The X Keyboar d Extension:
Librar y Specification

Librar y Version 1.0 / Document Re vision 1.1
X Consor tium Standar d

X Version 11, Release 6.4

Amber J. Benson and Gary Aitken

Erik Fortune
Silicon Graphics, Inc.

Donna Converse
X Consortium Inc.

George Sachs
Hewlett-Packard Company

W1 Walker
Digital Equipment Corporation

Copyright © 1995, 1996 X Consortium Inc.

Copyright © 1995, 1996 Silicon Graphics Inc.
Copyright © 1995, 1996 Helett-Packard Compan
Copyright © 1995, 1996 Digital Equipment Corporation

Permission is hereby granted, free of geato ag person obtaining a cgpf this softvare and
associated documentation files (the “Sait@/), to deal in the Softave without restriction,
including without limitation the rights to use, gopodify, mege, publish, distribte, sublicense,
and/or sell copies of the Sofame, and to permit persons to whom the Saffens furnished to do
S0, subject to the follwing conditions:

The abw@e copyright notice and this permission notice shall be included in all copies or substantial
portions of the Softare.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A RRTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE X CONSORIUM BE LIABLE FOR ANY CLAIM,
DAMAGES OR QHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTARE OR
THE USE OR QHER DEALINGS IN THE SOFT\XRE.

Except as contained in this notice, the names of the X Consortium, Silicon Graphics Inc.,
Hewlett-Packard Compay and Digital Equipment Corporation shall not be used i iding or
otherwise to promote the sale, use or other dealings in thiséeftwthout prior written authori-
zation.

Acknowledgments

This document is the result of a great deal of hankwy a great mgnpeople. Vithout Erik For-
tune’s work as Architect of the X &board Extension and the longtime support of Silicon Graph-
ics Inc. there wuld not be a &yboard etension.

We gratefully thank W Walker and Geaye Sachs for their help angpertise in praiding some
of the content for this document, and Digital Equipment Corporation awtetidackard for
allowing them to participate in this project, and we are deeply indebted to IBM fodimgpthe
funding to complete this library specification.

Most of all, we thank Gary Aitn and Amber J. Benson for their long hours and late nights as
ultimate authors of this specification, and for serving as authors, document editors, and XKB pro-
tocol and implementation vieewers. Their commitment to accuyaand completeness, their

attention to detail, theirden insight, and their good natures whemking under tremendous

pressure are in some measure responsible not only for the quality of this docurrienttHe

quality of the Keyboard a&tension itself.

Matt Landau

Manageyr X Window System
X Consortium Inc.

5 February 1996

The X Keyboard Extension

The following table shows the font conventions used in this document:

Usage Font example

Key Labels Num_Lock

New terms SowKeys acceptance delay

Function definitions XkbColorPtrXkbAddGeomColor (geom,spec,pixel)
Function references XkbAddGeomCol or

Parameters or guments geom

Structure definitions XkbGeometryRec

Structure references XkbGeonet r yRec

References to fields in a data structurekey aliases
References to masks, modifiers, controlgnor e@ oupLock

November 10, 1997 Library Version 1.0/Document Rision 1.1

The X Keyboard Extension

1 L@ YT 1 PSSR ...
1.1 Core X Protocol Support fordgboards...........ccocciviiiiiiiiee e 1.
1.2 Xkb Keyboard Extension Support forgfoards. ... 1...
1.3 XKD EXtENSION COMPONENESuiiiiiiiiiiiee ittt e ettt e ettt e st e e s e e e e eneee 1.
1.3.1 Groups and Shift DVIS..........ueeiiiiiiiii e ST
R T = - To [(o €] (0] U] o 1< S TP PP PP PPPR O T
1.4 L0 1= o 1Y/ o1 SRR b S
15 Compatibility With the Core ProtocQl..........c.cccooviiiiiiiiiiiiiieecceeeeeeeen A
1.6 Additional ProtOCOI ETOISuuiiiiiiiiieeeee ettt a e e s eee s 4.
1.7 Extension Library FUNCHONS.........cccviiiiiiiiicee e e e 4.
1.7 Error INAICAIONS.eviiiiiiiiiie et 4.
2 Initialization and General Programming Information.................cccoevvvvvvennnnn 6.
21 EXtension Header FIlESt B..ounes
2.2 EXLENSION NAME....eiiiiiiiiiiie ettt e et e e e e s nbae e e e e nneees Boeennn.
2.3 Determining Library CompatiDility............oooiiiiiiiiiii e B......
2.4 Initializing the Kayboard EXIENSION.........occuiiiiiiiiiiec e A
25 Disabling the Kyboard EXIENSION...........cuuiiiiiiee i 8......
2.6 PrOtOCOI EFTOIS. ...ttt ettt e e e e e e e e e e e e e e 9.
2.7 Display and Deice Specifications in Function CallS...........cccccoviiiniiiie e Q...
3 Data SITUCTUIES.......eeeeeie et e e e e ennanas 11......
3.1 Allocating XKb Data StrUCIUIES.........uuvuieiiiiiiiis e e e e e e e e e 11....
3.2 Adding Data and Editing Data SIrUCLUIES.ccueeeieiiiiiieeeiiieee e 11...
3.3 Making Changes to the Sems Keyboard DescCription.........cccvveeevvvivcciiiveeireeeeeennnn, 12
3.4 Tracking Keyboard Changes in the Sen........ccccoovviiiiiii l12..
3.5 Freeing Data SITUCIUIESeiie ittt 13.....
4 XKD EVBNES ...ttt e e et e e e e e e e e e e e e e e e e e 14.......
4.1 XKD BEVBNE TYPES. .ttt ettt ettt e e e e e e e e et e e e e e e e e e e e e aannees 14.......
4.2 XKD EVENt DAt STIUCLUIES.....eeiiiiieeeiie ittt ettt e e e e e eeeeeeas 15....
4.3 Selecting XKD EBNES.......cooo e e e e e e e e e 15......
4.3. 1 BEVENEMASKS......eieiiiiiiiiieee ettt 17......
4.4 Unified XKD EVBNE TYPE....ceeiiiieeiiie ittt e e e e e e e e 18.....
5 KeyDOoard STAte........cooviiiiiiiiii e 19......
5.1 Keyboard State DESCIPLON.......uuueiiiieeeee i i e e e rr e e e e e e e s snneneeees 19.....
5.2 Changing the Byboard State................ooooriiiiiiiccre e 22.....
5.2.1 Changing MOIfIerS..........uuuiiiiiiiiiee e 22.....
5.2.2 Changing GrOUPS.cceutiiiiiuiiiiiiietea e e e e ettt e e e e e e e s eeeeeaaeeeaaaans 23.....
5.3 Determining Kyboard STAte...........ccooiiiiiiiiiie e 23.....
5.4 Tracking Keyboard State.........cuvieiii i 24......
6 Complete Keyboard DeSCription..........coooiiiiiiiiiiiiiiiie e 21....
6.1 The XKDDESCREC StIUCIULE ..ottt e e e e e e e 27.....
6.2 Obtaining a Kyboard Description from the S@N.............coccciiviviiie e, 28.
6.3 Tracking Changes to theeboard Description in the Sew..............cccccviiieeennn, 28
6.4 Allocating and Freeing adgboard DeSCrPLON..........ccooiiiiieiiiiiiiee e 28..
7 Virtual MOAIfIEIS ..cceiiiiieii e 30......
7.1 Virtual Modifier Names and Masks..........cccuuuiiiiiiiiii e 30....

November 10, 1997 Library Version 1.0/Document Rision 1.1 TOC-1

The X Keyboard Extension

7.2 Modifier DefiNItIONS.......ccccoii i e e e 30......
7.3 Binding Mirtual Modifiers to Real MOdIfiers.........ccccceriiiiiiiiiiiiiieeeee e 31..
7.4 Virtual Modifier Key Mapping...........ueeeeereeeeeeiiiiiiieiieeeeeeeeesssssssssseneeeeeessesssessnsnnnes 31....
7.4.1 Inactive MOIfier SEtS......cccvuiiiiiiieie e 32....
7.5 (070 0 V7= 01110 o 1= 32.......
7.6 EXAMIPIE. e 32........

8 a0 [To= 1o TSP A......
8.1 [To [Tor= 1 (o gl \\ =T 1= R 34......
8.2 INdiCAtOr Data STTUCIUIES......uuueeiiiie e e e e e e 34.....

8.2.1 XKDINAICAOrREC.......uuiiiiiiiicciie e A.....
8.2.2 XKDINiCAtOrMAPREC.eeiiieiiiiiee et 35.....
8.3 Getting Information AbOUt INAICALOrS......ccvveeeiiiiiiieeee e 39...
8.3.1 Getting INAICAtOr StAte......cvviieeeie i 40....
8.3.2 Getting Indicator Information by Inde..........ccccccveveeeviiiicciiiieeeee e 40
8.3.3 Getting Indicator Information by Name..............cccccvvveveeeee e 400
8.4 Changing Indicator Maps and State.............cccccvviieeeeiieeenniiniiiiieeeeeeeee e A0
8.4.1 Effects of Explicit Changes on INdiCatQrS.ccooeeiiiiiiiiiiiiiiieieee e 41.
8.4.2 Changing Indicator Maps by IN’e...........ccuumiiiiiiiii 42..
8.4.3 Changing Indicator Maps by NamMe.........ccoeiiiiiiiiiiiee e 43..
8.4.4 The XkbindicatorChangesRecC StrUCIUIE..............covrriiiiieiiiiiiiiiin 43..
8.5 Tracking Changes to Indicator State or Map...........ooocuviiiiiiiiiiee e 44...
8.6 Allocating and Freeing Indicator Maps...........ooccuvviieieeiie e e e e 45...

9 BIIS .. e ari........
9.1 BEIINAMES.....eiiiii e e e e e e s Al.......
9.2 0 Lo [o] = == | PSR 48.......
9.3 Bell FUNCLIONSciiiiiiiiiiiii st n e e e e e e e e aaaaaeeees 48.......

9.3.1 Generating Named Bells............oooeveiiiiiiiiiiiiiiii e 49....

9.3.2 Generating Named Bell BMtS..............uuvuviiiiiiiiiiii e, 50...

9.3.3 Forcing a Sergr-Generated Bell...........ccooooiiiiiin bl...
9.4 DEeteCting BellS........coieeiiiee i 51.......

10 Keyboard CONrOIS...........uuuieiiiie e e e 53......

10.1 Controls that Enable and Disable Other Contrals................cuvvviiiviiiiiiiiiiiieeeeeeenn. 54..
10.1.1 The EnabledControls CoNntrol...........ccceeeeieiiiiiiiieeeeeeeeeceeeceeeeeee 2.
10.1.2 The AUtORESEt CONLIQL........uvviiieiiiiiiceee e Bh....
10.2 Control for Bell BENBIOK.........uuuiiiiiii i 86.....
10.2.1 The AudibleBell Contral.............coooiiiiiiiiir e B6....
10.3 Controls for Repeat &/ BENaVIOrcccoeiiiiiiiiiiiiiie e 56....
10.3.1 The PerkeyRepeat Contral.........ccuueviiieeiiiiiiiiiiieeee e 56....
10.3.2 The Repeatlys CONrOl.......ccccoeiiiiiiiiiieiieiecc e b6....
10.3.3 The DetectableAutorepeat CoNtrol..........ccovvveeeiiiiiciiiiieiieeeee e 57...
10.4 Controls for keyboard Oerlays (Oerlayl and Ogrlay2 Controls)..............cccceeeee 58
10.5 Controls for Using the Mouse from theooard............cccceeeriiiiiiiiniiiee e 59..
10.5.1 The MouSekeys CONLrol..........ccooiiiiiiiiiiiiiieei e 5a....
10.5.2 The MousekeysSACCEl CONIOL........ccuuiiiiiiiiiiie e 5a...
10.6 Controls for Better lyboard Access by Bkically Impaired Persons....................... 6l
10.6.1 The AcCesSXIYS CONIOL.......cccooiiiiiiiiiiiiiiie e 62....
10.6.2 The AccessXIMeoUt CONLIOL..........cocccvviiriiiiiie e 62...
10.6.3 The AccessXFeedback Contral.........cccevvevieeeiiiiiiiciiiiieie e 63...
10.6.4 ACCESSXNOLIY EBNES....ccviiiiieiii e 64....

November 10, 1997 Library Version 1.0/Document Rision 1.1 TOC-2

The X Keyboard Extension

11

12

13

10.6.5 StickyKeys, RepeatKeys, and MouseKeys EVENtS.........c.ccoevererereeneneneeeeene 65
10.6.6 The SIOWKEYS CONLIOLcccueiiieiicieeic e 65
10.6.7 TheBounceKeys CONtrol..........cccoviieiiieere e 66
10.6.8 The StiCkyKeyS CONLIOlcccciieiiieieiiceesie ettt e 67
10.7 Controlsfor General Keyboard Mapping........cccoeeeerreneineeineeseesee e 68
10.7.1 The GroupsSWrap CONIOlcceerieeerieerieisieeriee s 69
10.7.2 The IgnoreLockMods CONLIOccoiieirieirieirieesiesi e 69
10.7.3 The IgnoreGroupL ock CONLIOccoeirieirieirieieriesiees e 70
10.7.4 TheInternaMods CONLIOL........cceieiereeeeeeeeeer e e 70
10.8 The XKDCONtroISREC SIIUCIUME......ccevieeiereeiereeteree ettt st 71
10.9 (@ U1< Y7100l Oe a1 0] =S 77
10.10 Changing CONIOIS........coueerteerteerrerietereete st seere et et et b e sb et b se b seebeseebeseebeseesessenennas 77
10.10.1 The XkbControl SChangesReC SIIUCIUNE..........ccvrveirieririerirerieese e 78
10.11 Tracking Changes to Keyboard CONrolS.........coceoveeeereresesese e seeseesie e 79
10.12 Allocating and Freeing an XKbCONtrOISRECc.ccveveeieeie i 80
10.13 The Miscellaneous Per-client CONtIOlSooiieirieiereee e e 8l
X LIDrary CONLIOIS.......ceiuieiecieiteeie sttt ste et e st esseeae e e reeeesnne e 82
111 Controls Affecting Keycode-to-String Translationcccccvveeveceevescee v 82
1111 FOrceLatinILOOKUD.cviuiiiiicc s 82
11.1.2 ConSUMEL OOKUPMOUS.......ccuiieeiieieseeieiee ettt e e 82
11.1.3 AlwaysConsumeShiftANALOCKccccoveiriiririnerereeere e 83
11.2 Controls Affecting COMPOSE PrOCESSINGcveruerverieriereeneeeeeeeeresesie st ste e e e seeseeesneenes 83
11.2.1 ConsumeKeysONCOmMPOSEFalccooveirieirieireriese e 83
11.2.2 COMPOSELED ... e bbb e 84
11.2.3 BeepONCOMPOSEFEIccciuiiriiiriiieiisieere e 84
11.3 Controls Effecting EVENt DEIIVETYccov et 84
11.3.1 IgnoreNewKeyboards ... 84
114 Manipulating the Library CONrolS...........oooeriiieeenre e 85
11.4.1 Determining Which Library Controls are Implemented..............cooceoeneneeeenne. 85
11.4.2 Determining the State of the Library Controls..........ccocooevininiiiniieneneeee 85
11.4.3 Changing the State of the Library Controls..........ccccceveiieieviecccececceeeee e, 85
INterpreting KEY EVENLS......c.ooe ettt nne e 87
121 Effects of Xkb onthe Core X Libraryccccceveoeeocceccee e 87
12.1.1 Effects of XKb on EVENt SEALE.......ccoeirieirieerie e 87
12.1.2 Effects of Xkb on MappingNotify EVENESccoevririinnieeeees e 87
12.1.3 X Library Functions Affected by XKDc.cccooeviririiiieniin e 88
122 Xkb Event and Keymap FUNCLIONS..........ccoiiiiieiecenerene e e e 89
KeyDOoard GEOMELTYcoiiiiiiiesiise s s 92
131 ShapeS aNA OULIINESc.veveeeeceee et sr e et e e e eneens 94
13.2 SECLIONS ...ttt bbb et ettt h e b e Rt bt b et ettt e e s 95
133 ROWS AN KEYS......oieeieciieeie ettt 95
134 [0 T0 0 o OSSP 96
135 Overlay Rows and OVerlay KeYScooviieiiiiccecese ettt 96
13.6 Drawing a Keyboard REPreSentation...........ccoe e 97
13.7 GEOMELTY Data SITUCIUIEScecee ettt see e sae e nreenee e 98
13.8 Getting Keyboard Geometry From the SErVercccvveceeeeveceecc e 104
139 USiNg Keyboard GEOMELTYccueeiuiieriiiniiiees ettt 105
13.10 Adding Elementsto a Keyboard GEOMELIY...........cccevvreriereriereeseeeeeseeesese e e seeseeneas 106

November 10, 1997 Library Version 1.0/Document Revision 1.1

TOC-3

The X Keyboard Extension

13.11 Allocating and Freeing Geometry COMPONENLS...........ooviuvririieeieieeeeeee i 110
14 Xkb Keyboard Mapping.......ceeeeeeeeeeeeeeeieeeeeeeiiisssn s e e e e e e e e e eeeeeeeaenennnns 116...
275 R \\Fo] = 11 o a W= T To 1 1011 T) [T |25 116...
14.1.1 Core Implementation...........cccuuviiiiiieeee e 117..
14.1.2 XKb IMplementation.............oooouiiiiiiiieee e e e 117..
14.2 Getting Map Components from the SBINV...........coooviiiiiiiii e 118
14.3 Changing Map Components in the SEIV.........ccccciiiiii e 120.
14.3.1 The XkbMapChangeSREC StIUCIUIEcccuriieiiiiiiiee e 120
14.4 Tracking Changes to Map COMPONEILS..........ccvverrriernreeeiree e sree e 122.
14.5 Allocating and Freeing Client and SerniMaps..........ccccuviiiiiiiieeeniniiiiiieeeeeee e 123
14.5.1 Allocating an Empty Client Map............ueeeiiiiiiiiiiiiiiiieeecee e 123
14.5.2 Freeing a Clent Map........coccuuiiiiiiiiie e 124..
14.5.3 Allocating an EMpty SEBI Map.......cccueiieiiiiiiiiiiiiieeeee e 124
14.5.4 Freeing @ SEBE MaP.....coi ittt 125..
15 Xkb Client Keyboard Mapping..........cceeeeeeeeeeeeeeeeeeeeeeeeiiiiinnns e e e e e e e e e eeeees 126..
15.1 The XKbClentMapREC StrUCTUIE..........cceirireieiiee e 127..
15.2 KEBY TYPES ittt e et ettt a e e e e e aeae e 127......
15.2.1 The Canonical Iy TYPES........uuiiiiiiaiiiiiiiiieeee e e e 129..
15.2.2 Getting Key Types from the SeBr ... 131
15.2.3 Changing the Number of kels in a Ky Type.........ccoveveeiiiiine i 132
15.2.4 COpYiNg KEY TYPES...oiiiiiiiiiee ittt 132..
15.3 KEY SYMBDOI VAP, .. ciiiiiiiiiiie et e e 133....
15.3.1 PerKey Key TYPe INAICES......uiiiiiiiiiiie ettt 133.
15.3.2 PerKey Group INformation.............coouieieiiiiiiiie e 134.
15.3.3 KEY WIAN ...t 135....
15.3.4 Offset in to the SYmbol Map........oooiiiiiiiiiiiee e 135.
15.3.5 Getting the Symbol Map fordgs from the Semr..........ccoocveeiiiiecinnn, 136
15.3.6 Changing the Number of Groups angp@&s Bound to a &......................... 137
15.3.7 Changing the Number of Symbols Bound toeyK..........ccoceeeriiiiiiennnnn. 138
15.4 The PetrKey Modifier Map.........cccccuiiiiiiieiee e e e e e e e e e e e e e s 138...
15.4.1 Getting the PeKey Modifier Map from the Selr.........cccccvvvevveveeiiiniicnns 139
16 Xkb Sener Keyboard MappPing.........ueee et 140..
16.1 KEY ACHIONS. ...ttt e e e et e e e s 141....
16.1.1 The XKDACLON StIUCLUIE........cuuiiiiiiiiieeee e 142..
16.1.2 The XKDANYACLON SIMUCIUIE........eeviiiiiiiie ittt 143.
16.1.3 Actions for Changing Modifiers’ State............cccooeuviviiiniiiiee e, 143
16.1.4 Actions for Changing Group State..........ccoocuvereiiiiieieeiiiiee e 145
16.1.5 Actions for Moving the POINLer..........occuiiiiiiiiiii e 141.
16.1.6 Actions for Simulating Pointer Button Press and Release..................... 148
16.1.7 Actions for Changing the Pointer Button Simulated...............c.cccveeenns 149
16.1.8 Actions for Locking Modifiers and Group............coocvveeeeiiiiieeeeniiiieeeenens 150
16.1.9 Actions for Changing the AGtE SCreen.........cccceeeviiiiiieiiniiiiee e 153
16.1.10 Actions for Changing Boolean Controls State...........cccccevviveeeeeiiiieeeennns 154
16.1.11 Actions for Generating MeSSAgESuvveeiiriiiieee ittt 155
16.1.12 Actions for Generating a O#rent Keycode............occovveeiiiiiiieiniiiee e, 156
16.1.13 Actions for Generating DéceButtonPress and DieeButtonRelease........ 158
16.1.14 Actions for Simulating Egnts from Deice Valuators..............ccccceevvinnneen. 159
16.1.15 Obtaining Key Actions for Keys from the Semfr...........ccccocceeiiiiiieeene 160
16.1.16 Changing the Number of Actions Bound to @/K..........ccccoocviiiiiiiiiinnens 160
T (= YA = 1= s T Vo) P 161.....
T2 R = - To [[0 T €1 {010 o L= SRS 161...

November 10, 1997 Library Version 1.0/Document Rision 1.1 TOC-4

The X Keyboard Extension

16.2.2 The XKDBeh&IOr StrUCTUIe..........ceviiiiiiiee i 161.
16.2.3 Obtaining Key Behaviors for Keys from the Semr.................cooeeiiiviviennns 162
16.3 Explicit Components—¥oiding Automatic Remapping by the Serv.................... 163
16.3.1 Obtaining Explicit Components forégs from the Semr.............ccccoeeenee. 163
16.4 Virtual Modifier Mapping.........eeeeeeeeeeiiiiiiiiieieeee e e e e s s erreee e e s s s snnenrreeeeeeees 164...
16.4.1 Obtaining \irtual Modifier Bindings from the Seev.............ccccccvvvvveeeeeenn. 165
16.4.2 Obtaining PeiKey Virtual Modifier Mappings from the Segv.................... 166
17 The Xkb Compatibility Map.........coooiiiiiiiiiiii e 167..
17.1 The XKbCompatMap SIIUCIUIE.........ccouiiiiieeiiiiiie et 169..
17.1.1 Xkb State to Core Protocol Stateafisformation................cccocveviiiiniinnns 169
17.1.2 Core Keyboard Mapping to Xkb Byboard Mapping flansformation........... 170
17.1.3 Xkb Keyboard Mapping to Coredg¢board Mapping flansformations......... 173
17.2 Getting Compatibility Map Components From the Serv........ccccccevvvvcvvvvienennnnnn. 174
17.3 Using the Compatibility Map.........cccuuviiiiiiiiiaiii e 175..
17.4 Changing the Seer's Compatibility Map..........ccccceiiiiiiiiiniiee e 177
17.5 Tracking Changes to the Compatibility Map.........cccccveveeeiiiiiiiiiiiiiieeeee e 178
17.6 Allocating and Freeing the Compatibility Map...........cccceeeiiiiiiiiiiiiiiieeeeees 179
18 SYMDBDONIC NAIMES ... 180....
18.1 The XKDNamMeSREC SIIUCIUIE........oiiiiiiiiie e 180...
18.2 Symbolic NamMeS MaSKS........covviiiiiiiiiiiiice e 182...
18.3 Getting Symbolic Names From the SEIV............coeviiiiii i 183
18.4 Changing Symbolic Names 0n the SBTV...........c..ooovcvviiiiiiiiec e 183.
18.5 Tracking Name Changes.........cccoeiiiiiiiiiieeeeeeee s e e e e e e e e e e e e e e eeaeeeaaaens 185...
18.6 Allocating and Freeing Symbolic Names. ..o 186.
19 Replacing a l&yboard “Onthe Fly ..., 187.
20 Sener Database of &/board COmMpPONENtS.........uuuuiiiiiiieieee e 190
20.1 ComMPONENE NAIMES.....ouiiiiiiiieiiii et r e e e s s s ereae e e e 191...
20.2 Listing the Knavn Keyboard CoOmponents...........ccvveieieiieee i e 191
20.3 COMPONENT HINES... ettt e e e e e e e e e e e e e e aaes 192....
20.4 Building a Keyboard Description Using the SenDatabase............ccccccoevvveeeennne 193
21 Attaching Xkb Actions to X Input Extension BIees............cccccceeeeieieeeeeennn. 198
21.1 XKDDEVICEINTOREC.eeiiiiiiiiiieeiiieie ettt 199....
21.2 Querying Xkb Features for Nond¢Class Input Extension D&Ees..............cccecevneeee. 200
21.3 Allocating, Initializing, and Freeing the XkbBieelnfoRec Structure...................... 203
21.4 Setting Xkb Features for Nong¢Class Input Extension DEes............cccceeeeereeennn. 204
215 XKbExtensionD@ICENOLITY EVENT........coiiuuiiiiiiiiiiiie et 2086..
21.6 Tracking Changes to EXENSIONMDEES........ccuivieeeiieiiiieniinieeereeeeeesessnnnnieneeeeeeeeees 2017.
22 DT o 8o [o 11 o [0 Y [0 KSR 210....
TaDIE 22. 5I0SSANY. ...ttt 211.....

November 10, 1997 Library Version 1.0/Document Rision 1.1

TOC-5

The X Keyboard Extension

Figure 1.1 Overall XKD StrUCTUIe..........cooiiiiiiiieee e 2......
Figure 5.1 XKD State.......ccoooiiiiiiiie e 19......
Figure 10.1 MouseKeys ACCeleration..............oouvuuuriiiiiiiiiiiee e 61...
Figure 131 Rotated Kayboard SECHONS..........cccviiiiiiiiiiiiiii e 92...
Figure 13.2 Keyboard with Bur SECHONS...........uvuuiiiiiiii e 94...
Figure 13.3 ROWS iN @ SECHON..........uuuiiiiiiiie e e e e e e e e e e e e e eeeeaaannes 95.....
Figure 13.4 Xkb Geometry Data StrUCIUIES.cvvvviiiiiiieieeeeeieeeeeeciiieeeee 98...
Figure 13.5 Xkb Geometry Data Structures (Doodads)..........ceeeeeeeeiiiiieeeeininnnns 99.
Figure 13.6 Xkb Geometry Data Structures (ENaYS)........ccceevveeeeeeeeirieieeeeiiinnns 100
Figure 13.7 Key Surface, Shape Outlines, and Bounding BaX...............cceeeen. 105
Figure 14.1 Shift Levels and GrOURS......coooiiiiiieeeieeeeeeeeiiiiii e eeeeeeeeees 117..
Figure 15.1 XKb Clent Map..........coovviiiiiiiiiiiei e 126...
Figure 16.1 Sener Map Relationships.........cooooiiiiiiiiiiiiiiiiieeeee e 140.
Figure 16.2 Virtual Modifier Relationships..............oooviiiiiiiiiiiiii e 165.
Figure 17.1 Sener Interaction with ¥pes of Clients.............ccccoevvveviiiiiiiiiceennn. 167
Figure 17.2 Sener Dervation of State and é&/board Mapping Components....... 168
Figure 17.3 Xkb Compatibility Data StruCtures.............ccooevvviviiiiiiiiiineeeeeeeeeee 169
Figure 20.1 Building a Nev Keyboard Description from the SenvDatabase....... 196

November 10, 1997 Library Version 1.0/Document Rision 1.1 LOF-12

The X Keyboard Extension

Table 1.1 Function Error Returns Due to Extension Problems...........cccccoeevvvennn 4o
Table 2.1 XKD ProtOCOI EFTOISt 9.......
Table 2.2 BadKeyboard Protocol Error resource_i@dIMes..........ccooeevveieeeiiiiiiiieeiiiinnnn, 9...
Table 4.1 XKD EVENT TYPES ...ciiiiiiiiiiiiie ettt 14......
Table 4.2 XkbSelectEents Mask CONSLANIS...........cooeiiiiiiiiiiiiiiiiiee e 17...
Table 5.1 Real Modifier MASKS...........uuuiiiiiiie e e e e e 22.....
Table 5.2 Symbolic Group NaAMES..........uuiiiiiiiiiiiiiiie s 23.....
Table 5.3 XkbStateNotify Eent Detail Masks............ooooiiiiiiiiiiii e 24...
Table 6.1 XkbDescRec Component References........coceeevvveieieeeeiieiieeeeeieenn 27...
Table 6.2 Mask Bits for XKDDESCREC.........uuiiiiiiiiieeiiiiiieeeeiieers s e e e e e eeeeeeeeees 28....
Table 8.1 XkbIndicatorMapRec flags Field..............ooiiiiiiiii e, 35...

Table 8.2 XkbIndicatorMapRec which_groups and groupsylsoard Drves Indicator..37
Table 8.3 XkbIndicatorMapRec which_groups and groups, Indicatovérkeyboard..37

Table 8.4 XkblIndicatorMapRec which_mods and modgyBoard Drves Indicator.....38
Table 8.5 XkbIndicatorMapRec which_mods and mods, Indicatov&sikeyboard......39
Table 9.1 Predefined BellS.........uuueeiiiiii e 48......
Table 9.2 Bell Sounding and Bell Eant Generating..........cccooeevieeeiieiiiieeeiiiiiiiennn 49..
Table 10.1 Xkb Keyboard CONtrolSs............coovvuiiiiiiiiiiiiieeeeeeeeeeeeee e 53....
Table 10.2 MouseKaySACCEl FIeldS.........cuuiiiiiiiiiiiiiiee e 59....
Table 10.3 AccessXFeedback MaskKsS.........ccooouiiiiiiiiiiiiiiiii i 63....
Table 10.4 AcCeSSXNOLIfY EXBNLSuuuiiiiiii i 64.....
Table 10.5 AccessXNotify Eent Details...........ccccuvvviiiiiiiiii, 65....
Table 10.6 XKD CONIOIS......uii e 712......
Table 10.7 Controls Mask BitS..........coouiiiiiiiiiiiiiiiiieiiceeee e 73.....
Table 10.8 GroupsWrap options (groups_wrap field)...........ccccovvveveeeviniennnnnnnnnnn L4,
Table 10.9 Access X Enable/Disable Bits (ax_options field).............ccccceeeeeeeiiiieeennnn 45,
Table 11.1 Library Control MasksS.......ccccooiieiiiiiiieeeeess e 85.....
Table 13.1 DOO0UAU TPES....uuuuuiiiiiiiiiiiiiiiiie et e e e e e e e e e e e e e e e e e Q6......
Table 14.1 Xkb Mapping Component Masks and @enience Functions................... 118
Table 14.2 XkbMapChangesReC MasKS.............uuuuuiiiiiiiiii e 121..
Table 14.3 XKDAIlOCClientMap MasKS.............uuuuiiiiiiiiiiiiiiiieeeeeee e 123..
Table 14.4 XkbAllocSenerMap Masks. ... e 124..
Table 15.1 EXample KoY TYPE......coovveeieeeeee it e ettt a e e e e e e e e e e eaees 128...
Table 15.2 group_info Range Normalization..................uuveiiiiiiiiinie e 134.
Table 15.3 Group INd@ CONSIANTS.......ccoiiiiiiiiie e e 137...
Table 16.1 ACHON TYPES. i i e e ee et e e e e e e e e e e e e e e aeaaaaaaees 143....
Table 16.2 Modifier ACHON TYPES.....cuuiiiiiiiieeeee et 144...
Table 16.3 Modifier ACtON FlagS........coooiiiiiiiiiiiiie e 145...
Table 16.4 Group ACHION T PES . ..uuuiiii i 146...
Table 16.5 Group ACiON Flags..........oooiiiiiiiiiiiii e 146...
Table 16.6 PoINter ACHON TPES...couuiiiiiiiiieiie ettt e e e e e e e e e e eeeennnnes 147...

November 10, 1997 Library Version 1.0/Document Rision 1.1 LOT-1

The X Keyboard Extension

Table 16.7 Pointer Button ACHION JPES.....uuuiiiiiiiiiiiiiieeee e 149..
Table 16.8 Pointer Button ACtion Flags............ouuuuueiiiiiiiiie e 149..
Table 16.9 Pointer Defult Flags...........ooovviiiiiiiiiiii e 150...
Table 16.10ISO Action Flags when XkbSA_ISODfltiIsGroup is Set........cccccceeeeeeennn. 151
Table 16.111SO Action Flags when XkbSA_ISODfltisGroup is Not Set................... 152
Table 16.121SO Action Affect Field VAIUES..........ccuvviiiiiiiiiiiieee e 152.
Table 16.13Switch Screen AcCtion FIags.........cccuueiiiiiiiiiiiiiiie e 153..
Table 16.14C0oNtrolS ACHON TPES....uuuuiiiiiiiiiee et eeeaaaaee 154...
Table 16.15CoNntrol ACtON FIagS........uuuuiiiiiiie e 154...
Table 16.16Message ACtiON FIags.........cuuuuuiiiiiiiiiiiiiiiiieeeee e 155...
Table 16.17Device Button ACHION TPES.....ccoiiiiiiiiiiiiiiiiiiii e 158..
Table 16.18Device Button ACtion FIAgS.........cuuuuiiiiiiiiiicc e 158..
Table 16.19Device Valuator v<n>_what High BitSAIUES............cevviiiiiiiiiiiiiiiiiii, 159
Table 16.20Key BENAIOIS.oooiiiiiiiiiieie e e e e eeeeeenanaes 161....
Table 16.21Explicit COomponent MasKS........ccceieeiiiiiiiiiieiics e 163..
Table 17.1 Symbol Interpretation Match Criteria.........ccccceevveeiiieiiiiiieeeeee, 172
Table 17.2 Compatibility Map Component Masks...........coooiiiiiiiiiiiiiiiiinee e 174
Table 18.1 Symbolic Names MaskS..........ooovvviiiiiiiiiiiiiice e 182..
Table 18.2 XkbNameChanges Fields. ... 184..
Table 19.1 XkbNewKeyboardNotifyEent DetailS............cooooviiiiiiiiiiiiiiiiiiiieee e 188
Table 20.1 Sener Database &/board COMPONENLS............evvveiiiiiiiiiieeeeeieeeeeeeiiiiiianns 190
Table 20.2 XkbComponentNameRec Flags BitS..........ccooouiiiiiiiiiiiiiiiiiiiiiiccceeeeeeen 193
Table 20.3 Want and Need Mask Bits and Required Names Companents.............. 195
Table 20.4 XkbDescRec Components Returned fatués of Vdnt & Needs............... 197
Table 21.1 XkbDevicelnfOReC Mask BitS...........cuuuuuiiiiiiiiiiieeeeeeeeeeeeeeene e 200.
Table 22.1 Delug Control MasKS..........cooiiiiiiiiiiiiiie e 210...

November 10, 1997 Library Version 1.0/Document Rision 1.1 LOT-2

The X Keyboard Extension 1 Owerview

1

11

1.2

1.3

Overview

The X Keyboard Extension provides capabilities that are lacking or are cumbersome in the
core X protocol.

Core X Protocol Support for Keyboards

The core X protocol specifies the ways that$hef t , Cont r ol , andLock modifiers

and the modifiers bound to tiMode_switch or Num_Lock keysyms interact to generate
keysyms and characters. The core protocol also allows users to specify that a key affects
one or more modifiers. This behavior is simple and fairly flexible, but it has a number of
limitations that make it difficult or impossible to properly support many common varieties
of keyboard behavior. The limitations of core protocol support for keyboards include:

» Use of a single, uniform, fotsymbol mapping for alléyboard keys males it dificult
to properly supportdyboard werlays, PC-style brealeks, or leyboards that comply
with 1ISO9995, or a host of other national and international standards.

» A second kyboard group may be specified using a modifiet this has side fdfcts
that wreak heoc with client grabs and X toolkit translations. Furthermore, this
approach limits the number ofboard groups to ta

» Poorly specified lockingdy behaior requires X serers to look for a fe “magic” key-
syms to determine thagks should lock when pressed. This leads to incompatibilities
between X semrs with no vay for clients to detect implementationfdiences.

» Poorly specified capitalization and control bébarequires modifications to X library
source code to supportme&haracter sets or locales and can lead to incompatibilities
between system wide and X library capitalization baira

» Limited interactions between modifiers specified by the core protoca maky com-
mon keyboard behaors difficult or impossible to implementoF example, there is no
reliable vay to indicate whether or not the shift modifier should “cancel” the lock mod-
ifier.

» The lack of ag explicit descriptions for indicators, most modifiers, and other aspects
of the lkeyboard appearance requires clients that wish to clearly describeytiwakd
to a user to resort to a mistash of prior kneledge and heuristics.

Xkb Keyboard Extension Support for Keyboards

The X Keyboard Extension makes it possible to clearly and explicitly specify most aspects
of keyboard behavior on a per-key basis. It adds the notion of a keyboard group to the glo-
bal keyboard state and provides mechanisms to more closely track the logical and physical
state of the keyboard. For keyboard-control clients, Xkb provides descriptions and sym-
bolic names for many aspects of keyboard appearance and behavior.

In addition, the X Keyboard Extension includes additional keyboard controls designed to
make keyboards more accessible to people with movement impairments.

Xkb Extension Components

The Xkb extension is composed of two parts: a server extension, and a client-side X
library extension. These consist of a loadable module that may be activated when an X
server is started and a modified version of Xlib. Both server and Xlib versions must be at
least X11 R6.

November 10, 1997 Library Version 1.0/Document Rision 1.1 1

The X Keyboard Extension

1 Owerviewn

Figure 1.1 shows the overall structure of the Xkb extension:

Xkb Extension

Xkb-aware | | Xkb-capable| | Xkb-unaware
User User User
Application Application | | Application Keyboard
Core Xlib [X Server
Xkb Server Extension

Xkb CoreXlb |&« |-
Additons|] Client Map, Server Mad Compatlblllty Map

X | yyp Modifications | [T ot i

(Xkb to Core Xlib Controls| Indicator Map! Names! Geometry
functions) functions ' :

!

Server Database of
Keyboard Components

Figure 1.1 Overall Xkb Structure

The server portion of the Xkb extension encompasses a database of named keyboard com-
ponents, in unspecified format, that may be used to configure a keyboard. Internally, the
server maintains keyboard description that includes the keyboard state and configuration
(mapping). By “keyboard” we mean the logical keyboard device, which includes not only
the physical keys, but also potentially a set of up to 32 indicators (usually LEDs) and bells.

The keyboard description is a composite of several different data structures, each of which
may be manipulated separately. When manipulating the server components, the design
allows partial components to be transmitted between the server and a client. The individ-
ual components are shown in Figure 1.1.

Client Map
The key mapping information needed to convert arbitrary keycodes to symbols.

Server Map

The key mapping information categorizing keys by functionality (which keys are
modifiers, how keys behave, and so on).

Controls

Client configurable quantities effecting how the keyboard behaves, such as repeat
behavior and modifications for people with movement impairments.

November 10, 1997 Library Version 1.0/Document Rision 1.1 2

The X Keyboard Extension 1 Owerview

13.1

1.3.2

1.4

Indicators
The mapping of behavior to indicators.

Geometry

A complete description of the physical keyboard layout, sufficient to draw a represen-
tation of the keyboard.

Names

A mapping of names to various aspects of the keyboard such as individual virtual
modifiers, indicators, and bells.

Compatibility Map
The definition of how to map core protocol keyboard state to Xkb keyboard state.

A client application interrogates and manipulates the keyboard by reading and writing
portions of the server description for the keyboard. In a typical sequence a client would
fetch the current information it is interested in, modify it, and write it back. If a client
wishes to track some portion of the keyboard state, it typically maintains a local copy of
the portion of the server keyboard description dealing with the items of interest and
updates this local copy from events describing state transitions that are sent by the server.

A client may request the server to reconfigure the keyboard either by sending explicit
reconfiguration instructions to it, or by telling it to load a new configuration from its data-
base of named components. Partial reconfiguration and incremental reconfiguration are
both supported.

Groups and Shift Levels

The graphic characters or control functions that may be accessed by one key are logically
arranged in groups and levels. See section 14.1for a complete description of groups and
levels.

Radio Groups

A radio group is a set of keys whose behavior simulates a set of radio buttons. Once a key
in a radio group is pressed, it stays logically depressed until another key in the group is
pressed, at which point the previously depressed key is logically released. Consequently,
at most one key in a radio group can be logically depressed at one time. A radio group is
defined by a radio group index, an optional name, and by assigning each key in the radio
groupXkbKB_Radi oG oup behavior and the radio group index.

Client Types
This specification differentiates between three different classes of client applications:

» Xkb-aware applications
These applications malkspecific use of Xkb functionality and APIs not present in the
core protocol.

» Xkb-capable applications
These applications makno use of Xkbxdended functionality and Application Pro-
gramming Interéices (APIs) directlyHowever, they are linked with a ersion of Xlib
that includes Xkb and indirectly benefit from some of Xligatures.

November 10, 1997 Library Version 1.0/Document Rision 1.1 3

The X Keyboard Extension 1 Owerview

15

1.6

1.7

1.7.1

» Xkb-unawvare applications
These applications makno use of Xkbxdended functionality or APIs and require
Xkb's functionality to be mapped to core Xlib functionality to operate praperly

Compatibility With the Core Protocol

Because the Xkb extension allows a keyboard to be configured in ways not foreseen by
the core protocol, and because Xkb-unaware clients are allowed to connect to a server
using the Xkb extension, there must be a means of converting between the Xkb domain
and the core protocol. The Xkb server extension maintains a compatibility map as part of
its keyboard description; this map controls the conversion of Xkb generated events to core
protocol events and the results of core protocol requests to appropriate Xkb state and con-
figuration.

Additional Protocol Errors

The Xkb extension adds a single protocol erfBaKeyboar d, to the core protocol error
set. See section 2.6 for a discussion ofBh@Keyboar d protocol error.

Extension Library Functions

The X Keyboard Extension replaces the core protocol definition of a keyboard with a
morelcomprehensive one. The X Keyboard Extension library interfaces are included in
Xlib.

Xlib detects the presence of the X Keyboard server extension and uses Xkb protocol to
replace some standard X library functions related to the keyboard. If an application uses
only standard X library functions to examine the keyboard or process key events, it should
not need to be modified when linked with an X library containing the X keyboard exten-
sion. All of the keyboard-related X library functions have been modified to automatically
use Xkb protocol when the server extension is present.

The Xkb extension adds library interfaces to allow a client application to directly manipu-
late the new capabilities.

Error Indications

Xkb functions that communicate with the X server check to be sure the Xkb extension has
been properly initialized prior to doing any other operations. If the extension has not been
properly initialized or the application, library, and server versions are incompatible, these
functions return an error indication as shown in Table 1.1. Because of thiBatkt;

cess andBadMat ch (due to incompatible versions) protocol errors should normally not

be generated.

Table 1.1 Function Error Returns Dueto Extension Problems

Functions return type Return value
pointer to a structure NULL

Bool False

Status BadAccess

1. X11R6.1 is the first release by the X Consortium, Inc.,that includes tlegb#&rd Extension in XlibX11R6
included vork in progress on thisxeension as nonstandard additions to the library

November 10, 1997 Library Version 1.0/Document Rision 1.1 4

The X Keyboard Extension 1 Overview

Many XKkb functions do not actually communicate with the X server; they only require
processing in the client-side portion of the library. Furthermore, some applications may
never actually need to communicate with the server; they smply use the Xkb library capa-
bilities. The functions that do not communicate with the server return either a pointer to a
structure, aBool, or a Status. These functions check that the application has queried the
Xkb library version and return the values shown in Table 1.1 if it has not.

November 10, 1997 Library Version 1.0/Document Revision 1.1 5

The X Keyboard Extension 2 Initialization and General Programming

2

2.1

2.2

2.3

Initialization and General Programming Information

Extension Header Files
The following include files are part of the Xkb standard:

e <X11/ XKBli b. h>
XKBl i b. h is the main header file for Xkb; it declares constants, types, and functions.
o <X11/ext ensi ons/ XKBstr. h>
XKBst r. h declares types and constants for Xkl included automatically from
<X11/ XKBl i b. h>; you should neer need to reference it directly in your application
code.
s <X11/ ext ensi ons/ XKB. h>
XKB. h defines constants for Xkh is included automatically fromX11/ XKB-
st r. h>; you should neer need to reference it directly in your application code.
« <X11/ ext ensi ons/ XKBgeom h>
XKBgeom h declares types, symbolic constants, and functions for manipulang k
board geometry descriptions.

Extension Name
The name of the Xkb extension is giverxiXiLl/ ext ensi ons/ Xkb. h>:
#define XkbName “XKEYBOARD”

Most extensions to the X protocol are initialized by calkhg tExtension and passing the
extension name. However, as explained in section 2.4, Xkb requires a more complex ini-
tialization sequence, and a client program should noXtalExtension directly.

Determining Library Compatibility

If an application is dynamically linked, both the X server and the client-side X library
must contain the Xkb extension in order for the client to use the Xkb extension capabili-
ties. Therefore a dynamically linked application must check both the library and the server
for compatibility before using Xkb function calls. A properly written program must check
for compatibility between the version of the Xkb library that is dynamically loaded and
the one used when the application was built. It must then check the server version for
compatibility with the version of Xkb in the library.

If your application is statically linked, you must still check for server compatibility and
may check library compatibility. (It is possible to compile against one set of header files
and link against a different, incompatible, version of the library, although this should not
normally occur.)

To determine the compatibility of a library at runtime, é&bLibraryVersion.

Bool XkbLibraryVersion(lib_major_in_out, lib_minor_in_out)
int* lib_major_in_out; /* specifies and returns the major Xkb librasrsion. */
int* lib_minor_in_out; /* specifies and returns the minor Xkb libramrsion. */

Pass the symbolic valutkbMaj or Ver si on in lib_major_in_out andXkbM nor Ver -
sioninlib_minor_in_out. These arguments represent the version of the library used at
compile time. TheXkbLibrary\Version function backfills the major and minor version
numbers of the library used at run timdilm major_in_out andlib_minor_in_out. If the

November 10, 1997 Library Version 1.0/Document Rision 1.1 6

The X Keyboard Extension 2 Initialization and General Programming

versions of the compile time and run time libraries are compaXkibd,ibraryVersion
returnsTr ue, otherwise, it returnBal se.

In addition, in order to use the Xkb extension, you must ensure that the extension is
present in the server and that the server supports the version of the extension expected by
the client. UseXkbQueryExtension to do this, as described in the next section.

2.4 Initializing the Keyboard Extension

Call XkbQueryExtension to check for the presence and compatibility of the extension in
the server and to initialize the extension. Because of potential version mismatches, you
cannot use the generic extension mechanism functipigel yExtension and XInitExten-

sion) for checking for the presence of, and initializing the Xkb extension.

You must callXkbQueryExtension or XkbOpenDisplay before using any other Xkb library
interfaces, unless such usage is explicitly allowed in the interface description in this docu-
ment. The exceptions angkblgnoreExtension, XkbLibraryVersion, and a handful of audi-
ble-bell functions. You should not use any other Xkb functions if the extension is not
present or is uninitialized. In general, calls to Xkb library functions made prior to initializ-
ing the Xkb extension cauadAccess protocol errors.

XkbQueryExtension both determines whether a compatible Xkteasion is present in the
X sener and initializes thextension when it is present.

Bool XkbQueryExtension(dpy, opcode_rtrn, event_rtrn, error_rtrn, major_in_out,
minor_in_out)

Display * dpy; /* connection to the X seer */

int * opcode _rtrn; * backfilled with the majorx@ension opcode */

int * event_rtrn; [* backfilled with the &tension basevent code */

int * error_rtrn; /* backfilled with the gtension base error code */

int * major_in_out; /* compile time lib major ersion in, sergr major ersion out */
int * minor_in_out; /* compile time lib min ersion in, sergr minor \ersion out */

The XkbQueryExtension function determines whether a compatible version of the X Key-
board Extension is present in the server. If a compatible extension is pxéb&uie-
ryExtension returnsTr ue; otherwise, it returnbal se.

If a compatible version of Xkb is preseKkbQueryExtension initializes the extension. It
backfills the major opcode for the keyboard extensiampaode _rtrn, the base event code

in event_rtrn, the base error code error_rtrn, and the major and minor version numbers

of the extension imajor_in_out andminor_in_out. The major opcode is reported in the
req_major fields of some Xkb events. For a discussion of the base event code, see section
4.1.

November 10, 1997 Library Version 1.0/Document Rision 1.1 7

The X Keyboard Extension 2 Initialization and General Programming

2.5

As a convenience, you can use the funcKiibOpenDisplay to perform these three tasks
at once: open a connection to an X server, check for a compatible version of the Xkb
extension in both the library and the server, and initialize the extension for use.

Display *XkbOpenDisplay(display_name, event_rtrn, error_rtrn, major_in_out, minor_in_out,
reason_rtrn)
char "display name; /* hardware display name, which determines the display and
communications domain to be used */
int* event_rtrn; /* backfilled with the &tension basevent code */
int* error_rtrn; [* backfilled with the &tension base error code */
int* major_in_out; /* compile time lib major ersion in, serer major \ersion out */
int* minor_in_out; /* compile time lib minor ersion in, sergr minor \ersion out */
int* reason rtrn; /* backfilled with a status code */

XkbOpenDisplay is a convenience function that opens an X display connection and initial-
izes the X keyboard extension. In all cases, upon re¢ason_rtrn contains a status value
indicating success or the type of failuremjor_in_out andminor_in_out are notN\NULL,
XkbOpenDisplay first callsXkbLibrary\Version to determine whether the client library is
compatible, passing it the values pointed tarlayor_in_out andminor_in_out. If the

library is incompatibleXkbOpenDisplay backfillsmajor_in_out andminor_in_out with

the major and minor extension versions of the library being used and mdtluindf the
library is compatibleXkbOpenDisplay next callsXOpenDisplay with thedisplay name.

If this fails, the function returnSULL. If successfulXkbOpenDisplay calls XkbQueryEx-
tension andbackfills the major and minor Xkb server extension version numbers in
major_in_out andminor_in_out. If the server extension version is not compatible with the
library extension version or if the server extension is not presko@penDisplay closes

the display and returidJLL. When successful, the function returns the display connec-
tion.

The possible values foeason_rtrn are:

« XkbCD BadLi br ar yVer si on indicatesXkbLibrary\Version returnedral se.

« Xkb(D Connect i onRef used indicates the display could not be opened.

« XkbCD BadSer ver Ver si onindicates the library and the senhave incompatible
extension ersions.

« XkbCD NonXkbSer ver indicates thexdension is not present in the X setv

« XkbCD Success indicates that the function succeeded.

Disabling the Keyboard Extension

If a server supports the Xkb extension, the X library normally implements preXkb key-
board functions using the Xkb keyboard description and state. The server Xkb keyboard
state may differ from the prexXkb keyboard state. This difference does not affect most cli-
ents, but there are exceptions. To allow these clients to work properly, you may instruct
the extension not to use Xkb functionality.

Call XkblgnoreExtension to prevent core X library keyboard functions from using the X
Keyboard Extension. You must cxlkblgnoreExtension before you open a server connec-
tion; Xkb does not provide a way to enable or disable use of the extension once a connec-
tion is established.

Bool XkblgnoreExtension(ignore)
Bool ignore; /* Tr ue means ignore thexeension */

November 10, 1997 Library Version 1.0/Document Rision 1.1 8

The X Keyboard Extension 2 Initialization and General Programming

XkblgnoreExtension tells the X library whether to use the X Keyboard Extension on any
subsequently opened X display connections. If ignofe i, the library does not initial-

ize the Xkb extension when it opens a new display. This forces the X server to use com-
patibility mode and communicate with the client using only core protocol requests and
events. If ignore igal se, the library treats subsequent call@penDisplay normally

and uses Xkb extension requests, events, and state. Do not explicitly use Xkb on a connec-
tion for which it is disabledXkblgnoreExtension returnsFal se if it was unable to apply

the ignore request.

2.6 Protocol Err ors
Many of the Xkb extension library functions described in this document can cause the X
server to report an error, referred to in this documentBasi¥xx protocol error, where
Xxx is some name. These errors are fielded in the normal manner, by the default Xlib error
handler or one replacing it. Note that X protocol errors are not necessarily reported imme-
diately because of the buffering of X protocol requests in Xlib and the server.

Table 2.1 lists the protocol errors that can be generated, and their causes.
Table2.1 Xkb Protocol Errors

Error Cause

BadAccess The Xkb etension has not been properly initialized

BadKeyboard The deice specified ws not a &lid core or input@ension deice

Badimplementation Invalid reply from serer

BadAlloc Unable to allocate storage

BadMatch A compatible ersion of Xkb vas not gailable in the seer or an agument
has correct type and rangeit fis otherwise ivalid

Bad\alue An agument is out of range

BadAtom A name is neither aalid Atom orNone

BadDevice Device, Feedback Class, or Feedback Nzl

The Xkb extension adds a single protocol efBaKeyboar d, to the core protocol error

set. This error code will be reported aséh@r_rtrn whenXkbQueryExtension is called.

When aBadKeyboar d error is reported in aker r or Event , additional information is
reported in theesource _id field. The most significant byte of tmesource id is a further
refinement of the error cause, as defined in Table 2.2. The least significant byte will con-
tain the device, class, or feedback ID as indicated in the table.

Table 2.2 BadKeyboard Protocol Error resource id Values

high-order byte value meaning low-order byte
XkbErr_BadDeice Oxff device not found device ID
XkbErr_BadClass Oxfe device found, It it is of the wrong class class ID
XkbErr_Badld Oxfd device found, class ok,ut device does not feedback ID

contain a feedback with the indicated ID

2.7 Display and Device Specifications in Function Calls

Where a connection to the server is passed as an argument (Display*) and an
XkbDescPt r is also passed as an argument, the Display* argument must madiply the
field of theXkbDescRec pointed to by thekbDescPt r argument, or else trapy field

of theXkbDescRec must beNULL. If they don’t match or thdpy field is notNULL, a

November 10, 1997 Library Version 1.0/Document Rision 1.1 9

The X Keyboard Extension 2 Initialization and General Programming

BadMat ch error is returned (either in the return value or a backfitest us variable).
Upon successful return, tlapy field of theXkbDescRec always contains the Display*
value passed in.

The Xkb extension can communicate with the X input extension if it is present. Conse-
guently, there can potentially be more than one input device connected to the server. Most
Xkb library calls that require communicating with the server involve both a server connec-
tion (Display *dpy) and a device identifier (unsigned davice spec). In some cases, the
device identifier is implicit and is taken as thexice spec field of anXkbDescRec struc-

ture passed as an argument.

The device identifier can specify any X input extension device wWiiyaCl ass compo-
nent, or it can specify the constaxitbUseCor eKbd. The use okkbUseCor ekKbd

allows applications to indicate the core keyboard without having to determine its device
identifier.

Where an Xkb device identifier is passed as an argument adibBascPt r is also
passed as an argument, if either the argument okihigescRec device spec field is
XkbUseCor eKbd, and if the function returns successfully, ¥kdDescPt r device spec
field will have been converted frofkbUseCor eKbd to a real Xkb device ID. If the func-
tion does not complete successfully, teeice_spec field remains unchanged. Subse-
guently, the device id argument must matchdiece spec field of theXkbDescPt r
argument. If they don’t match,BadMat ch error is returned (either in the return value or
a backfilledSt at us variable).

When the Xkb extension in the server hands an application a device identifier to use for
the keyboard, that ID is the input extension identifier for the device if the server supports
the X Input Extension. If the server does not support the input extension, the meaning of
the identifier is undefined — the only guarantee is that when yoMkimdseCor eKbd,
XkbUseCor eKbd will work and the identifier returned by the server will refer to the core
keyboard device.

November 10, 1997 Library Version 1.0/Document Rision 1.1 10

The X Keyboard Extension 3 Data Structures

3

3.1

3.2

Data Structures

An Xkb keyboard description consists of a variety of data structures, each of which
describes some aspect of the keyboard. Although each data structure has its own peculiar-
ities, there are a number of features common to nearly all Xkb structures. This chapter
describes these common features and techniques for manipulating them.

Many Xkb data structures are interdependent; changing a field in one might require
changes to others. As an additional complication, some Xkb library functions allocate
related components as a group to reduce fragmentation and allocator overhead. In these
cases, simply allocating and freeing fields of Xkb structures might corrupt program mem-
ory. Creating and destroying such structures or keeping them properly synchronized dur-
ing editing is complicated and error prone.

Xkb provides functions and macros to allocate and free all major data structures. You
should use them instead of allocating and freeing the structures yourself.

Allocating Xkb Data Structures

Xkb provides functions, known as allocators, to create and initialize Xkb data structures.
In most situations, the Xkb functions that read a keyboard description from the server call
these allocators automatically. As a result, you will seldom have to directly allocate or ini-
tialize Xkb data structures.

However, if you need to enlarge an existing structure or construct a keyboard definition
from scratch, you may need to allocate and initialize Xkb data structures directly. Each
major Xkb data structure has its own unique allocator. The allocator functions share com-
mon features: allocator functions for structures with optional components take as an input
argument a mask of subcomponents to be allocated. Allocators for data structures contain-
ing variable-length data take an argument specifying the initial length of the data.

You may call an allocator to change the size of the space allocated for variable-length
data. When you call an allocator with an existing data structure as a parameter, the alloca-
tor does not change the data in any of the fields, with one exception: variable-length data
might be moved. The allocator resizes the allocated memory if the current size is too
small. This normally involves allocating new memory, copying existing data to the newly
allocated memory, and freeing the original memory. This possible reallocation is impor-
tant to note because local variables pointing into Xkb data structures might be invalidated
by calls to allocator functions.

Adding Data and Editing Data Structures

You should edit most data structures via the Xkb-supplied helper functions and macros,
although a few data structures can be edited directly. The helper functions and macros
make sure everything is initialized and interdependent values are properly updated for
those Xkb structures that have interdependencies. As a general rule, if there is a helper
function or macro to edit the data structure, use it. For example, increasing the width of a
type requires you to resize every key that uses that type. This is complicated and ugly,
which is why there’s aXkbResizeKeyType function.

Many Xkb data structures have arrays whose size is reported by two fields. The first field,
whose name is usually prefixed &/, represents the total number of elements that can be
stored in the array. The second field, whose name is usually prefixesibyspecifies

November 10, 1997 Library Version 1.0/Document Rision 1.1 11

The X Keyboard Extension 3 Data Structures

3.3

3.4

the number of elements currently stored there. These arrays typically represent data whose
total size cannot always be determined when the array is created. In these instances, the
usual way to allocate space and add data is as follows:

» Call the allocator function with some arbitrary size, as a hint.
» For those arrays that Y&a anXkb...Add... function, call it each time youamt to add
new data to the arrayrhe function gpands the array if necessary

For example, call:
XkbAllocGeomShapes(geom,4)

to say “I'll need space for four new shapes in this geometry.” This makes sure that
sz_shapes - num_shapes >= 4, and resizes the shapes array if it isn’t. If this function suc-
ceeds, you are guaranteed to have space for the number of shapes you need.

When you call an editing function for a structure, you do not need to check for space,
because the function automatically checksstheandnum_fields of the array, resizes the
array if necessary, adds the entry to the array, and then updatemthieeld.

Making Chang es to the Ser ver's Keyboar d Description

In Xkb, as in the core protocol, the client and server have independent copies of the data
structures that describe the keyboard. The recommended way to change some aspect of the
keyboard mapping in the X server is to edit a local copy of the Xkb keyboard description
and then send only the changes to the X server. This method helps eliminate the need to
transfer the entire keyboard description or even an entire data structure for only minor
changes.

To help you keep track of the changes you make to a local copy of the keyboard descrip-
tion, Xkb provides separate speahhnges data structures for each major Xkb data struc-
ture. These data structures do not contain the actual changed values: they only indicate the
changes that have been made to the structures that actually describe the keyboard.

When you wish to change the keyboard description in the server, you first modify a local
copy of the keyboard description and then flag the modifications in an appropriate
changes data structure. When you finish editing the local copy of the keyboard descrip-
tion, you pass your modified version of the keyboard description and the modified
changes data structure to an Xkb function. This function uses the modified keyboard
description and changes structure to pass only the changed information to the server. Note
that modifying the keyboard description but not setting the appropriate flags in the
changes data structure causes indeterminate behavior.

Tracking K eyboar d Chang es in the Ser ver

The server reports all changes in its keyboard description to any interested clients via spe-
cial Xkb events. Just as clients use special changes data structures to change the keyboard
description in the server, the server uses special changes data structures to tell a client
what changed in the server’s keyboard description.

Unlike clients, however, the server does not always pass the new values when it reports
changes to its copy of the keyboard description. Instead, the server only passes a changes
data structure when it reports changes to its keyboard description. This is done for effi-
ciency reasons — some clients do not always need to update their copy of the keyboard
description with every report from the server.

November 10, 1997 Library Version 1.0/Document Rision 1.1 12

The X Keyboard Extension 3 Data Structures

When your client application receives a report from the server indicating the keyboard
description has changed, you can determine the set of changes by passing the event to an
Xkb function that “notes” event information in the corresponding changes data structure.
These “note changes” functions are defined for all major Xkb components, and their
names have the forxkbNote{ Component} Changes, whereComponent is the name of a

major Xkb component such B&ap or Names. When you want to copy these changes from

the server into a local copy of the keyboard description, use the correspikioling

Get{ Component}Changes function passing it the changes structure. The function then
retrieves only the changed structures from the server and copies the modified pieces into
the local keyboard description.

3.5 Freeing Data Structures

For the same reasons you should not directlymaskoc to allocate Xkb data structures,

you should not free Xkb data structures or components directly fueagr Xfree. Xkb
provides functions to free the various data structures and their compgxiesmtgs use

the free functions supplied by Xkb. There is no guarantee that any particular field can be
safely freed byree or Xfree.

November 10, 1997 Library Version 1.0/Document Rision 1.1 13

The X Keyboard Extension 4 Xkb Events

4

4.1

Xkb Events

The primary way the X server communicates with clientsis by sending X events to them.
Some events are sent to all clients, while others are sent only to clients that have requested
them. Some of the events that can be requested are associated with a particular window
and are only sent to those clients who have both requested the event and specified the win-
dow in which the event occurred.

The Xkb extension uses events to communicate the keyboard status to interested clients.
These events are not associated with a particular window. Instead, all Xkb keyboard status
events are reported to all interested clients, regardless of which window currently has the
keyboard focus and regardless of the grab state of the keyboard.1

The X server reports the events defined by the Xkb extension to your client application
only if you have requested them. Y ou may request Xkb events by calling either XkbSel ect-
Events or XkbSelectEventDetails. XkbSel ectEvents requests Xkb events by their event type
and causes them to be reported to your client application under all circumstances. Y ou can
specify afiner granularity for event reporting by using XkbSelectEventDetails; in this case
events are reported only when the specific detail conditions you specify have been met.

Xkb Event Types

The Xkb Extension adds new event types to the X protocol definition. An Xkb event type
isdefined by two fieldsin the X event data structure. One is the type field, containing the
base event code. This base event code is avalue the X server assigns to each X extension
at runtime and thatidentifies the extension that generated the event; thus, the event codein
the type field identifies the event as an Xkb extension event, rather than an event from
another extension or acore X protocol event. Y ou can obtain the base event code viaacall
to XkbQueryExtension or XkbOpenDisplay. The second field isthe Xkb event type, which
contains a value uniquely identifying each different Xkb event type. Possible values are
defined by constants declared in the header file <X11/extensions/Xkb.h>.

Table 4.1 lists the categories of events defined by Xkb and their associated event types, as
defined in Xkb.h. Each event is described in more detail in the section referenced for that
event.

Table4.1 Xkb Event Types

Event Type Conditions Generating Event Section Page
XkbNewKeyboar dNot i fy Keyboard geometry; keycode range change 19 187
XkbMapNot i fy Keyboard mapping change 144 122
XkbSt at eNot i fy Keyboard state change 54 25
XkbCont rol sNoti fy Keyboard controls state change 10.11 79
Xkbl ndi cat or St at eNot i fy Keyboard indicators state change 8.5 45
Xkbl ndi cat or MapNot i fy Keyboard indicators map change 85 45
XkbNamesNot i fy Keyboard name change 185 185
XkbConpat MapNot i fy Keyboard compatibility map change 175 178
XkbBel | Noti fy Keyboard bell generated 94 52

1. The one exception to thisruleisthe XkbExt ensi onDevi ceNot i f y event report that is sent when a client
attempts to use an unsupported feature of an X Input Extension device (see section 21.4).

November 10, 1997 Library Version 1.0/Document Revision 1.1 14

The X Keyboard Extension 4 Xkb Events

4.2

4.3

Table4.1 Xkb Event Types

Event Type Conditions Generating Event Section Page
XkbAct i onMessage Keyboard action message 16.1.11 155
XkbAccessXNot i fy AccessX state change 10.64 65
XkbExt ensi onDevi ceNot i f y Extension device change 21.6 207

Xkb Event Data Structures

XKkb reports each event it generates in a unique structure holding the data values needed to
describe the conditions the event isreporting. However, all Xkb events have certain things
in common. These common features are contained in the same fields at the beginning of
all Xkb event structures and are described in the XkbAnyEvent structure:

typedef struct {
int type; * Xkb extension base event code */
unsigned long serial; * X server serial number for event */
Bool send_event; /* Tr ue => synthetically generated */
Display * display; I* server connection where event generated */
Time time; * server time when event generated */
int xkb_type; /* Xkb minor event code */
unsigned int device; /* Xkb device ID, will not be XkbUseCor eKbd */

} XkbAnyEvent;

For any Xkb event, the type field is set to the base event code for the Xkb extension,
assigned by the server to al Xkb extension events. The serial, send_event, and display
fields are as described for all X11 events. The time field is set to the time when the event
was generated and is expressed in milliseconds. The xkb_type field contains the minor
extension event code, which is the extension event type, and is one of the valueslisted in
Table 4.1. The device field contains the keyboard device identifier associated with the
event. Thisis never XkbUseCor eKbd, even if the request that generated the event speci-
fied adevice of XkbUseCor eKbd. If the request that generated the event specified
XkbUseCor eKbd, device contains a value assigned by the server to specify the core key-
board. If the request that generated the event specified an X input extension device, device
contains that same identifier.

Other datafields specific to individual Xkb events are described in subsequent chapters
where the events are described.

Selecting Xkb Events

Xkb events are selected using an event mask, much the same as normal core X events are
selected. However, unlike selecting core X events, where you must specify the selection
status (on or off) for all possible event types whenever you wish to change the selection
criteriafor any one event, Xkb alows you to restrict the specification to only the event
types you wish to change. This means that you do not need to remember the event selec-
tion values for all possible types each time you want to change one of them.

Many Xkb event types are generated under several different circumstances. When sel ect-
ing to receive an Xkb event, you may specify either that you want it delivered under all
circumstances, or that you want it delivered only for a subset of the possible circum-
stances.

November 10, 1997 Library Version 1.0/Document Revision 1.1 15

The X Keyboard Extension 4 Xkb Eents

You can also deselect an event type that was previously selected for, using the same gran-
ularity.

Xkb provides two functions to select and deselect delivery of Xkb ewdiSel ect-

Events allows you to select or deselect delivery of more than one Xkb event type at once.
Events selected usingkbSelectEvents are delivered to your program under all circum-
stances that generate the events. To restrict delivery of an event to a subset of the condi-
tions under which it occurs, ud@bSel ectEventDetails. XkbSelectEventDetails only

allows you to change the selection conditions for a single event at a time, but it provides a
means of fine-tuning the conditions under which the event is delivered.

To select and / or deselect for delivery of one or more Xkb events and have them delivered
under all conditions, usékbSelectEvents.

Bool XkbSelectEvents(display, device _spec, bits to _change, values for_bits)
Display * display; /* connection to the X seer */
unsigned int device spec; /* device ID, orXkbUseCor eKbd */
unsigned long inbits to_change; /* determines eents to be selected / deselected */
unsigned long invalues for_bits;/* 1=>select, 0->deselect; fovents inbits_to_change */

This request changes the Xkb event selection mask for the keyboard specified by
device_spec.

Each Xkb event that can be selected is represented by a bitaitsthe change and

values for_bits masks. Only the event selection bits specified byitseto change

parameter are affected; any unspecified bits are left unchanged. To turn on event selection
for an event, set the bit for the event in bits_to_change parameter and set the corre-
sponding bit in thealues for_bits parameter. To turn off event selection for an event, set
the bit for the event in thiats to_change parameter and do not set the corresponding bit

in thevalues for_bits parameter. The valid values for both of these parameters are an
inclusive bitwise OR of the masks shown in Table 4.2. There is no interface to return your
client’s current event selection mask. Clients cannot set other clients’ event selection
masks.

If a bit is not set in theits to_change parameter, but the corresponding bit is set in the
values for_bits parameter, BadMat ch protocol error results. If an undefined bit is set in
either thebits_to_change or thevalues_for_bits parameter, 8adVal ue protocol error
results.

All event selection bits are initially zero for clients using the Xkb extension. Once you set
some bits, they remain set for your client until you clear them via another xatiSe-
lectEvents.

XkbSdlectEvents returnsFal se if the Xkb extension has not been initilialized dmdie
otherwise.

To select or deselect for a specific Xkb event and optionally place conditions on when
events of that type are reported to your client Xki¥selectEventDetails. This allows you

November 10, 1997 Library Version 1.0/Document Rision 1.1 16

The X Keyboard Extension 4 Xkb Events

43.1

to exercise afiner granularity of control over delivery of Xkb events with XkbSelect-
Events

Bool XkbSelectEventDetails(display device_spec,ent_typebits_to_bangg, values_for_bits
Display * display, [* connection to the X server */
unsigned int device_sper /* deviceID, or XkbUseCor eKbd */
unsigned int event_type /* Xkb event type of interest */
unsigned long int bits_to_dangg; /* event selection details */
unsigned long int values_for_bitg* valuesfor bits selected by bits_to_dange */

While XkbSelectEventlows multiple events to be selected, XkbSelectEventDetails
changes the selection criteriafor asingle type of Xkb event. The interpretation of the
bits_to_dange and values_for_bitsnasks depends on the event type in question.

XkbSelectEventDetaitdhanges the Xkb event selection mask for the keyboard specified
by device_speand the Xkb event specified by event_typeTo turn on event selection for
an event detail, set the bit for the detail in the bits_to_d&ange parameter and set the corre-
sponding bit in the values_for_bitgarameter. To turn off event detail selection for a
detail, set the bit for the detail in the bits_to_tange parameter and do not set the corre-
sponding bit in the values_for_bitgparameter.

If aninvalid event typeis specified, aBadVal ue protocol error results. If abitisnot setin
the bits_to_tange parameter, but the corresponding bit is set in the values_for_bits
parameter, a BadMat ch protocol error results. If an undefined bit is set in either the
bits_to_dange or the values_for_bitparameter, a BadVal ue protocol error results.

For each type of Xkb event, the legal event details that you can specify in the XkbSelect-
EventDetailgequest are listed in the chapters that describe each event in detail.
Event Masks

The X server reports the events defined by Xkb to your client application only if you have
requested them viaa call to XkbSelectEvent XkbSelectEventDetailSpecify the event
typesin which you are interested in a mask, as described in section 4.3.

Table 4.2 lists the event mask constants that can be specified with the XkbSelectEvents
request and the circumstances in which the mask should be specified.

