocol \érsion 1.0/Document Rision 1.0 69

The X Keyboard Extension Protocol Specification

If XkbKeyTypesMask is set inpresentthe types list hasTypesentries of type

KB_KEYTYPE.Each key type specified tppesmust be valid or &alue error

results. To be valid a key type definition must meet the following criteria:

* ThenumLeveldor the type must be greater than zero.

» Ifthe key type iSONE_LEVEL(i.e. inde zero in the list of & types) numLevelsnust
be one.

» If the key type isTWO_LEVElor KEYPAD or ALPHABETIC(i.e. index one, tvo, or
three in the lest ofdy types) group width must be tw

Each key type in types must also be internally consistent, or a Match error results. To
be internally consistent, a key type definition must meet the following criteria:
» Each map entry must specify a resultingelehat is lgal for the type.
» Any real or virtual modifiers specified inyanf the map entries must also be specified
in themodsfor the type.

If XkbKeySymsMask is set inpresentfirstkeySymandnKeySymspecify a subset
of the keyboard keys to which new symbols are to be assignedtal®/mspecifies
the total number of symbols to be assigned to those keys. If any of the keys specified
by firstKeySymandnKeySymsire not legal, Match error results. Theymsdlist has
nKeySymelements of type KB_KEYSYMMAP. Each key in the resulting key sym-
bol map must be valid and internally consistent ¥akue error results. To be valid
and internally consistent, a key symbol map must meet the following criteria:
» The key type indices must specifydal result ley types.
» The number of groups specified wouplinfomust be in the rande..4
» Thewidth of the ley symbol map must be equaliamLevel®f the widest ky type

bound to the &y.
* The number of symboleSymsmust equal the number of groups timegth.

If XkbKeyActionsMask is set inpresentfirstkeyActionandnKeyActionspecify a

subset of the keyboard keys to which new actions are to be assigriethifctions
specifies the total number of actions to be assigned to those keys. If any of the keys
specified byfirstKeyActionandnKeyActionsare not legal, Match error results. The
countfield of theactionsreturn value hasKeyActionelements of type CARDS; each
element ottountspecifies the number of actions bound to the corresponding key. The
actionslist in theactionsfield hastotalActionselements of type KB_ACTION. These
actions are assigned to each target key in turn, as speciftedibly The list of actions
assigned to each key must either be empty or have exactly as many actions as the key
has symbols, or latch error results.

If XkbKeyBehaviorsMask is set inpresentfirstKeyBehavioandnKeyBehaviors
specify a subset of the keyboard keys to which new behaviors are to be assigned, and
totalKeyBehaviorspecifies the total number of keys in that range to be assigned non-
default behavior. If any of the keys specifiedfingtkKeyBehaviomndnKeyBehaviors
are not legal, Match error results. Thbehaviordist hastotalKeyBehaviorele-
ments of type KB_BEHAVIOR; each entry béhaviorsspecifies a key in the speci-
fied range and a new behavior for that key; any key that falls in the range specified by
firstBehaviorandnBehaviorgor which no behavior is specified behaviorsis
assigned the default behavi&iB_Default . The new behaviors must be legal, or a
Value error results. To be legal, the behavior specified irKkisSetMap request
must:
» Specify a ky in the range indicated Wiy stkeyBehaviorandnKeyBehavios.
* Not specify thepermanentlag; permanent betisrs cannot be set or changed using

the XkbSetMap request.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 70

The X Keyboard Extension Protocol Specification

» |If present, th&kB_Over | ayl andKB_Over | ay2 behaiors must specify adycode
for the averlay key that is \alid for the current &yboard.

» If present, th&kB_Radi oG oup behaior must specify a lgal inde< (0...31) for the
radio group to which theeg belongs.

Key behaviors that are not recognized by the server are accepted but ignored. Attempts
to replace a “permanent” behavior are silently ignored; the behavior is not replaced,
but not error is generated and any other components specifieddklibet Map

request are updated, as appropriate.

If XkbVi rt ual ModsMask is set inpresent, virtualMods is a mask which specifies

the virtual modifiers to be rebound. T¥®ods list specifies the real modifiers that are
bound to each of the virtual modifiers specifiediimualMods, starting from the low-

est numbered virtual modifier and progressing upward. Any virtual modifier that is not
specified invirtualMods has no corresponding entryvmods, so thevmods list has

one entry for each bit that is setvimtualMods.

If XkbExpl i ci t Conponent sMask is set inpresent, firstKeyExplicit andnKeyEx-

plicit specify a subset of the keyboard keys to which new explicit components are to
be assigned, artdtalKeyExplicit specifies the total number of keys in that range that
have at least one explicit component. ERglicit list hastotalKeyExplicit elements of

type KB_KEYEXPLICIT; each entry adxplicit specifies a key in the specified range
and a new set of explicit components for that key. Any key that falls in the range spec-
ified by firstKeyExplicit andnKeyExplicit that is not assigned some valueiplicit

has no explicit components.

If XkbModi fi er MapMask is set inpresent, firstModMapKey andnModMapKeys

specify a subset of the keyboard keys for which new modifier mappings are to be
assigned, antbtalModMapKeys specifies the total number of keys in that range to
which at least one modifier is bound. Tinedmap list hastotalModMapKeys ele-

ments of type KB_KEYMODMAP; each entry ofodmap specifies a key in the spec-
ified range and a new set of modifiers to be associated with that key. Any key that falls
in the range specified HirstModMapKey andnModMapKeys that is not assigned

some value imodmap has no associated modifiers.

If the modifier map is changed by thkkbSet Map request, any changes are also
reflected in the core protocol modifier mapping. Changes to the core protocol modifier
mapping are reported to XKB-unaware clientsMigppi ngNot i f y events and can

be retrieved with the core protodaét Modi f i er Mappi ng request.

If XkbVi rt ual ModMapMask is set inpresent, firstVModMapKey andnVModMap-

Keys specify a subset of the keyboard keys for which new modifier mappings are to be
assigned, antbtal VModMapKeys specifies the total number of keys in that range to
which at least one virtual modifier is bound. Mmeodmap list hastotal VModMap-

Keys elements of type KB_KEYVMODMAP; each entrywhodmap specifies a key

in the specified range and a new set of virtual modifiers to be associated with that key.
Any key that falls in the range specified fiystVModMapKey andnVModMapKeys

that is not assigned some valueninodmap has no associated virtual modifiers.

If the resulting keyboard map is legal, the server updates the keyboard map. Changes
to some keyboard components have indirect effects on others:

If the XkbSet MapReconput eAct i ons bit is set inflags, the actions associated
with any keys for which symbol or modifier bindings were changed by this request are

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 71

The X Keyboard Extension Protocol Specification

16.3.7

recomputed as described in section 12.2.4. Note that actions are recoafigu aly
actions specified in this request are bound to keys, so the actions specified in this
request might be clobbered by the automatic assignment of actions to keys.

If the group width of an existing key type is changed, the list of symbols associated
with any keys of the changed type might be resized accordingly. If the list increases in
size, any unspecified new symbols are initializeNda&y nbol .

If the list of actions associated with a key is not empty, changing the key type of the
key resizes the list. Unspecified new actions are calculated by applying any keyboard
symbol interpretations to the corresponding symbols.

The number of groups global to the keyboard is always equal to the largest number of
groups specified by any of the key symbol maps. Changing the number of groups in
one or more key symbol maps may change the number of groups global to the key-
board.

Assigning key behavidkB_Radi oG oup to a key adds that key as a member of the
specified radio group. Changing a key with the existing beh&8oRadi oG oup
removes that key from the group. Changing the elements of a radio group can cause
synthetic key press or key release events if the key to be added or removed is logically
down at the time of the change.

Changing a key with behavi#B_Lock causes a synthetic key release event if the
key is logically but not physically down at the time of the change.

This request sends 2kbMapNot i f y event which reflects both explicit and indirect
map changes to any interested clients. If any symbolic names are changed, it sends a
XkbNamesNot i f y reflecting the changes to any interested clients. XikBware

clients are notified of keyboard changes via core protdappi ngNot i fy events.

Key press and key release events caused by changing key behavior may cause addi-
tional XkbSt at eNot i fy or Xkbl ndi cat or St at eNot i fy events.

Querying and Changing the Compatibility Map

XkbGetCompatMap

deviceSpec: KB_DEVICESPEC
groups: KB_GRUPMASK
getAllSI: BOOL

firstSI, nSl: CARD16

devicelD: CARDS

groupsRtrn: KB_ GRUPMASK
firstSIRtrn, nSIRtrn, ndtalSl: CARD16
siRtrn: LISTofKB_SYMINTERP
groupRtrn: LISBfKB_MODDEF

Errors:Keyboar d, Mat ch, Al | oc

This request returns the listed compatibility map components for the keyboard speci-
fied by deviceSpec. If deviceSpec does not specify a valid keyboard devic&eg -

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 72

The X Keyboard Extension Protocol Specification

boar d Error results. On returilgvicel D reports the input extension identifier of the
keyboard device db if the server does not support the input extension.

If getAllS isFal se, firstS andnS specify a subset of the symbol interpretations to
be returned; if useahS must be greater th&hand all of the elements specified by
firstS andnS must be defined oral ue error results. I§etAllSymsis Tr ue, the
server ignorefirstSym andnSyms and returns all of the symbol interpretations defined
for the keyboard.

Thegroups mask specifies the groups for which compatibility maps are to be returned.

ThenTotalS return value reports the total number of symbol interpretations defined
for the keyboard. On successful return, dii@rn return list contains the definitions
for nSRtrn symbol interpretations beginningfatstS Rtrn.

ThegroupRtrn return values report the entries in the group compatibility map for any
groups specified in thgroupsRtrn return value.

[XkbSetCompatM ap

deviceSpec: KB_DEVICESPEC
recomputeActions: BOOL
truncateSIl: BOOL

groups: KB_GRUPMASK
firstSI, nSl: CARD16

si: LISTofKB_SYMINTERPRET
groupMaps: LIS®fKB_MODDEF

Errors:Keyboar d, Mat ch, Val ue, Al | oc

This request changes a specified subset of the compatibility map of the keyboard indi-
cated bydeviceSpec. If deviceSpec specifies an invalid device Keyboar d error
results and nothing is changed.

ThefirstS andnS fields specify a subset of the keyboard symbol interpretations to be
changed. Thai list specifies new values for each of the interpretations in that range.

The first symbol interpretation to be changledtS, must be less than or equal to the
unchanged length of the list of symbol interpretations,\@laue error results. If the
resulting list would be larger than the unchanged list, it server list of symbol interpre-
tations is automatically increased in size. OtherwigeuifcateSyms is Tr ue, the

server deletes any symbol interpretations after the last element changed by this
request, and reduces the length of the list accordingly.

ThegroupMaps fields contain new definitions for a subset of the group compatibility
map;groups specifies the group compatibility map entries to be updateddroop-
Maps.

All changed compatibility maps and symbol interpretations must either ignore group
state or specify a legal range of groups, ¥ahue error results.

If the recomputeActions field is Tr ue, the server regenerates recalculates the actions
bound to all keyboard keys by applying the new symbol interpretations to the entire
key symbol map, as described in section 12.2.4.

11/6/97 Protocol \érsion 1.0/Document Rision 1.0 73

The X Keyboard Extension Protocol Specification

16.3.8 Querying and Changing Indicators
[XkbGetlndicator State
deviceSpec: KB_DEVICESPEC
devicelD: CARDS
state: KB_INDICAORMASK
Errors:Keyboar d
[
This request reports the current state of the indicators for the keyboard specified by
deviceSpec. If deviceSpec does not specify a valid keyboardKeyboar d error
results.
On successful return, thdevicel D field reports the input extension identifier of the
keyboard o0 if the server does not support the input extension stEtereturn value
reports the state of each of the thirty-two indicators on the specified keyboard. The
least-significant bit corresponds to indicator 0, the most significant bit to indicator 31,
if a bit is set, the corresponding indicator is lit.
[XkbGetIndicator M ap
deviceSpec: KB_DEVICESPEC
which: KB_INDICATORMASK
devicelD: CARDS
which: KB_INDICATORMASK
reallndicators: KB_INDICAORMASK
nindicators: CARD8
maps: LISBfKB_INDICATORMAP
Errors:Keyboar d, Val ue
[
This request returns a subset of the maps for the indicators on the keyboard specified
by deviceSpec. If deviceSpec does not specify a valid keyboard devic&egboar d
error results.
Thewhich field specifies the subset to be returned; a set bit in the which field indicates
that the map for the corresponding indicator should be returned.
On successful return, tidevicel D field reports the input extension identifier of the
keyboard o0 if the server does not support the input extension. Any indicators speci-
fied inreallndicators are actually present on the keyboard; the rest are virtual indica-
tors. Virtual indicators do not directly cause any visible or audible effect when they
change state, but they do cadX&dl ndi cat or St at eNot i fy events.
Themaps return value reports the requested indicator maps. Indicator maps are
described in section 9.2.1
11/6/97 Protocol \érsion 1.0/Document Rision 1.0 74

The X Keyboard Extension Protocol Specification

] XkbSetIndicatorMap
deviceSpec: KB_DEVICESPEC
which: KB_INDICATORMASK
maps: LISBfKB_INDICATORMAP
Errors:Keyboar d, Val ue
[]
This request changes a subset of the maps on the keyboard spedaieitdpec. If
deviceSpec does not specify a valid keyboard devic&egboar d error results.
Thewhich field specifies the subset to be changednthgs field contains the new
definitions.
If successful, the new indicator maps are applied immediately. If any indicators
change state as a result of the new maps, the server gefaltesli ca-
t or St at eNot i f y events as appropriate.
] XkbGetNamed! ndicator
deviceSpec: KB_DEVICESPEC
ledClass: KB_LEDCLASSSPEC
ledID: KB_IDSPEC
indicator: AOM
devicelD: CARDS8
supported: BOOL
indicator: AOM
found: BOOL
on: BOOL
reallndicator: BOOL
ndx: CARDS8
map: KB_INDICATORMAP
Errors:Keyboar d, At om Val ue
[]
This request returns information about the indicator specifiddd@fass, ledID, and
indicator on the keyboard specified bigviceSpec. Theindicator field specifies the
name of the indicator for which information is to be returned.
If deviceSpec does not specify a device with indicator&eyboar d error results. If
ledClass does not have the vallg| t XI Cl ass, LedFeedbackd ass, orKbd-
FeedbackC ass, aVal ue error results. IfedlD does not have the value
Df | t XI 1 d or specify the identifier of a feedback of the class specifiddd@lass on
the device specified byeviceSpec, aMat ch error results. Ifndicator is not a valid
ATOM other tharNone, anAt omerror results.
This request is always supported with default class and identifier on the core keyboard
device. If the request specifies a device other than the core keyboard device or a feed-
back class and identifier other than the defaults, and the server does not support indi-
cator names or indicator maps for extension devicesugperted return value is
Fal se and the values of the other fields in the reply are undefined. If the client which
11/6/97 Protocol \érsion 1.0/Document Rision 1.0 75

The X Keyboard Extension Protocol Specification

issued the unsupported request has also selected to do so, it will also receive an
XkbExt ensi onDevi ceNot i fy event which reports the attempt to use an unsup-
ported feature, in this case one or botiXlob Xl | ndi cat or Maps or

XkbXI I ndi cat or Nanes.

Otherwise supported is Tr ue and thedevicel D field reports the input extension iden-
tifier of the keyboard o0 if the server does not support the input extension.ifidie
cator return value reports the name for which information was requested dndritie
return value igr ue if an indicator with the specified name was found on the device.

If a matching indicator was found:

» Theon return \alue reports the state of the indicator at the time of the request.

» Thereallndicator return \alue isTr ue if the requested indicator is actually present on
the keyboard orFal se if it is virtual.

» Thendx return \alue reports the indeof the indicator in the requested feedback.

» Themap return alue reports the indicator map used by to automatically change the
state of the specified indicator in response to changeyliérd state or controls.

If no matching indicator is found, thieund return value i$-al se, and theon, real-
Indicator, ndx, andmap return values are undefined.

[XkbSetNamedI ndicator
deviceSpec: KB_DEVICESPEC
ledClass: KB_LEDCLASSSPEC
ledID: KB_IDSPEC
indicator: AOM
setState: BOOL
on: BOOL
setMap: BOOL
createMap: BOOL
map: KB_SETINDICAORMAP
Errors:Keyboar d, At om Access
H
This request changes various aspects of the indicator specifiedidbgss, ledID, and
indicator on the keyboard specified bigviceSpec. Theindicator argument specifies
the name of the indicator to be updated.
If deviceSpec does not specify a device with indicator&eyboar d error results. If
ledClass does not have the valg| t XI C ass, LedFeedbackd ass, orKbd-
Feedbackd ass, aVal ue error results. IfedlD does not have the value
Df | t XI I d or specify the identifier of a feedback of the class specifiddd@lass on
the device specified bgeviceSpec, aMat ch error results. Ifndicator is not a valid
ATOM other tharNone, anAt omerror results.
This request is always supported with default class and identifier on the core keyboard
device. If the request specifies a device other than the core keyboard device or a feed-
back class and identifier other than the defaults, and the server does not support indi-
cator names or indicator maps for extension devicesugperted return value is
Fal se and the values of the other fields in the reply are undefined. If the client which
issued the unsupported request has also selected to do so, it will also receive an
XkbExt ensi onDevi ceNot i fy event which reports the attempt to use an unsup-
11/6/97 Protocol \érsion 1.0/Document Rision 1.0 76

The X Keyboard Extension Protocol Specification

ported feature, in this case one or botllobXl _| ndi cat or Maps and
XkbXI I ndi cat or Nanes.

Otherwise supported is Tr ue and thedevicel D field reports the input extension iden-
tifier of the keyboard o0 if the server does not support the input extension.ifidie
cator return value reports the name for which information was requested dndritie
return value idr ue if an indicator with the specified name was found on the device.

If no indicator with the specified name is found on the specified device, anckthe
ateMap field isTr ue, XKB assigns the specified name to the lowest-numbered indi-
cator that has no name (i.e. whose naniorse) and applies the rest of the fields in
the request to the newly named indicator. If no unnamed indicators remain, this
request reports no error and has no effect.

If no matching indicator is found or new indicator assigned this request reports no
error and has no effect. Otherwise, it updates the indicator as follows:

If setMap is Tr ue, XKB changes the map for the indicator (see section 9.2.1) to
reflect the values specified map.

If setSateis Tr ue, XKB attempts to explicitly change the state of the indicator to the
state specified ion. The effects of an attempt to explicitly change the state of an indi-
cator depend on the values in the map for that indicator and are not guaranteed to suc-
ceed.

If this request affects both indicator map and state, it updates the indicator map before
attempting to change its state, so the success of the explicit change depends on the
indicator map values specified in the request.