Table 4.2 XkbSdectEvents Mask Constants

Event Mask Value Notification Vénted
XkbNewKeyboar dNot i f yMask (1L<<0) Keyboard geometry change
XkbMapNot i f yMask (1L<<1) Keyboard mapping change
XkbSt at eNot i f yMask (1L<<2) Keyboard state change
XkbCont r ol sNot i f yMask (1L<<3) Keyboard control change

Xkbl ndi cat or St at eNot i f yMask (1L<<4) Keyboard indicator state change
Xkbl ndi cat or MapNot i f yMask (1L<<5) Keyboard indicator map change
XkbNamesNot i f yMask (1L<<6) Keyboard name change
XkbConpat MapNot i f yMask (1L<<7) Keyboard compat map change
XkbBel | Not i f yMask (1L<<8) Bell

XkbAct i onMessageMask (1L<<9) Action message
XkbAccessXNot i f yMask (1L<<10) AccessX features

XkbExt ensi onDevi ceNot i fyMask (1L<<11) Extension device

November 10, 1997 Library Version 1.0/Document Revision 1.1 17

The X Keyboard Extension

4 Xkb Events

Table 4.2 XkbSdectEvents Mask Constants

Event Mask

Value

Notification Vented

XkbAl | Event sMask

4.4 Unified Xkb Event T ype

(OXFFF)

All Xkb events

The XkbEvent structureisaunion of the individual structures declared for each Xkb
event type and for the core protocol XEvent type. Given an XkbEvent structure, you may
use the typefield to determineif the event isan Xkb event (typeequals the Xkb base event
code; see section 2.4). If the event is an Xkb event, you may then use the any.xkb_type
field to determine the type of Xkb event and thereafter access the event-dependent compo-
nents using the union member corresponding to the particular Xkb event type.

typedef union _XkbEvent {
int
XkbAnyEvent
XkbStateNotifyEvent
XkbMapNotifyEvent
XkbControlsNotifyEvent
XkblndicatorNotifyEvent
XkbBelINotifyEvent
XkbA ccessX NotifyEvent
XkbNamesNotifyEvent
XkbCompatM apNotifyEvent
XKkbA ctionM essageEvent
XkbExtensionDeviceNotifyEvent
XkbNewKeyboardNotifyEvent
XEvent

} XkbEvent;

type;

any;
state;
map,
ctrls;
indicators;
bell;
accessx;
names;
compat;
message;
device;
new_kbd,;
COre;

This unified Xkb event type includes anormal XEvent as used by the core protocol, so it
isstraightforward for applicationsthat use Xkb eventsto call the X library event functions
without having to cast every reference. For example, to get the next event, you can simply
declare avariable of type XkbEvent and call:

XNextEvent(dpy,& xkbev.core);

November 10, 1997

Library Version 1.0/Document Revision 1.1 18

The X Keyboard Extension 5 Keyboard State

5 Keyboard State

Keyboard state encompasses all of the transitory information necessary to map a physical
key press or release to an appropriate event. The Xkb keyboard state consists of primitive
components and additional derived components that are maintained for efficiency reasons.
Figure 5.1 shows the components of Xkb keyboard state and their relationships.

Xkb State

Base Modifiers m

— Compatibility State

Base Group mE

| Compatibility Lookup State

D

| Effective Modifiers

Locked Modifiers [

™| Compatibility Grab State

L ;
Locked Group — Effective Group

Latched Modifiers [~

| | ookup State

!
3

Latched Group —

| Grab State [Tt

Core Pointer Buttons

Server Internal Modifiers

IgnoreLock Modifiers
J Compatibility Map

IgnoreGroupLock

Figure5.1 Xkb State

5.1 Keyboard State Description

The Xkb keyboard state is comprised of the state of all keyboard modifiers, the keyboard
group, and the state of the pointer buttons. These are grouped into the following compo-
nents:

The locled group and lodd modifiers
The latched group and latched modifiers
The base group and base modifiers

The efective group and &ctive modifiers
The state of the core pointauttbns

November 10, 1997 Library Version 1.0/Document Rision 1.1 19

The X Keyboard Extension 5 Keyboard State

Themodifies areShi ft, Lock, Cont r ol , andMbd1-Mobd5, as defined by the core proto-

col. A modifier can be thought of as a toggle that is either set or unset. All modifiers are
initially unset. When a modifier is locked, it is set and remains set for all future key
events, until it is explicitly unset. A latched modifier is set, but automatically unsets after
the next key event that does not change the keyboard state. Locked and latched modifier
state can be changed by keyboard activity or via Xkb extension library functions.

The Xkb extension provides support k@ysymgroups as defined by 1ISO9995:

Group A logical state of adyboard preiding access to a collection of characters. A
group usually contains a set of characters that logically belong together and
that may be arranged orvseal shift levels within that group.

The Xkb extension supports up to four keysym groups. Groups are named beginning with
one and indexed beginning with zero. All group states are indicated using the group index.
At any point in time, there is zero or one locked group, zero or one latched group, and one
base group. When a group is locked, it supersedes any previous locked group and remains
the locked group for all future key events, until a new group is locked. A latched group
applies only to the next key event that does not change the keyboard state. The locked and
latched group can be changed by keyboard activity or via Xkb extension library functions.

Changing to a different group changes the keyboard state to produce characters from a dif-
ferent group. Groups are typically used to switch between keysyms of different languages
and locales.

Thepointer luttonsareBut t onl - But t on5, as defined by the core protocol.

Thebase goupandbase modifiesrepresent keys that are physically or logically down.
These and the pointer buttons can be changed by keyboard activity and not by Xkb
requests. It is possible for a key to be logically down, but not physically down, and neither
latched nor locked.

Theeffective modifies are the bitwise union of the locked, latched, and the base modifiers.

Theeffective goupis the arithmetic sum of the group indices of the latched group, locked
group, and base group, which is then normalized by some function. The result is a mean-
ingful group index.

n = number of yboard groups, 1<=n<=4
0 <= aty of locked, latched, or base group <n
effective group = f(loclked group + latched group + base group)

The function f ensures that the effective group is within range. The precise function is
specified for the keyboard and can be retrieved through the keyboard description. It may
wrap around, clamp down, or default. Few applications will actually examine the effective
group, and far fewer still will examine the locked, latched, and base groups.

There are two circumstances under which groups are normalized:

1. Keys may be logically den when thg are plysically up because of their electrical properties or because of the
keyboard &tension in the X seer having filtered the ky release, for esoteric reasons.

November 10, 1997 Library Version 1.0/Document Rision 1.1 20

The X Keyboard Extension 5 Keyboard State

1. The global locked or effective group changes. In this case, the changed group is nor-
malized into range according to the settings oigtloeips_wap field of thexXkbCon-
t r ol sRec structure for the keyboard (see section 10.7.1).

2. The Xkb library is interpreting an event with an effective group that is legal for the
keyboard as a whole, but not for the key in question. In this case, the group to use for
this event onlys determined using ttgroup_infofield of the key symbol mapping
(XkbSyniapRec) for the event key.

Each nonmodifier key on a keyboard has zero or more symbols, or keysyms, associated
with it. These are the logical symbols that the key can generate when it is pressed. The set
of all possible keysyms for a keyboard is divided into groups. Each key is associated with
zero or more groups; each group contains one or more symbols. When a key is pressed,
the determination of which symbol for the key is selected is based on the effective group
and the shift level, which is determined by which modifiers are set.

A client that does not explicitly call Xkb functions, but that otherwise makes use of an X
library containing the Xkb extension, will have keyboard state represented in bits O - 14 of
the state field of events that report modifier and button state. Such a client is said to be
Xkb-capableA client that does explicitly call Xkb functions is Akb-awae client. The

Xkb keyboard state includes information derived from the effective state and from two
server parameters that can be set through the keyboard extension. The following compo-
nents of keyboard state pertain to Xkb-capable and Xkb-aware clients:

» lookup state: lookup group and lookup modifiers
» grab state: grab group and grab modifiers

Thelookup modifies andlookup goupare represented in the state field of core X events.
The modifier state and keycode of a key event are used to determine the symbols associ-
ated with the event. FéeyPr ess andKeyRel ease events, the lookup modifiers are
computed as:

((base | latched | locked) &erver_internal_modifia)y
Otherwise the lookup modifiers are computed as:

(((base | latched | (locked &gnore_loks)) & ~server_internal_modifie)
The lookup group is the same as the effective group.

When an Xkb-capable or Xkb-aware client wishes to map a keycode to a keysym, it
should use thieookup state— the lookup group and the lookup modifiers.

Thegrab stateis the state used when matching events to passive grabs. If the event acti-
vates a grab, thgrab modifies andgrab groupare represented in the state field of core X
events; otherwise, the lookup state is used. The grab modifiers are computed as:

(((base | latched | (locked & ~ignore_locks)) & ~server_internal_modifiers)

If the server’'d gnor e@ oupLock control (see section 10.7.3) is not set, the grab group is
the same as the effective group. Otherwise, the grab group is computed from the base
group and latched group, ignoring the locked group.

The final three components of Xkb state are applicable to clients that are not linked with
an Xlib containing the X keyboard extension library and therefore are not aware of the
keyboard extensioXkb-unawae clients):

November 10, 1997 Library Version 1.0/Document Rision 1.1 21

The X Keyboard Extension 5 Keyboard State

5.2

5.2.1

» The compatibility modifier state
e The compatibility lookup modifier state
» The compatibility grab modifier state

The X11 protocol interpretation of modifiers does not include direct support for multiple
groups. When an Xkb-extended X server connects to an Xkb-unaware client, the compati-
bility states remap the keyboard group into a core modifier whenever possible. The com-
patibility state corresponds to the effective modifier and effective group state, with the
group remapped to a modifier. The compatibility lookup and grab states correspond to the
lookup and grab states, respectively, with the group remapped to a modifier. The compati-
bility lookup state is reported in events that do not trigger passive grabs; otherwise, the
compatibility grab state is reported.

Changing the K eyboar d State

Changing Modifier s

The functions in this section that change the use of modifiers use a mask in the parameter
affect It is a bitwise inclusive OR of the legal modifier masks:

Table 5.1 Real Modifier Masks

Mask
ShiftMask
LockMask
ControlMask
Mod1Mask
Mod2Mask
Mod3Mask
Mod4Mask
Mod5Mask

To lock and unlock any of the eight real keyboard modifiersXlbé ockModifiers:
Bool XkbLockModifiers (display device spec, &bct, valuep

Display * display [* connection to the X seer */

unsigned int device_speg /* device ID, orxXkbUseCor eKbd */

unsigned int affect /* mask of real modifiers whose lock state is to change */
unsigned int values /* 1 =>lock, 0 => unlock; only for modifiers selecteddffect*/

XkbLo&Modifiers sends a request to the sarto lock the real modifiers selected by both
affectandvaluesand to unlock the real modifiers selectedfigctbut not selected byal-
ues XkbLo&Modifiers does not it for a reply from the seev. It returnsTr ue if the
request \@s sent, anflal se otherwise.

To latch and unlatch any of the eight real keyboard modifierskiseatchModifiers:
Bool XkbLatchModifiers (display, device_spec, &éct, valuep

Display * display, /* connection to the X seer */

unsigned int device_speg /* device ID, orXkbUseCor eKbd */

unsigned int affect /* mask of modifiers whose latch state is to change */
unsigned int values /* 1 => latch, 0 => unlatch; only for mods selectedalffgct*/

November 10, 1997 Library Version 1.0/Document Rision 1.1 22

The X Keyboard Extension 5 Keyboard State

XkbLathiModifiels sends a request to the sarto latch the real modifiers selected by both
affectandvaluesand to unlatch the real modifiers selectecfbgctbut not selected by
values XkbLatdhiModifiers does not it for a reply from the seev. It returnsTr ue if the
request \@s sent, anflal se otherwise.

5.2.2 Changing Groups
Reference the keysym group indices with these symbolic constants:

Table5.2 Symbolic Group Names

Symbolic Name Value
XkbGrouplinde 0
XkbGroup2Inde 1
XkbGroup3inde 2
XkbGroup4inde 3

To lock the keysym group, usékbLockGroup.

Bool XkbL ockGroup(display device_spec, grup)
Display * display, [* connection to the X seer */
unsigned int device_speg /* device ID, orxXkbUseCor eKbd */
unsigned int group; /* index of the leysym group to lock */

XkbLo&Group sends a request to the server to lock the spegf@ghanddoes not it
for a reply It returnsTr ue if the request &s sent an#fal se otherwise.

To latch the keysym group, uX&bLatchGroup.

Bool XkbL atchGroup(display device_spec, grup
Display * display, /* connection to the X seer */
unsigned int device_speg /* device ID, orXkbUseCor eKbd */
unsigned int group, /* index of the leysym group to latch */

XkbLathGroupsends a request to the server to latch the specified gnolgmes not \ait
for a reply It returnsTr ue if the request &s sent an#fal se otherwise.

5.3 Determining Keyboard State
Xkb keyboard state may be represented iXlertt at eRec structure:

unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

latched_group;

locked_group;
mods;
base_mods;

latched_mods;

typedef struct {
unsigned char group; [* effective group inde */
unsigned char base_group; [* base group inde*/

[* latched group inde*/
/* locked group inde */
/* effective modifiers */
/* base modifiers */

/* latched modifiers */

unsigned char locked_mods; /* locked modifiers */
unsigned char compat_state; [* effective group => modifiers */
unsigned char grab_mods; /* modifiers used for grabs */

unsigned char
unsigned char
unsigned char

compat_grab_mods;y* mods used for compatibility mode grabs */

lookup_mods;

/* modifiers used to lookup symbols */

compat_lookup_mod&;mods used for compatibility lookup */

November 10, 1997

Library Version 1.0/Document Rision 1.1 23

The X Keyboard Extension 5 Keyboard State

5.4

unsigned short ptr_kuttons; [* 1 bit => corresponding pointer btn iswlo */
} XkbStateRec,*XkbStatePtr;

To obtain the keyboard state, UddGetSate.
StatusXkbGetState(display, device_spec, state return)

Display * display; [* connection to the X seer */
unsigned int device spec; /* device ID, orXkbUseCor eKbd */
XkbStatePtr state return; /* backfilled with Xkb state */

The XkbGetSate function queries the server for the current keyboard state, waits for a
reply, and then backfillstate_return with the results.

All group values are expressed as group indices in the range [0..3]. Modifiers and the
compatibility modifier state values are expressed as the bitwise union of the core X11
modifier masks. The pointer button state is reported as in the core X11 protocol.

Tracking Keyboard State

The Xkb extension repordékbSt at eNot i fy events to clients wanting notification
whenever the Xkb state changes. The changes reported include changes to any aspect of
the keyboard state: when a modifier is set or unset, when the current group changes, or
when a pointer button is pressed or released. As with all Xkb exkihiSt at eNot i fy

events are reported to all interested clients without regard to the current keyboard input
focus or grab state.

There are many different types of Xkb state changes. Xkb defines an event detail mask
corresponding to each type of change. The event detail masks are listed in Table 5.3.

Table 5.3 XkbStateNotify Event Detail Masks

Mask Value
XkbModifierStateMask (AL << 0)
XkbModifierBaseMask (AL << 1)
XkbModifierLatchMask (1L << 2)
XkbModifierLockMask (AL << 3)
XkbGroupStateMask (1L << 4)
XkbGroupBaseMask (1L << 5)
XkbGroupLatchMask (1L << 6)
XkbGroupLockMask (AL << 7)
XkbCompatStateMask (1L << 8)
XkbGrabModsMask (1L << 9)
XkbCompatGrabModsMask (1L << 10)
XkbLookupModsMask (1L << 11)
XkbCompatLookupModsMasK1L << 12)
XkbPointerButtonMask (1L << 13)

XkbAllStateComponentsMask(0x3fff)

To track changes in the keyboard state for a particular device, select to Mdeive
St at eNot i fy events by calling eithetkbSel ectEvents or XkbSelectEventDetails (see
section 4.3).

November 10, 1997 Library Version 1.0/Document Rision 1.1 24

The X Keyboard Extension 5 Keyboard State

To receiveXkbSt at eNot i fy events under all possible conditions, M&bSelectEvents
and paskbSt at eNot i f yMask in bothbits to_change andvalues for_hits.

To receiveXkbSt at eNot i fy events only under certain conditions, dX&bSel ectEvent-
Details usingXkbSt at eNot i fy as theevent_type and specifying the desired state
changes imits_to_change andvalues_for_bits using mask bits from Table 5.3.

The structure fokkbSt at eNot i fy events is:

typedef struct {
int type; /* Xkb extension basevent code */
unsigned long serial; [* X server serial number forvent */
Bool send_gent; /* Tr ue => synthetically generated */
Display * display; [* server connection wherevent generated */
Time time; [* sener time wheneent generated */
int xkb_type; /* XkbSt at eNot i fy */
int device; /* Xkb device ID, will not bexkbUseCor eKbd */
unsigned int changed,; /* bits indicating what has changed */
int group; /* group index of effective group */
int base_group; /* group index of base group */
int latched_group;/* group inde of latched group */
int locked_group; /* group inde of locked group */
unsigned int mods; /* effective modifiers */
unsigned int base_mods; /* base modifiers */
unsigned int latched_mods;/* latched modifiers */
unsigned int locked_mods; /* locked modifiers */
int compat_state; /* computed compatibility state */

unsigned char grab_mods; /* modifiers used for grabs */

unsigned char compat_grab_mods; /* modifiers used for compatibility grabs */
unsigned char lookup_mods; /* modifiers used to lookup symbols */

unsigned char compat_lookup_mods{* mods used for compatibility look up */

int ptr_kuttons; /* core pointer bittons */

KeyCode keycode; [* keycode causingvent, 0 if programmatic */
char event_type; /* core event ifreq_major orreg_minor non zero */
char req_major; /* major request code if program triggeise 0 */
char req_minor; /* minor request code if program triggetse 0 */

} XkbStateNotifyEvent;

When you receive axkbSt at eNot i fy event, thechanged field indicates which ele-
ments of keyboard state have changed. This will be the bitwise inclusive OR of one or
more of thexkbSt at eNot i fy event detail masks shown in Table 5.3. All fields reported
in the event are valid, but only those indicatednanged have changed values.

Thegroup field is the group index of the effective keysym group. bdse _group,

latched_group, andlocked_group fields are set to a group index value representing the

base group, the latched group, and the locked group, respectively. The X server can set the
modifier and compatibility state fields to a union of the core modifier mask bits; this union
represents the corresponding modifier states.pithéutton field gives the state of the

core pointer buttons as a mask composed of an inclusive OR of zero or more of the core
pointer button masks.

Xkb state changes can occur either in response to keyboard activity or under application
control. If a key event caused the state chang&eifvede field gives the keycode of the

November 10, 1997 Library Version 1.0/Document Rision 1.1 25

The X Keyboard Extension 5 Keyboard State

key event, and the event_typefield is set to either KeyPr ess or KeyRel ease. If apointer
button event caused the state change, the keycode field is zero, and the event_typefieldis
set to either But t onPr ess or But t onRel ease. Otherwise, the major and minor codes
of the request that caused the state change are given in the req_major and req_minor
fields, and the keycodefield is zero. Thereq _major valueisthe same asthe major extension

opcode.

November 10, 1997 Library Version 1.0/Document Revision 1.1 26

The X Keyboard Extension 6 Complete &yboard Description

6

6.1

Complete Keyboard Description

The complete Xkb description for a keyboard device is accessed using a single structure
containing pointers to major Xkb components. This chapter describes this single structure
and provides references to other sections of this document that discuss the major Xkb
components in detail.

The XkbDescRec Structure

The complete description of an Xkb keyboard is given b}kdorbescRec. The compo-
nent structures in th&kbDescRec represent the major Xkb components outlined in Fig-
ure 1.1.

typedef struct {
struct _XDisplay * display; [* connection to X semr */
unsigned short flags; [* private to Xkb, do not modify */
unsigned short device_spec; /* device of interest */
KeyCode min_key code;/* minimum keycode for deice */
KeyCode max_ley codej* maximum leycode for deice */
XkbControlsPtr ctrls; [* controls */
XkbSenerMapPtr sener; [* sener keymap */
XkbClientMapPtr map; [* client keymap */
XkbindicatorPtr indicators; /* indicator map */
XkbNamesPtr names; /* names for all components */
XkbCompatMapPtr compat; [* compatibility map */
XkbGeometryPtr geom; [* physical geometry of éyboard */

} XkbDescRec, *XkbDescPtr;

Thedisplay field points to an X display structure. Tthags field is private to the library:
modifying flags may yield unpredictable results. Ttievice spec field specifies the
device identifier of the keyboard input device XkbUseCor eKeyboar d, which speci-
fies the core keyboard device. Timan_key code andmax_key code fields specify the
least and greatest keycode that can be returned by the keyboard.

The other fields specify structure components of the keyboard description and are
described in detail in other sections of this document. Table 6.1 identifies the subsequent
sections of this document that discuss the individual componentsX&hbescRec.

Table 6.1 XkbDescRec Component References
XkbDescRec Field ~ For more info

ctrls Chapter 10
sener Chapter 16
map Chapter 15
indicators Chapter 8

names Chapter 18
compat Chapter 17
geom Chapter 13

Each structure component has a corresponding mask bit that is used in function calls to
indicate that the structure should be manipulated in some manner, such as allocating it or

November 10, 1997 Library Version 1.0/Document Rision 1.1 27

The X Keyboard Extension 6 Complete Keyboard Description

6.2

6.3

6.4

freeing it. These masks and their relationships to the fields in the XkbDescRec are shown
in Table 6.2.

Table 6.2 Mask Bitsfor XkbDescRec

. XkbDescRec

Mask Bit Fidld Value

XkbControlsMask ctrls (1L<<0)
XkbServerMapM ask server (1L<<l)
XkblClientMapMask map (1L<<2)
XkblndicatorM apM ask indicators (1L<<3)
XkbNamesMask names (1L<<4)
XkbCompatM apM ask compat (1L<<5)
XkbGeometryMask geom (1L<<6)

XkbAllComponentsMask ~ All Fields (0x7f)

Obtaining a Keyboard Description from the Server

To retrieve one or more components of a keyboard device description, use XkbGetKey-
board (see also XkbGetKeyboardbyName).

XkbDescPtr XkbGetK eyboar d(display, which, device _spec)
Display * display; /* connection to X server */
unsigned int which; /* mask indicating componentsto return */
unsigned int device_spec; /* device for which to fetch description, or XkbUseCor eKbd */

XkbGetKeyboard allocates and returns a pointer to a keyboard description. It queries the
server for those components specified in the which parameter for device device_spec and
copies the results to the XkbDescRec it alocated. The remaining fields in the keyboard
description are set to NULL. The valid masks for which are those listed in Table 6.2.

XkbGetKeyboard can generate BadAl | oc protocol errors.
To free the returned keyboard description, use XkbFreeKeyboard (see section 6.4).

Tracking Changes to the Keyboard Description in the Server

The server can generate events whenever its copy of the keyboard description for adevice
changes. Refer to section 14.4 for detailed information on tracking changes to the key-
board description.

Allocating and Freeing a Keyboard Description

Applications seldom need to directly allocate a keyboard description; calling XkbGetKey-
board usually suffices. In the event you need to create a keyboard description from
scratch, however, use XkbAllocKeyboard rather than directly calling malloc or Xmalloc.

XkbDescRec * XkbAllocK eyboar d(void)

If XkbAllocKeyboard failsto allocate the keyboard description, it returns NULL. Other-
wise, it returns a pointer to an empty keyboard description structure. The device_spec field
will have been initialized to XkbUseCor eKbd. Y ou may then either fill in the structure
components or use Xkb functions to obtain values for the structure components from a
keyboard device.

November 10, 1997 Library Version 1.0/Document Revision 1.1 28

The X Keyboard Extension 6 Complete Keyboard Description

To destroy either an entire an XkbDescRec or just some of its members, use XkbFreeKey-

board.

void XkbFreeK eyboar d(xkb, which, free_all)
XkbDescPtr xkb; /* keyboard description with componentsto free */
unsigned int which; /* mask selecting components to free */
Bool free all; [* Tr ue => free al components and xkb */

XkbFreeKeyboard frees the components of xkb specified by which and sets the corre-
sponding valuesto NULL. If free all is Tr ue, XkbFreeKeyboard frees every non-NULL
component of xkb and then frees the xkb structure itself.

November 10, 1997 Library Version 1.0/Document Revision 1.1 29

The X Keyboard Extension 7 \Vrtual Modifiers

7

7.1

7.2

Virtual Modifier s

The core protocol specifies that certain keysyms, when bound to modifiers, affect the rules
of keycode to keysym interpretation for all keys; for example, wheNuhe Lock key-

sym is bound to some modifier, that modifier is used to select between shifted and
unshifted state for the numeric keypad keys. The core protocol does not provide a conve-
nient way to determine the mapping of modifier bits (in partiduball throughMbd5) to
keysyms such asum_Lock andMode_switch. Using the core protocol only, a client
application must retrieve and search the modifier map to determine the keycodes bound to
each maodifier, and then retrieve and search the keyboard mapping to determine the key-
syms bound to the keycodes. It must repeat this process for all modifiers whenever any
part of the modifier mapping is changed.

Xkb alleviates these problems by defining virtual modifiers. In addition to the eight core
modifiers, referred to as tlmeal modifies, Xkb provides a set of sixteen namedual
modifies. Each virtual modifier can be bound to any set of the real modifhrg { ,

Lock, Cont rol , andMbd1-Modb).

The separation of function from physical modifier bindings makes it easier to specify
more clearly the intent of a binding. X servers do not all assign modifiers the same way —
for exampleNum_Lock might be bound tbbd2 for one vendor and tgbd4 for another.

This makes it cumbersome to automatically remap the keyboard to a desired configuration
without some kind of prior knowledge about the keyboard layout and bindings. With

XKB, applications can use virtual modifiers to specify the desired behavior, without
regard for the actual physical bindings in effect.

Virtual Modifier Names and Masks

Virtual modifiers are named by converting their string name to Anofnand storing the

Atom in thenames.vmodarray in anxkbDescRec structure (see section 6.1). The posi-

tion of a name Atom in theames.vmodarray defines the bit position used to represent

the virtual modifier and also the index used when accessing virtual modifier information

in arrays: the name in the i-th (O relative) entrpafnes.vmodss the i-th virtual modifier,
represented by the mask (1<<i). Throughout Xkb, various functions have a parameter that
is a mask representing virtual modifier choices. In each case, the i-th bit (O relative) of the
mask represents the i-th virtual modifier.

To set the name of a virtual modifier, dsebSetNamesisingXkbVi r t ual ModNanes-
Mask in which and the name in thé&kbargument; to retrieve indicator names, ¥kbGet-
Names These functions are discussed in Chapter 18.

Modifier Definitions

An Xkb modifier definitiorenumerates a collection of real and virtual modifiers but does
not in itself bind those modifiers to any particular key or to each other. Modifier defini-
tions are included in a number of structures in the keyboard description to define the col-
lection of modifiers that affect or are affected by some other entity. A modifier definition

is relevant only in the context of some other entity such as an indicator map, a control, or a
key type. (See sections 8.2.2, 10.8, and 15.2.)

typedef struct _XkbMods {
unsigned char mask; /* real_mods | vmods mapped to real modifiers */
unsigned char real_mods; /* real modifier bits */

November 10, 1997 Library Version 1.0/Document Rision 1.1 30

The X Keyboard Extension 7 \Vrtual Modifiers

7.3

7.4

unsigned short vmods; [* virtual modifier bits */
} XkbM odsRec,*XkbModsPtr;

An Xkb modifier definition consists of a set of bit masks corresponding to the eight real
modifiers (eal_mod$; a similar set of bitmasks corresponding to the 16 named virtual
modifiers {mod$; and an effective maskn@sh. The effective mask represents the set of
all real modifiers that can logically be set either by setting any of the real modifiers or by
setting any of the virtual modifiers in the definitionaskis derived from the real and vir-
tual modifiers and should never be explicitly changed — it contains all of the real modifi-
ers specified in the definitiomgal _mod$ plusany real modifiers that are bound to the
virtual modifiers specified in the definitionrfod$. The binding of the virtual modifiers

to real modifiers is exterior to the modifier definition. Xkb automatically recomputes the
mask field of modifier definitions as necessary. Whenever you access a modifier defini-
tion that has been retrieved using an Xkb library function, the mask field will be correct
for the keyboard mapping of interest.

Binding Vir tual Modifier s to Real Modifier s

The binding of virtual modifiers to real modifiers is defined byg@eser.vmodsrray in
anXkbDescRec structure. Each entry contains the real modifier bits that are bound to the
virtual modifier corresponding to the entry. The overall relationship of fields dealing with
virtual modifiers in the server keyboard description are shown in Figure 16.2.

Virtual Modifier K ey Mapping

Xkb maintains avirtual modifier mappingwhich lists the virtual modifiers associated

with, or bound to, each key. The real modifiers bound to a virtual modifier always include
all of the modifiers bound to any of the keys that specify that virtual modifier in their vir-
tual modifier mapping. Theerver.vmodmaprray indicates which virtual modifiers are
bound to each key; each entry is a bitmask for the virtual modifier bitserter.vmod-
maparray is indexed by keycode.

Thevmodmapndvmodsmembers of the server map are the “master” virtual modifier
definitions. Xkb automatically propagates any changes to these fields to all other fields
that use virtual modifier mappings (see section 16.4).

For example, iMbd3 is bound to thélum_Lock key by the core protocol modifier map-
ping, and thé\unLock virtual modifier is bound to theljum_Lock key by the virtual
modifier mappingMd3 is added to the set of modifiers associated WiiiLock.

The virtual modifier mapping is normally updated whenever actions are automatically
applied to symbols (see section 16.4 for details), and few applications should need to
change the virtual modifier mapping explicitly.

UseXkbGetMap(see section 14.2) to get the virtual modifiers from the server otkise
Get\MrtualMods (see section 16.4.1) to update a local copy of the virtual modifiers bind-
ings from the server. To set the binding of a virtual modifier to a real modifier, use
XkbSetMagseesection 14.3

November 10, 1997 Library Version 1.0/Document Rision 1.1 31

The X Keyboard Extension 7 \Vrtual Modifiers

7.4.1

7.5

7.6

To determine the mapping of virtual modifiers to core X protocol modifiersXki®ér-
tualModsToReal.

Bool XkbVirtualM odsToReal (xkb, virtual_mask, mask_rtrn)

XkbDescPtr xkb; /* keyboard description for input diee */
unsigned int virtual_mask; /* virtual modifier mask to translate */
unsigned int * mask_rtrn; /* backfilled with real modifiers */

If the keyboard description defined kikb includes bindings for virtual modifier&kbVir-
tualModsToReal uses those bindings to determine the set of real modifiers that correspond
to the set of virtual modifiers specifiedvirtual_mask. Thevirtual _mask parameter is a

mask specifying the virtual modifiers to translate; the i-th bit (O relative) of the mask rep-
resents the i-th virtual modifier. mhask_rtrn is nonNULL, XkbVirtualModsToReal back-

fills it with the resulting real modifier mask. If the keyboard descriptiatkindoes not

include virtual modifier bindings<kbVirtualModsToReal returnsFal se; otherwise, it
returnsTr ue.

Note Itis possible for a local (client-sideg)ooard description (thekb parameter) to not
contain ag virtual modifier information (simply because the client has not requested
it) while the serer’s corresponding definition may contain virtual modifier informa-
tion.

Inactive Modifier Sets

An unbound virtual modifier is one that is not bound to any real modifier
(server->vmodsg|virtual_modifier_index] is zero).

Some Xkb operations ignore modifier definitions in which the virtual modifiers are
unbound. Consider this example:

if (state matches {Shift}) Do OneThing;
if (state matches {Shift+NumLock}) Do Another;

If the NumLock virtual modifier is not bound to any real modifiers, the effective masks for
these two cases are identical (that is, contain 8imiy t). When it is essential to distin-
guish betwee®neThingand Another, Xkb considers only those modifier definitions for
which all virtual modifiers are bound.

Conventions

The Xkb extension does not require any specific virtual modifier names. However, every-
one benefits if the same names are used for common modifiers. The following names are
suggested:

Nunock
Scrol | Lock
At

Met a

AtQa

Level Thr ee

Example

If the second (O-relative) entry mames.vmods contains the Atom for “NumLock”, then
0x4 (1<<2) is the virtual modifier bit for tiduniock virtual modifier. Ifserver.vmods[2]

November 10, 1997 Library Version 1.0/Document Rision 1.1 32

The X Keyboard Extension 7 \Vrtual Modifiers

containdvbd3Mask, then the\uniock virtual modifier is bound to thiebd3 real modi-
fier.

A virtual modifier definition for this example would have:

real_mods =0
vmods = 0x4 (NumLock named virtual modifier)
mask = 0x20 (Mod3Mask)

Continuing the example, if the keyboard hasuen_Lock keysym bound to the key with
keycode 14, and thduniock virtual modifier is bound to this kegerver.vmodmap[14]
contains 0x4.

Finally, if the keyboard also used the rbtil modifier for numeric lock operations, the
modifier definition below would represent the situation where either the key bound to
Mbd1l or theNuniock virtual modifier could be used for this purpose:

real_mods = 0x8 (Mod1Mask)
vmods = 0x4 (NumLock named virtual modifier)
mask = 0x28 (Mod1Mask | Mod3Mask)

November 10, 1997 Library Version 1.0/Document Rision 1.1 33

The X Keyboard Extension 8 Indicators

8

8.1

8.2

8.2.1

Indicators

Although the core X implementation supports up to 32 LEDs on an input device, it does
not provide any linkage between the state of the LEDs and the logical state of the input
device. For example, most keyboards ha@Ga@sLock LED, but X does not provide a
mechanism to make the LED automatically follow the logical state afdpsLock key.

Furthermore, the core X implementation does not provide clients with the ability to deter-
mine what bits in théed _mask field of theXKeyboar dSt at e map to the particular LEDs

on the keyboard. For example, X does not provide a method for a client to determine what
bit to set in théed _mask field to turn on theScroll LockLED or whether the keyboard

even has &croll Lock LED.

Xkb provides indicator names and programmable indicators to help solve these problems.
Using Xkb, clients can determine the names of the various indicators, determine and con-
trol the way that the individual indicators should be updated to reflect keyboard changes,
and determine which of the 32 keyboard indicators reported by the protocol are actually
present on the keyboard. Clients may also request immediate notification of changes to the
state of any subset of the keyboard indicators, which makes it straightforward to provide
an on-screen “virtual” LED panel. This chapter describes Xkb indicators and the functions
used for manipulating them.

Indicator Names

Xkb provides the capability of symbolically naming indicators. Xkb itself doesn’'t use

these symbolic names for anything; they are there only to help make the keyboard descrip-
tion comprehensible to humans. To set the names of specific indicatoxéb&sNames

as discussed in Chapter 18. Then set the map MEb>Map (see section 14.3) otkb-
SetNamedindicator (below). To retrieve indicator names, udéGetNames (Chapter 18).

Indicator Data Structures

Use the indicator description recoikbl ndi cat or Rec, and its indicator map,
Xkbl ndi cat or MapRec, to inquire about and control most indicator properties and
behaviors.

XkblIndicatorRec

The description for all the Xkb indicators is held in ithdicators field of the complete
keyboard description (see Chapter 6), which is defined as follows:

#defineXkbNumlindicators 32

typedef struct {
unsigned long phys_indicators; /* LEDs existence */
XkbIndicatorMapRec maps[XkbNumindicators]; /* indicator maps */
} Xkblndicator Rec,*XkbIndicatorPtr;

This structure contains thphys indicators field, which relates some information about
the correspondence between indicators and physical LEDs on the keyboard, and an array
of indicatormaps, one map per indicator.

Thephys indicators field indicates which indicators are bound to physical LEDs on the
keyboard; if a bit is set iphys_indicators, then the associated indicator has a physical

November 10, 1997 Library Version 1.0/Document Rision 1.1 34

The X Keyboard Extension 8 Indicators

8.2.2

LED associated with it. This field is necessary because some indicators may not have cor-
responding physical LEDs on the keyboard. For example, most keyboards have an LED
for indicating the state dfapsLock, but most keyboards do not have an LED that indi-
cates the current group. Becapbgs indicators describes a physical characteristic of the
keyboard, you cannot directly change it under program control. However, if a client pro-
gram loads a completely new keyboard descriptiorXiki#setKeyboardByName, or if a

new keyboard is attached and the X implementation nopbgs,indicators changes if

the indicators for the new keyboard are different.

XkbIndicatorMapRec

Each indicator has its own set of attributes that specify whether clients can explicitly set
its state and whether it tracks the keyboard state. The attributes of each indicator are held
in themaps array, which is an array &&bl ndi cat or Rec structures:

typedef struct {
unsigned char flags; * how the indicator can be changed */
unsigned char which_groups; /* match criteria for groups */
unsigned char groups; * which keyboard groups the indicatoratches */
unsigned char which_mods; /* match criteria for modifiers */
XkbModsRec mods; /* which modifiers the indicator &tches */
unsigned int ctrls; * which controls the indicator atches */

} XkbIndicatorMapRec, *XkbIndicatorMapPtr;
This indicator map specifies for each indicator:

The conditions under which theyjboard modifier state f&fcts the indicator

The conditions under which theyjboard group statefatcts the indicator

The conditions under which the state of the boolean contrfelssthe indicator

The efect (if ary) of attempts tox@licitly change the state of the indicator using the
functionsXkbSetControls or XChangeKeyboardControl

For more information on the effects of explicit changes to indicators and the relationship
to the indicator map, see section 8.4.1.

XkbIndicatorMapRec flags field

Theflags field specifies the conditions under which the indicator can be changed and the
effects of changing the indicator. The valid valuedlfys and their effects are shown in
Table 8.1.

Table 8.1 XkbIndicatorMapRec flags Field

Value Effect
XkbIM_NoExplicit (1L<<7) Client applications cannot change the state of the indicator

XkbIM_NoAutomatic (1L<<6) Xkb does not automatically change ttsue of the indicator
based upon a change in treylhoard state, gardless of the
values for the other fields of the indicator map.

XkbIM_LEDDriveskB (1L<<5) A client application changing the state of the indicator causes
the state of thedyboard to change.

Note that ifXkbl M NoAut omat i ¢ is not set, by default the indicator follows the key-
board state.

November 10, 1997 Library Version 1.0/Document Rision 1.1 35

The X Keyboard Extension 8 Indicators

If Xkbl M LEDDx i vesKBis set andkkbl M NoExpl i ci t is not, and if you call a function
which updates the server’s image of the indicator map (suxkb&stlndicatorMap or
XkbSetNamedi ndicator), Xkb changes the keyboard state and controls to reflect the other
fields of the indicator map, as described in the remainder of this section. If you attempt to
explicitly change the value of an indicator for whiithl M LEDDx i vesKB is absent or

for which Xkbl M_NoExpl i ci t is present, keyboard state or controls are unaffected.

For example, a keyboard designer may want to makéapel.ock LED controllable

only by the server, but allow ti8zroll LockLED to be controlled by client applications.
To do so, the keyboard designer could sedtd M NoExpl i ci t flag for the

CapsLock LED, but not set it for th&croll LockLED. Or the keyboard designer may
wish to allow theCapsLock LED to be controlled by both the server and client applica-
tions and also have the server to automatically changéafisd ock modifier state when-
ever a client application changes apsLock LED. To do so, the keyboard designer
would not set thekbl M NoExpl i ci t flag, but would instead set the

Xkbl M LEDDx i vesKB flag.

The remaining fields in the indicator map specify the conditions under which Xkb auto-
matically turns an indicator on or off (onlyXkbl M NoAut ormat i ¢ is not set). If these
conditions match the keyboard state, Xkb turns the indicator on. If the conditions do not
match, Xkb turns the indicator off.

XkbIndicatorMapRec which_groups and groups fields

Thewhich_groups and thegroups fields of an indicator map determine how the keyboard
group state affects the corresponding indicator.wWiieh_groups field controls the inter-
pretation ofgroups and may contain any one of the following values:

#define XkbIM_UseNone 0

#define XkbIM_UseBase (1L << 0)

#define XkbIM_UseLatched (1L << 1)

#define XkbIM_UseLoc&d (1L << 2)

#define XkbIM_UseHéctive (1L << 3)

#define XkbIM_UseAnGroup XkbIM_UselLatched | XkbIM_UselLo&d |
XkbIM_UseEfective

Thegroupsfield specifies what keyboard groups an indicator watches and is the bitwise
inclusive OR of the following valid values:

#define XkbGrouplMask (1<<0)
#define XkbGroup2Mask (1<<1)
#define XkbGroup3Mask (1<<2)
#define XkbGroup4Mask (1<<3)

#define XkbAryGroupMask (1<<7)
#define XkbAllGroupsMask (Oxf)

November 10, 1997 Library Version 1.0/Document Rision 1.1 36

The X Keyboard Extension

8 Indicators

If Xkbl M NoAut omat i ¢ is not set (the keyboard drives the indicator), the effect of
which_groups andgroups is shown in Table 8.2.

Table 8.2 XkblndicatorMapRec which_groups and groups, Keyboard Drives Indicator

which_groups

Effect

XkbIM_UseNone
XkbIM_UseBase

XkbIM_UselLatched

XkbIM_UselLocled

XkbIM_UseEfective

Thegroups field and the currentéyboard group state are ignored.

If groups is nonzero, the indicator is lit wharez the basedyboard
group is nonzero. @roupsis zero, the indicator is lit whewer the base
keyboard group is zero.

If groupsis nonzero, the indicator is lit where the latcheddyboard

group is nonzero. froups is zero, the indicator is lit whewer the
latched leyboard group is zero.

Thegroups field is interpreted as a mask. The indicator is lit when the
current locled keyboard group matches one of the bits that are set in

groups.

Thegroups field is interpreted as a mask. The indicator is lit when the
current efective keyboard group matches one of the bits that are set in

groups.

The effect ofwhich_groups andgroups when you change an indicator for which
Xkbl M LEDDx i vesKB is set (the indicator drives the keyboard) is shown in Table 8.3.
The “New State” column refers to the new state to which you set the indicator.

Table 8.3 Xkblndicator MapRec which_groups and groups, I ndicator Drives Keyboar d

which_groups

New Sate Effect on Keyboard Group Sate

XkbIM_UseNone
XkbIM_UseBase
XkbIM_UseLatched

XkbIM_UseLatched

XkbIM_UseLocled or
XkbIM_UseEfective

XkbIM_UseLocled or
XkbIM_UseEfective

On or Of No efect
On or Of No efect

On

off

On

Off

Thegroups field is treated as a group mask. Tleghoard
group latch is changed to thevest numbered group speci-
fied ingroups; if groups is emptythe leyboard group latch is
changed to zero.

Thegroupsfield is treated as a group mask. If the indicator is
explicitly extinguished, kyboard group latch is changed to
the lovest numbered group not specifiedjioups; if groups

is zero, the &/board group latch is set to the imdaf the
highest Igal keyboard group.

If the groups mask is emptygroup is not changed; otherwise,
the locled keyboard group is changed to thevkst num-
bered group specified groups.

Locked keyboard group is changed to thevkst numbered
group that is not specified in theoups mask, or td3 oupl

if the groups mask contains alldgboard groups.

XkbIndicatorMapRec which_mods and mods fields

Themods field specifies what modifiers an indicator watches. ifods field is an Xkb
modifier definition, XkbMbdsRec, as described in section 7.2, which can specify both real
and virtual modifiers. Thenods field takes effect even if some or all of the virtual indica-
tors specified inmods are unbound. To specify the mods field, in general, assign the mod-
ifiers of interest tanods.real_mods and the virtual modifiers of interest ads.vmods.

You can disregard thmods.mask field unless your application needs to interpret the indi-
cator map directly (that is, to simulate automatic indicator behavior on its own). Relatively

November 10, 1997 Library Version 1.0/Document Rision 1.1 37

The X Keyboard Extension 8 Indicators

few applications need to do so, but if you find it necessary, you can either read the indica-
tor map back from the server after you update it (the server automatically updates the
mask field whenever any of the real or virtual modifiers are changed in the modifier defi-
nition) or you can us¥kb\irtualModsToRealto determine the proper contents for the

mask field, assuming that tb&bDescRec contains the virtual modifier definitions.

which_modspecifies what criteria Xkb uses to determine a match with the corresponding
modsfield by specifying one or more components of the Xkb keyboard state. If

Xkbl M NoAut onat i ¢ is not set (the keyboard drives the indicator), the indicator is lit
whenever any of the modifiers specified in thaskfield of themodsmodifier definition

are also set in any of the current keyboard state components specifieccbymods
Remember that thmaskfield is comprised of all of the real modifiers specified in the def-
inition plus any real modifiers that are bound to the virtual modifiers specified in the defi-
nition. (See Chapter 5 for more information on the keyboard state and Chapter 7 for more
information on virtual modifiers.) Use a bitwise inclusive OR of the following values to
compose a value favhich_mods

#define XkbIM_UseNone 0

#define XkbIM_UseBase (1L << 0)

#define XkbIM_UseLatched (1L <<1)

#define XkbIM_UseLockd (1L << 2)

#define XkbIM_UseHéctive (1L << 3)

#define XkbIM_UseCompat (1L << 4)

#define XkbIM_UseAgpMods XkbIM_UseBase | XkbIM_UseLatche&XkbIM_UselLocled

| XkbIM_UseEfective | XkbIM_UseCompat

If Xkbl M NoAut omat i ¢ is not set (the keyboard drives the indicator), the effect of
which_modsandmodsis shown in Table 8.4

Table 8.4 Xkblndicator MapRec which_mods and mods, Keyboard Drives | ndicator

which_mods Effect on Kyboad Modifiess
XkbIM_UseNone The mods field and the currerdyboard modifier state are ignored.

XkbIM_UseBase The indicator is lit when gnof the modifiers specified in tmeaskfield
of modsare on in the égboard base statdf. both mods.eal_mods
andmods.vmodare zero, the indicator is lit when the base key-
board state contains no modifiers.

XkbIM_UselLatched The indicator is lit when gnof the modifiers specified in timeaskfield
of modsare latchedlf both mods.eal_modsandmods.vmodare
lzer% tg\e indicator is lit when none of the modifier keys are
atche

XkbIM_UselLocled The indicator is lit when gnof the modifiers specified in timeaskfield
of modsare locled. If both mods.eal_modsandmods.vmodare
zero, the indicatois lit when none of the modifieeeis are lockd.

XkbIM_UseEfective The indicator is lit when anof the modifiers specified in timeaskfield
of modsare in the déctive keyboard statelf both mods.eal_mods
andmods.vmodare zero, the indicator is lit when the effective
keyboard state contains no modifiers.

XkbIM_UseCompat The indicator is lit when gnof the modifiers specified in timeaskfield
of modsare in the kyboard compatibility statdf both
mods.eal_modsandmods.vmodare zero, the indicator is lit
whenthe keyboard compatibility state contains no modifiers.

November 10, 1997 Library Version 1.0/Document Rision 1.1 38

The X Keyboard Extension 8 Indicators

8.3

The effect on the keyboard modifiersvafiich_modsndmodswhen you change an indi-
cator for whichxkbl M LEDDx i vesKB is set (the indicator drives the keyboard) is shown

in Table 8.5. The “New State” column refers to the new state to which you set the indica-
tor.

Table 8.5 XkblndicatorMapRec which_mods and mods, I ndicator Drives Keyboard

which_mods New State Effect on Kyboad Modifies

XkbIM_UseNone or On or Of No Effect
XkbIM_UseBase

XkbIM_Uselatched On Any modifiers specified in th@askfield of modsare
added to the latched modifiers.

XkbIM_UseLatched Off Any modifiers specified in thmaskfield of modsare
removed from the latched modifiers.

XkbIM_UselLocled, On Any modifiers specified in thmaskfield of modsare

Xkb|M_UseCompat, or added to the loadd modifiers.

XkbIM_UseEfective

XkbIM_UseLocled Off Any modifiers specified in thmaskfield of modsare

removed from the lockd modifiers.

XkbIM_UseCompat or Off Any modifiers specified in th@askfield of modsare
XkbIM_UseEfective removed from both the load and latched modifiers.

XkbIndicatorMapRec ctrls field

Thectrls field specifies what controls (see Chapter 10) the indicator watches and is com-
posed using the bitwise inclusive OR of the following values:

#define XkbRepeat/sMask (1L << 0)
#define XkbSlavKeysMask (1L << 1)
#define XkbBouncelysMask (1L << 2)
#define XkbStickKeysMask (1L << 3)
#define XkbMousekysMask (1L << 4)

#define XkbMouseBysAccelMask (1L <<5)
#define XkbAccessX#ysMask (1L << 6)
#define XkbAccessXimeoutMask (1L << 7)
#define XkbAccessXFeedbackMasklL << 8)

#define XkbAudibleBellMask (1L << 9)
#define XkbOerlaylMask (1L << 10)
#define XkbOerlay2Mask (1L << 11)

#define XkbAllBooleanCtrlsMask (0xO0001FFF)
Xkb lights the indicator whenever any of the boolean controls specifidsns enabled.

Getting Information About Indicators

Xkb allows applications to obtain information about indicators using two different meth-
ods. The first method, which is similar to the core X implementation, uses a mask to spec-
ify the indicators. The second method, which is more suitable for applications concerned
with interoperability, uses indicator names. The correspondence between the indicator
name and the bit position in masks is as follows: one of the parameters return#trom
GetNamedIndicataris an index that is the bit position to use in any function call that

November 10, 1997 Library Version 1.0/Document Rision 1.1 39

The X Keyboard Extension 8 Indicators

8.3.1

8.3.2

8.3.3

requires a mask of indicator bits, as well as the indicator’s index inXktiiendi ca-
t or Rec array of indicator maps.

Getting Indicator State

Because the state of the indicators is relatively volatile, the keyboard description does not
hold the current state of the indicators. To obtain the current state of the keyboard indica-
tors, usexkbGetlndicator State.

StatusXkbGetlndicator State(display, device_spec, state return)
Display * display; [* connection to the X seer */
unsigned int device_spec; /* device ID, orXkbUseCor eKbd */
unsigned int $tate return; /* backfilled with a mask of the indicator state */

XkbGetlndicator Sate queries thalisplay for the state of the indicators on the device spec-
ified by thedevice spec. For each indicator that is “turned on” on the device, the associ-
ated bit is set istate_return. If a compatible version of the Xkb extension is not available
in the serverxXkbGetIndicator State returns éBadMat ch error. Otherwise, it sends the
request to the X server, places the state of the indicatorstateoreturn, and returns
Success. Thus the value reported bbGetlndicator Sate is identical to the value
reported by the core protocol.

Getting Indicator Information by Index

To get the map for one or more indicators, using a mask to specify the indicatofish-use
GetIndicatorMap.

StatusXkbGetl ndicator M ap(dpy, which, desc)
Display * dpy; /* connection to the X seer */
unsigned int which; /* mask of indicators for which maps should be returned */
XkbDescPtr desc; [* keyboard description to be updated */

XkbGetlndicatorMap obtains the maps from the server for only those indicators specified
by thewhich mask and copies the values into the keyboard description specifiest by
theindicators field of thedesc parameter i®NULL, XkbGetIndicatorMap allocates and ini-
tializes it.

XkbGetlndicatorMap can generatBadAl | oc, BadLengt h, Badvat ch, andBadl npl e-
nent at i on errors.

To free the indicator maps, uX&bFreel ndicatorMaps (see section 8.6).

Getting Indicator Information by Name

Xkb also allows applications to refer to indicators by name Xb&etNames to get the
indicator names (see Chapter 18). Using hames eliminates the need for hard-coding bit-
mask values for particular keyboards. For example, instead of using vendor-specific con-
stants such a&bKBLed_Scr ol | Lock mask on Digital workstations or

XLED SCROLL_LQOCK on Sun workstations, you can instead XiaGetNamedI ndicator

to look up information on the indicator named “Scroll Lock.”

November 10, 1997 Library Version 1.0/Document Rision 1.1 40

The X Keyboard Extension 8 Indicators

8.4

8.4.1

UseXkbGetNamedindicator to look up the indicator map and other information for an
indicator by name.

Bool XkbGetNamedIndicator (dpy, dev_spec, name, ndx_rtrn, state_rtrn, map_rtrn, real_rtrn)

Display * dpy; [* connection to the X seer */

unsigned int device spec; /* keyboard deice ID, orXkbUseCor eKbd */

Atom name; /* name of the indicator to be retvied */

int * ndx_rtrn; /* backfilled with the inde of the retriged indicator */

Bool * gtate rtrn; /* backfilled with the current state of the retee indicator */
XkblIndicatorMapPtmap_rtrn;/* backfilled with the mapping for the retvied indicator */
Bool * real_rtrn; /* backfilled withTr ue if the named indicator is real (ysical) */

If the device specified bgevice spec has an indicator namedme, XkbGetNamedI ndi-
cator returnsTr ue and populates the rest of the parameters with information about the
indicator. OtherwisexXkbGetNamedindicator returnsFal se.

Thendx_rtrn field returns the zero-based index of the named indicator. This index is the
bit position to use in any function call that requires a mask of indicator bits, as well as the
indicator’s index into th&kbl ndi cat or Rec array of indicator mapstate rtrn returns

the current state of the named indicaforye = on,Fal se = off). map_rtrn returns the
indicator map for the named indicator. In addition, if the indicator is mapped to a physical
LED, thereal_rtrn parameter is set ffr ue.

Each of the “rtrn” arguments is optional; you can padd L for any unneeded ftrn”
arguments.

XkbGetNamedindicator can generatBadAt omandBadl npl enent at i on errors.

Changing Indicator Maps and State

Just as you can get the indicator map using a mask or using an indicator name, so you can
change it using a mask or a name.

Note You cannot change thghys indicators field of the indicators structure. The only
way to change thphys indicators field is to change thes¢board map.

There are two ways to make changes to indicator maps and state: either change a local
copy of the indicator maps and uskbSetlndicatorMap or XkbSetNamedi ndicator, or, to
reduce network traffic, use adkbl ndi cat or ChangesRec structure and use
XkbChangelndicators.

Effects of Explicit Changes on Indicators

This section discusses the effects of explicitly changing indicators depending upon differ-
ent settings in the indicator map. See Tables 8.3 and Table 8.5 for information on the
effects of the indicator map fields when explicit changes are made.

If Xkbl M LEDDx i vesKBis set andkkbl M NoExpl i ci t is not, and if you call a function
that updates the server’s image of the indicator map (su¢kb&stlndicatorMap or Xkb-
SetNamedindicator), Xkb changes the keyboard state and controls to reflect the other
fields of the indicator map. If you attempt to explicitly change the value of an indicator for
which Xkbl M _LEDDx i vesKB is absent or for whickkbl M NoExpl i ci t is present,
keyboard state or controls are unaffected.

November 10, 1997 Library Version 1.0/Document Rision 1.1 41

The X Keyboard Extension 8 Indicators

8.4.2

If neither Xkbl M _NoAut omat i ¢ nor Xkbl M NoExpl i ci t issetin an indicator map,
Xkb honors any request to change the state of the indicator, but the new state might be
immediately superseded by automatic changes to the indicator state if the keyboard state
or controls change.

The effects of changing an indicator that drives the keyboard are cumulative; it is possible
for asingle change to affect keyboard group, modifiers, and controls simultaneously.

If you change an indicator for which both the Xkbl M LEDDr i vesKB and

Xkbl M_NoAut omat i ¢ flags are specified, Xkb applies the keyboard changes specified in
the other indicator map fields and changes the indicator to reflect the state that was explic-
itly requested. The indicator remainsin the new state until it is explicitly changed again.

If the Xkbl M NoAut onat i ¢ flagisnot set and Xkbl M LEDDr i vesKBis set, Xkb applies
the changes specified in the other indicator map fields and sets the state of the indicator to
the values specified by the indicator map. Note that it is possible in this case for the indi-

cator to end up in adifferent state than the one that was explicitly requested. For example,
Xkb does not extinguish an indicator with which_mods of Xkbl M UseBase and mods of

Shi f t if, at the time Xkb processes the request to extinguish the indicator, one of the Shift
keysis physically depressed.

If you explicitly light an indicator for which Xkbl M LEDDr i vesKBis set, Xkb enables all
of the boolean controls specified in the ctris field of its indicator map. Explicitly extin-
guishing such an indicator causes Xkb to disable all of the boolean controls specified in
ctrls.

Changing Indicator Maps by Index

To update the maps for one or more indicators, first modify alocal copy of the keyboard
description, then use XkbSetIndicator Map to download the changes to the server:

Bool XkbSetIndicator M ap(dpy, which, desc)
Display * dpy; /* connection to the X server */
unsignedint which; /* mask of indicators to change */
XkbDescPtr desc; /* keyboard description from which the maps are taken */

For each bit set in the which parameter, XkbSetlndicator Map sends the corresponding
indicator map from the desc parameter to the server.

November 10, 1997 Library Version 1.0/Document Revision 1.1 42

The X Keyboard Extension 8 Indicators

8.4.3 Changing Indicator Maps by Name
XkbSetNamedindicator can do several related things:

Name an indicator if it is not already named
Toggle the state of the indicator

Set the indicator to a specified state

Set the indicator map for the indicator

Bool XkbSetNamedI ndicator (dpy, device_spec, hame, change_state, state, create_new, map)

Display * dpy; [* connection to the X seer */

unsigned int device spec; /* device ID, orXkbUseCor eKbd */

Atom name; /* name of the indicator to change */

Bool change_state; /* whether to change the indicator state or not */

Bool state; [* desired ne state for the indicator */

Bool create new; /* whether a n& indicator with the specified name
should be created when necessary */

XkblIndicatorMapPtr map; /* new map for the indicator */

If a compatible version of the Xkb extension is not available in the séfkiE®etNamed-
Indicator returnsFal se. Otherwise, it sends a request to the X server to change the indi-
cator specified bypame and returngr ue.

If change_state is Tr ue, and the optional parametstate, is notNULL, XkbSetNamed-
Indicator tells the server to change the state of the named indicator to the value specified
by state.

If an indicator with the name specified bgme does not already exist, tioeeate new
parameter tells the server whether it should create a new named indicaatelinew is

Tr ue, the server finds the first indicator that doesn’t have a name and gives it the name
specified byname.

If the optional parametemap, is notNULL, XkbSetNamedindicator tells the server to
change the indicator’'s map to the values specifietam

XkbSetNamedindicator can generatBadAt omandBadl npl enent at i on errors. In
addition, it can also generatkbl ndi cat or St at eNot i f y (see section 8.5xkbl ndi -
cat or MapNot i fy, andXkbNamesNot i fy events (see section 18.5).

8.4.4 The XkbIndicatorChangesRec Structure

TheXkbl ndi cat or ChangesRec identifies small modifications to the indicator map.
Use it with the functiorkkbChangel ndicators to reduce the amount of traffic sent to the

server.
typedef struct _XkblndicatorChanges {
unsigned int state_changes;
unsigned int map_changes;

} Xkbl ndicator ChangesRec,*XkbIndicatorChangesPtr;

Thestate changesfield is a mask that specifies the indicators that have changed state, and
map_changes is a mask that specifies the indicators whose maps have changed.

November 10, 1997 Library Version 1.0/Document Rision 1.1 43

The X Keyboard Extension 8 Indicators

To change indicator maps or state without passing the entire keyboard description, use

XkbChangel ndicators.
Bool XkbChangel ndicator s(dpy, xkb, changes, state)
Display * dpy; [* connection to the X seer */
XkbDescPtr xkb; /* keyboard description from which names are to be
taken. */
XkbIndicatorChangesPtichanges; /* indicators to be updated on the sart/
unsigned int dtate; /* new state of indicators listed in

changes->state_changes */

XkbChangelndicators copies any maps specified tiyanges from the keyboard descrip-
tion, xkb, to the server specified lalpy. If any bits are set in thgate changes field of
changes, XkbChangelndicators also sets the state of those indicators to the values speci-
fied in thestate mask. A 1 bit irstate turns the corresponding indicator on, a 0 bit turns it
off.

XkbChangelndicators can generatgadAt omandBadl npl enent at i on errors. In addi-
tion, it can also genera¥bl ndi cat or St at eNot i f y andXkbl ndi cat or MapNot i fy
events (see section 8.5).

8.5 Tracking Changes to Indicator State or Map

Whenever an indicator changes state, the server Xgbtladi cat or St at eNot i fy
events to all interested clients. Similarly, whenever an indicator’'s map changes, the server
sendsXkbl ndi cat or MapNot i fy events to all interested clients.

To receivexXkbl ndi cat or St at eNot i fy events, us&kbSelectEvents (see section 4.3)
with both thebits to_change andvalues for_bits parameters containingbl ndi ca-

tor Stat eNot i f yMask. To receivexkbl ndi cat or MapNot i fy events, us&XkbSelect-
Events with Xkbl ndi cat or MapNot i f yMask.

To receive events for only specific indicators, MkbSelectEventDetails. Set the

event_type parametert o Xkbl ndi cat or St at eNot i fy or Xkbl ndi cat or MapNo-

tify, and set both thieits to_change andvalues for_bits detail parameters to a mask

where each bit specifies one indicator, turning on those bits that specify the indicators for
which you want to receive events.

Both types of indicator events use the same structure:
typedef struct _XkblIndicatorNotify {

int type; I* Xkb extension basevent code */

unsigned long serial; [* X server serial number forvent */

Bool send_gent; /* Tr ue => synthetically generated */

Display * display; /* server connection wherevent generated */
Time time; * sener time when eent generated */

int xkb_type; /* specifies state or map notify */

int device; * Xkb device ID, will not bexkbUseCor eKbd*/
unsigned int changed; /* mask of indicators with rve state or map */
unsigned int state; /* current state of all indicators */

} Xkblndicator NotifyEvent;

November 10, 1997 Library Version 1.0/Document Rision 1.1 44

The X Keyboard Extension 8 Indicators

8.6

xkb_type is eitherxXkbl ndi cat or St at eNot i fy or Xkbl ndi cat or MapNot i fy,
depending on whether the event isbd ndi cat or St at eNot i fy event oikbl ndi ca-
t or MapNot i fy event.

Thechanged parameter is a mask that is the bitwise inclusive OR of the indicators that
have changed. If the event is of tydebl ndi cat or MapNot i f y, changed reports the
maps that changed. If the event is of ty§bl ndi cat or St at eNot i f y, changed reports
the indicators that have changed stste is a mask that specifies the current state of all
indicators, whether they have changed or not, for Bkth ndi cat or St at eNot i fy

andl ndi cat or MapNot i fy events.

When your client application receives eithefkdl ndi cat or St at eNot i fy event or
Xkbl ndi cat or MapNot i fy event, you can note the changes in a changes structure by
calling XkbNotel ndicator Changes.

void XkbNotel ndicator Changes(old, new, wanted)

XkblIndicatorChangesPtr old; /* XkbiIndicatorChanges structure to be updated */
XkbIndicatorNotifyEwent * new;, [* event from which changes are to be copied */
unsigned int wanted; /* which changes are to be noted */

Thewanted parameter is the bitwise inclusive ORXbI ndi cat or MapMask and
Xkbl ndi cat or St at eMask. XkbNotel ndicator Changes copies any changes reported in
new and specified invanted into the changes record specifieddbg.

To update a local copy of the keyboard description with the actual values, pass the results
of one or more calls tgkbNotel ndicator Changes to XkbGetl ndicator Changes:

StatusXkbGetl ndicator Changes(dpy, xkb, changes, state)

Display * dpy; /[* connection to the X seer */

XkbDescPtr xkb; /* keyboard description to hold thewealues */
XkblIndicatorChangesPtichanges, /* indicator maps/state to be obtained from the eseti/
unsigned int * state; /* backfilled with the state of the indicators */

XkbGetlndicator Changes examines thehanges parameter, pulls over the necessary infor-
mation from the server, and copies the results intakih&eyboard description. If any bits
are set in thetate_changes field of changes, XkbGetlndicator Changes also places the

state of those indicators #ate. If theindicators field of xkb is NULL, XkbGetlndicator-
Changes allocates and initializes it. To free thmlicators field, usexXkbFreel ndicators

(see section 8.6).

XkbGetlndicator Changes can generatBadAl | oc, Badl npl erent at i on, andBad-
Mat ch errors.

Allocating and Freeing Indicator Maps

Most applications do not need to directly allocateitidecators member of the keyboard
description record (the keyboard description record is described in Chapter 6). If the need
arises, however, usékbAlloclndicatorMaps.

StatusXkbAllocl ndicator M aps(xkb)
XkbDescPtr xkb; /* keyboard description structure */

Thexkb parameter must point to a valid keyboard description. If it doeskibilloclndi-
catorMaps returns éBadMat ch error. OtherwiseXkbAlloclndicatorMaps allocates and
initializes theindicators member of the keyboard description record and retuns

November 10, 1997 Library Version 1.0/Document Rision 1.1 45

The X Keyboard Extension 8 Indicators

cess. If XkbAllocIndicatorMaps was unable to alocate the indicators record, it reports a
BadAl | oc error.

To free memory used by the indicators member of an XkbDescRec structure, use
XkbFreel ndicator Maps.

void XkbFreel ndicator M aps(xkb)
XkbDescPtr xkb; /* keyboard description structure */

If the indicators member of the keyboard description record pointed to by xkb isnot NULL,
XkbFreel ndicator Maps frees the memory associated with the indicators member of xkb.

November 10, 1997 Library Version 1.0/Document Revision 1.1 46

The X Keyboard Extension 9 Bells

9

9.1

Bells

The core X protocol allows only applications to explicitly sound the system bell with a
given duration, pitch, and volume. Xkb extends this capability by allowing clients to

attach symbolic names to bells, disable audible bells, and receive an event whenever the
keyboard bell is rung. For the purposes of this documenautible bell is defined to be

the system bell, or the default keyboard bell, as opposed to any other audible sound gener-
ated elsewhere in the system.

You can ask to receivé&kbBel | Not i fy events (see section 9.4) when any client rings
any one of the following:

» The deéult bell

« Any bell on an input ddce that can be specified byodl_class andbell_id pair

» Any bell specified only by an arbitrary name. (This is, from theesisrpoint of viev,
merely a name, and not connected with physical sound-generatingdee. Some
client application must generate the sound, or visual feedbacly, thamis associated
with the name.)

You can also ask to receixkbBel | Not i f y events when the server rings the default bell
or if any client has requested events only (without the bell sounding) for any of the bell
types previously listed.

You can disable audible bells on a global basis (to setitiebl eBel | control, see

Chapter 10). For example, a client that replaces the keyboard bell with some other audible
cue might want to turn off thaudi bl eBel | control to prevent the server from also gen-
erating a sound and avoid cacophony. If you disable audible bells and request to receive
XkbBel | Not i fy events, you can generate feedback different from the default bell.

You can, however, override tdedi bl eBel | control by calling one of the functions that
force the ringing of a bell in spite of the setting of Aueli bl eBel | control —Xkb-
ForceDeviceBell or XkbForceBell (see section 9.3.3). In this case the server does not gen-
erate a bell event.

Just as some keyboards can produce keyclicks to indicate when a key is pressed or repeat-
ing, Xkb can provide feedback for the controls by using special beep codes. The
AccessXFeedback control is used to configure the specific types of operations that gen-
erate feedback. See section 10.6.3 for a discussidnaessXFeedback control.

This chapter describes bell names, the functions used to generate named bells, and the
events the server generates for bells.

Bell Names

You can associate a name to an act of ringing a bell by converting the name to an Atom
and then using this name when you call the functions listed in this chapter. If an event is
generated as a result, the name is then passed to all other clients interested in receiving
XkbBel | Not i fy events. Note that these are arbitrary names and that there is no binding
to any sounds. Any sounds or other effects (such as visual bells on the screen) must be
generated by a client application upon receipt of the bell event containing the name. There
is no default name for the default keyboard bell. The server does generate some pre-
defined bells for the AccessX controls (see section 10.6.3). These named bells are shown
in Table 9.1; the name is included in any bell event sent to clients that have requested to
receiveXkbBel | Not i fy events.

November 10, 1997 Library Version 1.0/Document Rision 1.1 47

The X Keyboard Extension 9 Bells

Table 9.1 Pedefined Bells

Action Named Bell

Indicator turned on AX_IndicatorOn
Indicator turned df AX_IndicatorOf

More than one indicator changed state AX_IndicatorChange
Control turned on AX_FeatureOn
Control turned df AX_FeatureOf

More than one control changed state AX_FeatureChange
SlowKeys and Bounce#ys about to be turned on off of AX_SlowKeysWarning
SlowKeys key pressed AX_SlowKeyPress
SlowKeys key accepted AX_SlowKeyAccept
SlowKeys key rejected AX_SlowKeyReject
Accepted SloKeys key released AX_SlowKeyRelease
Bouncekeys key rejected AX_BouncekeyReject
StickyKeys key latched AX_StickyLatch
StickyKeys key locked AX_StickyLock
StickyKeys key unloclked AX_StickyUnlock

9.2 Audible Bells

Using Xkb you can generate bell events that do not necessarily ring the system bell. This
is useful if you need to use an audio server instead of the system beep. For example, when
an audio client starts, it could disable the audible bell (the system bell) and then listen for
XkbBel | Not i fy events (see section 9.4). When it receivisiaBel | Not i fy event, the

audio client could then send a request to an audio server to play a sound.

You can control the audible bells feature by passingib@dudi bl eBel | Mask to
XkbChangeEnabledControls (see section 10.1.1). If you sékbAudi bl eBel | Mask on,

the server rings the system bell when a bell event occurs. This is the default. If you set
XkbAudi bl eBel | Mask off and a bell event occurs, the server does not ring the system
bell unless you calkkbForceDeviceBell or XkbForceBell (see section 9.3.3).

Audible bells are also part of the per-client auto-reset controls. For more information on
auto-reset controls, see section 10.1.2.

9.3 Bell Functions
Use the functions described in this section to ring bells and to generate bell events.

The input extension has two types of feedbacks that can generate bells — bell feedback
and keyboard feedback. Some of the functions in this sectiorbbkvelass andbell_id
parameters; set them as follows: Bat classtoBel | Feedbackd ass or KbdFeed-

backd ass. A device can have more than one feedback of each tydmlised to the
particular bell feedback ddell _class type.

November 10, 1997 Library Version 1.0/Document Rision 1.1 48

The X Keyboard Extension 9 Bells

Table 9.2 shows the conditions that cause a bell to sound®&b&el | Not i f yEvent to
be generated when a bell function is called.

Table 9.2 Bell Sounding and Bell Event Generating

Server sounds Server sends an

Function called AudibleBell 2 bell XkbBelINotifyEvent
XkbDeviceBell On Yes Yes

XkbDeviceBell Off No Yes

XkbBell On Yes Yes

XkbBell Off No Yes
XkbDeviceBellEvent On or Of No Yes

XkbBellEvent On or Of No Yes
XkbDeviceForceBell On or Of Yes No

XkbForceBell On or Of Yes No

9.3.1 Generating Named Bells
To ring the bell on an X input extension device or the default keyboardXkbBevice-

Bell.

Bool XkbDeviceBell(display, window, device id, bell_class, bell _id, percent, name)
Display * display; /* connection to the X seer */
Window window; /* window for which the bell is generated, or None */

unsigned int device_spec; /* device ID, orXkbUseCor eKbd */
unsigned int bell_class, /* X input extension bell class of the bell to be rung */

unsigned int bell _id; /* X input extension bell ID of the bell to be rung */
int percent; /* bell volume, from -100 to 100 inclus */
Atom name; /* a name for the bell, dULL */

Setpercent to be the volume relative to the base volume for the keyboard as described for
XBell.

Note thatbell _class andbell _id indicate the bell to physically ringame is simply an
arbitrary moniker for the client application’s use.

To determine the current feedback settings of an extension input devix&;eiEeed-
backControl. See the X input extension documentation for more informatiotGat
FeedbackControl and related data structures.

If a compatible keyboard extension is not present in the X setkiaDeviceBell immedi-
ately returnd=al se. Otherwise XkbDeviceBell rings the bell as specified for the display
and keyboard device and retuifraue. If you have disabled the audible bell, the server
does not ring the system bell, although it does genebdibBel | Not i f y event.

You can callXkbDeviceBell without first initializing the keyboard extension.

As a convenience function, Xkb provides a function to ring the bell on the default key-

board: XkbBell.
Bool XkbBell(display, window, percent, name)
Display * display; [* connection to the X seer */
Window window; /* event windav, or None*/
int percent; /* relative wolume, which can range from -100 to 100 inclasi/
Atom name; * a bell name, oNULL */

November 10, 1997 Library Version 1.0/Document Rision 1.1 49

The X Keyboard Extension 9 Bells

If a compatible keyboard extension isn’t present in the X sex&bBell callsXBell with
the specifiedlisplay andpercent, and return&al se. Otherwise XkbBell calls XkbDevi-
ceBell with the specifiedlisplay, window, percent, andname, adevice_spec of XkbUseG
or eKbd, abell_classof XkbDf | t XI A ass, and abell_id of XkbDf I t XI | d, and returns
Tr ue.

If you have disabled the audible bell, the server does not ring the system bell, although it
does generateXkbBel | Not i fy event.

You can callXkbBell without first initializing the keyboard extension.

9.3.2 Generating Named Bell Events

Using Xkb, you can also generate a named bell event that does not ring any bell. This
allows you to do things such as generate events when your application starts.

For example, if an audio client listens for these types of bells, it can produce a “whoosh”
sound when it receives a named bell event to indicate a client just started. In this manner,
applications can generate start-up feedback and not worry about producing annoying
beeps if an audio server is not running.

To cause a bell event for an X input extension device or for the keyboard, without ringing
the corresponding bell, usd&bDeviceBel|Event.

Bool XkbDeviceBellEvent(display, window, device_spec, bell_class, bell_id, percent, name)
Display * display; /* connection to the X seer */
Window window; /* event windav, or None*/
unsigned int device spec;/* device ID, orXkbUseCor eKbd */
unsigned int bell_class;/* input extension bell class for thevent */
unsigned int bell_id; /* input extension bell ID for thewent */
int percent; /* volume for the bell, which can range from -100 to 100 incku$/
Atom name; /* a bell name, oNULL */

If a compatible keyboard extension isn’t present in the X sexkeDeviceBellEvent
immediately returnf&al se. Otherwise XkbDeviceBellEvent causes aixkbBel | Not i fy
event to be sent to all interested clients and reflirne. Setpercent to be the volume rel-
ative to the base volume for the keyboard as describe<Bmt.

In addition,XkbDeviceBellEvent may generatét omprotocol errors as well a&b-
Bel | Noti fy events. You can calkbBell without first initializing the keyboard exten-
sion.

As a convenience function, Xkb provides a function to cause a bell event for the keyboard
without ringing the bellXkbBellEvent.

Bool XkbBellEvent(display, window, percent, name)

Display * display; [* connection to the X seer */

Window window; [* the event windav, or None */

int percent; [* relative volume, which can range from -100 to 100 inclasi/
Atom name; /* a bell name, oNULL */

If a compatible keyboard extension isn’t present in the X sexkbBellEvent immedi-
ately returng-al se. Otherwise XkbBellEvent calls XkbDeviceBel|Event with the speci-
fied display, window, percent, andname, adevice_spec of XkbUseCor eKbd, abell _class

November 10, 1997 Library Version 1.0/Document Rision 1.1 50

The X Keyboard Extension 9 Bells

of XkbDf | t XI A ass, and aell_id of XkbDf I t XI | d, and returns whatkbDevice-
BellEvent returns.

XkbBellEvent generates #ZkbBel | Not i fy event.

You can callXkbBellEvent without first initializing the keyboard extension.

9.3.3 Forcing a Server-Generated Bell

To ring the bell on any keyboard, overriding user preference settings for audible bells, use

XkbForceDeviceBell.

Bool XkbForceDeviceBell(display, window, device spec, bell _class, bell_id, percent)
Display * display; [* connection to the X seer */
Window window; /* event windav, or None */

unsigned int device_spec; /* device ID, orXkbUseCor eKbd */

unsigned int bell_class; /* input extension class of the bell to be rung */

unsigned int bell _id; [* input extension ID of the bell to be rung */

int percent; /* relative wolume, which can range from -100 to 100 inclasi/

If a compatible keyboard extension isn’'t present in the X sexibForceDeviceBell
immediately returngal se. Otherwise XkbForceDeviceBell rings the bell as specified for
the display and keyboard device and retdimse. Setpercent to be the volume relative to
the base volume for the keyboard as describedBell. There is naame parameter
becauseXkbForceDeviceBell does not cause afkbBel | Not i fy event.

You can callXkbBell without first initializing the keyboard extension.

To ring the bell on the default keyboard, overriding user preference settings for audible
bells, usexkbForceBell.

Bool XkbForceBell(display, percent)
Display * display; /* connection to the X seer */
int percent; /* volume for the bell, which can range from -100 to 100 inctust

If a compatible keyboard extension isn’'t present in the X sexkbForceBell callsXBell
with the specifiedlisplay andpercent and returng-al se. Otherwise XkbForceBell calls
XkbForceDeviceBell with the specifiedlisplay andpercent, device spec =XkbUseC

or eKbd, bell_class=XkbDf I t XI A ass, bell_id=XkbDf | t XI | d, window = None, and
name = NULL, and returns whatkbForceDeviceBell returns.

XkbForceBell does not cause afkbBel | Not i fy event.

You can callXkbBell without first initializing the keyboard extension.

9.4 Detecting Bells

Xkb generateXkbBel | Not i fy events for all bells except for those resulting from calls
to XkbForceDeviceBell andXkbForceBell. To receivexkbBel | Not i fy events under all
possible conditions, pa3&bBel | Not i f yMask in both thebits to_change and

values for_bits parameters t&kbSelectEvents (see section 4.3).

TheXkbBel | Not i f y event has no event details. It is either selected or it is not. How-
ever, you can cakkbSelectEventDetails usingXkbBel | Not i fy as theevent_type and
specifyingXkbAl | Bel | Not i f yMask in bits_to_change andvalues_for_bits. This has

the same effect as a callX&bSelectEvents.

November 10, 1997 Library Version 1.0/Document Rision 1.1 51

The X Keyboard Extension 9 Bells

The structure for thgkbBel | Not i f y event type contains:
typedef struct _XkbBellNotify {

int type; I* Xkb extension basevent code */

unsigned long serial; [* X server serial number forvent */

Bool send_gent; /* Tr ue => synthetically generated */

Display * display; /* server connection wherevent generated */
Time time; [* server time when eent generated */

int xkb_type; /* XkbBel | Noti fy */

unsigned int device; I* Xkb device ID, will not bexkbUseCor eKbd */
int percent; * requested @lume as % of max */

int pitch; * requested pitch in Hz */

int duration; * requested duration in microseconds */
unsigned int bell class; /* X input extension feedback class */
unsigned int bell_id; /* X input extension feedback ID */

Atom name; [* “name” of requested bell */

Window window; /* window associated withvent */

Bool event_only; /* Fal se -> the serer did not produce a beep */

} XkbBelINotifyEvent;

If your application needs to generate visual bell feedback on the screen when it receives a
bell event, use the window ID in tb&bBel | Not i f yEvent , if present.

November 10, 1997 Library Version 1.0/Document Rision 1.1 52

The X Keyboard Extension 10 Keyboard Controls

10

Keyboard Controls

The Xkb extension is composed of two parts: a server extension, and a client-side X
library extension. This chapter discusses functions used to modify controls effecting the
behavior of the server portion of the Xkb extension. Chapter 11 discusses functions used
to modify controlsthat affect only the behavior of the client portion of the extension; those
controls are known as Library Controls.

Xkb contains control features that affect the entire keyboard, known as global keyboard
controls. Some of the controls may be selectively enabled and disabled; these controls are
known as the Boolean Controls. Boolean Controls can be turned on or off under program
control and can also be automatically set to an on or off condition when a client program
exits. Theremaining controls, known asthe Non-Boolean Controls, are always active. The
XkbCont r ol sRec structure describes the current state of most of the global controls and
the attributes effecting the behavior of each of these Xkb features. This chapter describes
the Xkb controls and how to manipulate them.

There are two possible components for each of the Boolean Controls: attributes describing
how the control should work, and a state describing whether the behavior asawholeis
enabled or disabled. The attributes and state for most of these controls are held in the
XkbCont r ol sRec structure (see section 10.8).

Y ou can manipulate the Xkb controls individually, via convenience functions, or asa
whole. To treat them as agroup, modify an XkbCont r ol sRec structure to describe all of
the changes to be made, and then pass that structure and appropriate flagsto an Xkb
library function, or use a XkbCont r ol sChangesRec (see section 10.10.1) to reduce net-
work traffic. When using a convenience function to manipulate one control individually,
you do not use an XkbCont r ol sRec structure directly.

The Xkb controls are grouped as shown in Table 10.1.
Table 10.1 Xkb Keyboard Controls

Type of Control Control Name Boolean Control ?
Controls for enabling and disabling other controls EnabledControls No
AutoReset No
Control for bell behavior AudibleBéll Boolean
Controls for repeat key behavior PerKeyRepeat No
RepeatKeys Boolean
DetectableAutorepeat Boolean
Controls for keyboard overlays Overlayl Boolean
Overlay?2 Boolean
Controls for using the mouse from the keyboard MouseKeys Boolean
MouseK eysAccel Boolean
Controlsfor better keyboard access by AccessX Feedback Boolean
physically impaired persons AccessXKeys Boolean
AccessX Timeout Boolean
BounceKeys Boolean
SlowKeys Boolean
StickyKeys Boolean
Controls for general keyboard mapping GroupsWrap No

November 10, 1997 Library Version 1.0/Document Revision 1.1 53

The X Keyboard Extension 10 Keyboard Controls

10.1

Table 10.1 Xkb Keyboard Controls

Type of Control Control Name Boolean Control ?
IgnoreGroupLock Boolean
IgnoreLockMods No
InternalMods No
Miscellaneous peclient controls GrabsUseXKBState Boolean
LookupStateWhenGraBoolean
bed
SendEentUsesXKBSt&8oolean
te

The individual categories and controls are described first, together with functions for
manipulating them. A description of tb&bCont r ol sRec structure and the general
functions for dealing with all of the controls at once follow at the end of the chapter.

Controls that Enable and Disable Other Controls

Enable and disable the boolean controls under program control by uskatiiesd-
Cont r ol s control; enable and disable them upon program exit by configuring the
Aut oReset control.

10.1.1 The EnabledControls Control

TheEnabl edCont r ol s control is a bit mask where each bit that is turned on means the
corresponding control is enabled, and when turned off, disabled. It corresponds to the
enabled_ctrisfield of anXkbGont r ol sRec structure (see section 10.8). The bits describ-
ing which controls are turned on or off are defined in Table 10.7.

UseXkbChangeEnabledControls to manipulate th&nabl edCont r ol s control.
Bool XkbChangeEnabledControls(dpy, device spec, mask, values)

Display * dpy; [* connection to X semr */

unsigned int device spec; /* keyboard deice to modify */
unsigned int mask; /* 1 bit -> controls to enable / disable */
unsigned int values; /* 1 bit => enable, 0 bit => disable */

Themask parameter specifies the boolean controls to be enabled or disabled, eaid the
ues mask specifies the new state for those controls. Valid values for both of these masks
are composed of a bitwise inclusive OR of bits taken from the set of mask bits in Table
10.7, using only those masks with “ok” in th@bled_ctrls column.

If the X server does not support a compatible version of Xkb or the Xkb extension has not
been properly initialized{kbChangeEnabledControls returnsFal se; otherwise, it sends
the request to the X server and returnee.

Note that théenabl edCont r ol s control only enables and disables controls; it does not
configure them. Some controls, such asAhéi bl eBel | control, have no configuration
attributes and are therefore manipulated solely by enabling and disabling them. Others,
however, have additional attributes to configure their behavior. For example, the
Repeat Cont r ol control usesepeat_delay andrepeat_interval fields to describe the

timing behavior of keys that repeat. TlRepeat Cont r ol behavior is turned on or off

November 10, 1997 Library Version 1.0/Document Rision 1.1 54

The X Keyboard Extension 10 Keyboard Controls

depending on the value of thikbRepeat KeysMask bit, but you must use other means,
as described in this chapter, to configure its behavior in detalil.

10.1.2 The AutoReset Control

You can configure the boolean controls to automatically be enabled or disabled when a
program exits. This capability is controlled via two masks maintained in the X server on a
per-client basis. There is no client-side Xkb data structure corresponding to these masks.
Whenever the client exits for any reason, any boolean controls specifiecauidtreset

mask are set to the corresponding value fromate-reset values mask. This makes it
possible for clients to “clean up after themselves” automatically, even if abnormally termi-
nated. The bits used in the masks correspond tarthlel edCont r ol s control bits.

For example, a client that replaces the keyboard bell with some other audible cue might
want to turn off thedudi bl eBel | control to prevent the server from also generating a
sound and avoid cacophony. If the client were to exit without resettidgitidl eBel |

control, the user would be left without any feedback at all. SeAtidgbl eBel | in both

the auto-reset mask and auto-reset values guarantees that the audible bell will be turned
back on when the client exits.

To get the current values of the auto-reset controlsXkl¥getAutoResetControls.
Bool XkbGetAutoResetControls(dpy, auto_ctrls, auto_values)

Display * dpy; [* connection to X semr */
unsigned int * auto_ctrls, [* specifies which bits imuto_values are relgant */
unsigned int * auto_values;, /* 1 bit => corresponding control has auto-reset on */

XkbGetAutoResetControls backfillsauto_ctrls andauto_values with theAut oReset con-
trol attributes for this particular client. It returfisue if successful, anéfal se otherwise.

To change the current values of the oReset control attributes, us¥kbSetAutoReset-

Controls.

Bool XkbSetAutoResetControls(dpy, changes, auto_ctrls, auto_values)
Display * dpy; [* connection to X semr */
unsigned int changes, /* controls for which to change auto-resatues */
unsigned int * auto_ctrls; /* controls from changes that should auto reset */
unsigned int * auto_values; /* 1 bit => auto-reset on */

XkbSetAutoResetControls changes the auto-reset status and associated auto-reset values
for the controls selected lapanges. For any control selected lojianges, if the corre-
sponding bit is set iauto_ctrls, the control is configured to auto-reset when the client
exits. If the corresponding bit auto_valuesis on, the control is turned on when the client
exits; if zero, the control is turned off when the client exits. For any control selected by
changes, if the corresponding bit is not setaanto_ctrls, the control is configured to not
reset when the client exits. For example:

To leave the auto-reset controls 8 ckyKeys the way they are:
ok = XkbSetAutoResetControls(gpD, 0, 0);

To change the auto-reset controls so 8iatckyKeys are unaffected when the client
exits:

ok = XkbSetAutoResetControls(gpXkbStickyKeysMask, 0, 0);

November 10, 1997 Library Version 1.0/Document Rision 1.1 55

The X Keyboard Extension 10 Keyboard Controls

To change the auto-reset controls so 8iatckyKeys are turned off when the client
exits:

ok = XkbSetAutoResetControls(gpXkbStickyKeysMask, XkbStickKeysMask, 0);
To change the auto-reset controls so $atckyKeys are turned on when the client exits:

ok = XkbSetAutoResetControls(gdpXkbStickyKeysMask, XkbStickKeysMask,
XkbStickyKeysMask);

XkbSetAutoResetControls backfillsauto_ctrls andauto_values with the auto-reset con-
trols for this particular client. Note that all of the bits are valid in the returned values, not
just the ones selected in tti@anges mask.

10.2 Control for Bell Behavior

The X server’s generation of sounds is controlled byAtlte bl eBel | control. Configu-
ration of different bell sounds is discussed in Chapter 9.

10.2.1 The AudibleBell Control

TheAudi bl eBel | control is a boolean control that has no attributes. As such, you may
enable and disable it using either Er@bl edCont r ol s control or theAut oReset con-

trol discussed in section 10.1.1. When enabled, protocol requests to generate a sound
result in the X server actually producing a real sound; when disabled, requests to the
server to generate a sound are ignored unless the sound is forced. See section 9.2.

10.3 Controls for Repeat Key Behavior

The repeating behavior of keyboard keys is governed by three contrdbey tkey Re-
peat control, which is always active, and tRepeat Keys andDet ect abl eAut or e-
peat controls, which are boolean controls that may be enabled and disabled.

Per KeyRepeat determines which keys are allowed to repBapeat Keys governs the
behavior of an individual key when it is repeatibgt ect abl eAut or epeat allows a
client to detect when a key is repeating as a result of being held down.

10.3.1 The PerKeyRepeat Control

ThePer KeyRepeat control is a bitmask long enough to contain a bit for each key on the
device; it determines which individual keys are allowed to repeat. Thé&etkkey Re-

peat control provides no functionality different from that available via the core X proto-
col. There are no convenience functions in Xkb for manipulating this control. The

Per KeyRepeat control settings are carried in ther_key repeat field of anXkbCon-

t r ol sRec structure, discussed in section 10.8.

10.3.2 The RepeatKeys Control

The core protocol allows only control over whether or not the entire keyboard or individ-
ual keys should auto-repeat when held doRapeat Keys is a boolean control that

extends this capability by adding control over the delay until a key begins to repeat and the
rate at which it repeatBepeat Keys is coupled with the core auto-repeat control: when
Repeat Keys is enabled or disabled, the core auto-repeat is enabled or disabled and vice
versa.

November 10, 1997 Library Version 1.0/Document Rision 1.1 56

The X Keyboard Extension 10 Keyboard Controls

Auto-repeating keys are controlled by two attributes. The firsgout, is the delay after

the initial press of an auto-repeating key and the first generated repeat event. The second,
interval, is the delay between all subsequent generated repeat events. As with all boolean
controls, configuring the attributes that determine how the control operates does not auto-
matically enable the control as a whole; see section 10.1.

To get the current attributes of tRepeat Keys control for a keyboard device, uXkb-

GetAutoRepeatRate.

Bool XkbGetAutoRepeatRate(display, device _spec, timeout_rtrn, interval_rtrn)
Display * display; [* connection to X semr */
unsigned int device spec; /* desired deice ID, orXkbUseCor ekbd */
unsigned int timeout_rtrn; /* backfilled with initial repeat delayns */
unsigned int interval_rtrn; /* backfilled with subsequent repeat delms */

XkbGetAutoRepeatRate queries the server for the current values oRdyeeat Control s
control attributes, backfillsmeout_rtrn andinterval_rtrn with them, and returng ue. If
a compatible version of the Xkb extension is not available in the s¢k&etAutoRepe-
atRate returnsFal se.

To set the attributes of the RepeatKeys control for a keyboard devicgh&spAutoRe-

peatRate.
Bool XkbSetAutoRepeatRate(display, device spec, timeout, interval)
Display * display; [* connection to X semr */
unsigned int device_spec; /* device to configure, okkbUseCor eKbd */
unsigned int timeout; /* initial delay, ms */
unsigned int interval; [* delay between repeats, ms */

XkbSetAutoRepeatRate sends a request to the X server to configurédth®Repeat con-
trol attributes to the values specifiediimeout andinterval.

XkbSetAutoRepeatRate does not wait for a reply; it normally returfisue. Specifying a
zero value for eitheirmeout or interval causes the server to generaiadVal ue proto-
col error. If a compatible version of the Xkb extension is not available in the sekiver,
SetAutoRepeatRate returnskal se.

10.3.3 The DetectableAutorepeat Control

Auto-repeat is the generation of multiple key events by a keyboard when the user presses
a key and holds it down. Keyboard hardware and device-dependent X server software
often implement auto-repeat by generating multfgePr ess events with no intervening
KeyRel ease event. The standard behavior of the X server is to genekatgRel ease

event for everKeyPr ess event. If the keyboard hardware and device-dependent soft-
ware of the X server implement auto-repeat by generating mfegler ess events, the
device-independent part of the X server by default synthetically geneitagBRel ease

event after eackeyPr ess event. This provides predictable behavior for X clients, but

does not allow those clients to detect the fact that a key is auto-repeating.

Xkb allows clients to requedettectable auto-repeat. If a client requests and the server
supportdet ect abl eAut or epeat , Xkb generateBeyRel ease events only when the
key is physically released. [kt ect abl eAut or epeat is not supported or has not been
requested, the server synthesiz&gyRel ease event for each repeati@yPr ess

event it generates.

November 10, 1997 Library Version 1.0/Document Rision 1.1 57

The X Keyboard Extension 10 Keyboard Controls

Det ect abl eAut or epeat , unlike the other controls in this chapter, is not contained in
the XkbCont r ol sRec structure, nor can it be enabled or disabled videtiaddl edCon-

t rol s control. Instead, query and €&t ect abl eAut or epeat usingXkbGetDetectab-
leAutorepeat andXkbSetDetectabl eAutorepeat.

Det ect abl eAut or epeat is a condition that applies to all keyboard devices for a client’s
connection to a given X server; it cannot be selectively set for some devices and not for
others. For this reason, none of the Xkb library functions involRetgect abl eAu-

t or epeat involve a device specifier.

To determine whether or not the server supdoetsct abl eAut or epeat , useXkbGet-
Detectabl eAutorepeat.

Bool XkbGetDetectableAutor epeat(display, supported _rtrn)
Display * display; [* connection to X semer */
Bool * supported_rtrn; /* backfilled Tr ue if Det ect abl eAut or epeat supported */

XkbGetDetectableAutorepeat queries the server for the current statBaifect abl eAu-

t or epeat and waits for a reply. Bupported_rtrnis notNULL, it backfillssupported rtrn
with Tr ue if the server support3et ect abl eAut or epeat , andFal se otherwise Xkb-
GetDetectableAutorepeat returns the current state Dét ect abl eAut or epeat for the
requesting clientTr ue if Det ect abl eAut or epeat is set, andral se otherwise.

To setDet ect abl eAut or epeat , useXkbSetDetectableAutorepeat. This request affects
all keyboard activity for the requesting client only; other clients still see the expected non-
detectable auto-repeat behavior, unless they have requested otherwise.

Bool XkbSetDetectableAutor epeat(display, detectable, supported_rtrn)
Display * display; /* connection to X semr */
Bool detectable; I* Tr ue => setDet ect abl eAut or epeat */
Bool * supported_rtrn; /* backfilled Tr ue if Det ect abl eAut or epeat supported */

XkbSetDetectableAutorepeat sends a request to the server tdDseiect abl eAut or e-
peat on for the current client detectable is Tr ue, and off itdetectable is Fal se; it then
waits for a reply. Isupported_rtrn is notNULL, XkbSetDetectableAutorepeat backfills
supported_rtrn with Tr ue if the server supportSet ect abl eAut or epeat , andFal se
if it does not XkbSetDetectableAutorepeat returns the current state ét ect abl eAu-

t or epeat for the requesting clientr ue if Det ect abl eAut or epeat is set, andral se
otherwise.

10.4 Controls for Keyboard Overlays (Overlayl and Overlay2 Controls)

A keyboard overlay allows some subset of the keyboard to report alternate keycodes when
the overlay is enabled. For example, a keyboard overlay can be used to simulate a numeric
or editing keypad on a keyboard that does not actually have one by reusing some portion
of the keyboard as an overlay. This technique is very common on portable computers and
embedded systems with small keyboards.

Xkb includes direct support for two keyboard overlays, usin@itee | ay1l and

Qver | ay2 controls. WherQver | ayl is enabled, all of the keys that are members of the

first keyboard overlay generate an alternate keycode. \@her ay?2 is enabled, all of

the keys that are members of the second keyboard overlay generate an alternate keycode.
The two overlays are mutually exclusive; any particular key may be in at most one over-
lay. Qver | ayl andOver | ay2 are boolean controls. As such, you may enable and disable

November 10, 1997 Library Version 1.0/Document Rision 1.1 58

The X Keyboard Extension 10 Keyboard Controls

10.5

them using either thiénabl edCont r ol s control or theAut oReset control discussed in
section 10.1.1.

To specify the overlay to which a key belongs and the alternate keycode it should generate
when that overlay is enabled, assign it eithexdti®<B Over | ayl or XkbKB_Over | ay2
key behaviors, as described in section 16.2.

Controls for Using the Mouse from the Keyboard

Using XKkb, it is possible to configure the keyboard to allow simulation of the X pointer
device. This simulation includes both movement of the pointer itself and press and release
events associated with the buttons on the pointer. Two controls affect this behavior: the
MouseKeys control determines whether or not simulation of the pointer device is active,
as well as configuring the default button; MmiseKeysAccel control determines the
movement characteristics of the pointer when simulated via the keyboard. Both of them
are boolean controls; as such, you may enable and disable them using either the

Enabl edCont r ol s control or theAut oReset control discussed in section 10.1.1. The
individual keys that simulate different aspects of the pointer device are determined by the
keyboard mapping, discussed in Chapter 16.

10.5.1 The MouseKeys Control

TheMuseKeys control allows a user to control all the mouse functions from the key-
board. WherMbuseKeys are enabled, all keys wittbuseKeys actions bound to them
generate core pointer events instead of noKegPr ess andKeyRel ease events.

TheMuseKeys control has a single attributek dflt_btn that specifies the core button
number to be used by mouse keys actions that do not explicitly specify a button. There is
no convenience function for getting or setting the attribute; insteaxkb&etControls
andXkbSetControls (see sections 10.9 and 10.10).

Note MouseKeys can also be turned on and by pressing thedy combination necessary
to produce aiXK_Poi nt er _Enabl eKeys keysym. The dedcto dehult standard
for this isShi f t +Al t +NunLock, but this may ary depending on theskmap.

10.5.2 The MouseKeysAccel Control

When theMbuseKeysAccel control is enabled, the effect of a key-activated pointer
motion action changes as a key is held down. If the control is disabled, pressing a
mouse-pointer key yields one mouse event. WMmrseKeysAccel is enabled, mouse
movement is defined by an initial distance specified in&ESA MovePt r action and
the following fields in thexkbCont r ol sRec structure (see section 10.8).

Table 10.2 MouseKeysAccel Fields

Field Function
mk_delay Time (ms) between the initiaek press and the first repeated motivard
mk_intenal Time (ms) between repeated motive s

mk_time_to_max Number of g@ents (count) before the pointer reaches maximum speed
mk_max_speed The maximum speed (in s per gent) the pointer reaches
mk_cune The ramp used to reach maximum pointer speed

November 10, 1997 Library Version 1.0/Document Rision 1.1 59

The X Keyboard Extension 10 Keyboard Controls

There are no convenience functions to query or change the attributedvolisieKey-
sAccel control; instead usk¥kbGetControls andXkbSetControls (see sections 10.9 and
10.10).

The effects of the attributes of tMuseKeysAccel control depend on whether the
XkbSA MovePtr action (see section 16.1) specifies relative or absolute pointer motion.

Absolute Pointer Motion

If an XkbSA MovePt r action specifies an absolute position for one of the coordinates but
still allows acceleration, all repeated events contain any absolute coordinates specified in
the action. For example, if tidkbSA MovePt r action specifies an absolute position for

the X direction, but a relative motion for the Y direction, the pointer accelerates in the Y
direction, but stays at the same X position.

Relative Pointer Motion

If the XkbSA MovePt r action specifies relative motion, the initial event always moves
the cursor the distance specified in the action. Aflerdelay milliseconds, a second
motion event is generated, and another occurs exlemnterval milliseconds until the
user releases the key.

Between the time of the second motion eventrakdime to_max intervals, the change

in pointer distance per interval increases with each interval. Alketiime to_max inter-

vals have elapsed, the change in pointer distance per interval remains the same and is cal-
culated by multiplying the original distance specified in the actiombynax speed.

For example, if th&kbSA MovePt r action specifies a relative motion in the X direction
of 5, mk_delay=160,mk_interval=40, mk_time_to_max=30, andmk_max_speed=30, the
following happens when the user presses the key:

* The pointer immediately nves 5 pixls in the X direction when thexkis pressed.

» After 160 millisecondsntk_delay), and @ery 40 milliseconds thereaftank _interval),
the pointer mees in the X direction.

» The distance in the X direction increases with each iatentil 30 interals
(mk_time to_max) have elapsed.

» After 30 intenals, the pointer stops accelerating, and@sal50 piels
(mk_max_speed * the original distance)very intenal thereafteruntil the ley is
released.

The increase in pointer difference for each interval is a functionk afurve. Events after
the first but before maximum acceleration has been achieved are accelerated according to
the formula:

0O max_accel 0

o urveFactor
Q@teps to maskrveFactor] stef?

d(step = action_deltax

Whereaction_delta is the relative motion specified by thkbSA MovePt r action,
mk_max_speed andmk_time_to_max are parameters to tiMduseKeysAccel control,
and the curveFactor is computed usinghbeseKeysAccel mk_curve parameter as fol-
lows:

curve
1000

curveFactor(curveF 1+

November 10, 1997 Library Version 1.0/Document Rision 1.1 60

The X Keyboard Extension 10 Keyboard Controls

With the result that a mk_curve of zero causes the distance moved to increase linearly
from action_delta to (mk_max_speed x action_delta). A negative mk_curve causes an initial
sharp increase in accel eration that tapers off, and a positive curve yields a slower initial
increase in acceleration followed by a sharp increase as the number of pointer events gen-
erated by the action approaches mk_time_to_max. The legal values for mk_curve are
between -1000 and 1000.

A distance vs. time graph of the pointer motion is shown in Figure 10.1.

mk_max_speed * Action delta

DOSY W O

Action delta

mk_delay mk_time_to_max mk_interval
(msec) (count) (msec)

e MK _curve=0
e MK_curve<0
wrrrr. MK _curve>0

Figure 10.1 MouseK eys Acceleration

10.6 Controls for Better Keyboard Access by Physically Impaired Persons

The Xkb extension includes several controls specifically aimed at making keyboard use
more effective for physically impaired people. All of these controls are boolean controls
and may be individually enabled and disabled, as well as configured to tune their specific
behavior. The behavior of these controls s based on the AccessDOS package®.

1. AccessDOS provides access to the DOS operating system for people with physical impairments and was devel-
oped by the Trace R& D Center at the University of Wisconsin. For more information on AccessDOS, contact the
Trace R&D Center, Waisman Center and Department of Industrial Engineering, University of Wisconsin-Madison
WI 53705-2280. Phone: 608-262-6966. e-mail: info@trace.wisc.edu.

November 10, 1997 Library Version 1.0/Document Revision 1.1 61

The X Keyboard Extension 10 Keyboard Controls

10.6.1 The AccessXKeys Control

Enabling or disabling the keyboard controls through a graphical user interface may be
impossible for people who need to use the controls. For example, a user who needs

S owKeys (see section 10.6.6) may not even be able to start the graphical application, let
alone use it, il owKeys is not enabled. To allow easier access to some of the controls,
the AccessXKeys control provides a set of special key sequences similar to those avail-
able in AccessDOS.

When theAccessXKeys control is enabled, the user can turn controls on or off from the
keyboard by entering the following standard key sequences:

« Holding davn a shift ley by itself for eight seconds toggles tHeowKeys control.

* Pressing and releasing the left or righift key five times in a na, without ary inter-
vening ley events and with less than 30 seconds delay between consquasses,
toggles the state of ttf#t i ckyKeys control.

« Simultaneously operating tswor more modifier #ys deactiates theSt i ckyKeys
control.

When theAccessXKeys control is disabled, Xkb does not look for the above special key
sequences.

Some of these key sequences optionally generate audible feedback of the change in state,
as described in section 10.6.3 XbCont r ol sNot i f y events, described in section
10.11.

10.6.2 The AccessXTimeout Control

In environments where computers are shared, features s8cbhwseys present a prob-

lem: if Sl owKeys is on, the keyboard can appear to be unresponsive because keys are not
accepted until they are held for a certain period of time. To help solve this problem, Xkb
provides arAccessXTi neout control to automatically change the enabled/disabled state

of any boolean controls and to change the value oAdt¢bhessXKeys andAccessX-

Feedback control attributes if the keyboard is idle for a specified period of time.

When a timeout as specified BgcessXTi meout occurs and a control is consequently
modified, Xkb generates afkbCont r ol sNot i f y event. For more information ofkb-
Cont rol sNot i fy events, refer to section 10.11.

Use XkbGetAccessXTimeout to query the currericcessXTi neout options for a key-
board device.

Bool XkbGetAccessX Timeout(display, device_spec, timeout_rtrn, ctrls_mask_rtrn,
ctrls values rtrn, options_mask_rtrn, options_values rtrn)

Display * display; [* connection to X semr */

unsigned int device_spec; [* device to queryor XkbUseCor eKbd */
unsigned short * timeout_rtrn; /* delay until AccessXimeout, seconds */
unsigned int * ctrls_mask_rtrn; /* backfilled with controls to modify */
unsigned int * ctrls values rtrn; /* backfilled with on/of status for controls */
unsigned short * opts_mask_rtrn; /* backfilled withax_options to modify */
unsigned short * opts values rtrn; [* backfilled with \alues forax_options */

XkbGetAccessXTimeout sends a request to the X server to obtain the current values for the
AccessXTi neout attributes, waits for a reply, and backfills the valims the appropri-
ate agumentsThe parametergpts mask rtrn andopts values rtrn are backfilled with

November 10, 1997 Library Version 1.0/Document Rision 1.1 62

The X Keyboard Extension 10 Keyboard Controls

the options to modify and the values & options, which is a field in thekbCon-

t rol sRec structure (see section 10.8kbGetAccessXTimeout returnsTr ue if success-
ful; if a compatible version of the Xkb extension is not available in the server,
XkbGetAccessXTimeout returnsFal se.

To configure theAccessXTi neout options for a keyboard device, usldbSetAccessX-
Timeout.

Bool XkbSetAccessX Timeout(display, device_spec, timeout, ctrls mask, ctrls_values,
opts_mask, opts_values)

Display * display; [* connection to X semr */

unsigned int device spec; /* device to configure, okkbUseCor eKbd */
unsigned short timeout; /* seconds idle until AccessXmeout occurs */
unsigned int ctrls_mask; /* boolean controls to modify */

unsigned int ctrls values, /* new bits for controls selected lyrls mask */
unsigned short opts_mask; [* ax_options to change */

unsigned short opts values; /* new bits forax_options selected bypts mask */

timeout specifies the number of seconds the keyboard must be idle before the controls are
modified.ctrls_mask specifies what controls are to be enabled or disabled, and

ctrls_values specifies whether those controls are to be enabled or disabled. The bit values
correspond to those for enabling and disabling boolean controls (see section 10.1.1). The
opts_mask field specifies which attributes of thecessXKeys andAccessXFeedback
controls are to be changed, aptis values specifies the new values for those options.

The bit values correspond to those fordakeoptions field of anXkbDescRec (see section

10.8).

XkbSetAccessXTimeout sends a request to configure foezessXTi neout control to the
server.lt does not wait for a reply, and normally retuiimsie. If a compatible version of
the Xkb extension is not available in the serX&bSetAccessXTimeout returnskal se.

10.6.3 The AccessXFeedback Control

Just as some keyboards can produce keyclicks to indicate when a key is pressed or repeat-
ing, Xkb can provide feedback for the controls by using special beep codes. Use the
AccessXFeedback control to configure the specific types of operations that generate
feedback.

There is no convenience function for modifying AoeessXFeedback control, although

the feedback as a whole can be enabled or disabled just as other boolean controls are (see
section 10.1). Individual beep codes are turned on or off by modifying the following bits

in theax_options field of anXkbCont r ol sRec structure and usingkbSetControls (see

section 10.10):

Table 10.3 AccessXFeedback M asks

Action Beep Code ax_options bit

LED turned on High-pitched beep XkbAX_IndicatorFBMask
LED turned of Low-pitched beep XkbAX_IndicatorFBMask
More than one LED changed staféwvo high-pitched beeps XkbAX_IndicatorFBMask
Control turned on Rising tone XkbAX_FeatureFBMask
Control turned df Falling tone XkbAX_FeatureFBMask

More than one control changed state high-pitched beeps XkbAX _ FeatureFBMask

November 10, 1997 Library Version 1.0/Document Rision 1.1 63

The X Keyboard Extension

10 Keyboard Controls

Table 10.3 AccessXFeedback M asks

Action Beep Code ax_options bit

SlowKeys and BounceKeys about Three high-pitched beeps XkbAX_SlowWarnFBMask
to be turned on or off

SlowKeys key pressed M edium-pitched beep XkbAX_SKPressFBMask
SlowKeys key accepted Medium-pitched beep XkbAX_SKAcceptFBMask
SlowKeys key rejected L ow-pitched beep XkbAX_SKRejectFBMask
Accepted SlowKeyskey released Medium-pitched beep XkbAX_SKReleaseFBMask
BounceKeys key rejected L ow-pitched beep XkbAX_BKRejectFBMask

StickyKeys key latched

L ow-pitched beep followed by XkbAX_StickyKeysFBMask

high-pitched beep

StickyKeys key locked
StickyKeys key unlocked

High-pitched beep
L ow-pitched beep

XkbAX_StickyK eysFBMask
XkbAX_StickyK eysFBMask

I mplementations that cannot generate continuous tones may generate multiple beeps
instead of falling and rising tones; for example, they can generate a high-pitched beep fol-
lowed by alow-pitched beep instead of a continuous falling tone. Other implementations
can only ring the bell with one fixed pitch. In these cases, use the

XkbAX DunbBel | FBMask bit of ax_options to indicate that the bell can only ring with a

fixed pitch.

When any of the above feedbacks occur, Xkb may generate aXkbBel | Not i fy event (see

section 9.4).

10.6.4 AccessXNotify Events

The server can generate XkbAccessXNot i fy events for some of the global keyboard
controls. The structure for the XkbAccessXNot i fy event typeisasfollows:

typedef struct {
int type;
unsigned long seridl;
Bool send_event;
Display * display;
Time time;
int xkb_type;
int device
int detail;
KeyCode keycode;
int slowKeysDelay;
int debounceDelay;

} XkbAccessXNotifyEvent;

[* Xkb extension base event code */

[* X server serial number for event */

[* Tr ue => synthetically generated */

[* server connection where event generated */
[* server time when event generated */

[* XkbAccessXNoti fy */

/* Xkb device ID, will not be XkbUseCor eKbd */
I* XKDAXN_* */

/* key of event */

[* current SlowKeys delay */

[* current debounce delay */

The detail field describes what AccessX event just occurred and can be any of the values

in Table 10.4.

Table 10.4 AccessXNotify Events

detail Reason

XkbAXN_SKPress
XKkbAXN_SKA ccept
XkbAXN_SKRelease
XkbAXN_SKReject

A key was pressed when SlowKeys was enabled.

A key was accepted (held longer than the SlowKeys delay).

An accepted SlowKeys key was released.

A key was rejected (released before the SlowKeys delay expired).

November 10, 1997

Library Version 1.0/Document Revision 1.1 64

The X Keyboard Extension 10 Keyboard Controls

Table 10.4 AccessXNotify Events

detail Reason

XkbAXN_BKAccept A key was accepted by Bounceys.

XkbAXN_BKReject A key was rejected (pressed before the BouraysKlelay
expired).

XkbAXN_AXKWarning AccessXkys is about to turn on/bStickyKeys or Bouncelgys.

Thekeycode field reports the keycode of the key for which the event occurred. If the
action is related t&8l owKeys, theslowKeysDelay field contains the curreld owKeys
acceptance delay. If the action is relateBdonceKeys, thedebounceDelay field contains
the currenBouncekKeys debounce delay.

Selecting for AccessX Events

To receivexkbAccessXNot i fy events under all possible conditions, MkbSelect-
Events (see section 4.3) and padsAccesXNot i f yMask in bothbits to _change and
values for_bits.

To receiveXkbSt at eNot i fy events only under certain conditions, X&bSelectEvent-
Details usingXkbAccessXNot i fy as theevent_type and specifying the desired state
changes imits to_change andvalues for_bits using mask bits from Table 10.5.

Table 10.5 AccessXNotify Event Details
XkbAccessXNotify Event Details Value Circumstances

XkbAXN_SKPressMask (1<<0) Slow key press natification anted
XKkbAXN_SKAcceptMask (1<<1) Slow key accept notification anted
XKkbAXN_SKRejectMask (1<<2) Slow key reject notification \anted
XkbAXN_SKReleaseMask (1<<3) Slow key release notification anted
XkbAXN_BKAcceptMask (1<<4) Bounce ley accept notification anted
XkbAXN_BKRejectMask (1<<5) Bounce ky reject notification \anted
XkbAXN_AXKW arningMask (1<<6) AccessX varning notification \anted
XKkbAXN_AllIEv entsMask (Ox7f) All AccessX features notificationsamted

10.6.5 StickyKeys, RepeatKeys, and MouseKeys Events

TheSti ckyKeys, Repeat Keys, andMvbuseKeys controls do not generate specific
events. Instead, the latching, unlatching, locking, or unlocking of modifiers Sisirok-
yKeys generateXkbSt at eNot i fy events as described in section 5.4. Repeating keys
generate normadeyPr ess andKeyRel ease events, though the auto-repeat can be
detected usin@et ect abl eAut or epeat (see section 10.3.3). FinallpuseKeys gen-
erates pointer events identical to those of the core pointer device.

10.6.6 The SlowKeys Control

Some users may accidentally bump keys while moving a hand or typing stick toward the
key they want. Usually, the keys that are accidentally bumped are just hit for a very short
period of time. The&l owKeys control helps filter these accidental bumps by telling the
server to wait a specified period, called 8@vKeys acceptance delay, before delivering

key events. If the key is released before this period elapses, no key events are generated.
Users can then bump any number of keys on their way to the one they want without acci-
dentally getting those characters. Once they have reached the key they want, they can then

November 10, 1997 Library Version 1.0/Document Rision 1.1 65

The X Keyboard Extension 10 Keyboard Controls

hold the desired key long enough for the computer to acc&rKeys is a boolean
control with one configurable attribute.

When theS owKeys control is active, the server reports the initial key press, subsequent
acceptance or rejection, and release of any key to interested clients by sending an appro-
priateAccessXNot i fy event (see section 10.6.4).

To get theS owKeys acceptance delay for a keyboard device Xkb&SetS owKeysDe-

lay.

Bool XkbGetSlowK eysDelay(display, device_spec, delay_rtrn)
Display * display; /* connection to X semr */
unsigned int device_spec; /* device ID, orXkbUseCor eKbd */
unsigned int * delay_rtrn; /* backfilled withSI owKeys delay ms */

XkbGetJowKeysDelay requests the attributes of tBeowKeys control from the server,
waits for a reply and backfilldelay_rtrn with theSl owKeys delay attributeXkb-
GetSowKeysDelay returnsTr ue if successful; if a compatible version of the Xkb exten-
sion is not available in the servikbGetSowKeysDelay returnsFal se.

To set theSl owKeys acceptance delay for a keyboard device Xkb&etS owKeysDelay.
Bool XkbSetSlowK eysDelay(display, device spec, delay)

Display * display; /* connection to X serr */
unsigned int device_spec; /* device to configure, okkbUseCor eKbd */
unsigned int delay; /* Sl owKeys delay ms */

XkbSetS owKeysDelay sends a request to configure Bi@wKeys control to the servelt
does not walit for a reply, and normally retufinsie. Specifying a value d for thedelay
parameter cause&bSetS owKeys to generate BadVal ue protocol error. If a compatible
version of the Xkb extension is not available in the sexkbBetS owKeysDelay returns
Fal se.

10.6.7 The BounceKeys Control

Some users may accidentally “bounce” on a key when they release it. They press it once,
then accidentally press it again after they release itBbheceKeys control temporarily
disables a key after it has been pressed, effectively “debouncing” the keyboard. The
period of time the key is disabled after it is released is known &otimeeKeys delay.
BounceKeys is a boolean control.

When theBounceKeys control is active, the server reports acceptance or rejection of any
key to interested clients by sending an appropAatessXNot i fy event (see section

10.6.4).
Use XkbGetBounceKeysDelay to query the currerBounceKeys delay for a keyboard
device.
Bool XkbGetBounceK eysDelay(display, device_spec, delay_rtrn)
Display * display; [* connection to X semr */
unsigned int device spec; /* device ID, orXkbUseCor eKbd */
unsigned int * delay rtrn; /* backfilled with bounce &ys delay ms */

XkbGetBounceKeysDelay requests the attributes of tBeunceKeys control from the
server, waits for a reply, and backfitlslay _rtrn with theBounceKeys delay attribute.

November 10, 1997 Library Version 1.0/Document Rision 1.1 66

The X Keyboard Extension 10 Keyboard Controls

XkbGetBounceKeysDelay returnsTr ue if successful; if a compatible version of the Xkb
extension is not available in the serX&bGetS owKeysDelay returnsFal se.

To set thdBounceKeys delay for a keyboard device, uskbSetBounceKeysDelay.
Bool XkbSetBounceK eysDelay(display, device spec, delay)

Display * display; /* connection to X semr */
unsigned int device_spec; /* device to configure, okkbUseCor eKbd */
unsigned int delay; /* bounce leys delay ms */

XkbSetBounceKeysDelay sends a request to configure BoainceKeys control to the
serverlt does not wait for a reply and normally retuinsie. Specifying a value afer o
for thedelay parameter cause&kbSetBounceKeysDelay to generate BadVal ue protocol
error. If a compatible version of the Xkb extension is not available in the sKkbSet-
BounceKeysDelay returnsFal se.

10.6.8 The StickyKeys Control

Some people find it difficult or even impossible to press two keys at once. For example, a
one-fingered typist or someone using a mouth stick cannot presisiftreendl keys at the

same time. Th&t i ckyKeys control solves this problem by changing the behavior of the
modifier keys. WithSt i ckyKeys, the user can first press a modifier, release it, then press
another key. For example, to get an exclamation point on a PC-style keyboard, the user
can press thshift key, release it, and then press thHeey.

Sti ckyKeys also allows users to lock modifier keys without requiring special locking
keys. Whertt i ckyKeys is enabled, a modifier is latched when the user presses it just
once. The user can press a modifier twice in a row to lock it, and then unlock it by pressing
it one more time.

When a modifier is latched, it becomes unlatched when the user presses a nonmaodifier key
or a pointer button. For instance, to enter the sequéimdd +Cont r ol +Z the user could

press and release tBaift key to latch it, then press and releaseCbetrol key to latch it,

and finally press and release the Z key. Becausedieol key is a modifier key, pressing

it does not unlatch thehift key. Thus, after the user presses@hstrol key, both the

Shi ft andCont rol modifiers are latched. When the user pressez key, the effect is

as though the user had presShdf t +Cont r ol +Z. In addition, because tlzekey is not

a modifier key, theéhi ft andCont r ol modifiers are unlatched.

Locking a modifier key means that the modifier affects any key or pointer button the user
presses until the user unlocks it or it is unlocked programmatically. For example, to enter
the sequence (“XKB”) on a keyboard where ‘(’ is a shifted ‘9’,)’ is a shifted ‘0’, and "

is a shifted single quote, the user could press and releaSkiftHeey twice to lock the

Shi ft modifier. Then, when the user pressesthex, k, b, ‘, and0 keys in sequence, it
generates (“XKB”). To unlock thgéhi f t modifier, the user can press and releasstiife

key.

Sti ckyKeys is a boolean control with two separate attributes that may be individually
configured: one to automatically disable it, and one to control the latching behavior of
modifier keys.

November 10, 1997 Library Version 1.0/Document Rision 1.1 67

The X Keyboard Extension 10 Keyboard Controls

StickyKeys Options

TheSti ckyKeys control has two options that can be accessed viaxtioptions of an

XkbCont r ol sRec structure (see section 10.8). The first optibmKeys, specifies

whetherSt i ckyKeys should automatically turn off when two keys are pressed at the

same time. This feature is useful for shared computers so people who do not want them do
not need to turist i ckyKeys off if a previous user lefst i ckyKeys on. The second
option,Lat chToLock, specifies whether or n& i ckyKeys locks a modifier when

pressed twice in a row.

UseXkbGetStickyKeysOptions to query the currer@t i ckyKeys attributes for a keyboard

device.

Bool XkbGetStickyK eysOptions(display, device spec, options rtrn)
Display * display; /* connection to X semr */
unsigned int device_spec; /* device ID, orXkbUseCor eKbd */
unsigned int * options_rtrn; /* backfilled with SticlyKeys option mask */

XkbGetStickyKeysOptions requests the attributes of tBei ckyKeys control from the
server, waits for a reply, and backfitiptions_rtrn with a mask indicating whether the
individual St i ckyKeys options are on or off. Valid bits wptions_rtrn are:

XkbAX_ TwoKeysMask
XkbAX Lat chToLockMask

XkbGetStickyKeysOptions returnsTr ue if successful; if a compatible version of the Xkb
extension is not available in the serxébGetStickyKeysOptions returnsfFal se.

To set theSt i ckyKeys attributes for a keyboard device, uddSetStickyKeysOptions.
Bool XkbSetStickyK eysOptions(display, device_spec, mask, values)

Display * display; [* connection to X semr */

unsigned int device_spec; /* device to configure, or XkbUseCoreKbd */
unsigned int mask; [* selects StickKeys attritutes to modify */
unsigned int values; /* values for selected attrikes */

XkbSetStickyKeysOptions sends a request to configure 8ie ckyKeys control to the
server It does not wait for a reply and normally retufimaie. The valid bits to use for
both themask andvalues parameters are:

XkbAX_ TwoKeysMask
XkbAX Lat chToLockMask

If a compatible version of the Xkb extension is not available in the sékiEetStick-
yKeysOptions returnsFal se.

10.7 Controls for General Keyboard Mapping

There are several controls that apply to the keyboard mapping in general. They control
handling of out-of-range group indices and how modifiers are processed and consumed in
the server. These are:

Q oupsW ap

| gnor eG oupLock
| gnor eLockMbds
| nt er nal Mods

November 10, 1997 Library Version 1.0/Document Rision 1.1 68

The X Keyboard Extension 10 Keyboard Controls

| gnor e oupLock is a boolean control; the rest are always active.

Without the modifier processing options provided by Xkb, passive grabs set via transla-
tions in a client (for exampld) t <KeyPr ess>space) do not trigger if any modifiers

other than those specified by the translation are set. This results in problems in the user
interface when eitheduniock or a secondary keyboard group is active. Tgpeor e-
LockMbds andl gnor eG oupLock controls make it possible to avoid this behavior with-
out exhaustively specifying a grab for every possible modifier combination.

10.7.1 The GroupsWrap Control

The G oupsW ap control determines how illegal groups are handled on a global basis.
There are a number of valid keyboard sequences that can cause the effective group num-
ber to go out of range. When this happens, the group must be normalized back to a valid
number. The&x oupsW ap control specifies how this is done.

When dealing with group numbers, all computations are done using the group index,
which is the group number minus one. There are three different algorithms; the
Q@ oupsW ap control specifies which one is used:

» XkbRedirectintoRange

All invalid group numbers are converted to a valid group number by taking the last
four bits of theG oupsW ap control and using them as the group index. If the
result is still out of range, Group one is used.

» XkbClamplintoRange

All invalid group numbers are converted to the nearest valid group number. Group
numbers larger than the highest supported group number are mapped to the highest
supported group; those less than one are mapped to group one.

» XkbWrapIntoRange

All invalid group numbers are converted to a valid group number using integer
modulus applied to the group index.

There are no convenience functions for manipulatingXtoeeipsW ap control. Manipu-
late theG oupsW ap control via thegroups wrap field in theXkbCont r ol sRec struc-
ture, then us&kbSetControls andXkbGetControls (see section 10.9 and section 10.10) to
guery and change this control.

Note See also section 15.3.2 or a discussion of the relateddiielgy_info, which also nor-
malizes a group under certain circumstances.

10.7.2 The IgnoreLockMods Control

The core protocol does not provide a way to exclude specific modifiers from grab calcula-
tions, with the result that locking modifiers sometimes have unanticipated side effects.

Thel gnor eLockMods control specifies modifiers that should be excluded from grab cal-
culations. These modifiers are also not reported in any core events éxgEpéss and

KeyRel ease events that do not activate a passive grab and that do not occur while a grab
is active.

November 10, 1997 Library Version 1.0/Document Rision 1.1 69

The X Keyboard Extension 10 Keyboard Controls

Manipulate thd gnor eLockMbds control via thegnore_lock field in thexXkbCon-
t r ol sRec structure, then usékbSetControls andXkbGetControls (see sections 10.9 and
10.10) to query and change this control. Alternatively Xkixetl gnorel_.ockMods.

To set the modifiers that, if locked, are not to be reported in matching events to passive
grabs, us&kbSetlgnorelLockMods.

Bool XkbSetl gnorel ockM ods(display, device_spec, affect_real, real_values, affect_virtual,
virtual_values)
Display * display; /* connection to the X seer */
unsigned int device spec; /* device ID, orxXkbUseCor eKbd */
unsigned int affect real; /* mask of real modifiers &dcted by this call */
unsigned int real_values, /* values for diected real modifiers (1=>set, 0=>unset) */
unsigned int affect_virtual;/* mask of virtual modifiers &kcted by this call */
unsigned int virtual_values;/* values for dected virtual modifiers (1=>set, 0=>unset) */

XkbSetlgnorel.ockMods sends a request to the server to change the selrgaios e-
LockMods control.affect_real andreal_values are masks of real modifier bits indicating
which real modifiers are to be added and removed from the selrgeits eLockMbds
control. Modifiers selected by botéffect real andreal _values are added to the server’'s
| gnor eLockMods control; those selected laffect _real but not byreal values are
removed from the serverlggnor eLockMdds control. Valid values foaffect_real and
real_values consist of any combination of the eight core modifier I9s:f t Mask,
LockMask, Cont r ol Mask, Mod1Mask - Mod5Mask. affect_virtual andvirtual values are
masks of virtual modifier bits indicating which virtual modifiers are to be added and
removed from the serverlggnor eLockMbds control. Modifiers selected by both
affect_virtual andvirtual values are added to the servel’'gnor eLockMbds control,
those selected Isffect virtual but not byirtual values are removed from the server’s

| gnor eLockMbds control.See section 7.1 for a discussion of virtual modifier masks to
use inaffect_virtual andvirtual _values. XkbSetlgnoreLockMods does not wait for a reply
from the server. It returnf ue if the request was sent, aRdl se otherwise.

10.7.3 The IgnoreGroupLock Control

Thel gnor e@ oupLock control is a boolean control with no attributes. If enabled, it
specifies that the locked state of the keyboard group should not be considered when acti-
vating passive grabs.

Becausé gnor e oupLock is a boolean control with no attributes, use the general bool-
ean controls functions (see section 10.1) to change its state.

10.7.4 The InternalMods Control

The core protocol does not provide any means to prevent a modifier from being reported
in events sent to clients; Xkb, however makes this possible viathe nal Mbds con-

trol. It specifies modifiers that should be consumed by the server and not reported to cli-
ents. When a key is pressed and a modifier that has its bit set int tenal Mods

control is reported to the server, the server uses the modifier when determining the actions
to apply for the key. The server then clears the bit, so it is not actually reported to the cli-
ent. In addition, modifiers specified in that er nal Mbds control are not used to deter-

mine grabs and are not used to calculate core protocol compatibility state.

November 10, 1997 Library Version 1.0/Document Rision 1.1 70

The X Keyboard Extension 10 Keyboard Controls

10.8

Manipulate thd nt er nal Mbds control via thanternal field in theXkbCont r ol sRec
structure, usingtkbSetControls andXkbGetControls (see sections10.9 and 10.1Aler-
natively, usexXkbSetServerInternalMods.

To set the modifiers that are consumed by the server before events are delivered to the cli-
ent, usexkbSetServerInternalMods.

Bool XkbSetServer I nternalM ods(display, device_spec, affect_real, real_values, affect_virtual,
virtual_values)
Display * display; [* connection to the X seer */
unsigned int device spec;’ /* device ID, orXkbUseCor eKbd */
unsigned int affect real; /* mask of real modifiers &dcted by this call */
unsigned int real_values, /* values for diected real modifiers (1=>set, 0=>unset) */
unsigned int affect_virtual;/* mask of virtual modifiers &kcted by this call */
unsigned int virtual_values;/* values for dected virtual modifiers (1=>set, 0=>unset) */

XkbSetServerInternalMods sends a request to the server to change the internal modifiers
consumed by the serveiffect_real andreal_values are masks of real modifier bits indi-
cating which real modifiers are to be added and removed from the server’s internal modi-
fiers control. Modifiers selected by batffect real andreal_values are added to the
server’s internal modifiers control; those selectedffaet real but not byreal_values are
removed from the server’s internal modifiers mask. Valid valuesffiest real and
real_values consist of any combination of the eight core modifier I9s:f t Mask,
LockMask, Cont r ol Mask, Mod1Mask - Mod5Mask. affect_virtual andvirtual values are
masks of virtual modifier bits indicating which virtual modifiers are to be added and
removed from the server’s internal modifiers control. Modifiers selected by both
affect_virtual andvirtual_values are added to the server’s internal modifiers control; those
selected byaffect virtual but not byirtual values are removed from the server’s internal
modifiers controlSee section 7.1 for a discussion of virtual modifier masks to use in
affect_virtual andvirtual_values. XkbSetServerinternalMods does not wait for a reply

from the server. It returnf ue if the request was sent aRdl se otherwise.

The XkbControlsRec Structure

Many of the individual controls described in sections 10.1 through 10.7 may be manipu-
lated via convenience functions discussed in those sections. Some of them, however, have
no convenience functions. Tk&bCont r ol sRec structure allows the manipulation of

one or more of the controls in a single operation and to track changes to any of them in
conjunction with thexkbGetControls andXkbSetControls functions. This is the only way

to manipulate those controls that have no convenience functions.

TheXkbCont r ol sRec structure is defined as follows:

#defineXkbMaxLegalKeyCode 255
#defineXkbPerKeyBitArraySize ((XkbMaxLegalKeyCode+1)/8)
typedef struct {
unsigned char mk_dfit_btn; /* default kutton for keyboard drven mouse */

unsigned char num_groups; /* number of leyboard groups */

unsigned char groups_wrap; /* how to wrap out-of-bounds groups */
XkbModsRec internal; /* defines sergr internal modifiers */

XkbModsRec ignore_lock; /* modifiers to ignore when checking for grab */
unsigned int enabled_ctrls; /* 1 bit => corresponding boolean control enabled */

November 10, 1997 Library Version 1.0/Document Rision 1.1 71

The X Keyboard Extension

10 Keyboard Controls

unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
short

unsigned short
unsigned short
unsigned short
unsigned short
unsigned int
unsigned int
unsigned char

repeat_delay; /* ms delay until first repeat */

repeat_interal; /* ms delay between repeats */

slow_keys delay;/* ms minimum time ky must be dan to be ok */
debounce_delayy/* ms delay before dy reactvated */

mk_delay; /* ms delay to second mouse motiomeet */
mk_intenal; /* ms delay between repeat mouserds */
mk_time_to_maxt* # intervals until constant mouse ve*/
mk_max_speed; /* multiplier for maximum mouse speed */

mk_cune; [* determines mouse e cune type */
ax_options; /* 1 bit => Access X option enabled */
ax_timeout; /* seconds until Access X disabled */

axt_opts_mask; /* 1 bit => options to reset on Access X timeout */
axt_opts_wlues; /* 1 bit => turn option on, 0=> 6/
axt_ctrls_mask; /* which bits inenabled_ctrlsto modify */
axt_ctrls_walues; /* values for ne bits inenabled_ctrls*/

per_ley repeat[XkbPerkyBitArraySize];/* per key auto repeat */

} XkbControlsRec, *XkbControlsPtr;

The general-purpose functions that work withxXkeCont r ol sRec structure use a mask
to specify which controls are to be manipulated. Table 10.6 lists these controls, the masks

used to select them in the general function callsch parameter), and the data fields in

the XkbCont r ol sRec structure that comprise each of the individual controls. Also listed
are the bit used to turn boolean controls on and off and the section where each control is
described in more detail.

Table 10.6 Xkb Controls

Control

Control Selection Mask Relevant XkbControlsRec
(which parameter)

Boolean Control

Data Fields enabled_ctrls bit

Secti
on

AccessXFeedbackkbAccessXFeedbackMasix_options:

AccessXkeys

AccessXTmeout XkbAccessXTmeoutMask ax_timeout

XkbAX_*FBMask
XkbAccessXkeysMask

axt_opts_mask
axt_opts_walues
axt_ctrls_mask
axt_ctrls_walues

XkbAccessXFeedbackMad0.6.3

10.6.1

XkbAccessXTmeoutMask 10.6.2

AudibleBell XkbAudibleBellMask 9.2
AutoReset 10.1.2
Bouncekeys XkbBouncekeysMask debounce_delay XkbBouncekeysMask 10.6.7
Detectable- 10.3.3
Autorepeat

EnabledControls XkbControlsEnabledMask enabled_ctrls Non-Boolean Control 10.1.1
GroupsWrap XkbGroupsWrapMask groups_wrap Non-Boolean Control 10.7.1
IgnoreGrouplLock XkblgnoreGroupLockMaskL0.7.3
IgnoreLockMods XkblgnoreLockModsMask ignore_lock Non-Boolean Control 51
InternalMods XkbInternalModsMask internal Non-Boolean Control 51
Mousekeys XkbMousekeysMask mk_dflt_btn XkbMousekeysMask 10.5.1
November 10, 1997 Library Version 1.0/Document Rision 1.1 72

The X Keyboard Extension

10 Keyboard Controls

Table 10.6 Xkb Controls

Control Selection Mask Relevant XkbControlsRec Boolean Control Secti

Control

(which parameter) Data Fields

enabled ctrls bit on

MousekeysAccel XkbMousekeysAccelMask mk_delay
mk_intenal

mk_time_to_max
mk_max_speed
mk_cune

Overlayl
Overlay2

PerkeyRepeat XkbPerkeyRepeatMask per_ley repeat

Repeatkeys XkbRepeatkysMask repeat_delay
repeat_interal

SlowKeys XkbSlovKeysMask slow_keys_delay

StickyKeys XkbStickyKeysMask ax_options:

XkbAX_TwoKeysMask

XkbMousekeysAccelMask 10.5.2

XkbOverlaylMask 10.4
XkbOverlay2Mask 10.4
Non-Boolean Control 10.3.1

XkbRepeatkysMask 10.3

XkbSlowKeysMask 10.6.6
XkbStickyKeysMask 10.6.8

XkbAX_LatchToLockMask

Table 10.7 shows the actual values for the individual mask bits used to select controls for
modification and to enable and disable the control. Note that the same mask bit is used to
specify general modifications to the parameters used to configure the cahtob) (and

to enable and disable the contretdbled_ctrls). The anomalies in the table (no “ok” in
column) are for controls that have no configurable attributes; and for controls that are not
boolean controls and therefore cannot be enabled or disabled.

Table 10.7 Controls Mask Bits

Mask Bit which or enabled ctrls Value
changed ctrls
XkbRepeatkysMask ok ok (1L<<0)
XkbSlowvKeysMask ok ok (1L<<1)
XkbBouncekeysMask ok ok (1L<<2)
XkbStickyKeysMask ok ok (1L<<3)
XkbMousekeysMask ok ok (1L<<4)
XkbMousekeysAccelMask ok ok (1L<<5b)
XkbAccessXkeysMask ok ok (1L<<6)
XkbAccessXTmeoutMask ok ok (AL<<7)
XkbAccessXFeedbackMask ok ok (1L<<8)
XkbAudibleBellMask ok (1L<<9)
XkbOverlaylMask ok (1L<<10)
XkbOverlay2Mask ok (1L<<11)
XkblgnoreGroupLockMask ok (1L<<12)
XkbGroupsWrapMask ok (1L<<27)
XkblnternalModsMask ok (1L<<28)
XkblgnoreLockModsMask ok (1L<<29)
XkbPerkeyRepeatMask ok (1L<<30)
XkbControlsEnabledMask ok (1L<<31)
XkbAccessXOptionsMask ok ok (XkbStickyKeysMask |

XkbAccessXFeedbackMask)

November 10, 1997 Library Version 1.0/Document Rision 1.1

73

The X Keyboard Extension 10 Keyboard Controls

Table 10.7 Contpls Mask Bits
which or

Mask Bit enabled ctrls Value
changed ctrls -

XkbAllBooleanCtrlsMask ok (Ox00001FFF)

XkbAllControlsMask ok (OXF8001FFF)

The individual fields of theéxkbCont r ol sRec structure are defined as follows.

mk_dflt_btn

mk_dflt_btn is an attribute of thBbuseKeys control (see section 10.5). It specifies the
mouse button number to use for keyboard simulated mouse button operations. Its value
should be one of the core symbBig t onl - But t on5.

num_groups

num_groupsis not a part of any control, but is reported inXkbCont r ol sRec structure
whenever any of its components are fetched from the server. It reports the number of
groups the particular keyboard configuration uses and is computed automatically by the
server whenever the keyboard mapping changes.

groups_wrap

groups_wrap is an attrilnte of the@ oupsW ap control Eee section 10.7)1lt specifies
the handling of illgal groups on a global basisaM values forgroups wrap are shan
in Table 10.8.

Table 10.8 GoupsWrap options @roups wrap field)

groups_wrap symbolic name value

XkbWraplntoRange (0x00)
XkbClamplntoRange (0x40)
XkbRedirectintoRange (0x80)

Whengroups wrap is set taxkbRedi r ect | nt oRange, its four low-order bits specify
the index of the group to use.

internal

internal is an attrilnte of thel nt er nal Mbds control (see section 10.7.4). It specifies
modifiers to be consumed in the server and not passed on to clients when events are
reported. Valid values consist of any combination of the eight core modifieShitst -
Mask, LockMask, Cont r ol Mask, Mod1Mask - Mod5Mask.

ignore_lock

ignore_lock is an attrilite of thel gnor eLockMbds control (see section 10.7.2). It speci-
fiesmodifiers to be ignored in grab calculations. Valid values consist of any combination
of the eight core modifier bit$hi f t Mask, LockMask, Cont r ol Mask, Mod1Mask -
Mod5Mask.

enabled_ctrls

enabled_ctrlsis an attribute of thEnabl edCont r ol s control (see section 10.1.1). It
contains one bit per boolean control. Each bit determines whether the corresponding con-

November 10, 1997 Library Version 1.0/Document Rision 1.1 74

The X Keyboard Extension 10 Keyboard Controls

trol is enabled or disabled; a one bit means the control is enabled. The mask bits used to
enable these controls are listed in Table 10.7, using only those masks with “ok” in the
enabled_ctrls column.

repeat_delay and repeat_interval

repeat_delay andrepeat_interval are attrilntes of theRepeat Keys control (see section
10.3.2).repeat_delay is the initial delay before aek begins repeating, in milliseconds;
repeat_interval is the delay between subsequest &ents, in milliseconds.

slow_keys_delay

slow_keys delay is an attrilnte of theSl owKeys control (see section 10.6.6). Itslwe
specifies th& owKeys acceptance delay period in milliseconds beforeygkess is
accepted by the seaw

debounce_delay

debounce_delay is an attrilite of theBounceKeys control (see section 10.6.7). Itslve
specifies thBounceKeys delay period in milliseconds for which theykis disabled after
having been pressed before another press of the same &ccepted by the senv

mk_delay, mk_interval, mk_time_to_max, mk_max_speed, and mk_curve

mk_delay, mk_interval, mk_time to_max, mk_max_speed, andmk_curve are attrilntes of
theMbuseKeysAccel control. Refer to section 10.5.2 for a description of these fields and
the units inolved.

ax_options

Theax_options field contains attributes used to configure two different controls, the
Sti ckyKeys control (see section 10.6.8) and #ezessXFeedback control (see sec-
tion 10.6.3). Thex_options field is a bitmask and may include any combination of the
bits defined in Table 10.9.

Table 10.9 Access X Enable/Disable Bitax_options field)

Access X Control ax_options bit value

AccessXFeedbackXkbAX_SKPressFBMask (1L<<0)
XkbAX_SKAcceptFBMask (1L << 1)
XkbAX FeatureFBMask (1L << 2)
XkbAX_SlowWarnFBMask (1L << 3)
XkbAX_IndicatorFBMask (1L << 4)
XkbAX_StickyKeysFBMask (1L << 5)
XkbAX_SKReleaseFBMask (1L << 8)
XkbAX_SKRejectFBMask (1L << 9)
XkbAX_BKRejectFBMask (1L << 10)
XkbAX_DumbBellFBMask (1L << 11)

StickyKeys XkbAX_TwoKeysMask (1L << 6)
XkbAX LatchToLockMask (1L << 7)
XkbAX_AllOptionsMask (OXFFF)

November 10, 1997 Library Version 1.0/Document Rision 1.1 75

The X Keyboard Extension 10 Keyboard Controls

The fields pertaining to each control are relevant only wheoadtfieol is enabled{kbAc-
cessXFeedbackMask or XkbSt i ckyKeysMask bit is turned on in thenabled_cntrls
field).

Xkb provides a set of convenience macros for working witlaxheptions field of an
XkbCont r ol sRec structure:

#defineXkbAX_NeedOption(c,w) ((c)->ax_options&(w))

The XkbAX_NeedOption macro is useful for determining whether a particular AccessX
option is enabled or not. It accepts a pointer t&ldyCont r ol sRec structure and a valid
mask bit from Table 10.9. If the specified mask bit inakepptions field of the controls
structure is set, the macro returns the mask bit. Otherwise, it returns zero. Thus,

XkbAX_NeedOption(ctlrec, XkbAXLatchToLockMask

is nonzero if the latch to lock transition for latching keys is enabled, and zero if it is dis-
abled. Note thaXkbAX NeedOption only determines whether or not the particular capa-
bility is configured to operate; ttikbAccessXFeedbackMask bit must also be turned

on inenabled_ctrls for the capability to actually be functioning.

#defineXkbAX_AnyFeedback(c) ((c)->enabled_ctris&XkbAccessXFeedbackMask)

The XkbAX_AnyFeeback macro accepts a pointer to dkbCont r ol sRec structure and
tells whether thé&ccessXFeedback control is enabled or not. If tihecess XFeedback
control is enabled, the macro retuMkbAccessXFeedbackMask. Otherwise, it returns
zero.

#defineXkbAX_NeedFeedback(c,w)
(XkbAX_AnyFeedback(c)&&XkbAX_ NeedOption(c,w))

The XkbAX_NeedFeedback macro is useful for determining if both thecessXFeed-

back control and a particular AccessX feedback option are enabled. The macro accepts a
pointer to arXkbCont r ol sRec structure and a feedback option from the table above. If
both theAccessXFeedback control and the specified feedback option are enabled, the
macro returngr ue. Otherwise it returnbal se.

ax_timeout, axt_opts_mask, axt_opts_values, axt_ctrls_mask, and
axt_ctrls_values

ax_timeout, act_opts_mask, axt_opts values, axt_ctrls mask, andaxt_ctrls values are
attributes of theAccessXTi meout control. Refer to section 10.6.2 for a description of
these fields and the units/olved.

per_key repeat

Theper_key repeat field mirrors theauto_repeats field of the core protocotkeyboar d-

St at e structure: changing theuto_repeats field automatically changgser _key repeat

and vice versa. It is provided for convenience and to reduce protocol traffic. For example,
to obtain the individual repeat key behavior as well as the repeat delay and rxtdy-use
GetControls. If theper_key repeat were not in this structure, you would have to call both
XGetKeyboardControl andXkbGetControls to get this information. The bits correspond to
keycodes. The first seven keys (keycodes 1-7) are indicaped ey repeat[0], with bit

November 10, 1997 Library Version 1.0/Document Rision 1.1 76

The X Keyboard Extension 10 Keyboard Controls

10.9

10.10

position O (low order) corresponding to the fictitious keycode 0. Following array elements
correspond to 8 keycodes per element. A 1 bit indicates that the key is a repeating key.

Querying Controls
UseXkbGetControls to find the current state of Xkb server controls.
StatusXkbGetControls(display, which, xkb)

Display * display; /* connection to X semr */
unsigned long which; /* mask of controls requested */
XkbDescPtr xkb; /* keyboard description for controls information*/

XkbGetControls queries the server for the requested control information, waits for a reply,
and then copies the server’s values for the requested information iotd ststructure of
thexkb argument. Only those components specified bydhieh parameter are copied.
Valid values fowhich are any combination of the masks listed in Table 10.7 that have
“ok” in the which column.

If xkb->ctrlsis NULL, XkbGetControls allocates and initializes it before obtaining the val-
ues specified bynhich. If xkb->ctrlsis notNULL, XkbGetControls modifies only those
portions ofxkb->ctrls corresponding to the values specifiedaych.

XkbGetControls returnsSuccess if successful; otherwise, it returBadAl | oc if it can-
not obtain sufficient storagBadMat ch if xkb is NULL or which is empty, oBadl npl e-
ment at i on.

To free thectrls member of a keyboard description, X&bFreeControls (see section
10.12)

Thenum_groups field in thectrls structure is always filled in bykbGetControls, regard-
less of which bits are selected wigich.

Changing Controls

There are two ways to make changes to controls: either change a local copy keyboard
description and cakkkbSetControls, or, to reduce network traffic, use dkbCon-
t r ol sChangesRec structure and cakkbChangeControls.

To change the state of one or more controls, first modifgtthestructure in a local copy
of the keyboard description and then M&bSetControls to copy those changes to the X
server.

Bool XkbSetControls(display, which, xkb)

Display * display; /* connection to X sewr */
unsigned long which; /* mask of controls to change */
XkbDescPtr xkb; [* ctrlsfield contains ne values to be set */

For each bit that is set in tiaich parameterxXkbSetControls sends the corresponding
values from thekb->ctrIs field to the server. Valid values fahich are any combination
of the masks listed in Table 10.7 that have “ok” inwinech column.

If xkb->ctrlsis NULL, the server does not support a compatible version of Xkb, or the Xkb
extension has not been properly initializgkhSetControls returnskal se. Otherwise, it
sends the request to the X server and reflirns.

November 10, 1997 Library Version 1.0/Document Rision 1.1 77

The X Keyboard Extension 10 Keyboard Controls

Note that changes to attributes of controls inkieCont r ol sRec structure are apparent

only when the associated control is enabled, although the corresponding values are still
updated in the X server. For example, tegeat_delay andrepeat_interval fields are

ignored unless thRepeat Keys control is enabled (that is, the X server’s equivalent of
xkb->ctrls hasXkbRepeat KeyMask set inenabled ctrls). It is permissible to modify the
attributes of a control in one call to XkbSetControls and enable the control in a subsequent
call. See section 10.1.1 for more information on enabling and disabling controls.