If this request changes the indicator map, it applies the new map immediately to deter-
mine the appropriate state for the indicator given the new indicator map and the cur-
rent state of the keyboard.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 77

The X Keyboard Extension Protocol Specification

16.3.9 Querying and Changing Symbolic Names
[XkbGetNames
deviceSpec: KB_DEVICESPEC
which: KB_NAMEDETAILMASK
devicelD: CARDS
which: KB_NAMESMASK
minKeyCode, maxkyCode: KEYCODE
nTypes: CARDS8
nKTLevels: CARD16
groupNames: KB_GRUPMASK
virtualMods: KB_VMODMASK
firstkey: KEYCODE
nKeys: CARDS
indicators: KB_INDICAORMASK
nRadioGroups, n&yAliases: CARDS8
present: KB_MMEDETAILMASK
valueList: LISOfITEMs
Errors:Keyboar d, Val ue
[
This request returns the symbolic names for various components of the keyboard map-
ping for the device specified lagviceSpec. Thewhich field specifies the keyboard
components for which names are to be returnativiteSpec does not specify a valid
keyboard device, Beyboar d error results. If any undefined bitswinich are non-
zero, aval ue error results.
Thedevicel D return value contains the X Input Extension device identifier of the spec-
ified device oi0 if the server does not support the input extension présent and
valueL.ist return values specify the components for which names are being reported. If
a component is specified pnesent, the corresponding element is present inviie
uelist, otherwise that component has len@tirhe components of thaluelist
appear in the following order, when present:.
Component Sze Type
XkbKeycodesNane 1 ATOM
XkbGeonet r yNane 1 ATOM
XkbSynbol sNane 1 ATOM
XkbPhysSynbol sNane 1 ATOM
XkbTypesNane 1 ATOM
XkbConpat Nane 1 ATOM
XkbKeyTypeNanes nTypes LISTOfATOM
XkbKTLevel Nanes nTypes, { count: LISBfCARDS,
nKTLevels names: LISOfATOM }
Xkbl ndi cat or Nanmes One per bit set imdicators LISTofATOM
XkbVi rt ual ModNanes One per bit set imirtualMods LISTofATOM
XkbG oupNanes One per bit set igroupNames ~ LISTofATOM
11/6/97 Protocol \érsion 1.0/Document Rision 1.0 78

The X Keyboard Extension Protocol Specification

Component Size Type

XkbKeyNarres nKeys LISTofKB_KEYNAME
XkbKeyAl i ases nKeyAliases LISTofKB_KEYALIAS
XkbRGNanes nRadioGroups LISTofATOM

If type names are reported, th€ypegeturn value reports the number of types
defined for the keyboard, and the list of key type namealireListhasnTypele-
ments.

If key type level names are reported, the list of key type level namesvaltiet ist

has two parts: Theountarray hasnTypeslements, each of which reports the number
of level names reported for the corresponding key type n@dheesarray has\KTLev-
elsatoms and reports the names of each type sequentiallpKihesvelgeturn value

is always equal to the sum of all of the elements otthumtarray.

If indicator names are reported, ihelicatorsmask specifies the indicators for which
names are defined; any indicators not specifiaddicatorshave the namione.

The list of indicator names walueListcontains the names of the listed indicators,
beginning with the lowest-numbered indicator for which a name is defined and pro-
ceeding to the highest.

If virtual modifier names are reported, thgualModsmask specifies the virtual mod-
ifiers for which names are defined; any virtual modifiers not specifiedturlMods
have the namBlone. The list of virtual modifier names walueListcontains the
names of the listed virtual modifiers, beginning with the lowest-numbered virtual
modifier for which a name is defined and proceeding to the highest.

If group names are reported, p@upNamesnask specifies the groups for which
names are defined; any groups not specifigganpNamesave the namisone. The

list of group names imalueListcontains the names of the listed groups, beginning
with the lowest-numbered group for which a name is defined and proceeding to the
highest.

If key names are reported, thiestkKeyandnKeysreturn values specify a range of keys
which includes all keys for which names are defined; any key that does not fall in the
range specified bfirstKkey andnKeyshas the namiul | KeyNare. The list of key
names in thealuelListhasnKeysentries and specifies the names of the keys beginning
atfirstKey.

If key aliases are reported, thEeyAliaseseturn value specifies the total number of

key aliases defined for the keyboard. The list of key aliaseslieListhasnKey-
Aliasesentries, each of which reports an alias and the real name of the key to which it
corresponds.

If radio group names are reported, tfiRadioGroupseturn value specifies the num-
ber of radio groups on the keyboard for which names are defined. The list of radio
group names inalueListreports the names of each group andrniRedioGroups
entries.

11/6/97 Protocol \érsion 1.0/Document Rision 1.0 79

The X Keyboard Extension Protocol Specification

[]

XkbSetNames
deviceSpec: KB_DEVICESPEC

which: KB_NAMEDETAILMASK
virtualMods: KB_VMODMASK
firstType, nypes: CARD8
firstKTLevel, nKTLevels: CARD8
totalKTLevelNames: CARD16
indicators: KB_INDICAORMASK
groupNames: KB_GRUPMASK
nRadioGroups: CARDS

firstkey: KEYCODE

nKeys, nkeyAliases: CARDS
valueList: LISOfITEMs

Errors:Keyboar d, At om Val ue, Mat ch, Al | oc

This request changes the symbolic names for the requested components of the key-
board specified byeviceSpec. Thewhich field specifies the components for which

one or more names are to be updatedeliceSpec does not specify a valid keyboard
device, &Keyboar d error results. If any undefined bitswinich are non-zero, a

Val ue error results. If any error (other thahl oc orl npl enent at i on) occurs,

this request returns without modifying any names.

Thewhich andvalueL.ist fields specify the components to be changed; the type of each
valuelist entry, the order in which components appear ivéheelist when specified,

and the correspondence between componentkioh and the entries in th&lueL.ist

are as specified for tiékbGet Nanes request.

If keycodes, geometry, symbols, physical symbols, types or compatibility map names
are to be changed, the corresponding entries ivallieList must have the value
None or specify a valid ATOM, else ait omerror occurs.

If key type names are to be changed fittatType andnTypes fields specify a range of
types for which new names are supplied, and the list of key type nanatselni st
hasnTypes elements. Names for types that fall outside of the range specifiedtby

Type andnTypes are not affected. If this request specifies names for types that are not
present on the keyboardVat ch error results. All of the type names in trauelist

must be valid ATOMs or have the valdene, or anAt omerror results.

The names of the first four keyboard types are specified by the XKB extension and
cannot be changed; including any of the canonical types in this request causes an
Access error, as does trying to assign the name reserved for a canonical type to one
of the other key types.

If key type level names are to be changedfitistK TLevel andnKTLevels fields spec-

ify a range of key types for which new level names are supplied, and the list of key
type level names in theluelList has two parts: Theount array hasiKTLevels ele-

ments, each of which specifies the number of levels for which names are supplied on
the corresponding key type; any levels for which no names are specified are assigned
the nameéNone. Thenames array hagotalKTLevels atoms and specifies the names of
each type sequentially. Thatal KTLevels field must always equal the sum of all of the

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 80

The X Keyboard Extension Protocol Specification

elements of theountarray. Level names for types that fall outside of the specified
range are not affected. If this request specifies level names for types that are not
present on the keyboard, or if it specifies more names for a type than the type has lev-
els, aivat ch error results. All specified type level names musibee or a valid

ATOM or anAt omerror results.

If indicator names are to be changed,ittticatorsmask specifies the indicators for
which new names are specified; the names for indicators not speciiineticators

are not affected. The list of indicator namesatueListcontains the new names for

the listed indicators, beginning with the lowest-numbered indicator for which a name
is defined and proceeding to the highest. All specified indicator names must be a valid
ATOM or None, or anAt omerror results.

If virtual modifier names are to be changed \imialModsmask specifies the virtual
modifiers for which new names are specified; names for any virtual modifiers not
specified invirtualModsare not affected. The list of virtual modifier namesatuelL-

ist contains the new names for the specified virtual modifiers, beginning with the low-
est-numbered virtual modifier for which a name is defined and proceeding to the
highest. All virtual modifier names must be valid ATOMdN\one, or anAt omerror
results.

If group names are to be changed,gh@mupNamesnask specifies the groups for

which new names are specified; the name of any group not specifexipNamess

not changed. The list of group namesatueListcontains the new names for the

listed groups, beginning with the lowest-numbered group for which a name is defined
and proceeding to the highest. All specified group hames must be a valid ATOM or
None, or anAt omerror results.

If key names are to be changed, firKey andnKeysfields specify a range of keys

for which new names are defined; the name of any key that does not fall in the range
specified byfirstkey andnKeysis not changed. The list of key names inhkieList
hasnKeysentries and specifies the names of the keys beginniirgt&ky.

If key aliases are to be changed, tikeyAliasedield specifies the length of a new list

of key aliases for the keyboard. The list of key aliases can only be replaced in its
entirety; it cannot be replaced. The list of key aliasesineListhasnKeyAliases

entries, each of which reports an alias and the real name of the key to which it corre-
sponds.

XKB does not check key names or aliases for consistency and validity, so applications
should take care not to assign duplicate names or aliases

If radio group names are to be changednfRadioGroupdield specifies the length of

a new list of radio group names for the keyboard. There is no way to edit the list of
radio group names; it can only be replaced in its entirety. The list of radio group names
in valueListreports the names of each group andnedioGroupsntries. If the list

of radio group names specifies names for more radio groups than XKB allows (32), a
Mat ch error results. All specified radio group names must be valid ATOMs or have
the valueNone, or anAt omerror results.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 81

The X Keyboard Extension Protocol Specification

16.3.10 Querying and Changing Keyboard Geometry

[XkbGetGeometry

deviceSpec: KB_DEVICESPEC
name: AOM

devicelD: CARDS

name: AOM

found: BOOL

widthMM, heightMM: CARD16
baseColorNdx, labelColorNdx: CARD8
properties: LIS6fKB_PROPER'Y
colors: LISOfSTRINGS8

shapes: LISOfKB_SHAPE
sections: LISOfKB_SECTION
doodads: LIS®fKB_DOODAD
keyAliases: LISDfKB_KEYALIAS

Errors:Keyboar d

This request returns a description of the physical layout of a keyboardnHrtiee

field has the valudlone, or if name is identical to the name of the geometry for the
keyboard specified bgeviceSpec, this request returns the geometry of the keyboard
specified bydeviceSpec; otherwise, ilhame is a valid atom other thdwone, the

server returns the keyboard geometry description with that name in the server database
of keyboard components (see section 13.0) if one exigtevitfeSpec does not spec-

ify a valid keyboard device,keyboar d error results. Ihame has a value other than

None or a valid ATOM, arAt omerror results.

On successful return, tlievicel D field reports the X Input extension identifier of the
keyboard device specified in the requesQ drthe server does not support the input
extension.

Thefound return value reports whether the requested geometry was availétledif

is Fal se, no matching geometry was found and the remaining fields in the request
reply are undefined; fiound is Tr ue, the remaining fields of the reply describe the
requested keyboard geometry. The interpretation of the components that make up a
keyboard geometry is described in detail in section 11.0

11/6/97 Protocol \érsion 1.0/Document Rision 1.0 82

The X Keyboard Extension Protocol Specification

[]

XkbSetGeometry

deviceSpec: KB_DEVICESPEC

name: AOM

widthMM, heightMM, CARD16
baseColorNdx, labelColorNdx: CARDS8
shapes: LISGfKB_SHAPE

sections: LIS®fKB_SECTION
properties: LISOfKB_ PROPERY
colors: LISDOfSTRINGS

doodads: LIS®fKB_DOODAD
keyAliases: LISDfKB_KEYALIAS

Errors:Keyboar d, At om Val ue

This request changes the reported description of the geometry for the keyboard speci-
fied by deviceSpec. If deviceSpec does not specify a valid keyboard devikeya
boar d error results.

Thename field specifies the name of the new keyboard geometry and must be a valid
ATOM or anAt omerror results. The new geometry is not added to the server data-
base of keyboard components, but it can be retrieved usixbd@et Geonet ry

request for as long as it is bound to the keyboard. The keyboard geometry symbolic
name is also updated from the name field, andkdosNanesNot i f y event is gener-
ated, if necessary.

The list ofcolors must include at least two definitions, oval ue error results. All
color definitions in the geometry must specify a legal color (i.e. must specify a valid
index for one of the entries of tleelors list) or aMat ch error results. ThbeaseCol-
orNdx and thdabel ColorNdx must be different or Bht ch error results.

The list ofshapes must include at least one shape definition, \dalue error results.
If any two shapes have the same namégtach error result. All doodads and keys
which specify shape must specify a valid index for one of the elementsshibjfies
list, or aMat ch error results.

All section, shape and doodad names must be valid ATOMs Atr@merror results;
the constaniNone is not permitted for any of these components.

All doodads must be of a known type; XKB does not support “private” doodad types.

If, after rotation, any keys or doodads fall outside of the bounding box for a section,
the bounding box is automatically adjusted to the minimum size which encloses all of
its components.

If, after adjustment and rotation, the bounding box of any section or doodad extends
below zero on either the X or Y axes, the entire geometry is translated so that the min-
imum extent along either axis is zero.

If, after rotation and translation, any keyboard components fall outside of the rectangle
specified bywidthMM andheightMM, the keyboard dimensions are automatically
resized to the minimum bounding box that surrounds all components. Otherwise, the
width and height of the keyboard are left as specified.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 83

The X Keyboard Extension Protocol Specification

Theunderfield of any overlay key definitions must specify a key that is in the section
that contains the overlay key, oiMat ch error results. This request does not check
the value of theverfield of an overlay key definition, so applications must be careful
to avoid conflicts with actual keys.

This request does not verify that key names or aliases are unique. It also does not ver-

ify that all key names specified in the geometry are bound to some keycode or that all
keys that are named in the keyboard definition are also available in the geometry.

Applications should make sure that keyboard geometry has no internal conflicts and is

consistent with the other components of the keyboard definition, but XKB does not
check for or guarantee it.

16.3.11 Querying and Changing Per-Client Flags
[XkbPer ClientFlags
deviceSpec: KB_DEVICESPEC
change: KB_PCFMASK
value: KB_PCFMASK
ctrlsToChange: KB_BOOLCTRLMASK
autoCtrls: KB_ BOOLCTRLMASK
autoCtr\alues: KB_ BOOLCTRLMASK
devicelD: CARDS
supported: KB_PCFMASK
value: KB_PCFMASK
autoCtrls: KB_ BOOLCTRLMASK
autoCtr\alues: KB_ BOOLCTRLMASK
where: KB_PCFMASK:
Errors:Keyboar d, Val ue, Mat ch, Al | oc
L
Changes the client specific flags for the keyboard specifietetiige SpedReports a
Keyboar d error ifdeviceSpedoes not specify a valid keyboard device.
Any flags specified irthangeare set to the corresponding valuesatue provided
that the server supports the requested control. Legal per-client-flags are:
Flag... Described in...
XkbPCF_Det ect abl eAut or epeat Section4.1.2 on pagé
XkbPCF_Gr absUseXKBSt at eMask Section12.1.1 on pag89
XkbPCF_Aut oReset Cont r ol sMask Section4.12 on pagé?2
XkbPCF_LookupSt at eWhenGr abbed Section12.3 on pagé3
XkbPCF_SendEvent Uses XKBSt at e Sectionl12.5 on pagd5
If PCF_Aut oReset Cont r ol s is set in botlthangeandvalug the client’s mask of
controls to be changed is updated frants ToChangeautoCtrls andautoCtrlValues
Any controls specified ictrlsToChangeare modified in the auto-reset controls mask
for the client; the corresponding bits from #ngoCitrisfield are copied into the auto-
reset controls mask and the corresponding bits &otoCtrlVValuesare copied into the
auto-reset controls state values. If any controls are specifeadactrlValuesout not
11/6/97 Protocol \érsion 1.0/Document Rision 1.0 84

The X Keyboard Extension Protocol Specification

16.3.12

in autoCtrls, aMat ch error results. If any controls are specifie@umoCtrls but not in
ctrisToChange, aMat ch error results.

If PCF_Aut oReset Cont r ol s is set inchange but not invalue, the client's mask of
controls to be changed is reset to all zeroes (i.e. the client does not change any controls
when it exits).

This request reportshat ch error if a bit is set in any of the value masks but not in
the control mask that governs it oval ue error if any undefined bits are set in any
of the masks.

On successful return, thdevicel D field reports the X Input extension identifier of the
keyboard, o0 if the server does not support the X Input Extension.

Thesupported return value reports the set of per-client flags that are supported by the
server; in this version of XKB, only tiékbPCF_Det ect abl eAut or epeat per-
client flag is optional; all other per-client flags must be supported.

Thevalue return value reports the current settings of all per-client flags for the speci-
fied keyboard. ThautoCtrIsreturn value reports the current set of controls to be reset
when the client exits, while thautoCtrlValues return value reports the state to which
they should be set.

Using the Ser ver’'s Database of K eyboar d Components

XkbListComponents

deviceSpec: KB_DEVICESPEC
maxNames: CARD16
keymapsSpec: STRINGS
keycodesSpec: STRINGS
typesSpec: STRINGS
compatMapSpec: STRINGS
symbolsSpec: STRINGS8
geometrySpec: STRINGS

devicelD: CARDS

extra: CARD16

keymaps,leycodes,types,compatMaps: LIFKB_COMPONENTNME
symbols, geometries: LISTKB_ COMPONENTMME

Where:
KB_COMPONENTNME { hints: CARDS8, name: STRINGS8 }

Errors:Keyboar d, Al | oc

This request returns one or more lists of keyboard components that are available from
the X server database of keyboard components for the device specifieddeffoec.

The X server is allowed, but not required or expected, to maintain separate databases
for each keyboard device.leyboar d error results ifleviceSpec does not specify a

valid keyboard device.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 85

The X Keyboard Extension Protocol Specification

The maxNames field specifies the maximum number of component names to be
reported, in total, by this request.

The keymapspec, keycodesSpec, typesSpec, compatMapSpec, symbolsSpec and
geometrySpec request fields specify a pattern to be matched against the names of all
components of the corresponding type in the server database of keyboard components.

Each pattern uses the ISO Latin-1 encoding and should contain only parentheses, the
wildcard characters “?” and “*” or characters that are permitted in a component class
or member name (see section 13.1). lllegal characters in a pattern are simply ignored,;
no error results if a pattern contains illegal characters.

Comparison is case-sensitive and, in a pattern, the “?” wildcard character matches any
single character except parentheses while the “*” character matches any number of
characters except parentheses. If an implementation accepts characters other than
those required by XKB, whether or not those characters match either wildcard is also
implementation dependent. An empty pattern does not match any component names.

On successful return, tidevicel D return value reports the X Input Extension device
identifier of the specified device, Orif the server does not support the X input exten-
sion. Theextra return value reports the number of matching component names that
could not be returned due to the setting ofrtlagNames field in the request.

Thekeymaps, keycodes, types, compatMaps, symbols andgeometries return the hints
(see section 13.3) and names of any components from the server database that match
the corresponding pattern.

Section 13.0 describes the X server database of keyboard components in more detail.

XkbGetK bdByName

deviceSpec: KB_DEVICESPEC

need, vant: KB_ GBNDERILMASK

load: BOOL

keymapsSpec: STRINGS

keycodesSpec, typesSpec: STRINGS8
compatMapSpec, symbolsSpec: STRINGS
geometrySpec: STRINGS

devicelD: CARDS

minKeyCode, maxkyCode: KEYCODE

loaded, ne’Keyboard: BOOL

found, reported: KB_GBNDEIILMASK

map: optionakkbGet Map reply

compat: optionaKkbGet Conpat Map reply
indicators: optionaKkbGet | ndi cat or Map reply
names: optionaXkbGet Nanes reply

geometry: optionakkbGet Geonet ry reply

Errors:Keyboar d, Access, Al | oc

Assembles and returns a keymap from the current mapping and specified elements
from the server database of keymap components for the keyboard specdestitby

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 86

The X Keyboard Extension Protocol Specification

Spe¢ and optionally replaces the current keyboard mapping with the newly generated
description. IfdeviceSpedoes not specify a valid keyboard devic&egboar d
error results.

ThekeymapsSpekeycodesSpetypesSpecompatMapSpesymbolsSpeand
geometrySpecomponent expressions (see section 13.2) specify the database compo-
nents to be used to assemble the keyboard description.

Thewantfield lists the pieces of the keyboard description that the client wants to have
reported for the newly constructed keymap. mbedfield lists all of the pieces that

must be reported. If any of the piecesm@edcannot be loaded from the specified
names, no description of the keyboard is returned.

Thewantandneedfields can include any combinations of th&kdGet Map-
By Nanme (GBN) components:

XkbGetMapByName Database L
Keyboad Component... Component...Comloorlents oféyboad Description
XkbGBN_Types types key types

XkbGBN_Conpat Map compat symbol interpretations, group compatibility

map

XkbGBN _Cl i ent Synbol s symbols, typeskey types, ey symbol mappings, modifier
keycodes mapping

XkbGBN_Ser ver Synbol s symbols, typeskey behaiors, key actions, ky explicit

keycodes components, virtual modifiers, virtual modi-
fier mapping
XkbGBN_I ndi cat or Map ~ compat indicator maps, indicator names
XkbGBN_KeyNanes keycodes key names, &y aliases
XkbGBN_Geonet ry geometry keyboard geometry
XkbGBN_O her Nanes all key types, symbol interpretations, indicator

maps, names, geometry

If either field contains a GBN component that depends on some database component
for which the request does not supply an expression, XKB automatically substitutes
the special pattern “%” which copies the corresponding component from the current
keyboard description, as described in section 13.2.

Theload flag asks the server to replace the current keyboard descriptidevice-
Specwith the newly constructed keyboard descriptiohodid is Tr ue, the request

must include component expressions for all of the database components; if any are
missing, XKB substitutes “%” as described above.

If all necessary components are both specified and found, the new keyboard descrip-
tion is loaded. If the new keyboard description has a different geometry or keycode
range than the previous keyboard description, XKB s&ktitNewKeyboar dNo-

tify events to all interested clients. See section 14.0 for more information about the
effects of replacing the keyboard description on the fly.

If the range of keycodes changes, clients that have requédidewKeyboar dNo-
ti fy events are not sent any other change notification events by this request. Clients
that do not requedtkbNewKeyboar dNot i f y events are sent other XKB change

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 87

The X Keyboard Extension Protocol Specification

notification events (e.XkbMapNot i f y, XkbNanesNot i f y) as necessary to alert
them to as many of the keyboard changes as possible.

If no error occurs, the request reply reports the GBN components that were found and
sends a description of any of the resulting keyboard that includes and of the compo-
nents that were requested.

Thedevicel D return value reports the X Input extension device identifier of the key-
board that was used, 0rif the server does not support the X input extension.

The minKeyCode andmaxKeyCode return values report the legal range of keycodes

for the keyboard description that was created. If the resulting keyboard description
does not include at least one of the key names, client symbols or server symbols com-
ponentsminKeyCode andmaxKeyCode are botlD.

Theloaded return value reports whether or not the existing keyboard definition was
replaced with the newly created ondokded is Tr ue, thenewKeyboard return value
reports whether or not the new map changed the geometry or range of keycodes and
causedXkbNewKeyboar dNot i f y events for clients that have requested them.

Thefound return value reports the GBN components that were present in the keymap
that was constructed by this request. fidported return value lists the subset of those
components for which descriptions follow. if any of the components specified in the
need field of the request were not fourr@ported is empty, otherwise it contains the
intersection of théound return value with the union of timeed andwant request

fields.

If any of GBN_Types, GBBN_Cl i ent Synbol s orGBN_Ser ver Synbol s are set
in reported, themap return value has the same format as the reply Xkaiet Map
request and reports the corresponding pieces of the newly constructed keyboard
description.

If GBN_Conpat Map is set inreported, thecompat return value has the same format
as the reply to akkbGet Conpat Map request and reports the symbol interpretations
and group compatibility map for the newly constructed keyboard description.

If GBBN_I ndi cat or Map is set inreported, theindicators return value has the same
format as the reply to axkbGet | ndi cat or Map request and reports the physical
indicators and indicator maps for the newly constructed keyboard description.

If GBN_KeyNarnes or GBN_Qt her Nanes are set imeported, thenames return
value has the same format as the reply t¥ldnGet Nanes reply and reports the cor-
responding set of symbolic names for the newly constructed keyboard description.

If GBN_Geonet ry is set inreported, thegeometry return value has the same format
as the reply to akkbGet Geonet r yMap request and reports the keyboard geometry
for the newly constructed keyboard description.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 88

The X Keyboard Extension Protocol Specification

16.3.13 Querying and Changing Input Extension Devices

[XkbGetDevicel nfo
deviceSpec: KB_DEVICESPEC
wanted: KB_XIDEVFEAUREMASK
ledClass: KB_LEDCLASSSPEC
ledID: KB_IDSPEC
allButtons: BOOL
firstButton, nButtons: CARDS
devicelD: CARDS
present: KB_XIDEVFEAUREMASK
supported: KB_XIFEAUREMASK
unsupported: KB_XIFERAUREMASK
firstBtnWanted: CARDS8
nBtnsWanted: CARDS8
firstBtnRtrn: CARDS
nBtnsRtrn: CARD8
totalBtns: CARDS
hasOwnState: BOOL
dflitKbdFB, dfltLedFB: KB_IDSPEC
devType: ATOM
name: STRING
btnActions: LISDfKB_ACTION
leds: LIS©fKB_DEVICELEDINFO
Errors:Devi ce, Mat ch, Access, Al | oc
[
Reports a subset of the XKB-supplied information about the input device specified by
deviceSpedJnlike most XKB requests, the device specifiedXkbGet Devi ce-
| nf o need not be a keyboard device. Nonetheleksydoar d error results if
deviceSpedoes not specify a valid core or input extension device.
Thewantedfield specifies the types of information to be returned, and controls the
interpretation of the other request fields.
If the server does not support assignment of XKB actions to extension device buttons,
theallButtons firstButtonandnButtonsfields are ignored.
Otherwise, if thexkbXl _But t onAct i ons flag is set invanted theallButtons
firstButtonandnButtonsfields specify the device buttons for which actions should be
returned. SettingllButtonsto Tr ue requests actions for all device buttongliBut-
tonsis Fal se, firstButtonandnButtonsspecify a range of buttons for which actions
are requested. If the device has no buttonsfosiButtonandnButtonsspecify illegal
buttons, dvat ch error results. IallButtonsis Tr ue, firstButtonandnButtonsare
ignored.
If the server does not support XKB access to any aspect of the indicators on extension
devices, or if thevantedfield does not include any of the indicator flags, ldtClass
andledID fields are ignored. OtherwiskedClassandledID specify one or more feed-
back(s) for which indicator information is requestededfClassor ledID have illegal
11/6/97 Protocol \érsion 1.0/Document Rision 1.0 89

The X Keyboard Extension Protocol Specification

values, &val ue error results. If they have legal values but do not specify a keyboard
or indicator class feedback for the device in questidfiatach error results.

TheledClass field can specify eithekbdFeedbackC ass, LedFeedback-

Cl ass, XkbDf | t XI Cl ass, orXkbAl | XI Cl asses. If at least one keyboard feed-
back is defined for the specified devie&bDf | t XI C ass is equivalent to
KbdFeedbackC ass, otherwise it is equivalent toedFeedbackd ass. If

XkbAl | XI C asses is specified, this request returns information about both indica-
tor and keyboard class feedbacks which match the requested identifier, as described
below.

TheledID field can specify any valid input extension feedback identiXkhD-
fltXl1d,orXkbAl | Xl | ds. The default keyboard feedback is the one that is
affected by core protocol requests; the default led feedback is implementation-spe-
cific. If XkbAl | XI | ds is specified, this request returns indicator information about
all feedbacks of the class(es) specifieddull ass.

If no error results, thdevicel D return value reports the input extension device identi-
fier of the device for which values are being returned.slibported return value

reports the set of optional XKB extension device features that are supported by this
implementation (see section 15.0) for the specified device, and the unsupported return
value reports anynsupported features.

If hasOwnSateis Tr ue, the device is also a keyboard, and any indicator maps bound
to the device use the current state and control settings for this device to control auto-
matic changes. lasOwnSate is Fal se, the state and control settings of the core
keyboard device control automatic indicator changes.

Thename field reports the X Input Extension name for the device.deh@ype field
reports the X Input Extension device type. Both fields are provided merely for conve-
nience and are not interpreted by XKB.

Thepresent return value reports the kinds of device information being returned, and
controls the interpretation of the remaining fields. Pphesent field consists of the
wanted field from the original request minus the flags for any unsupported features.

If XkbXI _But t onActi ons is set inpresent, thetotal Btns return value reports the
total number of buttons present on the deviicgBtnWanted andnBtnsWanted spec-

ify the range of buttons for which actions were requested, arfa $titnRtrn and
nBtnsRtrn values specify the range of buttons for which actions are reported. The
actionsRtrn list hasnButtonsRtrn entries which contain the actions bound to the speci-
fied buttons on the device. Any buttons for which actions were requested but not
returned have the actidfoAct i on() .

If any indicator information is reported, the leds list contains one element for each
requested feedback. For exampléeiClassis XkbAl | XI Cl asses andledID is

XkbAI'| XI I ds, ledsdescribes all of the indicators on the device and has one element
for each keyboard or led class feedback defined for the device. If any information at
all is reported about a feedback, the set of physical indicators is also reported in the
physindicators field of the corresponding elementledls.

If the server supports assignment of indicator maps to extension device indicators, and
if the XkbXI _I ndi cat or Maps flag is set invanted, each member déds reports
any indicators on the corresponding feedback to which names have been assigned.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 90

The X Keyboard Extension Protocol Specification

Any indicators for which no map is reported have the default map, which allows
explicit changes and does not request any automatic changes.

If the server supports assignment of indicator names to extension device indicators,
and thexkbXl _I ndi cat or Nanes flag is set inwanted, each member déds

reports any indicators on the corresponding feedback to which names have been
assigned. Any indicators for which no name is reported have the Namee

If the server supports XKB access to the state of extension device indicators, and the
XkbXI _I ndi cat or St at e flag is set in wanted, each member of leds reports the
state of the indicators on the corresponding feedback.

If any unsupported features are requested, and the requesting client has selected for
them, the server sends the client&bExt ensi onDevi ceNot i fy event which
indicates that an unsupported feature was requested. This event is only generated if the
client which issued the unsupported request has selected for it and, if generated, is not
sent to any other clients.

XkbSetDevicel nfo

deviceSpec: KB_DEVICESPEC
change: KB_XIDEVFEAUREMASK
firstBtn, nBtns: CARDS
btnActions:LISDIKB_ACTION

leds: LISOfKB_DEVICELEDINFO

Errors:Devi ce, Mat ch, Access, Al | oc

Changes a subset of the XKB-supplied information about the input device specified by
deviceSpec. Unlike most XKB requests, the device specifiedXkbGet Devi ce-

| nf o need not be a keyboard device. Nonetheleksydoar d error results if

deviceSpec does not specify a valid core or input extension device

Thechange field specifies the features for which new values are supplied, and controls
the interpretation of the other request fields.

If the server does not support assignment of XKB actions to extension device buttons,
thefirstButton andnButtons fields are ignored.

Otherwise, if thexkbXl _But t onAct i ons flag is set irchange, thefirstBtn and

nBtns fields specify a range of buttons for which actions are specified in this request.
If the device has no buttons offiifstBtn andnBtns specify illegal buttons, &at ch

error results.

Each element of thieds list describes the changes for a single keyboard or led feed-
back. If theledClass field of any element dieds contains any value other thibd-
Feedbackd ass, LedFeedbackC ass or XkbDf | t XI C ass, aVal ue error
results. If thdedld field of any element of leds contains any value other than a valid

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 91

The X Keyboard Extension Protocol Specification

16.3.14

input extension feedback identifier kbDf | t Xl | d, aVal ue error results. If both
fields are valid, but the device has no matching feedbadkt ah error results.

The fields of each element kelds are interpreted as follows:

» If XkbXI _I ndi cat or Maps is set inchange and the seer supports XKB assign-
ment of indicator maps to the corresponding feedback, the maps for all indicators on
the corresponding feedback aregmlromleds. If the serer does not support this fea-
ture, ary maps specified iteds are ignored.

« If XkbXI _I ndi cat or Nanes is set inchange, and the serr supports XKB assign-
ment of names to indicators for the corresponding feedback, the names for all indica-
tors on the corresponding feedback aremalkomleds. If the serer does not support
this feature, annames specified iteds are ignored. Ryardless of whether tlyeare
used, ap names be aalid Atom orNone, or anAt omerror results.

» If XkbXI _I ndi cat or St at e is set in change, and the sargupports XKB changes
to extension deice indicator state, the senvattempts to change the indicators on the
corresponding feedback as specifieddulg. Any indicator maps bound to the feed-
back are applied, so state changes might be &tbok hae side-efects.

If any unsupported features are requested, and the requesting client has selected for
them, the server sends the client&mExt ensi onDevi ceNot i fy event which
indicates that an unsupported feature was requested. This event is only generated if the
client which issued the unsupported request has selected for it and, if generated, is not
sent to any other clients.

Debugging the X Keyboard Extension

XkbSetDebuggingFlags

affectFlags, flags: CARD32
affectCitrls, ctrls: CARD32
message: STRING

currentFlags, supportedFlags: CARD32
currentCtrls, supportedCtrls: CARD32

This request sets up various internal XKB debugging flags and controls. It is intended
for developer use and may be disabled in production servers. If disgbbeskt De-
buggi ngFl ags has no effect but returi@iccess.

TheaffectFlags field specifies the debugging flags to be changed]ahs field spec-
ifies new values for the changed flags. The interpretation of the debugging flags is
implementation-specific, but flags are intended to control debugging output and
should not otherwise affect the operation of the server.

TheaffectCtrls field specifies the debugging controls to be changed;tttefield
specifies new values for the changed controls. The interpretation of the debugging
controls is implementation-specific, but debugging controls are allowed to affect the
behavior of the server.

Themessage field provides a message that the X server can print in any logging or
debugging files before changing the flags. The server must accept this field but it is
not required to actually display it anywhere.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 92

The X Keyboard Extension Protocol Specification

16.4

16.4.1

The X Test Suite makes some assumptions about the implementation of locking modi-
fier keys that do not apply when XKB is present. Rk&DF_Di sabl eLocks

debugging control provides a simple workaround to these test suite problems by sim-
ply disabling all locking keys. IKkbDF_Di sabl eLocks is enabled, the

SA LockMods andSA LockG oup actions behave likBA Set Mbds and

SA LockMods, respectively. If it is disable®A LockMbds andSA LockG oup

actions behave normally.

Implementations are free to ignore KebDF_Di sabl eLocks debugging control
or to define others.

ThecurrentFlags return value reports the current setting for the debugging flags, if
applicable. TheurrentCtrls return value reports the setting for the debugging con-
trols, if applicable. TheupportedFlags andsupportedCtrls fields report the flags and
controls that are recognized by the implementation. Attempts to change unsupported
fields or controls are silently ignored.

If the XkbSet Debuggi ngFl ags request contains more data than expected, the
server ignores the extra data, but no error results. If the request has less data than
expected, &engt h error results.

If the XkbSet Debuggi ngFl ags reply contains more data than expected, the client
just ignores any uninterpreted data without reporting an error. If the reply has less data
than expected, eengt h error results.

Events

All XKB events report the time at which they occurred in a field natimseland the
device on which they occurred in a field nandedcelD. XKB uses a single X event
code for all events and uses a common field to distinguish XKB event type.

Tracking Keyboard Replacement

XkbNewKeyboar dNotify

time: TIMESTAMP

devicelD: CARDS

changed: KB_NKNDEAILMASK
minKeyCode, maxiyCode: KEYCODE
oldDevicelD: CARDS

oldMinKeyCode, oldMaxkyCode: KEYCODE
requestMajgrrequestMinor: CARDS

An XkbNewKeyboar dNot i f y event reports that a new core keyboard has been
installed. New keyboard notify events can be generated:
* When the X semr detects that thesboard vas changed.
* When a client installs a neextension deice as the coredgboard using the X Input
ExtensionChangeKeyboar dDevi ce request.
* When a client issues atkbGet MapByNane request which changes theykodes
range or geometry

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 93

The X Keyboard Extension Protocol Specification

Thechanged field of the event reports the aspects of the keyboard that have changed,
and can contain any combination of the event details for this event:

Bit in Changed Meaning

NKN_Keycodes The nev keyboard has a dérent minimum or maximumeycode.
NKN_Geometry The nev keyboard has a diérent leyboard geometry
NKN_DevicelD The nev keyboard has a neX Input Extension déce identifier

The server sends afkbNewKeyboar dNot i f y event to a client only if at least one
of the bits that is set in thehanged field of the event is also set in the appropriate
event details mask for the client.

The minKeyCode andmaxKeyCode fields report the minimum and maximum key-
codes that can be returned by the new keyboardoltivinKeyCode andoldMaxKey-

Code fields report the minimum and maximum values that could be returned before
the change. This event always reports all four values, but the old and new values are
the same unleddKN_Keycodes is set inchanged.

Once a client receives a new keyboard notify event which reports a new keycode
range, the X server reports events from all keys in the new range to that client. Clients
that do not request or receive new keyboard notify events receive events only from
keys that fall in the last range for legal keys reported to that client. See section 14.0 for
a more detailed explanation.

If NKN_Keycodes is set inchanged, theXxkbNewKeyboar dNot i fy event sub-

sumes all other change notification events (gkkdpMapNot i fy, XkbNamesNo-

ti fy) that would otherwise result from the keyboard change. Clients who receive an
XkbNewKeyboar dNot i fy event should assume that all other aspects of the key-
board mapping have changed and regenerate the entire local copy of the keyboard
description.

Thedevicel D field reports the X Input Extension device identifier of the new keyboard
device;oldDevicel D reports the device identifier before the change. This event always
includes both values, but they are the same uMeNsDevi cel Dis set inchanged.

If the server does not support the X Input Extension, both fields have thevalue

TherequestMajor andrequestMinor fields report the major and minor opcode of the
request that caused the keyboard change. If the keyboard change was not caused by
some client request, both fields have the value

11/6/97 Protocol \érsion 1.0/Document Rision 1.0 94

The X Keyboard Extension Protocol Specification

16.4.2 Tracking Keyboard Mapping Changes
[] XkbM apNotify
time: TIMESTAMP
devicelD: CARDS
ptrBtnActions: CARDS
changed: KB_MAPRRTMASK
minKeyCode, maxkyCode: KEYCODE
firstType, nypes: CARDS8
firstkeySym, firstkeyAction: KEYCODE
nKeySyms, nkeyActions: CARDS8
firstKeyBehavior, firstkeyExplicit: KEYCODE
nKeyBehaviors, nKeyExplicit: CARDS8
virtualMods: KB_VMODMASK
firstModMapkey, firstVModMapkey: KEYCODE
|:| nModMapkeys, nVModMapkeys: CARD8
An XkbMapNot i fy event reports that some aspect of XKB map for a keyboard has
changed. Map notify events can be generated whenever some aspect of the keyboard
map is changed by an XKB or core protocol request.
Thedevicel D field reports the keyboard for which some map component has changed
and thechanged field reports the components with new values, and can contain any of
the values that are legal for thél andpartial fields of thexkbGet Map request. The
server sends axkbMapNot i fy event to a client only if at least one of the bits that is
set in thechanged field of the event is also set in the appropriate event details mask for
the client.
The minKeyCode andmaxKeyCode fields report the range of keycodes that are legal
on the keyboard for which the change is being reported.
If XkbKeyTypesMask is set inchanged, thefirstType andnTypes fields report a
range of key types that includes all changed types. Otherwise, both fieltls are
If XkbKeySynsMask is set inchanged, thefirstkeySym andnKeySyms fields report
a range of keycodes that includes all keys with new symbols. Otherwise, both fields
are0.
If XkbKeyAct i onsMask is set inchanged, thefirstKeyAction andnKeyActions
fields report a range of keycodes that includes all keys with new actions. Otherwise,
both fields are®.
If XkbKeyBehavi or sMask is set inchanged, thefirstKeyBehavior andnKeyBe-
haviorsfields report a range of keycodes that includes all keys with new key behavior.
Otherwise, both fields af@
If XkbVi rt ual ModsMask is set inchanged, virtualMods contains all virtual modi-
fiers to which a new set of real modifiers is bound. OtherwiseialMods is O.
If XkbExpl i ci t Conponent sMask is set inchanged, thefirstKeyExplicit and
nKeyExplicit fields report a range of keycodes that includes all keys with changed
explicit components. Otherwise, both fields @re
11/6/97 Protocol \érsion 1.0/Document Rision 1.0 95

The X Keyboard Extension Protocol Specification

16.4.3

If XkbModi fi er MapMask is set inchanged thefirstModMapKeyandnModMap-
Keysfields report a range of keycodes that includes all keys with changed modifier
bindings. Otherwise, both fields dbe

If XkbVi rt ual ModMapMask is set inchanged thefirstVModMapKeyandnVMod-
MapKeysfields report a range of keycodes that includes all keys with changed virtual
modifier mappings. Otherwise, both fields are

Tracking Keyboard State Changes

XkbStateNotify

time: TIMESTAMP

devicelD: CARDS

mods, baseMods, latchedMods, ledkods: KEYMASK
group, locledGroup: CARDS

baseGroup, latchedGroup: INT16
compatState: KEYMASK

grabMods, compatGrabMods: KEYMASK
lookupMods, compatLookupMods: KEYMASK
ptrBtnState: R TMASK

changed: KB_SATEPARTMASK

keycode: KEYCODE

eventType: CARDS
requestMajarrequestMinor: CARDS

An XkbSt at eNot i fy event reports that some component of the XKB state (see
section 2.0) has changed. State notify events are usually caused by key or pointer
activity, but they can also result from explicit state changes requested by the
XkbLat chLockSt at e request or by other extensions.