Note that theenabled ctrisfield is itself a control — th&nabl edCont r ol s control. As

such, to set a specific configuration of enabled and disabled boolean controls, you must set
enabled_ctrls to the appropriate bits to enable only the controls you want and disable all
others, then specify thékbCont r ol sEnabl edMask in a call toXkbSetControls.

Because this is somewhat awkward if all you want to do is enable and disable controls,
and not modify any of their attributes, a convenience function is also provided for this pur-
pose KkbChangeEnabledControls, section 10.1.1).

10.10.1The XkbControlsChangesRec Structure

The XkbCont r ol sChangesRec structure allows applications to track modifications to
anXkbCont r ol sRec structure and thereby reduce the amount of traffic sent to the server.
The samexkbCont r ol sChangesRec structure may be used in several successive modi-
fications to the samekbCont r ol sRec structure, then subsequently used to cause all of
the changes, and only the changes, to be propagated to the servébhTbre

t r ol sChangesRec structure is defined as follows:

typedef struct _XkbControlsChanges {
unsignednt changed_ctrls; [* bits indicating changed control data */
unsignednt enabled_ctrls_changes/* bits indicating enabled/disabled controls */
Bool num_groups_changed;/* Tr ue if number of leyboard groups changed */
} XkbControlsChangesRec,*XkbControlsChangesPtr;

Thechanged_ctrisfield is a mask specifying which logical sets of data in the controls
structure have been modified. In this context, modified msainthat is, if a value is set

to the same value it previously contained, it has still been modified, and is noted as
changed. Valid values fahanged ctrls are any combination of the masks listed in Table
10.7 that have “ok” in thehanged_ctrls column. Setting a bit implies the corresponding
data fields from the “Relevant XkbControlsRec Data Fields” column in Table 10.6 have
been modified. Thenabled ctrls changes field specifies which bits in thenabled ctrls

field have changed. If the number of keyboard groups has changed, the
num_groups_changed field is set tolr ue.

If you have an Xkb description with controls that have been modified aXkiedon-

t r ol sChangesRec that describes the changes that have been madéhiGbangeCon-
trols function provides a flexible method for updating the controls in a server to match
those in the changed keyboard description.

Bool XkbChangeControls(dpy, xkb, changes)
Display * dpy; /* connection to X semr */
XkbDescPtr xkb; /* keyboard description with changekb->ctrls */
XkbControlsChangesPtr changes; /* which parts ofxkb->ctrls have changed */

XkbChangeControls copies any controls fields specified ¢hanges from the keyboard
description controls structurgkb->ctrls, to the server specified lapy.

November 10, 1997 Library Version 1.0/Document Rision 1.1 78

The X Keyboard Extension 10 Keyboard Controls

10.11 Tracking Changes to Keyboard Controls

Whenever a field in the controls structure changes in the server’s keyboard description,
the server sends atkbCont r ol sNot i fy event to all interested clients.To receXkdb-

Cont r ol sNot i fy events under all possible conditions, X&bSelectEvents (see section

4.3) and pasBkbCont r ol sNot i f yMask in bothbits to_change andvalues for_bits.

To receivexkbCont r ol sNot i fy events only under certain conditions, X&bSel ect-
EventDetails usingXkbCont r ol sNot i fy as thesvent_type and specifying the desired
state changes nits to_change andvalues for_bits using mask bits from Table 10.7.

The structure for th&kbCont r ol sNot i fy event is defined as follows:

typedef struct {
int type; I* Xkb extension basevent code */
unsigned long serial, /* X sener serial number forvent */
Bool send_gent; [* Tr ue => synthetically generated */
Display * display; [* server connection wherevent generated */
Time time; [* server time when eent generated */
int xkb_type; /* XkbConpat MapNot i fy */
int device; * Xkb device ID, will not beXkbUseCor eKbd */

unsigned int changed_ctrls; /* bits indicating which controls data¥vechanged*/
unsigned int enabled_ctrls; /* controls currently enabled in semv*/
unsigned int enabled_ctrl_changeg* bits indicating enabled/disabled controls */

int num_groups; /* current number of &board groups */
KeyCode keycode; /* 1= 0 => keycode of ley causing change */
char event_type; /* Type of eent causing change */

char req_major; /* major event code of eent causing change */
char req_minor; /* minor event code of eent causing change */

} XkbControlsNotifyEvent;

Thechanged_ctrlsfield specifies the controls components that have changed and consists
of bits taken from the masks defined in Table 10.7 with “ok” inctiamged_ctrls column.

The controls currently enabled in the server are reported endlivéed ctrls field. If any
controls were just enabled or disabled (that is, the contents efidbled_ctrls field
changed), they are flagged in ta®bled_ctrl _changes field. The valid bits for these

fields are the masks listed in Table 10.7 with “ok” in ¢habled_ctrls column. The
num_groups field reports the number of groups bound to the key belonging to the most
number of groups and is automatically updated when the keyboard mapping changes.

If the change was caused by a request from a clierkgyoede andevent_type fields are
set tozer o and thereq_major andreq_minor fields identify the request. Thieq_major
value is the same as thmjor extension opcodeOtherwisegvent_type is set to the type of
event that caused the change (onEeyfPr ess, KeyRel ease, Devi ceKeyPr ess,

Devi ceKeyRel ease, But t onPr ess or But t onRel ease), andreq_major and
reqg_minor are undefined. Iévent_type is KeyPr ess, KeyRel ease, Devi ceKeyPr ess,
or Devi ceKeyRel ease, thekeycode field is set to the key that caused the change. If
event_type is But t onPr ess or But t onRel ease, keycode contains the button number.

November 10, 1997 Library Version 1.0/Document Rision 1.1 79

The X Keyboard Extension 10 Keyboard Controls

10.12

When a client receives atkbCont r ol sNot i fy event, it can note the changes in a
changes structure usitdbNoteControlsChanges.

void XkbNoteControlsChanges(changes, new, wanted)
XkbControlsChangesPtr changes; /* records changes indicated bywng
XkbControlsNotifyExent * new; /* tells which things hee changed */
unsigned int wanted; /* tells which parts of ne to record in changes */

Thewanted parameter is a bitwise inclusive OR of bits taken from the set of masks speci-
fied in Table 10.7 with “ok” in thehanged _ctrls column.XkbNoteControlsChanges cop-

ies any changes reportednew and specified imvanted into the changes record specified

by old.

Use XkbGetControlsChanges to update a local copy of a keyboard description with the
changes previously noted by one or more calkktiNoteControlsChanges.

StatusXkbGetControlsChanges(dpy, xkb, changes)

Display * dpy; [* connection to X semr */
XkbDescPtr xkb: [* xkb->ctrls will be updated */
XkbNameChangesPtr changes; /* indicates which parts ofkb->ctrlsto update */

XkbGetControlsChanges examines thehanges parameter, queries the server for the nec-
essary information, and copies the results intodbe>ctrls keyboard description. If the
ctrisfield of xkb is NULL, XkbGetControlsChanges allocates and initializes it. To free the
ctrisfield, useXkbFreeControls (see section 10.12).

XkbGetControlsChanges returnsSuccess if successful and can gener&sdAl | oc,
Badl npl enent ati on, andBadMat ch errors.

Allocating and Freeing an XkbControlsRec

The need to allocate afkbCont r ol sRec structure seldom arises; Xkb creates one when
an application callXkbGetControls or a related function. For those situations where there
is not anXkbCont r ol sRec structure allocated in thé&kbDescRec, allocate one by call-
ing XkbAllocControls.

StatusXkbAllocControls(xkb, which)
XkbDescPtr xkb; /* Xkb description in which to allocate ctrls rec */
unsigned int which; /* mask of components airlsto allocate */

XkbAllocControls allocates thetrlsfield of thexkb parameter, initializes all fields to zero,
and return$Success. If thectrisfield is notNULL, XkbAllocControls simply returnsSuc-
cess. If xkb is NULL, XkbAllocControls reports éBadMat ch error. If thectrls field could
not be allocated, it reportsBadAl | oc error.

Thewhich mask specifies the individual fields of tttels structure to be allocated and can
contain any of the valid masks defined in Table 10.7. Because none of the currently exist-
ing controls have any structures associated with them, which is currently of little practical
value in this call.

November 10, 1997 Library Version 1.0/Document Rision 1.1 80

The X Keyboard Extension 10 Keyboard Controls

To free memory used by tlorls member of aixkbDescRec structure, us&kbFree-

Controls:

void XkbFreeControls(xkb, which, free_all)
XkbDescPtr xkb; /* Xkb description in which to free controls components */
unsigned int which; /* mask of components atrlsto free */
Bool free all; /* Tr ue => free @erything + ctrls itself */

XkbFreeControls frees the specified components of tirés field in thexkb keyboard
description and sets the corresponding structure component vaMdd tor zer 0. The
which mask specifies the fields dfrls to be freed and can contain any of the controls
components specified in Table 10.7.

If free_all is Tr ue, XkbFreeControls frees every notULL structure component in the
controls, frees thgkbCont r ol sRec structure referenced by tb&ls member okkb, and
setsctrls to NULL.

10.13 The Miscellaneous Per-client Controls

You can configure the boolean per-client controls which affecttétereported in button
and key events. See section 12.1.1, 12.3, 12.5, and 16.3.11 of the XKB Protocol specifica-
tion for more details.

To get the current values of tper - cl i ent controls, us&kbGetPerClientControls.

Bool XkbGetPer ClientControls(dpy, ctrls)
Display * dpy; [* connection to X sewrr */
unsigned int * ctrls; /* 1 bit => corresponding control is on */

XkbGetPer ClientControls backfills ctrls with theper - cl i ent control attributes for this
particular client. It return$r ue if successful, anéfal se otherwise.

To change the current values of fiex - cl i ent control attributes, usgkbSetPer Client-

Controls.

Bool XkbSetPer ClientControls(dpy, ctrls)
Display * dpy; /* connection to X sewrr */
unsigned int change; /* 1 bit => change control */
unsigned int * value; /* 1 bit => control on */

XkbSetPer ClientControls changes the per-client values for the controls selecteldnge

to the correspondingalue invalue. Legal values forchange andvalue are:
XkbPCF_GrabsUseXKBStateMask, XkbPCF _LookupStateWhenGrabbed, and
XkbPCF_SendEventUsesXKBState. More than one control may be changed at one time by
OR-ing the alues togetheXkbSetPer ClientControls backfillsvalue with theper - cl i -

ent control attrilutes for this particular clienlt returnsTr ue if successful, an&al se
otherwise.

November 10, 1997 Library Version 1.0/Document Rision 1.1 81

The X Keyboard Extension 11 X Library Controls

11

111

X Library Controls

The Xkb extension is composed of two parts: a server extension, and a client-side X
library extension. Chapter 10 discusses functions used to modify controls affecting the
behavior of the server portion of the Xkb extension. This chapter discusses functions used
to modify controls that affect only the behavior of the client portion of the extension; these
controls are known as Library Controls.

All of the Library Controls are boolean flags that may be enabled and disabled. The con-
trols can be divided into several categories:

» Controls afecting general string lookups
» Controls afflecting compose processing
» Controls afecting event delvery

There are two types of string lookups performeXbgokupString. The first type

involves translating a single keycode into a string; the controls in the first category affect
this type of lookup. The second type involves translating a series of keysyms into a string;
the controls in the second category affect this type of lookup.

An Xkb implementation is required to support the programming interface for all of the
controls. However, an implementation may choose not to support the semantics associated
with the controls that deal with compose processing. In this case, a program that accesses
these controls should still function normally; however, the feedback that would normally
occur with the controls enabled may be missing.

Controls Affecting Keycode-to-String Translation

The first type of string lookups, which are here cafiegple string lookups, involves
translating a single keycode into a string. Because these simple lookups involve only a
single keycode, all of the information needed to do the translation is contained in the key-
board state in a single event. The controls affecting simple string lookups are:

For ceLat i n1Lookup
ConsuneLookupMds
Level OheUsesShi f t AndLock

11.1.1 ForceLatinlLookup

If the For ceLat i n1Lookup control is enabledLookupString only returns strings using

the Latinl character set.Fbr ceLat i n1Lookup is not enabledXLookupString can

return characters that are not in the Latinl set. By default, this control is disabled, allow-
ing characters outside of the Latinl set to be returned.

11.1.2 ConsumelLookupMods

Simple string lookups iXLookupString involve two different translation phases. The first
phase translates raw device keycodes to individual keysyms. The second phase attempts to
map the resulting keysym into a string of one or more characters. In the first phase, some
of the modifiers are normally used to determine the appropriate shift level for a key.

The ConsunmeLookupMods control determines whether or n¢itookupString consumes
the modifiers it uses during the first phase of processing (mapping a keycode to a key-
sym). When a modifier is consumed, it is effectively removed from the working copy of

November 10, 1997 Library Version 1.0/Document Rision 1.1 82

The X Keyboard Extension 11 X Library Controls

the keyboard state informatiotiookupString is using and appears to be unset for the
remainder of the processing.

If the ConsuneLookupMbds control is enabled{LookupString does not use the modifi-

ers used to translate the keycode of the event to a keysym when it is determining the string
associated with a keysym. For example, assume the keymap for the ‘A’ key only contains
the shift modifier and th€onsunmeLookupMbds control is enabled. If a user presses the

Shift key and the\ key while theNum_Lock key is lockedXLookupString uses théhi f t

modifier when mapping the keycode for the ‘a’ key to the keysym for ‘A’; subsequently, it
only uses thé&uniock modifier when determining the string associated with the keysym
‘A

If the ConsuneLookupMbds control is not enableXLookupString uses all of the event
modifiers to determine the string associated with a keysym. This behavior mirrors the
behavior ofXLookupString in the core implementation.

The ConsuneLookupMods control is unset by default. For more information on modifier
consumption, refer to Chapter 12.

11.1.3 AlwaysConsumeShiftAndLock

11.2

The Al waysConsurneShi f t AndLock control, if enabled, forceslLookupString to con-
sume theshi ft andLock modifiers when processing all keys, even if the definition for
the key type does not specify these modifiers. AlheaysConsuneShi f t AndLock con-
trol is unset by default. See section 15.2 for a discussion of key types.

Controls Affecting Compose Processing

The second type of string lookup performed¥hpokupString involves translating a

series of keysyms into a string. Because these lookups can involve more than one key
event, they requir&LookupString to retain some state information between successive
calls. The process of mapping a series of keysyms to a string is kneoampgase pro-
cessing. The controls affecting compose processing are:

ConsunekKeysConposeFai |
ConposelLED
BeepOnConposeFai |

Because different vendors have historically used different algorithms to implement com-
pose processing, and these algorithms may be incompatible with the semantics required
by the Xkb compose processing controls, implementation of the compose processing con-
trols is optional in an Xkb implementation.

11.2.1 ConsumeKeysOnComposeFail

Some compose processing algorithms signal the start of a compose sequence by a key
event meaning “start compostrhe subsequent key events should normally result in a
valid composition yielding a valid translation to a string. If the subsequent key events do
not have a valid translation, some decision must be made about what to do with the key
events that were processed while attempting the compos€omhbaneKeysnCom

1. Another possibility is to lva the compose processing simply be the result of a finite state acceptor; a compose
sequence wauld never fail for a properly written finite state acceptor

November 10, 1997 Library Version 1.0/Document Rision 1.1 83

The X Keyboard Extension 11 X Library Controls

poseFai | control allows a client to specify what happens with the key exmskup-
Sring has been considering when it reaches a dead end in a compose sequence.

If the ConsuneKeysOnConposeFai | control is set, all keys associated with a failed
compose sequence should be consumed (discarded) dfrikeneKeysnhConpose-

Fai | control is not set, the key events associated with a failed compose sequence should
be processed as a normal sequence of key events.

The ConsunmeKeysnConposeFai | control is disabled by default.

11.2.2 ComposeLED

The ConposelLED control allows a client to specify whether or not an indicator should be
set and cleared to provide feedback when compose processing is in progress. The control
does not specify which indicator should be used; the mapping for this is up to the individ-
ual implementation. If th€nposeLED control is enabled, it specifies that an indicator
should be set when a compose sequence is in progress and cleared when one is not in
progress. Th€onposeLED control is disabled by default.

While the Xkb extension does not specify the type of type of indicator to be used when the
ConposeLED control is implemented, a consistent convention between implementations
is to everyone’s benefit. If a named indicator is used for this purpose, the recommended
name is Conpose”. Note that some implementations may use an unnamed, custom hard-
ware LED for this purpose.

11.2.3 BeepOnComposeFail

TheBeepOConposeFai | control allows a client to specify whether or not a bell should
be activated to provide feedback when a compose sequence fails. The control does not
specify the type of bell that should be used; the mapping for this is up to the individual
implementation. If thdeepOConposeFai | control is enabled, it specifies that a bell
should be activated when a compose sequence failBeEpEnConposeFai | control is
disabled by default. If implemented, the bell should be activated ¥kbRgll or XkbDe-
viceBell.

While the Xkb extension does not specify the type of bell to be used whBagpén-
ConposeFai | control is implemented, a consistent convention between implementations
is to everyone’s benefit. If a named bell is used for this purpose, the recommended name is
“ConposeFai | .

11.3 Controls Effecting Event Delivery

11.3.1IgnoreNewKeyboards

When Xkb is initialized, it implicitly forces requests fdgewKeyboar dNot i f y events.

These events may be used by the Xkb library extension internally; they are normally trans-
lated into core protocdVappi ngNot i fy events before being passed to the client. While
delivering the event to the client is appropriate in most cases, it is not appropriate for some
clients that maintain per-key data structures. This is because once the server has sent a
NewKeyboar dNot i fy event, it is free to send the client events for all keys in the new
range and that range may be outside of the per-key data structures the client is maintain-

ing.

November 10, 1997 Library Version 1.0/Document Rision 1.1 84

The X Keyboard Extension 11 X Library Controls

Thel gnor eNewKeyboar ds control, if enabled, prevents Xkb from mappMeyKey-
boar dN\ot i fy events to corbappi ngNot i fy events and passing them to the client. The
control is initially disabled.

11.4 Manipulating the Library Controls

The Library Controls are manipulated using functions that deal with bitmasks to indicate
which controls to manipulate. The controls are identified by the masks defined in Table

11.1.

Table11.1 Library Control Masks
Library Control Mask Value
XkbLC ForcelLatinlLookup (1<<0)
XkbLC_ConsumeLookupMods 1<<1)
XKkbLC_AlwaysConsumeShiftAndLock (1 << 2)
XkbLC IgnoreNevKeyboards (1<<3)
XkbLC_ConsumelgysOnComposeil (1<<29)
XkbLC_ComposeLED (1 <<30)
XkbLC BeepOnComposeit (1<<31)
XkbLC_AllControls (Oxc0000007)

11.4.1 Determining Which Library Controls are Implemented

To determine which Library Controls are actually implementedXisilibControlslm-
plemented.

unsigned inXkbXIlibControlsl mplemented(display)
Display * display; [* connection to X semr */

XkbXlibControlslmplemented returns a bitmask indicating the controls actually imple-
mented in the Xkb library and is composed of an inclusive OR of bits from Table 11.1.

11.4.2 Determining the State of the Library Controls
To determine the current state of the Library ControlsXb&etXlibControls.

unsigned inXkbGetXIlibControls(display)
Display * display; [* connection to X sewrr */

XkbGetXlibControls returns the current state of the Library Controls as a bit mask that is
an inclusive OR of the control masks from Table 11.1 for the controls that are enabled. For
the optional compose processing controls, the fact that a control is enabled does not imply
that it is actually implemented.

11.4.3 Changing the State of the Library Controls
To change the state of the Library Controls, XideSetXlibControls.
Bool XkbSetXlibControls(display, bits to_change, values for_bits)

Display * display; /* connection to X semr */
unsigned long bits to_change; [* selects controls to be modified */
unsigned long values for_hits; /* turns selected controls on (1) off (@) */

November 10, 1997 Library Version 1.0/Document Rision 1.1 85

The X Keyboard Extension 11 X Library Controls

XkbSetXlibControls modifies the state of the controls selected by bits to_change; only the
controls selected by bits to_change are modified. If the bit corresponding to a control is
oninbits to changeand also oninvalues for_bits, the control isenabled. If the bit corre-
sponding to a control ison in bits to_change but off in values for_bits, the control isdis-
abled. bits to_change should be an inclusive OR of bits from Table 11.1.

November 10, 1997 Library Version 1.0/Document Revision 1.1 86

The X Keyboard Extension 12 Interpreting &y Events

12

12.1

Interpreting Key Events

Xkb provides functions to help developers interpret key events without having to directly
interpret Xkb data structures. Xkb also modifies the behavior of several core X library
functions.

Effects of Xkb on the Core X Library

When support for Xkb is built into the X library, th®penDisplay function looks for a
compatible version of Xkb on the server. If it finds a compatible version, it initializes the
extension and enablésplicit support for Xkb in a number of X library functions. This

makes it possible for clients to take advantage of nearly all Xkb features without having to
be rewritten or even recompiled, if they are built with shared libraries. This implicit sup-
port is invisible to most clients, but it can have side effects, so the extension includes ways
to control or disable it.

12.1.1 Effects of Xkb on Event State

BecauseXOpenDisplay initializes Xkb, some events contain an Xkb description of the
keyboard state instead of that normally used by the core protocol. See section 17.1.1 for
more information about the differences between Xkb keyboard state and that reported by
the core protocol.

12.1.2 Effects of Xkb on MappingNotify Events

When Xkb is missing or disabled, the X library tracks changes to the keyboard mapping
usingMappi ngNot i fy events. Whenever the keyboard mapping is changed, the server
sends all clients EBappi ngNot i fy event to report the change. When a client receives a
Mappi ngNot i fy event, it is supposed to cxlRefreshKeyboardMapping to update the
keyboard description used internally by the X library.

The X Keyboard Extension usgkbMapNot i fy andXkbNewKeyboar dNot i fy events

to track changes to the keyboard mapping. When an Xkb-aware client receives either
event, it should calkkbRefreshKeyboardMapping to update the keyboard description

used internally by the X library. To avoid duplicate events, the X server does not send core
protocolMappi ngNot i fy events to a client that has selectedXddoMapNot i f y events.

The implicit support for Xkb selects fokbMapNot i fy events. This means that clients
that do not explicitly use Xkb but that are using a version of the X library that has implicit
support for Xkb do not receiveappi ngNot i fy events over the wire. Clients that were

not written with Xkb in mind do not recognize or properly handle the new Xkb events, so
the implicit support converts them Mappi ngNot i fy events that report approximately

the same information, unless the client has explicitly selected for the Xkb version of the
event.

An Xkb-capable X server does not send events from keys that fall outside the legal range
of keycodes expected by that client. Once the server sends a chkitNenwKeyboar d-

Not i fy event, it reports events from all keys because it assumes that any client that has
receieved axkbNewKeyboar dNot i f y event expects key events from the new range of
keycodes. The implicit support for Xkb asks ¥bNewKeyboar dN\ot i f y events, so the
range of keycodes reported to the client might vary without the client’'s knowledge. Most
clients don’t really care about the range of legal keycodes, but some clients maintain
information about each key and might have problems with events that come from unex-

November 10, 1997 Library Version 1.0/Document Rision 1.1 87

The X Keyboard Extension 12 Interpreting &y Events

pected keys. Such clients can setXkbLC | gnor eNewKeyboar ds library control (see
section 11.3.1) to prevent the implicit support from requesting notification of changes to
the legal range of keycodes.

12.1.3 X Library Functions Affected by Xkb
The following X library functions are modified by Xkb:

XKeycodeToKeysym
XKeysymToKeycode
XLookupKeysym
XLookupString
XRefreshKeyboardMapping
XRebindKeysym

The implicit support for Xkb replaces a number of X library functions with versions that
understand and use the X Keyboard Extension. In most cases, the semantics of the new
versions are identical to those of the old, but there are occasional visible differences. This
section lists all of the functions that are affected and the differences in behavior, if any,
that are visible to clients.

The XKeycodeToKeysym function reports the keysym associated with a particular index

for a single key. The index specifies a column of symbols in the core keyboard mapping
(that is, as reported by the core protaGelKeyboardMapping request). The order of the
symbols in the core mapping does not necessarily correspond to the order of the symbols
used by Xkb; section 17.1.3 describes the differences.

The XKeysymToKeycode function reports a keycode to which a particular keysym is

bound. When Xkb is missing or disabled, this function looks in each column of the core
keyboard mapping in turn and returns the lowest numbered key that matches in the lowest
numbered group. When XKkb is present, this function uses the Xkb ordering for symbols
instead.

The XLookupKeysym function reports the symbol in a specific column of the key associ-
ated with an event. Whether or not Xkb is present, the column specifies an index into the
core symbol mapping.

The XLookupString function reports the symbol and string associated with a key event,
taking into account the keycode and keyboard state as reported in the event. When Xkb is
disabled or missing{LookupString uses the rules specified by the core protocol and

reports only ISO Latin-1 characters. When Xkb is presémipkupString uses the

explicit keyboard group, key types, and rules specified by Xkb. When Xkb is present,
XLookupString is allowed, but not required, to return strings in character sets other than
ISO Latin-1, depending on the current locale. If any key bindings are defibeokup-

String does not use any consumed modifiers (see sections 11.1.2 and 15.2) to determine
matching bindings.

TheXRefreshKeyboardMapping function updates the X library’s internal representation of
the keyboard to reflect changes reportedviappi ngNot i fy events. When Xkb is miss-

ing or disabled, this function reloads the entire modifier map or keyboard mapping. When
Xkb is present, the implicit Xkb support keeps track of the changed components reported
by eachXkbMapNot i f y event and updates only those pieces of the keyboard description
that have changed. If the implicit support has not noted any keyboard mapping changes,
XRefreshKeyboardMapping updates the entire keyboard description.

November 10, 1997 Library Version 1.0/Document Rision 1.1 88

The X Keyboard Extension 12 Interpreting &y Events

12.2

The XRebindkysymfunction associates a string with a keysym and a set of modifiers.
Xkb does not directly change this function, but it does affect the way that the state
reported in the event is compared to the state specifisRébindkeysym When Xkb is
missing or disabledLookupStringeturns the specified string if the modifiers in the

event exactly match the modifiers from this call. When Xkb is present, any modifiers used
to determine the keysym are consumed and are not used to look up the string.

Xkb Event and Keymap Functions

To find the keysym bound to a particular key at a specified group and shift level, use
XkbKeycodeToKeysym

KeySymXkbK eycodeDKeysyn(dpy, kc, goup, leel)

Display * dpy; [* connection to X semr */
KeyCode kc; [* key of interest */
unsigned int group; [* group of interest */
unsigned int level; /* shift level of interest */

XkbKeycode®Keysymreturns the keysym bound to a particular group and shift level for a
particular key on the core keyboardkdfis not a legal keycode for the core keyboard, or if
group or level are out of range for the specified k&kbkeycode®KeysymreturnsNoSym

bol .

To find the set of modifiers bound to a particular keysym on the core keyboard, use
XkbKeysym®Modifiers.

unsignednt XkbK eysymToModifiers(dpy, k9
Display * dpy; [* connection to X sewrr */
KeySym ks /* keysym of interest */

Xkbkeysym®Modifiers finds the set of modifiers currently bound to the keyggmon the
core keyboard. The value returned is the mask of modifiers bound to the Key/$f/rmo
modifiers are bound to the keysyKkbkeysym®Modifiers returns zero; otherwise, it
returns the inclusive OR of zero or more of the followiy: f t Mask, Cont r ol Mask,
LockMask, Mod1Nask, Mbd2Mask, Mod3MVask, Mbd4Mask, andMbd5Mask.

UseXkbLookupKeySyito find the symbol associated with a key for a particular state.
Bool XkbLookupK eySym(dpy, key, state mods_rtrn sym_rtrn)

Display * dpy, [* connection to X semr */

KeyCode key; * key for which symbols are to be found */
unsigned int state [* state for which symbol should be found */
unsigned int * mods_rtrn /* backfilled with unconsumed modifiers */

KeySym * sym_rtrn * backfilled with symbol associated witlek+ state */

XkbLookupkySymis the equivalent of the codookupkySymfunction. For the core
keyboard, given a keycodtey and an Xkb statstate XkbLookupkySynreturns the sym-
bol associated with the key siym_rtrnand the list of modifiers that should still be
applied inmods_rtrn Thestateparameter is the state fronkKayPr ess or KeyRel ease
event.XkbLookupl€ySymreturnsTr ue if it succeeds.

November 10, 1997 Library Version 1.0/Document Rision 1.1 89

The X Keyboard Extension 12 Interpreting &y Events

Use XkbLookupKeyBinding to find the string bound to a key byRebindKeySym.
XkbLookupKeyBinding is the equivalent of the cokookupString function.

int XkbL ookupK eyBinding(dpy, sym, state, buf, nbytes, extra_rtrn)

Display * dpy; [* connection to seer */

KeySym sym; /* symbol to be lookd up */

unsigned int state; [* state for which string is to be loell up */
char * buf; [* buffer into which returned string is written */
int nbytes; [* size of iffer in bytes */

int * extra_rtrn; /* backfilled with number bytesverflowv */

XRebindKeysym binds an ASCII string to a specified keysym, so that the string and key-
sym are returned when the key is pressed and a specified list of modifiers are also being
held down XkbLookupKeyBinding returns inbuf the string associated with the keysym

sym and modifier statetate. buf is NULL terminated unless there’s an overflow. If the

string returned is larger thabytes, a count of bytes that does not fit into the buffer is
returned inextra_rtrn. XkbTranslateKeySym returns the number of bytes that it placed

into buf.
To find the string and symbol associated with a keysym for a given keyboard state, use
XkbTranslateKeySym.
int XkbTrandateK eySym(dpy, sym_inout, mods, buf, nbytes, extra rtrn)
Display * dpy; [* connection to X semr */
KeySym * Ssym _inout; /* symbol to be translated; result of translation */
unsigned int mods; /* modifiers to apply teym_inout */
char * buf; /* buffer into which returned string is written */
int nbytes; [* size of iffer in bytes */
int * extra_rtrn; /* number of bytes erflow*/

XkbTranslateKeySym applies the transformations specifiednods to the symbol speci-
fied by sym inout. It returns inbuf the string, if any, associated with the keysym for the
current locale. If the transformationsmods changes the keysyrsym inout is updated
accordingly. If the string returned is larger thduytes, a count of bytes that does not fit
into the buffer is returned iextra_rtrn. XkbTranslateKeySym returns the number of bytes
it placed intabuf.

To update the keyboard description that is internal to the X libraryskiss@efreshKey-

boardMapping.
StatusXkbRefreshK eyboar dM apping(event)
XkbMapNotifyEvent * event; [* event initiating remapping */

XkbRefreshKeyboardMapping is the Xkb equivalent of the cokRefreshKeyboardMap-

ping function. It requests that the X server send the current key mapping information to
this client. A client usually invokexkbRefreshKeyboardMapping after receiving an
XkbMapNot i fy event.XkbRefreshKeyboardMapping returnsSuccess if it succeeds and
BadMat ch if the event is not an Xkb event.

TheXkbMapNot i fy event can be generated when some client X&liSetMap,
XkbChangeMap, XkbGetKeyboardByName, or any of the standard X library functions that
change the keyboard mapping or modifier mapping.

November 10, 1997 Library Version 1.0/Document Rision 1.1 90

The X Keyboard Extension 12 Interpreting &y Events

To translate a keycode to a key symbol and modifiersXkistranslateKeyCode.
Booll XkbTranslateK eyCode(xkb, key, mods, mods_rtrn, keysym rtrn)

XkbDescPtr xkb; /* keyboard description to use for translation */
KeyCode key; /* keycode to translate */

unsigned int mods; /* modifiers to apply when translatirgy */
unsigned int * mods _rtrn; /* backfilled with unconsumed modifiers */
KeySym * keysym rtrn; /* keysym resulting from translation */

mods _rtrn is backfilled with the modifiers consumed by the translation proc®xss is a bit-
wise inclusive OR of the legal modifier maskai f t Mask, LockMask, Cont r ol Mask,
Mod1Mask, Mod2Mask, Mbd3Mask, Mod4Mask, ModS5Mask. The Al waysConsurre-

Shi ft AndLock library control (see section 11.1.3), if enabled, caXséd rans ateKeyCode
to consume shift and lockkbTrangateKeyCode returnsTr ue if the translation resulted in
a keysym, anéral se if it resulted inNoSynbol .

November 10, 1997 Library Version 1.0/Document Rision 1.1 91

The X Keyboard Extension 13 Keyboard Geometry

13 Keyboard Geometry

The Xkb description of a keyboard includes an optitagboard geometry that describes

the physical appearance of the keyboard. Keyboard geometry describes the shape, loca-
tion, and color of all keyboard keys or other visible keyboard components such as indica-
tors. The information contained in a keyboard geometry is sufficient to allow a client
program to draw an accurate two-dimensional image of the keyboard.

You can retrieve a keyboard geometry from an X server that supports Xkb, or you can
allocate it from scratch and initialize it in a client program. The keyboard geometry need
not have any correspondence with the physical keyboard that is connected to the X server.

Geometry measurements are specifidd T o units. The origin (0,0) is in the top left cor-

ner of the keyboard image. A component’s own origin is also its upper left corner. In some
cases a component needs to be drawn rotated. For example, a special keyboard may have a
section of keys arranged in rows in a rectangular area, but the entire rectangle may not be
in alignment with the rest of the keyboard, and instead, it is rotated from horizontal by

30°. Rotation for a geometry object is :~:pecifie€r/'gn)0 increments about its origin. An

example of a keyboard with rotated sections is shown in Figure 13.1.

N EE T e
9,
& ey S
y = 4
\ /

Rotated Sections

Figure 131 Rotated Keyboard Sections

Some geometry components includar@rity, which indicates the order in which over-
lapping objects should be drawn. Objects should be drawn in order from highest priority
(0) to lowest (255).

The keyboard geometry’s top-lewddscription is stored inXkbGeonet r yRec structure.
This structure contains three types of information:

1. Lists of items, not used to draw the basic keyboard, but indexed by the geometry
descriptions that comprise the entire keyboard geometry (colors, geometry proper-
ties, key aliases, shapes)

2. A number of singleton items that describe the keyboard as a whole (keyboard
name, width and height, a color for the keyboard as a whole, and a color for key-
board key labels)

3. Alist of the keyboard’s sections and nonkey doodads
The top-level geometry is described in more detail in the following.

The lists of items used by components of the keyboard geometry description is as follows:

November 10, 1997 Library Version 1.0/Document Rision 1.1 92

The X Keyboard Extension 13 Keyboard Geometry

« The top-level keyboard geometry description includes a list of up Col or s (32)
color names. A color name is a string whose interpretation is not specified by Xkb
TheXkbCol or Rec structure proides a field for this name as well as agbifield.

The pixel field is a comenient place for an application to store aepialue or color
definition, if it needs to. All other geometry data structures refer to colors using their
indices in this global list.

« The top-leel keyboard geometry description includes a lisgedmetry properties.

A geometry property associates an arbitrary string with an equally arbitrary name.
Geometry properties can be used tovfate hints to programs that display images of
keyboards, bt they are not interpreted by XkiNo other geometry structures refer to
geometry properties. As aramnple of a possible use pfoperties, consider the
pause/breakdy on most PC &yboards: the “break” symbol is usually on the front of
the lkey and is often a diérent color A program might set a property to:

LBL_PAUS = “{Pause/top/black,Break/front/red}”

and use the property information towrthe key with a front label as well as a top
label.

» The top-leel keyboard geometry description includes a liskef aliases (see Chapter
18). Key aliases allw the lkeyboard layout designer to assign multipéy kames to a

single ley.

Note Key aliases defined in the geometry component @yadard mapping\@rride those
defined in the & codes component of the sendatabase, which are stored in the
XkbNarresRec (xkb->names). Therefore, consider thexkaliases defined by the
geometry before consideringykaliases supplied by theyjcodes.

« The top-level keyboard geometry description includes a lissludipes; other leyboard
components refer to shapes by their ingtethis list. A shape consists of an arbitrary
name of type Atom and one or more closed-polygathines. All points in an outline
are specified relate to the origin of its enclosing shape, that is, whiehghape that
contains this outline in its list of outlines. One outline is the primary outline. The pri-
mary outline is by defult the first outline, or it can be optionally specified byptie
mary field in theXkbShapeRec structure. A kyboard display application can
generate a simplewubstill accurate &board image by displaying only the primary
outlines for each shape. Nonrectangukyskmust include a rectangul@pproxima-
tion as one of the outlines associated with the shape. The approximation is not nor-
mally displayed bt can be used byewy simple lkeyboard display applications to
generate a recognizablatldegraded image of thegi¢tboard.

TheXkbCGeonet r yRec top-level geometry description contains the following information
that pertains to the keyboard as a whole:

A keyboard symbolic name of type Atom to help users identify theykoard.

« Thewidth andheight of the keyboard, in™"/; . For nonrectangulardyboards, the
width and height describe the smallest bounding box that encloses the outline of the
keyboard.

e Thebase color of the leyboard is the predominant color on treytkoard and is used
as the defult color for ag components whose color is nejécitly specified.

e Thelabel color is the color used to drathe labels on most of thekboard leys.

» Thelabel font is a string that describes the font used tevdadels on mostdys; label
fonts are arbitrary strings, because Xkb does not specify the format or name space for
font names.

The keyboard is subdivided into nansedtions of related keys andbodads. The sections
and doodads on the keyboard are listed inkii®=omet r yRec top-level keyboard
geometry description. gection is composed of keys that are physically together and logi-

November 10, 1997 Library Version 1.0/Document Rision 1.1 93

The X Keyboard Extension 13 Keyboard Geometry

cally related. Figure 13.2 shows a keyboard that is divided into four sectiolnsdad
describes some visible aspect of the keyboard that is not a key and is not a section.

| Y

Editing |>|:| I O | o

Function o o o |
o o o

Alpha— | 11O O0C0COOCCC] L]
C10O0000CO00C0000c—1| O |([0dd

Keypad 1 1 o |

A

Figure 13.2 Keyboard with Four Sections

13.1 Shapes and Outlines
A shape, used to draw keyboard components and store&ki8hapeRec structure, has:

* An arbitrary name of type Atom.

* Bounds (tvo x and y coordinates) that describe the corners of a rectangle containing
the shape top surdce outline.

» Alist of one or more outlines (described belo

» Optional pointers to a primary and an approximation outline (describea)bélo
either of these pointers MJLL, the dedult primary/approximation outline is the first
one in the list of outlines for the shape.

An outline, stored in akbQut | i neRec structure, is a list of one or more points that
describes a single closed-polygon, as follows:

» Alist with a single point describes a rectangle with one corner at the origin of the shape
(0,0) and the opposite corner at the specified point.

» A list of two points describes a rectangle with one corner at the position specified by
the first point and the opposite corner at the position specified by the second point.

» Alist of three or more points describes an arbitrary polygon. If necetisanyolygon
is automatically closed by connecting the last point in the list with the first.

* A nonzero alue for thecorner_radius field specifies that the corners of the polygon
should be dnan as circles with the specified radius.

All points in an outline are specified relative to the origin of the enclosing shape. Points in
an outline may have negative values for the X and Y coordinate.

One outline is the primary outline; a keyboard display application can generate a simple
but still accurate keyboard image by displaying only the primary outlines for each shape.
The default primary outline is the first in a shape’s list of outlines. Ipthweary field of

the XkbShapeRec structure is noNULL, it points to the primary outline. A rectangular
approximation must be included for nonrectangular keys as one of the outlines associated
with the shape; the approximation is not normally displayed but can be used by very sim-
ple keyboard display applications to generate a recognizable but degraded image of the
keyboard.

November 10, 1997 Library Version 1.0/Document Rision 1.1 94

The X Keyboard Extension 13 Keyboard Geometry

13.2 Sections

As previously noted, a keyboard is subdivided sattions of related keys. Each section

has its own coordinate system — if a section is rotated, the coordinates of any components
within the section are interpreted relative to the edges that were on the top and left before
rotation. The components that make up a section, storegibSect i onRec, include:

An arbitrary name of type Atom.

A priority, to indicate draing order O is the highest priorif\255 the lavest.

Origin of the section, relate to the origin of thedyboard.

The width and height and the angle of rotation.

A list of rows. A row is a list of horizontally or ertically adjacent éys. Horizontal

rows parallel the (prerotation) top of the section, aerdical ravs parallel the (prerota-
tion) left of the section. All &s in a horizontal e share a common top coordinate; all
keys in a \ertical rav share a left coordinate. Figure 13.3whdahe alpha section from

the keyboard shan in Figure 13.2, dided into ravs. Ravs and kys are defined
below.

Rov1l NNIVANRIVNIDYN NRURY NN
Rowv 2 IO I
Rov 3 RRIRIRIIRKA R RARKIRR K B BRI R

Rov5 [AT EE

O &L Z

Figure 13.3 Rowsin a Section

An optional list ofdoodads; ary type of doodad can be enclosed within a section.
Position and angle of rotation are relatto the origin and angle of rotation of the sec-
tions that contain them. Priority for doodads in a section isveltdithe other compo-
nents of the section, not to theykoard as a whole.

An optionaloverlay with a name of type Atom and a list ofeslay ravs (described
belaw).

* Bounds (tvo x and y coordinates) that describe the corners of a rectangle containing
the entire section.

13.3 Rows and Keys

A row description XkbRowRec) consists of the coordinates of its origin relative to its

enclosing section, a flag indicating whether the row is horizontal or vertical, and a list of
keys in the row.

A key description XkbKeyRec) consists of a key name, a shape, a key color, and a gap.

The key name should correspond to one of the keys named in the keyboard names descrip-
tion, the shape specifies the appearance of the key, and the key color specifies the color of
the key (not the label on the key; the label color is stored ikkh€eonet r yRec). Keys

are normally drawn immediately adjacent to one another from left to right (or top to bot-
tom) within a row. The gap field specifies the distance between a key and its predecessor.

November 10, 1997 Library Version 1.0/Document Rision 1.1 95

The X Keyboard Extension 13 Keyboard Geometry

13.4 Doodads

Doodads can be global to the keyboard or part of a section. Doodads have symbolic names
of arbitrary length. The only doodad name whose interpretation is specified by Xkb is
“Edges”, which, if present, describes the outline of the entire keyboard.

Each doodad’s origin is stored in fields naneftlandtop, which are the coordinates of

the doodad’s origin relative to its enclosing object, whether it be a section or the top-level
keyboard. The priority for doodads that are listed in the top-level geometry is relative to
the other doodads listed in the top-level geometry and the sections listed in the top-level
geometry. The priority for doodads listed in a section are relative to the other components
of the section. Each doodad is stored in a structure visgbedield, which specifies the

type of doodad.

Xkb supports five types of doodads:

« Anindicator doodad describes one of the yical keyboard indicators. Indicator
doodads specify the shape of the indigatu indicator color when it is lioq_color)
and the indicator color when it is daxf(_color).

« An outline doodad describes some aspect of tlegldoard to be dmain as one or more
hollow, closed polygons. Outline doodads specify the shape, apldrangle of rota-
tion about the doodad origin at which ytehould be dnan.

» A solid doodad describes some aspect of tieghboard to be dran as one or more
filled polygons. Solid doodads specify the shape, calwi angle of rotation about the
doodad origin at which tlyeshould be dnan.

» A text doodad describes a i label somahere on the dyboard. Ext doodads specify
the label string, the font and color to use whenvirg the label, and the angle of rota-
tion of the doodad about its origin.

« Alogo doodad is a catch-all, which describes some other visible element ofghe k
board. A logo doodad is essentially an outline doodad with an additional symbolic
name that describes the element to bevdrdf a keyboard display program recognizes
the symbolic name, it can dvasomething appropriate within the boundingios of
the shape specified in the doodad. If the symbolic name does not describe a recogniz-
able image, it should draan outline using the specified shape, outline, and angle of
rotation. The Xkb gtension does not specify the interpretation of logo names.

The structures these doodads are stored in and the valuegsypithelds are shown in

Table 13.1.

Table 13.1 Doodad Types
Doodad Sructure Type
indicator doodad Xkbl ndi cat or DoodadRec Xkblndicator Doodad
outline doodad XkbShapeDoodadRec XkbOutlineDoodad
solid doodad XkbShapeDoodadRec XkbSolidDoodad
text doodad XkbText DoodadRec XkbTextDoodad
logo doodad XkbLogoDoodadRec XkbLogoDoodad

13.5 Overlay Rows and Overlay Keys

An overlay row (XkbOver | ayRowRec) contains a pointer to the row it overlays and a list
of overlay keys.

Each overlay key definitiorXkbQOver | ayKeyRec) indicates a key that can yield multiple
keycodes and consists of a field nareder, which specifies the primary name of the

November 10, 1997 Library Version 1.0/Document Rision 1.1 96

The X Keyboard Extension 13 Keyboard Geometry

key and afield named over, which specifies the name for the key when the overlay key-
code is selected. The key specified in under must be amember of the section that contains
the overlay key definition, while the key specified in over must not be.

13.6 Drawing a Keyboard Representation
To draw arepresentation of the keyboard, draw in the following order:

Draw the top-level keyboard as arectangle, using its width and height.
For each component (section or doodad) of the top-level geometry, in priority order:
If component is a section
For each row, in the order it appearsin the section
Draw keysin the order they appear in the row
Draw doodads within the section in priority order.
Else draw doodad

November 10, 1997 Library Version 1.0/Document Revision 1.1 97

The X Keyboard Extension 13 Keyboard Geometry

13.7 Geometry Data Structures

In the following figures, a solid arrow denotes a pointer to an array of structures or asin-
gleton structure. A dotted arrow denotes an index or a pointer into the array.

J

label_color == /" xkbPropertyRec(s)
base color - (array)
|

properties M
/ XkbColorRec(s)
colors (array)

’.
|
P
|
shapes T2
sections H outlines =
|
doodads N approx >’ J_u
key dioses | | E primary 11" XkbOutlineRec(s)
I bounds L (array)
XkbGeometryRec P \
|| XkbShapeRec(s)
I
.' : : (array) XkbBoundsRec
ll]
I
I
XkbK eyAliasRec(s) i o :
(array) N
|
! E (See Figure 13.5)
I
[[[
[[(]
L' E : [: L
rows !

W > koS S R doodads (5)
doodads bounds X shape_ndx (array)
bounds '

! X kbRowRec(9 color_nckx
overlays =i (array) XkbKeyRec(s)

XkbSectionRec(s) ! (aray)

(array)

[
' (See Figure 13.5)
(See Figure 13.6) XkbBoundsRec
doodads (s)
(array)
overlays (s)
(array) -
XkbBoundsRec

Figure 13.4 Xkb Geometry Data Structures

November 10, 1997 Library Version 1.0/Document Revision 1.1 98

The X Keyboard Extension

13 Keyboard Geometry

doodads array
may contain
any of these
doodad types

label_color XkbGeometryRec,
base color XkbColorRec, and
XkbShapeRec
repeated from
properties Figure 16.4
colors
shapes
sections
doodads
key aliases
XkbGeometryRec
color_ndx |-..._
shape ndx | T S _ —
\\\ \\\‘L I| Y
XkbShapeDoodadRec(s) . ./
12" XkbColorRec(s)
(aray)
S
,’/’, //
color_ndx NP
i 7:\ /
X kbTextDoodadRec(s) Y
// , / / N
’ ’ / 4 ’ / ' N
A , / N . I
, // // _-: [
a—— R 7 :
shape ndx |-/ outlines
7 e / L,/
on_color_ndx {* ,~)/ L approx
’ / 7 _
off_color_ndx |’ / ~ primary
X kbl ndicatorDoodadRec(s) % bounds
/
/ L XkbShapeRec(s)
S (array)

color_ndx

shape_ndx

XkbL ogoDoodadRec(s)

Figure 13.5 Xkb Geometry Data Structures (Doodads)

November 10, 1997

Library Version 1.0/Document Revision 1.1

The X Keyboard Extension 13 Keyboard Geometry

I [
e h .
rows
- XkbSectionRec and
doodads keys X kbRowRec
bounds bounds P ::eigiarttﬂérzm
overlays XkbRowRec(s)
XkbSectionRec(s) (array)
(array)
g
XkbBoundsRec
[
[
section_under ,
[
rows >
bounds NC row_under !
XkbOverlayRec (s) keys - J'u
(array) 3
XkbOverlayRowRec (s) XkbOverlayKeyRec(s)
(ar r ay) (array)
XkbBoundsRec

Figure 13.6 Xkb Geometry Data Structures (Overlays)

typedef struct _ XkbGeometry { /* top-level keyboard geometry structure */
Atom name; /* keyboard name */
unsigned short ~ width_mm; I* keyboard width in ™", */
unsigned short height_mm; I* keyboard height in ™™/ */
char * label _font; /* font for key labels*/
XkbColorPtr label_color; /* color for key labels - pointer into colors array */
XkbColorPtr base color; /* color for basic keyboard - pointer into colors array */
unsigned short sz properties; /* size of properties array */
unsigned short sz _colors; [* size of colors array */
unsigned short sz_shapes, [* size of shapes array */
unsigned short sz_sections, [* size of sections array */

unsigned short sz_doodads; [* size of doodads array */

unsigned short sz key aliases; /* size of key aliases array */

unsigned short num_properties; /* number of propertiesin the properties array */
unsigned short num_colors, /* number of colorsin the colors array */
unsigned short num_shapes, /* number of shapesin the shapes array */
unsigned short num_sections; /* number of sectionsin the sections array */
unsigned short num_doodads, /* number of doodads in the doodads array */

November 10, 1997 Library Version 1.0/Document Revision 1.1 100

The X Keyboard Extension 13 Keyboard Geometry

unsigned short num_ley aliases{* number of ley aliases in thedy */

XkbPropertyPtr properties; [* properties array */
XkbColorPtr colors; [* colors array */
XkbShapePtr shapes; [* shapes array */
XkbSectionPtr sections; [* sections array */
XkbDoodadPtr doodads; [* doodads array */

XkbKeyAliasPtr key aliases; /* key aliases array */
} XkbGeometryRec *XkbGeometryPtr;

Thedoodads array is only for doodads not contained in any otegons that has its own
doodads. The key aliases contained in #ey_aliases array take precedence over any
defined in the &codes componeraf the keyboard description.

typedef struct _XkbProperty {
char * name; [* property name */
char * value; [* property \alue */
} XkbPropertyRec,*XkbPropertyPtr;

typedef struct _XkbColor {

unsigned int pixel, [* color */

char * spec; /* color name */
} XkbColorRec,*XkbColorPtr;

typedef struct _XkbkyAliasRec {

char real[XkbKeyNameLength]; /* real name of thedy */
char alias[XkbKeyNameLength]; /* alias for the ley */
} XkbKeyAliasRec,*XkbK eyAliasPtr;
typedef struct _XkbPoint { [* x,y coordinates */
short X;
short Y;

} XkbPointRec, *XkbPointPtr;

typedef struct _XkbOutline {
unsigned short num_points; /* number of points in the outline */

unsigned short sz_points; [* size of the points array */
unsigned short corner_radius; /* draw corners as circles with this radius */
XkbPaointPtr points; [* array of points defining the outline */

} XkbOutlineRec, *XkbOutlinePtr;

typedef struct _XkbBounds {
short x1,y1; /* upper left corner of the bounds, ™" */
short X2,y2; * lower right corner of the bounds, Wﬁr}llo */
} XkbBoundsRec, *XkbBoundsPtr;

typedef struct _XkbShape {
Atom name; [* shapes name */
unsigned short num_outlines; /* number of outlines for the shape */
unsigned short sz_outlines; /* size of the outlines array */

XkbOutlinePtr outlines; * array of outlines for the shape */

XkbOutlinePtr approx; [* pointer into the array to the approximating outline */
XkbOutlinePtr primary; * pointer into the array to the primary outline */
XkbBoundsRec bounds; /* bounding box for the shape; encompasses all outlines */

} XkbShapeRec, *XkbShapePtr;

November 10, 1997 Library Version 1.0/Document Rision 1.1 101

The X Keyboard Extension 13 Keyboard Geometry

If approx and/orprimary is NULL, the default value is used. The default primary outline is
the first element in the outlines array, as is the default approximating outline.

typedef struct _Xkbigy { [*key in a rav */
XkbKeyNameRec name; [* key name */
short gap; 1* gap in™"Y o from previous key in row */

unsigned char shape_ndx; /* index of shape for &y */
unsigned char color_ndx; /* index of color for key body */
} XkbKeyRec, *XkbKeyPtr;

typedef struct _XkbRw { /* row in a section */
short top; * top coordinate of nv origin, relatve to sectiors origin */
short left; I* left coordinate of rwv origin, relatve to sectiors origin */

unsigned short num_leys; /* number of keys in the leys array */
unsigned short sz_leys; /* size of the leys array */
int vertical; /* Tr ue=>vertical rawv, Fal se=>horizontal rav */
XkbKeyPtr keys; [* array of keys in the rav*/
XkbBoundsRec bounds; /* bounding box for the no */
} XkbRowRec, *XkbRowPtr;

top andleft are in™; .
typedef struct _XkbQarlayRec {

Atom name; * overlay name */

XkbSectionPtr section_under;/* the section under thisverlay */
unsigned short num_ravs; /* number of ravs in the ravs array */
unsigned short SZ_ravs; [* size of the ravs array */
XkbOverlayRavPtr rows; [* array of rawvs in the oerlay */
XkbBoundsPtr bounds; * bounding box for the werlay */

} XkbOverlayRec,*XkbOverlayPtr;
typedef struct _XkbQCerlayRav {

unsigned short row_under; /* index into the rov under this werlay rav */
unsigned short num_leys; /* number of leys in the leys array */
unsigned short sz_leys; [* size of the leys array */
XkbOverlayKeyPtr keys; [* array of keys in the @erlay rawv */

} XkbOverlayRowRec,*XkbOverlayRavPtr;

row_under is an index into the array odws in the section under this overlay. The section
under this overlay row is the one pointed toskgtion_under in this overlay row’s
XkbOver | ayRec.

typedef struct _XkbGCarlayKey {
XkbKeyNameRec over; /* name of this werlay ley */
XkbKeyNameRec under; /* name of the &y under this verlay ley */
} XkbOverlayK eyRec,*XkbOverlayKeyPtr;

typedef struct _XkbSection {

Atom name; [* section name */

unsigned char priority; [* drawing priority, 0=>highest, 255=>{gest */
short top; /* top coordinate of section origin */

short left; [* left coordinate of rav origin */

unsigned short width; /* section width, iV, */

unsigned short height; /* section height, if"™1*/

November 10, 1997 Library Version 1.0/Document Rision 1.1 102

The X Keyboard Extension 13 Keyboard Geometry

short angle; /* angle of section rotation, counterclockwise */
unsigned short num_ravs; /* number of ravs in the ravs array */

unsigned short num_doodads;* number of doodads in the doodads array */
unsigned short num_overlays; /* number of aerlays in the werlays array */
unsigned short SZ_raws; [* size of the ravs array */

unsigned short sz_doodads; /* size of the doodads array */

unsigned short sz_ov/erlays; /* size of the werlays array */

XkbRowPtr rows; * section ravs array */

XkbDoodadPtr doodads; [* section doodads array */

XkbBoundsRec bounds; /* bounding box for the section, before rotation*/
XkbOverlayPtr overlays; [* section werlays array */

} XkbSectionRec, *XkbSectionPtr;

top andleft are the origin of the section, relative to the origin of the keyboafdip,
angleis in Y/, degrees.

DoodadRec Structures

The doodad arrays in thé&bGeonet r yRec and thexkbSect i onRec may contain any
of the doodad structures and types shown in Table 13.1.

The doodad structures form a union:
typedef union _XkbDoodad {

XkbAryDoodadRec ary;
XkbShapeDoodadRec shape;
XkblextDoodadRec text;
XkbiIndicatorDoodadRec indicator;
XkbLogoDoodadRec logo;

} XkbDoodadRec, *XkbDoodadPtr;

Thetop andleft coordinates of each doodad are the coordinates of the origin of the doodad
relative to the keyboard'’s origin if the doodad is inXkbGeoret r yRec doodad array,

and with respect to the section’s origin if the doodad isXklesect i onRec doodad
array.Thecolor_ndx oron_color_ndx andoff_color_ndx fields are color indices into the
XkbGeorret r yRec’s color array and are the colors towdithe doodads with. Similarlyhe

shape_ndx fields are indices into thé&kbGeonet r yRec’s shape array

typedef struct _XkbShapeDoodad {

Atom name; /* doodad name */

unsigned char type; /* XkbQut | i neDoodad or XkbSol i dDoodad*/
unsigned char priority; * drawing priority, 0=>highest, 255=>lgest */
short top; /* top coordinate, if""Y1q*/

short left; I* left coordinate, i */

short angle; /* angle of rotation, clockwise, iHlO degrees */

unsigned short color_ndx; /* doodad color */
unsigned short shape_ndx; /* doodad shape */
} XkbShapeDoodadRec, *XkbShapeDoodadPtr;

typedef struct _XkbaxtDoodad {

Atom name; [* doodad name */

unsigned char type; [* XkbText Doodad */

unsigned char priority; * drawing priority, 0=>highest, 255=>lgest */
short top; /* top coordinate, if""Y1q*/

November 10, 1997 Library Version 1.0/Document Rision 1.1 103

The X Keyboard Extension 13 Keyboard Geometry

13.8

short |eft; /* 1€eft coordinate, in ™"/ */

short angle; * angle of rotation, clockwise, in l/10 degrees */
short width; /% widthin ™0 %/

short height; /* heightin ™Y */

unsigned short color_ndx; [* doodad color */

char * text; [* doodad text */

char * font; * arbitrary font name for doodad text */

} XkbTextDoodadRec, * XkbTextDoodadPtr;
typedef struct _XkblndicatorDoodad {

Atom name; [* doodad name */

unsigned char type; /* Xkbl ndi cat or Doodad */

unsigned char priority; * drawing priority, O=>highest, 255=>lowest */
short top; /* top coordinate, in ™"/qq*/

short |eft; /* |€ft coordinate, in ™Y */

short angle; [* angle of rotation, clockwise, in 1/10 degrees*/

unsigned short shape_ndx; /* doodad shape */

unsigned short on_color_ndx; /* color for doodad if indicator ison */

unsigned short off_color_ndx; /* color for doodad if indicator is off */
} Xkblndicator DoodadRec, * XkblndicatorDoodadPtr;

typedef struct _XkbL ogoDoodad {

Atom name; [* doodad name */

unsigned char type; [* XkbLogoDoodad */

unsigned char priority; * drawing priority, O=>highest, 255=>lowest */
short top; /* top coordinate, in ™"/qq*/

short |eft; /* |€ft coordinate, in ™Y */

short angle; [* angle of rotation, clockwise, in 1/10 degrees*/
unsigned short color_ndx; [* doodad color */

unsigned short shape_ndx; /* doodad shape */

char * logo_name; /* text for logo */

} XkbL ogoDoodadRec, * XkbL ogoDoodadPtr

Getting Keyboard Geometry From the Server

You can load a keyboard geometry as part of the keyboard description returned by Xkb-
GetKeyboard. However, if a keyboard description has been previously loaded, you can
instead obtain the geometry by calling the XkbGetGeometry. In this case, the geometry
returned is the one associated with the keyboard whose device ID is contained in the key-
board description.

To load a keyboard geometry if you already have the keyboard description, use XkbGet-
Geometry.

Status XkbGetGeometr y(dpy, xkb)
Display * dpy; /* connection to the X server */
XkbDescPtr xkb; [* keyboard description that contains the ID for the keyboard
and into which the geometry should be loaded */

XkbGetGeometry can return BadVal ue, Badl npl enent at i on, BadNare, BadAl | oc,
or BadLengt h errors or Success if it succeeds.

November 10, 1997 Library Version 1.0/Document Revision 1.1 104

The X Keyboard Extension 13 Keyboard Geometry

13.9

It is also possible to load a keyboard geometry by name. The X server maintains a data-
base of keyboard components (see Chapter 20). To load a keyboard geometry description
from this database by name, d8dGetNamedGeometry.

StatusXkbGetNamedGeometry(dpy, xkb, name)

Display * dpy; [* connection to the X seer */
XkbDescPtr xkb; /* keyboard description into which the geometry should be loaded */
Atom name; /* name of the geometry to be loaded */

XkbGetNamedGeometry can returrBadNane if the name cannot be found.

Using Keyboard Geometry

Xkb provides a number of convenience functions to help use a keyboard geometry. These
include functions to return the bounding box of a shape’s top surface and to update the
bounding box of a shape row or section.

A shape is made up of a number of outlines. Each outline is a polygon made up of a num-
ber of points. The bounding box of a shape is a rectangle that contains all the outlines of
that shape.

. —]

actual ley approximating primary detailed bounding
surface outline outline outline box

I outline array |
Figure 13.7 Key Surface, Shape Outlines, and Bounding Box

To determine the bounding box of the top surface of a shap&kibSemputeShapeTop.

Bool XkbComputeShapeTop(shape, bounds_rtrn)
XkbShapePtr shape; [* shape to bexamined */
XkbBoundsPtr bounds_rtrn /* backfilled with the bounding box for the shape */

XkbComputeShapeTop returns @oundsRec that contains two x and y coordinates. These
coordinates describe the corners of a rectangle that contains the outline that describes the
top surface of the shape. The top surface is defined to be the approximating outline if the
approx field of shape is notNULL. If approx is NULL, the top surface is defined as the last
outline in theshape's array of outlinesXkbComputeShapeTop returnsfFal se if shapeis

NULL or if there are no outlines for the shape; otherwise, it refuras.

A ShapeRec contains @oundsRec that describes the bounds of the shape. If you add or
delete an outline to or from a shape, the bounding box must be updated. To update the
bounding box of a shape, uskbComputeShapeBounds.

Bool XkbComputeShapeBounds(shape)
XkbShapePtr shape; [* shape to bexamined */

XkbComputeShapeBounds updates th®oundsRec contained in thehape by examining
all the outlines of the shape and settingBbendsRec to the minimum x and minimum

November 10, 1997 Library Version 1.0/Document Rision 1.1 105

The X Keyboard Extension 13 Keyboard Geometry

13.10

y, and maximum x and maximum y values found in those outMkxComputeShape-
Bounds returngFal se if shapeis NULL or if there are no outlines for the shape; otherwise,
it returnsTr ue.

If you add or delete a key to or from a row, or if you update the shape of one of the keys
in that row, you may need to update the bounding box of that row. To update the bounding
box of a row, us&XkbComputeRowBounds.

Bool XkbComputeRowBounds(geom, section, row)

XkbGeometryPtrgeom; [* geometry that contains trsection */
XkbSectionPtr section; /* section that contains thewo*/
XkbRowPtr row; /* row to be &amined and updated */

XkbComputeRowBounds checks the bounds of all keys in tlogv and updates the bound-
ing box of the row if necessangkbComputeRowBounds returnsFal se if any of the argu-
ments iSNULL; otherwise, it returnsr ue.

If you add or delete a row to or from a section, or if you change the geometry of any of the
rows in that section, you may need to update the bounding box for that section. To update
the bounding box of a section, uddComputeSectionBounds.

Bool XkbComputeSectionBounds(geom, section)
XkbGeometryPtrgeom; [* geometry that contains thsection */
XkbSectionPtr section; [* section to bexamined and updated */

XkbComputeSectionBounds examines all the rows of tisection and updates the bounding
box of that section so that it contains all rox&bComputeSectionBounds returnsFal se
if any of the arguments NULL; otherwise, it return3r ue.

Keys that can generate multiple keycodes may be associated with multiple names. Such
keys have a primary name and an alternate name. To find the alternate name by using the
primary name for a key that is part of an overlay, Xld#=indOverlayForKey.

char *XkbFindOverlayFor K ey(geom, section, under)

XkbGeometryPtrgeom; [* geometry that contains trsection */
XkbSectionPtr section; [* section to be searched for matchireysk*/
char * under. [* primary name of thedy to be considered */

XkbFindOverlayForKey uses the primary name of the kagder, to look up the alternate
name, which it returns.

Adding Elements to a Keyboard Geometry

Xkb provides functions to add a single new element to the top-level keyboard geometry.
In each case thaum_« fields of the corresponding structure is incremented by 1. These
functions do not changz » unless there is no more room in the array. Some of these
functions fill in the values of the element’s structure from the arguments. For other func-
tions, you must explicitly write code to fill the structure’s elements.

The top-level geometry description includes a lisjemimetry properties. A geometry

property associates an arbitrary string with an equally arbitrary name. Programs that dis-
play images of keyboards can use geometry properties as hints, but they are not inter-
preted by Xkb. No other geometry structures refer to geometry properties.

November 10, 1997 Library Version 1.0/Document Rision 1.1 106

The X Keyboard Extension 13 Keyboard Geometry

To add one property to an existing keyboard geometry descriptioXkindddGeomPro-

perty.

XkbPropertyPtiXkbAddGeomProper ty(geom, name, value)
XkbGeometryPtrgeom; [* geometry to be updated */
char * name; /* name of the n& property */
char * value; [* value for the ne property */

XkbAddGeomProperty adds one property with the specifigaine andvalue to the key-
board geometry specified lggom. XkbAddGeomProperty returnsNULL if any of the
parameters is empty or if it was not able to allocate space for the property. To allocate
space for an arbitrary number of properties, usekbéllocGeomProps function.

To add one key alias to an existing keyboard geometry descriptiodkinAsgdGeomKey-

Alias.

XkbKeyAliasPtr XkbAddGeomK eyAlias(geom, alias, real)
XkbGeometryPtrgeom; /* geometry to be updated */
char * alias, /* alias to be added */
char * real; /* real name to be bound to themnalias */

XkbAddGeomKeyAlias adds one key alias with the valaléas to the geometrgeom, and
associates it with the key whose real nanreak XkbAddGeomKeyAlias returnsNULL if
any of the parameters is empty or if it was not able to allocate space for the alias. To allo-
cate space for an arbitrary number of aliases, usektiid|ocGeomKeyAliases function.

To add one color name to an existing keyboard geometry descriptiokkh/AsgGeom-

Color.

XkbColorPtrXkbAddGeomColor (geom, spec, pixel)
XkbGeometryPtrgeom; /* geometry to be updated */
char * Spec; /* color to be added */
unsigned int pixel; [* color to be added */

XkbAddGeomColor adds the specified coloame andpixel to the specified geometry

geom. The top-level geometry description includes a list of uphtaCol or s (32) color

names. A colornameis a string whose interpretation is not specified by Xkb and neither is
thepixel value’s interpretation. All other geometry data structures refer to colors using
their indices in this global list or pointers to colors in this ¥&bAddGeomColor returns

NULL if any of the parameters is empty or if it was not able to allocate space for the color.
To allocate space for an arbitrary number of colors to a geometry, uskbiléocGeom-

Colors function.

To add one outline to an existing shape, XideAddGeomOuitline.

XkbOutlinePtrXkbAddGeomOutline(shape, sz_points)
XkbShapePtr shape; [* shape to be updated */
int sz points; /* number of points to be resexd */

An outline consists of an arbitrary number of poiXtdbAddGeomOutline adds an outline

to the specifiedhape by reservingz_points points for it. The new outline is allocated and
zeroed XkbAddGeomOuitline returnsNULL if any of the parameters is empty or if it was

not able to allocate space. To allocate space for an arbitrary number of outlines to a shape,
useXkbAllocGeomOutlines.

November 10, 1997 Library Version 1.0/Document Rision 1.1 107

The X Keyboard Extension 13 Keyboard Geometry

To add a shape to a keyboard geometry, use XkbAddGeomShape.
XkbShapePtr XkbAddGeomShape(geom, name, sz_outlines)

XkbGeometryPtr geom; /* geometry to be updated */
Atom name; /* name of the new shape */
int sz outlines; /* number of outlinesto be reserved */

A geometry contains an arbitrary number of shapes, each of which is made up of an arbi-
trary number of outlines. XkbAddGeomShape adds a shape to a geometry geom by all ocat-
ing space for sz_outlines outlines for it and giving it the name specified by name. If a
shape with name name already exists in the geometry, a pointer to the existing shapeis
returned. XkbAddGeomShape returns NULL if any of the parametersis empty or if it was
not able to alocate space. To allocate space for an arbitrary number of geometry shapes,
use XkbAllocGeomShapes.

To add one key at the end of an existing row of keys, use XkbAddGeomKey.

XkbKeyPtr XkbAddGeomK ey(row)
XkbRowPtr row; /* row to be updated */

Keys are grouped into rows. XkbAddGeomKey adds one key to the end of the specified
row. The key is allocated and zeroed. XkbAddGeomKey returns NULL if row isempty or if
it was not able to allocate space for the key. To allocate space for an arbitrary number of
keysto arow, use XkbAllocGeomKeys.

To add one section to an existing keyboard geometry, use XkbAddGeomSection.

XkbSectionPtr XkbAddGeomSection(geom, name, sz_rows, sz_doodads, sz_overlays)

XkbGeometryPtr geom; [* geometry to be updated */

Atom name; /* name of the new section */

int SZ_rows; /* number of rows to reserve in the section */

int sz _doodads; /* number of doodads to reserve in the section */
int sz _overlays; /* number of overlays to reserve in the section */

A keyboard geometry contains an arbitrary number of sections. XkbAddGeomSection adds
one section to an existing keyboard geometry geom. The new section contains space for
the number of rows, doodads, and overlays specified by sz rows, sz doodads, and
sz_overlays. The new section is allocated and zeroed and given the name specified by
name. If a section with name name already existsin the geometry, a pointer to the existing
section isreturned. XkbAddGeomSection returns NULL if any of the parametersis empty or
if it was not able to allocate space for the section. To allocate space for an arbitrary num-
ber of sections to a geometry, use XkbAllocGeomSections.

To add arow to a section, use XkbAddGeomRow.

XkbRowPtr XkbAddGeomRow(section, sz_keys)
XkbSectionPtr section; [* section to be updated */
int sz _keys, /* number of keysto be reserved */

One of the components of a keyboard geometry section is one or more rows of keys.
XkbAddGeomRow adds one row to the specified section. The newly created row contains
space for the number of keys specified in sz_keys. They are allocated and zeroed, but other-
wise uninitialized. XkbAddGeomRow returns NULL if any of the parametersis empty or if
it was not able to allocate space for the row. To allocate space for an arbitrary number of
rows to a section, use the XkbAllocGeomRows function.

November 10, 1997 Library Version 1.0/Document Revision 1.1 108

The X Keyboard Extension 13 Keyboard Geometry

To add one doodad to a section of a keyboard geometry or to the top-level geometry, use

XkbAddGeomDoodad.

XkbDoodadPtiXkbAddGeomDoodad(geom, section, name)
XkbGeometryPtrgeom; /* geometry to which the doodad is added */
XkbSectionPtr section; [* section, if an, to which the doodad is added */
Atom name; /* name of the n& doodad */

A doodad describes some visible aspect of the keyboard that is not a key and is not a sec-
tion. XkbAddGeomDoodad adds a doodad with name specifiechagne to the geometry

geom if section is NULL or to the section of the geometry specifiedséstion if section is

not NULL. XkbAddGeomDoodad returnsNULL if any of the parameters is empty or if it

was not able to allocate space for the doodad. If there is already a doodad with the name
name in the doodad array for the geometrysgftion is NULL) or the section (ifection is
nonNULL), a pointer to that doodad is returned. To allocate space for an arbitrary number
of doodads to a section, use ¥idAllocGeomSectionDoodads function. To allocate

space for an arbitrary number of doodads to a keyboard geometry, X&bAHecGeom-
Doodads function.

To add one overlay to a section, dé®AddGeomOverlay.

XkbOverlayPtrXkbAddGeomOverlay(section, name, Sz_rows)

XkbSectionPtr section; [* section to which anwerlay will be added */
Atom name; /* name of the werlay */
int SZ rows, /* number of ravs to resere in the oerlay */

XkbAddGeomOverlay adds an overlay with the specified name to the specetiobn.

The new overlay is created with space allocatedzdgiows rows. If an overlay with name

name already exists in the section, a pointer to the existing overlay is returned.
XkbAddGeomOverlay returnsNULL if any of the parameters is empty or if it was not able

to allocate space for the overlay. To allocate space for an arbitrary number of overlays to a
section, use th¥kbAllocGeomOverlay function.

To add a row to an existing overlay, udéAddGeomOverlayRow.