ThedevicelDfield reports the keyboard on which some state component changed. The
changedield reports the XKB state components (see section 2.0) that have changed
and contain any combination of:

Bit in changed Event field Changed component

Modi fierState mods The efective modifiers

Modi fi er Base baseMods The base modifiers

Modi fi erLatch latchedMods The latched modifiers

Modi fi er Lock lockedMods The locled modifiers

GroupSt at e group The efective keyboard group

G oupBase baseGroup The base éyboard group

GrouplLat ch latchedGroup The latched &yboard group

G oupLock lockedGroup The locled keyboard group

Poi nt er But t ons ptrBtnState The state of the core pointauttons

G abMods grabMods The XKB state used to compute grabs

Lookuphods lookupMods The XKB state used to look up symbols

Conpat St at e compatState Default state for non-XKB clients

Conmpat Gr abMbds compatGrabMods The core state used to compute grabs
11/6/97 Protocol \érsion 1.0/Document Rision 1.0 96

The X Keyboard Extension Protocol Specification

16.4.4

Bit in changed Event field Changed component
Conmpat Lookuphods compatLookupMods The core state used to look up symbols

The server sends atkbSt at eNot i f y event to a client only if at least one of the
bits that is set in thehangedield of the event is also set in the appropriate event
details mask for the client.

A state notify event reports current values for all state components, even those with
unchanged values.

Thekeycoddield reports the key or button which caused the change in state while the
eventTypdield reports the exact type of event (&KgyPr ess). If the change in state
was not caused by key or button activity, both fields have the Qalue

TherequestMajorandrequestMinoffields report the major and minor opcodes of the
request that caused the change in state and have thé\vbiueas resulted from key
or button activity.

Tracking Keyboard Control Changes

XkbControlsNotify

time: TIMESTAMP

devicelD: CARDS

numGroups: CARDS

changedControls: KB_CONTBRLMASK
enabledControls,enabledControlChanges: KB_BOOLCTRLMASK
keycode: KEYCODE

eventType: CARDS8

requestMajor: CARD8

requestMinor: CARDS

An XkbCont r ol sNot i fy event reports a change in one or more of the global key-
board controls (see section 4.0) or in the internal modifiers or ignore locks masks (see
section 2.3.1). Controls notify events are usually caused biidn8et Cont r ol s

request, but they can also be caused by keyboard activity or certain core protocol and
input extension requests.

ThedevicelDfield reports the keyboard for which some control has changed, and the
changedield reports the controls that have new values.

Thechangedield can contain any of the values that are permitted foclthegeCon-
trols field of theXkbSet Cont r ol s request. The server sendsXbCont r ol s-
Not i f y event to a client only if at least one of the bits that is set ioithegedield
of the event is also set in the appropriate event details mask for the client.

ThenumGroupdield reports the total number of groups defined for the keyboard,
whether or not the number of groups has changed.

TheenabledControldield reports the current status of all of the boolean controls,
whether or not any boolean controls changed staimdbl edCont r ol s is setin
changedtheenabledControlChangdteld reports the boolean controls that were

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 97

The X Keyboard Extension Protocol Specification

enabled or disabled; if a control is specifie@mnabledControlChanges, the value that
is reported for that control ienabledControls represents a change in state.

Thekeycode field reports the key or button which caused the change in state while the
eventType field reports the exact type of event (&Kgy Pr ess). If the change in state
was not caused by key or button activity, both fields have the Qalue

TherequestMajor andrequestMinor fields report the major and minor opcodes of the
request that caused the change in state and have thévhiueas resulted from key
or button activity.

16.4.5 Tracking Keyboard Indicator State Changes

[Xkbl ndicator StateNotify

time: TIMESTAMP
devicelD: CARDS
stateChanged, state: KB_INDITARMASK

An Xkbl ndi cat or St at eNot i fy event indicates that one or more of the indica-
tors on a keyboard have changed state. Indicator state notify events can be caused by:
» Automatic update to reflect changes @ylioard state @yboard actiity,
XkbLat chLockSt at e requests).
» Automatic update to reflect changes @ylboard controlsXkbSet Cont r ol s, key-
board actiity, certain core protocol and inputtension requests).
» Explicit attempts to change indicator state (core protocol and irprigon requests,
XkbSet Nanedl ndi cat or requests).
» Changes to indicator mapskbSet | ndi cat or Map andXkbSet Nanedl ndi ca-
t or requests).

Thedevicel D field reports the keyboard for which some indicator has changed, and the
state field reports the new state for all indicators on the specified keyboardtaibe
Changed field specifies which of the valuesstate represent a new state for the corre-
sponding indicator. The server sends<&ibl ndi cat or St at eNot i fy eventto a

client only if at least one of the bits that is set inglageChanged field of the event is

also set in the appropriate event details mask for the client.

16.4.6 Tracking Keyboard Indicator Map Changes

[Xkblndicator M apNotify

time: TIMESTAMP

devicelD: CARDS

state: KB_INDICAORMASK
mapChanged: KB_INDICFRORMASK

An Xkbl ndi cat or MapNot i f y event indicates that the maps for one or more key-
board indicators have been changed. Indicator map notify events can be caused by
XkbSet | ndi cat or Map andXkbSet Naned! ndi cat or requests.

Thedevicel D field reports the keyboard for which some indicator map has changed,
and themapChanged field reports the indicators with changed maps. The server sends

11/6/97 Protocol \érsion 1.0/Document Rision 1.0 98

The X Keyboard Extension Protocol Specification

anXkbl ndi cat or MapNot i fy event to a client only if at least one of the bits that
is set in thanapChanged field of the event is also set in the appropriate event details
mask for the client.

Thestate field reports the current state of all indicators on the specified keyboard.

16.4.7 Tracking Keyboard Name Changes
[XkbNamesNotify
time: TIMESTAMP
devicelD: CARDS
changed: KB_MMEDETAILMASK
firstType, nypes: CARD8
firstLevelName, nLeelNames: CARDS
firstkey: KEYCODE
nKeys, nkeyAliases, nRadioGroups: CARD8
changedGroupNames: KB_ GRIPMASK
changedVftualMods: KB_VMODMASK
changedindicators: KB_INDICFORMASK
[l
An XkbNanmesNot i f y event reports a change to one or more of the symbolic names
associated with a keyboard. Symbolic names can change when:
* Some clienteplicitly changes them usingkbSet Nanes.
» The list of ley types or radio groups is resized
» The group width of someek type is changed
Thedevicel D field reports the keyboard on which names were changedchahged
mask lists the components for which some names have changed and can have any
combination of the values permitted for thieich field of theXxkbGet Nanes
request. The server sendsXkbNanesNot i f y event to a client only if at least one
of the bits that is set in thehanged field of the event is also set in the appropriate
event details mask for the client.
If KeyTypeNanes is set inchanged, thefirstType andnTypesfields report a range of
types that includes all types with changed names. Otherwise, both fieltls are
If KTLevel Nanes is set inchanged, thefirstLevel Name andnLevel Names fields
report a range of types that includes all types with changed level names. Otherwise,
both fields are®.
If I ndi cat or Nanes is set inchanged, thechangedindicators field reports the indi-
cators with changed names. Otherwatangedindicatorsis 0.
If Vi rtual ModNanes is set inchanged, thechangedVirtualMods field reports the
virtual modifiers with changed names. Otherwid@ngedVirtualMods is 0.
If G oupNanes is set inchanged, thechangedGroupNames field reports the groups
with changed names. OtherwisbhangedGroupNames is 0.
If KeyNanes is set inchanged, thefirstKey andnKeys fields report a range of key-
codes that includes all keys with changed names. Otherwise, both fields are
11/6/97 Protocol \érsion 1.0/Document Rision 1.0 99

The X Keyboard Extension Protocol Specification

16.4.8

ThenKeyAliases field reports the total number of key aliases associated with the key-
board, regardless of whethieey Al i ases is set inchanged.

ThenRadioGroups field reports the total number of radio group names associated with
the keyboard, regardless of whetR&Nanes is set inchanged.

Tracking Compatibility Map Changes

XkbCompatM apNotify

time: TIMESTAMP

devicelD: CARDS
changedGroups: KB_GRIUPMASK
firstSI, nSl: CARD16

nTotalSl: CARD16

An XkbConpat MapNot i fy event indicates that some component of the compatibil-
ity map for a keyboard has been changed. Compatibility map notify events can be
caused bykbSet Conpat Map andXkbGet MapByNane requests.

Thedevicel D field reports the keyboard for which the compatibility map has changed,;
if the server does not support the X input extensievicelD is 0.

ThechangedGroups field reports the keyboard groups, if any, with a changed entry in
the group compatibility map. THestS andnS fields specify a range of symbol
interpretations in the symbol compatibility map that includes all changed symbol
interpretations; if the symbol compatibility map is unchanged, both field. diee
nTotalS field always reports the total number of symbol interpretations present in the
symbol compatibility map, regardless of whether any symbol interpretations have
been changed.

The server sends atkbConpat MapNot i fy event to a client only if at least one of
the following conditions is met:
» Thend field of the gent is non-zero, and thékbSym nt er pMask bit is set in the
appropriate eent details mask for the client.
» ThechangedGroups field of the gent contains at least one group, andxkb-
G oupConpat Mask bit is set in the appropriateent details mask for the client.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 100

The X Keyboard Extension Protocol Specification

16.4.9 Tracking Application Bell Requests

[XkbBelINotify

time: TIMESTAMP

devicelD: CARDS

bellClass: { KbhdFeedbackClass, BellFeedbackClass }
belllD: CARDS

percent: CARD8

pitch: CARD16

duration: CARD16

eventOnly: BOOL

name: AOM

window: WINDOW

An XkbBel | Not i fy event indicates that some client has requested a keyboard bell.
Bell notify events are usually causedBs/ | , Devi ceBel | , orXkbBel | requests,

but they can also be generated by the server (e.g.Akcthess XFeedback control

is active).

The server sends atkbBel | Not i f y event to a client if the appropriate event
details field for the client has the vallieue.

Thedevicel D field specifies the device for which a bell was requested, while the
bellClass andbellID fields specify the input extension class and identifier of the feed-
back for which the bell was requested. If the reporting server does not support the
input extension, all three fields have the value 0.

Thepercent, pitch andduration fields report the volume, tone and duration requested
for the bell as specified by tbékbBel | request. Bell notify events caused by core
protocol or input extension requests use the pitch and duration specified in the corre-
sponding bell or keyboard feedback control.

If the bell was caused by afkbBel | request or by the X serverame reports an
optional symbolic name for the bell and thiedow field optionally reports the win-
dow for which the bell was generated. Otherwise, both fields have theNatge

If the eventOnly field is Tr ue, the server did not generate a sound in response to the
request, otherwise the server issues the beep before sending the event. The eventOnly
field can beTr ue if the Audi bl eBel | control is disabled or if a client explicitly
requesteventOnly when it issues akkbBel | request.

11/6/97 Protocol \érsion 1.0/Document Rision 1.0 101

The X Keyboard Extension Protocol Specification

16.4.10 Tracking Messages Generated by Key Actions

] XkbActionM essage
time: TIMESTAMP
devicelD: CARDS8
keycode: KEYCODE
press: BOOL
mods: KEYMASK
group: KB_GROUP
keyEventFollows: BOOL
message: LIS-TTCARDS
]
An XkbAct i onMessage event is generated when the user operates a key to which
anSA Act i onMessage message is bound under the appropriate state and group.
The server sends atkbAct i onMessage event to a client if the appropriate event
details field for the client has the vallieue.
Thedevicel D field specifies the keyboard device that contains the key which activated
the event. Th&eycode field specifies the key whose operation caused the message and
press isIt ue if the message was caused by the user pressing the keyodfand
group fields report the effective keyboard modifiers and group in effect at the time the
key was pressed or released.
If keyEventFollowsis Tr ue, the server will also send a key press or release event, as
appropriate, for the key that generated the message. Fat ise, the key causes only
a message. Note that the key event is delivered normally with respect to passive grabs,
keyboard focus, and cursor position, so KegEventFollows does not guarantee that
any particular client which receives tkkbAct i onMessage notify event will also
receive a key press or release event.
Themessage field is NULL-terminated string of up tAct i onMessagelLengt h (6)
bytes, which reports the contents of thessage field in the action that caused the
message notify event.
16.4.11 Tracking Changes to AccessX State and Keys
[] XkbAccessX Notify
time: TIMESTAMP
devicelD: CARDS8
detail: KB_ AXNDETAILMASK
keycode: KEYCODE
slowKeysDelay: CARD16
debounceDelay: CARD16
[]
An XkbAccessXNot i fy event reports on some kinds of keyboard activity when
any of theSI owKeys, BounceKeys or AccessXKeys controls are active. Com-
patibility map notify events can only be caused by keyboard activity.
11/6/97 Protocol \érsion 1.0/Document Rision 1.0 102

The X Keyboard Extension Protocol Specification

Thedevicel D andkeycode fields specify the keyboard and key for which the event
occurred. Theletail field describes the event that occurred and has one of the follow-
ing values:

Detail Control Meaning

AXN_SKPr ess Sl owKeys Key pressed

AXN_SKAccept Sl owKeys Key held until it was accepted.
AXN_SKRej ect Sl owKeys Key released before itag accepted.
AXN_SKRel ease Sl owKeys Key released after it as accepted.
AXN_BKAccept BounceKeys Key pressed while it as actie.

AXN _BKRej ect BounceKeys Key pressed while it as still disabled.

AXN_AXKWAr ni ng AccessXKeys Shift key held devn for four seconds

Each subclass of the AccessX notify event is generated only when the control speci-
fied in the table above is enabled. The server sendlklaAccessXNot i fy event

to a client only if the bit which corresponds to the value otléa! field for the event

is set in the appropriate event details mask for the client.

Regardless of the value a@dtail, theslowKeysDelay anddebounceDelay fields always
reports the current slow keys acceptance delay (see section 4.2) and debounce delay
(see section 4.3) for the specified keyboard.

16.4.12 Tracking Changes To Extension Devices
[] XkbExtensionDeviceNotify
time: TIMESTAMP
devicelD: CARD16
ledClass: { KbdFeedbackClass, LedFeedbackClass }
ledID: CARD16
reason: KB_XIDEARILMASK
supported: KB_XIFEAUREMASK
unsupported: KB_XIFERUREMASK
ledsDefined: KB_INDICAORMASK
ledState: KB_INDICAORMASK
firstButton, nButtons: CARD8
[
An XkbExt ensi onDevi ceNot i f y event reports:
» A change to some part of the XKB information for ateasion deice.
* An attempt to use an XKBx&ension deice feature that is not supported for the speci-
fied device by the current implementation.
Thedevicel D field specifies the X Input Extension device identifier of some device on
which an XKB feature was requestedX&bUseCor ePt r if the request affected the
core pointer device. Theason field explains why the event was generated in
response to the request, and can contain any combination of
XkbXl _Unsupport edFeat ur e and the values permitted for the change field of
theXkbSet Devi cel nf o request.
If XkbXI _Butt onActi ons is set inreason, this event reports a successful change
to the XKB actions bound to one or more buttons on the core pointer or an extension
11/6/97 Protocol \érsion 1.0/Document Rision 1.0 103

The X Keyboard Extension Protocol Specification

device. ThdirstButton andnButtons fields report a range of device buttons that
include all of the buttons for which actions were changed.

If any combination oXkbXl _| ndi cat or Nanes, XkbXI _I ndi cat or Maps, or

XkbXI _I ndi cat or St at e is set in eithereason or unsupported, theledClass and

ledID fields specify the X Input Extension feedback class and identifier of the feed-
back for which the change is reported. If this event reports any changes to an indicator
feedback, théedsDefined field reports all indicators on that feedback for which either

a name or a indicator map are defined, led&tate reports the current state of all of

the indicators on the specified feedback.

If XkbXI _I ndi cat or Nanes is set irreason, this event reports a successful change
to the symbolic names bound to one or more extension device indicators by XKB. If
XkbXI I ndi cat or Maps is set inreason, this event reports a successful change to
the indicator maps bound to one or more extension device indicators by XKB. If
XkbXI _I ndi cat or St at e is set in reason, this event reports that one or more indi-
cators in the specified device and feedback have changed state.

If XkbXI _Unsupport edFeat ur e is set in reason, this event reports an unsuccess-

ful attempt to use some XKB extension device feature that is not supported by the

XKB implementation in the server for the specified device. Urisapported mask

reports the requested features that are not available on the specified device. See section
15.0 for more information about possible XKB interactions with the X Input Exten-

sion.

The server sends afkbExt ensi onDevi ceNot i fy event to a client only if at
least one of the bits that is set in tlkason field of the event is also set in the appropri-
ate event details mask for the client.

Events that report a successful change to some extension device feature are reported to
all clients that have expressed interest in the event; events that report an attempt to use
an unsupported feature are reported only to the client which issued the request. Events
which report a partial success are reported to all interested clients, but only the client
that issued the request is informed of the attempt to use unsupported features.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 104

The X Keyboard Extension Protocol Specification

1.0

2.0

2.1

2.2

Appendix A. Default Symbol T ransf ormations

Interpreting the Contr ol Modifier

If the Cont r ol modifier is not consumed by the symbol lookup process, routines that
determine the symbol and string that correspond to an event should convert the symbol
to a string as defined in the table below. Only the string to be returned is affected by
theCont r ol modifier; the symbol is not changed.

This table lists the decimal value of the standard control characters that correspond to
some keysyms for ASCII characters. Control characters for symbols not listed in this
table are application-specific.

Keysyms Value | Keysyms Value | Keysyms Value Keysyms Value
atsign 0 h, H 8 p, P 16 X, X 24
a A 1 i, | 9 g, Q 17 y, Y 25
b, B 2 j,J 10 r,R 18 z,Z 26
c, C 3 k, K 11 s, S 19 left_braclet 27
d,D 4 I, L 12 t, T 20 backslash 28
e E 5 m, M 13 u, U 21 | right_braclet 29
f,F 6 n, N 14 v, V 22 asciicircum 30
g, G 8 o, O 15 w, W 23 underbar 31

Interpreting the Loc k Modifier

If the Lock modifier is not consumed by the symbol lookup process, routines that
determine the symbol and string that correspond to an event should capitalize the
result. Unlike the transformation f@ont r ol , the capitalization transformation
changes both the symbol and the string returned by the event.

Locale-Sensitive Capitalization

If Lock is set in an event and not consumed, applications should capitalize the string
and symbols that result from an event according to the capitalization rules in effect for
the system on which the application is running, taking the current state of the user
environment (e.g. locale) into account.

Locale-Insensitive Capitalization

XKB recommends but does not require locale-sensitive capitalization. In cases where
the locale is unknown or where locale-sensitive capitalization is prohibitively expen-
sive, applications can capitalize according to the rules defined in this extension.