XkbOverlayRavPtr XkbAddGeomOver layRow(overlay, row_under, sz_keys)

XkbOverlayPtr overlay; /* overlay to be updated */
XkbRowPtr row_under; /* row to be oerlayed in the sectiooverlay overlays */
int sz_keys, /* number of leys to reserg in the rav */

XkbAddGeomOverlayRow adds one row to thaverlay. The new row contains space for

sz keys keys. Ifrow_under specifies a row that doesn’t exist on the underlying section,
XkbAddGeomOverlayRow returnsNULL and doesn’t change the overlakbAddGeo-
mOverlayRow returnsNULL if any of the parameters is empty or if it was not able to allo-
cate space for the overlay.

To add a key to an existing overlay row, X&AddGeomOverlayKey.
XkbOverlayKeyPtr XkbAddGeomOverlayK ey(overlay, row, under)

XkbOverlayPtr overlay; /* overlay to be updated */
XkbRowPtr row, /* row in overlay to be updated */
char * under; /* primary name of thedy to be considered */

XkbAddGeomOverlayKey adds one key to threw in theoverlay. If there is no key named
under in the row of the underlying sectioxXkbAddGeomOverlayKey returnsNULL.

November 10, 1997 Library Version 1.0/Document Rision 1.1 109

The X Keyboard Extension 13 Keyboard Geometry

13.11 Allocating and Freeing Geometry Components

Xkb provides a number of functions to allocate and free subcomponents of a keyboard
geometry. Use these functions to create or modify keyboard geometries. Note that these
functions merely allocate space for the new element(s), and it is up to you to fill in the val-
ues explicitly in your code. These allocation functions increasebut never touch

num x (unless there is an allocation failure, in which case they resesbetandnum «

to zero). These functions retudaccess if they succeedBadAl | oc if they are not able

to allocate space, @adVal ue if a parameter is not as expected.

To allocate space for an arbitrary number of outlines to a shap€kibddocGeomOut-

lines

StatusXkbAllocGeomOutlines(shape num_needed
XkbShapePtr shape * shape for which outlines should be allocated */
int num_needed™* number of nev outlines required */

XkbAllocGeomOutlineallocates space fomum_neededutlines in the specifieshape
The outlines are not initialized.

To free geometry outlines, u¥&bFreeGeomOutlines
void XkbFreeGeomOutlines(shapefirst, count free_al)

XkbShapePtr shape /* shape in which outlines should be freed */
int first [* first outline to be freed */

int count /* number of outlines to be freed */

Bool free_all; /* Tr ue => all outlines are freed */

If free_allis Tr ue, all outlines are freed regardless of the valuiérsifor count Other-
wise,countoutlines are freed beginning with the one specifietirby,

To allocate space fan arbitrary number of keys to a row, XédAllocGeomKeys

StatusXkbAllocGeomK eys(row, num_needed
XkbRowPtr row; /* row to which leys should be allocated */
int num_needed* number of nes keys required */

XkbAllocGeomKeyallocatesium_neede#leys and adds them to thewv. No initializa-
tion of the keys is done.

To free geometry keys, ud&bFreeGeomKeys

void XkbFreeGeomK eys(row, first, count free_al)

XkbRowPtr row; /* row in which keys should be freed */
int first [* first key to be freed */

int count /* number of leys to be freed */

Bool free_all; /* Tr ue => all keys are freed */

If free_allis Tr ue, all keys are freed regardless of the valugrsf or count Otherwise,
countkeys are freed beginning with the one specifiedirsy.

To allocate geometry properties, dddbAllocGeomProps

StatusXkbAllocGeomProps(geom num_needéd
XkbGeometryPtrgeom /* geometry for which properties should be allocated */
int num_needed* number of nes properties required */

November 10, 1997 Library Version 1.0/Document Rision 1.1 110

The X Keyboard Extension 13 Keyboard Geometry

XkbAllocGeomPropallocates space foum_needegroperties and adds them to the
specified geometrgeom No initialization of the properties is done. A geometry property
associates an arbitrary string with an equally arbitrary name. Geometry properties can be
used to provide hints to programs that display images of keyboards, but they are not inter-
preted by Xkb. No other geometry structures refer to geometry properties.

To free geometry properties, uskbFreeGeomProperties

void XkbFreeGeomPr operties(geom first, count free_al)

XkbGeometryPtrgeom /* geometry in which properties should be freed */
int first [* first property to be freed */

int count /* number of properties to be freed */

Bool free_all; [* Tr ue => all properties are freed */

If free_allis Tr ue, all properties are freed regardless of the valdestfor count Other-
wise, countproperties are freed beginning with the one specifiefir &ty

To allocate geometry key aliases, XdbAllocGeomKeyAliases

StatusXkbAllocGeomK eyAliases(geom hum_needed
XkbGeometryPtrgeom /* geometry for which &y aliases should be allocated */
int num_needed* number of nev key aliases required */

XkbAllocGeomKeyAliasedlocates space foum_neede#ley aliases and adds them to
the specified geometigeom A key alias is a pair of strings that associates an alternate
name for a key with the real name for that key.

To free geometry key aliases, UdedbFreeGeomKeyAliases
void XkbFreeGeomK eyAliases(geom first, count free_al)

XkbGeometryPtrgeom /* geometry in which &y aliases should be freed */
int first [* first key alias to be freed */

int count /* number of ley aliases to be freed */

Bool free_all; /* Tr ue => all key aliases are freed */

If free_allis Tr ue, all aliases in the top level of the specified geomggigmare freed
regardless of the value fifst or count Otherwisecountaliases irgeomare freed begin-
ning with the one specified Hyst.

To allocate geometry colors, ugkbAllocGeomColors

StatusXkbAllocGeomColors(geom num_needed
XkbGeometryPtrgeom /* geometry for which colors should be allocated */
int num_needed* number of nes colors required. */

XkbAllocGeomColorallocates space farum_neededolors and adds them to the speci-
fied geometrygeom A color name is a string whose interpretation is not specified by Xkb.
All other geometry data structures refer to colors using their indices in this global list or
pointers to colors in this list.

November 10, 1997 Library Version 1.0/Document Rision 1.1 111

The X Keyboard Extension 13 Keyboard Geometry

To free geometry colors, ud&bFreeGeomColors

void XkbFreeGeomColor s(geom first, count free_al)

XkbGeometryPtrgeom [* geometry in which colors should be freed */
int first [* first color to be freed */

int count /* number of colors to be freed */

Bool free_all; /* Tr ue => all colors are freed */

If free_allis Tr ue, all colors are freed regardless of the valuférsf or count Otherwise,
countcolors are freed beginning with the one specifiefirsy.

To allocate points in an outline, usgbAllocGeomPoints

StatusXkbAllocGeomPoints(outling num_needed
XkbOutlinePtr outline /* outline for which points should be allocated */
int num_needed* number of nev points required */

XkbAllocGeomPointallocates space foum_needegoints in the specifiedutline The
points are not initialized.

To free points in a outline, u3&kbFreeGeomPoints

void XkbFreeGeomPoints(outling first, count free_al)

XkbOutlinePtr outline [* outline in which points should be freed */
int first [* first point to be freed. */

int count /* number of points to be freed */

Bool free_all; /* Tr ue => all points are freed */

If free_allis Tr ue, all points are freed regardless of the valuirsf andcount Other-
wise, the number of points specifieddnuntare freed, beginning with the point specified
by first in the specified outline.

To allocate space for an arbitrary number of geometry shapeskindiocGeomShapes

StatusXkbAllocGeomShapes(geom num_needed
XkbGeometryPtrgeom /* geometry for which shapes should be allocated */
int num_needed* number of nev shapes required */

XkbAllocGeomShapesdlocates space foum_neededhapes in the specified geometry
geom The shapes are not initialized.

To free geometry shapes, UsebFreeGeomShapes

void XkbFreeGeomShapes(geom first, count f ree_al)

XkbGeometryPtrgeom /* geometry in which shapes should be freed */
int first [* first shape to be freed */

int count /* number of shapes to be freed */

Bool free_all; [* Tr ue => all shapes are freed */

If free_allis Tr ue, all shapes in the geometry are freed regardless of the valirss afid
count Otherwisecountshapes are freed, beginning with the shape specifiicsby

To allocate geometry sections, d&bAllocGeomSections

StatusXkbAllocGeomSections(geom num_needéd
XkbGeometryPtrgeom /*geometry for which sections should be allocated */
int num_needed* number of ne sections required */

November 10, 1997 Library Version 1.0/Document Rision 1.1 112

The X Keyboard Extension 13 Keyboard Geometry

XkbAllocGeomSectioralocatesnum_neededections and adds them to the geometry
geom No initialization of the sections is done.

To free geometry sections, uskbFreeGeomsSections
void XkbFreeGeomSections(geom first, count free_al)

XkbGeometryPtrgeom /* geometry in which sections should be freed */
int first [* first section to be freed. */

int count I* number of sections to be freed */

Bool free_all; /* Tr ue => all sections are freed */

If free_allis Tr ue, all sections are freed regardless of the valdegsifandcount Other-
wise, the number of sections specifiedcbyntare freed, beginning with the section spec-
ified by first in the specified geometry.

To allocate ravs in a section, usékbAllocGeomRows

StatusXkbAllocGeomRows(section num_needed
XkbSectionPtr section /* section for which ravs should be allocated */
int num_needed* number of ner rows required */

XkbAllocGeomRowallocatesium_neededows and adds them to teection No initial-
ization of the rows is done.

To free ravs in a section, us€kbFreeGeomRows

void XkbFreeGeomRows(section first, count free_al)

XkbSectionPtr section /* section in which ravs should be freed */
int first /* first row to be freed. */

int count /* number of revs to be freed */

Bool free_all; /* Tr ue => all raws are freed */

If free_allis Tr ue, all rows are freed regardless of the valugiref andcount Otherwise,
the number of rows specified bbpuntare freed, beginning with the row specifiedfiogt
in the specified section.

To allocate werlays in a section, ustékbAllocGeomOverlays

StatusXkbAllocGeomOver lays(section num_needed
XkbSectionPtr section /* section for which gerlays should be allocated */
int num_needed* number of nes overlays required */

XkbAllocGeomRowallocatesnum_neededverlays and adds them to section No ini-
tialization of the overlays is done.

To free ravs in an section, usekbFreeGeomOverlays

void XkbFreeGeomOverlays(section first, count free_al)

XkbSectionPtr section [* section in which gerlays should be freed */
int first [* first overlay to be freed. */

int count /* number of werlays to be freed */

Bool free_all; /* Tr ue => all overlays are freed */

If free_allis Tr ue, all overlays are freed regardless of the valugstfandcount Other-
wise, the number of overlays specifieddountare freed, beginning with the overlay
specified byfirst in the specified section.

November 10, 1997 Library Version 1.0/Document Rision 1.1 113

The X Keyboard Extension 13 Keyboard Geometry

To allocate ravs in a @erlay, useXkbAllocGeomOverlayRows

StatusXkbAllocGeomOverlayRows(overlay num_needéed
XkbSectionPtr overlay, [* section for which ravs should be allocated */
int num_needed™* number of nev rows required */

XkbAllocGeomOverlayRovedlocatesium_needetbws and adds them to tbeerlay No
initialization of the rows is done.

To free ravs in an @erlay, useXkbFreeGeomOverlayRows

void XkbFreeGeomOverlayRows(overlay; first, count free_al)

XkbSectionPtr overlay; [* section in which ravs should be freed */
int first [* first row to be freed. */

int count /* number of ravs to be freed */

Bool free_all; [* Tr ue => all rows are freed */

If free_allis Tr ue, all rows are freed regardless of the valugiref andcount Otherwise,
the number of rows specified bbpuntare freed, beginning with the row specifiedfiogt
in the specified overlay.

To allocate kys in an @erlay rav, useXkbAllocGeomOverlayKeys

StatusXkbAllocGeomOverlayK eys(row, num_needéd
XkbRowPtr row; /* section for which ravs should be allocated */
int num_needed* number of nes rows required */

XkbAllocGeomOverlayKeydlocatesaum_neede#leys and adds them to thav. No ini-
tialization of the keys is done.

To free leys in an @erlay rav, useXxkbFreeGeomOverlayKeys

void XkbFreeGeomOverlayK eys(row, first, count free_al)

XkbRowPtr row; /* row in which keys should be freed */
int first [* first key to be freed. */

int count /* number of leys to be freed */

Bool free_all; [* Tr ue => all keys are freed */

If free_allis Tr ue, all keys are freed regardless of the valursif andcount Otherwise,
the number of keys specified bguntare freed, beginning with the key specifiedfibst
in the specified row.

To allocate doodads that are global teegbloard geometryuseXkbAllocGeomDoodads

StatusXkbAllocGeomDoodads(geom num_needed
XkbGeometryPtrgeom /* geometry for which doodads should be allocated */
int num_needed* number of ner doodads required */

XkbAllocGeomDoodadsllocatesnum_neededoodads and adds them to the specified
geometrygeom No initialization of the doodads is done.

To allocate doodads that are specific to a sectionXkisallocGeomSectionDoodads

StatusXkbAllocGeomSectionDoodads(section num_needed
XkbSectionPtr section [* section for which doodads should be allocated */
int num_needed* number of nes doodads required */

November 10, 1997 Library Version 1.0/Document Rision 1.1 114

The X Keyboard Extension 13 Keyboard Geometry

XkbAllocGeomSectionDoodads allocatesium_needed doodads and adds them to the spec-
ified section. No initialization of the doodads is done.

To free geometry doodads, usidoFreeGeomDoodads.

void XkbFreeGeomDoodads(doodads, count, free_all)
XkbDoodadPtr doodads; /* doodads to be freed */
int count; /* number of doodads to be freed */
Bool free_all; /* Tr ue => all doodads are freed */

If free_all is Tr ue, all doodads in the array are freed, regardless of the vatoeirtf
Otherwise count doodads are freed.

To allocate an entire geometnseXkbAllocGeometry.

StatusXkbAllocGeometry(xkb, sizes)
XkbDescPtr xkb; /* keyboard description for which geometry is to be allocated */
XkbGeometrySizesPtrsizes; /* initial sizes for all geometry components */

XkbAllocGeometry allocates a keyboard geometry and adds it to the keyboard description
specified byxkb. The keyboard description should be obtained viaié&etKeyboard or
XkbAllockeyboard functions. Thesizes parameter specifies the number of elements to be
reserved for the subcomponents of the keyboard geometry and can be zero or more. These
subcomponents include tpeoperties, colors, shapes, sections, and doodads.

To free an entire geomefnysexXkbFreeGeometry.
void XkbFreeGeometry(geom, which, free all)

XkbGeometryPtrgeom; /* geometry to be freed */
unsigned int which; /* mask of geometry components to be freed */
Bool free_all; [* Tr ue => the entire geometry is freed. */

The values oWwhich andfree_all determine how much of the specified geometry is freed.
The valid values fowhich are:

#define XkbGeomPropertiesMask (1<<0)
#define XkbGeomColorsMask (1<<1)
#define XkbGeomShapesMask (1<<2)
#define XkbGeomsSectionsMask (1<<3)
#define XkbGeomDoodadsMask (1<<4)
#define XkbGeomAllMask (0Ox1f)

If free all is Tr ue, the entire geometry is freed regardless of the valwiach. Other-
wise, the portions of the geometry specifiedaych are freed.

November 10, 1997 Library Version 1.0/Document Rision 1.1 115

The X Keyboard Extension 14 Xkb Keyboard Mapping

14

14.1

Xkb Keyboard Mapping

The Xkb keyboard mapping contains all the information the server and clients need to
interpret key events. This chapter provides an overview of the terminology used to
describe an Xkb keyboard mapping and introduces common utilities for manipulating the
keyboard mapping.

The mapping consists of two components, a server map and a client mapeiithaap

is the collection of information a client needs to interpret key events from the keyboard. It
contains a global list of key types and an array of key symbol maps, each of which
describes the symbols bound to a key and the rules to be used to interpret those symbols.
Theserver map contains the information the server needs to interpret key events. This
includes actions and behaviors for each key, explicit components for a key, and the virtual
modifiers and the per-key virtual modifier mapping.

For detailed information on particular components of the keyboard map, refer to Chapter
15, “Xkb Client Keyboard Mapping” and Chapter 16, “Xkb Server Keyboard Mapping.”

Notation and Terminology

The graphic characters or control functions that may be accessed by one key are logically
arranged in groups and levels, whgreup andlevel are defined as in the ISO9995 stan-
dard:

Group: A logical state of adyboard preiding access to a collection of graphic char-
acters. Usually these graphic characters logically belong together and may be
arranged on seral levels within a group.

Level: One of sgeral states (hormally 2 or 3)ggrning which graphic character is
produced when a graphiexkis actuated. In certain cases theelenay also
affect function leys.

These definitions, taken from the ISO standard, refer to graphic keys and characters. In the
context of Xkb, Group and Level are not constrained to graphic keys and characters; they
may be used with any key to access any character the key is capable of generating.

Level is often referred to as “Shift Level”. Levels are numbered sequentially starting at
one.

Note Shift level is derved from the modifier stateubnot necessarily in the samewfor
all keys. For example, theShi f t modifier selects shift {el 2 on most &ys, hut for
keypad leys the modifier bound thum_Lock (that is, theNuniock virtual modi-
fier) also selects shiftvel 2.

November 10, 1997 Library Version 1.0/Document Rision 1.1 116

The X Keyboard Extension 14 Xkb Keyboard Mapping

For example, consider the following key (the gray characters indicate symbols that are
implied or expected but are not actually engraved on the key):

N

% gl'—;:z L1 L2 L1 L2 L1 L2

@ 1L2 = Glal|lA

= G2Ll=ee ajAj=|E

s GoL2 = [E Gl G2 Glee| A
Group -

Physical Key Symbols Core Symbols Xkb Symbols

Figure 14.1 Shift Levelsand Groups

This key has two groups, indicated by the columns, and each group has two shift levels.
For the first group (Groupl), the symbol shift level ong iand the symbol for shift level

two isA. For the second group, the symbol for shift level orse,iand the symbol for

shift level two is/.

14.1.1 Core Implementation

The standard interpretation rules for the core X keymap only allow clients to access keys
such as the one shown in Figure 14.1. That is, clients using the standard interpretation
rules can only access one of four keysyms for any dfeg®r ess event — two different
symbols in two different groups.

In general, théshi ft modifier, theLock modifier, and the modifier bound to the
Num_Lock key are used to change between shift level 1 and shift level 2. To switch
between groups, the core implementation uses the modifier boundvodbeswitch

key. When thdvbde sw t ch modifier is set, the keyboard is logically in Group 2. When
theMbde_swi t ch modifier is not set, the keyboard is logically in Group 1.

The core implementation does not clearly specify the behavior of keys. For example, the
locking behavior of th€apsLock andNum_Lock keys depends on the vendor.

14.1.2 Xkb Implementation

Xkb extends the core implementation by providing access to up to four keyboard groups
with up to 63 shift levels per k&yin addition, Xkb provides precise specifications regard-
ing the behavior of keys. In Xkb, modifier state and the current group are independent
(with the exception of compatibility mapping, discussed in Chapter 17).

Xkb handles switching between groups via key actions, independent of any modifier state
information. Key actions are in the server map component and are described in detail in
section 16.1.4.

Xkb handles shift levels by associating a key type with each group on each key. Each key
type defines the shift levels available for the groups on keys of its type and specifies the
modifier combinations necessary to access each level.

1. The core implementation restricts the number of symbolspéo R55. Wth four groups, this alles for up to 63
symbols (or shift leels) per group. Mosteys will only have a fav shift levels.

November 10, 1997 Library Version 1.0/Document Rision 1.1 117

The X Keyboard Extension 14 Xkb Keyboard Mapping

14.2

For example, Xkb allows key types where @oat r ol modifier can be used to access the
shift level two of a key. Key types are in the client map component and are described in
detail in section 15.2.

Xkb provides precise specification of the behavior of a key using key behaviors. Key
behaviors are in the server map component and are described in detail in section 16.2.

Getting Map Components from the Server

Xkb provides two functions to obtain the keyboard mapping components from the server.
The first function XkbGetMap, allocates aixkbDescRec structure, retrieves mapping
components from the server, and stores them ikb8escRec structure it just allo-

cated. The second functiokbGetUpdatedMap, retrieves mapping components from the
server and stores them in dkbDescRec structure that has previously been allocated.

To allocate arXkbDescRec structure and populate it with the server’s keyboard client
map and server map, uBkbGetMap. XkbGetMap is similar toXkbGetKeyboard (see sec-
tion 6.2), but is used only for obtaining the address ofdrbescRec structure that is
populated with keyboard mapping components. It allows finer control over which sub-
structures of the keyboard mapping components are to be popXlkii€diKeyboard
always returns fully populated components, wKikbGetMap can be instructed to return
a partially populated component.

XkbDescPtiXkbGetM ap(display, which, device spec)

Display * display; /* connection to X semr */
unsigned int which; /* mask selecting subcomponents to populate */
unsigned int device_spec; /* device_id, orXkbUseCor eKbd */

Thewhich mask is a bitwise inclusive OR of the masks defined in Table 14.1. Only those
portions of the keyboard server map and the keyboard client maps that are specified in
which are allocated and populated.

In addition to allocating and obtaining the server map and the clientiapetMap also
sets thelevice_spec, themin_key code, andmax_key code fields of the keyboard descrip-
tion.

XkbGetMap is synchronous; it queries the server for the desired information, waits for a
reply, and then returns. If successXkbGetMap returns a pointer to thékbDescRec
structure it allocated. If unsuccessikbGetMap returnsNULL. When unsuccessful, one

of the following protocol errors is also generatBadAl | oc (unable to allocate the
XkbDescRec structure)BadVal ue (some mask bits iwhich are undefined) or Badl m

pl enent at i on (a compatible version of the Xkb extension is not available in the server).
To free the returned data, uskbFreeClientMap.

Xkb also provides convenience functions to get partial component definitions from the
server. These functions are specified in the “convenience functions” column in Table 14.1.
Refer to the sections listed in the table for more information on these functions.

Table 14.1 Xkb Mapping Component Masks and Convenience Functions

Mask Value Map Fields Convenience Functions Section

XkbKeyTypesMask (1<<0) client types XkbGetKeyTypes 15.2

size_types XkbResizelkeyType
num_types XkbCopyKeyType
XkbCopyKeyTypes

November 10, 1997 Library Version 1.0/Document Rision 1.1 118

The X Keyboard Extension 14 Xkb Keyboard Mapping

Table 14.1 Xkb Mapping Component Masks and Convenience Functions

Mask Value Map Fields Convenience Functions Section

XkbKey SymsMask (1<<1)client syms XkbGetKeySyms 15.3
size_syms XkbResizekySyms
num_syms XkbChangeypesOfkey

key_sym_map
XkbModi fi er MapMask (1<<2) client modmap XkbGetKeyModifierMap 15.4
XkbExpl i ci t Conponent siMask (1<<3) sener explicit XkbGetKeyExplicitComponentd6.3
XkbKeyAct i onsMask (1<<4) sener key acts XkbGetKeyActions 16.1

acts XkbResizekeyActions

num_acts

size_acts
XkbKeyBehavi or sMask (1<<5) sener behaiors XkbGetKeyBehaviors 16.2
XkbVi r t ual ModsMask (1<<6) sener vmods XkbGet\rtualMods 16.4
XkbVi r t ual ModMapMask (1<<7)sener vmodmap XkbGetMrtualModMap 16.4

Xkb defines combinations of these masks for convenience:

#define XkbResizablelnfoMask (XkbKeyTypesMask)

#defineXkbAllClientinfoMask (XkbKeyTypesMask | XkblgySymsMask |
XkbModifierMapMask)
#defineXkbAllServerinfoMask (XkbExplicitComponentsMask |

XkbKeyActionsMask| XkbkyBehaviorsMask |
XkbVirtualModsMask | XkbWtualModMapMask)
#defineXkbAllMapComponentsMask (XkbAllClientinfoMask|XkbAllSenerinfoMask)

Key types, symbol maps, and actions are all interrelated: changes in one require changes
in the others. The convenience functions make it easier to edit these components and han-
dle the interdependencies.

To update the client or sawvmap information in anxesting keyboard description, use

XkbGetUpdatedMap.

StatusXkbGetUpdatedM ap(display, which, xkb)
Display * display; /* connection to X serr */
unsigned int which; /* mask selecting subcomponents to populate */
XkbDescPtr xkb; [* keyboard description to be updated */

Thewhich parameter is a bitwise inclusive OR of the masks in Table 14.1. If the needed
components of thekb structure are not already allocatXébGetUpdatedMap allocates
them.XkbGetUpdatedMap fetches the requested information for the device specified in
the XkbDescRec passed in thekb parameter.

XkbGetUpdatedMap is synchronous; it queries the server for the desired information,
waits for a reply, and then returns. If succes3ikbGetUpdatedMap returnsSuccess. If
unsuccessfulXkbGetUpdatedMap returns one of the followindg@adAl | oc (unable to
allocate a component in ti&bDescRec structure)BadVal ue (some mask bits iwhich
are undefined)Badl npl ement at i on (a compatible version of the Xkb extension is not
available in the server or the reply from the server was invalid).

November 10, 1997 Library Version 1.0/Document Rision 1.1 119

The X Keyboard Extension 14 Xkb Keyboard Mapping

14.3 Changing Map Components in the Server

There are two ways to make changes to map components: either change a local copy of the
keyboard map and cafkbSetMap to send the modified map to the server, or, to reduce
network traffic, use akkbMapChangesRec structure and caXkbChangeMap.

Bool XkbSetM ap(dpy, which, xkb)

Display * dpy; /* connection to X semr */
unsigned int which; /* mask selecting subcomponents to update */
XkbDescPtr xkb; /* description from which ng& values are tagn */

UseXkbSetMap to send a complete new set of values for entire components (for example,
all symbols, all actions, and so on) to the server.Wiieh parameter specifies the com-
ponents to be sent to the server, and is a bitwise inclusive OR of the masks listed in Table
14.1. Thexkb parameter is a pointer to XkbDescRec structure and contains the infor-
mation to be copied to the server. For each bit set imtiheh parameterxXkbSetMap

takes the corresponding structure values fronxkhgarameter and sends it to the server
specified bydpy.

If any components specified lhich are not present in thdb parameterXkbSetMap
returnsFal se. Otherwise, it sends the update request to the server and fEtumkb-
SetMap can generatBadAl | oc, BadLengt h, andBadVal ue protocol errors.

Key types, symbol maps, and actions are all interrelated; changes in one require changes
in the others. Xkb provides functions to make it easier to edit these components and han-

dle the interdependencies. Table 14.1 lists these helper functions and provides a pointer to
where they are defined.

14.3.1 The XkbMapChangesRec Structure

Use thexkbMapChangesRec structure to identify and track partial modifications to the
mapping components and to reduce the amount of traffic between the server and clients.

typedef struct _XkbMapChanges {

unsigned short changed; [* identifies \alid components in structure */
KeyCode min_key code; /* lowest numbereddycode for deice */
KeyCode max_ley code; /* highest numbereddycode for deice */
unsigned char first_type; [* index of first key type modified */
unsigned char num_types; [* # types modified */

KeyCode first_key sym; [* first key whosekey sym map changed */
unsigned char num_ley syms; [* # key_sym map entries changed */
KeyCode first_key act; [* first key whosekey acts entry changed */
unsigned char num_lkey acts; [* # key_acts entries changed */

KeyCode first_key behaior; [* first key whosebehaviors changed */
unsigned char num_ley behaiors; /* # behaviors entries changed */

KeyCode first_key_explicit; [* first key whoseexplicit entry changed */
unsigned char num_ley explicit; [* # explicit entries changed */

KeyCode first_modmap_e&y; [* first key whosemodmap entry changed */
unsigned char num_modmap _dys; /*# modmap entries changed */

KeyCode first_ vmodmap_&y; /* first key whosevmodmap changed */

unsigned char
unsigned char

num_vmodmap_dys;

padl;

/* # vmodmap entries changed */
[* resened */

November 10, 1997

Library Version 1.0/Document Rision 1.1

120

The X Keyboard Extension 14 Xkb Keyboard Mapping

unsigned short vmods; /* mask indicating whictvmods changed */
} XkbMapChangesRec,*XkbMapChangesPtr;

Thechanged field identifies the map components that have changedXklalbescRec
structure and may contain any of the bits in Table 14.1, which are also shown in Table
14.2. Every 1 bit ithanged also identifies which other fields in tb&bMapChangesRec
structure contain valid values, as indicated in Table 14.2mirh&ey code and

max_key code fields are for reference only; they are ignored on any requests sent to the
server and are always updated by the server whenever it returns the data for an

XkbMapChangesRec.
Table 14.2 XkbMapChangesRec M asks
\alid XkbDescRec Field Containing
Mask XkbMapChangesRec
: Changed Data
Fields
XkbKeyTypesMask first_type, map->typelfirst_type] ..
num_types map->typelfirst_type + num_types - 1]
XkbKeySynsMask first_key sym, map->key_sym_maplfirst & sym] ..
num_ley syms map->key_sym_maplfirst & sym +
num_ley syms - 1]
XkbModi i er MapMask first_modmap_e&y, map->modmaplfirst_modmapey ..
num_modmap dys map->modmap|first_modmapek+
num_modmap_dys-1]
XkbExpl i ci t Conmponent sMask first_key explicit, sener->explicit[first_key_explicit] ..
num_ley explicit sener->explicit[first_key explicit +
num_ley explicit - 1]
XkbKeyAct i onsMask first_key act, sener>key actsffirst_ley act] ..
num_ley acts sener->key acts|first_ley act +
num_ley acts - 1]
XkbKeyBehavi or sMask first_key behaior, sener->behaiors|first_key behaior] ..
num_ley behaiors sener>behaiors[first_key behaior +
num_ley behaiors - 1]
XkbVi rt ual ModsMask vmods sener>vmods[*]
XkbVi r t ual ModMapMask first_ vmodmap_&y, sener>vmodmaplfirst_vmodmap ey]

num_vmodmap_dys ..
sener->vmodmaplfirst_vmodmap el
+ num_vmodmap dys - 1]

To update only partial components of a keyboard description, modify the appropriate
fields in the server and map components of a local copy of the keyboard description, then
call XkbChangeMap with anXkbMapChangesRec structure indicating which compo-

nents have changed.

Bool XkbChangeM ap(dpy, xkb, changes)
Display * dpy; [* connection to X semr */
XkbDescPtr xkb; /* description from which ng values are tagn */
XkbMapChangesPtr changes, /*identifies component parts to update */

XkbChangeMap copies any components specified by ¢hanges structure from the key-
board descriptiorxkb, to the X server specified lapy.

November 10, 1997 Library Version 1.0/Document Rision 1.1 121

The X Keyboard Extension 14 Xkb Keyboard Mapping

14.4

If any components specified lohianges are not present in théb parameter,
XkbChangeMap returnsFal se. Otherwise, it sends a request to the server and returns
Tr ue.

XkbChangeMap can generatBadAl | oc, BadLengt h, andBadVal ue protocol errors.

Tracking Changes to Map Components

The Xkb extension repordékbMapNot i f y events to clients wanting notification when-

ever a map component of the Xkb description for a device changes. There are many differ-
ent types of Xkb keyboard map changes. Xkb uses an event detail mask to identify each
type of change. The event detail masks are identical to the masks listed in Table 14.1.

To receivexkbMapNot i f y events under all possible conditions, ¥kbSelectEvents (see
section 4.3) and pad&bMapNot i f yMask in bothbits to _change andvalues for_bits.

To receivexkbMapNot i fy events only under certain conditions, X&bSelectEventDe-
tails usingXkbMapNot i fy as theevent_type and specifying the desired map changes in
bits to_change andvalues for_bits using mask bits from Table 14.1.

The structure fokkbMapNot i fy events is:

typedef struct {
int type; I* Xkb extension basevent code */
unsigned long serial; [* X server serial number forvent */
Bool send_gent; [* Tr ue => synthetically generated */
Display * display; /* server connection wherevent generated */
Time time; * sener time when eent generated */
int xkb_type; /* XkbMapNot i fy */
int device; I* Xkb device ID, will not beXxkbUseCor eKbd */
unsigned int changed; /* identifies \alid fields in rest ofvent */
unsigned int resized,; * resened */
int first_type; * index of first key type modified */
int num_types * # types modified */
KeyCode min_key code; /* minimum keycode for deice */
KeyCode max_ley code; /* maximum leycode for deice */
KeyCode first_key _sym; [* first key whosekey sym map changed */
KeyCode first_key act; I* first key whosekey_acts entry changed */

KeyCode first_key behaior; /* first key whosebehaviors changed */
KeyCode first_key explicit; I* first key whoseexplicit entry changed */
KeyCode first_ modmap_&y; /* first key whosemodmap entry changed */
KeyCode first_vmodmap_&y; /* # modmap entries changed */

int num_ley syms; I* # key_sym _map entries changed */

int num_ley acts; I* # key_acts entries changed */

int num_ley behaiors; /* # behaviors entries changed */

int num_ley explicit; /* # explicit entries changed */

int num_modmap_dys; /*# modmap entries changed */

int num_vmodmap_dys;/* # vmodmap entries changed */
unsigned ih vmods; /* mask indicating whictvmods changed */

} XkbMapNotifyEvent;

Thechanged field specifies the map components that have changed and is the bitwise
inclusive OR of the mask bits defined in Table 14.1. The other fields in this event are

November 10, 1997 Library Version 1.0/Document Rision 1.1 122

The X Keyboard Extension 14 Xkb Keyboard Mapping

interpreted as the like-named fields inXkbMapChangesRec (see section 14.3.1). The
XkbMapNot i f yEvent structure also has an additionedized field that is reserved for
future use.

14.5 Allocating and Freeing Client and Server Maps

Calling XkbGetMap (see section 14.2) should be sufficient for most applications to get cli-
ent and server maps. As a result, most applications do not need to directly allocate client
and server maps.

If you change the number of key types or construct map components without loading the
necessary components from the X server, do not allocate any map components directly
usingmalloc or Xmalloc. Instead, use the Xkb allocatorbAllocClientMap, andXkbAl-
locServerMap.

Similarly, use the Xkb destructobskbFreeClientMap, andXkbFreeServer Map instead of
free or Xfree.

14.5.1 Allocating an Empty Client Map
To allocate and initialize an empty client map description recordkisd|ocClientMap.
StatusXkbAllocClientM ap(xkb, which, type_count)

XkbDescPtr xkb; * keyboard description in which to allocate client map */
unsigned int which; /* mask selecting map components to allocate */
unsigned int type_count; /* value ofnum types field in map to be allocated */

XkbAllocClientMap allocates and initializes an empty client map inrtiag field of the

keyboard description specified kiyb. Thewhich parameter specifies the particular com-
ponents of the client map structure to allocate and is a mask composed by a bitwise inclu-
sive OR of one or more of the masks shown in Table 14.3.

Table 14.3 XkbAllocClientMap Masks

Mask Effect

XkbKeyTypesMask Thetype count field specifies the number of entries to pre-
allocate for theypes field of the client map. If the
type_count field is less tharxkbNunRequi r edTypes (see
section 15.2.1), returrBadVal ue.

XkbKeySymsMask Themin_key code andmax_key code fields of thexkb
Parameter are used to allocate andkey sym map
ields of the client map. The fields are allocated to contain
the maximum number of entries necessary for
max_key code - min_key code + 1 keys
XkbModifierMapMask Themin_key code andmax_key code fields of thexkb
parameter are used to allocate ielmap field of the cli-
ent map. The field is allocated to contain the maximum
number of entries necessary foax_key code -
min_key code + 1 keys.

Note Themin_key code andmax_key code fields of thexkb parameter must bedal values
if the XkbKey SynsMask or XkbModi f i er MapMask masks are set in thehich
parameterlf they are not alid, XkbAllocClientMap returnsBadVal ue.

If the client map of the keyboard description is NAtL, and any fields are already allo-
cated in the client mapkbAllocClientMap does not overwrite the existing values; it sim-

November 10, 1997 Library Version 1.0/Document Rision 1.1 123

The X Keyboard Extension 14 Xkb Keyboard Mapping

ply ignores that part of the request. The only exception ityples array. Iftype count is
greater than the currentim_types field of the client mapxXkbAllocClientMap resizes the
types array and resets tmeim_types field accordingly.

If XkbAllocClientMap is successful, it returrfBiccess. Otherwise, it can return either
BadMat ch, BadAl | oc, orBadVal ue errors.

14.5.2 Freeing a Client Map

To free memory used by the client map member ofldoibescRec structure, use
XkbFreeClientMap.

void XkbFreeClientM ap(xkb, which, free_all)

XkbDescPtr xkb; /* keyboard description containing client map to free */
unsigned int which; /* mask identifying components of map to free */
Bool free_all; /* Tr ue => free all client components and map itself */

XkbFreeClientMap frees the components of client map specifiesvhigh in theXkbDes-
cRec structure specified by théb parameter and sets the corresponding structure com-
ponent values tblULL. Thewhich parameter specifies a combination of the client map
masks shown in Table 14.3.

If free_all is Tr ue, which is ignored;XkbFreeClientMap frees every noMNULL structure
component in the client map, frees Mid i ent MapRec structure referenced by the
map member of thekb parameter, and sets thap member td\ULL.

14.5.3 Allocating an Empty Server Map
To allocate and initialize an empty server map description recorckbsd ocServer -

Map.

StatusXkbAllocServer M ap(xkb, which, count_acts)
XkbDescPtr xkb; I* keyboard description in which to allocate serwmap */
unsigned int which; /* mask selecting map components to allocate */
unsigned int count_acts, /* value ofnum_acts field in map to be allocated */

XkbAllocServerMap allocates and initializes an empty server map irsd¢her field of the
keyboard description specified Bkb. Thewhich parameter specifies the particular com-
ponents of the server map structure to allocate, as specified in Table 14.4.

Table 14.4 XkbAllocServerMap Masks

Mask Effect

XkbExplicitComponentsMaskrhemin_key code andmax_key_code fields of thexkb parameter
are used to allocate tlegplicit field of the serer map.

XkbKeyActionsMask Themin_key _code andmax_key_code fields of thexkb parameter
are used to allocate they_actsfield of the serer map. The
count_acts parameter is used to allocate #uts field of the
sener map.

XkbKeyBehaviorsMask Themin_key_code andmax_key_code fields of thexkb parameter
are used to allocate thehaviorsfield of the serer map.

XkbVirtualModMapMask Themin_key _code andmax_key_code fields of thexkb parameter
are used to allocate tenodmap field of the serer map.

Note Themin_key code andmax_key code fields of thexkb parameter must bedal val-
ues. If thg are not alid, XkbAllocServerMap returnsBadVal ue.

November 10, 1997 Library Version 1.0/Document Rision 1.1 124

The X Keyboard Extension 14 Xkb Keyboard Mapping

If the server map of the keyboard description is not NULL and any fields are already allo-
cated in the server map, XkbAllocServer Map does not overwrite the existing values. The
only exception iswith the acts array. If the count_acts parameter is greater than the cur-
rent num_acts field of the server map, XkbAllocServer Map resizes the acts array and
resets the num_acts field accordingly.

If XkbAllocServerMap is successful, it returns Success. Otherwise, it can return either
BadMat ch or BadAl | oc errors.

14.5.4 Freeing a Server Map
To free memory used by the server member of an XkbDescRec structure, use

XkbFreeServer Map.

void XkbFreeServer M ap(xkb, which, free_all)
XkbDescPtr xkb; /* keyboard description containing server map to free */
unsigned int which; /* mask identifying components of map to free */
Bool free all; [* Tr ue => free all server map components and server itself */

The XkbFreeServer Map function frees the specified components of server map in the
XkbDescRec structure specified by the xkb parameter and sets the corresponding struc-
ture component values to NULL. The which parameter specifies a combination of the
server map masks and is abitwise inclusive OR of the masks listed in Table 14.4. If
free_all isTr ue, which isignored and XkbFreeServer Map frees every non-NULL structure
component in the server map, frees the XkbSer ver MapRec structure referenced by the
server member of the xkb parameter, and sets the server member to NULL.

November 10, 1997 Library Version 1.0/Document Revision 1.1 125

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

15 Xkb Client Keyboard Mapping

The Xkb client map for a keyboard is the collection of information a client needs to inter-
pret key eventsfrom the keyboard. It containsaglobal list of key typesand an array of key
symbol maps, each of which describes the symbols bound to akey and the rulesto be used
to interpret those symbols.

Figure 15.1 shows the relationships between elements in the client map:

size types
num_types -
types —— mods
size_syms E num_levels = M
num_syms E map_count :
| m XkbKTMapEntryRec(s)
syms | ap ()
key_sym_map ! preserve
|
modmap | | name ."
! level_names | -
XkbClientMapRec |
| XkbKeyTypeRec(s) Atom(s)
! (array) (array)
|
_____________ | |
| ro-—-- -
—
|
KeyCode - -~ E | KoM
| .
| kt_index[0] Lo (array)
: kt_index[1] :
| |
! kt_index[2] |
|
| kt_index(3] |
! group_info |
|
| width |
| offset oo _J
|]
|
| XkbSymMapRec(s)
! (array)
l
|
|
I_ _|_ _ __»I =
- Il
unsigned char
(array)

Figure 15.1 Xkb Client Map

November 10, 1997 Library Version 1.0/Document Revision 1.1 126

The X Keyboard Extension 15 Xkb Client Kyboard Mapping

15.1

15.2

The XkbClientMapRec Structure

Themap field of the complete Xkb keyboard description (see section 6.1) is a pointer to
the Xkb client map, which is of typ&bd i ent MapRec:

typedef struct { [* Client Map */
unsigned char size_types; [* # occupied entries itypes */
unsigned char num_types; [* # entries intypes */
XkbKeyTypePtr types; [* vector of ley types used by thissgmap */
unsigned short size_syms; /* length of thesyms array */
unsigned short num_syms; [* # entries insyms */
KeySym * syms; /* linear 2d tables of &ysyms, 1 per &y */
XkbSymMapPtr key sym_map; /* 1 per keycode, mapsdycode tosyms */
unsigned chat modmap; [* 1 per keycode, real mods bound teyk*/

} XkbClientM apRec, *XkbClientMapPtr;

The following sections describe each of the elements ofikh€l i ent MapRec structure
in more detalil.

Key Types

Key types are used to determine the shift level of a key given the current state of the key-
board. The set of all possible key types for the Xkb keyboard description are held in the
types field of the client map, whose total size is storedlza types, and whose total num-

ber of valid entries is stored mum _types. Key types are defined using the following
structures:

typedef struct { I* Key Type */
XkbModsRec mods; /* modifiers used to compute shiftvid */
unsigned char num_levels; /* total # shift levels, do not modify directly */
unsigned char map_count; /* # entries inmap, preserve (if non-NULL) */
XkbKTMapEntryPtr map; * vector of modifiers for each shiftvel */
XkbModsPtr presere; /* mods to preserrfor correspondingiap entry */
Atom name; * name of ley type */
Atom * level_names; /* array of names of each shifiig */

} XkbKeyTypeRec, *XkbKeyTypePtr;

typedef struct { [* Modifiers for a ley type */
Bool actve; /* True => entry actie when determining shiftvel */
unsigned char level; /* shift level if modifiers matchmods */
XkbModsRec mods; /* mods needed for thisvel to be selected */

} XkbKTMapEntryRec,*XkbKTMapEntryPtr;

Themodsfield of a key type is akkbMbdsRec (see section 7.2) specifying the modifiers

the key type uses when calculating the shift level, and can be composed of both the core
modifiers and virtual modifiers. To set the modifiers associated with a key type, modify
thereal_mods andvmods fields of themods XkbMbdsRec accordingly. Thenask field of

the XkbMbdsRec is reserved for use by Xkb and is calculated fronréak mods and

vmods fields.

Thenum_levels field holds the total number of shift levels for the key type. Xkb uses
num_levels to ensure the array of symbols bound to a key is large enough. Do not modify
num_levels directly to change the number if shift levels for a key type. Insteakb&e-
sizeKeyType (see section 15.2.3).

November 10, 1997 Library Version 1.0/Document Rision 1.1 127

The X Keyboard Extension 15 Xkb Client Kyboard Mapping

Themap field is a vector oKkbKTMapEnt r yRec structures, withmap_count entries, that
specify the modifier combinations for each possible shift level. Each map entry contains
anactive field, amods field, and devel field. Theactive field determines whether the
modifier combination listed in theods field should be considered when determining shift
level. If active is Fal se, thismap entry is ignored. l&ctive is Tr ue, thelevel field of the

map entry specifies the shift level to use when the current modifier combination matches
the combination specified in timaods field of themap entry.

Any combination of modifiers not explicitly listed somewhere inrtiae yields shift level
one. In additionmap entries specifying unbound virtual modifiers are not considered.

Any modifiers specified imods are normallyconsumed by XkbTrang ateKeyCode (see
section 12.1.3). For those rare occasions a modif@id be considered despite having
been used to look up a symbol, key types include an oppoesatve field. If apreserve
member of a key type is nBtLL, it represents a list of modifiers where each entry corre-
sponds directly to one of the key typeiap. Each entry lists the modifiers that shondd

be consumed if the matching map entry is used to determine shift level.

Each shift level has a name and these names are held éndheames array, whose
length isnum_levels. The type itself also has a name, which is held im#énee field.

For example, consider how the server handles the following possible symbolic description
of a possible key type (note that the format used to specify keyboard mappings in the
server database is not specified by the Xkb extension, although this format is one possible

example):
Table 15.1 Example Key Type

Symbolic Description Key Type Data Structure

type ‘ALPHATHREE" { Xkb->map->types][i].name
modifiers = Shift+Lock+LeelThree; Xkb->map->types[i].mods
map[None]= Leell; Xkb->map->types][i].map|0]
map[Lock]= Levell; Xkb->map->types][i].map[1]
map|[Shift]= Level2; Xkb->map->types[i].map|2]
map|[LevelThree]= Leel3; Xkb->map->types][i].map[3]
map|[Shift+LevelThree]= Leel3; Xkb->map->types[i].map[4]
presere[None]= None; Xkb->map->types]i].persee{0]
presere[Lock]= Lock; Xkb->map->types]i].presepf1]
presere[Shift]= None; Xkb->map->types]i].presee{2]
presere[LevelThree]= None; Xkb->map->types]i].presepf3]
presere[Shift+Level3]= None; Xkb->map->types]i].preseef4]
level_name[Legell]= “Base”; Xkb->map->types]i].le¢el_names|0]
level_name|[Leel2]= “Caps”; Xkb->map->types]i].lgel_names[1]
level _name[Le&el3]= “Level3”; Xkb->map->types]i].leel_names|2]

¥

Thename of the example key type is “ALPHATHREE,” and the modifiers it pays atten-
tion to areShi f t, Lock, and the virtual modifiekevel Thr ee. There are three shift lev-
els. The name of shift level one is “Base,” the name of shift level two is “Caps,” and the
name of shift level three is “Level3.”

November 10, 1997 Library Version 1.0/Document Rision 1.1 128

The X Keyboard Extension 15 Xkb Client Kyboard Mapping

Given the combination of theap andpreserve specifications, there are fivaap entries.

The first map entry specifies that shift level one is to be used if no modifiers are set. The
second entry specifies theck modifier alone also yields shift level one. The third entry
specifies theshi ft modifier alone yields shift level two. The fourth and fifth entries
specify that the virtudlevel Thr ee modifier alone, or in combination with tishi f t

modifier, yields shift level three.

Note Shift level three can be reached only if the virtual modifievel Thr ee is bound to
a real modifier (see section 16.4)L&#vel Thr ee is not bound to a real modifjehe
map entries associated with it are ignored.

Because theock modifier is to be preserved for further event processingyrisserve

list is notNULL and parallels thenap list. All preserve entries, except for the one corre-
sponding to thenap entry that specifies tHeock modifier, do not list any modifiers. For
themap entry that specifies theock modifier, the correspondirg eserve list entry lists
theLock modifier, meaning do not consume theck modifier. In this particular case, the
preserved modifier is passed to Xlib translation functions and causes them to notice that
theLock modifier is set; consequently, the Xlib functions apply the appropriate capitali-
zation rules to the symbol. Because this preserve entry is set only for a modifier that yields
shift level one, the capitalization occurs only for level-one symbols.

15.2.1 The Canonical Key Types

Xkb allows up taxkbVaxKeyTypes (255) key types to be defined, but requires at least
XkbNunRequi r edTypes (4) predefined types to be in a key map. These predefined key
types are referred to as the canonical key types and describe the types of keys available on
most keyboards. The definitions for the canonical key types are held in thé&bMin

Requi r edTypes entries of theypes field of the client map and are indexed using the fol-
lowing constants:

XkbOnelLevel | ndex
XkbTwoLevel | ndex
XkbAl phabet i cl ndex
XkbKeypadl ndex

ONE_LEVEL

The ONE_LEVEL key type describes groups that have only one symbol. The default
ONE_LEVEL key type has no map entries and does not pay attention to any modifiers. A
symbolic representation of this key type could look like the following:

type “ONE_LEVEL" {
modifiers = None;
map[None]= Leell;
level_name[Leell]= “Any”;

¥
The description of the ONE_LEVEL key type is stored intyipes] XkbOnheLevel | n-
dex] entry of the client key map.

TWO_LEVEL

The TWO_LEVEL key type describes groups that consist of two symbols but are neither
alphabetic nor numeric keypad keys. The default TWO_LEVEL type uses or8githe

November 10, 1997 Library Version 1.0/Document Rision 1.1 129

The X Keyboard Extension 15 Xkb Client Kyboard Mapping

modifier. It returns shift level two $hi f t is set, and level one if it is not. A symbolic
representation of this key type could look like the following:

type “TWO_LEVEL” {
modifiers = Shift;
map[Shift]= Level2;
level_name[Leell]= “Base”;
level_name[Leel2]= “Shift”;
¥
The description of the TWO_LEVEL key type is stored intyipes XkbTwoLevel | n-
dex] entry of the client key map.

ALPHABETIC

The ALPHABETIC key type describes groups consisting of two symbols: the lowercase
form of a symbol followed by the uppercase form of the same symbol. The default
ALPHABETIC type implements locale-sensitive “Shift cancels CapsLock” behavior
using both thé&hi ft andLock modifiers as follows:

« If Shift andLock are both set, the daflt ALPHABETIC type yields leel one.

e If Shift alone is set, it yields Vel two.

 If Lock alone is set, it yields Vel one, ot preseres theLock modifier so Xlib
notices and applies the appropriate capitalization riiles. Xlib functions are
locale-sensitive and apply different capitalization rules for different locales.

 If neitherShi ft norLock is set, it yields Ieel one.

A symbolic representation of this key type could look like the following:

type “ALPHABETIC” {
modifiers = Shift+Lock;
map[Shift]= Level2;
presere[Lock]= Lock;
level_name[Lgell]= “Base”;
level_name[Le&el2]= “Caps”;

¥
The description of the ALPHABETIC key type is stored intipes XkbA phabe-
ti cl ndex] entry of the client key map.

KEYPAD

The KEYPAD key type describes groups that consist of two symbols, at least one of
which is a numeric keypad symbol. The numeric keypad symbol is assumed to reside at
level two. The default KEYPAD key type implements “Shift cancels NumLock” behavior
using the Shift modifier and the real modifier bound to the virtual modifier named “Num-
Lock,” known as théluniock modifier, as follows:

If Shi ft andNunLock are both set, the daflt KEYPAD type yields leel one.
If Shi ft alone is set, it yields Vel two.

If NunmLock alone is set, it yields Vel two.

If neitherShi ft norNumLock is set, it yields teel one.

November 10, 1997 Library Version 1.0/Document Rision 1.1 130

The X Keyboard Extension 15 Xkb Client Kyboard Mapping

A symbolic representation of this key type could look like the following:

type “KEYPAD” {
modifiers = Shift+NumLock;
map[None]= Leell;
map[Shift]= Level2;
map[NumLock]= Leel2;
map[Shift+NumLock]= Leell,;
level_name[Leell]= “Base”;
level_name[Leel2]= “Caps”;
¥
The description of the KEYPAD key type is stored intipee$XkbKeypadl ndex] entry
of the client key map.

Initializing the Canonical Key Types in a New Client Map

To set the definitions of the canonical key types in a client map to their default values, use
XkbInitCanonicalKeyTypes.

StatusXkbl nitCanonicalK ey Types(xkb, whid, keypadvVMod

XkbDescPtr xkby; /* keyboard description containing client map to initialize */
unsigned int which; /* mask of types to initialize */
int keypadVMod /* index of NumLock virtual modifier */

XkblInitCanonicalkyTypesinitializes the firsikkbNunRequi r edTypes key types of the
keyboard specified by the&b parameter to their default values. TMieich parameter

specifies what canonical key types to initialize and is a bitwise inclusive OR of the follow-
ing masksXkbOneLevel Mask, XkbTwoLevel Mask, XkbA phabet i cMask, and
XkbKeypadMask. Only those canonical types specified bywiech mask are initialized.

If XkbKeypadMask is set in thavhich parameterXkbinitCanonicalkyTypeslooks up the
Nuniock named virtual modifier to determine which virtual modifier to use when initial-
izing the KEYPAD key type. If th&lunmLock virtual modifier does not exisKkbInitCa-
nonicalkeyTypescreates it.

XkbInitCanonicalkyTypesnormally returns Success. It retuBedAccess if the Xkb
extension has not been properly initialized, BadAccess if the xkb parameter is not
valid.

15.2.2 Getting Key Types from the Server
To obtain the list of available key types in the server’s keyboard mappingkb&et-

KeyTypes
StatusXkbGetK ey Types(dpy; first, num xkb
Display * dpy, [* connection to X semr */
unsigned int first, /* index to first type to get, 0 => 1st type */
unsigned int numn /* number of ley types to be returned */
XkbDescPtr xkby I* keyboard description containing client map to update */

Note XkbGetkeyTypesis used to obtain descriptions of they kypes themsebs, not the
key types bound to indidual keys. To obtain the &y types bound to an inddual
key, refer to th&key _sym_mafield of the client map (see section 15.3.1).

November 10, 1997 Library Version 1.0/Document Rision 1.1 131

The X Keyboard Extension 15 Xkb Client Kyboard Mapping

XkbGetkeyTypesqueries the server for the desired types, waits for a reply, and returns the
desired types in thekb->map->typeslf successful, it returns Success.

XkbGetkeyTypesreturnsBadAccess if the Xkb extension has not been properly initial-
ized andBadVal ue if the combination ofirstandnumresults in numbers out of valid
range.

15.2.3 Changing the Number of Levels in a Key Type
To change the number of levels in a key type XldeResizeKeyType
StatusXkbResizeK ey Type(xkb, type_ndxmap_countwant_peservenen_num_ vl

XkbDescPtr xkb; * keyboard description containing client map to update */
int type_ndx /* index in xkb->map->types of type to change */

int map_count /* total # of map entries needed for the type */

Bool want_peserve /[* Tr ue => list of presergd modifiers is necessary */

int newv_num_lIvls /* new max # of leels for type */

XkbResize&/Typechanges the type specified Xiyb->map->typeftype_ndk and reallo-
cates the symbols and actions bound to all keys that use the type, if necéddsasy.
sizekeyTypeupdates only the local copy of the typegki; to update the server’s copy for
the physical device, usé&kbSetMapr XkbChangMapafter callingXkbResize&/ Type

Themap_counparameter specifies the total number of map entries needed for the type,
and can be zero or greatermip_counts zero XkbResize&/Typefrees the existinghap
andpreserveentries for the type if they exist and sets themUoL.

Thewant_preservg@arameter specifies whethepr@servdist for the key should be cre-
ated. Ifwant_preservés Tr ue, thepreservdist with map_counentries is allocated or
reallocated if it already exists. Otherwisewdnt_preservés Fal se, thepreservdield is
freed if necessary and setNoLL.

Thenew_num_Ivliparameter specifies the new maximum number of shift levels for the
type and is used to calculate and resize the symbols and actions bound to all keys that use
the type.

If type_ndxdoes not specify a legal typeew_num_Iviss less than 1, or theap_counts
less than zeroKkbResize&/TypereturnsBadVal ue. If XkbResize&/ Typeencounters
any problems with allocation, it returBadAl | oc. Otherwise, it returnSuccess.

15.2.4 Copying Key Types
UseXkbCopyKeyTypandXkbCopyKeyType® copy one or morgkbKeyTypeRec

structures.

StatusXkbCopyK eyType(from, into)
XkbKeyTypePtr from [* pointer to XkbkeyTypeRec to be copied */
XkbKeyTypePtr into; /* pointer to XkbKeyTypeRec to be changed */

XkbCopykyTypecopies the key type specified fsjpm to the key type specified bgto.
Both must point to legatkbKeyTypeRec structuresXkb assumefom andinto point to
different places. As a result, overlaps can be fatddCopykeyTypefrees any existing
map preserve andlevel _name#n into prior to copying. If any allocation errors occur
while copyingfrom to into, XkbCopykyTypereturnsBadAl | oc. Otherwise XkbCopy-
KeyTypecopiesfrom to into and return$Success.

November 10, 1997 Library Version 1.0/Document Rision 1.1 132

The X Keyboard Extension 15 Xkb Client Kyboard Mapping

15.3

StatusXkbCopyK eyTypes(from, into, num_types)

XkbKeyTypePtr from; [* pointer to array of XkblyTypeRecs to cop*/
XkbKeyTypePtr into; [* pointer to array of XkbleyTypeRecs to change */
int num_types, /* number of types to cop*/

XkbCopyKeyTypes copiesnum _types XkbKeyTypeRec structures from the array specified

by frominto the array specified byto. It is intended for copying between, rather than
within, keyboard descriptions, so it doesn’t check for overlaps. The same rules that apply
to thefrom andinto parameters iXkbCopyKeyType apply to each entry of tHeom and

into arrays oiXkbCopyKeyTypes. If any allocation errors occur while copyifrgmtointo,
XkbCopyKeyTypes returnsBadAl | oc. Otherwise XkbCopyKeyTypes copiesfrom to into

and returnsuccess.

Key Symbol Map

The entire list of key symbols for the keyboard mapping is held isythefield of the cli-

ent map. Whereas the core keyboard mapping is a two-dimensional akeySphs

whose rows are indexed by keycode,dyres field of Xkb is a linear list oKeySyns that

needs to be indexed uniquely for each key. This section describes the key symbol map and
the methods for determining the symbols bound to a key.

The reason thgymsfield is a linear list oKeySyns is to reduce the memory consumption
associated with a keymap; because Xkb allows individual keys to have multiple shift lev-
els and a different number of groups per key, a single two-dimensional akayS3yis

would potentially be very large and sparse. Instead, Xkb provides a small two-dimen-
sional array oKeySyns for each key. To store all of these individual arrays, Xkb concat-
enates each array together in $ams field of the client map.

In order to determine whidkeySyns in thesyms field are associated with each keycode,
the client map contains an array of key symbol mappings, held kastheym _map field.
Thekey sym map field is an array oKkbSynmivapRec structures indexed by keycode. The
key sym map array hasnin_key code unused entries at the start to allow direct indexing
using a keycode. All keycodes falling between the minimum and maximum legal key-
codes, inclusive, hav@y sym map arrays, whether or not any key actually yields that
code. ThekeySyniapRec structure is defined as follows:

#define XkbNumKbdGroups 4
#define XkbMaxKbdGroup (XkbNumKbdGroups-1)
typedef struct { /* map to lkeysyms for a singledycode */

unsigned char kt_index[XkbNumKbdGroups]/* key type ind& for each group */
unsigned char group_info; /* # of groups and out of range group handling */
unsigned char width; /* max # of shift levels for key */
unsigned short offset; /* index to keysym table irsyms array */

} XkbSymMapRec, *XkbSymMapPtr;

These fields are described in detail in the following sections.

15.3.1 Per-Key Key Type Indices

Thekt_index array of thexkbSynivapRec structure contains the indices of the key types
(see section 15.2) for each possible group of symbols associated with the key. To obtain
the index of a key type or the pointer to a key type, Xkb provides the following macros, to
access the key types:

November 10, 1997 Library Version 1.0/Document Rision 1.1 133

The X Keyboard Extension 15 Xkb Client Kyboard Mapping

Note The array of ky types is of fied width and is laye enough to holdey types for the
maximum lgal number of groups&bNunkKbdG oups, currently four); if a ky has
fewer thanXkbNunkKbdG oups groups, thexdra key types are reportedibignored.

int XkbK ey Typel ndex(xkb, keycode, group) /* macro*/
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */
int group; [* group index */

XkbKeyTypelndex computes an index into tiygpes vector of the client map ixkb from
the givenkeycode andgroup index.

XkbKeyTypePtrXkbK eyType(xkb, keycode, group) /* macro */

XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */
int group; [* group index */

XkbKeyType returns a pointer to the key type in tigpes vector of the client map ixkb
corresponding to the givekeycode andgroup index.

15.3.2 Per-Key Group Information

Thegroup_info field of anXkbSyniMapRec is an encoded value containing the number of
groups of symbols bound to the key as well as the specification of the treatment of
out-of-range groups. It is legal for a key to have zero groups, in which case it also has zero
symbols and all events from that key yiélaSynbol . To obtain the number of groups of
symbols bound to the key, ugkbKeyNumGroups. To change the number of groups

bound to a key, usékbChangeTypesOfKey (see section 15.3.6). To obtain a mask that
determines the treatment of out-of-range groupsXiskeyGrouplnfo andXkbOutOf-
RangeGrouplnfo.

The keyboard controls (see Chapter 10) contairoaps wrap field specifying the han-

dling of illegal groups on a global basis. That is, when the user performs an action causing
the effective group to go out of the legal range gifeeips_wrap field specifies how to
normalize the effective keyboard group to a group that is legal for the keyboard as a
whole, but there is no guarantee that the normalized group will be within the range of legal
groups for any individual key. The per-kgnoup info field specifies how a key treats a

legal effective group if the key does not have a type specified for the group of concern.
For example, thént er key usually has just one group defined. If the user performs an
action causing the global keyboard group to chan@® eap2, thegroup_info field for

theEnt er key describes how to handle this situation.

Out-of-range groups for individual keys are mapped to a legal group using the same
options as are used for the overall keyboard group. The particular type of mapping used is
controlled by the bits set in tigeoup_info flag, as shown in Table 15.2. See section 10.7.1

for more details on the normalization methods in this table.

Table 15.2 group_info Range Nor malization

Bits set in group_info Normalization method
XkbRedirectintoRange XkbRedirectintoRange
XkbClamplIntoRange XkbClamplintoRange
none of the abae XkbWraplntoRange

November 10, 1997 Library Version 1.0/Document Rision 1.1 134

The X Keyboard Extension 15 Xkb Client Kyboard Mapping

Xkb provides the following macros to access group information:

int XkbKeyNumGroups(xkb, keycode) /* macro */

XkbDescPtr xkb; /* Xkb description of interest */

KeyCode keycode; /* keycode of interest */
XkbKeyNumGroups returns the number of groups of symbols bound to the key corre-
sponding tdckeycode.
unsigned chaXkbKeyGroupl nfo(xkb, keycode) /*macro */

XkbDescPtr xkb; /* Xkb description of interest */

KeyCode keycode; /* keycode of interest */

XkbKeyGrouplnfo returns thegroup_info field from theXkbSyniapRec structure associ-
ated with the key correspondingkeycode.

unsigned chaXxkbOutOfRangeGroupl nfo(grp_inf)/* macro */
unsigned char grp_inf; /* group_info field ofXkbSynivapRec */

XkbOutOfRangeGrouplnfo returns only the out-of-range processing information from the
group_info field of anXkbSynivapRec structure.

unsigned chaXxkbOutOfRangeGroupNumber (grp_inf)/* macro */
unsigned char grp_inf; I* group_info field ofXkbSynivapRec */

XkbOutOfRangeGroupNumber returns the out-of-range group number, represented as a
group index, from thgroup_info field of anXkbSyniapRec structure.

15.3.3 Key Width

The maximum number of shift levels for a type is also referred to as the width of a key
type. Thewidth field of thekey _sym map entry for a key contains the width of the widest
type associated with the key. Twadth field cannot be explicitly changed; it is updated
automatically whenever the symbols or set of types bound to a key are changed.

15.3.4 Offset in to the Symbol Map

The key width and number of groups associated with a key are used to form a small
two-dimensional array dfeySyns for a key. This array may be different sizes for differ-

ent keys. The array for a single key is stored as a linear list, in row-major order. The arrays
for all of the keys are stored in tegns field of the client map. There is one row for each
group associated with a key and one column for each level. The index corresponding to a
given group and shift level is computed as:

idx = group_index * key_width + shift_level

Theoffset field of thekey _sym map entry for a key is used to access the beginning of the
array.

Xkb provides the following macros for accessingwidth andoffset for individual keys,
as well as macros for accessing the two-dimensional array of symbols bound to the key:

int XkbK eyGroupswWidth(xkb, keycode) /* macro */
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */

November 10, 1997 Library Version 1.0/Document Rision 1.1 135

The X Keyboard Extension 15 Xkb Client Kyboard Mapping

XkbKeyGroupsVidth computes the maximum width associated with the key correspond-

ing tokeycode

int XkbKeyGroupWidth(xkb, lkeycode grp) /* macro */
XkbDescPtr xkby /* Xkb description of interest */
KeyCode keycode /* keycode of interest */
int arp; /* group of interest */

XkbkeyGroupWdth computes the width of the type associated with the ggopfor the
key corresponding tkeycode

int XkbK eySymsOffset(xkb, leycodg /* macro */
XkbDescPtr xkby /* Xkb description of interest */
KeyCode keycode /* keycode of interest */

XkbKeySymsGsetreturns the offset of the two-dimensional array of keysyms for the key
corresponding t&eycode

int XkbKeyNumSyms(xkb, leycodg /* macro */

XkbDescPtr xkb; /* Xkb description of interest */

KeyCode keycode /* keycode of interest */
XkbKeyNumSymseturns the total number of keysyms for the key correspondikeyto
code
KeySym * XkbKeySymsPtr (xkb, keycodg /* macro */

XkbDescPtr xkby /* Xkb description of interest */

KeyCode keycode /* keycode of interest */

XkbkeySymsPtreturns the pointer to the two-dimensional array of keysyms for the key
corresponding t&eycode

KeySym XkbKeySymEntry(xkb, leycode shift, grg/* macro */

XkbDescPtr xkby /* Xkb description of interest */
KeyCode keycode /* keycode of interest */

int shift, /* shift level of interest */

int arp; /* group of interest */

XkbkeySymEntryeturns th&keysymcorresponding to shift levehiftand grougrp from
the two-dimensional array of keysyms for the key correspondikeytmde

15.3.5 Getting the Symbol Map for Keys from the Server
To obtain the symbols for a subset of the keys in a keyboard descriptiotkhGetKey-

Syms
StatusXkbGetK eySyms(dpy; first, num xkb)
Display * dpy, [* connection to X semr */
unsigned int first /* keycode of first ky to get */
unsigned int numn /* number of leycodes for which syms desired */
XkbDescPtr xkby /* Xkb description to be updated */

XkbGetkeySymssends a request to the server to obtain the set of keysyms baowmd to
keys starting with the key whose keycodérs. It waits for a reply and returns the key-
syms in themap.symdield of xkb. If successfulXkbGetkeySymseturnsSuccess. The
xkb parameter must be a pointer to a valid Xkb keyboard description.

November 10, 1997 Library Version 1.0/Document Rision 1.1 136

The X Keyboard Extension 15 Xkb Client Kyboard Mapping

If the clientmap in thexkb parameter has not been allocatékhGetKeySyms allocates
and initializes it before obtaining the symbols.

If a compatible version of Xkb is not available in the server or the Xkb extension has not
been properly initialized{kbGetKeySyms returnsBadAccess. If numis less than 1 or
greater thanxkbMaxKeyCount , XkbGetKeySyms returnsBadVal ue. If any allocation

errors occurXkbGetKeySyms returnsBadAl | oc.

15.3.6 Changing the Number of Groups and Types Bound to a Key

To change the number of groups and the types bound to a keXkh@@®angeType-
SOfKey.

StatusXkbChangeTypesOfK ey(xkb, key, n_groups, groups, new_types in, p_changes)

XkbDescPtr xkb; /* keyboard description to be changed */
int key; [* keycode for key of interest */

int n_groups, /* new number of groups forey */

unsigned int groups, /* mask indicating groups to change */

int * new_types_in; /* indices for nav groups specified igroups */

XkbMapChangesPtr p_changes, /* notes changes made xkb */

XkbChangeTypesOfKey reallocates the symbols and actions bound to the key, if necessary,
and initializes any new symbols or action®\NuBynbol or NoAct i on, as appropriate. If
thep_changes parameter is ndtULL, XkbChangeTypesOfKey adds thexkbKey Sy ns-

Mask to thechanges field of p_changes and modifies théirst_key symand

num_key symsfields ofp_changesto include théey that was changed. See section 14.3.1
for more information on thgkbMapChangesPt r structure. If successfukkbChange-
TypesOfKey returnsSuccess.

Then_groups parameter specifies the new number of groups for the keygrobps

parameter is a mask specifying the groups for which new types are supplied and is a bit-
wise inclusive OR of the following mask&kb@ ouplMask, XkbG oup2Mask,

XkbG oup3Mask, andXkbG oup4Mask.

Thenew_types in parameter is an integer array of lengtlyroups. Each entry represents
the type to use for the associated group and is an indexkimtemap->types. The
new_types in array is indexed by group index;nfgroups is four andgroups only has

Q ouplMask and@G oup3Mask set,new_types in looks like this:

new_types_in[0] = type for Groupl
new_types_in[1] = ignored
new_types_in[2] = type for Group3
new_types_in[3] = ignored

For convenience, Xkb provides the following constants to use as indices to the groups:
Table 15.3 Group Index Constants

Constant Name Value
XkbGrouplinde 0
XkbGroup2Inde 1
XkbGroup3inde 2
XkbGroup4inde 3

November 10, 1997 Library Version 1.0/Document Rision 1.1 137

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

If the Xkb extension has not been properly initialized, XkbChangeTypesOfKey returns
BadAccess. If the xkb parameter it not valid (that is, it isNULL or it does not contain a
valid client map), XkbChangeTypesOfKey returns BadMatch. If the key isnot avalid key-
code, n_groupsis greater than Xk bNunkKbdQ@ oups, or the groups mask does not contain
any of the valid group mask bits, XkbChangeTypesOfKey returns BadVal ue. If it is neces-
sary to resize the key symbols or key actions arrays and any allocation errors occur,
XkbChangeTypesOfKey returns BadAl | oc.

15.3.7 Changing the Number of Symbols Boundtoa K ey

154

To change the number of symbols bound to akey, use XkbResizeKeySyms.
KeySym * XkbResizeK eySyms(xkb, key, needed)

XkbDescRec * xkb; /* keyboard description to be changed */
int key; /* keycode for key to modify */
int needed; /* new number of keysyms required for key */

XkbResizeKeySyms reserves the space needed for needed keysyms and returns a pointer to
the beginning of the new array that holds the keysyms. It adjusts the offset field of the
key sym map entry for the key if necessary and can also change the syms, num_syms, and
size symsfields of xkb->map if it is necessary to reallocate the syms array. XkbResizeKey-
Syms does not modify either the width or number of groups associated with the key.

If needed is greater than the current number of keysyms for the key, XkbResizeKeySyms
initializes all new keysymsin the array to NoSynbol .

Because the number of symbols needed by akey isnormally computed as width * number
of groups, and XkbResi zeKeySyms does not modify either the width or number of groups
for the key, a discrepancy exists upon return from XkbResi zeKeySyms between the space
allocated for the keysyms and the number required. The unused entriesin the list of sym-
bols returned by XkbResi zeKeySyms are not preserved across future callsto any of the map
editing functions, so you must update the key symbol mapping (which updates the width
and number of groups for the key) before calling another alocator function. A call to
XkbChangeTypesOfKey will update the mapping.

If any allocation errors occur while resizing the number of symbols bound to the key,
XkbResi zeKeySyms returns NULL.

Note A change to the number of symbols bound to a key should be accompanied by a
change in the number of actions bound to akey. Refer to section 16.1.16 for more
information on changing the number of actions bound to a key.

The Per-Key Modifier Map

The modmap entry of the client map is an array, indexed by keycode, specifying the real
modifiers bound to akey. Each entry isamask composed of a bitwise inclusive OR of the
legal real modifiers: Shi f t Mask, LockMask, Cont r ol Mask, Mod1NMask, Mod2Mask,
Mod3Mask, Mbd4Mask, and Mbd5Mask. If abit is set in a modmap entry, the correspond-
ing key is bound to that modifier.

Pressing or releasing the key bound to amodifier changes the modifier set and unset state.
The particular manner in which the modifier set and unset state changes is determined by
the behavior and actions assigned to the key (see Chapter 16).