The following tables list all of the keysyms for which XKB defines capitalization
behavior. Any keysyms not explicitly listed in these tables are not capitalized by XKB
when locale-insensitive capitalization is in effect and are not automatically assigned
the ALPHABETI Ctype as described in section 12.2.3.

11/6/97

Protocol \érsion 1.0/Document Rision 1.0 A-1

The X Keyboard Extension Protocol Specification

221 Capitalization Rules for Latin-1 Keysyms
This table lists the Latin-11 keysyms for which XKB defines upper and lower case:
Lower Upper | Lower Upper
Case Case | Case Case | Lower Case Upper Case | Lower Case Upper Case
a A o] @) acircumflex Acircumflex eth ETH
b B p P adiaeresis Adiaeresis ntilde Ntilde
c C q Q atilde Atilde ograve Ograve
d D r R aring Aring oacute Oacute
e E S S ae AE ocircumflex Ocircumflex
f F t T ccedilla Ccedilla otilde Otilde
g G u U egrave Egrare odiaeresis Odiaeresis
h H % \% eacute Eacute oslash Ooblique
[I w W ecircumflx Ecircumfle ugrave Ugrave
j J X X ediaeresis Ediaeresis uacute Uacute
k K y Y igrave Igrave ucircumflex Ucircumflex
I L z z iacute lacute udiaeresis Udiaeresis
m M agrave Agrave| icircumflex Icircumflex yacute Yacute
n N aacute Aacute| idiaeresis Idiaeresis thorn THORN
222 Capitalization Rules for Latin-2 Keysyms
This table lists the Latin-2 keysyms for which XKB defines upper and lower case:
Lower Case Upper Case | Lower Case Upper Case | Lower Case Upper Case
aogonek Aogonek zaboredot Zabovedot dstrole Dstroke
Istroke Lstroke racute Racute nacute Nacute
Icaron Lcaron abreve Abreve ncaron Ncaron
sacute Sacute lacute Lacute odoubleacute Odoubleacute
scaron Scaron cacute Cacute rcaron Rcaron
scedilla Scedilla ccaron Ccaron uabaorering Uaborering
tcaron Tcaron eogonek Eogonek | udoubleacute Udoubleacute
zacute Zacute ecaron Ecaron tcedilla Tcedilla
zcaron Zcaron dcaron Dcaron
2.2.3 Capitalization Rules for Latin-3 Keysyms
This table lists the Latin-3 keysyms for which XKB defines upper and lower case:
Lower Case Upper Case | Lower Case Upper Case | Lower Case Upper Case
hstrole Hstroke jcircumflex Jcircumflx | gcircumflex Geircumflex
hcircumflxk Hcircumflex | cabovedot Caboredot ubreve Ubreve
idotless labovedot | ccircumflx Ccircumflex | scircumflex Scircumfle
gbreve Gbreve gaboredot Gabovedot
2.2.4 Capitalization Rules for Latin-4 Keysyms
This table lists the Latin-4 keysyms for which XKB defines upper and lower case:
Lower Case Upper Case | Lower Case Upper Case | Lower Case Upper Case
rcedilla Rcedilla eng ENG omacron Omacron
itilde Itilde amacron Amacron kcedilla Kcedilla
Icedilla Lcedilla iogonek logonek uogonek Uogonek
emacron Emacron eabwedot eabwedot utilde Utilde
11/6/97 Protocol \érsion 1.0/Document Rision 1.0 A-2

The X Keyboard Extension Protocol Specification

Lower Case Upper Case | Lower Case Upper Case | Lower Case Upper Case

gcedilla Gcedilla imacron Imacron umacron Umacron
tslash Tslash ncedilla Ncedilla
225 Capitalization Rules for Cyrillic Keysyms
This table lists the Cyrillic keysyms for which XKB defines upper and lower case:
Lower Case Upper Case Lower Case Upper Case
Serbian_dje Serbian_DJE Cyrillic_i Cyrillic_|I
Macedonia_gje Macedonia_GJE Cyrillic_shorti Cyrillic_SHORTI
Cyrillic_io Cyrillic_lO Cyrillic_ka Cyrillic_KA
Ukrainian_ie Ukrainian_IE Cyrillic_el Cyrillic_EL
Macedonia_dse Macedonia_DSE Cyrillic_em Cyrillic_EM
Ukrainian_i Ukrainian_| Cyrillic_en Cyrillic_EN
Ukrainian_yi Ukrainian_YI Cyrillic_o Cyrillic_O
Cyrillic_je Cyrillic_JE Cyrillic_pe Cyrillic_PE
Cyrillic_lje Cyrillic_LJE Cyrillic_ya Cyrillic_YA
Cyrillic_nje Cyrillic_NJE Cyrillic_er Cyrillic_ER
Serbian_tshe Serbian_TSHE Cyrillic_es Cyrillic_ES
Macedonia_kje Macedonia_KJE Cyrillic_te Cyrillic_TE
Byelorussian_shortuByelorussian_SHORJ Cyrillic_u Cyrillic_U
Cyrillic_dzhe Cyrillic_DZHE Cyrillic_zhe Cyrillic_ZHE
Cyrillic_yu Cyrillic_YU Cyrillic_ve Cyrillic_VE
Cyrillic_a Cyrillic_A Cyrillic_softsign | Cyrillic_SOFTSIGN
Cyrillic_be Cyrillic_BE Cyrillic_yeru Cyrillic_YERU
Cyrillic_tse Cyrillic_TSE Cyrillic_ze Cyrillic_ZE
Cyrillic_de Cyrillic_DE Cyrillic_sha Cyrillic_SHA
Cyrillic_ie Cyrillic_IE Cyrillic_e Cyrillic_E
Cyrillic_ef Cyrillic_EF Cyrillic_shcha Cyrillic_SHCHA
Cyrillic_ghe Cyrillic_GHE Cyrillic_che Cyrillic_CHE
Cyrillic_ha Cyrillic_HA Cyrillic_hardsign| Cyrillic. HARDSIGN
2.2.6 Capitalization Rules for Greek Keysyms
This table lists the Greek keysyms for which XKB defines upper and lower case:
Lower Case Upper Case Lower Case Upper Case
Greek_omgaaccent| Greek OMEGAACCENT Greek_iota Greek IOA
Greek_alphaaccent] Greek ALPHAACCENT | Greek kappa| Greek KAPR
Greek_epsilonaccent Greek EPSILOMCCENT | Greek lamda| Greek LAMDA
Greek_etaaccent Greek ERACCENT Greek lambdg Greek LAMBDA
Greek_iotaaccent Greek IOQAACCENT Greek_mu Greek MU
Greek _iotadieresis| Greek IJQADIERESIS Greek_nu Greek NU
Greek_omicronaccentGreek_OMICRONACCENT Greek_xi Greek_XI
Greek_upsilonaccent Greek UPSILOMCCENT | Greek_omicron Greek_OMICRON
Greek_upsilondieresisGreek_UPSILONDIERESI$ Greek_pi Greek_PI
Greek_alpha Greek ALPHA Greek_rho Greek RHO
Greek beta Greek BER Greek _sigma| Greek_SIGMA
Greek_gmma Greek_GAMMA Greek_tau Greek RU
Greek_delta Greek DEIA Greek_upsilon| Greek UPSILON
Greek_epsilon Greek EPSILON Greek_phi Greek_PHI
11/6/97 Protocol \érsion 1.0/Document Rision 1.0 A-3

The X Keyboard Extension Protocol Specification

Lower Case Upper Case Lower Case Upper Case
Greek_zeta Greek_ZER Greek_chi Greek_CHI
Greek_eta Greek ER Greek_psi Greek PSI

Greek theta Greek THER Greek omga | Greek OMEGA

2.2.7 Capitalization Rules for Other Keysyms
XKB defines no capitalization rules for symbols in any other set of keysyms provided
by the consortium. Applications are free to apply additional rules for private keysyms
or for other keysyms not covered by XKB.

11/6/97 Protocol \érsion 1.0/Document Rision 1.0 A-4

The X Keyboard Extension Protocol Specification

Appendix B. Canonical Key Types

1.0 Canonical Key Types

1.1 The ONE_LEVEL Key Type

The ONE_LEVEL key type describes groups that have only one symbol. The default
ONE_LEVEL type has no map entries and does not pay attention to any modifiers.

1.2 The TWO_LEVEL Key Type
TheTWO_LEVEL key type describes groups that have two symbols but are neither
alphabetic nor numeric keypad keys. The defaBWb LEVEL type uses only the
Shi f t modifier. It returns level two ihi f t is set, level one if it is not.

1.3 The ALPHABETIC Key Type
The ALPHABETI C key type describes groups that consist of two symbols — the low-
ercase form of a symbol followed by the uppercase form of the same symbol. The
defaultALPHABETI C type implements locale-sensitive “shift cancels caps lock”
behavior using both thehi f t andLock modifiers as follows:

If Shi ft andLock are both set, the daiflt ALPHABETI Ctype yields lgel one.
If Shi ft alone is set, it yields Vel two.

If Lock alone is set, it yields Vel one lit preseres theLock modifier

If neitherShi ft norLock are set, it yields el one.

1.4 The KEYPAD Key Type
TheKEYPAD key type describes that consist of two symbols, at least one of which is a
numeric keypad symbol. The defakEEYPAD type implements “shift cancels numeric
lock” behavior using th&hi f t modifier and the real modifier bound to the virtual
modifier named “NumLock” (the “NumLock” modifier) as follows:

o If Shi ft and the “NumLock” modifier are both set, theaddfKEYPAD type yields
level one.
» |If eitherShi ft or the “NumLock” modifier alone are set, it yieldgdetwo.

If neitherShi ft nor the “NumLock” modifier are set, it yields/éd one.

12/15/97 Protocol \érsion 1.00/Document Rision 1.0 B-1

The X Keyboard Extension Protocol Specification

Appendix C. New KeySyms

1.0 New KeySyms

1.1 KeySyms Used by the ISO9995 Standard
Byte 3 Byte 4 Character Name
254 1 ISO LOCK
254 2 ISO LATCHING LEVEL TWO SHIFT
254 3 ISO LEVEL THREE SHIFT
254 4 ISO LATCHING LEVEL THREE SHIFT
254 5 ISO LEVEL THREE SHIFT LOCK
254 6 ISO LATCHING GROUP SHIFT
254 7 ISO GROUP SHIFT LOCK
254 8 ISO NEXT GROUP
254 9 ISO LOCK NEXT GROUP
254 10 ISO PREVIOUS GRUP
254 11 ISO LOCK PREVIOUS GRUP
254 12 ISO FIRST G®UP
254 13 ISO LOCK FIRST G®UP
254 14 ISO LAST GROUP
254 15 ISO LOCK LAST GROUP
254 32 LEFT TAB
254 33 MOVE LINE UP
254 34 MOVE LINE DOWN
254 35 PARTIAL LINE UP
254 36 PARTIAL LINE DOWN
254 37 PARTIAL SPACE LEFT
254 38 PARTIAL SPACE RIGHT
254 39 SET MARGIN LEFT
254 40 SET MARGIN RIGHT
254 41 RELEASE MARGIN LEFT
254 42 RELEASE MARGIN RIGHT
254 43 RELEASE MARGIN LEFT AND RIGHT
254 44 FAST CURSOR LEFT
254 45 FAST CURSOR RIGHT
254 46 FAST CURSOR UP
254 47 FAST CURSOR DGVN
254 48 CONTINUOUS UNDERLINE
254 49 DISCONTINUOUS UNDERLINE
254 50 EMPHASIZE
254 51 CENTER OBJECT
254 52 ISO_ENTER

12/15/97 Protocol \érsion 1.0/Document Rision 1.0 C-1

The X Keyboard Extension Protocol Specification

1.2 KeySyms Used to Control The Core Pointer
Byte 3 Byte 4 Character Name
254 224 POINTER LEFT
254 225 POINTER RIGHT
254 226 POINTER UP
254 227 POINTER DOQVN
254 228 POINTER UP AND LEFT
254 229 POINTER UP AND RIGHT
254 230 POINTER DONN AND LEFT
254 231 POINTER DONVN AND RIGHT
254 232 DEFAULT POINTER BJTTON
254 233 POINTER BJTTON ONE
254 234 POINTER BJTTON TWO
254 235 POINTER BUJTTON THREE
254 236 POINTER BJTTON FOUR
254 237 POINTER BJTTON FIVE
254 238 DEFAULT POINTER BJTTON DOUBLE CLICK
254 239 POINTER BUTTON ONE DOUBLE CLICK
254 240 POINTER BJTTON TWO DOUBLE CLICK
254 241 POINTER BUTTON THREE DOUBLE CLICK
254 242 POINTER BJTTON FOUR DOUBLE CLICK
254 243 POINTER BJTTON FIVE DOUBLE CLICK
254 244 DRAG DEFAULT POINTER BJTTON
254 245 DRAG POINTER BJTTON ONE
254 246 DRAG POINTER BJTTON TWO
254 247 DRAG POINTER BJTTON THREE
254 248 DRAG POINTER BJTTON FOUR
254 249 ENABLE POINTER FFOM KEYBOARD
254 250 ENABLE KEYBOARD POINTER ACCEL
254 251 SET DERAULT POINTER BJTTON NEXT
254 252 SET DERRULT POINTER BJTTON PREVIOUS
254 253 DRAG POINTER BJTTON FIVE
1.3 KeySyms Used to Change Keyboard Controls
Byte 3 Byte 4 Character Name
254 112 ENABLE ACCESSX KEYS
254 113 ENABLE ACCESSX FEEDBCK
254 114 TOGGLE REPEA KEYS
254 115 TOGGLE SLQN KEYS
254 116 ENABLE BOUNCE KEYS
254 117 ENABLE STICKY KEYS
254 118 ENABLE MOUSE KEYS
254 119 ENABLE MOUSE KEYS ACCELERATION

12/15/97 Protocol \érsion 1.0/Document Rision 1.0 C-2

The X Keyboard Extension Protocol Specification

Byte 3 Byte 4 Character Name

254 120 ENABLE OVERLAY1

254 121 ENABLE OVERLAY?2

254 122 ENABLE AUDIBLE BELL
1.4 KeySyms Used To Control The Server

Byte Byte Character Name

254 208 FIRST SCREEN

254 209 PREVIOUS SCREEN

254 210 NEXT SCREEN

254 211 LAST SCREEN

254 212 TERMINATE SER/ER
1.5 KeySyms for Non-Spacing Diacritical Keys

Byte Byte Character Name

254 80 DEAD GRAVE ACCENT

254 81 DEAD ACUTE ACCENT

254 82 DEAD CIRCUMFLEX

254 83 DEAD TILDE

254 84 DEAD MACRON

254 85 DEAD BREVE

254 86 DEAD DOT ABOVE

254 87 DEAD DIAERESIS

254 88 DEAD RING ABOVE

254 89 DEAD DOUBLE ACUTE ACCENT

254 90 DEAD CARON

254 91 DEAD CEDILLA

254 92 DEAD OGONEK

254 93 DEAD IOTA

254 94 DEAD VOICED SOUND

254 95 DEAD SEMI VOICED SOUND

254 96 DEAD DOT BELOW

12/15/97 Protocol \érsion 1.0/Document Rision 1.0 C-3

The X Keyboard Extension Protocol Specification

Appendix D. Protocol Encoding

1.0 Syntactic Conventions

This document uses the same syntactic conventions as the encoding of the core X pro-
tocol, with the following additions:

A LISTofITEMs contains zero or more items of variable type and size. The encode
form for a LISTofITEMs is:

v LISTofITEMs NAME
TYPE MASK-EXPRESSION
valuel corresponding field(s)
;/.éluen corresponding field(s)

The MASK-EXPRESSION is an expression using C-style boolean operators and
fields of the request which specifies the bitmask used to determine whether or not a
mem ber of the LISTofITEMSs is present. If present, TYPE specifies the interpretation
of the resulting bitmask and the values are listed using the symbolic names of the
members of the set. If TYPE is blank, the values are numeric constants.

It is possible for a single bit in the MASK-EXPRESSION to control more than one
ITEM — if the bit is set, all listed ITEMs are present. It is also possible for multiple
bits in the MASK-EXPRESSION to control a single ITEM — if any of the bits associ-
ated with an ITEM are set, it is present in the LISTofITEMSs.

The size of a LISTofITEMS is derived from the items that are present in the list, so it
is always given as a variable in the request description, and the request is followed by
a section of the form:

ITEMs
encode-form

encode-form

listing an encode-form for each ITEM. The NAME in each encode-form keys to the
fields listed as corresponding to each bit in the MASK-EXPRESSION. Items are not
necessarily the same size, and the size specified in the encoding form is the size that
the item occupies if it is present.

Some types are of variable size. The encode-form for a list of items of a single type but
variable size is:

Sot--§ LISTofTYPE name

Which indicates that the list haglements of variable size and that the size of the list
is the sum of the sizes of all of the elements that make up the list. The nofation S
refers to the size of theh element of the list and the notationr&fers to the size of
the list as a whole.

The definition of a type of variable size includes an expression which specifies the
size. The size is specified as a constant plus a variable expression; the constant speci-
fies the size of the fields that are always present and the variables which make up the
variable expression are defined in the constant portion of the structure. For example,

12/15/97 Protocol \érsion 1.0/Document Rision 1.0 D-1

The X Keyboard Extension Protocol Specification

the following definition specifies a counted string with a two-byte length field preced-
ing the string:

TYPE 2+n+p

2 n length

n STRINGS string

p unused,p=pad(n)

Some fields are optional. The size of an optional field has the foerpr]T where
expr specifies the size of the field if it is present. An explanation of the conditions
under which the field is present follows the name in the encode form:

1 BOOL more
3 unused
[4] CARD32 optData, if more==TRE

This portion of the structure is four bytes long if more is FALSE or eight bytes long if
more is TRUE. This notation can also be used in size expressions; for example, the
size of the previous structure is written as “4+[4]” bytes.