November 10, 1997 Library Version 1.0/Document Revision 1.1 138

The X Keyboard Extension 15 Xkb Client Kyboard Mapping

15.4.1 Getting the P er-Key Modifier Map fr om the Ser ver

To update the modifier map for one or more of the keys in a keyboard description, use

XkbGetKeyModifierMap
StatusXkbGetK eyModifierMap (dpy; first, num xkb
Display * dpy, [* connection to X semr */
unsigned int first /* keycode of first ey to get */
unsigned int num /* number of leys for which information is desired */
XkbDescPtr xkby /* keyboard description to update */

XkbGetkeyModifierMapsends a request to the server for the modifier mappingsifior
keys starting with the key whose keycodérst It waits for a reply and places the results
in thexkb->map->modmap array. If successiXikbGetkeyModifierreturnsSuccess.

If the map component of thékb parameter has not been allocatéklhGetkeyModifier-
Map allocates and initializes it.

If a compatible version of Xkb is not available in the server or the Xkb extension has not
been properly initialized{kbGetkySymgeturnsBadAccess. If any allocation errors
occur while obtaining the modifier maykbGetkeyModifierMapreturnsBadAl | oc.

November 10, 1997 Library Version 1.0/Document Rision 1.1 139

The X Keyboard Extension 16 Xkb Serer Keyboard Mapping

16 Xkb Server Keyboard Mapping

Theserver field of the complete Xkb keyboard description (see section 6.1) is a pointer to
the Xkb server map.

Figure 16.1 shows the relationships between elements in the server map:

num_acts
size_acts R o=
acts "
- |
behaiors ————— J_u | XkbActions(s)
key_acts — | (array)
—_ | XkbBehaviors(s) |
explicit : (array) |
vmods[16] : |
| |
vmodmap : J_u """ I
|
|
XkbServerMapRec ! unsigned short(s)
! (array)
|
:
| —
|
KeyCode ----- 1 unsigned char(s)
! (array)
:
| I
[P P e
R— 1l
unsigned short(s)
(array)

Figure 16.1 Server Map Relationships

The Xkb server map contains the information the server needs to interpret key events and
is of typeXkbSer ver MapRec:

#define XkbNumWftualMods 16
typedef struct { [* Server Map */
unsigned short num_acts; [* # of occupied entries iacts */
unsigned short size_acts; [* # of entries inacts */
XkbAction * acts; [* linear 2d tables ofdy actions, 1 perdycode */
XkbBehavior * behaiors; /* key behaiors,1 per kycode */
unsigned short * key acts; /* index into acts, 1 per leycode */
unsigned char * explicit; [* explicit overrides of core remapping, 1 pexyk/

unsigned char vmods[XkbNum\irtualMods]; /* real mods bound to virtual mods */

November 10, 1997 Library Version 1.0/Document Rision 1.1 140

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

16.1

unsigned short* vmodmap; [* virtual mods bound to key, 1 per keycode*/
} XkbServer MapRec, * XkbServerMapPtr;

The num_acts, size_acts, acts, and key_acts fields specify the key actions, defined in sec-
tion 16.1. The behaviorsfield describes the behavior for each key and is defined in section
16.2. The explicit field describes the explicit components for a key and is defined in sec-
tion 16.3. The vmods and the vmodmayp fields describe the virtual modifiers and the
per-key virtual modifier mapping and are defined in section 16.4.

Key Actions

A key action defines the effect key presses and releases have on the internal state of the
server. For example, the expected key action associated with pressing the Shift key isto
set the Shi ft modifier. Thereis zero or one key action associated with each keysym
bound to each key.

Just asthe entire list of key symbols for the keyboard mapping is held in the symsfield of
the client map, the entire list of key actions for the keyboard mapping is held in the acts
array of the server map. Thetotal size of actsis specified by size_acts, and the number of
entriesis specified by num_acts.

The key_acts array, indexed by keycode, describes the actions associated with akey. The
key actsarray hasmin_key code unused entries at the start to allow direct indexing using
akeycode. If akey_actsentry iszer o, it means the key does not have any actions associ-
ated with it. If an entry isnot zer o, the entry represents an index into the actsfield of the
server map, much as the offset field of a Key SymMapRec structure is an index into the
syms field of the client map.

Thereason the actsfield isalinear list of XkbAct i onsisto reduce the memory consump-
tion associated with akeymap. Because Xkb allows individua keysto have multiple shift
levels and a different number of groups per key, asingle two-dimensional array of Key-
Syns would potentially be very large and sparse. Instead, Xkb provides a small
two-dimensional array of XkbAct i onsfor each key. To store all of these individual
arrays, Xkb concatenates each array together in the acts field of the server map.

The key action structures consist only of fields of type char or unsigned char. Thisis done
to optimize data transfer when the server sends bytes over the wire. If the fields are any-
thing but bytes, the server hasto sift through al of the actions and swap any nonbyte
fields. Because they consist of nothing but bytes, it can just copy them out.

Xkb provides the following macros, to simplify accessing information pertaining to key
actions:

Bool XkbKeyHasActions(xkb, keycode) [* macro */
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */

XkbKeyHasActions returns Tr ue if the key corresponding to keycode has any actions asso-
ciated with it; otherwise, it returns Fal se.

int XkbKeyNumA ctions(xkb, keycode) /* macro */
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */

November 10, 1997 Library Version 1.0/Document Revision 1.1 141

The X Keyboard Extension

16 Xkb Serer Keyboard Mapping

XkbKeyNumActions computes the number of actions associated with the key correspond-
ing tokeycode. This should be the same value as the res{kiolkeyNumSyms (see sec-
tion 15.3.3).

XkbKeyActionPtrXkbK eyActionsPtr (xkb, keycode)/* macro */
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */

XkbKeyActionsPtr returns a pointer to the two-dimensional array of key actions associated
with the key corresponding t@ycode. UsexXkbKeyActionsPtr only if the key actually has
some actions associated with it, thaklhKeyNumActions(xkb, keycode) returns some-
thing greater than zero.

XkbAction XkbK eyAction(xkb, keycode, idx) /* macro */
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */
int idx; /* index for group and shift leel */

XkbKeyAction returns the key action indexed ol in the two-dimensional array of key
actions associated with the key correspondingptoode. idx may be computed from the
group and shift level of interest as follows:

idx = group_index * key_width + shift_level
XkbAction XkbK eyActionEntry(xkb, keycode, shift, grp)/* macro */

XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */

int shift; [* shift level within group */

int arp; /* group inde for group of interest */

XkbKeyActionEntry returns the key action corresponding to grguypand shift levelvl
from the two-dimensional table of key actions associated with the key corresponding to
keycode.

16.1.1 The XkbAction Structure

The description for an action is held inJ8bAct i on structure, which is a union of all
possible Xkb action types:

typedef union _XkbAction {

XkbAnyAction ary;
XkbModAction mods;
XkbGroupAction group;
XkbISOAction iSO;
XkbPtrAction ptr;
XkbPtrBtnAction btn;
XkbPtrDfltAction dflt;
XkbSwitchScreenAction screen;
XkbCtrlsAction ctrls;
XkbMessageAction msg;
XkbRedirectkeyAction redirect;
XkbDeviceBtnAction devbtn;

XkbDeviceValuatorAction devval;

November 10, 1997

Library Version 1.0/Document Rision 1.1

142

The X Keyboard Extension 16 Xkb Serer Keyboard Mapping

unsigned char type;
} XkbAction;

Thetype field is provided for convenience and is the same as the type field in the individ-
ual structures. The following sections describe the individual structures for each action in
detail.

16.1.2 The XkbAn yAction Structure
The XkbAnyAct i on structure is a convenience structure that refers to any of the actions:

#defineXkbAnyActionDataSize 7
typedef struct XkbAryAction {
unsigned char type; [* type of action; determines interpretation for data */

unsigned char data[XkbAryActionDataSize];
} XkbAnyAction;

Thedata field represents a structure for an action, and its interpretation depends on the
type field. The valid values for thigpe field, and the data structures associated with them
are shown in Table 16.1:

Table 16.1 Action Types

XkbAction .
Type Structure for Data Union Member Section
XkbSA NoAct i on XKbSA NoAct i on means the seev ary

does not perform an action for theyk
this action does not kia an associated
data structure.

XkbSA Set Mods XkbModAct i on mods 16.1.3
XkbSA Lat chMbds
XkbSA LockMods

XkbSA Set G oup XkbG oupActi on group 16.1.4
XkbSA Lat chG oup
XkbSA LockG oup

XkbSA MovePt r XkbPtr Action ptr 16.1.5
XKbSA PtrBtn XkbPt r Bt nActi on btn 16.1.6
XkbSA LockPtrBtn

XkbSA Set PtrDf It XkbPt rDf I t Acti on dfit 16.1.7
XkbSA | SQLock Xkbl SQAct i on iso 16.1.8
XkbSA Swi t chScreen XkbSwi t chScr eenActi on screen 16.1.9
XkbSA Set Control s XkbCtrl sAction ctrls 16.1.10
XkbSA LockControl s

XkbSA ActionMessage XkbMessgeAction msg 16.1.11
XkbSA Redi r ect Key XkbRedi r ect KeyAct i on redirect 16.1.12
XkbSA Devi ceBtn XkbDevi ceBt nActi on devbtn 16.1.13
XKbSA LockDevi ceBtn

XkbSA Devi ceVal uat or XkbDevi ceVal uat or Acti on devval 16.1.14

16.1.3 Actions f or Changing Modifier s’ State

Actions associated with thiékbMbdAct i on structure change the state of the modifiers
when keys are pressed and released (see Chapter 7 for a discussion of modifiers):

November 10, 1997 Library Version 1.0/Document Rision 1.1 143

The X Keyboard Extension 16 Xkb Serer Keyboard Mapping

typedef struct _XkbModAction {
unsigned char type; /* XkbSA {Set | Lat ch| Lock} Mods */
unsigned char flags; [* with type controls the dééct on modifiers */
unsigned char mask; I* same asnaskfield of a modifier descriptioty
unsigned char real_mods;/* same aseal _moddield of a modifier descriptiot/
unsigned char vmodsl; /* derived fromvmodsfield of a modifier descriptiory
unsigned char vmods2; /* derived fromvmodsfield of a modifier descriptiory
} XkbModAction ;

In the following description, the teraction modifies means the real modifier bits associ-
ated with this action. Depending on the valudas (see Table 16.3), these are desig-
nated either in thenaskfield of theXkbMbdAct i on structure itself or the real modifiers
bound to the key for which the action is being used. In the latter case, this is the client
map->modmajpkeycodéfield.

Thetypefield can have any of the values shown in Table 16.2.
Table 16.2 Modifier Action Types

Type Effect
XkbSA_Set Mods » A key press adds graction modifiers to thedgboards base modi-
fiers.

» A key release clears graction modifiers in thedyboards base
modifiers, preided no other & affecting the same modifiers is
logically down.

* If no other leys are plsically depressed when thigykis released,
andXkbSA d ear Locks is set in thdlagsfield, the ley release
unlocks ag action modifiers.

XkbSA LatchMds , key press anddy release eents hae the same fdct as for
XkbSA Set Mods; if no keys are plisically depressed when this
key is released,dy release eents hae the follaving additional
effects:

» Modifiers unlocled due toxkbSA O ear Locks have no further
effect.

 If XkbSA Lat chTolLock is set in thdlagsfield, a ley release
locks and then unlatchesyaremaining action modifiers that are
already latched.

* A key release latches gmction modifiers not used by the
XkbSA O ear Locks andXkbSA Lat chToLock flags.

XkbSA_LockMds A key press sets the base state of action modifiers. If
XkbSA LockNoLock is set in thdlagsfield, a ley press also sets
the locled state of anaction modifiers.

» A key release clears graction modifiers in thedyboards base
modifiers, preided no other & that afects the same modifiers is
down. If XkbSA LockNoUnl ock is not set in thélagsfield, and
ary of the action modifiers were loett before the corresponding
key press occurred, sk release unlocks them.

November 10, 1997 Library Version 1.0/Document Rision 1.1 144

The X Keyboard Extension 16 Xkb Serer Keyboard Mapping

Theflagsfield is composed of the bitwise inclusive OR of the masks shown in Table 16.3.
A general meaning is given in the table, but the exact meaning depends on thigjaestion

Table 16.3 Modifier Action Flags

Flag Meaning
XkbSA UseModMapMods If set, the action modifiers are determined by the modifiers
bound by the modifier mapping of theykOtherwise, the

action modifiers are set to the modifiers specified by the
mask, real_mods, vmodl, andvmod?2 fields.

XkbSA O ear Locks If set and no &ys are phsically depressed when thigyk
transition occurs, the sawunlocks ay action modifiers.

XkbSA Lat chTolLock If set, and the action type ¥xbSA Lat chMods, the serer
locks the action modifiers if tgaare already latched.

XkbSA LockNoLock If set, and the action type #&bSA LockMods, the serer
only unlocks the action modifiers.

XkbSA LockNoUnl ock If set, and the action BkbSA LockMods, the serer only

locks the action modifiers.

If XkbSA UseMbdMapMods is not set in théags field, themask, real_mods, vmodsl, and
vmods2 fields are used to determine the action modifiers. Otherwise they are ignored and
the modifiers bound to the key (cliamap->modmap| keycode]) are used instead.

Themask, real_mods, vmodsl, andvmods2 fields represent the components of an Xkb
modifier description (see section 7.2). While thesk andreal_mods fields correspond
directly to themask andreal_mods fields of an Xkb modifier description, tivenodsl and
vmods2 fields are combined to correspond to ¥h@ds field of an Xkb modifier descrip-
tion. Xkb provides the following macros, to convert between the two formats:

unsigned shoXkbModActionVMods (act) [* macro */
XkbAction act; /* action from which to etract virtual mods */

XkbModActionVMods returns thermodsl andvmods2 fields ofact converted to themods
format of an Xkb modifier description.

void XkbSetModActionVMods (act, vmods) /* macro */
XkbAction act; [* action in which to set vmods */
unsigned short vmods, [* virtual mods to set */

XkbSetModActionVMods sets thesmodsl andvmods2 fields ofact using thevmods format
of an Xkb modifier description.

Note Despite thedct that the first parameter of these twacros is of type XkbAction,
these macros may be used only with Actions of ¥peMbdAct i on andXkbl SG
Action.

16.1.4 Actions for Changing Group State

Actions associated with thékbG oupAct i on structure change the current group state
when keys are pressed and released (see Chapter 5 for a description of groups and key-
board state):

typedef struct _XkbGroupAction {
unsigned char type; /* XkbSA {Set | Lat ch| Lock} Group */
unsigned char flags; /* with type, controls the ééct on groups */

November 10, 1997 Library Version 1.0/Document Rision 1.1 145

The X Keyboard Extension

16 Xkb Serer Keyboard Mapping

char
} XkbGroupAction;

Thetype field can have

group_XXX; /* represents a group inder delta */

any of the following values:
Table 16.4 Group Action Types

Type Effect

XkbSA Set G oup .

XkbSA LatchG oup

XkbSA LockGoup

If the XkbSA G oupAbsol ut e bit is set in thdlags field, key press
events change the baseykoard group to the group specified by the
group_XXX field. Otherwise, & press eents change the baseyk
board group by adding tlggoup XXX field to the basedyboard
group. In either case, the resultinéeetive keyboard group is brought
back into range depending on tlaue of thegroups wrap field of the
controls structure (see section 10.7.1).

If a key with anXkbSA | SOLock action (see section 16.1.8) is
pressed while thisdy is down, the ley release of thisdy has no
effect. Otherwise, thedy release cancels thefedts of the ky press.

If the XkbSA O ear Locks bit is set in the flags field, and neyk
are plysically depressed when thigykis released, thesl release also
sets the lookd keyboard group t&3 oupl.

Key press anddy release wents hae the same #dct as for

XkbSA Set G oup; if no keys are phsically depressed when thigyk
is released, dy release eents hae the follaving additional eects.

If the XkbSA Lat chToLock bit is set in thdlags field and the
latched leyboard group indeis nonzero, thedy release adds the
delta applied by the correspondingylpress to the lodd keyboard
group and subtracts it from the latchestboard group. The load
and efective keyboard group are brought back into range according to
the \alue of thegroups_wrap field of the controls structure.
Otherwise, the &y press adds thesk press delta to the latchedyk
board group.

If the XkbSA_ @& oupAbsol ut e is set in thdlags field, key press
events set the lodd keyboard group to the group specified by the
group_XXX field. Otherwise, & press eents add the group specified
by thegroup_ XXX field to the lockd keyboard group. In either case,
the resulting lock&d and d&ctive keyboard groups are brought back
into range depending on thalue of thegroups wrap field of the con-
trols structure.

A key release has nofett.

Theflagsfield is composed of the bitwise inclusive OR of the masks shown in Table 16.5.
A general meaning is given in the table, but the exact meaning depends on thiyaetion

Table 16.5 Group Action Flags

Flag

Meaning

XkbSA O ear Locks

XkbSA Lat chToLock

XkbSA Gr oupAbsol ut e

If set and no &ys are phsically depressed when thigyk
transition occurs, the sewsets the lodd keyboard group

to G oupl on a ley release.

If set, and the action type 8\ Lat chG oup, the serer

locks the action group if it is already latched.

If set, thegroup XXX field represents an absolute group
number Otherwise, it represents a group delta to be added to
the current group to determine themngroup number

November 10, 1997 Libr

ary Version 1.0/Document Rision 1.1 146

The X Keyboard Extension 16 Xkb Serer Keyboard Mapping

Thegroup_XXX field represents a signed character. Xkb provides the following macros to
convert between a signed integer value and a signed character:

int XkbSAGroup(act) /* macro */
XkbAction act; /* action from which to gtract group */

XkbSAGroup returns thegroup XXX field of act converted to a signed int.

void XkbSASetGroup(act, grp) /* macro */
XkbAction act; /* action from which to set group */
int arp; [* group index to set ingroup_ XXX */

XkbSASetGroup sets thegroup XXX field of act from the group indegrp.

Note Despite thedct that the first parameter of these twacros is of type XkbAction,
these macros may only be used with Actions of ¥peQ oupAct i on andXkbl -
SQActi on.

16.1.5 Actions for Moving the Pointer

Actions associated with thé&bPt r Act i on structure move the pointer when keys are
pressed and released:

typedef struct _XkbPtrAction {

unsigned char type; I* XkbSA MovePtr */

unsigned char flags; [* determines type of pointer motion */
unsigned char high_XXX; [* x coordinate, high bits*/

unsigned char low_XXX; /* 'y coordinate, lov bits */

unsigned char high_YYY; [* x coordinate, high bits */

unsigned char low_YYY; /*'y coordinate, lav bits */

} XkbPtrAction;

If the MbuseKeys control is not enabled (see section 10.5&y,Pr ess andKeyRe-
| ease events are treated as though the actiofkixsSA NoAct i on.

If the MbuseKeys control is enabled, a server action of tyfs®SA MovePt r instructs

the server to generate core poirltbt i onNot i f y events rather than the ust@aly-

Pr ess event, and the correspondidgyRel ease event disables any mouse keys timers
that were created as a result of handlingdeSA MovePt r action.

Thetype field of theXkbPt r Act i on structure is alway¥kbSA MovePtr.
Theflagsfield is a bitwise inclusive OR of the masks shown in Table 16.6.
Table 16.6 Pointer Action Types

Action Type Meaning

XkbSA NoAccel eration If not set, and thbbuseKeysAccel control is enabled (see
section 10.5.2), thKeyPr ess initiates a mousegys timer
for this key; every time the timerxgires, the cursor nves.

XkbSA MoveAbsol ut eX If set, the X portion of the structure specifies the peinter
X coordinate. Otherwise, the X portion is added to the cur-
rent pointer X coordinate to determine thevrgointer X
coordinate.

November 10, 1997 Library Version 1.0/Document Rision 1.1 147

The X Keyboard Extension 16 Xkb Serer Keyboard Mapping

Table 16.6 Pointer Action Types

Action Type Meaning

XkbSA MoveAbsol ut eY If set, the Y portion of the structure specifies the ne
pointer Y coordinate. Otherwise, the Y portion is added
to the current pointer Y coordinate to determine the ne
pointer Y coordinate.

Each of the X and Y coordinantes of #ePt r Act i on structure is composed of two
signed 16-bit values, that is, the X coordinate is composbigilofXXX andlow XXX,
and similarly for the Y coordinate. Xkb provides the following macros, to convert
between a signed integer and two signed 16-bit valudshiRt r Act i on structures:

int XkbPtr ActionX(act) /* macro */
XkbPtrAction act; /* action from which to gtract X */

XkbPtrActionX returns théniigh XXX andlow_XXX fields ofact converted to a signed int.

int XkbPtrActionY (act) /* macro */

XkbPtrAction act; /* action from which to etract Y */
XkbPtrActionY returns thénigh _YYY andlow_YYY fields ofact converted to a signed int.
void XkbSetPtr ActionX(act, X) /* macro */

XkbPtrAction act; /* action in which to set X */

int X; /* new value to set */

XkbSetPtr ActionX sets thénigh XXX andlow_ XXX fields ofact from the signed integer
valuex.
void XkbSetPtr ActionY (act, y) /* macro */

XkbPtrAction act; /* action in which to set 'Y */

int y; /* new value to set */

XkbSetPtrActionX sets thénigh_YYY andlow_YYY fields ofact from the signed integer
valuey.

16.1.6 Actions for Simulating Pointer Button Press and Release

Actions associated with thékbPt r Bt nAct i on structure simulate the press and release
of pointer buttons when keys are pressed and released:

typedef struct _XkbPtrBtnAction {
unsigned char type; /*XkbSA PtrBtn, XkbSA LockPtrBtn */
unsigned char flags; /* with type, controls the déct on pointer bttons*/
unsigned char count; /* controls number of ButtonPress and ButtonReleasats */
unsigned char button; /* pointer lutton to simulate */
} XkbPtrBtnAction;

If the MouseKeys (see section 10.5.1) control is not enabksy,Pr ess andKeyRe-
| ease events are treated as though the actiofkixsSA NoAct i on.

November 10, 1997 Library Version 1.0/Document Rision 1.1 148

The X Keyboard Extension 16 Xkb Serer Keyboard Mapping

Thetype field can have any one of the values shown in Table 16.7.
Table 16.7 Pointer Button Action Types

Type Effect

XkbSA_PtrBtn « If XkbSA UseDf | t Butt on is set in thdlags field, the gent is gen-
erated for the pointentton specified by thek_dflt_btn attribute of
theMbuseKeys control (seesection 10.5.)1 Otherwise, thevent is
generated for theutton specified by thieutton field.

« If the mouse btton specified for this action is logicallywlo, the ley
press and correspondingykrelease are ignored andvbano efect.
Otherwise, a & press causes one or more core pointéoh eents
instead of the usu#leyPr ess event. Ifcount is zer o, a key press
generates a singBut t onPr ess event; if count is greater thamer o,
a key press generatesunt pairs ofBut t onPr ess andBut t onRe-
| ease events.

« If count iszer 0, a key release generates a core poiugrt onRe-
| ease that matches thevent generated by the correspondifay -

Pr ess; if count is nonzero, ady release does not cause a
But t onRel ease event. A lkey release neer generates aei KeyRe-
| ease event.

XkbSA _LockPtrBtn ., |t the mitton specified by thebuseKeys defult buttonor button is
not locked, a ley press causesBut t onPr ess event instead of a
KeyPr ess event and locks theutton. If the litton is already loatd
or if XkbSA LockNoUnl ock is set in thdlags field, a ley press is
ignored and has nofett.

* If the correspondingdy press vas ignored, and if

XkbSA LockNoLock is not set in théagsfield, a ley release gener-
ates aBut t onRel ease event instead of &eyRel ease event and
unlocks the specifiedutton. If the correspondingsk press lockd a
button, the ky release is ignored and has nfzet.

Theflagsfield is composed of the bitwise inclusive OR of the masks shown in Table 16.8.
A general meaning is given in the table, but the exact meaning depends on thiaestion

Table 16.8 Pointer Button Action Flags

Flag Meaning

XkbSA UseDf It Button If set, the action uses the pointestton specified by the
mk_dflt_btn attribute of theMbuseKeys control (see section
10.5.1). Otherwise, the action uses the pointéoh specified by
the button field.

XkbSA LockNoLock If set, and the action type ¥kbSA LockPt r Bt n, the serer
only unlocks the pointerutton.

XkbSA LockNouUnl ock If set, and the action type ¥kxbSA LockPt r Bt n, the serer
only locks the pointeriton.

16.1.7 Actions for Changing the Pointer Button Simulated

Actions associated with thékbPt r Df | t Act i on structure change threk_dflt_btn
attribute of thévbuseKeys control 6eesection 10.5.1):

typedef struct _XkbPtrDfltAction {

unsigned char type; /* XKkbSA Set PtrDfl t */
unsigned char flags; [* controls the pointerigton number */
unsigned char affect; /* XkbSA Affect Dl t Bt n */

November 10, 1997 Library Version 1.0/Document Rision 1.1 149

The X Keyboard Extension 16 Xkb Serer Keyboard Mapping

char valueXXX; /* new default utton member */
} XkbPtrDfltAction ;

If the MouseKeys control is not enabledkeyPr ess andKeyRel ease events are treated
as though the action ¥kbSA NoAct i on. Otherwise, this action changes thie_dflt_btn
attribute of thevbusekKeys control.

Thetypefield of theXkbPt r Df | t Act i on structure should always be
XKbSA SetPtrDflt.

Theflagsfield is composed of the bitwise inclusive OR of the values shown in Table 16.9
(currently there is only one value defined).

Table 16.9 Binter Default Flags

Flag Meaning

XkbSA D¥ |t Bt nAbsol ut e If set, thevaluefield represents an absolute pointettdn.
Otherwise, theraluefield represents the amount to be added
to the current deifult kutton.

Theaffectfield specifies what changes as a result of this action. The only valid value for
theaffectfield is XkbSA Affect Dfl t Bt n.

ThevalueXXXfield is a signed character that represents the new button value for the
mk_dflt_btnattribute of thevbuseKeys control (see section 10.5.1). If

XkbSA DX | t Bt nAbsol ut e is set inflags valueXXXspecifies the button to be used; oth-
erwise,valueXXXspecifies the amount to be added to the current default button. In either
case, illegal button choices are wrapped back around into range. Xkb provides the follow-
ing macros, to convert between the integer and signed character vatie®tin Of | -

t Act i on structures:

int XkbSAPtrDfltV alue(act) /* macro */

XkbAction act, [* action from which to etract group */
XkbSAPtrDfltelue returns thevalueXXXfield of act converted to a signed int.
void XkbSASetPtrDfltValue(act, va) /* macro */

XkbPtrDfltAction act /* action in which to setalueXXXx*/

int val; /* value to set ivalueXXX*/

XkbSASetPtrDflMue sets thevalueXXXfield of act from val.

16.1.8 Actions f or Loc king Modifier s and Gr oup

Actions associated with thékbl SQAct i on structure lock modifiers and the group
according to the 1ISO9995 specification.

Operated by itself, thekbl SQAct i on is just a caps lock. Operated simultaneously with
another modifier key, it transforms the other key into a locking key. For example, press
ISO_Lock, press and releagimntrol_L, releaseSO_Lock ends up locking th€ont r ol
modifier.

The default behavior is to convert:

{Set,Latch}Mods to: LockMods
{Set,Latch}Group to: LockGroup
SetPtrBtn to: LockPtrBtn

November 10, 1997 Library Version 1.0/Document Rision 1.1 150

The X Keyboard Extension

16 Xkb Serer Keyboard Mapping

SetControls to: LockControls

Theaffects field allows you to turn those effects on or off individually. Set
XkbSA | SONoAf f ect Mods to disable the firstkbSA | SONoAf f ect G oup to disable

the second, and so forth.

typedef struct _XkbIS@&ction {

unsigned char type;
unsigned char flags;
unsigned char mask;

I* XkbSA | SCLock */
/* controls changes to group or modifier state */
I* same asnask field of a modifier descriptioty

unsigned char real_modg* same ageal _mods field of a modifier descriptiot/
char group_XXXj* group inde or delta group */
unsigned char affect; /* specifies whether to f&fct mods, group, ptrbtn, or controls*/
unsigned char vmods1; /* derived fromvmods field of a modifier descriptio®
unsigned char vmods2; /* derived fromvmods field of a modifier descriptio®y

} XkbISOAction;

Thetype field of thexXkbl SQAct i on structure should always B&bSA | SOLock.

The interpretation of thiéags field depends on whether thebSA | SCDf | t | sG oup is
set in theflags field or not.

If the XkbSA | SCDI | t | sG oup is set in thdlags field, the action is used to change the
group state. The remaining valid bits of fregs field are composed of a bitwise inclusive
OR using the masks shown in Table 16.10.

Table 16.10 1SO Action Flags when XkbSA _ISODfltIsGyup is Set

Flag Meaning

XkbSA | SCDf It 1 sG oup If set, the action is used to change the base group state. Must
be set for the remaining bits in this table to carry their inter-
pretations.

A key press sets the base group as specified by the
%roup_XXX field and thexkbSA G oupAbsol ut e bit of
theflags field (see section Note). If no other actions are
transformed by th&kbl SO Lock action, a key release
locks the group. Otherwise, a key release clears group
set by the key press.

XkbSA Gr oupAbsol ut e If set, thegroup XXX field represents an absolute group
number Otherwise, it represents a group delta to be added to
the current group to determine themngroup number

XkbSA | SONoAf f ect Mods If not set, ag XkbSA Set Mods or XkbSA Lat chMods
actions that occur simultaneously with XiebSA | SOLock
action are treated a&bSA LockMbd actions instead.

XkbSA | SONoAf fect G oup If not set, ag XkbSA Set G oup or XkbSA Lat chG oup
actions that occur simultaneously with XiebSA | SOLock
action are treated a&bSA Lock Q& oup actions instead.

XkbSA | SONoAf fect Pt r If not set, ag XkbSA Pt r Bt n actions that occur simulta-
neously with thexkbSA | SOLock action are treated as
XkbSA LockPt r Bt n actions instead.

XkbSA | SONoAffect Crls If not set, ag XkbSA Set Cont r ol s actions that occur
simultaneously with th&kbSA | SOLock action are treated
asXkbSA LockContr ol s actions instead.

November 10, 1997 Library Version 1.0/Document Rision 1.1 151

The X Keyboard Extension 16 Xkb Serer Keyboard Mapping

If the XkbSA | SCDY | t | sG oup is not set in théags field, the action is used to change
the modifier state and the remaining valid bits offthgs field are composed of a bitwise
inclusive OR using the masks shown in Table 16.11.

Table 16.11 ISO Action Flags when XkbSA_ISODfltisGyup is Not Set

Flag Meaning

XkbSA | SCDf I t 1 sG oup If not set, action is used to change the base modifier state.
Must not be set for the remaining bits in this table to carry
their interpretations.

A key press sets the action modifiers in tiegdoards base
modifiers usinghe mask, real_mods, vmodsl, and
vmods?2 fields (see section 16.1.3). Mo other actions are
transformed by th#kbl SO Lock action, a key release
locks the action modifiers. Otherwise, a key release
clears the base modifiers set by the key press.

XkbSA UseMbdMapMods If set, the action modifiers are determined by the modifiers
bound by the modifier mapping of theykOtherwise, the
action modifiers are set to the modifiers specified by the
mask, real_mods, vmod1, andvmod? fields.

XkbSA LockNoLock If set, the ser@r only unlocks the action modifiers.

XkbSA LockNouUnl ock If set, the semr only locks the action modifiers.

XkbSA | SONoAf f ect Mods If not set, ag XkbSA Set Mbds or XkbSA Lat chMbds
actions that occur simultaneously with XiebSA | SOLock
action are treated a&bSA LockMbd actions instead.

XkbSA | SONoAf fect G oup If not set, ag XkbSA _Set G oup or XkbSA Lat chG oup
actions that occur simultaneously with XiebSA | SOLock
action are treated a&bSA Lock@& oup actions instead.

XkbSA | SONoAf fect Pt r If not set, ag XkbSA Pt r Bt n actions that occur simulta-
neously with thexkbSA | SOLock action are treated as
XkbSA LockPt r Bt n actions instead.

XkbSA | SONoAffect rls If not set, ag XkbSA Set Cont r ol s actions that occur

simultaneously with th¥kbSA | SOLock action are treated
asXkbSA LockControl s actions instead.

Thegroup_ XXX field represents a signed character. Xkb provides macros to convert
between a signed integer value and a signed character as shown in section Note.

Themask, real_mods, vmodsl, andvmods2 fields represent the components of an Xkb
modifier description (see section 7.2). While thesk andreal _mods fields correspond

directly to themask andreal_mods fields of an Xkb modifier description, tlvenodsl and

vmods?2 fields are combined to correspond to vh@ds field of an Xkb modifier descrip-

tion. Xkb provides macros to convert between the two formats as shown in section 16.1.3.

Theaffect field is composed of a bitwise inclusive OR using the masks shown in Table
16.11.

Table 16.12 1SO Action Affect Field dlues

Affect Meaning

XkbSA | SCDNoAf f ect Mbds If XKbSA | SONoAF f ect Mods is not set, anSA_Set Mods
or SA_Lat chMbds actions occurring simultaneously with
theXkbl SOAct i on are treated aSA LockMbods instead.

November 10, 1997 Library Version 1.0/Document Rision 1.1 152

The X Keyboard Extension 16 Xkb Serer Keyboard Mapping

Table 16.12 1SO Action Affect Field Values

Affect Meaning

XkbSA | SONoAf fect G oup If XkbSA | SONoAf f ect G oup is not set, an
SA Set G oup or SA_Lat ch@ oup actions occurring
simultaneously with thkbl SOAct i on are treated as
SA Lock@ oup instead.

XkbSA | SONoAf fect Pt r If XkbSA | SONOAf f ect Pt r is not set, anSA PtrBtn
actions occurring simultaneously with tebl SQAct i on
are treated aSA _LockPt r Bt n instead.

XkbSA | SONoAffect Crls If XkbSA | SONoAf f ect C rl s is not set, an
SA_Set Cont r ol s actions occurring simultaneously with
theXkbl SQAct i on are treated aSA LockControl s
instead.

16.1.9 Actions for Changing the Active Screen

Actions associated with th&bSwi t chScr een action structure change the active screen
on a multiscreen display:

Note This action is optional. Segvs are free to ignore the action oy afiits flags if thg
do not support the requested baba If the action is ignored, it bebes like
XkbSA NoAct i on. Otherwise, ky press anddy release eents do not generate an

event.
typedef struct _XkbSwitchScreenAction {
unsigned char type; /* XkbSA Swi t chScreen */
unsigned char flags; [* controls screen switching */
char screenXXX; [* screen number or delta */

} XkbSwitchScreenAction;

Thetype field of theXkbSwi t chScr eenAct i on structure should always be
XkbSA Swi t chScr een.

Theflagsfield is composed of the bitwise inclusive OR of the masks shown in Table

16.13.
Table 16.13 Switch Screen Action Flags
Flag Meaning
XkbSA Swi t chAbsol ut e If set, thescreenXXX field represents the ind®f the

new screen. Otherwise, it represents dseaiffrom the
current screen to the wescreen.

XkbSA Swi t chApplication If not set, the action should switch to another screen on
the same seer. Otherwise, it should switch to another X
sener or application that shares the samgsptal dis-

play.

ThescreenxXXX field is a signed character value that represents either the relative or abso-
lute screen index, depending on the state oXkiSA Swi t chAbsol ut e bit in theflags

field. Xkb provides the following macros to convert between the integer and signed char-
acter value for screen numbersbSwi t chScr eenAct i on structures:

int XkbSA Screen(act) /* macro */
XkbSwitchScreenAction act; /* action from which to etract screen */

XkbSAScreen returns thescreenXXX field of act converted to a signed int.

November 10, 1997 Library Version 1.0/Document Rision 1.1 153

The X Keyboard Extension 16 Xkb Serer Keyboard Mapping

void XkbSA SetScreen(act, 9) /* macro */
XkbSwitchScreenAction act; /* action in which to segcreenXXX */
int S /* value to set irscreenXXX */

XkbSASetScreen sets thescreenXXX field of act from s.

16.1.10Actions for Changing Boolean Controls State

Actions associated with thé&bC r | sAct i on structure change the state of the boolean
controls (see section 10.1):

typedef struct _XkbCtrlsAction {
unsigned char type; /* XkbSA Set Controls, XkbSA LockControl s */
unsigned char flags; /* with type, controls enabling and disabling of controls */
unsigned char ctrls3; /* ctrlsO throughctris3 represent the boolean contréds
unsigned char ctrls2; /* ctrlsO throughctrls3 represent the boolean controls
unsigned char ctrlsl; /* ctrlsO throughctrls3 represent the boolean controls
unsigned char ctrlsO; /* ctrlsO throughctris3 represent the boolean contrals

} XkbCtrlsAction;

Thetype field can have any one of the values shown in Table 16.14.
Table 16.14 Controls Action Types

Type Effect

XkbSA_Set Control s « A key press enables wioolean controls specified in thiels
fields that were not already enabled at the time of éhgless.
* A key release disables ncontrols enabled by thek press.
 This action can causé&kbCont r ol sNot i fy events (see sec-
tion 10.1).

XkbSA_LockControl s « If the XkbSA LockNoLock bit is not set in théags field, a
key press enables nrwontrols specified in therls fields that
were not already enabled at the time of thgpress.

If the XkbSA LockNoUnl ock bit is not set in théiagsfield, a
key release disables yagontrols specified in therls fields
that were not already disabled at the time of #yegkess.
 This action can causé&kbCont r ol sNot i fy events (see sec-

tion 10.1).
Theflagsfield is composed of the bitwise inclusive OR of the masks shown in Table
16.15.

Table 16.15 Control Action Flags

Flag Meaning
XkbSA LockNoLock If set, and the action type ¥kbSA LockCont r ol s, the

sener only disables controls.
XkbSA LockNoUnl ock If set, and the action type #bSA LockContr ol s, the

sener only enables controls.

TheXkbSA Set Cont r ol s action implements a key that enables a boolean control when
pressed and disables it when released XkiSA LockCont r ol s action is used to
implement a key that toggles the state of a boolean control each time it is pressed and
released. ThakbSA LockNoLock andXkbSA LockNoUnl ock flags allow modifying

the toggling behavior to only unlock or only lock the boolean control.

November 10, 1997 Library Version 1.0/Document Rision 1.1 154

The X Keyboard Extension 16 Xkb Serer Keyboard Mapping

ThectrlsO, ctrlsl, ctrls2, andctrls3 fields represent the boolean controls in the
enabled_ctrisfield of the controls structurade section 10)1Xkb provides the following
macros, to convert between the two formats:

unsigned inXkbActionCtrls(act) /* macro */
XkbCtrisAction act; /* action from which to gtract controls */

XkbActionCtrls returns thetrls fields ofact converted to an unsigned int.

void XkbSAActionSetCtris(act, ctrls) /* macro */
XkbCtrisAction act; [* action in which to set ctrlsO-ctrls3 */
unsigned int ctrls; /* value to set in ctrlsO-ctrls3 */

XkbSAActionSetCtrls sets thetrlsO throughctrls3 fields ofact from ctrls.

16.1.11Actions for Generating Messages

Actions associated with th&kbMessageAct i on structure generafékbAct i onMes-
sage events:

#define XkbActionMessagelLength6

typedef struct _XkbMessageAction {
unsigned char type; I* XkbSA Act i onMessage */
unsigned char flags; * controls e&ent generation viagy presses and releases */
unsigned char message[XkbActionMessageLength]; /* message */

} XkbM essageAction;

Thetype field of theXkbMessageAct i on structure should always be
XkbSA Acti onMessage.

Theflagsfield is composed of the bitwise inclusive OR of the masks shown in Table

16.16.
Table 16.16 Message Action Flags
Flag Meaning
XkbSA MessageOnPr ess If set, key press eents generate akkbAct i onMes-

sage event that reports thesicode, gent type, and
contents of thenessage field.

XkbSA MessageOnRel ease If set, key releaseeents generate afkbAct i onMes-
sage event that reports thesi¢code, gent type, and
contents of thenessage field.

XkbSA MessageCGenKeyEvent If set, key press anddy release eents generatkey -
Pr ess andKeyRel ease events, rgardless of whether
they generatexkbAct i onMessage events.

Themessage field is an array oKkbAct i onMessagelengt h unsigned characters and
may be set to anything the keymap designer wishes.
Detecting Key Action Messages

To receiveXkbAct i onMessage events by calling eithetkbSel ectEvents or XkbSel ect-
EventDetails (see section 4.3).

To receiveXkbAct i onMessage events under all possible conditions, MkbSelect-
Events and pasXkbAct i onMessageMask in bothbits to_change andvalues for_hits.

November 10, 1997 Library Version 1.0/Document Rision 1.1 155

The X Keyboard Extension 16 Xkb Serer Keyboard Mapping

The XkbAct i onMessage event has no event details. However, you cangitel ect-
EventDetails usingXkbAct i onMessage as theevent_type and specifyingkbAl | Ac-

t i onMessageMask in bits to_change andvalues for_bits. This has the same effect as a
call to XkbSelectEvents.

The structure for th&kbAct i onMessage event is defined as follows:
typedef struct _XkbActionMessage {

int type; I* Xkb extension basevent code */

unsigned long serial; [* X server serial number forvent */

Bool send_gent; [* Tr ue => synthetically generated */

Display * display; [* sener connection wherevent generated */
Time time; /* server time when eent generated */

int xkb_type; /* XkbAct i onMessage */

int device; /* Xkb device ID, will not beXkbUseCor eKbd */
KeyCode keycode; /* keycode of ley triggering @ent */

Bool press; [* Tr ue => key pressfal se => release */
Bool key event_follows; /* Tr ue => KeyPress/leyRelease follars */
char message[XkbActionMessagelLength+1]; /* message td */

} XkbActionM essageEvent;

Thekeycode is the keycode of the key that was pressed or releasegr&dsdield speci-
fies whether the event was the result of a key press or key release.

Thekey_event_follows specifies whether ey Pr ess (if pressis Tr ue) or KeyRel ease

(if pressis Fal se) event is also sent to the client. As with all other Xkb evedisAc-

ti onMessageEvent s are delivered to all clients requesting them, regardless of the cur-
rent keyboard focus. However, tHeyPr ess or KeyRel ease event that conditionally
follows anXkbAct i onMessageEvent is sent only to the client selected by the current
keyboard focuskey event follows is Tr ue only for the client that is actually sent the fol-
lowing KeyPr ess or KeyRel ease event.

Themessage field is set to the message specified in the action and is guaranteed to be
NULL-terminated; the Xkb extension forceBld_L into message[XkbAct i onMessage-
Lengt h].

16.1.12Actions for Generating a Different Keycode

Actions associated with th&bRedi r ect KeyAct i on structure generateyPr ess and
KeyRel ease events containing a keycode different from the key that was pressed or
released:

typedef structXkbRedirectkeyAction {
unsigned char type; I* XkbSA Redi r ect Key */
unsigned char nen_key; /* keycode to be put invent */
unsigned char mods_mask;/* mask of real mods to be reset */
unsigned char mods; /* mask of real mods to takalues from */
unsigned char vmods_mask® first half of mask of virtual mods to be reset */
unsigned char vmods_maskI* other half of mask of virtual mods to be reset */
unsigned char vmodso0; [* first half of mask of virtual mods to takalues from */
unsigned char vmods1,; [* other half of mask of virtual mods to &kalues from */
} XkbRedirectKeyAction;

November 10, 1997 Library Version 1.0/Document Rision 1.1 156

The X Keyboard Extension 16 Xkb Serer Keyboard Mapping

Thetype field for thexXkbRedi r ect KeyAct i on structure should always be
XkbSA Redi r ect Key.

Key presses causekayPr ess event for the key specified by thew_key field instead of

the actual key. The state reported in this event reports the current effective modifiers
changed as follows: any real modifiers selected byrhas mask field are set to corre-
sponding values from theods field. Any real modifiers bound to the virtual modifiers
specified by themods_maskO andvmods _mask1 fields are either set or cleared, depend-
ing on the corresponding values in tmaods0 andvmodsl fields. If the real and virtual
modifier definitions specify conflicting values for a single modifier, the real modifier def-
inition has priority.

Key releases causekayRel ease event for the key specified by thew_key field
instead of the actual key. The state for this event consists of the effective keyboard modi-
fiers at the time of the release, changed as described previously.

TheXkbSA Redi r ect Key action normally redirects to another key on the same device

as the key that caused the event, unless that device does not belong to the input extension
Keyd ass, in which case this action causes an event on the core keyboard device. (The
input extension categorizes devices by breaking them into classes. Keyboards, and other
input devices with keys, are classifiedk&y Cl ass devices by the input extension.)

Thevmods_mask0 andvmods _maskl fields actually represent onenods _mask value, as
described in Chapter 7. Xkb provides the following macros, to convert between the two

formats:
unsigned inXkbSARedirectVM odsM ask (act) /* macro */
XkbRedirectkeyAction act; /* action from which to etract vmods */

XkbSARedirectVModsMask returns thesmods_maskO andvmods_mask1 fields ofact con-
verted to an unsigned int.

void XkbSARedirectSetVM odsM ask (act, vm) /* macro */

XkbRedirectkeyAction act; /* action in which to set vmods */

unsigned int vm, /* new value for virtual modifier mask */
XkbSARedirectSetVModsMask sets thevmods maskO andvmods _maskl fields ofact from
vm.

Similarly, thevmodsO andvmodsl fields actually represent onenods value, as described
in Chapter 7. To convert between the two formats, Xkb provides the following conve-
nience macros:

unsigned inXkbSARedirectVM ods(act) /* macro */
XkbRedirectkeyAction act; /* action from which to etract vmods */

XkbSARedirectVModsMask returns thesmodsO andvmodsl fields ofact converted to
an unsigned int.

void XkbSARedirectSetVM ods(act, vim) /* macro */
XkbRedirectkeyAction act; /* action in which to set vmods */
unsigned int v, /* new value for virtual modifiers */

XkbSARedirectSetVModsMask sets thermodsO andvmodsl of act from v.

November 10, 1997 Library Version 1.0/Document Rision 1.1 157

The X Keyboard Extension 16 Xkb Serer Keyboard Mapping

16.1.13Actions for Generating DeviceButtonPress and DeviceButtonRelease

Actions associated witkkbDevi ceBt nAct i on structures generaf@evi ceBut t on-
Press andDevi ceBut t onRel ease events instead of normiéyPr ess andKeyRe-
| ease events:

typedef struct _XkbDeceBtnAction {
unsigned char type; /* XkbSA Devi ceBtn, XkbSA LockDevi ceBt n */
unsigned char flags; /* with type, specifies locking or unlocking */
unsigned char count; /* controls number of DeceButtonPress and Releasests */
unsigned char button; /* index of button ondevice */
unsigned char device; /* device ID of an X input gtension deice */

} XkbDeviceBtnAction;

Thetype field can have any one of the values shown in Table 16.17.
Table 16.17 Device Button Action Types

Type Effect

XkbSA _Devi ceBtn « If the hutton specified by this action is logicallywdo, the ley
press and corresponding release are ignored aachiosefect.
If the device or lutton specified by this action are ghd, this
action behees like XkbSA NoAct i on.

» Otherwise, ky presses cause one or more inpa¢esion
device events instead of the usuakkpress eent. If thecount
field is zero, a & press generates a sin@evi ceBut t on-
Pr ess event. If count is greater than zero,ey lpress eent
generatesount pairs ofDevi ceBut t onPr ess andDevi ce-
But t onRel ease events.

* If count is zero, a Ry release generates an inpytemsion
Devi ceBut t onRel ease event that matches theent gener-
ated by the correspondingykpress. Ifcount is nonzero, ady
release does not causBevi ceBut t onRel ease event. Key
releases ner causékeyRel ease events.

XkbSA_LockDevi ceBt n « If the device or hutton specified by this action are @i, this

action behees like XkbSA NoAct i on.

» Otherwise, if the specifieduion is not lockd and the
XkbSA LockNoLock bit is not set in th8ags field, a ley
press generates an inputensionDevi ceBut t onPr ess
event instead of EeyPr ess event and locks theutton. If the
button is already load or ifXkbSA LockNoLock bit is set in
theflags field, the ley press is ignored and has néeet.

* If the correspondingdy press was ignored, and if the
XkbSA LockNoUnl ock bit is not set in thélags field, a ley
release generates an inpytemsionDevi ceBut t onRe-
| ease event instead of #eyRel ease event and unlocks the
button. If the correspondingek press lockd a litton, the ky
release is ignored and has nfeef.

Theflags field is composed of the bitwise inclusive OR of the masks shown in Table

16.18.
Table 16.18 Device Button Action Flags
Flag Meaning
XkbSA LockNoLock If set, and the action type #¥bSA LockDevi ceBt n, the

sener only unlocks theuiton.

November 10, 1997 Library Version 1.0/Document Rision 1.1 158

The X Keyboard Extension 16 Xkb Serer Keyboard Mapping

Table 16.18 Device Button Action Flags

Flag Meaning
XkbSA LockNoUnl ock If set, and the action type #bSA LockDevi ceBt n, the
sener only locks the ditton.

16.1.14Actions for Simulating Events from Device Valuators

A valuator manipulates a range of values for some entity, like a mouse axis, a slider or a
dial. Actions associated witkkbDevi ceVal uat or Act i on structures are used to simu-
late events from one or two input extension device valuators.

typedef struct _XkbDéceValuatorAction {
unsigned char type; /*XkbSA Devi ceVal uat or */
unsigned char device; /* device ID */
unsigned char vl what; /* determines hw valuator is to beha for \aluator 1 */
unsigned char vl _ndx; /* specifies a realaluator */
unsigned char v1_\alue; /* the value for aluator 1 */
unsigned char v2_what; /* determines ha valuator is to behe for \aluator 2 */
unsigned char v2_ndx; /* specifies a realaluator */
unsigned char v2 \value; /* the value for aluator 1 */
} XkbDeviceValuator Action;

If deviceis illegal or if neithemvl ndx norv2_ndx specifies a legal valuator, this action
behaves likedkbSA NoAct i on.

The law four bits ofvl what andv2_what specify the corresponding scakwe (denoted

val <n>Scal e in Table 16.1Y, if needed. The high four bits ef_what andv2_what specify
the operation to perform to set thedwes.The high four bits o¥1_what andv2_what can
have the values shown in Table 16.17; the usab&n>Scal e is shown in that table

also.

Table 16.19 Device Valuator v<n>_what High Bits Values
Value of high bits Effect
XkbSA | gnor eVal No action
XkbSA Set Val M n v<n>_valueis set to its minimum gal value.
XkbSA Set Val Cent er v<n>_valueis centered (to (max-min)/2).
XkbSA Set Val Max v<n>_valueis set to its maximum ¢gl value.

XkbSA Set Val Rel ative v<n>_value* (2V@<n>SCal¢ s aqded ta<n>_value.
XkbSA Set Val Absol ute v<n>_valueis set to (¥2<n>Scal¢

lllegal values forXkbSA Set Val Rel at i ve or XkbSA Set Val Absol ut e are clamped into
range. Note that all of these possibilities agalléor absolute aluators. Br relative valuators,
only XkbSA Set Val Rel at i ve is permitted. Brt of the input ension description of a dige
is the range of [gal values for all absolutealuators, whence the maximum and minimugale
values shan in Table 16.17

The following two masks are provided as a convenience to select either portion of
vl what orv2_ what:

#define XkbSA_¥IOpMask (Ox70)
#define XkbSA_¥IScaleMask (0x07)

November 10, 1997 Library Version 1.0/Document Rision 1.1 159

The X Keyboard Extension 16 Xkb Serer Keyboard Mapping

vl ndxandv2_ndxspecify valuators that actually exists. For example, most mice have
two valuators (x and y axes) so the only legal values for a mouse would be 0 and 1. For a
dial box with eight dials, any value in the range 0..7 would be correct.

16.1.150btaining Key Actions for Keys from the Server

To update the actions (thkey_actsarray) for a subset of theys in a keyboard descrip-
tion, useXkbGetkeyActions

StatusXkbGetK eyActions(dpy; first, num xkb

Display * dpy, [* connection to X sem r */

unsigned int first, I* keycode of first ky of interest */

unsigned int numn I* number of leys desired */

XkbDescPtr xkby * pointer to leyboard description where result is stored */

XkbGetkeyActionssends a request to the server to obtain the actionsifiokeys on the
keyboard starting with kefyrst. It waits for a reply and returns the actions in the
server>key actdield of xkb. If successfulXkbGetkeyActionsreturnsSuccess. Thexkb
parameter must be a pointer to a valid Xkb keyboard description.

If the servermap in thexkb parameter has not been allocabdklhGetkeyActionsallocates
and initializes it before obtaining the actions.

If the server does not have a compatible version of Xkb, or the Xkb extension has not been
properly initialized XkbGetkyActionsreturnsBadAccess. If numis less than 1 or

greater thanxkbMaxKeyCount , XkbGetkeyActionsreturnsBadVal ue. If any allocation

errors occurXkbGetkeyActionsreturnsBadAl | oc.

16.1.16Changing the Number of Actions Bound to a Key
To change the number of actions bound teya kseXkbResize&/Action
XkbAction *XkbResizeK eyActions(xkb, key, needell

XkbDescRec * xkby /* keyboard description to change */
int key; /* keycode of ley to change */
int needed /* new number of actions required */

Thexkbparameter points to the keyboard description containinkgeywhose number of
actions is to be changed. Tkeyparameter is the keycode of the key to change, and
neededspecifies the new number of actions required for the key.

XkbResize&/Actionsreserves the space needed for the actions and returns a pointer to the
beginning of the new array that holds the actions. It can changettheum_actsand
size_actdields ofxkb->serverif it is necessary to reallocate thetsarray.

If neededs greater than the current number of keysyms for theXédyResize&/Actions
initializes all new actions in the arrayNbAct i on.

Because the number of actions needed by a key is normally computed as width * number
of groups, an&KkbResize&/Actionsdoes not modify either the width or number of groups

for the key, a discrepancy exists on return fodkbResize&/Actionsbetween the space
allocated for the actions and the number required. The unused entries in the list of actions
returned byXkbResize#&/Actionsare not preserved across future calls to any of the map
editing functions, so you must update the key actions (which updates the width and num-

November 10, 1997 Library Version 1.0/Document Rision 1.1 160

The X Keyboard Extension 16 Xkb Serer Keyboard Mapping

16.2

ber of groups for the key) before calling another allocator function. A cdkidGhange-
TypesOfKey updates these.

If any allocation errors occur while resizing the number of actions bound to the key,
XkbResizeKeyActions returnsNULL.

Note A change to the number of actions bound teyashould be accompanied by a change
in the number of symbols bound toeykRefer to section 15.3.7 for more information
on changing the number of symbols bound teya k

Key Behavior

Key behavior refers to the demeanor of a key. For example, the expected behavior of the
CapsLock key is that it logically locks when pressed, and then logically unlocks when
pressed again.

16.2.1 Radio Groups

Keys that belong to the same radio group haveid<B Radi oG oup type in thetype

field and the radio group index specified in taga field in thexXkbBehavi or structure.

If the radio group has a name in KebNanesRec structure, the radio group index is the
index into theadio_group array in thexkbNanmesRec structure. A radio group key when
pressed stays logically down until another key in the radio group is pressed, when the first
key becomes logically up and the new key becomes logically down. Setting the
XkbKB_RCAl | owNone bit in the behavior for all of the keys of the radio group means that
pressing the logically down member of the radio group causes it to logically release, in
which case none of the keys of the radio group would be logically down. If

XkbKB_RCAI | owNone is not set, there is no way to release the logically down member of
the group.

The low five bits of thelata field of theXkbBehavi or structure are the group number,
the high three bits are flags. The only flag currently defined is:

#define XkbRG_AllowNone 0x80

16.2.2 The XkbBehavior Structure

Thebehaviors field of the server map is an arrayXdoBehavi or structures, indexed by
keycode, and contains the behavior for each key Xkb&ehavi or structure is defined
as follows:

typedef struct _XkbBehaor {
unsigned char type; /* behavior type + optionaXkbKB_Per manent bit */
unsigned char data;

} XkbBehavior;

Thetype field specifies the Xkb behavior, and the value ofd#ta field depends on the
type. Xkb supports the key behaviors shown in Table 16.20.

Table 16.20 Key Behaviors

Type Effect
XkbKB_Def aul t Press and releaseants are processed normallnedata field is unused.

November 10, 1997 Library Version 1.0/Document Rision 1.1 161

The X Keyboard Extension 16 Xkb Serer Keyboard Mapping

Table 16.20 Key Behaviors

Type Effect

XkbKB_Lock If a key is logically up (that is, the corresponding bit of the caxerkap
is cleared) when it is pressed, they bress is processed normally and the
corresponding release is ignored. If tieg Is logically davn when
pressed, thedy press is ignoredus the corresponding release is pro-
cessed normallyrhedatafield is unused.

XkbKB_Radi oG oup If another member of the radio group is logicallywia(all members of
the radio group hee the same inde specified irdata) when a ky is
pressed, the sezw synthesizes ek release for the member that is logi-
cally dowvn and then processes thewiey press eent normally

If the key itself is logically devn when pressed, thekpress eent is
ignored, lit the processing of the correspondimy kelease depends on
the value of thexkb_RGAl | owNone bit inflags If it is set, the ky
release is processed normally; otherwise, yer&lease is also ignored.

All other key release wents are ignored.

XkbKB_Over | ayl If the Over | ayl control is enabled (see section 10d8tais interpreted
as a leycode, andents from this &y are reported as if tiigcame from
datds keycode. Otherwise, press and releassnés are processed nor-
mally.

XkbKB_Overl ay2 If the Over | ay2 control is enabled (see section 10dgtais interpreted
as a lkeycode, andeents from this &y are reported as if tjgcame from
datds keycode. Otherwise, press and releagmés are processed nor-
mally.

Xkb also provides the maskKkbKB_Per manent to specify whether the key behavior

type should be simulated by Xkb or whether the key behavior describes an unalterable
physical, electrical, or software aspect of the keyboard. [Kith&B_ Per manent bit is

not set in theypefield, Xkb simulates the behavior in software. Otherwise, Xkb relies
upon the keyboard to implement the behavior.

16.2.3 Obtaining Key Behaviors for Keys from the Server

To obtain the behaors (thebehaviorsarray) for a subset of theys in a keyboard
description from the seev, useXkbGetkeyBehavios:

StatusXkbGetK eyBehavior s(dpy; first, num xkb)

Display * dpy, /* connection to seer */

unsigned int first /* keycode of first ey to get */

unsigned int num /* number of leys for which behaors are desired */
XkbDescPtr xkby /* Xkb description to contain the result */

XkbGetkeyBehavios sends a request to the server to obtain the behaviorarfdteys on
the keyboard starting with the key whose keycodigss It waits for a reply and returns
the behaviors in theerver>behaviorsfield of xkh. If successfulXkbGetkeyBehavios
returnsSuccess.

If the servermap in thexkb parameter has not been allocateklh GetkeyBehavios allo-
cates and initializes it before obtaining the actions.

If the server does not have a compatible version of Xkb, or the Xkb extension has not been
properly initialized XkbGetkyBehavios returnsBadAccess. If numis less than 1 or

greater thanxkbMaxKeyCount , XkbGetkeyBehavios returnsBadVal ue. If any alloca-

tion errors occurXkbGetkeyBehavios returnsBadAl | oc.

November 10, 1997 Library Version 1.0/Document Rision 1.1 162

The X Keyboard Extension 16 Xkb Serer Keyboard Mapping

16.3 Explicit Components—A voiding A utomatic Remapping b y the Ser ver

Whenever a client remaps the keyboard using core protocol requests, Xkb examines the

map to determine likely default values for the components that cannot be specified using

the core protocol (see section 17.1.2 for more information on how Xkb chooses the default
values).

This automatic remapping might replace definitions explicitly requested by an application,
so the Xkb keyboard description defines an explicit components mask for each key. Any
aspects of the automatic remapping listed in the explicit components mask for a key are
not changed by the automatic keyboard mapping.

The explicit components masks are held ineklicit field of the server map, which is an
array indexed by keycode. Each entry in this array is a mask that is a bitwise inclusive OR
of the values shown in Table 16.21.

Table 16.21 Explicit Component Masks

Bit in Explicit Mask Value Protects Against

ExplicitKeyTypel (1<<0) Automatic determination of thestype associated with
QG oupl.

ExplicitKeyType2 (1<<1) Automatic determination of thes type associated with
QG oup2.

ExplicitKeyType3 (1<<2) Automatic determination of thes type associated with
G oup3.

ExplicitKeyTyped (1<<3) Automatic determination of theek type associated with
G oup4.

Explicitinterpret (1<<4) Application of ay of the fields of a symbol interpretation
to the ley in question.

Expl i ci t Aut oRepeat (1<<5) Automatic determination of auto-repeat status for tye k
as specified in a symbol interpretation.

ExplicitBehavior (1<<6) Automatic assignment of thékbKB Lock behaior to the
key, if the XkbSI _Locki ngKey flag is set in a symbol
interpretation.

Expl i ci t VModNMap (1<<7) Automatic determination of the virtual modifier map for

the key based on the actions assigned to tyeand the
symbol interpretations that match they k

16.3.1 Obtaining Explicit Components f or Keys fr om the Ser ver

To obtain the eplicit components (thexplicitarray) for a subset of theys in a lkeyboard
description, usXkbGetkeyExplicitComponents

StatusXkbGetK eyExplicitComponents(dpy;, first num xkb

Display * dpy, [* connection to seer */

unsigned int first [* keycode of first ky to fetch */

unsigned int numn /* number of leys for which to getxlicit info */
XkbDescPtr xkby /* Xkb description in which to put results */

XkbGetkeyExplicitComponentsends a request to the server to obtain the explicit compo-
nents fomumkeys on the keyboard starting with Kagt. It waits for a reply and returns
the explicit components in tleerver>explicit array ofxkhb If successfulXkbGetkeyEx-
plicitComponentseturnsSuccess. Thexkb parameter must be a pointer to a valid Xkb
keyboard description.

November 10, 1997 Library Version 1.0/Document Rision 1.1 163

The X Keyboard Extension 16 Xkb Serer Keyboard Mapping

16.4

If the server map in thexkb parameter has not been allocabskhGetKeyExplicitCompo-
nents allocates and initializes it before obtaining the actions.

If the server does not have a compatible version of Xkb, or the Xkb extension has not been
properly initialized XkbGetKeyExplicitComponents returnsBadMat ch. If numis less than

1 or greater thaXkbMaxKeyCount , XkbGetKeyExplicitComponents returnsBadVal ue.

If any allocation errors occuxkbGetKeyExplicitComponents returnsBadAl | oc.

Virtual Modifier Mapping

Thevmods member of the server map is a fixed-length array contakbduni r -

t ual Mods entries. Each entry corresponds to a virtual modifier and provides the binding
of the virtual modifier to the real modifier bits. Each entry invimeds array is a bitwise
inclusive OR of the legal modifier masks:

Shi f t Mask
LockMask
Cont r ol Mask
Mod1Mask
Mod2Mask
Mod3Mask
Mod4Mask
Mod5Mask

Thevmodmap member of the server map is similar to thamap array of the client map

(see section 15.4), but is used to define the virtual modifier mapping for each key. Like the
modmap member, it is indexed by keycode, and each entry is a mask representing the vir-
tual modifiers bound to the corresponding key:

» Each of the bits in @modmap entry represents an indeto thevmods member That
is, bit 0 of avmodmap entry refers to inde0 of thevmods array bit 1 refers to indel,
and so on.

« Ifabitis set in themodmap entry for a ley, that ley is bound to the corresponding vir-
tual modifier in thevmods array

Thevmodmap andvmods members of the server map are the “master” virtual modifier
definitions. Xkb automatically propagates any changes to these fields to all other fields
that use virtual modifier mappings.

November 10, 1997 Library Version 1.0/Document Rision 1.1 164

The X Keyboard Extension 16 Xkb Serer Keyboard Mapping

The overall relationship of fields dealing with virtual modifiers in an Xkb keyboard
description are shown in Figure 16.2.

KeyCode
i
:
_> :
vmods[0] | ,
Define real dsf1 g J:u
. vmods !
modifiers bound g 1] > !
to virtual | vmods[2] . |
modifier | unsigned short |
I (one per key) !
| Defines virtual modifiets
! vmods[15] for each key. !
| vmodmap || |
sener — |
! XkbServerMapRec :
| |
names oo TTTTTTTTTTTTTTTTIIT '»
|
| vmods[0]
|
XkbDescRec ‘» vmods[1]
vmods|[2]
vmods[15]
XkbNamesRec

Figure 16.2 \irtual Modifier Relationships

16.4.1 Obtaining Vir tual Modifier Bindings fr om the Ser ver

To obtain a subset of the virtual modifier bindings (timeds array) in a kyboard descrip-
tion, usexXkbGetVirtualMods:

StatusXkbGetVirtualMods (dpy, which, xkb)

Display * dpy; [* connection to seer */
unsigned int which; /* mask indicating virtual modifier bindings to get */
XkbDescPtr xkb; /* Xkb description where results will be placed */

XkbGetVirtualMods sends a request to the server to obtainoels entries for the virtual
modifiers specified in the maskhich, and waits for a reply. See section 7.1 for a descrip-
tion of how to determine the virtual modifier mask. For each bit sghiich, XkbGetVir-
tualMods updates the corresponding virtual modifier definition inddrger->vmods

array ofxkb. Thexkb parameter must be a pointer to a valid Xkb keyboard description. If
successfulXkbGetVirtualMods returnsSuccess.

If the server map has not been allocated in kb parameterxXkbGetVirtualMods allo-
cates and initializes it before obtaining the virtual modifier bindings.

November 10, 1997 Library Version 1.0/Document Rision 1.1 165

The X Keyboard Extension 16 Xkb Serer Keyboard Mapping

If the server does not have a compatible version of Xkb, or the Xkb extension has not been
properly initialized XkbGetWtualMods returnsBadMat ch. Any errors in allocation
causexXkbGetWtualModsto returnBadAl | oc.

16.4.2 Obtaining P er-Key Vir tual Modifier Mappings fr om the Ser ver

To obtain the virtual modifier map (thenodmaparray) for a subset of theys in a ley-
board description, usgkbGetkey\rtualModMap

StatusXkbGetKeyVirtualM odM ap(dpy; first, num xkb)

Display * dpy, [* connection to seer */

unsigned int first, /* keycode of first ky to fetch */

unsigned int numn [* # keys for which virtual mod maps are desired */
XkbDescPtr xkhby /* Xkb description where results will be placed */

XkbGetkeyMrutalModmapsends a request to the server to obtain the virtual modifier
mappings fonumkeys on the keyboard starting with Kagt. It waits for a reply and
returns the virtual modifier mappings in therver>vmodmaparray ofxkb. If successful,
XkbGetkeyMirtualModMap returnsSuccess. Thexkb parameter must be a pointer to a
valid Xkb keyboard description

If the servermap in thexkb parameter has not been allocatéklyGetkeyMrtualModMap
allocates and initializes it before obtaining the virtual modifier mappings.

If the server does not have a compatible version of Xkb, or the Xkb extension has not been
properly initialized XkbGetkeyMrtualModMap returnsBadMat ch. If numis less than 1

or greater thadkbMaxKeyCount , XkbGetkeyMrtualModMap returnsBadVal ue. If any
allocation errors occukkbGetkeyMrtualModMapreturnsBadAl | oc.

November 10, 1997 Library Version 1.0/Document Rision 1.1 166

The X Keyboard Extension 17 The Xkb Compatibility Map

17 The Xkb Compatibility Map

Asshown in Figure 17.1, the X server isnormally dealing with more than one client, each
of which may be receiving events from the keyboard, and each of which may issue
requests to modify the keyboard in some manner. Each client may be either Xkb-unaware,
Xkb-capable, or Xkb-aware. The server itself may be either Xkb-aware or Xkb-unaware.
If the server is Xkb-unaware, Xkb state and keyboard mappings are not involved in any
manner, and Xkb-aware clients may not issue Xkb requests to the server. If the server is
Xkb-aware, the server must be able to deliver events and accept requests in which the key-
board state and mapping are compatible with the mode in which the client is operating.
Consequently, for some situations, conversions must be made between Xkb state / key-
board mappings and core protocol state / keyboard mappings, and vice versa.

Xkb-aware
Keycode - Server i
Keyboard > Maintains Xkb State and Mapping,
core kb mapping, but not core kb state ‘ Core protocol

A Xkb| Xkb protocol
k‘b.\ config
mapping
Coy mal;:()gi ng XKD Xkb
kb

mapping
Xkb
config
state state¢

Y
Xkb-unaware XKkb-capable Xkb-aware
Client Client Client
Core kb Xlib Xkb-aware Xlib Xkb-aware Xlib
Xkb-unaware App Xkb-unaware App Xkb-aware App

Figure 17.1 Server Interaction with Types of Clients

In addition to these situations involving a single server, there are cases where a client that
deals with multiple servers may need to configure keyboards on different serversto be
similar and the different servers may not all be Xkb-aware. Finally, a client may be deal-
ing with descriptions of keyboards (files, and so on) that are based on core protocol and
therefore may need to be able to map these descriptions to Xkb descriptions.

An Xkb-aware server maintains keyboard state and mapping as an Xkb keyboard state and
an Xkb keyboard mapping plus a compatibility map used to convert from Xkb compo-
nents to core components and vice versa. In addition, the server also maintains a core key-
board mapping that approximates the Xkb keyboard mapping. The core keyboard
mapping may be updated piecemeal, on a per-key basis. When the server receives a core
protocol ChangeKeyboar dMappi ng or Set Modi f i er Mappi ng request, it updates its
core keyboard mapping, then uses the compatibility map to update its Xkb keyboard map-

November 10, 1997 Library Version 1.0/Document Revision 1.1 167

The X Keyboard Extension 17 The Xkb Compatibility Map

ping. When the server receivesXkbSet Map request, it updates those portions of its

Xkb keyboard mapping specified by the request, then uses its compatibility map to update
the corresponding parts of its core keyboard map. Consequently, the server’'s Xkb key-
board map and also its core keyboard map may contain components that were set directly
and others that were computed. Figure 17.2 illustrates these relationships.

Note The core kyboard map is contained only in the srwot in ary client-side data
structures.

Xkb State

Base Modifiers and Group— Effective o
Locked Modifiers and Group—+—® Modifiers =7 L Compatibility State
Latched Modifiers and Group- and Group — Cgmpatli)_g[tly_([L%oklgps?t?te
i ompa rab State
Core Pointer Button State LookupState- J—> patibility

— Grab State TJ|

ServerinternalModifiers =
IgnoreLocksModifiers
IgnoreGroupLock —

Compatibility Map
Explicit Override Controls

o

Xkb Keyboard Map - Core Keyboard Ma|

Figure 17.2 Server Derivation of State and Keyboard M apping Components

There are three kinds of compatibility transformations made by the server:
1. Xkb Stateto Core State

Keyboard state information reported to a client in the state field of various core events
may be translated from the Xkb keyboard state maintained by the server, which
includes a group number, to core protocol state, which does not.

In addition, whenever the Xkb state is retrieved,dirgpat_state,

compat_grab_mods, andcompat_lookup_mods fields of theXkbSt at eRec returned
indicate the result of applying the compatibility map to the current Xkb state in the
server.

2. CoreKeyboard Mapping to Xkb Keyboard Mapping

After core protocol requests received by the server to change the keyboard mapping
(ChangeKeyboar dvappi ng andSet Modi f i er Mappi ng) have been applied to the
server’s core keyboard map, the results must be transformed to achieve an equivalent
change of the Xkb keyboard mapping maintained by the server.

3. Xkb Keyboard Mapping to Core Keyboard M apping

After Xkb protocol requests received by the server to change the keyboard mapping
(XkbSet Map) have been applied to the server's Xkb keyboard map, the results are

November 10, 1997 Library Version 1.0/Document Rision 1.1 168

The X Keyboard Extension 17 The Xkb Compatibility Map

17.1

transformed to achieve an approximately equivalent change to the core keyboard map-
ping maintained by the server.

This chapter discusses how a client may modify the compatibility map so that subsequent
transformations have a particular result.

The XkbCompatMap Structure

All configurable aspects of mapping Xkb state and configuration to and from core proto-
col state and configuration are defined by a compatibility map, containedXkb&m

pat Map structure; plus a set of explicit override controls used to prevent particular
components of type 2 (core-to-Xkb keyboard mapping) transformations from automati-
cally occurring. These explicit override controls are maintained in a separate data structure
discussed in section 16.3.