2.0 Common Types

SETofKB_EVENTTYPE

#x0001 XkbNewKeyboardNotify

#x0002 XkbMapNotify

#x0004 XkbStateNotify

#x0008 XkbControlsNotify

#x0010 XkblIndicatorStateNotify

#x0020 XkbIndicatorMapNotify

#x0040 XkbNamesNotify

#x0080 XkbCompatMapNotify

#x0100 XkbBellNotify

#x0200 XkbActionMessage

#x0400 XkbAccessXNotify

#x0800 XkbExtensionDeiceNotify
SETofKB_NKNDETAIL

#x01 XKkbNKN_Keycodes

#x02 XkbNKN_Geometry

#x04 XkbNKN_DevicelD
SETofKB_AXNDETAIL

#x01 XKbAXN_SKPress

#x02 XKkbAXN_SKAccept

#x04 XKkbAXN_SKReject

#x08 XkbAXN_SKRelease

#x10 XkbAXN_BKAccept

#x20 XkbAXN_BKReject

#x40 XKbAXN_AXKW arning
SETofKB_MAPPART

#x0001 XkbKeyTypes

#x0002 XkbKeySyms

#x0004 XkbMadifierMap

#x0008 XkbExplicitComponents

12/15/97 Protocol \érsion 1.0/Document Rision 1.0 D-2

The X Keyboard Extension

Protocol Specification

#x0010
#x0020
#x0040
#x0080

SETofKB_STATEPART
#x0001
#x0002
#x0004
#x0008
#x0010
#x0020
#x0040
#x0080
#x0100
#x0200
#x0400
#x0800
#x1000
#x2000

SETofKB_BOOLCTRL
#x00000001
#x00000002
#x00000004
#x00000008
#x00000010
#x00000020
#x00000040
#x00000080
#x00000100
#x00000200
#x00000400
#x00000800
#x00001000

SETofKB_CONTROL

XkbKeyActions
XkbKeyBehaviors
XkbVirtualMods
XkbVirtualModMap

XkbModifierState
XkbModifierBase
XkbModifierLatch
XkbModifierLock
XkbGroupState
XkbGroupBase
XkbGroupLatch
XkbGroupLock
XkbCompatState
XkbGrabMods
XkbCompatGrabMods
XkbLookupMods
XkbCompatLookupMods
XkbPointerButtons

XkbRepeatheys
XkbSlowvKeys
XkbBouncekeys
XkbStickyKeys
XkbMousekeys
XkbMousekeysAccel
XkbAccessXkeys
XkbAccessXTmeoutMask
XkbAccessXFeedbackMask
XkbAudibleBellMask
XkbOverlaylMask
XkbOverlay2Mask
XkblgnoreGroupLockMask

Encodings are the same as for 8S(KB_ BOOLCTRL, with the addition of:

#x080000000
#x100000000
#x200000000
#x400000000
#x800000000

SETofKB_AXFBOPT
#x0001
#x0002
#x0004
#x0008
#x0010
#x0020
#x0100
#x0200
#x0400
#x0800

XkbGroupsWrap
XkbinternalMods
XkblgnoreLockMods
XkbPerkeyRepeat
XkbControlsEnabled

XkbAX_SKPressFB
XkbAX_SKAcceptFB
XkbAX_FeatureFB
XkbAX_SlowWarnFB
XkbAX _IndicatorFB
XkbAX_StickyKeysFB
XkbAX_SKReleaseFB
XkbAX_SKRejectFB
XkbAX_BKRejectFB
XkbAX_DumbBell

12/15/97 Protocol \érsion 1.0/Document Rision 1.0 D-3

The X Keyboard Extension Protocol Specification

SETofKB_AXSKOPT
#x0040 XkbAX_TwoKeys
#x0080 XkbAX_LatchToLock

SETofKB_AXOPTION
Encoding same as the bitwise union of :
SETofKB_AXFBOPT
SETofKB_AXSKOPT

KB_DEVICESPEC

0..255 input extension deice id

#x100 XkbUseCoreKbd

#x200 XkbUseCorePtr
KB_LEDCLASSRESUI

0 KbdFeedbackClass

4 LedFeedbackClass

KB_LEDCLASSSPEC
Encoding same as KB_LEDCLASSRESTwith the addition of:

#x0300 XkbDfltXIClass

#x0500 XkbAlIXIClasses
KB_BELLCLASSRESUIT

0 KbdFeedbackClass

5 BellFeedbackClass

KB_BELLCLASSSPEC
Encoding same as KB_BELLCLASSRESUIwith the addition of:

#x0300 XkbDfltXIClass
KB_IDSPEC

0..255 input extension feedback id

#x0400 XkbDfltXlld
KB_IDRESULT

Encoding same as KB_IDSPEC, with the addition of:

#xff00 XkbXINone

KB_MULTIIDSPEC
encodings same as KB_IDSPEC, with the addition of:

#x0500 XkbAlIXIlds
KB_GROUP

0 XkbGroupl

1 XkbGroup2

2 XkbGroup3

3 XkbGroup4
KB_GROUPS

Encoding same as KB_GRJR, with the addition of:

254 XkbAnyGroup

255 XkbAllGroups
SETofKB_GROUP

#x01 XkbGroupl

#x02 XkbGroup2

#x04 XkbGroup3

#x08 XkbGroup4

12/15/97 Protocol \érsion 1.0/Document Rision 1.0 D-4

The X Keyboard Extension Protocol Specification

SETofKB_GROUPS
Encoding same as SBEfKB_GROUR with the addition of:

#x80 XkbAnyGroup
KB_GROUPSWRAP
#x00 XkbWraplntoRange
#x40 XkbClamplIntoRange
#x80 XkbRedirectintoRange
SETofKB_VMODSHIGH
#x80 virtual modifier 15
#x40 virtual modifier 14
#x20 virtual modifier 13
#x10 virtual modifier 12
#x08 virtual modifier 11
#x04 virtual modifier 10
#x02 virtual modifier 9
#x01 virtual modifier 8
SETofKB_VMODSLOW
#x80 virtual modifier 7
#x40 virtual modifier 6
#x20 virtual modifier 5
#x10 virtual modifier 4
#x08 virtual modifier 3
#x04 virtual modifier 2
#x02 virtual modifier 1
#x01 virtual modifier 0
SETofKB_VMOD
#x8000 virtual modifier 15
#x4000 virtual modifier 14
#x2000 virtual modifier 13
#x1000 virtual modifier 12
#x0800 virtual modifier 11
#x0400 virtual modifier 10
#x0200 virtual modifier 9
#x0100 virtual modifier 8
#x0080 virtual modifier 7
#x0040 virtual modifier 6
#x0020 virtual modifier 5
#x0010 virtual modifier 4
#x0008 virtual modifier 3
#x0004 virtual modifier 2
#x0002 virtual modifier 1
#x0001 virtual modifier 0
SETofKB_EXPLICIT
#x80 XkbExplicitVModMap
#x40 XkbExplicitBehavior
#x20 XKkbExplicitAutoRepeat
#x10 XKkbExplicitinterpret
#x08 XKkbExplicitkeyType4
#x04 XkbExplicitkeyType3
#x02 XkbExplicitkeyType2
#x01 XkbExplicitkeyTypel

12/15/97 Protocol \érsion 1.0/Document Rision 1.0 D-5

The X Keyboard Extension

Protocol Specification

KB_SYMINTERPMATCH
#x80
#XTf

SETofKB_IMFLAG
#x80
#x40
#x20

SETofKB_IMMODSWHICH
#x10
#x08
#x04
#x02
#x01

SETofKB_IMGROUPSWHICH
#x10
#x08
#x04
#x02
#x01

KB_INDICATORMAP

XkbSI_LevelOneOnly
operation, one of the folang:
0 XkbSI_NoneOf

1 XkbSI_AnyOfOrNone

2 XkbSI_AnyOf

3 XkbSI_AIlIOf

4 XkbSI_Exactly

XkbIM_NoExplicit
XkbIM_NoAutomatic
XkbIM_LEDDriveskB

XkbIM_UseCompat
XkbIM_UseEfective
XkbIM_UseLocled
XkbIM_UselLatched
XkbIM_UseBase

XkbIM_UseCompat
XkbIM_UseEfective
XkbIM_Uselocled
XkbIM_UseLatched
XkbIM_UseBase

1 SETofKB_IMFLAGS flags

1 SETofKB_IMGROUPSWHICH whichGroups
1 SETofKB_GROUP groups

1 SETofKB_IMMODSWHICH whichMods

1 SETofKEYMASK mods

1 SETofKEYMASK realMods

2 SETofKB_VMOD vmods

4 SETofKB_BOOLCTRL ctrls

SETofKB_CMDETAIL

#x01 XkbSyminterp
#x02 XkbGroupCompat
SETofKB_NAMEDETAIL

#x0001 XkbKeycodesName

#x0002 XkbGeometryName

#x0004 XkbSymbolsName

#x0008 XkbPhysSymbolsName

#x0010 XkbTypesName

#x0020 XkbCompatName

#x0040 XkbKeyTypeNames

#x0080 XkbKTLevelNames

#x0100 XkbIndicatorNames

#x0200 XkbKeyNames

#x0400 XkbKeyAliases

#x0800 XkbVirtualModNames

#x1000 XkbGroupNames

#x2000 XkbRGNames
12/15/97 Protocol \érsion 1.0/Document Rision 1.0 D-6

The X Keyboard Extension

Protocol Specification

SETofKB_GBNDETAIL
#x01
#x02
#x04
#x08
#x10
#x20
#x40
#x80

SETofKB_XIEXTDEVFEATURE
#x02
#x04
#x08
#x10

SETofKB_XIFEATURE

XkbGBN_Types
XkbGBN_CompatMap
XkbGBN_ClientSymbols
XkbGBN_SenerSymbols
XkbGBN_IndicatorMaps
XkbGBN_KeyNames
XkbGBN_Geometry
XkbGBN_OtherNames

XkbXI_ButtonActions
XkbXI_IndicatorNames
XkbXI_IndicatorMaps
XkbXI_IndicatorState

Encoding same as S&EfKB_XIEXTDEVFEATURE, with the addition of:

#x01
SETofKB_XIDETAIL

XkbXI_Keyboards

Encoding same as S&fKB_XIFEATURE, with the addition of:

#x8000 XkbXI_UnsupportedFeature
SETofKB_PERCLIENTFLAG
#x01 XkbDetectableAutorepeat
#x02 XkbGrabsUseXKBState
#x04 XkbAutoResetControls
#x08 XkbLookupStateWhenGrabbed
#x10 XkbSendEentUsesXKBState
KB_MODDEF
1 SETofKEYMASK mask
1 SETofKEYMASK realMods
2 SETofVMOD vmods
KB_COUNTED_STRINGS8
1 I length
I STRINGS string
KB_COUNTED_STRING16
2 I length
I STRINGS string
p unused,p=pad(2+l)
3.0 Errors
Keyboard
1 0 Error
2 ?7? code
2 CARD16 sequence
4 CARD32 error \alue
most significant 8 bits of erroalue hae the meaning:
Oxff XkbErrBadDeice
Oxfe XkbErrBadClass
Oxfd XkbErrBadld

the least significant 8 bits of the err@we contain the dée id, class, or

12/15/97

Protocol \érsion 1.0/Document Rision 1.0 D-7

The X Keyboard Extension

Protocol Specification

feedback
id which failed.
2 CARD16 minor opcode
1 CARDS8 major opcode
21 unused
4.0 Key Actions
SA_NOAction
1 0 type
7 unused
SA_ SetMods
1 1 type
1 BITMASK flags
#x01 XkbSA ClearLocks
#x02 XkbSA_LatchDLock
#x04 XkbSA UseModMapMods
1 SETofKEYMASK mask
1 SETofKEYMASK real modifiers
1 SETofKB_VMODSHIGH virtual modifiers high
1 SETofKB_VMODSLOW virtual modifiers lav
2 unused
SA LatchMods
1 2 type
1 BITMASK flags
#x01 XkbSA ClearLocks
#x02 XkbSA LatchDLock
#x04 XkbSA_ UseModMapMods
1 SETofKEYMASK mask
1 SETofKEYMASK real modifiers
1 SETofKB_VMODSHIGH virtual modifiers high
1 SETofKB_VMODSLOW virtual modifiers lav
2 unused
SA _LockMods
1 3 type
1 BITMASK flags
#x01 XkbSA LockNoLock
#x02 XkbSA LockNoUnlock
#x04 XkbSA_UseModMapMods
1 SETofKEYMASK mask
1 SETofKEYMASK real modifiers
1 SETofKB_VMODSHIGH virtual modifiers high
1 SETofKB_VMODSLOW virtual modifiers lav
2 unused
12/15/97 Protocol \érsion 1.0/Document Rision 1.0 D-8

The X Keyboard Extension Protocol Specification

SA_SetGroup

1 4 type

1 BITMASK flags
#x01 XkbSA ClearLocks
#x02 XkbSA_LatchDLock
#x04 XkbSA_GroupAbsolute

1 INT8 group

5 unused

SA LatchGroup

1 5 type

1 BITMASK flags
#x01 XkbSA ClearLocks
#x02 XkbSA_LatchDLock
#x04 XkbSA_GroupAbsolute

1 INT8 group

5 unused

SA_LockGroup

1 6 type

1 BITMASK flags
#x01 XkbSA LockNoLock
#x02 XkbSA LockNoUnlock
#x04 XkbSA_GroupAbsolute

1 INT8 group

5 unused

SA_MovePtr

1 7 type

1 BITMASK flags
#x01 XkbSA NoAcceleration
#x02 XkbSA_ MoveAbsoluteX
#x04 XkbSA MoveAbsoluteY

1 INT8 x high

1 CARDS X low

1 INT8 y high

1 CARDS y low

2 unused

SA_PtrBtn

1 8 type

1 BITMASK flags

1 CARDS8 count

1 CARDS button

4 unused

SA_LockPtrBtn

1 9 type

1 BITMASK flags

1 unused

1 CARDS button

4 unused

Protocol \érsion 1.0/Document Rision 1.0

D-9

The X Keyboard Extension

Protocol Specification

SA_SetPtrDflt

1 10
1 BITMASK
#x02
1 BITMASK
#x01
1 INT8
4
SA _I1SOLock
1 11
1 BITMASK
#x01
#x02
#x04
is 0)
#x04
#x80
1 SETofKEYMASK
1 SETofKEYMASK
1 INT8
1 BITMASK
#x08
#x10
#x20
#x40
1 SETofKB_VMODSHIGH
1 SETofKkB_VMODSLOW
SA_Terminate
1 12
7
SA_SwitchSceen
1 13
1 BITMASK
#x01
#x04
1 INT8
5
SA_SetContols
1 14
3
1 BITMASK
#x01
#x02
#x04
#x08
#x10
1 BITMASK
#x01
#x02
#x04

type

flags
XkbSA_DfltBtnAbsolute

affect
XkbSA_AffectDfItBtn

value

unused

type

flags
XkbSA LockNoLock
XkbSA_LockNoUnlock

XkbSA UseModMapMods (if SA_ISODfltisGroup

XkbSA_GroupAbsolute (if SA_ISODfltisGroup is 1)

XkbSA_ISODfltisGroup
mask
real modifiers
group
affect
XkbSA ISONoAfectCtrls
XkbSA_ISONoAfectPtr
XkbSA ISONoAfectGroup
XkbSA_ISONoAfectMods
virtual modifiers high
virtual modifiers lav

type
unused

type

flags
XkbSA_SwitchApplication
XkbSA_SwitchAbsolute

new screen

unused (must be 0)

type
unused (must be 0)
boolean controls high
XkbAccessXFeedbackMask
XkbAudibleBellMask
XkbOverlaylMask
XkbOverlay2Mask
XkblgnoreGroupLockMask
boolean controls lo
XkbRepeathkys
XkbSlowKeys
XkbBouncekeys

Protocol \érsion 1.0/Document Rision 1.0

D-10

The X Keyboard Extension

Protocol Specification

#x08

#x10

#x20

#x40

#x80
2

SA_LockControls
1 15

3
1

BITMASK
#x01
#x02
#x04
#x08
#x10

1 BITMASK
#x01
#x02
#x04
#x08
#x10
#x20
#x40
#x80

2

SA ActionM essage
1 16

1 BITMASK
#x01

#x02

#x04
STRING

SA RedirectKey

17

KEYCODE
SETofKEYMASK
SETofKEYMASK
SETofKB_VMODSHIGH
SETofKB_VMODSLOW
SETofKB_VMODSHIGH
SETofKB_VMODSLOW

_DeviceBtn
18
0
CARDS
CARDS
CARDS

()]

wHI—\HI—‘Hg RPRRRPRRPRRRR

XkbStickyKeys
XkbMousekeys
XkbMousekeysAccel
XkbAccessXkeys
XkbAccessXTmeoutMask
unused (must be 0)

type
unused (must be 0)
boolean controls high
XkbAccessXFeedbackMask
XkbAudibleBellMask
XkbOverlaylMask
XkbOverlay2Mask
XkblgnoreGroupLockMask
boolean controls lo
XkbRepeathkys
XkbSlowKeys
XkbBouncekeys
XkbStickyKeys
XkbMousekeys
XkbMousekeysAccel
XkbAccessXkeys
XkbAccessXTmeoutMask
unused (must be 0)

type

flags

XkbSA MessageOnPress
XkbSA_ MessageOnRelease
XkbSA MessageGerggEvent
message

type

new key

mask

real modifiers

virtual modfiiers mask high
virtual modifiers mask
virtual modifiers high
virtual modfiers lav

type

flags

count

button

device

unused (must be 0)

12/15/97

Protocol \érsion 1.0/Document Rision 1.0

D-11

The X Keyboard Extension

Protocol Specification

SA L ockDeviceBtn
1 19
1 BITMASK
#x01
#x02

CARDS8
CARDS

_DeviceValuator
20
CARDS

Hl—\Hg [

#x00
#x01
#x02
#x03
#x04
#x05
CARDS8
CARDS8

(S

KB_SA_VALWHAT

KB_SA_VALWHAT

type

flags
XkbSA_LockNoLock
XkbSA _LockNoUnlock
unused

button

device

type

device

valuator 1 what
XkbSA_Ignore\al
XkbSA_Set\alMin
XkbSA_Set\AlCenter
XkbSA_Set\alMax
XkbSA_ Set\AlRelatve
XKkbSA_Set\AlAbsolute
valuator 1 inde
valuator 1 alue
valuator 2 what

Encodings as for ‘sluator 1 what” abee

CARDS8
CARDS

[N

5.0 Key Behaviors

KB_Default

1 #x00

1

KB_Lock

1 #x01

1
KB_RadioGroup
1 #x02

1 0..31
KB_Overlayl

1 #x03

1 KEYCODE
KB_Overlay2

1 #x04

1 CARDS
KB_PermanentL ock
1 #x81

1

valuator 2 inde
valuator 2 alue

type
unused

type
unused

type
group

type

type
unused

12/15/97 Protocol \érsion 1.0/Document Rision 1.0 D-12

The X Keyboard Extension

Protocol Specification

6.0

KB_PermanentRadioGroup

1 #x82
1 0..31

KB_PermanentOverlayl

1 #x83
1 KEYCODE

KB_PermanentOverlay?2

1 #x84
1 KEYCODE

Requests
XkbUseExtension

??

0

2
CARD16
CARD16

NNNPFP P

1

BOOL
CARD16
0

1

0

NNNPANRE P

0
kbSelectEvents

??