Thecompat member of an Xkb keyboard descriptioklDescRec) points to the
XkbConpat Map structure:

typedef struct _XkbCompatMapRec {
XkbSyminterpretPtr sym_interpret; /* symbol based &y semantics*/

XkbModsRec groups[XkbNumKbdGroups]; [* group => madifier map */
unsigned short num_si; [* # structures used isym_interpret */
unsigned short size_si; [* # structures allocated sym interpret */

} XkbCompatM apRec, *XkbCompatMapPtr;

compat ﬁ

sym_interpret *
groups|O] Group
groups[1] compatibility 0
maps
XkbDescRec groups[2]
groups|3]
num_si num_si-1
size_si
XkbCompatMapRec size_si- 1

XkbSyminterpretRec(s)

Figure 17.3 Xkb Compatibility Data Structures

The subsections that follow discuss how the compatibility map and explicit override con-
trols are used in each of the three cases where compatibility transformations are made.

17.1.1 Xkb State to Core Protocol State Transformation

As shown in Figure 17.3, there are fguoup compatibility maps (contained irgroups
[0..3]) in theXkbConpat MapRec structure, one per possible Xkb group. Each group com-
patibility map is a modifier definition (see section 7.2 for a description of modifier defini-

November 10, 1997 Library Version 1.0/Document Rision 1.1 169

The X Keyboard Extension 17 The Xkb Compatibility Map

tions). Themask component of the definition specifies which real modifiers should be set
in the core protocol state field when the corresponding group is active. Because only one
group is active at any one time, only one of the four possible transformations is ever
applied at any one point in time. If the device described bykbBescRec does not sup-

port four groups, the extra groups fields are present, but undefined.

Normally, the Xkb-aware server reports keyboard state ig@teemember of events such
as aKeyPr ess event andut t onPr ess event, encoded as follows:

bits meaning

15 0

13-14 Group index
8-12 Pointer Buttons
0-7 Modifiers

For Xkb-unaware clients, only core protocol keyboard information may be reported.
Because core protocol does not define the group index, the group index is mapped to mod-
ifier bits as specified by thgroupsgroup index] field of the compatibility map (the bits

set in the compatibility map are ORed into bits 0-7 of the state), and bits 13-14 are
reported in the event as zero.

17.1.2 Core Keyboard Mapping to Xkb Keyboard Mapping Transformation

When a core protocol keyboard mapping request is received by the server, the server’'s
core keyboard map is updated, and then the Xkb map maintained by the server is updated.
Because a client may have explicitly configured some of the Xkb keyboard mapping in the
server, this automatic regeneration of the Xkb keyboard mapping from the core protocol
keyboard mapping should not modify any components of the Xkb keyboard mapping that
were explicitly set by a client. The client must set explicit override controls to prevent this
from happening (see section 16.3). The core-to-Xkb mapping is done as follows:

1. Map the symbols from the keys in the core keyboard map to groups and symbols on
keys in the Xkb keyboard map. The core keyboard mapping is of fixed width, so each
key in the core mapping has the same number of symbols associated with it. The Xkb
mapping allows a different number of symbols to be associated with each key; those
symbols may be divided into a different number of groups (1-4) for each key. For each
key, this process therefore involves partitioning the fixed number of symbols from the
core mapping into a set of variable-length groups with a variable number of symbols
in each group. For example, if the core protocol map is of width five, the partition for
one key might result in one group with two symbols and another with three symbols.
A different key might result in two groups with two symbols plus a third group with
one symbol. The core protocol map requires at least two symbols in each of the first
two groups.

la.For each changed key, determine the number of groups represented in the new core
keyboard map. This results in a tentative group count for each key in the Xkb map.

1b.For each changed key, determine the number of symbols in each of the groups
found in step 1la. There is one explicit override control associated with each of the
four possible groups for each Xkb k&xpl i ci t KeyTypel through
Expl i ci t KeyTyped4. If no explicit override control is set for a group, the number
of symbols used for that group from the core map is two. If the explicit override
control is set for a group on the key, the number of symbols used for that Xkb

November 10, 1997 Library Version 1.0/Document Rision 1.1 170

The X Keyboard Extension 17 The Xkb Compatibility Map

1c.

1d.

le.

group from the core map is the width of the Xkb group with one exception:
because of the core protocol requirement for at least two symbolsin each of groups
one and two, the number of symbols used for groups one and two is the maximum
of 2 or the width of the Xkb group.

For each changed key, assign the symbolsin the core map to the appropriate group
on the key. If the total number of symbols required by the Xkb map for a particular
key needs more symbols than the core protocol map contains, the additional sym-
bols are taken to be NoSynbol keysyms appended to the end of the core set. If the
core map contains more symbols than are needed by the Xkb map, trailing sym-
bolsin the core map are discarded. In the absence of an explicit override for group
one or two, symbols are assigned in order by group; the first symbolsin the core
map are assigned to group one, in order, followed by group two, and so on. For
example, if the core map contained eight symbols per key, and a particular Xkb
map contained 2 symbols for G1 and G2 and three for G3, the symbols would be
assigned as (G isgroup, L isshift level):

GlL1G1L2G2L1 G2L2 G3L1 G3L2 G3L3

If an explicit override control is set for group one or two, the symbols are taken
from the core set in a somewhat different order. The first four symbols from the
core set are assigned to G1L 1, G1L2, G2L1, G2L 2, respectively. If group one
requires more symbols, they are taken next, and then any additional symbols
needed by group two. Group three and four symbols are taken in complete
sequence after group two. For example, a key with four groups and three symbols
in each group would take symbols from the core set in the following order:

GlL1G1L2G2L1 G2L2 G1L3 G2L3 G3L1 G3L2 G3L3 G4L1 GAL2 G4L3

As previously noted, the core protocol map requires at lease two symbolsin
groups one and two. Because of this, if an explicit override control for an Xkb key
is set and group one and / or group two is of width one, it is not possible to gener-
ate the symbols taken from the core protocol set and assigned to position G1L2
and/ or G2L2.

For each group on each changed key, assign akey type appropriate for the symbols
in the group.

For each changed key, remove any empty or redundant groups.

At this point, the groups and their associated symbols have been assigned to the corre-
sponding key definitionsin the Xkb map.

2. Apply symbol interpretations to modify key operation. This phase is completely
skipped if the Expl i ci t 1 nt er pr et override control bitisset in the explicit controls
mask for the Xkb key (see section 16.3).

2a. For each symbol on each changed key, attempt to match the symbol and modifiers

from the Xkb map to a symbol interpretation describing how to generate the sym-
bol.

2b. When amatch isfound in step 2a, apply the symbol interpretation to change the

semantics associated with the symbol in the Xkb key map. If no match isfound,
apply a default interpretation.

November 10, 1997 Library Version 1.0/Document Revision 1.1 171

The X Keyboard Extension 17 The Xkb Compatibility Map

The symbol interpretations used in step 2 are configurable and may be specified using
XkbSymi nt er pr et Rec structures referenced by thegn interpret field of anXxkbCom
pat MapRec (see Figure 17.3).

Symbol Interpretations — the XkbSymiInterpretRec Structure

Symbol interpretations are used to guide the X server when it modifies the Xkb keymap in
step 2. An initial set of symbol interpretations is loaded by the server when it starts. A cli-
ent may add new ones usiKgbhSetCompatMap (see section 17.4).

Symbol interpretations result in key semantics being set. When a symbol interpretation is
applied, the following components of server key event processing may be modified for the
particular key involved:

Virtual modifier map

Auto repeat

Key behavior (may be set ¥xbKB Lock)
Key action (see section 16.1)

TheXkbSymni nt er pr et Rec structure specifies a symbol interpretation:

typedef struct {
KeySym sym; I* keysym of interest oNULL */
unsigned char flags; /* XkbSI _Aut oRepeat, XkbSI Locki ngKey */
unsigned char match; * specifies har mods is interpreted */
unsigned char mods; I* modifier bits, correspond to eight real modifiers */
unsigned char virtual_mod; /* 1 modifier to add to & virtual mod map */
XkbAnyAction act; * action to bind to symbol position orak*/

} XkbSymlnterpretRec,*XkbSymiInterpretPtr;

If symis notNULL, it limits the symbol interpretation to keys on which that particular key-
sym is selected by the modifiers matching the criteria specifi@btisyandmatch. If sym

is NULL, the interpretation may be applied to any symbol selected on a key when the mod-
ifiers match the criteria specified lmypds andmatch.

match must be one of the values shown in Table 17.1 and specifies how the real modifiers
specified inmods are to be interpreted.

Table17.1 Symbol Interpretation Match Criteria

Match Criteria Value Effect

XkbSI _NoneCf (0) None of the bits that are onnods can be set,ut
other bits can be.

XkbSI _AnyCf O None (1) Zero or more of the bits that are omiods can be set,
as well as others

XkbSl _AnyF (2) One or more of the bits that are ominds can be set, as
well as ay others.

XkbSI Al O (3) All of the bits that are on imods must be set, but oth-
ers may be set as well

XkbSl Exactly 4) All of the bits that are on imods must be set, and no

other bits may be set

In addition to the above bitsjatch may contain thkbSl _Level Chenl y bit, in which
case the modifier match criteria specifiedniygls andmatch applies only ifsymis in level

November 10, 1997 Library Version 1.0/Document Rision 1.1 172

The X Keyboard Extension 17 The Xkb Compatibility Map

one of its group; otherwisenodsandmatchare ignored and the symbol matches a condi-
tion where no modifiers are set.

#define XkbSI_LeelOneOnly (0x80) /* use mods + match only if sym isvid 1 */
If no matching symbol interpretation is found, the server uses a default interpretation

where:
sym= 0
flags= XkbSl _Aut oRepeat
matd = XkbSl _AnyCr O None
mods= 0
virtual_ mod= XkbNohbdi fi er
act= SA NoAction

When a matching symbol interpretation is found in step 2a, the interpretation is applied to
modify the Xkb map as follows.

Theactfield specifies a single action to be bound to the symbol position; any key event
that selects the symbol causes the action to be taken. Valid actions are defined in section
16.1.

If the Xkb keyboard map for the key does not havexid i ci t VMbdMap control set, the
XkbSl _Level OneOnl y bit and symbol position are examined. If the

XkbSl _Level OneOnl y bit is not set ifmatchor the symbol is in position G1L1, the
virtual_modfield is examined. I¥irtual_modis notXkbNoMbdi fi er, virtual_modspecifies
a single virtual modifier to be added to the virtual modifier map for thevityal_modis
specified as an index in the range [0..15].

If the matching symbol is in position G1L1 of the key, two bits in the flags field poten-
tially specify additional behavior modifications:

#define XkbSI_AutoRepeat (1<<0) /* key repeats if sym is in position G1L1 */
#define XkbSI_Lockingkey (1<<1) /* setkKB _Lock behaior if sym is in psn G1L1 */

If the Xkb keyboard map for the key does not havéid i ci t Aut oRepeat control

set, its auto repeat behavior is set based on the value XXk Aut oRepeat bit. If
theXkbSl _Aut oRepeat bit is set, the auto-repeat behavior of the key is turned on; other-
wise, it is turned off.

If the Xkb keyboard map for the key does not havéiid i ci t Behavi or control set,
its locking behavior is set based on the value o)Xi{i¥Sl _Locki ngKey bit. If

XkbSl _Locki ngKey is set, the key behavior is sek®_Lock; otherwise, it is turned off
(see section 16.3).

17.1.3 Xkb Keyboard Mapping to Core Keyboard Mapping Transformations

Whenever the server processes Xkb requests to change the keyboard mapping, it discards
the affected portion of its core keyboard mapping and regenerates it based on the new Xkb

mapping.

When the Xkb mapping for a key is transformed to a core protocol mapping, the symbols
for the core map are taken in the following order from the Xkb map:

G1L1 G1L2 G2L1 G2L2 G1L3-n G2L3-n G3L1-n G4L1-n

November 10, 1997 Library Version 1.0/Document Rision 1.1 173

The X Keyboard Extension 17 The Xkb Compatibility Map

17.2

If group one is of width one in the Xkb map, G1L2 is taken to be NoSymbol; similarly, if
group two is of width one in the Xkb map, G2L2 is taken to be NoSymbol.

If the Xkb key map for a particular key has fewer groups than the core keyboard, the sym-
bols for group one are repeated to fill in the missing core components. For example, an
Xkb key with a single width-three group would be mapped to a core mapping counting
three groups as:

G1L1 G1L2 G1L1 G1L2 G1L3 G1L3 G1L1 G1L2 G1L3

When a core keyboard map entry is generated from an Xkb keyboard map entry, a modi-
fier mapping is generated as well. The modifier mapping contains all of the modifiers
affected by any of the actions associated with the key combined with all of the real modi-
fiers associated with any of the virtual modifiers bound to the key. In addition, if any of
the actions associated with the key affect any component of the keyboard group, all of the
modifiers in themask field of all of the group compatibility maps are added to the modi-

fier mapping as well. While axkbSA | SOLock action can theoretically affect any mod-
ifier, if the Xkb mapping for a key specifies #kbSA | SCLock action, only the

modifiers or group that are set by default are added to the modifier mapping.

Getting Compatibility Map Components From the Server

UseXkbGetCompatMap to fetch any combination of the current compatibility map com-
ponents from the server. When another client modifies the compatibility map, you are
notified if you have selected fokbConpat MapNot i fy events (see section 17.8kb-
GetCompatMap is particularly useful when you receive an event of this type, as it allows
you to update your program’s version of the compatibility map to match the modified ver-
sion now in the server. If your program is dealing with multiple servers and needs to con-
figure them all in a similar manner, the updated compatibility map may be used to
reconfigure other servers.

Note To male a complete matching configuration you must also updateplieieoverride
components of the sewstate.

StatusXkbGetCompatM ap(display, which, xkb)

Display * display; /* connection to seer */
unsigned int which; /* mask of compatibility map components to fetch */
XkbDescRec * xkb; /* keyboard description where results placed */

XkbGetCompatMap fetches the components of the compatibility map specifigdhich

from the server specified lysplay and places them in tliempat structure of the key-
board descriptiomkb. Valid values fowhich are an inclusive OR of the values shown in
Table 17.2.

Table 17.2 Compatibility Map Component Masks

Mask Value Affecting

XkbSym nt er pMask (1<<0) Symbol interpretations

XkbG oupConpat Mask (1<<1) Group maps

XkbAl | Conpat Mask (0x3) All compatibility map components

If no compatibility map structure is allocatedxib upon entry XkbGetCompatMap allo-
cates one. If one already exists, its contents are overwritten with the returned results.

November 10, 1997 Library Version 1.0/Document Rision 1.1 174

The X Keyboard Extension 17 The Xkb Compatibility Map

XkbGetCompatMafetches compatibility map information for the device specified by the
device_speftield of xkh. Unless you have specifically modified this field, it is the default
keyboard deviceXxkbGetCompatMapeturnsSuccess if successfulBadAl | oc if it is

unable to obtain necessary storage for either the return values or workBsyide ch if
thedpyfield of thexkbargument is nomNULL and does not match thiésplayargument,
andBadLengt h under certain conditions caused by server or Xkb implementation errors.

17.3 Using the Compatibility Map

Xkb provides several functions that make it easier to apply the compatibility map to con-
figure a client-side Xkb keyboard mapping, given a core protocol representation of part or
all of a keyboard mapping. Obtain a core protocol representation of a keyboard mapping
from an actual server (by usiXgsetkeyboadMapping for example), a data file, or some
other source.

To update a local Xkb keyboard map to reflect the mapping expressed by a core format
mapping by calling the functiokbUpdateMapFomCoe.

Bool XkbUpdateM apFromCor e(xkh, first_ley, num_leys map_widthcore_leysymschange9

XkbDescPtr xkby /* keyboard description to update */
KeyCode first_ley; /* keycode of first ky description to update */
int num_leys /* number of ley descriptions to update */

int map_width /* width of core protocol kymap */

KeySym * core_leysyms /* symbols in core protocoldgmap */
XkbChangesPtr changes [* backfilled with changes made to Xkb */

XkbUpdateMapFomCok interprets input argument information representing a keyboard
map in core format to update the Xkb keyboard description pasgkd @nly a portion

of the Xkb map is updated — the portion corresponding to keys with keycodes in the
rangefirst_ley throughfirst_lkey + num_leys- 1. If XkbUpdateMapFomCoe is being called

in response to Bappi ngNot i fy event first_ley andnum_leysare reported in thigap-

pi ngNot i fy event.core_keysymscontains the keysyms corresponding to the keycode
range being updated, in core keyboard description arthgy. widthis the number of key-
syms per key irore_lkeysyms Thus, the firstnap_widthentries incore_lkeysymsare for

the key with keycodérst_ley, the nexinap_widthentries are for kefyrst_ley + 1, and so

on.

In addition to modifying the Xkb keyboard mappingcki, XkbUpdateMapFomCoe
backfills the changes structure whose address is passieangesto indicate the modifi-
cations that were made. You may then dsmngesin subsequent calls suchXdsbSet-
Map, to propagate the local modifications to a server.

November 10, 1997 Library Version 1.0/Document Rision 1.1 175

The X Keyboard Extension 17 The Xkb Compatibility Map

When dealing with core keyboard mappings or descriptions, it is sometimes necessary to
determine the Xkb key types appropriate for the symbols bound to a key in a core key-
board mapping. Us¥kbKeyTypesFor CoreSymbols for this purpose:

int XkbK eyTypesFor CoreSymbols(map_width, core_syms, protected, types inout,
xkb_syms rtrn)

XkbDescPtr xkb; /* keyboard description in which to place symbols*/

int map_width; /* width of core protocol &ymap inxkb_syms rtrn */

KeySym * core_syns; * core protocol format array ofégSyms */

unsigned int protected; I* explicit key types */

int * types inout; /* backfilled with the canonical types bound to groups one and

two for the ley */
KeySym * xkb _syms rtrn; /* backfilled with symbols bound to thekin the Xkb
mapping */

XkbKeyTypesFor CoreSymbols expands the symbols aore_syms and types itypes_inout
according to the rules specified in section 12 of the core protocol, then chooses canonical
key types (canonical key types are defined in section 15.2.1) for groups 1 and 2 using the
rules specified by the Xkb protocol and places therklinsyms rtrn, which will be

non-NULL.

A core keymap is a two-dimensional array of keysyms. Iinfiges width columns and
max_key_code rows. XkbKeyTypesFor CoreSymbols takes a single row from a core key-

map, determines the number of groups associated with it, the type of each group, and the
symbols bound to each group. The return value is the number of grypgssinout has

the types for each group, axkb_syms rtrn has the symbols in Xkb order (that is, groups

are contiguous, regardless of size).

protected contains the explicitly protected key types. There is one explicit override con-
trol associated with each of the four possible groups for each Xkb key,

Expl i ci t KeyTypel throughExpl i ci t KeyType4; protected is an inclusive OR of

these controlanap width is the width of the core keymap and is not dependent on any
Xkb definitions.types inout is an array of four type indices. On inpiypes _inout con-

tains the indices of any types already assigned to the key, in case they are explicitly pro-
tected from change.

Upon returntypes inout contains any automatically selected (that is, canonical) types
plus any protected types. Canonical types are assigned to all four groups if there are
enough symbols to do so. The four entrietyjpes_inout correspond to the four groups for
the key in question.

If the groups mapping does not change, but the symbols assigned to an Xkb keyboard
compatibility map do change, the semantics of the key may be modified. To apply the new
compatibility mapping to an individual key to get its semantics updateXkbs@ply-

CompatMapToKey.

Bool XkbApplyCompatM apToK ey(xkb, key, changes)
XkbDescPtr xkb; /* keyboard description to be updated */
KeyCode key; /* key to be updated */
XkbChangesPtr changes; /* notes changes to the Xklepboard description */

XkbApplyCompatMapToKey essentially performs the operation described in section 17.1.2
to a specific key. This updates the behavior, actions, repeat status, and virtual modifier
bindings of the key.

November 10, 1997 Library Version 1.0/Document Rision 1.1 176

The X Keyboard Extension 17 The Xkb Compatibility Map

17.4 Changing the Ser ver’'s Compatibility Map

To modify the server’'s compatibility map, first modify a local copy of the Xkb compati-
bility map, then calXkbSetCompatMap. You may allocate a new compatibility map for
this purpose usini¥kbAllocCompatMap (see section 17.6). You may also use a compati-
bility map from another server, although you need to adjustathee_spec field in the
XkbDescRec accordingly. Note that symbol interpretations in a compatibility map
(sym_interpret, the vector oXkbSym nt er pr et Rec structures) are also allocated using
this same function.

Bool XkbSetCompatM ap(display, which, xkb, update_actions)

Display * display; [* connection to seer */

unsigned int which; /* mask of compat map components to set */
XkbDescPtr xkb; /* source for compat map components */
Bool update_actions; /* Tr ue => apply to serer’s keyboard map */

XkbSetCompatMap copies compatibility map information from the keyboard description
in xkb to the server specified display’s compatibility map for the device specified by the
device_spec field of xkb. Unless you have specifically modified this field, it is the default
keyboard devicewhich specifies the compatibility map components to be set, and is an
inclusive OR of the bits shown in Table 17.2.

After updating its compatibility map for the specified devicepidate actionsis Tr ue,

the server applies the new compatibility map to its entire keyboard for the device to gener-
ate a new set of key semantics, compatibility state, and a new core keyboard map. If
update_actionsis Fal se, the new compatibility map is not used to generate any modifica-
tions to the current device semantics, state, or core keyboard map. One reason for not
applying the compatibility map immediately would be if one server was being configured
to match another on a piecemeal basis; the map should not be applied until everything is
updated. To force an update at a later time XbSetCompatMap specifyingwhich as

zero andupdate_actions asTr ue.

XkbSetCompatMap returnsTr ue if successful an#fal se if unsuccessful. The server may
report problems it encounters when processing the request subsequently via protocol
errors.

To add a symbol interpretation to the list of symbol interpretations kla@onpat Rec,
useXkbAddSyminterpret.

XkbSyminterpretPtKkbAddSymlnterpret(xkb, si, updateMap, changes)

XkbDescPtr xkb; /* keyboard description to be updated */
XkbSyminterpretPtr si; I* symbol interpretation to be added */
Bool updateMap; /* Tr ue=>apply compatibility map todys */
XkbChangesPtr changes; /* changes are put here */

XkbAddSyminterpret addssi to the list of symbol interpretationsxib. If updateMap is

Tr ue, it (re)applies the compatibility map to all of the keys on the keyboararnties is
nonNULL, it reports the parts of the keyboard that were affected (unpdateMap is

Tr ue, not much changes¥kbAddSyminterpret returns a pointer to the actual new symbol
interpretation in the list dlULL if it failed.

November 10, 1997 Library Version 1.0/Document Rision 1.1 177

The X Keyboard Extension 17 The Xkb Compatibility Map

17.5 Tracking Changes to the Compatibility Map

The server automatically generabgppi ngNot i f y events when the keyboard mapping
changes. If you wish to be notified of changes to the compatibility map, you should select
for XkbConpat MapNot i fy events. If you select fofkbMapNot i fy events, you no

longer receive the automatically genera@g@pi ngNot i fy events. If you subsequently
deselecXkbMapNot i f yEvent delivery, you again receivdappi ngNot i fy events.

To receivexkbConpat MapNot i fy events under all possible conditions, XkbSelect-
Events (see section 4.3) and paddConpat MapNot i f yMask in bothbits to _change
andvalues for_hits.

To receivexkbConpat MapNot i fy events only under certain conditions, X&bSel ect-
EventDetails usingXkbConpat MapNot i f y as thesvent_type and specifying the desired
map changes ihits to_change andvalues for_bits using mask bits from Table 17.2.

Note that you are notified of changes you make yourself, as well as changes made by other
clients.

The structure for thi#gkbConpat MapNot i f yEvent is:

typedef struct {
int type; I* Xkb extension basevent code */
unsigned long serial; [* X server serial number forvent */
Bool send_gent; /* Tr ue => synthetically generated */
Display * display; [* serner connection wherevent generated */
Time time; /* sener time wheneent generated */
int xkb_type; /* XkbConpat MapNot i fy */
int device; /* Xkb device ID, will not bexkbUseCor eKbd */
unsigned int changed_group&;number of group maps changed */
int first_si; /* index to 1st changed symbol interpretation */
int num_si; /* number of changed symbol interpretations */
int num_total_si; /* total number of alid symbol interpretations */

} XkbCompatMapNotifyEvent;

changed_groupsis the number of group compatibility maps that have changed. If you are
maintaining a corresponding copy of the compatibility map, or get a fresh copy from the
server usingKkbGetCompatMap, changed_groups references

groups[0..changed_groups-1] in theXkbConpat MapRec structure.

first_s is the index of the first changed symbol interpretatiom si is the number of
changed symbol interpretations, anan _total_si is the total number of valid symbol
interpretations. If you are maintaining a corresponding copy of the compatibility map, or
get a fresh copy from the server uskigpGetCompatMap, first_si, num s, and

num _total_si are appropriate for use with thempat.sym_interpret vector in this struc-

ture.

November 10, 1997 Library Version 1.0/Document Rision 1.1 178

The X Keyboard Extension 17 The Xkb Compatibility Map

17.6 Allocating and Freeing the Compatibility Map

If you are modifying the compatibility map, you need to allocate a new compatibility map
if you do not already have one available. To do so, use XkbAllocCompatMap.

Status XkbAllocCompatM ap(xkb, which, num si)

XkbDescPtr xkb; /* keyboard description in which to allocate compat map */
unsigned int which; /* mask of compatibility map componentsto allocate */
unsignedint num_si; /* number of symbol interpretations to alocate */

xkb specifies the keyboard description for which compatibility maps are to be allocated.
The compatibility map is the compat field in this structure.

which specifies the compatibility map components to be allocated (see XkbGetCompat-
Map, in section 17.2). which is an inclusive OR of the bits shown in Table 17.2.

num_si specifiesthe total number of entriesto allocate in the symbol interpretation vector
(xkb.compat.sym_interpret).

Note that symbol interpretations in a compatibility map (the sym_interpret vector of Xkb-
Sym nt er pr et Rec structures) are a so allocated using this same function. To ensure that
there is sufficient space in the symbol interpretation vector for entries to be added, use
XkbAllocCompatMap specifying which as XkbSymi nt er pr et Mask and the number of
free symbol interpretations needed in num _si.

XkbAllocCompatMap returns Success if successful, BadMat ch if xkb is NULL, or Bad-
Al | oc if errors are encountered when attempting to allocate storage.

To free an entire compatibility map or selected portions of one, use XkbFreeCompatMap.
void XkbFreeCompatM ap(xkb, which, free_map)

XkbDescPtr xkb; /* Xkb description in which to free compatibility map */
unsigned int which; /* mask of compatibility map componentsto free*/
Bool free_ map; /* Tr ue => free XkbConpat Map structure itself */

which specifies the compatibility map componentsto be freed (see XkbGetCompatMap, in
section 17.2). which is an inclusive OR of the bits shown in Table 17.2

free_map indicates whether the XkbConpat Map structure itself should be freed. If
free_ mapisTr ue, which isignored, al non-NULL compatibility map components are
freed, and the compat field in the XkbDescRec referenced by xkb is set to NULL.

November 10, 1997 Library Version 1.0/Document Revision 1.1 179

The X Keyboard Extension 18 Symbolic Names

18

18.1

Symbolic Names

The core protocol does not provide any information to clients other than that actually used
to interpret events. This makes it difficult to write an application that presents the key-
board to a user in an easy-to-understand way. Such applications have to examine the ven-
dor string and keycodes to determine the type of keyboard connected to the server and
then examine keysyms and modifier mappings to determine the effects of most modifiers
(theShi ft, Lock andCont r ol modifiers are defined by the core protocol but no seman-
tics are implied for any other modifiers).

To make it easier for applications to present a keyboard to the user, Xkb supports sym-
bolic names for most components of the keyboard extension. Most of these symbolic
names are grouped into th@mes component of the keyboard description.

The XkbNamesRec Structure

The names component of the keyboard description is defined as follows:

#define XkbKeyNameLength 4

#define XkbKeyNumVirtualMods 16

#define XkbKeyNumindicators 32

#define XkbKeyNumKbdGroups 4

#define XkbMaxRadioGroups 32

typedef struct {
char name[XkbkeyNameLength]; /* symbolic key names */

} XkbKeyNameRec,*XkbK eyNamePtr;

typedef struct {
char real[XkbKeyNameLength]; /* this key name must be in theks array */
char alias[XkbKeyNameLength]; /* symbolic key name as alias for thek*/

} XkbKeyAliasRec,*XkbK eyAliasPtr;
typedef struct _XkbNamesRec {

Atom keycodes; /* identifies range and meaning adkcodes */

Atom geometry; /* identifies plysical location, size, and shape ef& */
Atom symbols; /* identifies the symbols logically bound to the keys
Atom types; /* identifies the set of key types */

Atom compat; /* identifies actions for keys using core protocol */
Atom vmods[XkbNum\irtualMods];/* symbolic namesor virtual modifiers */
Atom indicators[XkbNumIndicators}* symbolic namesor indicators */

Atom groups[XkbNumKbdGroups]* symbolic names for keyboard groups */
XkbKeyNamePtrkeys; I* symbolic key namarray*/

XkbKeyAliasPtr key aliases; /* real/alias symbolic name pairs array */

Atom * radio_groups; /* radio group name array */

Atom phys_symbols;/* identifies the symbols engraved on the keybdsard
unsigned char num_leys; I* number of leys in thekeys array */

unsigned char num_ley_aliased’ number of keys in thekey aliases array */

unsigned short num_ug; /* number of radio groups */

} XkbNamesRec,*XkbNamesPtri*

Thekeycodes name identifies the range and meaning of the keycodes returned by the key-
board in question. Thgeometry name, on the other hand, identifies the physical location,

November 10, 1997 Library Version 1.0/Document Rision 1.1 180

The X Keyboard Extension 18 Symbolic Names

size and shape of the various keys on the keyboard. As an example to distinguish between
these two names, consider function keys on PC-compatible keyboards. Function keys are
sometimes above the main keyboard and sometimes to the left of the main keyboard, but
the same keycode is used for the key that is logically F1 regardless of physical position.
Thus, all PC-compatible keyboards share a similar keycodes name but may have different
geometry names.

Note The keycodes name is intended to beemyvgeneral description of theyjcodes
returned by adyboard; a singledycodes name might ger keyboards with difering
numbers of kys provided all keys hare the same semantics when presentt.ecam-
ple, 101 and 102dy PC lkeyboards might use the same name. In these cases, applica-
tions can use thesitboardgeometry name to determine which subset of the named
keycodes is in use.

Thesymbols name identifies the symbols logically bound to the keys. The symbols name
is a human or application-readable description of the intended locale or usage of the key-
board with these symbols. Thhys symbols name, on the other hand, identifies the sym-
bols actually engraved on the keyboard. Given thissyimbols name angbhys symbols

names might be different. For example, the description for a keyboard that has English US
engravings, but that is using Swiss German symbols might hatwe asymbols name of
“en_US” and asymbols name of “de_CH.”

Thetypes name provides some information about the set of key types (see section 15.2)
that can be associated with the keyboard. In addition, each key type can have a name, and
each shift level of a type can have a name. Although these names are stored in the map
description with each of the types, they are accessed using the same methods as the other
symbolic names.

Thecompat name provides some information about the rules used to bind actions to keys
that are changed using core protocol requests.

Xkb provides symbolic names for each of the 4 keyboard groups, 16 virtual modifiers, 32
keyboard indicators, and 4 keyboard groups. These names are heldmodkgndica-
tors, andgroups fixed-length arrays.

Each key has a four-byte symbolic name. All of the symbolic key names are held in the
keys array, anchum_keys reports the number of entries that are in the keys array. For each
key, the key name links keys with similar functions or in similar positions on keyboards
that report different keycodes. For example,Rhdcey may emit keycode 23 on one key-
board and keycode 86 on another. By naming this key “FK01” on both keyboards, the
keyboard layout designer can reuse parts of keyboard descriptions for different keyboards.

Key aliases allow the keyboard layout designer to assign multiple key names to a single
key. This allows the keyboard layout designer to refer to keys using either their position or
their “function.” For example, a keyboard layout designer may wish to refer to the left
arrow key on a PC keyboard using the ISO9995-5 positional specification of A31 or using
the functional specification of LEFT. They_aliases field holds a variable-length array

of real and alias key name pairs, and the total number of entrieskieytlabases array is

held innum key aliases. For each real and alias key name pairyéakfield refers to the

a name in the keys array, and #hias field refers to the alias for that key. Using the pre-
vious example, the keyboard designer may use the name A3l in the keys array, but also
define the name LEFT as an alias for A31 inkie aliases array.

November 10, 1997 Library Version 1.0/Document Rision 1.1 181

The X Keyboard Extension 18 Symbolic Names

Note Key aliases defined in the geometry component @fyadard mapping (see Chapter
13) override those defined in thejcodes component of the sendatabase, which
are stored in thXkbNanmesRec (xkb->names). Therefore, consider thekaliases
defined by the geometry before considerieg &liases supplied by thdkbNarres-
Rec.

A radio group is a set of keys whose behavior simulates a set of radio buttons. Once a key
in a radio group is pressed, it stays logically depressed until another key in the group is
pressed, at which point the previously depressed key is logically released. Consequently,
at most one key in a radio group can be logically depressed at one time.

Each radio group in the keyboard description can have a name. These names are held in
the variable-length arrayadio_groups, andnum rg tells how many elements are in the
radio_groups array.

18.2 Symbolic Names Masks

Xkb provides several functions that work with symbolic names. Each of these functions
uses a mask to specify individual fields of the structures described above. These masks
and their relationships to the fields in a keyboard description are shown in Table 18.1.

Table 18.1 Symbolic Names Masks

Mask Bit value Repoard
Component

XkbKeycodesNameMask (1<<0) Xkb->names keycodes
XkbGeometryNameMask (1<<1) Xkb->names geometry
XkbSymbolsNameMask (1<<2) Xkb->names symbols
XkbPhysSymbolsNameMask (1<<3) Xkb->names phys_symbols
XkbTypesNameMask (1<<4) Xkb->names type
XkbCompatNameMask (1<<5) Xkb->names compat
XkbKeyTypeNamesMask (1<<6) Xkb->map type[*].name
XkbKTLevelNamesMask (1<<7) Xkb->map type[*].Ivl_names[*]
XkbindicatorNamesMask (1<<8) Xkb->names indicators[*]
XkbKeyNamesMask (1<<9) Xkb->names keys[*], num_keys
XkbKeyAliasesMask (1<<10) Xkb->names key aliases[*], num_&y aliases
XkbVirtuaIModNamesMask (1<<11) Xkb->names vmods[*]
XkbGroupNamesMask (1<<12) Xkb->names groups[*]
XkbRGNamesMask (1<<13) Xkb->names radio_groups[*], num g
XkbComponentNamesMask (0x3f) Xkb->names keycodes,

geometry,

symbols,

physical symbols,

types, and

compatibility map
XkbAl | NanmesMask (0x3fff) Xkb->names all name components

November 10, 1997

Library Version 1.0/Document Rision 1.1

182

The X Keyboard Extension 18 Symbolic Names

18.3 Getting Symbolic Names From the Server
To obtain symbolic names from the server, XkbGetNames

StatusXkbGetNames(dpy, whidch, Xk
Display * dpy; [* connection to the X seer */
unsigned int which; /* mask of names or map components to be updated */
XkbDescPtr xkb /* keyboard description to be updated */

XkbGetNameeetrieves symbolic names for the components of the keyboard extension
from the X server. Therhich parameter specifies the name components to be updated in
thexkb parameter, and is the bitwise inclusive OR of the valid names mask bits defined in
Table 18.1.

If the namedield of the keyboard descriptiotkbis NULL, XkbGetNameallocates and
initializes thenamescomponent of the keyboard description before obtaining the values
specified bywhich. If thenamedield of xkbis notNULL, XkbGetNamesbtains the values
specified bywhichand copies them into the keyboard descripX&h

If the mapcomponent of thekb parameter iNULL, XkbGetNamedoes not retrieve type
or shift level names, evenxkbKeyTypeNanesMask or XkbKTLevel NanesMask are
set inwhich.

XkbGetNamesan returrSuccess, or BadAl | oc, BadLengt h, BadMat ch, andBadl m
pl erment at i on errors.

To free symbolic names, uX&bReeNamegsee section 18.6)

18.4 Changing Symbolic Names on the Server

To change the symbolic names in the server, first modify a local copy of the keyboard
description and then use eithétbSetNamesyr, to save network traffic, usexabNa-
nmeChangesRecstructure and cakkbChangNamego download the changes to the
server XkbSetNameandXkbChangNamesan generatBadAl | oc, BadAt om

BadLengt h, BadMat ch, andBadl npl enent at i on errors.

Bool XkbSetNames(dpy, which, first_type num_types, xBb
Display * dpy; /* connection to the X seer */
unsigned int which; /* mask of names or map components to be changed */
unsigned int first_type; /* first type whose name is to be changed */
unsigned int num_types /* number of types for which names are to be changed */
XkbDescPtr xkby /* keyboard description from which names are to benak

UseXkbSetName® change many names at the same time. For each bitvdaitim Xkb-
SetNamesakes the corresponding value (or values in the case of arrays) from the key-
board descriptiomkb and sends it to the server.

Thefirst_typeandnum_typesrguments are used onlyXkbKeyTypeNanesMask or

XkbKTLevel NamesMask is set inwhich and specify a subset of the types for which the
corresponding names are to be changed. If either or both of these mask bits are set but the
specified types are illegakkbSetNameeturnsFal se and does not update any of the

names specified iwhich. The specified types are illegalikb does not include a map
component or ifirst_typeandnum_typespecify types that are not defined in the key-

board description.

November 10, 1997 Library Version 1.0/Document Rision 1.1 183

The X Keyboard Extension 18 Symbolic Names

The XkbNameChangesRec Structure

The XkbNanmeChangesRec allows applications to identify small modifications to the
symbolic names and effectively reduces the amount of traffic sent to the server:

typedef struct _XkbNameChanges {

unsigned int changed,; I* name components that have changed

unsigned chafirst_type; [* first key type with a n& name */

unsigned chanum_types; /* number of types with ne names */

unsigned chafirst_|vl; [* first key type with nev level names */

unsigned chanum_|Ivls; /* number of ley types with ne level names */

unsigned chanum_aliases; /*if key aliases changed, total number &y kliases */
unsigned chanum_qg; [* if radio groups changed, total number of radio groups */
unsigned chafirst_key; [* first key with a nev name */

unsigned chanum_leys; /* number of leys with nev names */

unsigned shodhanged vmod$* mask of virtual modifiers for which namesvieachanged */
unsigned longchanged_indicator®; mask of indicators for which names were changed */
unsigned chachanged_group#; mask of groups for which names were changed */

} XkbNameChangesRec, *XkbNameChangesPtr

The changed field specifies the name components that have changed and is the bitwise
inclusive OR of the valid names mask bits defined in Table 18.1. The rest of the fields in
the structure specify the ranges that have changed for the various kinds of symbolic
names, as shown in Table 18.2.

Table 18.2 XkbNameChanges Fields

Mask Fields Component Field
XkbKeyTypeNamesMask first_type, Xkb->map type[*].name
num_types
XkbKTLevelNamesMask first_|vl, Xkb->map type[*].Ivl_names[*]
num_Ivls
XkbKeyAliasesMask num_aliases Xkb->names key_ aliases[*]
XkbRGNamesMask num_g Xkb->names radio_groups[*]
XkbKeyNamesMask first_key, Xkb->names keys[*]
num_leys

XkbVirtualIModNamesMaskchanged vmods Xkb->names vmods[*]
XkbIndicatorNamesMask changed_indicatorsXkb->names indicators[*]
XkbGroupNamesMask changed_groups Xkb->names groups[*]

XkbChangeNames provides a more flexible method for changing symbolic names than
XkbSetNames and requires the use of ZkbNanmeChangesRec structure.

Bool XkbChangeNames(dpy, xkb, changes)
Display * dpy; /* connection to the X seer */
XkbDescPtr xkb; /* keyboard description from which names are to bernak
XkbNameChangesPtchanges, /* hames map components to be updated on theisgrv

XkbChangeNames copies any names specified dhanges from the keyboard description,
xkb, to the X server specified ldpy. XkbChangeNames aborts and returrizal se if any
illegal type names or type shift level names are specifiathdmges.

November 10, 1997 Library Version 1.0/Document Rision 1.1 184

The X Keyboard Extension 18 Symbolic Names

18.5 Tracking Name Changes

Whenever a symbolic name changes in the server’s keyboard description, the server sends
aXkbNanmesNot i fy event to all interested clients. To receive hame notify events, use
XkbSelectEvents (see section 4.3) witkkbNamesNot i f yMask in both the

bits to_change andvalues for_bits parameters.

To receive events for only specific names, XidaSel ectEventDetails. Set theavent_type
parameter tdkbNamesNot i fy, and set both thieits to_change andvalues for_bits
detail parameter to a mask composed of a bitwise OR of masks in Table 18.1.

The structure for th&kbNamesNot i f y event is defined as follows:

typedef struct {
int type; /* Xkb extension basevent code */
unsigned longerial; [* X server serial number fornvent */
Bool send_gent; [* Tr ue => synthetically generated */
Display * display; [* server connection wherevent generated */
Time time; /* sernver time when eent generated */
int xkb_type; /* XkbNanmesNot i fy */
int device; /* Xkb device ID, will not bexkbUseCor eKbd */
unsigned int changed; I* mask ofname components that have changed
int first_type; [* first key type with a ne name */
int num_types; /* number of types with ne hames */
int first_Ivl; [* first key type with nev level names */
int num_|Ivls; /* number of ley types with ne level names */
int num_aliases; /*if key aliases changed, total number &f kliases */
int num_radio_group#; if radio groups changed, total number of radio groups */

unsigned int changed_vmods#* mask of virtual modifiers for which namesvieachanged */
unsigned int changed_groupd?¥ mask of groups for which names were changed */
unsigned int changed_indicator®;mask of indicators for which names were changed */
int first_key; [* first key with a nev name */
int num_leys; /* number of keys with nev names */

} XkbNamesNatifyEvent;

Thechanged field specifies the name components that have changed and is the bitwise
inclusive OR of the valid names mask bits defined in Table 18.1. The other fields in this
event are interpreted as the like-named fields iKkdoNameChangesRec, as previously
defined.

When your application receives &bNamesNot i f y event, you can note the changed
names in a changes structure usfikhNoteNameChanges.

void XkbNoteNameChanges(old, new, wanted)

XkbNameChangesPtrold; /* XkbNarmeChanges structure to be updated */
XkbNamesNotifyEent *new; * event from which changes are to be copied */
unsigned int wanted; /* types of names for which changes are to be noted */

Thewanted parameter is the bitwise inclusive OR of the valid names mask bits shown in
Table 18.1XkbNoteNameChanges copies any changes that are reportaseimand speci-
fied in wanted into the changes record specifieddbg.

November 10, 1997 Library Version 1.0/Document Rision 1.1 185

The X Keyboard Extension 18 Symbolic Names

18.6

To update the local copy of the keyboard description with the actual values, passto Xkb-
GetNameChanges the results of one or more calls to XkbNoteNameChanges.

Status XkbGetNameChanges(dpy, xkb, changes)
Display * dpy; /* connection to the X server */
XkbDescPtr xkb; * keyboard description to which names are copied */
XkbNameChangesPtr changes; /* names components to be obtained from the server */

XkbGetNameChanges examines the changes parameter, retrieves the necessary informa-
tion from the server, and places the results into the xkb keyboard description.

XkbGetNamesChanges can generate BadAl | oc, Badl npl enent ati on, and BadMat ch
errors.

Allocating and Freeing Symbolic Names

Most applications do not need to directly allocate symbolic names structures. Do not allo-
cate a names structure directly using malloc or Xmalloc if your application changes the
number of key aliases or radio groups or constructs a symbolic names structure without
loading the necessary components from the X server. Instead use XkbAllocNames.

Status XkbAllocNames(xkb, which, num_rg, num_key aliases)
XkbDescPtr xkb; * keyboard description for which names are to be allocated */
unsignedint which; /* mask of namesto be allocated */
int num rg; /* total number of radio group names needed */
int num_key aliases;/* total number of key aliases needed */

XkbAllocNames can return BadAl | oc, BadMat ch, and BadVal ue errors. The which
parameter isthe bitwise inclusive OR of the valid names mask bits defined in Table 18.1.

Do not free symbolic names structures directly using free or XFree. Use XkbFreeNames
instead.

void XkbFreeNames(xkb, which, free_map)

XkbDescPtr xkb; * keyboard description for which names are to be freed */
unsigned int which; /* mask of names componentsto be freed */
Bool free_ map; /* Tr ue => XkbNamesRec structure itself should be freed */

The which parameter is the bitwise inclusive OR of the valid names mask bits defined in
Table 18.1.

November 10, 1997 Library Version 1.0/Document Revision 1.1 186

The X Keyboard Extension 19 Replacing a &board “On the Fly”

19

Replacing a K eyboar d “On the Fl y”

Some operating system and X server implementations allow “hot plugging” of input
devices. When using these implementations, input devices can be unplugged and new
ones plugged in without restarting the software that is using those devices. There is no
provision in the standard X server for notification of client programs if input devices are
unplugged and/or new ones plugged in. In the case of the X keyboard, this could result in
the X server having a keymap that does not match the new keyboard.

If the X server implementation supports the X input device extension, a client program
may also change the X keyboard programmatically. X®leangeKeyboardDevice input
extension request allows a client to designate an input extension keyboard device as the X
keyboard, in which case the old X keyboard device becomes inaccessible except via the
input device extension. In this case, core protadébpi ngNot i fy and input extension
XChangeDevi ceNot i fy events are generated to notify all clients that a new keyboard

with a new keymap has been designated.

When a client opens a connection to the X server, the server reports the minimum and
maximum keycodes. The server keeps track of the minimum and maximum keycodes last
reported to each client. When delivering events to a particular client, the server filters out
any events that fall outside of the valid range for the client.

Xkb provides arkkbNewKeyboar dN\ot i f y event that reports a change in keyboard
geometry and/or the range of supported keycodes. The server can generate an
XkbNewKeyboar dNot i fy event when it detects a new keyboard or in response to an
XkbGetKeyboardByName request that loads a new keyboard description. Selecting for
XkbNewKeyboar dN\ot i fy events allows Xkb-aware clients to be notified whenever a
keyboard change occurs that may affect the keymap.

When a client requesk¥kbNewKeyboar dNot i f y events, the server compares the range

of keycodes for the current keyboard to the range of keycodes that are valid for the client.
If they are not the same, the server immediately sends the cligkbblewKeyboar dNo-

tify event. Even if the “new” keyboard is not new to the server, it is new to this particu-
lar client.

When the server sends dkbNewKeyboar dN\ot i f y event to a client to inform it of a

new keycode range, it resets the stored range of legal keycodes for the client to the key-
code range reported in the event; it does not reset this range for the client if it does not sent
an XkbNewKeyboar dNot i fy event to a client. Because Xkb-unaware clients and
Xkb-aware clients that do not requekbNewKeyboar dNot i f y events are never sent

these events, the server’s notion of the legal keycode range never changes, and these cli-
ents never receive events from keys that fall outside of their notion of the legal keycode
range.

Clients that have not selected to recefkbNewKeyboar dN\ot i f y events do, however,
receive thexkbNewKeyboar dNot i f y event when a keyboard change occurs. Clients that
have not selected to receive this event also receive numerous other events detailing the
individual changes that occur when a keyboard change occurs.

Clients wishing to track changesmin_key code andmax_key code must watch for both
XkbNewKeyboar dNot i fy andXkbMapNot i fy events, because a simple mapping
change causes altbMapNot i f y event and may change the range of valid keycodes, but
does not cause afkbNewKeyboar dNot i f y event. If a client does not select for

November 10, 1997 Library Version 1.0/Document Rision 1.1 187

The X Keyboard Extension 19 Replacing a &board “On the Fly”

XkbNewKeyboar dNot i fy events, the server restricts the range of keycodes reported to
the client.

In addition to filtering out-of-range key events, Xkb:

 Adjusts core protocdVappi ngNot i fy events to refer only todys that match the
stored lgal range.

» Reports kyboard mappings fordys that match the storedgld range to clients that
issue a core protoc@et Keyboar dvappi ng request.

» Reports modifier mappings only fogyjs that match the storedghd range to clients
that issue a core protoo@et Modi f i er Mappi ng request.

 Restricts the core protocGhangeKeyboar dMappi ng andSet Modi f i er Map-
pi Ng requests todys that &ll inside the stored ¢@l range.

In short, Xkb does everything possible to hide from Xkb-unaware clients the fact that the
range of legal keycodes has changed, because such clients cannot be expected to deal with
them. Xkb events and requests are not modified in this manner; all Xkb events report the
full range of legal keycodes. No requested Xkb events are discarded, and no Xkb requests
have their keycode range clamped.

The structure for th&kbNewKeyboar dNot i f y event is defined as follows:
typedef struct _XkbNe&KeyboardNotify {

int type; I* Xkb extension basevent code */
unsigned long serial; * X sener serial number fonent*/
Bool send_gent; [* Tr ue => synthetically generated */
Display * display; [* server connection wherevent generated */
Time time; [* server time when eent generated */
int xkb_type; 1* XkbNewKeyboar dNot i fy */

int device; * device ID of nev keyboard */

int old_device; * device ID of old leyboard */

int min_key code; /* min keycode of ner keyboard */

int max_ley code; I* max keycode of nes keyboard */

int old_min_ley _code; /* min keycode of old kyboard */

int old_max_ly code; /* max keycode of old kyboard */
unsigned int changed; /* changed aspects - see masksWeib
char req_major; /* major request that caused change */
char reqg_minor; /* minor request that caused change */

} XkbNewK eyboar dNotifyEvent;

To receive name notify events, uddSelectEvents (see section 4.3) witkkbNewKey-

boar dN\ot i f yMask in both thebits to_change andvalues for_bits parameters. To

receive events for only specific names, ¥kbSelectEventDetails. Set theevent_type
parameter tdkbNewKeyboar dNot i fy, and set both thieits to_change and

values for_bits detail parameter to a mask composed of a bitwise OR of masks in Table

19.1.

Table 19.1 XkbNewKeyboardNotifyEvent Details
XkbNewKe;_/boardNotlfy \Value Circumstances
Event Details

XkbNKN_KeycodesMask (1L<<0) Notification of keycode range changesanted
XKbNKN_CGeonet r yMask (1L<<1) Notification of geometry changesanted
XkbNKN_Devi cel Dvask (1L<<2) Natification of deice ID changes anted

November 10, 1997 Library Version 1.0/Document Rision 1.1 188

The X Keyboard Extension 19 Replacing a &board “On the Fly”

Table 19.1 XkbNewKeyboardNotifyEvent Details

XkbNewKeyboardNotify
Event Details
XkbNKN_Al | ChangesMask (0x7) Includes all of the ab@ masks

Value Circumstances

Thereq_major andreq_minor fields indicate what type of keyboard change has occurred.

If req_major andreq_minor are zero, the device change was not caused by a software
request to the server — a spontaneous change has occurred, such as hot-plugging a new
device. In this caselevice is the device identifier for the new, current X keyboard device,

but no implementation-independent guarantee can be madecidhalavice. old_device

may be identical tdevice (an implementor is permitted to reuse the device specifier when
the device changes); or it may be different. Notertsgatmajor andreq_minor being zero

do not necessarily mean that the physical keyboard device has changed; rather, they only
imply a spontaneous change outside of software control (some systems have keyboards
that can change personality at the press of a key).

If the keyboard change is the result of an X Input ExtenGnamgeKeyboar dDevi ce
requestreq _major contains the input extension major opcode,r@&qdminor contains the
input extension request number ¥1ChangeKeyboar dDevi ce. In this casedevice and
old_device are different, withdevice being the identifier for the new, current X keyboard
device, anald_device being the identifier for the former device.

If the keyboard change is the result oDddbGetKeyboardByName function call, which
generates al_kbGet KbdByNane requestreq_major contains thexkb extension base

event code(see section 2.4), amdg_minor contains the event code for the Xkb extension
requesiX_kbGet KbdByNane. device contains the device identifier for the new device, but
nothing definitive can be said fold_device; it may be identical tdevice, or it may be
different, depending on the implementation.

November 10, 1997 Library Version 1.0/Document Rision 1.1 189

The X Keyboard Extension 20 Serer Database of &board Components

20

Server Database of Keyboard Components

The X server maintains a database of keyboard components, identified by component
type. The database contains all the information necessary to build a complete keyboard
description for a particular device, as well as to assemble partial descriptions. Table 20.1
identifies the component types and the type of information they contain.

Table 20.1 Server Database Keyboard Components

_(I:,;prgponent Component Primary Contents May also contain
Keymap Complete kyboard description

Normally assembled using a complete
component from each of the other types

Keycodes Symbolic name for eachei Aliases for somedys
Minimum and maximum igal keycodes Symbolic names for indicators
Description of indicators pisically
present

Types Key types Real modifier bindings and symbolic
names for some virtual modifiers

Compatibility Rules used to assign actions gydyms Maps for some indicators
Real modifier bindings and symbolic
names for some virtual modifiers

Symbols Symbol mapping for éyboard leys Explicit actions and bel#rs for some
Modifier mapping keys
Symbolic names for groups Real modifier bindings and symbolic
names for some virtual modifiers
Geometry Layout of the kyboard Aliases for somedys; overrides ley-

codes component aliases

Symbolic names for some indicators
Description of indicators pisically
present

While a keymap is a database entry for a complete keyboard description, and therefore
logically different from the individual component database entries, the rules for process-
ing keymap entries are identical to those for the individual components. In the discussion
that follows, the term component is used to refer to either individual components or a key-
map.

There may be multiple entries for each of the component types. An entry may be either
complete or partial. Partial entries describe only a piece of the corresponding keyboard
component and are designed to be combined with other entries of the same type to form a
complete entry.

For example, a partial symbols map might describe the differences between a common
ASCII keyboard and some national layout. Such a partial map is not useful on its own
because it does not include those symbols that are the same on both the ASCII and
national layouts (such as function keys). On the other hand, this partial map can be used to
configureany ASCII keyboard to use a national layout.

When a keyboard description is built, the components are processed in the order in which
they appear in Table 20.1; later definitions override earlier ones.

November 10, 1997 Library Version 1.0/Document Rision 1.1 190

The X Keyboard Extension 20 Serer Database of &board Components

20.1

20.2

Component Names

Component names have the forahass(member)” whereclass describes a subset of the
available components for a particular type and the optioaeaber identifies a specific
component from that subset. For example, the name “atlantis(acme)” for a symbols com-
ponent might specify the symbols used for the atlantis national keyboard layout by the
vendor “acme.” Each class has an optiatefult member — references that specify a

class but not a member refer to the default member of the class, if one exists. Xkb places
no constraints on the interpretation of the class and member names used in component
names.

Theclass andmember names are both specified using characters from the Latin-1 charac-
ter set. Xkb implementations must accept all alphanumeric characters, minus (*-’) and
underscore (‘*_’) in class or member names, and must not accept parentheses, plus, vertical
bar, percent sign, asterisk, question mark, or white space. The use of other characters is
implementation-dependent.

Listing the Known Keyboard Components

You may ask the server for a list of components for one or more component types. The
request takes the form of a set of patterns, one pattern for each of the component types,
including a pattern for the complete keyboard description. To obtain this listkiisist-
Components.

XkbComponentListPtKkbL istComponents(dpy, device spec, ptrns, max_inout)

Display * dpy; /* connection to X semr */

unsigned int device_spec; /* device ID, orXkbUseCor eKbd */
XkbComponentNamesPtr ptrns; /* namelist for components of interest */
int * max_inout; [* max # returned names, # lefiar */

XkbListComponents queries the server for a list of component names matching the pat-
terns specified iptrns. It waits for a reply and returns the matching component names in
anXkbConponent Li st Rec structure. When you are done using the structure, you should
free it usingXkbFreeComponentList. device _spec indicates a particular device in which

the caller is interested. A server is allowed (but not required) to restrict its reply to por-
tions of the database that are relevant for that particular device.

ptrnsis a pointer to aXkbConponent NamesRec, described below. Each of the fields in
ptrns contains a pattern naming the components of interest. Each of the patterns is com-
posed of characters from the 1&@t i n1 encoding, but can contain only parentheses, the
wildcard characters?* and *’, and characters permitted in a component class or member
name (see section 20.1). A pattern mayNeL, in which case no components for that

type is returned. Pattern matches with component names are case sensitivewiltie *

card matches any single character, except a left or right parenthestswiidcard

matches any number of characters, except a left or right parenthesis. If an implementation
allows additional characters in a component class or member name other than those
required by the Xkb extension (see section 20.1), the result of comparing one of the addi-
tional characters to either of the wildcard characters is implementation-dependent.

If a pattern contains illegal characters, the illegal characters are ignored. The matching
process is carried out as if the illegal characters were omitted from the pattern.

max_inout is used to throttle the amount of data passed to and from the server. On input, it
specifies the maximum number of names to be returned (the total number of names in all

November 10, 1997 Library Version 1.0/Document Rision 1.1 191

The X Keyboard Extension 20 Serer Database of &board Components

component categories). Upon return friiiListComponents, max_inout contains the
number of names that matched the request but were not returned because of the limit.

The component name patterns used to describe the request are pxkbettGompo-

nents using arnXxkbGonponent NanmesRec structure. This structure has no special alloca-
tion constraints or interrelationships with other structures; allocate and free this structure
using standardalloc andfree calls or their equivalent:

typedef struct _XkbComponentNames {

char * keymap; /* keymap names */

char * keycodes; /* keycode names */

char * types; [* type names */

char * compat; /* compatibility map names */
char * symbols; /* symbol names */

char * geometry; /* geometry names */

} XkbComponentNamesRec, *XkbComponentNamesPtr;
XkbListComponents returns a pointer to axkbConponent Li st Rec:
typedef struct _XkbComponentList {

int num_leymaps; /* number of entries indymap */
int num_leycodesy* number of entries indycodes */
int num_types; /* number of entries in types */
int num_compat; /* number of entries in compat */
int num_symbols;/* number of entries in symbols */
int num_geometry* number of entries in geometry;
XkbComponentNamePtr keymap; /* keymap names */
XkbComponentNamePtr keycodes; /* keycode names */
XkbComponentNamePtr types; [* type names */
XkbComponentNamePtr compat; /* compatibility map names */
XkbComponentNamePtr symbols; /* symbol names */
XkbComponentNamePtr geometry; /* geometry names */

} XkbComponentListRec, *XkbComponentListPtr;

typedef struct _XkbComponentName {
unsigned short flags; /* hints regarding component name */
char * name; /* name of component */

} XkbComponentNameRec, *XkbComponentNamePtr;

Note that the structure used to specify patterns on input{klE@@onponent NanesRec,
and that used to hold the individual component names upon returdkd@onponent -
NarreRec (no trailing ‘s’ in Name).

When you are done using the structure returnexkbiistComponents, free it using
XkbFreeComponentList.

void XkbFreeComponentList(list)
XkbComponentListPtr list; /* pointer toXkbConponent Li st Rec to free */
20.3 Component Hints

A set of flags is associated with each component; these flags provide additional hints
about the component’s use. These hints are designated by bit masks in the flags field of
the XkbConponent NameRec structures contained in tbé&bConponent Li st Rec

November 10, 1997 Library Version 1.0/Document Rision 1.1 192

The X Keyboard Extension 20 Serer Database of &board Components

returned fromXkbLi st Conponent s. The least significant byte of the flags field has the
same meaning for all types of keyboard components; the interpretation of the most signif-
icant byte is dependent on the type of component. The flags bits are defined in Table 20.2.
The symbols hints in Table 20.2 apply only to partial symbols components (those with
XkbLC Parti al also set); full symbols components are assumed to specify all of the
pieces.

The alphanumeric, modifier, keypad or function keys symbols hints should describe the
primary intent of the component designer and should not be simply an exhaustive list of
the kinds of keys that are affected. For example, national keyboard layouts affect prima-
rily alphanumeric keys, but many affect a few modifier keys as well; such mappings
should set only th#&kbLC Al phanuneri cKeys hint. In general, symbols components
should set only one of the four flag&pLC Al t er nat eG oup may be combined with

any of the other flags).

Table 20.2 XkbComponentNameRec Flags Bits
Component Component Hints

Type (flags) Meaning Value
All ComponentsxkbLC H dden Do not present to user (1L<<0)
XkbLC Def aul t Default member of class (1L<<1)
XkbLC Parti al Partial component (1L<<2)
Keymap none
Keycodes none
Types none
Compatibility none
Symbols XkbLC Al phanurrer i cKeys Bindings primarily for alphanumeric (1L<<8)
keyboard section
XkbLC Modi fi er Keys Bindings primarily for modifier &s (1L<<9)
XkbLC _KeypadKeys Eindings primarily for numeric éypad (1L<<10)
eys
XkbLC _Funct i onKeys Bindings primarily for function &s (1L<<11)
XkbLC Al ternateGoup Bindings for an alternate group (1L<<12)
Geometry none

20.4 Building a Keyboard Description Using the Server Database

A client may request that the server fetch one or more components from its database and
use those components to build a new server keyboard description. The new keyboard
description may be built from scratch, or it may be built starting with the current keyboard
description for a particular device. Once the keyboard description is built, all or part of it
may be returned to the client. The parts returned to the client need not include all of the
parts used to build the description. At the time it requests the server to build a new key-
board description, a client may also request that the server use the new description inter-
nally to replace the current keyboard description for a specific device, in which case the
behavior of the device changes accordingly.

November 10, 1997 Library Version 1.0/Document Rision 1.1 193

The X Keyboard Extension 20 Serer Database of &board Components

To build a new keyboard description from a set of named components, and to optionally
have the server use the resulting description to replace an active oKkh@QetKey-

boardByName.

XkbDescPtiXkbGetK eyboar dByName(dpy, device spec, hames, want, need, load)
Display * dpy; [* connection to X semr */
unsigned int device_spec; /* device ID, orXkbUseCor eKbd */
XkbComponentNamesPtr names; /* names of components to fetch */
unsigned int want; [* desired structures in returned record */
unsigned int need; /* mandatory structures in returned record */
Bool load; [* Tr ue => load intodevice _spec */

names contains a set of expressions describing the keyboard components the server should
use to build the new keyboard descriptiant andneed are bit fields describing the parts
of the resulting keyboard description that should be present in the reXkiniees cRec.

The individual fields imames arecomponent expressions composed of keyboard compo-
nent names (no wildcarding as may be usexkbiistComponents), the special compo-
nent name symbol ‘%’, and the special operator charaeteasnd ‘| . A component
expression is parsed left to right, as follows:

¢ The special component nameditput ed” may be used ilkeycodes component
expressions and refers to a component consisting of a seyafdes computed auto-
matically by the semer as needed.

« The special component nameanoni cal " may be used it ypes component
expressions and refers to a partial component defining the four stamgdygpés:
ALPHABETI C ONE_LEVEL, TWD LEVEL, andKEYPAD.

» The special component nanté refers to the kyboard description for the diee spec-
ified in device_spec or the keymap names component. If ejknap names component
is specified that does notdie with ‘+' or ‘| and does not contai¥4, then Y refers
to the description generated by thegrkap names component. Otherwise, it refers to
the keyboard description fotlevice spec.

« The ‘+ operator specifies that the foling component shouldverride the currently
assembled description;adefinitions that are present in both components aemtak
from the second.

e The |’ operator specifies that thextespecified component showddigment the cur-
rently assembled description;yadefinitions that are present in both components are
taken from the first.

 If the componentxgression bgins with an operator leading%is implied.

» If any unknawn or illegal characters appearyavhere in the ¥pression, the entire
expression is imalid and is ignored.

For example, ihames->symbols contained the expression “+de”, it specifies that the
default member of the “de” class of symbols should be applied to the current keyboard
mapping, overriding any existing definitions (it could also be written “+de(default)”).

Here is a slightly more involved example: the expression
“acme(ascii)+de(basic)|is09995-3" constructs a German (de) mapping for the ASCII key-
board supplied by the “acme” vendor. The new definition begins with the symbols for the
ASCII keyboard for Acmeacme(ascii)), overrides them with definitions for the basic
German keyboarddg(basic)), and then applies the definitions from the default is09995-3
keyboard (s09995-3) to any undefined keys or groups of keys (part three of the is09995
standard defines a common set of bindings for the secondary group, but allows national
layouts to override those definitions where necessary).

November 10, 1997 Library Version 1.0/Document Rision 1.1 194

The X Keyboard Extension 20 Serer Database of &board Components

Note The interpretation of the abe expression components (acme, ascii, de, basic,
i509995-3) is not defined by Xkb; only the operations and their ordering are.

Note that the presence of a keynmapes component that does not contai (either

explicit or implied by virtue of an expression starting with an operator) indicates a
description that is independent of the keyboard description for the device specified in
device_spec. The same is true of requests in which the keymap names component is empty
and all five other names components contain expressions void of refererfdes to *
Requests of this form allow you to deal with keyboard definitions independent of any
actual device.

The server parses all ndLL fields innames and uses them to build a keyboard descrip-
tion. However, before parsing the expressionsaimes, the server ORs the bitswant
andneed together and examines the result in relationship to the expressitareas

Table 20.3 identifies the components that are required for each of the possiblevaits in
or need. If a required component has not been specified indhes structure (the corre-
sponding field iSNULL), the server substitutes the expressiah fesulting in the compo-
nent values being taken frasevice_spec. In addition, ifload is Tr ue, the server modifies
names if necessary (again using #“entry) to ensure all of the following fields are
non-NULL: types, keycodes, symbols, andcompat.

Table 20.3 Want and Need Mask Bitsand Required Names Components

want or need mask bit Required names Components value
XkbGBN_TypesMask Types (1L<<0)
XkbGBN_CompatMapMask Compat (1L<<1)

XkbGBN_ClientSymbolsMask Types + Symbols + &codes (1L<<2)
XkbGBN_SererSymbolsMask Types + Symbols + &codes (1L<<3)

XkbGBN_SymbolsMask Symbols (1L<<1)
XkbGBN _IndicatorMapMask Compat (1L<<4)
XkbGBN_KeyNamesMask Keycodes (1L<<b)
XkbGBN_GeometryMask Geometry (1L<<6)

XkbGBN_OtherNamesMask Types + Symbols + &codes + (1L<<7)
Compat + Geometry
XkbGBN_AllIComponentsMask (Oxff)

need specifies a set of keyboard components that the server must be able to resolve in
order forXkbGetKeyboardByName to succeed; if any of the components specifiatbaal
cannot be successfully resolvedpGetKeyboardByName fails.

want specifies a set of keyboard components that the server should attempt to resolve, but
that are not mandatory. If the server is unable to resolve any of these compgiises,
KeyboardByName still succeeds. Bits specifiedwant that are also specified meed have

no effect in the context afant.

If load is Tr ue, the server updates its keyboard descriptiomdaice spec to match the
result of the keyboard description just built. If loadrad se, the server’s description for
devicedevice_spec is not updated. In all cases, the parts specifieddny andneed from
the just-built keyboard description are returned.

Thenames structure in axxkbDescRec keyboard description record (see Chapter 18)
contains one field for each of the five component types used to build a keyboard descrip-

November 10, 1997 Library Version 1.0/Document Rision 1.1 195

The X Keyboard Extension

20 Server Database of Keyboard Components

tion. When a keyboard description is built from a set of database components, the corre-
sponding fields in this names structure are set to match the expressions used to build the

component.

The entire process of building a new keyboard description from the server database of

components and returning all or part of it is diagrammed in Figure 20.1:

Augment namesto
supply component
names required by
want and need but not
supplied in request

Initial Request:

False

load

*True

device_spec é

names P

want \

need

Augment names to
supply required com-
ponent names not sup-

plied in request

\
load \ \

S a——

/ New K eyboard

——® | Description

Build keyboard
description from
expressionsin
names

False

load

* True

Replace device_spec
active keyboard
description with newly
built description

Keyboard
Component
Database

(Temporary)

Keyboard Description
for device _spec

Build keyboard
description for client
by extracting struc-
tures specified in want

and need

— » | Keyboard

Description
returned to
Client

Figure 20.1 Building a New Keyboard Description from the Server Database

The information returned to the client in the XkbDescRec is essentially the result of a
series of callsto extract information from afictitious device whose description matches

November 10, 1997

Library Version 1.0/Document Revision 1.1

The X Keyboard Extension 20 Server Database of Keyboard Components

the one just built. The calls corresponding to each of the mask bits are summarized in
Table 20.4, together with the XkbDescRec components that arefilled in.

Table 20.4 XkbDescRec Components Returned for Values of Want & Needs

Request (want+ need) Fillsin Xkb components Equivalent Function Call
XkbGBN_TypesMask map.types XkbGetUpdatedM ap(dpy, XkbTypesMask, Xkb)
XkbGBN_ServerSymbolsMask server XkbGetUpdatedM ap(dpy, XkbAllClientinfoMask, Xkb)
XkbGBN_ClientSymbolsMask map, including map.types XkbGetUpdatedM ap(dpy, XkbAllServerinfoMask, Xkb)
XkbGBN_IndicatorMaps indicators XkbGetlndicatorMap(dpy, XkbAllIndicators, Xkb)
XkbGBN_CompatMapMask compat XkbGetCompatMap(dpy, XkbAllCompatMask, Xkb)
XkbGBN_GeometryMask geom XkbGetGeometry(dpy, Xkb)
XkbGBN_KeyNamesMask nameskeys XkbGetNames(dpy, XkbKeyNamesMask |

names.key_aliases XkbK eyAliasesMask, Xkb)
XkbGBN_OtherNamesM ask names.keycodes XkbGetNames(dpy, XkbAlINamesMask &

names.geometry ~(XkbKeyNamesMask | XkbK eyAliasesMask),

names.symbols Xkb)

names.types

map.types[*].Ivl_nameg[*]

names.compat

names.vmods

names.indicators

names.groups

names.radio_groups
names.phys symbols

There is no way to determine which components specified in want (but not in need) were
actually fetched, other than breaking the call into successive calls to XkbGetKeyboard-
ByName and specifying individual components.

XkbGetKeyboardByName always sets min_key code and max_key code in the returned
XkbDescRec structure.

XkbGetKeyboardByName is synchronous; it sends the request to the server to build a new
keyboard description and waits for the reply. If successful, the return valueis non-NULL.
XkbGetKeyboardByName generates a BadMVat ch protocol error if errors are encountered
when building the keyboard description.

If you simply want to obtain information about the current keyboard device, rather than
generating a new keyboard description from elements in the server database, use XkbGet-

Keyboard (see section 6.2).

XkbDescPtr XkbGetK eyboar d(dpy, which, device_spec)
Display * dpy; /* connection to X server */
unsignedint which; /* mask of components of XkbDescRec of interest */
unsignedint device spec; [* device ID */

XkbGetKeyboard is used to read the current description for one or more components of a
keyboard device. It calls XkbGetKeyboardByName as follows:

XkbGetKeyboardByName(dpy, device_spec, NULL, which, which, Fal se).

November 10, 1997 Library Version 1.0/Document Revision 1.1 197

The X Keyboard Extension 21 Attaching Xkb Actions to X Input Extension

21

Attaching Xkb Actions to X Input Extension Devices

The X input extension allows an X server to support multiple keyboards, as well as other
input devices, in addition to the core X keyboard and pointer. The input extension catego-
rizes devices by grouping them into classes. Keyboards and other input devices with keys
are classified akeyd ass devices by the input extension. Other types of devices sup-
ported by the input extension include, but are not limited to: mice, tablets, touchscreens,
barcode readers, button boxes, trackballs, identifier devices, data gloves, and eye trackers.
Xkb provides additional control over all X input extension devices, whether th&gware

d ass devices or not, as well as the core keyboard and pointer.

If an X server implements support for both the input extension and Xkb, the server imple-
mentor determines whether interaction between Xkb and the input extension is allowed.
Implementors are free to restrict the effects of Xkb to only the core X keyboard device or
allow interaction between Xkb and the input extension.

Several types of interaction between Xkb and the input extension are defined by Xkb.
Some or all may be allowed by the X server implementation.

Regardless of whether the server allows interaction between Xkb and the input extension,
the following access is provided:

» Xkb functionality for the core Xdyboard deice and its mapping is accessed via the
functions described in the other chapters of this specification.

» Xkb functionality for the core X pointer diee is accessed via thébGetDevicelnfo
andXkbSetDevicelnfo functions described in this chapter

If all types of interaction are allowed between Xkb and the input extension, the following
additional access is provided:

 If allowed, Xkb functionality for additiondfeyd ass devices supported by the input
extension is accessed via those same functions.