1

4+(V+p)/4
KB_DEVICESPEC
SETofKB_EVENTTYPE
SETofKB_EVENTTYPE
SETofKB_EVENTTYPE
SETofKB_MAPDETAILS
SETofKB_MAPDETAILS
LISTofITEMs
SETofKB_EVENTTYPE
XkbNewKeyboardNotify
XkbStateNotify
XkbControlsNotify
XkbIndicatorStateNotify
XkbIndicatorMapNotify
XkbNamesNotify
XkbCompatMapNotify
XkbBellNotify
XkbActionMessage

<NNNNI\JNNHI—‘><

type
group

opcode
xkb-opcode
request-length
wantedMajor
wantedMinor

Reply

supported
seguence number
reply length
senerMajor
senerMinor
unused

opcode

xkb-opcode

request-length

deviceSpec

affectWhich

clear

selectAll

affectMap

map

details

(affectWhich&(~clear)&(~selectAll))
affectNavKeyboard, ne/KeyboardDetails
affectState, stateDetails
affectCtrls, ctriDetails
affectindicatorState, indicatorStateDetails
affectindicatorMap, indicatorMapDetails
affectNames, namesDetails
affectCompat, compatDetails
affectBell, bellDetails
affectMsgDetails, msgDetails

XkbExtensionDeiceNotify affectExtDey, extdevDetails

unused, p=pad(V)

12/15/97

Protocol \érsion 1.0/Document Rision 1.0 D-13

The X Keyboard Extension

Protocol Specification

TEMs

SETofKB_NKNDETAIL
SETofKB_NKNDETAIL
SETofKB_STATERPART
SETofKB_STATERPART
SETofKB_CONTROL
SETofKB_CONTROL
SETofKB_INDICATOR
SETofKB_INDICATOR
SETofKB_INDICATOR
SETofKB_INDICATOR
SETofKB_NAME_DETAIL
SETofKB_NAME_DETAIL
SETofKB_CMDETAIL
SETofKB_CMDETAIL
SETofKB_BELLDETAIL
SETofKB_BELLDETAIL
SETofKB_MSGDETAIL
SETofKB_MSGDETAIL
SETofKB_AXNDETAIL
SETofKB_AXNDETAIL
SETofKB_XIDETAIL
SETofKB_XIDETAIL

kbBell
??
3
7
KB_DEVICESPEC
KB_BELLCLASSSPEC
KB_IDSPEC
INT8
BOOL
BOOL

INT16
INT16

ATOM
WINDOW

kbGetState
?2?
4
2
KB_DEVICESPEC

1

CARDS8
CARD16

0
SETofKEYMASK
SETofKEYMASK

PR ANR R

affectNevKeyboard
newKeyboardDetails
affectState
stateDetails
affectCtrls
ctriDetails
affectindicatorState
indicatorStateDetails
affectindicatorMaps
indicatorMapDetails
affectNames
namesDetails
affectCompat
compatDetails
affectBell
bellDetails
affectMsgDetails
msgDetails
affectAccessX
accessXDetails
affectExtDer
extdevDetails

opcode
xkb-opcode
request-length
deviceSpec
bellClass
belllD
percent
forceSound
eventOnly
unused
pitch
duration
unused
name
window

opcode
xkb-opcode
request-length
deviceSpec
unused

Reply

devicelD
sequence number
length

mods

baseMods

Protocol \érsion 1.0/Document Rision 1.0 D-14

The X Keyboard Extension

Protocol Specification

SETofKEYMASK
SETofKEYMASK
KP_GROUP
KP_GROUP
INT16

INT16
SETofKEYMASK
SETOofKEYMASK
SETOofKEYMASK
SETofKEYMASK
SETOofKEYMASK

SETofBUTMASK

kbL atchL ock State
?2?
5
4
KB_DEVICESPEC
SETofKEYMASK
SETofKEYMASK
BOOL
KB_GROUP
SETofKEYMASK
SETofKEYMASK

BOOL
INT16

kbGetControls
?2?
6
2
KB_DEVICESPEC

NNONNRPR X NRPRRPRPRPRPERPRNNRRE X ONRPRRPRPRRNNRRRER

1

CARDS
CARD16

15

CARDS8

CARDS8

CARDS
SETofKEYMASK
SETofKEYMASK
SETofKEYMASK
SETofKEYMASK

SETofKB_VMOD
SETofKB_VMOD
CARD16
CARD16
CARD16

NNNNNRRRRRREREPREPANRER

latchedMods
lockedMods
group
lockedGroup
baseGroup
latchedGroup
compatState
grabMods
compatGrabMods
lookupMods
compatLookupMods
unused
ptrBtnState
unused

opcode
xkb-opcode
request-length
deviceSpec
affectModLocks
modLocks
lockGroup
groupLock
affectModLatches
modLatches
unused
latchGroup
groupLatch

opcode
xkb-opcode
request-length
deviceSpec
unused

Reply

devicelD

sequence number
length
mousekeysDfltBtn
numGroups
groupsWrap
internalMods.mask
ignoreLockMods.mask
internalMods.realMods
ignoreLockMods.realMods
unused
internalMods.vmods
ignoreLockMods.vmods
repeatDelay
repeatinteral
slowKeysDelay

Protocol \érsion 1.0/Document Rision 1.0 D-15

The X Keyboard Extension

Protocol Specification

CARD16
CARD16
CARD16
CARD16
CARD16
INT16

CARD16

WA BBEANPNNNNNNNNNN

2 LISTofCARDS
kbSetControls

??
7
25

X

SETofKEYMASK
SETofKEYMASK
SETofKEYMASK
SETofKEYMASK
SETofKB_VMOD
SETofKB_VMOD
SETofKB_VMOD
SETofKB_VMOD
CARDS8

CARDS

CARD16
CARD16
CARD16
CARD16
CARD16
CARD16
CARD16
CARD16
INT16

CARD16

WNNPEBRNDNNNNNNNNNEBRBAEANNERERPNNMNNNERPRPERPENNRPRE

2 LISTofCARDS

SETofKB_AXOPTION

SETofKB_AXOPTION
SETofKB_AXOPTION

SETofKB_BOOLCTRL
SETofKB_BOOLCTRL
SETofKB_BOOLCTRL

KB_DEVICESPEC

SETofKB_AXOPTION

SETofKB_BOOLCTRL
SETofKB_BOOLCTRL
SETofKB_CONTROL

SETofKB_BOOLCTRL
SETofKB_BOOLCTRL
SETofKB_AXOPTION
SETofKB_AXOPTION

debounceDelay
mousekeysDelay
mousekeysintenal
mousekeysTimeToMax
mousekysMaxSpeed
mousekeysCune
accessXOptions
accessXimeout
accessXimeoutOptionsMask
accessXimeoutOption\dlues
unused
accessXimeoutMask
accessXimeout\alues
enabledControls

perkeyRepeat

opcode

xkb-opcode

request-length

deviceSpec
affectinternalRealMods
internalRealMods
affectignoreLockRealMods
ignoreLockRealMods
affectinternal\frtualMods
internalMrtualMods
affectignoreLock\ttualMods
ignoreLock\VirtualMods
mousekeysDfItBtn
groupsWrap
accessXOptions

unused
affectEnabledControls
enabledControls
changeControls
repeatDelay

repeatintersl
slowKeysDelay
debounceDelay
mousekeysDelay
mousekeysintenal
mousekeysTimeToMax
mousekysMaxSpeed
mousekeysCune
accessXimeout
accessXimeoutMask
accessXimeout\alues
accessXimeoutOptionsMask
accessXimeoutOptions¥lues

perkeyRepeat

12/15/97 Protocol \érsion 1.0/Document Rision 1.0 D-16

The X Keyboard Extension

Protocol Specification

XkbGetM ap

1 CARDS8
8
7

NRRRPRRPRPRPNRRPRRPRPREPRPREPRERNNNNR

PRRPRRPRRPRPRPRPRPRPRRPREPREPNRPRRPNRPRREPRPREPNRRPNDIAMNRR

KB_DEVICESPEC
SETofKB_MAPPART
SETofKB_MAPPART
CARDS

CARDS8

KEYCODE

CARDS

KEYCODE

CARDS

KEYCODE

CARDS
SETofKB_VMOD
KEYCODE

CARDS

KEYCODE

CARDS

KEYCODE

CARDS8

1
CARDS
CARD16
2+(1/4)

KEYCODE
KEYCODE
SETofKB_MAPPART
CARDS

t

CARDS
KEYCODE
S

S
KEYCODE
A

a
KEYCODE
b

B
KEYCODE
e

E
KEYCODE
m

M
KEYCODE
0

Vv

opcode
xkb-opcode
request-length
deviceSpec

full

partial

firstType
nTypes
firstkeySym
nKeySyms
firstKeyAction
nKeyActions
firstKeyBehavior
nKeyBehaviors
virtualMods
firstKeyExplicit
nKeyExplicit
firstModMapkey
nModMapKkeys
firstvModMapKey
nVModMapKeys
unused

Reply

devicelD
sequence number
length

unused
minKeyCode
maxKeyCode
present

firstType

nTypes
totalTypes
firstkeySym
totalSyms
nKeySyms
firstKeyAction
totalActions
nKeyActions
firstkeyBehavior
nKeyBehaviors
totalKeyBehaviors
firstkeyExplicit
nKeyExplicit
totalKeyExplicit
firstModMapkey
nModMapkeys
totalModMapkeys
firstvModMapKey
nVModMapKeys
totalVModMapkeys

12/15/97

Protocol \érsion 1.0/Document Rision 1.0 D-17

The X Keyboard Extension

Protocol Specification

1 unused

2 SETofKB_VMOD virtualMods (has v bits set to 1)

I LISTofITEMs map
SETofKB_MAPPART (present)
XkbKeyTypes typesRtrn
XkbKeySyms symsRtrn
XkbKeyActions actsRtrn.count, actsRtrn.acts
XkbKeyBehaviors behaiorsRtrn
XkbVirtualMods vmodsRtrn
XkbExplicitComponents explicitRtrn
XkbModifierMap modmapRtrn
XkbVirtualModMap vmodMapRtrn

ITEMs

T+ Ty LISTofKB_KEYTYPE typesRtrn

8s+4S LISTofKB_KEYSYMMAP symsRtrn

a LISTofCARD8 actsRtrn.count

p unused,p=pad(a)

8A LISTofKB_ACTION actsRtrn.acts

4B LISTofKB_SETBEHA/IOR behaiorsRtrn

Y LISTofSETofKEYMASK vmodsRtrn

p unused, p=pad(v)

2E LISTofKB_SETEXPLICIT explicitRtrn

p unused,p=pad(2E)

2M LISTofKB_KEYMODMAP modmapRtrn

p unused, p=pad(2M)

4V LISTofKB_KEYVMODMAP vmodMapRtrn

KB_KEYTYPE 8+8m-+[4m]

1 SETofKEYMASK mods.mask

1 SETofKEYMASK mods.mods

2 SETofKB_VMOD mods.vmods

1 CARDS numLevels

1 m nMapEntries

1 BOOL hasPresers

1 unused

8m LISTofKB_KTMAPENTRY map

[4m] LISTofKB_MODDEF presere

KB_KTMAPENTRY

1 BOOL actve

1 SETofKEYMASK mods.mask

1 CARDS level

1 SETofKEYMASK mods.mods

2 SETofKB_VMOD mods.vmods

2 unused

KB_KEYSYMMAP 8+4n

4 LISTofCARDS ktindex

1 CARDS grouplnfo

1 CARDS width

2 n nSyms

4n LISTofKEYSYM syms

12/15/97 Protocol \érsion 1.0/Document Rision 1.0 D-18

The X Keyboard Extension

Protocol Specification

KB_SETBEHA/IOR

1 KEYCODE keycode
2 KB_BEHAVIOR behaior
1 unused
KB_SETEXPLICIT
1 KEYCODE keycode
1 SETofKB_EXPLICIT explicit
KB_KEYMODMAP
1 KEYCODE keycode
1 SETofKB_KEYMASK mods
KB_KEYVMODMAP
1 KEYCODE keycode
1 unused
2 SETofKB_VMOD vmods
XkbSetM ap
1 CARDS opcode
1 9 xkb-opcode
2 9+(1/4) request-length
2 KB_DEVICESPEC deviceSpec
2 SETofKB_MAPPART present
2 SETofKB_SETMAPFLAGS flags
#0001 SetMapResizgfpes
#0002 SetMapRecomputeActions
1 KEYCODE minKeyCode
1 KEYCODE maxKeyCode
1 CARDS firstType
1 t nTypes
1 KEYCODE firstkeySym
1 S nKeySyms
2 S totalSyms
1 KEYCODE firstkeyAction
1 a nKeyActions
2 A totalActions
1 KEYCODE firstkeyBehavior
1 b nKeyBehaviors
1 B totalKeyBehaviors
1 KEYCODE firstKeyExplicit
1 e nKeyExplicit
1 E totalKeyExplicit
1 KEYCODE firstModMapkey
1 m nModMapkeys
1 M totalModMapkeys
1 KEYCODE firstVModMapKey
1 v nVModMapKeys
1 \% totalVModMapkeys
2 SETofKB_VMOD virtualMods (has n bits set to 1)
I LISTofITEMs values
SETofKB_MAPPART (present)
XkbKeyTypes types
XkbKeySymbols syms
XkbKeyActions actions.count,actions.actions
XkbKeyBehaviors behaiors

12/15/97 Protocol \érsion 1.0/Document Rision 1.0 D-19

The X Keyboard Extension

Protocol Specification

XkbVirtualMods vmods
XkbExplicitComponents explicit
XkbModifierMap modmap
XkbVirtualModMap vmodmap

ITEMs
Tot..T; LISTofKB_SETKEYTYPE
8s+4S LISTofKB_KEYSYMMAP
a LISTofCARDS8
p
8A LISTofKB_ACTION
4B LISTofKB_SETBEHAVIOR
v LISTofSETofKEYMASK
p
2E LISTofKB_SETEXPLICIT
p
2M LISTofKB_KEYMODMAP
=]
AV} LISTofKB_KEYVMODMAP
KB_SETKEYTYPE
1 SETofKEYMASK
1 SETofKEYMASK
2 SETofKB_VMOD
1 CARDS
1 m
1 BOOL
1
4m LISTofKB_KTSETMAPENTRY
[4m] LISTofKB_MODDEF
KB_KTSETMAPENTRY
1 CARDS
1 SETOofKEYMASK
2 SETofKB_VMOD
XkbGetCompatMap
1 ??
1 10
2 3
2 KB_DEVICESPEC
1 SETofKB_GROUP
1 BOOL
2 CARD16
2 CARD16
1 1
1 CARDS
2 CARD16
4 (16n+4g)/4
1 SETofKB_GROUP
1
2 CARD16
2 n

types

syms
actions.count
unused,p=pad(a)
actions.actions
behaiors

vmods

unused, p=pad(v)
explicit
unused,p=pad(2E)
modmap

unused, p=pad(2M)
vmodmap

8+4m+[4m]

mask

realMods

virtualMods

numLevels

nMapEntries

presere

unused

entries

presereEntries (if presee==TRJE)

level
realMods
virtualMods

opcode
xkb-opcode
request-length
deviceSpec
groups
getAllSI

firstSlI

nSl

Reply

devicelD

sequence number

length

groupsRtrn (has g bits set to 1)
unused

firstSIRtrn

nSIRtrn

12/15/97

Protocol \érsion 1.0/Document Rision 1.0

D-20

The X Keyboard Extension

Protocol Specification

2 CARD16

16

16n LISTofKB_SYMINTERPRET
49 LISTofKB_MODDEF

XkbSetCompatM ap

??

11

4+(16n+49)
KB_DEVICESPEC

BOOL

BOOL
SETofKB_GROUP
CARD16

n

NNNRRRPRRNNER R

[EnY
[©2]
5

LISTofKB_SYMINTERPRET
49 LISTofKB_MODDEF

XkbGetlndicator State
?2?

12

2
KB_DEVICESPEC

NNNRF P

1

CARDS

CARD16

0
SETofKB_INDICATOR

NDBRNREPF

0
kbGetlndicatorM ap

??

13

3
KB_DEVICESPEC

-bNNI\JHI—‘x

SETofKB_INDICATOR

1

CARDS8

CARD16

12n/4
SETofKB_INDICATOR
SETofKB_INDICATOR
n

PArBRBANRELPE

B
N Ol
]

LISTofKB_INDICATORMAP

nTotalSlI
unused
siRtrn
groupRtrn

opcode
xkb-opcode
request-length
deviceSpec
unused
recomputeActions
truncateSl

groups (has g bits setto 1)
firstSl

nSl

unused

Si

groupMaps

opcode
xkb-opcode
request-length
deviceSpec
unused

Reply

devicelD
sequence number
length

state

unused

opcode
xkb-opcode
request-length
deviceSpec
unused

which

Reply

devicelD

seqguence number

length

which (has n bits set to 1)
reallndicators

nindicators

unused

maps

Protocol \érsion 1.0/Document Rision 1.0 D-21

The X Keyboard Extension

Protocol Specification

XkbSetIndicatorM ap

ANNNRFEPF

12n

?7?

14

3+3n
KB_DEVICESPEC

SETofKB_INDICATOR
LISTofKB_INDICATORMAP

XkbGetNamedI| ndicator

1

ADNNNNDDN P

PRRPRPRPRPANNNNNRRE Y WRPANRRRPRPRPRPREPRPRERPADMNERR

CARDS

15

4

KB_DEVICESPEC
KB_LEDCLASSSPEC
KB_IDSPEC

ATOM

1

CARDS

CARD16

0

ATOM

BOOL

BOOL

BOOL

KB_INDICATOR
SETofKB_IMFLAGS
SETofKB_IMGROUPSWHICH
SETofKB_GROUPS
SETofKB_IMMODSWHICH
SETofKEYMASK
SETofKEYMASK
SETofKB_VMOD
SETofKB_BOOLCTRL
BOOL

kbSetNamed| ndicator

??

16

8

KB_DEVICESPEC
KB_LEDCLASSSPEC
KB_IDSPEC

ATOM
BOOL
BOOL
BOOL
BOOL

SETofKB_IMFLAGS

opcode

xkb-opcode
request-length
deviceSpec

unused

which (has n bits set to 1)
maps

opcode
xkb-opcode
request-length
deviceSpec
ledClass

ledID

unused
indicator

Reply

devicelD
sequence number
length

indicator

found

on

reallndicator

ndx

map.flags
map.whichGroups
map.groups
map.whichMods
map.mods
map.realMods
map.vmods
map.ctrls
supported
unused

opcode
xkb-opcode
request-length
deviceSpec
ledClass
ledID
unused
indicator
setState

on

setMap
createMap
unused
map.flags

12/15/97

Protocol \érsion 1.0/Document Rision 1.0 D-22

The X Keyboard Extension

Protocol Specification

1 SETofKB_IMGROUPSWHICH map.whichGroups

1 SETofKB_GROUP map.groups

1 SETofKB_IMMODSWHICH map.whichMods

1 SETofKEYMASK map.realMods

2 SETofKB_VMOD map.vmods

4 SETofKB_BOOLCTRL map.ctrls

XkbGetNames

1 CARDS opcode

1 17 xkb-opcode

2 3 request-length

2 KB_DEVICESPEC deviceSpec

2 unused

4 SETofKB_NAMEDETAIL which

1 1 Reply

1 CARDS devicelD

2 CARD16 sequence number

4 Vi4 length

4 SETofKB_NAMEDETAIL which

1 KEYCODE minKeyCode

1 KEYCODE maxKeyCode

1 t nTypes

1 SETofKB_GROUP groupNames (has g bits set to 1)

2 SETofKB_VMOD virtualMods (has v bits set to 1)

1 KEYCODE firstkey

1 k nKeys

4 SETofKB_INDICATOR indicators (has i bits set to 1)

1 r nRadioGroups

1 a nKeyAliases

2 I nKTLevels

4 unused

\Y, LISTofITEMs valueList
SETofKB_NAMEDETAIL (which)
XkbKeycodesName keycodesName
XkbGeometryName geometryName
XkbSymbolsName symbolsName
XkbPhySymbolsName physSymbolsName
XkbTypesName typesName
XkbCompatName compatName
XkbKeyTypeNames typeNames
XkbKTLevelNames nLevelsPerype, ktLeveINames
XkblIndicatorNames indicatorNames
XkbVirtualIModNames virtualModNames
XkbGroupNames groupNames
XkbKeyNames keyNames
XkbKeyAliases keyAliases
XkbRGNames radioGroupNames

ITEMs

4 ATOM keycodesName

4 ATOM geometryName

4 ATOM symbolsName

4 ATOM physSymbolsName

4 ATOM typesName

12/15/97

Protocol \érsion 1.0/Document Rision 1.0

D-23

The X Keyboard Extension

Protocol Specification

4 ATOM

4t LISTofATOM

I LISTofCARDS8

p

4L LISTofATOM

4i LISTOfATOM

4v LISTofATOM

49 LISTofATOM

4k LISTofKB_KEYNAME
8a LISTofKB_KEYALIAS
ar LISTofATOM

XkbSetNames

CARDS8

18

7+(V/4)
KB_DEVICESPEC
SETofKB_VMOD
SETofKB_NAMEDETAIL
CARDS8

t

CARDS8

I
SETofKB_INDICATOR
SETofKB_GROUP

r

KEYCODE

k

a

L

LISTofITEMs
SETofKB_NAMEDETAIL
XkbKeycodesName
XkbGeometryName
XkbSymbolsName
XkbPhySymbolsName
XkbTypesName
XkbCompatName
XkbKeyTypeNames
XkbKTLevelNames
XkbIndicatorNames
XkbVirtualModNames
XkbGroupNames
XkbKeyNames
XkbKeyAliases
XkbRGNames

< NRPRPRPRRPRPRPARRRERPANNNEREER

TEMs

ATOM
ATOM
ATOM
ATOM
ATOM
ATOM

ArADDMDMD

compatName
typeNames
nLevelsPerype, sum of all elements=L
unused, p=pad(l)
ktLevelNames
indicatorNames
virtualModNames
groupNames
keyNames
keyAliases
radioGroupNames

opcode
xkb-opcode
request-length
deviceSpec
virtualMods
which
firstType
nTypes
firstKTLevel
nKTLevels
indicators (has i bits set to 1)
groupNames (has g bits set to 1)
nRadioGroups
firstKey
nKeys
nKeyAliases
unused
totalKTLevelNames
values
(which)
keycodesName
geometryName
symbolsName
physSymbolsName
typesName
compatName
typeNames
nLevelsPerype, kiLeveINames
indicatorNames
virtualModNames
groupNames
keyNames
keyAliases
radioGroupNames

keycodesName
geometryName
symbolsName
physSymbolsName
typesName
compatName

12/15/97

Protocol \érsion 1.0/Document Rision 1.0

D-24

The X Keyboard Extension

Protocol Specification

4t LISTofATOM

[LISTofCARDS

p

4L LISTofATOM

4i LISTofATOM

4v LISTofATOM

49 LISTofATOM

4k LISTofKB_KEYNAME
8a LISTofKB_KEYALIAS
4r LISTofATOM
XkbGetGeometry

1 CARDS

1 19

2 3

2 KB_DEVICESPEC

2

4 ATOM

1 1

1 CARDS

2 CARD16

4 (f+8p+C*+H*+Sk+D*+A*)/4
4 ATOM

1 BOOL

1

2 CARD16

2 CARD16

2 P

2 c

2 h

2 S

2 d

2 a

1 CARDS

1 CARDS8

f KB_COUNTED_STRING16
8p LISTofKB_PROPERTY
Cot..Cc LISTofKB_COUNTED_STRING16
Hot..Hy LISTofKB_SHAPE
St § LISTofKB_SECTION
Dg+..Dq LISTofKB_DOODAD
Agt..A; LISTofKB_KEYALIAS
KB_PROPERY

2 n

n STRINGS

2 %

\Y; STRINGS

typeNames
nLevelsPerype
unused, p=pad(l)
ktLevelNames
indicatorNames
virtualModNames
groupNames
keyNames
keyAliases
radioGroupNames

opcode
xkb-opcode
request-length
deviceSpec
unused

name

Reply
devicelD
seguence number
length

name

found

unused
widthMM
heightMM
nProperties
nColors
nShapes
nSections
nDoodads
nKeyAliases
baseColorNdx
labelColorNdx
labelFont
properties
colors

shapes
sections
doodads
keyAliases

4+n+v
namelLength
name
valueLength
value

12/15/97

Protocol \érsion 1.0/Document Rision 1.0

D-25

The X Keyboard Extension

Protocol Specification

KB_SHAPE

4 ATOM

1 o]

1 CARDS

1 CARDS

1

Ogt+..0, LISTofKB_OUTLINE
KB_OUTLINE

1 P

1 CARDS

2

ap LISTofKB_POINT
KB_POINT

2 INT16

2 INT16
KB_SECTION

4 ATOM

2 INT16

2 INT16

2 CARD16

2 CARD16

2 INT16

1 CARDS

1 r

1 d

1 o]

2

Rot..Rr LISTofKB_ROW
Dgt..Dy LISTofKB_DOODAD
Ogt+..0, LISTofKB_OVERLAY
KB_ROW

2 INT16

2 INT16

1 k

1 BOOL

2

8k LISTofKB_KEY
KB_KEY

4 STRINGS

2 INT16

1 CARDS

1 CARDS
KB_OVERLAY

4 ATOM

1 r

3

Rot..Re LISTofKB_OVERLAYROW

8+0.

name
nOutlines
primaryNdx
approxNdx
unused
outlines

4+4p
nPoints
cornerRadius
unused
points

X

y
20+Rc+Dx«+0Ox
name

top

left

width
height
angle
priority
nRows
nDoodads
nOwerlays
unused
rows
doodads
overlays

8+8k
top

left
nKeys
vertical
unused

keys

name

gap
shapeNdx
colorNdx

8+R:
name
nRows
unused
rows

Protocol \érsion 1.0/Document Rision 1.0 D-26

The X Keyboard Extension

Protocol Specification

KB_OVERLAYROW 4+8k
1 CARDS8 rowUnder
1 k nKeys
2 unused
8k LISTofKB_OVERLAYKEY keys
KB_OVERLAYKEY
4 STRINGS over
4 STRINGS under
KB_SHAPEDOOMD
4 ATOM name
1 CARDS8 type
#1 XkbOutlineDoodad
#2 XkbSolidDoodad
1 CARDS8 priority
2 INT16 top
2 INT16 left
2 INT16 angle
1 CARDS8 colorNdx
1 CARDS shapeNdx
6 unused
KB_TEXTDOODAD 20+t+f
4 ATOM name
1 CARDS8 type
#3 XkbTextDoodad
1 CARDS priority
2 INT16 top
2 INT16 left
2 INT16 angle
2 CARD16 width
2 CARD16 height
1 CARDS8 colorNdx
3 unused
t KB_COUNTED_STRING16 text
f KB_COUNTED_STRING16 font
KB_INDICATORDOODAD
4 ATOM name
1 CARDS8 type
#4 XkblndicatorDoodad
1 CARDS priority
2 INT16 top
2 INT16 left
2 INT16 angle
1 CARDS shapeNdx
1 CARDS8 onColorNdx
1 CARDS offColorNdx
5 unused
KB_LOGODOODMD 20+n
4 ATOM name
1 CARDS8 type
#5 XkbLogoDoodad
1 CARDS priority

Protocol \érsion 1.0/Document Rision 1.0 D-27

The X Keyboard Extension

Protocol Specification

2 INT16 top
2 INT16 left
2 INT16 angle
1 CARDS colorNdx
1 CARDS shapeNdx
6 unused
n KB_COUNTED_STRING16 logoName
KB_DOODAD:
KB_SHAPEDOODAD, or KB_TEXTDOODAD, or
KB_INDICATORDOODAD, or KB_LOGODOOMD
XkbSetGeometry
1 CARDS opcode
1 20 xkb-opcode
2 7+(f+8p+G +H«+S:+Dx+Ax)/4 request-length
2 KB_DEVICESPEC deviceSpec
1 h nShapes
1 S nSections
4 ATOM name
2 CARD16 widthMM
2 CARD16 heightMM
2 p nProperties
2 c nColors
2 d nDoodads
2 a nKeyAliases
1 CARDS baseColorNdx
1 CARDS labelColorNdx
2 unused
f KB_COUNTED_STRING16 labelFont
8p LISTofKB_PROPER'Y properties
Cot..C. LISTofKB_COUNTED_STRING16 colors
Hot+..H, LISTofKB_SHAPE shapes
Sot-S LISTofKB_SECTION sections
Dgt..Dy LISTofKB_DOODAD doodads
Agt..A; LISTofKB_KEYALIAS keyAliases
XkbPer ClientFlags
1 CARDS opcode
1 21 xkb-opcode
2 7 request-length
2 KB_DEVICESPEC deviceSpec
2 unused
4 SETofKB_PERCLIENTFLAG change
4 SETofKB_PERCLIENTFLAG value
4 SETofKB_BOOLCTRL ctrisToChange
4 SETofKB_BOOLCTRL autoCtrls
4 SETofKB_BOOLCTRL autoCtrl\alues
1 1 Reply
1 CARDS devicelD
2 CARD16 sequence number
4 0 length
4 SETofKB_PERCLIENTFLAG supported

12/15/97

Protocol \érsion 1.0/Document Rision 1.0

D-28

The X Keyboard Extension

Protocol Specification

SETofKB_PERCLIENTFLAG
SETofKB_BOOLCTRL
SETofKB_BOOLCTRL

kbListComponents
CARDS8
22
2+(6+m+k+t+c+s+g+p)/4
KB_DEVICESPEC
CARD16
m
STRING
k
STRING
t
STRING
Cc
STRING
S
STRING

g
STRING

1

CARDS

CARD16
(Mut+Ko+Te+Cut S+ Gs+p)/4
m

k
t

c
S

NNNNNNNEANRERPRE 'O@I—‘U)I—‘OI—""'I—\THBHNI\JNI—‘HX [0 s NN SN AN

g

CARD16

10

Mg+..My, LISTOfKB_LISTING

Kot..Kx LISTofKB_LISTING
Tot+.. T LISTofKB_LISTING
Cot..C; LISTofKB_LISTING
Sot--S§ LISTofKB_LISTING
Got..Gy LISTofKB_LISTING
p

KB_LISTING

2 CARD16

2 n

n STRINGS

p

value
autoCitrls
autoCtrl\alues
unused

opcode

xkb-opcode
request-length
deviceSpec
maxNames
keymapsSpecLen
keymapsSpec
keycodesSpecLen
keycodesSpec
typesSpeclLen
typesSpec
compatMapSpecLen
compatMapSpec
symbolsSpecLen
symbolsSpec
geometrySpeclLen
geometrySpec
unused,p=pad(6+m+k+t+c+s+q)

Reply

devicelD
sequence number
length

nKeymaps
nKeycodes
nTypes
nCompatMaps
nSymbols
nGeometries
extra

unused

keymaps
keycodes

types
compatMaps
symbols
geometries
unused,p=pad(MrK«+T++Ci+Sc+Gx)

4+n+p

flags

length

string

unused,p=pad(n) to a 2-byte boundary

12/15/97

Protocol \érsion 1.0/Document Rision 1.0 D-29

The X Keyboard Extension

Protocol Specification

XkbGetK bdByName

1

TQRORORTRPXRPIRPRPREPNNMNNNPR

<c|—D\NNH|—\|—\HJ>N|—\|—\

ITEMs

Oz—70Z

CARDS8

23

3+(6+m+k+t+c+s+g+p)/4
KB_DEVICESPEC
SETofKB_GBNDETAILMASK
SETofKB_GBNDETAILMASK
BOOL

m

STRINGS
ETRINGS
tSTRING8
gTRINGS
;TRINGS

g
STRINGS8

1

CARDS8

CARD16

V/i4

KEYCODE

KEYCODE

BOOL

BOOL
SETofKB_GBNDETAILMASK
SETofKB_GBNDETAILMASK

LISTofITEMs
SETofKB_GBNDETAILMASK
XkbGBN_Types map
XkbGBN_CompatMap compat
XkbGBN_ClientSymbols map
XkbGBN_SererSymbols map
XkbGBN_IndicatorMap indicators
XkbGBN_KeyNames names
XkbGBN_OtherNames names
XkbGBN_Geometry geometry

XkbGetMap reply
XkbGetCompatMap reply
XkbGetlIndicatorMap reply
XkbGetNames reply
XkbGetGeometry reply

opcode
xkb-opcode
request-length
deviceSpec

need

want

load

unused
keymapsSpecLen
keymapsSpec
keycodesSpecLen
keycodesSpec
typesSpecLen
typesSpec
compatMapSpecLen
compatMapSpec
symbolsSpecLen
symbolsSpec
geometrySpecLen
geometrySpec
unused,p=pad(6+m+k+t+c+s+q)

Reply
devicelD
sequence number
length
minKeyCode
maxKeyCode
loaded
nevKeyboard
found
reported
unused
replies
(reported)

map
compat
indicators
names
geometry

12/15/97

Protocol \érsion 1.0/Document Rision 1.0

D-30

The X Keyboard Extension

Protocol Specification

XkbGetDevicel nfo

CARDS

24

4

KB_DEVICESPEC
SETofKB_DEVFEATURE
BOOL

CARDS

CARDS

KB_LEDCLASSSPEC
KB_IDSPEC

NNRPRRERRERNNNR R

1

CARDS8

CARD16
(2+n+p+8b+l:)/4
SETofKB_DEVFEATURE
SETofKB_FEATURE
SETofKB_FEATURE
I

CARDS8

CARDS

CARDS8

b

CARDS

BOOL
SETofKB_IDRESULT
SETofKB_IDRESULT

ATOM
n
STRINGS

T SNAEANNNRFPPRPERPRPRPERPENNNNAEANRERPRE

(o]
(3

LISTofKB_ACTION
Lot..L LISTofKB_DEVICELEDINFO

KB_DEVICELEDINFO
KB_LEDCLASSSPEC
KB_IDSPEC
SETofKB_INDICATOR
SETofKB_INDICATOR
SETofKB_INDICATOR
SETofKB_INDICATOR

4n LISTofATOM

12m LISTofKB_INDICATORMAP

XkbSetDevicel nfo

2?2

25

3+(8b+L:)/4
KB_DEVICESPEC
CARDS8

b

ArbAhDMbDDNODN

RPRNNRE R

opcode
xkb-opcode
request-length
deviceSpec
wanted
allButtons
firstButton
nButtons
unused
ledClass
ledID

Reply

devicelD
seguence number
length

present
supported
unsupported
nDeviceLedFBs
firstBtnWanted
nBtnsWanted
firstBtnRtrn
nBtnsRtrn
totalBtns
hasOwnState
dfltKbdFB
dfltLedFB
unused
devType
namelLen

name
unused,p=pad(2+n)
btnActions

leds

20+4n+12m

ledClass

ledID

namesPresent (has n bits set to 1)
mapsPresent (has m bits set to 1)
physindicators

state

names

maps

opcode
xkb-opcode
request-length
deviceSpec
firstBtn

nBtns

12/15/97 Protocol \érsion 1.0/Document Rision 1.0 D-31

The X Keyboard Extension

Protocol Specification

2 SETofKB_DEVFEATURE change
2 I nDeviceLedFBs
8b LISTofKB_ACTION btnActions
Lo*..L LISTofKB_DEVICELEDINFO leds
Encoding of KB_DEVICELEDINFO is as for XkbGetbieelnfo
XkbSetDebuggingFlags
1 ?? opcode
1 101 xkb-opcode
2 6+(n+p)/4 request-length
2 n msgLength
2 unused
4 CARD32 affectFlags
4 CARD32 flags
4 CARD32 affectCtrls
4 CARD32 ctrls
n STRINGS8 message
p unused, p=pad(n)
1 1 Reply
1 unused
2 CARD16 seguence number
4 0 length
4 CARD32 currentFlags
4 CARD32 currentCtrls
4 CARD32 supportedFlags
4 CARD32 supportedCtrls
8 unused
7.0 Events
XkbNewKeyboar dNotify
1 ?? code
1 0 xkb code
2 CARD16 sequence number
4 TIMESTAMP time
1 CARDS devicelD
1 CARDS oldDevicelD
1 KEYCODE minKeyCode
1 KEYCODE maxKeyCode
1 KEYCODE oldMinKeyCode
1 KEYCODE oldMaxKeyCode
1 CARDS requestMajor
1 CARDS8 requestMinor
2 SETofKB_NKNDETAIL changed
14 unused
XkbMapNotify
1 ?? code
1 1 xkb code
2 CARD16 seguence number
4 TIMESTAMP time
1 CARDS devicelD
12/15/97 Protocol \érsion 1.0/Document Rision 1.0 D-32

The X Keyboard Extension

Protocol Specification

1 SETofBUTMASK ptrBtnActions

2 SETofKB_MAPPART changed

1 KEYCODE minKeyCode

1 KEYCODE maxKeyCode

1 CARDS8 firstType

1 CARDS8 nTypes

1 KEYCODE firstkeySym

1 CARDS8 nKeySyms

1 KEYCODE firstkeyAct

1 CARDS8 nKeyActs

1 KEYCODE firstkeyBehavior

1 CARDS8 nKeyBehavior

1 KEYCODE firstKeyExplicit

1 CARDS nKeyExplicit

1 KEYCODE firstModMapkey

1 CARDS8 nModMapKkeys

1 KEYCODE firstVModMapKey

1 CARDS nVModMapKeys

2 SETofKB_VMOD virtualMods

2 unused

XkbStateNotify

1 ?? code

1 2 xkb code

2 CARD16 sequence number

4 TIMESTAMP time

1 CARDS devicelD

1 SETofKEYMASK mods

1 SETofKEYMASK baseMods

1 SETofKEYMASK latchedMods

1 SETofKEYMASK lockedMods

1 KB_GROUP group

2 INT16 baseGroup

2 INT16 latchedGroup

1 KB_GROUP lockedGroup

1 SETofKEYMASK compatState

1 SETofKEYMASK grabMods

1 SETofKEYMASK compatGrabMods

1 SETofKEYMASK lookupMods

1 SETofKEYMASK compatLookupMods

2 SETofBUTMASK ptrBtnState

2 SETofKB_STATEPART changed

1 KEYCODE keycode

1 CARDS8 eventType

1 CARDS requestMajor

1 CARDS requestMinor

XkbControlsNotify

1 ?? code

1 3 xkb code

2 CARD16 sequence number

4 TIMESTAMP time

1 CARDS devicelD

1 CARDS8 numGroups
12/15/97 Protocol \érsion 1.0/Document Rision 1.0 D-33

The X Keyboard Extension

Protocol Specification

SETofKB_CONTROL
SETofKB_BOOLCTRL
SETofKB_BOOLCTRL
KEYCODE

CARDS

CARDS8

CARDS8

kbl ndicator StateNotify
??
4
CARD16
TIMESTAMP
CARDS

SETofKB_INDICATOR
SETofKB_INDICATOR

PARWRBNRRE X BMRPRPRPPADDBN

N

kbl ndicator M apNotify
2?2
5
CARD16
TIMESTAMP
CARDS

SETofKB_INDICATOR
SETofKB_INDICATOR

H-b-bwld-hl\)ldl—‘x

N

kbNamesNotify
??
6
CARD16
TIMESTAMP
CARDS8

SETofKB_NAMEDETAIL
CARDS
CARDS8
CARDS8
CARDS

CARDS

CARDS8
SETofKB_GROUP
SETofKB_VMOD
KEYCODE

CARDS
SETofKB_INDICATOR

BRAPRPRPNRPRPPRPRPRPRPRPNRRANRE X

unused
changedControls
enabledControls
enabledControlChanges
keycode

eventType

requestMajor
requestMinor

unused

code

xkb code
seguence number
time

devicelD

unused

state
stateChanged
unused

code

xkb code
sequence number
time

devicelD

unused

state
mapChanged
unused

code

xkb code
sequence number
time

devicelD

unused

changed

firstType

nTypes
firstLevelName
nLevelNames
unused
nRadioGroups
nKeyAliases
changedGroupNames
changed¥ftualMods
firstkey

nKeys
changedindicators
unused

12/15/97

Protocol \érsion 1.0/Document Rision 1.0 D-34

The X Keyboard Extension

Protocol Specification

XkbCompatM apNotify
?27?

Z
CARD16
TIMESTAMP
CARDS
SETofKB_GROUP
CARD16
CARD16
CARD16

PNNNRPRRANDRR

6
kbBelINotify

??

8

CARD16
TIMESTAMP
CARDS
KB_BELLCLASSRESUIT
CARDS8
CARDS
CARD16
CARD16
ATOM
WINDOW
BOOL

kbActionM essage
??
9
CARD16
TIMESTAMP
CARDS
KEYCODE
BOOL
BOOL
SETOfKEYMASK
KB_GROUP
STRINGS8

PORRPRPRPRERANRPRE X NPADMNNRPRRPRERANERER X

X 5

kbAccessXNotify
??
10
CARD16
TIMESTAMP
CARDS
KEYCODE
SETofKB_AXNDETAIL
CARD16
CARD16

PNNNRPRRANRR

code

xkb code
sequence number
time

devicelD
changedGroups
firstSl

nSl

nTotalSlI

unused

code

xkb code
seguence number
time
devicelD
bellClass
belllD
percent
pitch
duration
name
window
eventOnly
unused

code

xkb code
sequence number
time

devicelD
keycode

press
keyEventFollows
mods

group

message
unused

code

xkb code
sequence number
time

devicelD

keycode

detalil
slowKeysDelay
debounceDelay
unused

Protocol \érsion 1.0/Document Rision 1.0 D-35

The X Keyboard Extension

Protocol Specification

XkbExtensionDeviceNotify

NNNRFPFRPARMNNNRRANPR PR

??

11

CARD16
TIMESTAMP
CARDS

SETofKB_XIDETAIL
KB_LEDCLASSRESUI
CARDS8
SETofKB_INDICATOR
SETofKB_INDICATOR
CARDS

CARDS8
SETofKB_XIFEATURE
SETofKB_XIFEATURE

code

xkb code
sequence number
time
devicelD
unused
reason
ledClass
ledID
ledsDefined
ledState
firstButton
nButtons
supported
unsupported
unused

12/15/97

Protocol \érsion 1.0/Document Rision 1.0 D-36