 If allowed, Xkb functionality for norkeyd ass devices supported by the inputten-
sion is also accessed via KebGetDevicel nfo and X kbSetDevicel nfo functions
described in this chapter

Each device has an X Input Extension device ID. Each device may have several classes of
feedback. For example, there are two types of feedbacks that can generate bells: bell feed-
back and keyboard feedbade(| Feedbackd ass andkKbdFeedbackd ass). A

device can have more than one feedback of each type; the feedback ID identifies the par-
ticular feedback within its class.

A keyboard feedback has:

» Auto-repeat status (global and peyk
» 32LEDs
* Abell

An indicator feedback has:

* Upto 32 LEDs

If the input extension is present and the server allows interaction between the input exten-
sion and Xkb, then the core keyboard, the core keyboard indicators, and the core keyboard
bells may each be addressed using an appropriate device spec, class, and ID. The constant
XkbXl Df | t 1 Dmay be used as the device ID to specify the core keyboard indicators for

the core indicator feedback. The particular device ID corresponding to the core keyboard

November 10, 1997 Library Version 1.0/Document Rision 1.1 198

The X Keyboard Extension 21 Attaching Xkb Actions to X Input Extension

feedback and the core indicator feedback may be obtained by cédbGgtDevicel nfo
and specifyingkkbUseCor eKbd as thedevice spec; the values will be returned in
dflt_kbd_id anddflt_led_id.

If the server does not allow Xkb access to input extert&gidl ass devices, attempts to
use Xkb requests with those devices fail witbaa Keyboar d error. Attempts to access
nonKeyd ass input extension devices vikkbGetDevicelnfo andXkbSetDevicel nfo fail
silently if Xkb access to those devices is not supported by the X server.

21.1 XkbDevicelnfoRec

Information about X Input Extension devices is transferred between a client program and
the Xkb extension in akkbDevi cel nf oRec structure:

typedef struct {
char * name; [* name for deice */
Atom type; I* name for class of deéces */
unsigned short device_spec;/* device of interest */
Bool has_evn_state* Tr ue=>this device has its wn state */

unsigned short supported; /* bits indicating supported capabilities */
unsigned short unsupportedy* bits indicating unsupported capabilities */
unsigned short num_btns; /* number of entries ibtn_acts */
XkbAction * btn_acts; /* button actions */
unsigned short sz_leds; * total number of entries in LEDseetor */
unsigned short num_leds; /* number of alid entries in LEDs &ctor */
unsigned short dflt_kbd_fb; /* input extension ID of dedult (core kbd) indicator */
unsigned short dflt_led_fb; /* input extension ID of dedult indicator feedback */
XkbDevicelLedInfoPtrdeds; /* LED descriptions */

} XkbDevicel nfoRec, *XkbDevicelnfoPtr;

typedef struct {
unsigned short led_class; [* class for this LED dece*/
unsigned short led_id; /* ID for this LED device */
unsigned int phys_indicators; /* bits for which LEDs plysically present */
unsigned int maps_present; /* bits for which LEDs hae maps irmaps */
unsigned int names_present; /* bits for which LEDs are imames */
unsigned int state; /* 1 bit => corresponding LED is on */
Atom names[XkbNumindicators] /* names for LEDs */
XkblIndicatorMapRecenaps; /* indicator maps for each LED */

} XkbDevicel edlnfoRec, *XkbDeviceLedInfoPtr;

Thetype field is a rgistered symbolic name for a class ofides (for @ample, “TABLET"). If a

device is a leyboard (that is, is a member ¢y ass), it has its wn state, antlas_own_state

is True. If has own_state is Fal se, the state of the corefboard is usedT hesupported and
unsupported fields are masks where each bit indicates a capability. The meaning of the
mask bits is listed in Table 21.1, together with the fields irkkieevi cel nf oRec

structure that are associated with the capability represented by each bit. The same bits are
used to indicate the specific information desired in many of the functions described subse-
guently in this section.

November 10, 1997 Library Version 1.0/Document Rision 1.1 199

The X Keyboard Extension

21 Attaching Xkb Actionsto X Input Extension

Table 21.1 XkbDevicel nfoRec M ask Bits

XkbDevicel nfoRec

Name Fields Effected Value Capability If Set

XkbXI_KeyboardsMask (1L << 0) Clientscan useall Xkb requestsand
events with Keyd ass devices sup-
ported by the input device exten-
sion.

XkbXI1_ButtonActionsMask num_btns (1L <<1) Clientscan assign key actionsto

btn_acts buttons on non-Keyd ass input
extension devices.

XkbXI_IndicatorNamesMask leds->names (1L <<2) Clientscan assign namesto indica-
tors on non-Keyd ass input exten-
sion devices.

XkbX1 _IndicatorM apsiM ask leds->maps (1L <<3) Clientscan assign indicator mapsto
indicators on non-Keyd ass input
extension devices.

XkbXI_IndicatorStateMask leds->state (1L <<4) Clients can request the status of
indicators on non-Keyd ass input
extension devices.

XkbXI_IndicatorsMask sz leds (Ox1c) XkbXI_IndicatorNamesMask |

num_leds XkbXI_IndicatorMapsMask |
leds->* XkbXI_IndicatorStateMask

XkbXI1_UnsupportedFeaturesMask unsupported (1L <<15)

XkbXI_AllDeviceFeaturesMask ~ Those selected by (0Ox1e€) XkbXI_IndicatorsMask |

Value column masks XkbSI_ButtonActionsMask

XkbXI_AllFeaturesMask Those selected by (0x1f) XkbSI_AllDeviceFeaturesMask |

Value column masks XkbSl_KeyboardsMask
XkbXI_AllDetailsMask Thoseselected by (0x801f) XkbXI_AllFeaturesMask |

Vaue column masks

XkbXI_UnsupportedFeaturesM ask

21.2

The name, type, has_own_state, supported, and unsupported fields are awaysfilled in when a
valid reply isreturned from the server involving an XkbDevi cel nf oRec. All of the other
fields are modified only if the particular function asks for them.

Querying Xkb Features for Non-KeyClass Input Extension Devices

To determine whether the X server allows Xkb access to particular capabilities of input
devices other than the core X keyboard, or to determine the status of indicator maps, indi-
cator names or button actions on anon-Keyd ass extension device, use XkbGetDevice-
Info.

XkbDevicelnfoPtr XkbGetDevicel nfo(dpy, which, device _spec, ind_class, ind_id)

Display * dpy; /* connection to X server */

unsigned int which; /* mask indicating information to return */
unsigned int device spec; /* devicelD, or XkbUseCor eKbd */
unsigned int ind_class; /* feedback class for indicator requests */
unsigned int ind_id; * feedback ID for indicator requests */

XkbGetDevicelnfo returns information about the input device specified by device _spec.
Unlike the device_spec parameter of most Xkb functions, device_spec does not need to be

November 10, 1997

Library Version 1.0/Document Revision 1.1 200

The X Keyboard Extension 21 Attaching Xkb Actions to X Input Extension

a keyboard device. It must, however, indicate either the core keyboard or a valid X Input
Extension device.

Thewhichparameters a mask specifying optional information to be returned. It is an
inclusive OR of one or more of the values from Table 21.1 and causes the returned
XkbDevi cel nf oRec to contain values for the corresponding fields specified in the table.

TheXkbDevi cel nf oRec returned byXxkbGetDeicelnfoalways has values foilame
(may be a null string, “")type supportedunsupporteghas _own_statalflt_kbd fd and
dflt_kbd_fb Other fields are filled in as specified which.

Upon return, thesupportedield will be set to the inclusive OR of zero or more bits from
Table 21.1; each bit set indicates an optional Xkb extension device feature supported by
the server implementation, and a client may modify the associated behavior.

If the XkbBut t onAct i onsMask bit is set inwhich, theXkbDevi cel nf oRec returned
will have the button actiond®in_actsfield) filled in for all buttons.

If which includes one of the bits KkbXI | ndi cat or sMask, the feedback class of
the indicators must be specifiedimd_class and the feedback ID of the indicators must
be specified innd_id. If the request does not include any of the bits in

XkbXI | ndi cat or sMask, theind_classandind_id parameters are ignored. The class
and ID can be obtained via the input device extenslastinputDevicesequest.

If any of theXkbXl _I ndi cat or sMask bits are set imvhich, theXkbDevi cel nf oRec
returned will have filled in the portions of theglsstructure corresponding to the indicator
feedback identified bind_classandind_id. Theledsvector of thexkbDevi cel nf oRec

is allocated if necessary asd ledsandnum_leddilled in. Theled_classled_idand
phys_indicatordields of theledsentry corresponding tad_classandind_id are always
filled in. If which containsXkbXl _I ndi cat or NanesMask, thenames_preserand
namedields of theledsstructure corresponding ted_classandind_id are returnedf
which containsXkbXl _I ndi cat or St at eMask, the correspondingtatefield is updated.

If which containsXxkbXl _| ndi cat or MapsMask, themaps_preserdndmapsfields are
updated.

Xkb provides convenience functions to request subsets of the information available via
XkbGetDeicelnfa These convenience functions mirror some of the mask bits. The func-
tions all take aiXkbDevi cel nf oPt r as an input argument and operate on the X Input
Extension device specified by tHevice_speéeld of the structure. Only the parts of the
structure indicated in the function description are updatedXkbBevi cel nf oRec
structure used in the function call can be obtained by caflihgsetDevicelnf@r can be
allocated by callingKkbAllocDevicelnfdsee section 21.3).

These convenience functions are described as follows.

To query the button actions associated with an X Input Extension devicéhGetDe-
viceButtonActions.

StatusXkbGetDeviceButtonActions(dpy, device_info, all_loittons, fist_tutton, num_bttong

Display * dpy, [* connection to X semr */

XkbDevicelnfoPtr device_infq /* structure to update with results */

Bool all_buttons /* Tr ue => get information for all bttons */
unsigned int first_kuttony /* number of first ntton for which info is desired */
unsigned int num_luttons /* number of luttons for which info is desired */

November 10, 1997 Library Version 1.0/Document Rision 1.1 201

The X Keyboard Extension 21 Attaching Xkb Actionsto X Input Extension

XkbGetDeviceButtonActions queries the server for the desired button information for the
device indicated by the device _spec field of device info and waits for areply. If success-
ful, XkbGetDeviceButtonActions backfills the button actions (btn_acts field of
device_info) for only the requested buttons, updates the name, type, supported, and unsup-
ported fields, and returns Success.

all_buttons, first_button and num_buttons specify the device buttons for which actions
should be returned. Setting all_buttons to Tr ue requests actions for al device buttons; if
all_buttonsisFal se, first_button and num_buttons specify arange of buttons for which
actions are requested.

If acompatible version of Xkb is not available in the server or the Xkb extension has not
been properly initialized, XkbGetDeviceButtonActions returns BadAccess. If allocation
errors occur, aBadAl | oc statusisreturned. If the specified device

(device_info->device spec) isinvalid, aBadKeyboar d statusisreturned. If the device
has no buttons, a BadMat ch statusis returned. If first_button and num_buttons specify
illegal buttons, a BadVal ue statusis returned.

To query the indicator names, maps, and state associated with an LED feedback of an
input extension device, use XkbGetDevicel edInfo.

Status XkbGetDevicel edl nfo(dpy, device info, led class, led_id, which)

Display * dpy; /* connection to X server */

XkbDevicel nfoPtr device_info; /* structure to update with results */

unsigned int led class; /* LED feedback class assigned by input extension */
unsigned int led id; /* LED feedback 1D assigned by input extension */
unsigned int which; /* mask indicating desired information */

XkbGetDeviceledlnfo queries the server for the desired LED information for the feedback
specified by led classand led_id for the X input extension device indicated by
device_spec->device info and waitsfor areply. If successful, XkbGetDeviceledinfo back-
fillsthe relevant fields of device info as determined by which with the results and returns
Success. Valid values for which are the inclusive OR of any of

XkbXl I ndi cat or NamesMask, XkbXl _| ndi cat or MapsMask, and

XkbXI I ndi cat or St at eMask.

Thefields of device info that are filled in when this request succeeds are name, type, sup-
ported, and unsupported, and portions of the leds structure corresponding to led_classand
led id asindicated by the bits set in which. The device_info->leds vector is allocated if
necessary and sz _leds and num_ledsfilled in. Theled class, led id and phys_indicators
fields of the device info->leds entry corresponding to led classand led id are dways
filled in.

If which contains XkbXl _| ndi cat or NamesMask, the names_present and names fields
of the device_info->leds structure corresponding to led_class and led_id are updated, if
which contains XkbXl _| ndi cat or St at eMask, the corresponding state field is updated,
and if which contains XkbXl _| ndi cat or MapsMask, the maps_present and maps fields
are updated.

If acompatible version of Xkb is not available in the server or the Xkb extension has not
been properly initialized, XkbGetDeviceledInfo returns BadAccess. If allocation errors
occur, aBadAlloc statusis returned. If the device has no indicators, aBadMat ch error is
returned. If ledClass or ledID haveillegal values, aBadVal ue error isreturned. If they

November 10, 1997 Library Version 1.0/Document Revision 1.1 202

The X Keyboard Extension 21 Attaching Xkb Actions to X Input Extension

have legal values but do not specify a feedback that contains LEDs and is associated with
the specified device,BadMat ch error is returned.

21.3 Allocating, Initializing, and Freeing the XkbDevicelnfoRec Structure
To obtain arXkbDevi cel nf oRec structure, us&kbGetDevicelnfo or XkbAllocDevice-

Info.

XkbDevicelnfoPtrXkbAllocDevicel nfo(device_spec, n_buttons, sz_|leds)
unsigned int device_spec; /* device ID with which structure will be used */
unsigned int n_buttons; /* number of lutton actions to allocate space for*/
unsigned int sz _leds; /* number of LED feedbacks to allocate space for */

XkbAllocDevicelnfo allocates space for afkbDevi cel nf oRec structure and initializes
that structure’slevice_spec field with the device ID specified device spec. If

n_buttons is nonzeron_buttons XkbAct i ons are linked into thekbDevi cel nf oRec
structure and initialized to zero.4t ledsis nonzerosz |leds XkbDevi celLedl nf oRec
structures are also allocated and linked intodtieDevi cel nf oRec structure. If you
requesiXkbDevi celLedl nf oRec structures be allocated using this request, you must ini-
tialize them explicitly.

To obtain arXkbDevi celLedl nf oRec structure, us&kbAllocDevicelLedlnfo.

StatusXkbAllocDevicel edl nfo(devi, num_needed)
XkbDevicelnfoPtr device info; /* structure in which to allocate LED space */
int num_needed; /* number of indicators to allocate space for */

XkbAllocDevicel edinfo allocates space for afikbDevi celLedl nf oRec and places it in
device_info. If num_needed is nonzeronum _needed Xkbl ndi cat or MapRec structures
are also allocated and linked into #ebDevi ceLed! nf oRec structure. If you request
Xkbl ndi cat or MapRec structures be allocated using this request, you must initialize
them explicitly. All other fields are initialized to zero.

To initialize anXkbDevi celLedl nf oRec structure, us&kbAddDevicel edinfo.
XkbDevicelLedInfoPtrXkbAddDevicel edl nfo(device info, led_class, led id)

XkbDevicelnfoPtr device info; /* structure in which to add LED info */
unsigned int led class; /* input extension class for LED dée of interest */
unsigned int led id; /* input extension ID for LED deice of interest */

XkbAddDevicel edinfo first checks to see whether an entry matchédgclass andled id
already exists in thdevice_info->leds array. If it finds a matching entry, it returns a
pointer to that entry. Otherwise, it checks to be sure there is at least one empty entry in
device info->leds and extends it if there is not enough room. It then increments
device_info->num_leds and fills in the next available entry device_info->leds with

led classandled id.

If successfulXkbAddDeviceledinfo returns a pointer to thébDevi ceLedl nf oRec
structure that was initialized. If unable to allocate sufficient storagedevide info
points to an invalidkkbDevi cel nf oRec structure, or ifed classorled id are inappro-
priate,XkbAddDevicel edinfo returnsNULL.

November 10, 1997 Library Version 1.0/Document Rision 1.1 203

The X Keyboard Extension 21 Attaching Xkb Actionsto X Input Extension

21.4

To allocate additional space for button actionsin an XkbDevi cel nf oRec structure, use
XkbResizeDeviceButtonActions.

Status XkbResizeDeviceButtonActions(device _info, new_total)
XkbDevicelnfoPtr device_info; /* structurein which to allocate button actions */
unsigned int new_total; /* new total number of button actions needed */

XkbResizeDeviceButton reallocates space, if necessary, to make sure there is room for a
total of new_total button actionsin the device info structure. Any new entries allocated
are zeroed. If successful, XkbResizeDeviceButton returns Success. If new_total is zero,
al button actions are deleted, device _info->num_btnsis set to zero, and
device_info->btn_actsisset to NULL. If device_infoisinvalid or new_total is greater than
255, BadVal ue isreturned. If amemory allocation failure occurs, aBadAl | oc is
returned.

To free an XkbDevi cel nf oRec structure, use XkbFreeDevicelnfo.

void XkbFreeDevicel nfo(device info, which, free all)
XkbDevicelnfoPtr device info; /* pointer to XkbDevi cel nf oRec inwhich to freeitems*/
unsigned int which; * mask of components of device_info to free */
Bool free_all; [* Tr ue => free everything, including device_info */

If free_all is Tr ue, the XkbFreeDevicel nfo frees all components of device_info and the
XkbDevi cel nf oRec structure pointed to by device_info itself. If free_all isFal se, the
value of which determines which subcomponents are freed. which is an inclusive OR of
one or more of the values from Table 21.1. If which contains

XkbXI _Butt onAct i onsMask, all button actions associated with device _info are
freed, device_info->btn_actsis set to NULL, and device_info->num_btnsis set to zero. If
which contains all bitsin Xkb Xl _I ndi cat or sMask, all XkbDevi ceLedl nf oRec
structures associated with device _info are freed, device info->ledsis set to NULL, and
device info->sz leds and device info->num leds are set to zero. If which contains

XkbXI _I ndi cat or MapsMask, all indicator maps associated with device info are
cleared, but the number of LEDs and the leds structures themselves are preserved. If
which contains XkbXI _I ndi cat or NanesMask, all indicator names associated with
device_info are cleared, but the number of LEDs and the leds structures themselves are
preserved. If which contains XkbXI _I ndi cat or St at eMask, theindicator state asso-
ciated with the device info leds are set to zeros but the number of LEDs and the leds struc-
tures themselves are preserved.

Setting Xkb Features for Non-KeyClass Input Extension Devices

The Xkb extension allows clients to assign any key action to either core pointer or input
extension device buttons. This makesit possible to control the keyboard or generate key-
board key events from extension devices or from the core pointer.

Key actions assigned to core X pointer buttons or input extension device buttons cause
key eventsto be generated as if they had originated from the core X keyboard.

Xkb implementations are required to support key actions for the buttons of the core
pointer device, but support for actions on extension devicesis optional. Implementations
that do not support button actions for extension devices must not set the

XkbXl _Butt onAct i onsMask bit in the supported field of an XkbDevi cel nf oRec
structure.

November 10, 1997 Library Version 1.0/Document Revision 1.1 204

The X Keyboard Extension 21 Attaching Xkb Actions to X Input Extension

If a client attempts to modify valid characteristics of a device using an implementation
that does not support modification of those characteristics, no protocol error is generated.
Instead, the server reports a failure for the request; it also seXkb&rt ensi onDevi -

ceNoti fy event to the client that issued the request if the client has selected to receive
these events.

To change characteristics of an X Input Extension device in the server, first modify a local
copy of the device structure and then use ehbSetDevicelnfo, or, to save network

traffic, use arkkbDevi ceChangesRec structure (see section 21.6) and call
XkbChangeDevicelnfo to download the changes to the server.

To modify some or all of the characteristics of an X Input Extension devic&khSet-

Devicelnfo.

Bool XkbSetDevicel nfo(dpy, which, device_info)
Display * dpy; [* connection to X semr */
unsigned int which; /* mask indicating characteristics to modify */
XkbDevicelnfoPtr device info; /* structure defining the dé&e and modifications */

XkbSetDevicelnfo sends a request to the server to modify the characteristics of the device
specified in thelevice_info structure. The particular characteristics modified are identified
by the bits set invhich and take their values from the relevant fielddavice info (see

Table 21.1)XkbSetDevicelnfo returnsTr ue if the request was successfully sent to the
server. If the X server implementation does not allow interaction between the X input
extension and the Xkb Extension, the function does nothing and réalres.

Thewhich parameter specifies which aspects of the device should be changed and is a bit-
mask composed of an inclusive OR or one or more of the following bits:

XkbXI _ButtonAct i onsMask, XkbXl | ndi cat or NarmesMask,

XkbXl I ndi cat or MapsMask. If the features requested to be manipulateghich are

valid for the device, but the server does not support assignment of one or more of them,
that particular portion of the request is ignored.

If the device specified idevice_info->device_spec does not contain buttons and a request
affecting buttons is made, or the device does not contain indicators and a request affecting
indicators is made, BadMat ch protocol error results.

If the XkbXl _But t onAct i onsMask bit is set in thesupported mask returned b}kbGet-
Devicelnfo, the Xkb extension allows applications to assign key actions to buttons on
input extension devices other than the core keyboard device. If the

XkbXl _But t onAct i onsMask is set inwhich, the actions for all buttons specified in
device_info are set to th&kbAct i ons specified irdevice_info->btn_acts. If the number
of buttons requested to be updated is not valid for the dexkb&etDevicelnfo returns

Fal se and aBadVal ue protocol error results.

If the XkbXI _I ndi cat or Maps and / orXkbXl _| ndi cat or NanesMask bit is set in the
supported mask returned b}kbGetDevicelnfo, the Xkb extension allows applications to
assign maps and / or names to the indicators of nonkeyboard extension devices. If sup-
ported, maps and / or names can be assigned to all extension device indicators, whether
they are part of a keyboard feedback or part of an indicator feedback.

If the XkbXl _| ndi cat or MapsMask and / orXkbXl _| ndi cat or NanmesMask flag is set
in which, the indicator maps and / or names fodalice_info->num_leds indicator
devices specified idevice_info->leds are set to the maps and / or names specified in

November 10, 1997 Library Version 1.0/Document Rision 1.1 205

The X Keyboard Extension 21 Attaching Xkb Actions to X Input Extension

device_infe>leds device_infe>leds>led_classandled_id specify the input extension

class and device ID for each indicator device to modify; if they have invalid values, a
BadVal ue protocol error results arxkbSetDeicelnforeturnsFal se. If they have legal
values but do not specify a keyboard or indicator class feedback for the device in question,
aBadMat ch error results. If any of the valuesdavice_infe>leds>namesare not a valid

Atom orNone, aBadAt omprotocol error results.

Xkb provides convenience functions to modify subsets of the information accessible via
XkbSetDeicelnfa Only the parts of the structure indicated in the function description are
modified. These convenience functions are described as follows.

To change only the button actions for an input extension devickb&etDeviceBut-

tonActions

Bool XkbSetDeviceButtonActions(dpy, device first_kutton, num_bttons, actions
Display * dpy, [* connection to X semr */
XkbDevicelnfoPtr device_infq /* structure defining the dé&e and modifications */
unsigned int first_luttony /* number of first lntton to update, O relag */
unsigned int num_luttons /* number of luttons to update */

XkbSetDeiceButtonActionsissigns actions to the buttons of the device specified in
device_infe>device_spedActions are assigned tmm_tuttonsbuttons beginning with
first_luttonand are taken from the actions specifiedevice _infe>btn_acts

If the server does not support assignment of Xkb actions to extension device Xkinns,
SetDeiceButtonActionsas no effect and returkal se. If the device has no buttons or if
first_buttonor num_buttonspecify buttons outside of the valid range as determined by
device_infe>num_btnsthe function has no effect and retuFag se. Otherwise XkbSet-
DeviceButtonActionsends a request to the server to change the actions for the specified
buttons and returnk ue.

If the actual request sent to the server involved illegal button numiigadyal ue proto-
col error is generated. If an invalid device identifier is specified in
device_infe>device_spemBadKeyboar d protocol error results. If the actual device
specified indevice_infe>device_spedoes not contain buttons and a request affecting
buttons is made, BadMat ch protocol error is generated.

21.5 XkbExtensionDeviceNotify Event

The Xkb extension generat&bExt ensi onDevi ceNot i f y events when the status of
an input extension device changes or when an attempt is made to use an Xkb feature that is
not supported by a particular device.

Note Events indicating an attempt to use an unsupported feature arereiélonly to the
client requesting thevent.

To track changes to the status of input extension devices or attempts to use unsupported
features of a device, select to recefdExt ensi onDevi ceNot i fy events by calling
eitherXkbSelectEventsr XkbSelectEventDetai[see section 4.3).

To receiveXkbExt ensi onDevi ceNot i fy events under all possible conditions, call
XkbSelectEvenasnd pasXkbExt ensi onDevi ceNot i f yMask in bothbits_to_dange
andvalues_for_bits

November 10, 1997 Library Version 1.0/Document Rision 1.1 206

The X Keyboard Extension

21 Attaching Xkb Actions to X Input Extension

21.6

The XkbExt ensi onDevi ceNot i fy event has no event details. However, you can call
XkbSelectEventDetails usingXkbExt ensi onDevi ceNot i fy as theavent_type and spec-
ifying XkbAl | Ext ensi onDevi ceMask in bits to_change andvalues for_bits. This has
the same effect as a callX&bSel ectEvents.

The structure fokkbExt ensi onDevi ceNot i fy events is:

typedef struct {
int type; I* Xkb extension basevent code */
unsigned long serial; [* X server serial number forvent */
Bool send_gent; [* Tr ue => synthetically generated*/
Display * display; [* sener connection wherevent generated */
Time time; /* server time when eent generated */
int xkb_type; /* XkbExt ensi onDevi ceNot i f yEvent */
int device; * Xkb device ID, will not bexkbUseCor eKbd */
unsigned int reason; /* reason for theeent */
unsigned int supported; /* mask of supported features */
unsigned int unsupported; /* unsupported features this client attempted to use */
int first_btn; [* first button that changed */
int num_btns; /* number of littons that changed */
unsigned int leds_defined; /* indicators with names or maps */
unsigned int led_state; [* current state of the indicators */
int led_class; /* feedback class for LED changes */
int led_id; /* feedback ID for LED changes */

} XkbExtensionDeviceNotifyEvent;

The XkbExt ensi onDevi ceNot i fy event has fields enabling it to report changes in the
state (on/off) of all of the buttons for a device, but only for one LED feedback associated
with a device. You will get multiple events when more than one LED feedback changes
state or configuration.

Tracking Changes to Extension Devices

Changes to an Xkb extension device may be tracked by listen¥kdpEevi ceExt en-

si onNot i fy events and accumulating the changes iKkdobevi ceChangesRec struc-

ture. The changes noted in the structure may then be used in subsequent operations to
update either a server configuration or a local copy of an Xkb extension device configura-
tion. The changes structure is defined as follows:

typedef struct _XkbDgceChanges {

unsigned int changed; /* bits indicating what has changed */
unsigned short first_btn; /* number of first lmtton which changed, if grt/
unsigned short num_btns; /* number of luttons that hae changed */

XkbDeviceLedChangesRec leds;
} XkbDeviceChangesRec,*XkbDeviceChangesPtr;

typedef struct _XkbDécelLedChanges {

unsigned short led_class; [* class of this indicator feedbacktdle */
unsigned short led_id; /* 1D of this indicator feedbackundle */
unsigned int names; [* bits indicating which names fia changed */
unsigned int maps; [* bits indicating which maps ka changed */

struct _XkbDeiceLedChanges *ng; /* link to indicator change record for xteset */
} XkbDevicel edChangesRec,*XkbDevicelLedChangesPtr;

November 10, 1997

Library Version 1.0/Document Rision 1.1 207

The X Keyboard Extension 21 Attaching Xkb Actions to X Input Extension

A local description of the configuration and state of a device may be kepkXkbBavi -

cel nf oRec structure. The actual state or configuration of the device may change because
of XkbSetDevicel nfo andXkbSetButtonActions requests made by clients or by user interac-
tion with the device. The X server sendsxiExt ensi onDevi ceNot i fy eventto

all interested clients when the state of any buttons or indicators or the configuration of the
buttons or indicators on the core keyboard or any input extension device changes. The
event reports the state of indicators for a single indicator feedback, and the state of up to
128 buttons. If more than 128 buttons or more than one indicator feedback are changed,
the additional buttons and indicator feedbacks are reported in subsequent events. Xkb pro-
vides functions with which you can track changes to input extension devices by noting the
changes that were made and then requesting the changed information from the server.

To note device changes reported inbExt ensi onDevi ceNot i fy event, use

XkbNoteDeviceChanges.

void XkbNoteDeviceChanges (old, new, wanted)
XkbDeviceChangesPtr old; [* structure tracking state changes */
XkbExtensionDeiceNotifyEvent* new;, /* event indicating state changes */
unsigned int wanted; /* mask indicating changes to note

*/

Thewanted field specifies the changes that should be notettirand is composed of the
bitwise inclusive OR of one or more of the masks from Table Zhdreason field of the
event innew indicates the types of changes the event is repoXkinNoteDeviceChanges
updates th&kbDevi ceChangesRec specified byold with the changes that are both
specified inwanted and contained inew->reason.

To update a local copy of the state and configuration of an X input extension device with
the changes previously noted inXkbDevi ceChangesRec structure, us&XkbGetDevi-
cel nfoChanges.

To query the changes that have occurred in the button actions or indicator names and indi-
cator maps associated with an input extension devicexkiségetDevicel nfoChanges.

StatusXkbGetDevicel nfoChanges(dpy, device info, changes)

Display * dpy; [* connection to X semr */
XkbDevicelnfoPtr device info; /* structure to update with results */
XkbDeviceChangesPtrchanges, [* contains notes of changes thav@accurred */

The changes->changed field indicates which attributes of the device specified in
changes->device have changed. The parameters describing the changes are contained in
the other fields othanges. XkbGetDevicelnfoChanges uses that information to cafkb-
GetDevicelnfo to obtain the current status of those attributes that have changed. It then
updates the local description of the devicdavice info with the new information.

To update the server’s description of a device with the changes notedkbBavi ce-
ChangesRec, useXkbChangeDevicel nfo.

Bool XkbChangeDevicel nfo (dpy, device_info, changes)

Display * dpy; [* connection to X semr */
XkbDevicelnfoPtr device info; /* local copy of device state and configuration */
XkbDeviceChangesPtrchanges; [* note specifying changes device_info */

November 10, 1997 Library Version 1.0/Document Rision 1.1 208

The X Keyboard Extension 21 Attaching Xkb Actions to X Input Extension

XkbChangeDevicelnfo updates the server’s description of the device specified in
device_info->device_spec with the changes specified ¢hanges and contained in
device info. The update is made by XibSetDevicelnfo request.

November 10, 1997 Library Version 1.0/Document Rision 1.1 209

The X Keyboard Extension 22 Delugging Aids

22

Debugging Aids

The debugging aids are intended for use primarily by Xkb implementors and are optional
in any implementation.

There are two bitmasks that may be used to control debugging. One bitmask controls the
output of debugging information, and the other controls behavior. Both bitmasks are ini-
tially all zeros.

To change the values of any of the debug controlsXkis&etDebuggingFlags
Bool XkbSetDebuggingFlags(display mask, flgs, msgctrls_mask, ctris,at_flags, et_ctrlg

Display * display, [* connection to X semr */

unsigned int mask /* mask selecting delg output flags to change */
unsigned int flags /* values for debg output flags selected byask*/
char * msg /* message to print right mo*/

unsigned int ctrls_mask /* mask selecting dely controls to change */
unsigned int ctrls; [* values for debg controls selected tgrls_mask/
unsigned int * ret_flags [* resulting state of all dely output flags */
unsigned int * ret_ctrls [* resulting state of all dely controls */

XkbSetDebggingFlags modifies the debug output flags as specifiednagkandflags
modifies the debug controls flags as specifiedtolg_maskandctrls, prints the message
msg and backfillset_flagsandret_ctrlswith the resulting debug output and debug con-
trols flags.

When bits are set in the debug output masieskandflags Xkb prints debug informa-

tion corresponding to each bit at appropriate points during its processing. The device to
which the output is written is implementation-dependent, but is normally the same device
to which X server error messages are directed; thus the bits that can heastand

flagsis implementation-specific. To turn on a debug output selection, set the bit for the
output in themaskparameter and set the corresponding bit irflgs parameter. To turn

off event selection for an event, set the bit for the output imtdmekparameter and do not

set the corresponding bit in tHags parameter.

When bits are set in the debug controls maskis, maskandctrls, Xkb modifies its
behavior according to each controls bitls_maskandctrls are related in the same way
thatmaskandflagsare. The valid controls bits are defined in Table 22.1.

Table 22.1 Debug Control Masks

Dehug Contol Mask Value Meaning
XkbDF_DisableLocks (1<<0) Disable actions that lock modifiers

XkbSetDebggingFlagsreturnsTr ue if successful anéfal se otherwise. The only proto-
col error it may generate BadAl | oc, if for some reason it is unable to allocate storage.

XkbSetDebggingFlagsis intended for developer use and may be disabled in production X
servers. If it is disablekbSetDebggingFlags has no effect and does not generate any
protocol errors.

The message imsgis written immediately. The device to which it is written is implemen-
tation dependent but is normally the same device where X server error messages are
directed.

November 10, 1997 Library Version 1.0/Document Rision 1.1 210

The X Keyboard Extension Glossary

Glossary

Allocator
Xkb provides functions, known as allocators, to create and initialize Xkb data structures.

Audible Bdll

Anaudible bell isthe sound generated by whatever bell is associated with the keyboard or
input extension device, as opposed to any other audible sound generated elsewhere in the
system.

Autoreset Controls

The autoreset controls configure the boolean controls to automatically be enabled or
disabled at the time a program exits.

Base Group

The group in effect asaresult of al actions other than a previouslock or latch request; the
base group is transient. For example, the user pressing and holding a group shift key that
shifts to Group2 would result in the base group being group 2 at that point in time.
Initially, base group is aways Groupl.

Base M odifiers

Modifiersthat are turned on as aresult of some actions other than previous lock or latch
requests; base modifiers are transient. For example, the user pressing and holding a key
bound to the Shift modifier would result in Shift being a base modifier at that point in
time.

Base Event Code

A number assigned by the X server at run timethat is assigned to the extension to identify
events from that extension.

Base State

The base group and base modifiers represent keys that are physically or logically down;
these congtitute the base state.

Boolean Controls

Global keyboard controls that may be selectively enabled and disabled under program
control and that may be automatically set to an on or off condition upon client program
exit.

Canonical Key Types

The canonical key types are predefined key types that describe the types of keys available
on most keyboards. The definitions for the canonical key types are held in the first
XkbNunRequi r edTypes entries of the typesfield of the client map and are indexed using
the following constants:

XkbOneLevel | ndex
XkbTwoLevel | ndex
XkbAl phabet i cl ndex
XkbKeypadl ndex

Client Map
The key mapping information needed to convert arbitrary keycodes to symbols.

November 10, 1997 Library Version 1.0/Document Revision 1.1 211

The X Keyboard Extension Glossary

Compat Name

The compat name is a string that provides some information about the rules used to bind
actions to keys that are changed using core protocol requests.

Compatibility State
When an Xkb-extended X server connects to an Xkb-unaware client, the compatibility
state remaps the keyboard group into a core modifier whenever possible.

Compatibility Grab State
The grab state that results from applying the compatibility map to the Xkb grab state.

Compatibility Map
The definition of how to map core protocol keyboard state to Xkb keyboard state.

Component Expression

An expression used to describe server keyboard database components to be loaded. It
describes the order in which the components should be loaded and the rules by which
duplicate attributes should be resolved.

Compose Processing
The process of mapping a series of keysymsto a string is known as compose processing.

Consumed Modifier

Xkb normally consumes modifiers in determining the appropriate symbol for an event,
that is, the modifiers are not considered during any of the later stages of event processing.
For those rare occasions when a modifier should be considered despite having been used
to look up a symbol, key typesinclude an optional preserve field.

Core Event
An event created from the core X server.

Detectable Auto-Repeat

Detectable auto-repeat allows a client to detect an auto-repeating key. If aclient requests
and the server supports detectable auto-repeat, Xkb generates KeyRel ease events only
when the key is physically released. Thus the client receives a number of KeyPr ess
events for that key without intervening KeyRel ease events until the key isfinally
released, when a KeyRel ease event is received.

Effective Group

The effective group is the arithmetic sum of the locked, latched, and base groups. The
effective keyboard group is always brought back into range depending on the value of the
Q& oupsW ap control for the keyboard. If an event occurs with an effective group that is
legal for the keyboard as awhole, but not for the key in question, the group for that event
only is normalized using the algorithm specified by the group_info member of the key
symbol map (XkbSynivapRec).

Effective Mask

An Xkb modifier definition consists of a set of bit masks corresponding to the eight real
modifiers; asimilar set of bitmasks corresponding to the 16 named virtual modifiers; and
an effective mask. The effective mask represents the set of all real modifiers that can
logically be set either by setting any of the real modifiers or by setting any of the virtual
modifiers in the definition.

November 10, 1997 Library Version 1.0/Document Revision 1.1 212

The X Keyboard Extension Glossary

Effective M odifier
The effective modifiers are the bitwise union of the base, latched and locked modifiers.

Extension Device
Any keyboard or other input device recognized by the X input extension.

Global Keyboard Controls

Controls that affect the way Xkb generates key events. The controls affect all keys, as
opposed to per-key controls that are for a single key. Global controls include

* Repeatkys Control
DetectableAuto-repeat
SlowKeys
Bouncekeys
StickyKeys
Mousekeys
MousekeysAccel
AccessXkeys
AccessXTmeout
AccessXFeedback
Overlayl

Overlay2
EnabledControls

Grab State

The grab state is the state used when matching events to passive grabs. It consists of the
grab group and the grab modifiers.

Group
See Keysym Group

Group Index

A number used as the internal representation for a group number. Groupl through Group
4 have indices of 0 through 3.

GroupsWrap Control
If a group index exceeds the maximum number of groups permitted for the specified
keyboard, it is wrapped or truncated back into range as specified by the global
QG oupsW ap control.G oupsW ap can have the following values:
W apl nt oRange
Cl anpl nt oRange
Redi r ect | nt oRange

Key Type
An attribute of a key that identifies which modifiers affect the shift level of a key and the
number of groups on the key.

Key Width
The maximum number of shift levels in any group for the key type associated with a key.

November 10, 1997 Library Version 1.0/Document Rision 1.1 213

The X Keyboard Extension Glossary

Keysym Group

A keysym group is a logical state of the keyboard providing access to a collection of
characters. A group usually contains a set of characters that logically belong together and
that may be arranged on several shift levels within that group. For example, Groupl could
be the English alphabet, and Group2 could be Greek. Xkb supports up to four different
groups for an input device or keyboard. Groups are in the range 1-4 (Groupl - Group4),
and are often referred to as G1 - G4 and indexed as O - 3.

I ndicator

An indicator is a feedback mechanism such as an LED on an input device. Using Xkb, a
client application can determine the names of the various indicators, determine and control
the way that the individual indicators should be updated to reflect keyboard changes, and
determine which of the 32 keyboard indicators reported by the protocol are actually
present on the keyboard.

I ndicator Feedback

An indicator feedback describes the state of a bank of up to 32 lights. It has a mask where
each bit corresponds to a light and an associated value mask that specifies which lights are
on or off.

Indicator Map

An indicator has its own set of attributes that specify whether clients can explicitly set its
state and whether it tracks the keyboard state. The indicator map is the collection of these
attributes for each indicator and is held in thegs array, which is an array of

Xkbl ndi cat or Rec structures.

I nput Extension

An extension to the core X protocol that allows an X server to support multiple keyboards,
as well as other input devices, in addition to the core X keyboard and pointer. Other types
of devices supported by the input extension include, but are not limited to: mice, tablets,
touchscreens, barcode readers, button boxes, trackballs, identifier devices, data gloves,
and eye trackers.

Key Action

A key action consists of an operator and some optional data. Once the server has applied
the global controls and per-key behavior and has decided to process a key event, it applies
key actions to determine the effects of the key on the internal state of the server. Xkb
supports actions that do the following:

» Change base, latched, or leckmodifiers or group

Move the core pointer or simulate core pointgitdn ezents
Change most aspects aykoard behaor

Terminate or suspend the serv

Send a message to interested clients

Simulate gents on otherdys

Key Alias
A key alias is a symbolic name for a specific physical key. Key aliases allow the keyboard
layout designer to assign multiple key names to a single key. This allows the keyboard
layout designer to refer to keys using either their position or their “function.” Key aliases
can be specified both in the symbolic names component and in the keyboard geometry.

November 10, 1997 Library Version 1.0/Document Rision 1.1 214

The X Keyboard Extension Glossary

Both sets of aliases are always valid, but key alias definitions in the keyboard geometry
have priority; if both symbolic names and geometry include aliases, you should consider
the definitions from the geometry before considering the definitions from the symbolic
names section.

Key Behavior
Thebehaviors field of the server map is an arrayXdbBehavi or, indexed by keycode,
and contains the behavior for each key. The X server uses key behavior to determine
whether to process or filter out any given key event; key behavior is independent of
keyboard modifier or group state. Each key has exactly one behavior.
Key behaviors include:

XkbKB_Default
XkbKB_Lock
XkbKB_RadioGroup
XkbKB_Overlayl
XkbKB_Overlay2

Key Symbol Map

A key symbol map describes the symbols bound to a key and the rules to be used to
interpret those symbols. It is an array&bSyniapRec structures indexed by keycode.

Key Type
Key types are used to determine the shift level of a key given the current state of the
keyboard. There is one key type for each group for a key. Key types are defined using the
XkbKeyTypeRec andXkbKTMapEnt r yRec structures. Xkb allows up to
XkbvaxKeyTypes (255) key types to be defined, but requires at least
XkbNunRequi r edTypes (4) predefined types to be in a key map.

Keyboard Bells
The sound the default bell makes when rung is the system bell or the default keyboard
bell. Some input devices may have more than one bell, identifibdlbglass and
bell_id.

Keyboard Components

There are five types of components stored in the X server database of keyboard
components. They correspond to sbols, geometry, keycodes, compat, andtypes
symbolic names associated with a keyboard.

Keyboard Feedback
A keyboard feedback includes the following:

Keyclick volume
Bell volume
Bell pitch
Bell duration
Global auto-repeat
Per key auto-repeat
32 LEDs

Key Width, Key Type Width
The maximum number of shift levels for a type is referred to as the width of a key type.

November 10, 1997 Library Version 1.0/Document Rision 1.1 215

The X Keyboard Extension Glossary

Keyboard Geometry
Keyboard geometry describes the physical appearance of the keyboard, including the
shape, location, and color of all keyboard keys or other visible keyboard components such
asindicatorsand is stored in a XkbGeonret r yRec structure. Theinformation contained in
a keyboard geometry is sufficient to allow a client program to draw an accurate
two-dimensional image of the keyboard.

Keyboard Geometry Name

The keyboard geometry name describes the physical location, size, and shape of the
various keys on the keyboard and is part of the XkbNamesRec structure.

Keyboard State

Keyboard state encompasses al of the transitory information necessary to map a physical
key press or release to an appropriate event.

Keycode
A numeric value returned to the X server when akey on akeyboard is pressed or released,
indicating which key is being modulated. Keycode numbers arein the range 1 <= keycode
<= max, where max is the number of physical keys on the device.

Keycode Name

The keycode name describes the range and meaning of the keycodes returned by the
keyboard and is part of the XkbNanmesRec structure.

Latched Group
A latched group is agroup index that is combined with the base and locked group to form
the effective group. It applies only to the next key event that does not change the keyboard
state. The latched group can be changed by keyboard activity or via Xkb extension library
functions,

Latched Modifier
Latched modifiers are the set of modifiers that are combined with the base modifiers and
the locked modifiers to form the effective modifiers. It applies only to the next key event
that does not change the keyboard state.

LED

A light emitting diode. However, for the purposes of the X keyboard extension
specification, a LED isany form of visual two-state indicator that is either on or off.

L ocked Group
A locked group is agroup index that is combined with the base and latched group to form
the effective group. When agroup is locked, it supersedes any previous locked group and
remainsthe locked group for all future key events, until anew group islocked. Thelocked
group can be changed by keyboard activity or via Xkb extension library functions.

Locked Modifiers
Locked modifiers are the set of modifiers that are combined with the base modifiers and
the latched modifiersto form the effective modifiers. A locked modifier appliesto al
future key events until it is explicitly unlocked.

November 10, 1997 Library Version 1.0/Document Revision 1.1 216

The X Keyboard Extension Glossary

L ookup State

The lookup state is composed of the lookup group and the lookup modifiers, and it isthe
state an Xkb-capable or Xkb-aware client should use to map a keycode to a keysym.

Modifier
A modifier isalogical condition that is either set or unset. The modifiers control the Shift
Level selected when akey event occurs. Xkb supports the core protocol eight modifiers
(Shi ft, Lock, GCont rol , and Mbd1 through Mbd5), called the real modifiers. In addition,

Xkb extends modifier flexibility by providing a set of sixteen named virtual modifiers,
each of which can be bound to any set of the eight real modifiers.

Modifier Key
A modifier key isakey whose operation has no immediate effect, but that, for aslong asit

is held down, modifies the effect of other keys. A modifier key may be, for example, a
shift key or acontrol key.

M odifier Definition
An Xkb modifier definition, held in an XkbModsRec, consists of a set of real modifiers, a
set of virtual modifiers, and an effective mask. The mask is the union of the real modifiers
and the set of real modifiersto which the virtual modifiers map; the mask cannot be
explicitly changed.

Nonkeyboard Extension Device

Aninput extension device that is not a keyboard. Other types of devices supported by the
input extension include, but are not limited to: mice, tablets, touchscreens, barcode
readers, button boxes, trackballs, identifier devices, data gloves, and eye trackers.

Outlines

Anoutlineisalist of one or more pointsthat describes a single closed polygon, used in the
geometry specification for a keyboard.

Physical Indicator Mask

The physical indicator mask isafield in the Xkbl ndi cat or Rec that indicates which
indicators are bound to physical LEDs on the keyboard; if abit is set in phys_indicators,
then the associated indicator has a physical LED associated with it. Thisfield is necessary
because some indicators may not have corresponding physical LEDs on the keyboard.

Physical Symbol Keyboard Name

The symbols keyboard name identifies the symbols logically bound to the keys. The
symbols name is a human or application-readabl e description of the intended locale or
usage of the keyboard with these symbols. The phys_symbols keyboard name, on the other
hand, identifies the symbols actually engraved on the keyboard.

Preserved Modifier

Xkb normally consumes modifiersin determining the appropriate symbol for an event,
that is, the modifiers are not considered during any of the later stages of event processing.
For those rare occasions when a modifier should be considered despite having been used
to look up a symbol, key typesinclude an optional preserve field. If amodifier is present
in the preservellist, it is a preserved modifier.

November 10, 1997 Library Version 1.0/Document Revision 1.1 217

The X Keyboard Extension Glossary

Radio Group

A radio group is a set of keyswhose behavior simulates a set of radio buttons. Once a key
inaradio group is pressed, it stays logically depressed until another key in the group is
pressed, at which point the previously depressed key islogically released. Consequently,
at most one key in aradio group can be logically depressed at one time.

Real Modifier

Xkb supports the eight core protocol modifiers (Shi ft, Lock, Cont r ol , and Mbd1
through Mbd5); these are called the real modifiers, as opposed to the set of sixteen named
virtual modifiers that can be bound to any set of the eight real modifiers.

Server Internal Modifiers

Modifiers that the server uses to determine the appropriate symbol for an event; internal
modifiers are normally consumed by the server.

Shift Level

One of severa states (normally 2 or 3) governing which graphic character is produced when a key
is actuated.

Symbol Keyboard Name

The symbols keyboard name identifies the symbols logically bound to the keys. The
symbols name is a human or application-readable description of the intended locale or
usage of the keyboard with these symbols. The phys _symbols keyboard name, on the other
hand, identifies the symbols actually engraved on the keyboard.

Symbolic Name

Xkb supports symbolic names for most components of the keyboard extension. Most of
these symbolic names are grouped into the names component of the keyboard description.

State Field

The portion of a client-side core protocol event that holds the modifier, group, and button
state information pertaining to the event.

Types Name

The types name provides some information about the set of key types that can be
associated with the keyboard. In addition, each key type can have a name, and each shift
level of atype can have aname.

Valuator
A valuator reports a range of values for some entity, like amouse axis, adlider, or adial.

Virtual Modifier
XKkb provides a set of sixteen named virtual modifiers that can be bound to any set of the
eight real modifiers. Each virtual modifier can be bound to any set of the real modifiers
(Shift, Lock, Control, and Mod1-Mod5).

Virtual Modifier Mapping
Xkb maintains a virtual modifier mapping, which lists the virtual modifiers associated
with each key.

November 10, 1997 Library Version 1.0/Document Revision 1.1 218

The X Keyboard Extension Glossary

Xkb-awar e Client

A client application that initializes Xkb extension and is consequently bound to an Xlib
that includes the Xkb extension.

Xkb-capable Client

A client application that makes no Xkb extension Xlib calls but is bound to an Xlib that
includes the Xkb extension.

Xkb-unawar e Client

A client application that makes no Xkb extension Xlib calls and is bound to an Xlib that
does not include the Xkb extension.

November 10, 1997 Library Version 1.0/Document Revision 1.1 219

The X Keyboard Extension

Index

A
AccessX enable/disable bits, taflg
AccessXFeedback3, 63, 72
AccessXkeys 53, 72
AccessXNotify64, 66
AccessXTmeout53, 62, 72
Action modifiers144
Actions 141
changing number of actions bound &y K60
controls action types, tablEs4
detecting ky action messageks5
device lutton action typed 58
for changing actie screeril53
for changing bitton number simulated by mouseyk 149
for changing current group statd5
for changing state of boolean contras4
for changing the state of modifiet43
for generating a di¢rent leycode for ley 156
for generating DéceButtonPress and DieeButtonRelease
158
for generating messagé&s5
for locking modifiers and group50
for moving the pointerl47
for simulating @ents from deice valuators159
for simulating pointer ttton press and releadd8
group action flags, tabl®46
group action types, table46
ISO action flags, tabl@51
message action flags, taldlg5
modifier action flags, tabl&45
modifier action types, tabl&44
obtaining actions fordys from serer 160
pointer action types, tabl47
ponter lutton action flags, tabl&49
ponter lutton action types, tabl®49
switch screen action flags, taldl3
Allocator, glossary entry211
AlwaysConsumeShiftAndLoc&3
Audible Bell, glossary entrg11
AudibleBell 48, 53, 56, 72
AutoResets3, 55, 72, 81
Autoreset Controls, glossary enfy 1
AX_BouncekeyReject48
AX_FeatureChangd8
AX_FeatureOf 48
AX_FeatureOm8
AX_IndicatorChangel8
AX_IndicatorOf 48
AX_IndicatorOn48
ax_options75
ax_options alues63
AX_SlowKeyAccept48
AX_SlowKeyPress48
AX_SlowKeyReject48
AX_SlowKeyRelease48
AX_SlowKeysWarning 48
AX_StickyLatch 48
AX_StickyLock 48
AX_StickyUnlock 48

B
BadAcces®
BadAlloc 9
BadAtom9
BadClass9

BadDevice 9
Badld 9
Badimplementatior®
BadKeyboard4, 9
BadMatch9
Bad\alue9
Base error cod&
Base gent code7, 14
Base Eent Code, glossary ent@®11
Base grou®0, 211
Base Group, glossary entpi 1
Base modifier20, 211
Base Modifiers, glossary ent@il
Base State, glossary ent2i 1
BeepOnComposei 84
Behavior
key behaiors, table161
keys 161
obtaining ley behaiors from the serer 162
BellFeedbackClas48
Bells 47
audible48
BeepOnComposeit 84
bell_class and bell_id8
detecting51
fixed pitch bell only64
forcing a serergenerated bebl
generating bell\eents49
generating named beNents50
high and lev pitched beeps, rising andlling tones63
names47
predefined48
sounding49
Boolean control$3
actions for changing the state 154
Boolean Controls, glossary entat 1
Bouncekeys 53, 66, 72
debounce_delay5
delay 66
Bounds
computing bounding box of awo106
computing bounding box of a sectia06
computing bounding box of a shap@5
keyboard geometr®3
sections95
shape®4
Buttons, pointe20

C
Canonical ky types129
initializing 131
used in compatiblity maf76
Canonical Ky Types, glossary entr11
Changes data structurég
ClamplintoRangé&9, 74, 134
Client map2, 116, 126
allocating and freeind23
key symbol mapl33
Client Map, glossary entr211
Client types
Xkb-aware 3, 21, 167
Xkb-capable3, 21, 167
Xkb-unaware 3, 21, 167
Colors
keyboard, ley label 93

November 10, 1997

Library Version 1.0/Document Rision 1.1

Index-220

The X Keyboard Extension

Index

listed in geometry descriptio®3
Compat Name, glossary ent?t2
Compatibility 3

allocating and freeing mads/9

changing the seer's mapl77

core leyboard mapping to Xkbdyboard mapping transfor-

mation170

data structurd 69

data structures, diagrafr69

determining libraryé

diagram168

getting map components from serl74

group mapsl69

map 167

setting &plicit component control470, 171, 176

states22

symbol interpretation match criteria, tatilé2

symbol interpretationd72

tracking changes to the ma8

types of transformationt68

using the compatibility map75

with the core protoco#

Xkb keyboard mapping to coreekboard mapping transfor-

mations173

Xkb state to core protocol state transformatl@&d®
Compatibility Grab State, glossary enz$2
Compatibility Map, glossary entrg12
Compatibility State, glossary ent®i2
Component Expression, glossary er2ty?
Components,licit 163
Compose processing contr@s
Compose Processing, glossary erity
ComposeLED84
Composing

BeepOnComposeh 84

ComposeLED84

ConsumelkgysOnComposedil 83
Consumed Modifierglossary entry212
ConsumelkgysOnComposedil 83
ConsumelLookupMod82
Controls2

AccessXFeedbac&3

AccessXTmeout62

actions for changing the state 154

affecting compose processii3

affecting keycode to string translatio®2

allocating and freeing data struct.ge

AlwaysConsumeShiftAndLoc83

AudibleBell 56

AutoReset55, 81

BeepOnComposei 84

bell behaior 56

boolean53, 82

Bouncelkeys 66

changing77

changing the state of library contr@$s

cleaning up onxat 55, 81

ComposeLED84

ConsumelkéysOnComposedil 83

ConsumelLookupMod82

controls action types, tablEb4

data structurg’l

DetectableAutorepedi?

determining the state of libarary contr@s

determining which library controls are implemeng&&

effecting event delvery 84
EnabledControl$4
enabling and diabling other contrdid
for general kyboard mapping8
ForcelLatin1Lookup82
GroupsWrap69
IgnoreGroupLock70
IgnoreLockMods69
IgnoreNevKeyboards84
InternalMods70
keyboard53
keyboard use for pfsically-impaired person§l
library controls mask85
Mousekeys 59
MousekeysAccel 59
overlays58
PerkeyRepeatc6
querying77
repeat ky behaior 56
Repeatheys 56
SlowKeys 65
StickyKeys 67
table listing all72
tracking changes toekboard controls79
using the mouse from theyoard59
X library 82

Core Eent, glossary entrg12

D
Data structured 1
editing 11
enlaging 11
freeing 13
debounce_delay5
Delugging210
Detectable Auto-repeat, glossary er2h?2
DetectableAutoreped3, 57, 72
Device feedback, type$98
Device identifier10
Device specifications, matching with display specificatiéns
Devices
actions for generating DieButtonPress and DieeBut-
tonReleasd 58
actions simulating\ents from deice \valuators159
allocating, initializing and freeing data structugas3
attaching Xkb actions t@98
querying features for nonég¢Class deices200
querying for litton action201
querying indicator informatio202
setting features for nonégClass deices 204
tracking changes ta07
Display, actions for changing acé screeril53
Doodads93, 96
in sections95
indicator 96
logo 96
outline 96
priority 96
solid 96
text 96
types96
Drawing a keyboard representatio®i7
DumbBells64

November 10, 1997 Library Version 1.0/Document Rision 1.1 Index-221

The X Keyboard Extension

Index

E
Effective group20
Effective Group, glossary entrg12
Effective mask31
Effective Mask, glossary entr12
Effective modifier mask31
Effective Modifier glossary entry213
Effective modifiers20
enabled_ctrl4
EnabledControl$3, 54, 72
Errors, protocobB
Events

AccessXNotify64

base eent codel4

data structured5

interpreting ley events87

Mousekeys 65

overview 14

Repeathkeys 65

selecting forl5

StickyKeys 65

types14

types, tablel4
Explicit component masks, tablé3
Explicit componentd 63
ExplicitAutoRepeatl 63
ExplicitBehavior 163
Explicitinterpret163
ExplicitkeyTypel 163
ExplicitkeyType2163
ExplicitkeyType3163
ExplicitkeyType4 163
ExplicitVModMap 163
Extension Deice, glossary entr213

F

Feedback, type$98
Fonts, ley label 93
ForcelLatin1Lookup82

G
Geometry3, 92
adding elements th06
allocating and freeing componer$0
bounds, kyboard93
bounds, section85
bounds, shapes4
computing the bounding box of avd.06

computing the bounding box of a sectibd6
computing the bounding box of a shalib

data structure98

data structures, diagrag8

doodad type96

doodads93, 96

doodads in sectior@5

drawing a keyboard representatio®?
finding the @erlay for a ley 106
functions for usinglL05

getting from serer 104

key aliases93

key drawing order95

key label color93

key label font93

keyboard color93

keyboard with four sections, diagragd

keys 95

list of colors93

outlines94

outlines, diagrani05

overlay keys 96

overlay ravs 96

overlays95

priority 92, 95

priority, doodad<996

properties93, 106

rotated leyboard section92

rotated leyboard sections, diagraf2

rows 95

rows in a section, diagra®5

sections93, 95

shape®3, 94

top-level geometry descriptiof2
Global Keyboard Controls, glossary entpl3
Grab group21
Grab modifier21
Grab state?1
Grab State, glossary ent®13
Grabs

passve, ignoring group lock30
Group Inde, glossary entry213
Group, glossary entrg13
Groups20, 116, 117

bindings for alternate group hint93

changing23

changing current state vigkactions145

compatibility mapsl69

group action flags, tabl&46

group action types, tabl46

group inde& constantsl37

handling illegal groups69

locking via actionsl 50

normalizing groups into rang20, 134

perkey group informationl34

symbolic group name23

treatment of out-of-range groufi84
Groups Wrap Control, glossary en§3
GroupsWrapb3, 68, 69, 72, 74

H
Header files

I
IgnoreGrouplLockb4, 68, 70, 72
IgnoreLockModsb4, 68, 69, 72, 74
IgnoreNevKeyboards84
Implicit support87
Indicator feedback 98
Indicator Feedback, glossary eny4
Indicator map35
Indicator Map, glossary enti314
Indicator glossary entr214
Indicators3, 34
allocating and freeing maptb
changing mapg?2
changing maps and staté
ComposeLED84
data structure84
effects of eplicit changes o1
geometry colors when lit and dar6
getting information about from sexw39

November 10, 1997

Library Version 1.0/Document Rision 1.1

Index-222

The X Keyboard Extension

Index

getting information by inde40

getting information by nam40

getting the state o0

how controls afiect 39

how groups dkct 36

how modifiers afiect 37

indicator drves leyboard35

keyboard drves indicator35

maps35

names34

guerying names, maps and staé2

tracking changes to state or még
Initializing Xkb 7
Input extension

attaching Xkb actions to diees 198
Input Extension, glossary entBi4
InternalMods54, 68, 70, 72
1ISO9995 standard16

K
KbdFeedbackClas48
Key Action, glossary entrp14
Key actions141
independence of modifier stat&7
Key Alias, glossary entrp14
Key aliases
geometry93
names array81
Key Behavior, glossary entry15
Key events
interpreting87
Xkb filtering out-of-range & codes188
Key symbol mapl33
Key Symbol Map, glossary enti215
Key Type, glossary entr213, 215
Key types
ALPHABETIC 130
and shift leels 117
canonicall29
canonical ky types, initializing131
canonical, used in compatibility may6
changing the number ofels in 132
copying key type data structures32
getting from the semar 131
KEYPAD 130
namesl28
offset in symbol mad35
ONE_LEVEL 129
perkey key types indiced 33
TWO_LEVEL 129
width (number of shift eels) 135
Key types, @ample128
Key Width, glossary entrp13
Key Width, Key Type Wdth, glossary entr15
Keyboard
components, seev databasé90
feedback198
geometry92
geometry section83
IgnoreNevKeyboards84
namesl80
replacing on the fij187
symbolic name93
unresponsieness because of 8lkeys 62
Keyboard Bells, glossary ent15

Keyboard Components, glossary en?i5
Keyboard control$£3
for physically-impaired persongl
tracking changeg9
Keyboard descriptior2, 27
allocating and freein@8
building from serer databasé93
changingl12
getting from serer 28
updating library descriptioA0
Keyboard Feedback, glossary engy5
Keyboard Geometry Name, glossary er2d6
Keyboard Geometryglossary entry216
Keyboard mappind. 16
client mapl116
sener mapl1l6
shift levels and groups, diagrafril7
Keyboard statel9
base group20, 211
base modifier0, 211
compatibility state2
description19
determining23
effective group20
effective modifiers20
grab state21
keysym groups20
lookup state21
modifiers20
tracking 24
Keyboard State, glossary entl 6
KeyClass10, 157, 198
Keycode Name, glossary ent®16
Keycode to string translatio®2
Keycode, glossary entr16
Keycodes
actions for generating a tifent leycode for ley 156
finding keysym bound ta9
keys which report more than oneyicode58
translating kycode to symbol and modifiegs
Xkb filtering out-of-range & events188
Keymap
allocating and freeind23, 124
changing map component20
client map126
functions89
getting map components from the sar¥18
getting partial map components from the sertable118
tracking changes tth22
Keys
actions141
aliases93, 181
behaior 118, 161
behaiors, table161
bindings hints193
changing number of actions bound &y K60
changing number of groups and types I8i7
changing the number of symbols bound 838
finding keysym bound ta9
finding symbol for ky with a particular stat89
for generating a diérent leycode for ley 156
geometry95
geometrydraving order95
getting petkey modifier map from seer 139
getting the symbol map from the ser136

November 10, 1997

Library Version 1.0/Document Rision 1.1 Index-223

The X Keyboard Extension

Index

label font and colo®3
obtaining ley actions for kys from serer 160
obtaining ley behaiors from the sermr 162
offset in symbol mad35
overlay geometry96
perkey group informationl34
perkey modifier mapl38
symbolic name4.81
types127
width (number of shift ieels) 135
Keysym group20, 116
Keysym Group, glossary ent314
Keysyms
finding modifier set bound taeksym 89
finding symbol for ky with a particular stat89
to string translation contr@3
translating kycode to symbol and modifiegsl

L
Latched Group, glossary ent®16
Latched Modifierglossary entr216
LatchToLock 68
Latinl character set lookug2
LED, glossary entr216
Levels 116, 117
and ley types117
changing the number in @ktype 132
key types127
namesl28
Linking with the Xkb etension6
Locked Group, glossary ent316
Locked Modifiers, glossary enti316
Lookup group21
Lookup modifiers21
Lookup state21
Lookup State, glossary entBi7

M
Major opcode?
map 3
MappingNotify 84, 87, 88, 175, 178, 188
Messages
actions for generatin@55
detecting lky action messageks5
Modifier Definition, glossary entr@17
Modifier Key, glossary entry17
Modifier, glossary entry217
Modifiers 20
action flagsl45
action types, tablé44
actions for changing the state b3
bindings for modifier &ys hints193
changing the state viak actions144
consume lookup modifiers contré2
effective mask31
finding modifier set bound taeksym 89
forcing shift and lock to be consum&g
getting petkey map from sergr 139
in actions to generate tBfent leycode for ley 157
inactive virtual modifiers32
key action independent df17
key types containind.27
locking via actionsl50
masks22
modifier definition30

names and mask30
perkey modifier mapl38
presere field 128
preventing from being consumeiP8
real 30
specifying which should be consumed by sef®0
translating kycode to symbol and modifiegs
virtual 30
virtual modifier serer mappingl64
MotionNotify 147
Mouse
using from the &yboard59
Mousekeys 53, 59, 72
acceleration, diagrarél
changing htton number simulated by mousey& 149
MousekeysAccel 53, 59, 73
absolute pointer motio0
fields, table59
relative pointer motior60

N
Names3
allocating and freeing symbolic nam®86
changing symbolic names on sent83
getting leyboard description by componentpeession
namesl94
getting symbolic names from sen/183
shift level 128
symbolic180
symbolic leyboard93
symbolic names masks, taklg2
tracking change485
types128
NewKeyboardNotify 84
Non-keyboard Extension Dece, glossary entrg17
Normalizing group<0

(0]
Outlines94
approximation94
primary 94
Outlines, glossary entrg17
Overlays
controls58
geometry kys 96
geometry ravs 96
geometryfinding the @erlay for a ley 106
in geometry section85
Overlayl and Osrlay2 controls$3, 73

P
PerkeyRepeats3, 56, 73, 76
Physical Indicator Mask, glossary entL7
Physical Symbol Kyboard Name, glossary entAi7
Pointer
buttons20
changing btton number simulated by mousey& 149
motion, absolut&0
motion, relatve 60
moving via actionsl47
pointer action types, tabte47
pointer lutton action flags, tabl&49
pointer lutton action types, tabl&49
simulating pointer bttons via ky actions148
Presered Modifier glossary entry217

November 10, 1997

Library Version 1.0/Document Rision 1.1 Index-224

The X Keyboard Extension

Index

Preserving modifiers from being consumi8
Priority
doodads96
geometry92
sections95
Properties
geometryl06
Protocol error®
added by Xk

R
Radio Group, glossary entg18
Radio groups3, 161

namesl82
Real Modifier glossary entry218
Real modifiers30
RedirectintoRangé9, 74, 134
Remapping

avoiding automatic by seer 163
repeat_delay5
repeat_interal 75
Repeating &ys

controls56

detecting57
Repeathkeys 53, 56, 73
Rows 95

geometry95

overlay 96

S
Sections93, 95
doodads i85
overlays95
priority 95
Sener
avoiding automatic remapping 63
Sener databas&90
changing map componentf0
class(member) form91
complete and partial entrid90
component hint492
component names91
getting ley types131
getting map components frofri 8
getting partial map components from, tab8
listing keyboard component$91
obtaining virtual modifier bindings frorh65
virtual modifier definitionsl64
Sener interaction with clients, diagra@67
Sener Internal Modifiers, glossary ent?18
Sener map2
allocating and freeind24
keyboard mappind 16, 140
Shape®93, 94
Shift Level, glossary entr218
Shift levels 116, 117
and ley types117
changing the number of in &ktype 132
key types127
names128
SlowKeys 53, 65, 73
acceptance delag5, 75
Standard, 1SO999%16
State Field, glossary entB18
StickyKeys 53, 67, 73

automatically turning 6f68

locking a modifier68
Symbol Keyboard Name, glossary entp18
Symbolic Name, glossary ent®i8
Symbolic name4.80

T
Translating
series of kysyms to string82
single leycode to string32
TwoKeys 68

Y,
Valuator159
Valuator actioril59
Valuator glossary entry218
Version, determinin@
Virtual Modifier Mapping, glossary enti318
Virtual Modifier, glossary entry218
Virtual modifiers30
corventions for name82
data structure relationships, diagra®b
effective mask31
example32
inactive 32
key mapping31
master modifier definition81
modifier definition30
names and mask0
obtaining bindings from seev 165
sener mappingl64
Visual bells, generating7, 52

w
Want and need components, tabfs, 197
WrapIntoRanges9, 74, 134

X
X library controls82
X library functions dected by Xkb88
X sener version required
XChangeDeiceNotify 187
XEvent 18
Xkb
attaching actions to inpukension deices 198
changes data structurég
compatibility mapl67
extension components
extension library functiond
groups and shift lels 117
implicit support87
keyboard &tension support fordgboardsl
keyboard mappind.16
overall structure, diagrar@
overviev 1
state, diagrani9
X library functions dected88
Xkb client map, diagram 26
Xkb events
base eent codel4
data structure5
overview 14
selecting forl5
typesi14
types, tablel4

November 10, 1997

Library Version 1.0/Document Rision 1.1

Index-225

The X Keyboard Extension

Index

Xkb extension

disabling8

name6
Xkb sener map, diagrami40
XKB.h 6
Xkb_RGAllowNone 162
XkbAccessXNotify15, 64
XkbAccessXNotifyEent 18, 64
XkbAction data structuré43
XkbActionCtrls macrol55
XkbActionMessagel5, 155
XkbActionMessageEent 18, 156
XkbAddDeviceLedInfo()203
XkbAddGeomColor()107
XkbAddGeomDoodad(109
XkbAddGeomkey(') 108
XkbAddGeomkeyAlias() 107
XkbAddGeomOutline(107
XkbAddGeomOerlay() 109
XkbAddGeomOwerlayKey() 109
XkbAddGeomOwerlayRav() 109
XkbAddGeomProperty(107
XkbAddGeomRav() 108
XkbAddGeomSection(108
XkbAddGeomShape(108
XkbAddSyminterpret(177
XkbAllocClientMap() 123
XkbAllocCompatMap()179
XkbAllocControls()80
XkbAllocDevicelnfo(') 203
XkbAllocDeviceLedInfo()203
XkbAllocGeomColors(111
XkbAllocGeomDoodads(114
XkbAllocGeometry()115
XkbAllocGeomKeyAliases()111
XkbAllocGeomKeys() 110
XkbAllocGeomOQOutlines(110
XkbAllocGeomO\erlayKeys() 114
XkbAllocGeomOverlayRavs() 114
XkbAllocGeomO«erlays()113
XkbAllocGeomPoints(112
XkbAllocGeomProps(110
XkbAllocGeomRavs() 113
XkbAllocGeomSectionDoodads(1)14
XkbAllocGeomSections(112
XkbAllocGeomShapes(112
XkbAllocIndicatorMaps(45
XkbAllocK eyboard()28
XkbAllocNames()186
XkbAllocSenerMap() 124
XkbAlphabeticind& canonical ky type 129
XkbAnyAction data structuré43
XkbAnyEvent 15, 18
XkbApplyCompatMap®Key() 176
Xkb-aware client3, 21
Xkb-aware Client, glossary entr319
XkbAX_AnyFeedback macr@6
XkbAX_DumbBellFBMask64
XkbAX_NeedFeedback macrtb
XkbAX_NeedOption macr@6
XKbAXN_AXKW arning 65
XkbAXN_BKAccept 65
XkbAXN_BKReject 65
XkbAXN_SKAccept64
XKkbAXN_SKPress64

XkbAXN_SKReject64
XkbAXN_SKRelease64
XkbBehavior data structurd 61
XkbBell(') 49
XkbBellEvent() 50
XkbBellNotify 14, 47, 64
XkbBellNotifyEvent 18, 52
XkbBoundsRec 01
Xkb-capable clienB, 21
Xkb-capable Client, glossary ent®19
XkbChangeControls(}8
XkbChangeDeicelnfo() 208
XkbChangeEnabledControlsG}
XkbChangelndicators(44
XkbChangeMap(121
XkbChangeNames(184
XkbChangeYpesOfkey() 137
XkbClampintoRange9, 74, 134
XkbClientMapRecl127
XkbColorRec101
XkbCompatMapNotifyl4, 174, 178
XkbCompatMapNotifyEent 18, 178
XkbCompatMapRed 69
XkbComponentListRed 92
XkbComponentNameRet92
XkbComponentNamesRel92
XkbComputeRwBounds()106
XkbComputeSectionBounds(1)06
XkbComputeShapeBounds(@p5
XkbComputeShapep() 105
XkbControlsChangesRet8
XkbControlsNotify 14, 62
XkbControlsNotifyEent 18, 79
XkbControlsRec72

allocating and freein@0
XkbCopyKeyType() 132
XkbCopyKeyTypes()133
XkbCtrlsAction data structur@54
XkbDescRe27

component referenceXy
XkbDeviceBell() 49
XkbDeviceBellEvent()50
XkbDeviceBtnAction data structur&58
XkbDeviceChangesRe207
XkbDevicelnfoRec199
XkbDeviceLedChangesRe207
XkbDeviceLedInfoRec199
XkbDeviceValuatorAction data structurkb9
XkbDoodadRec 03
XkbEvent unified gent typel8
XkbExtensionDeiceNotify 15, 205, 206, 208
XkbExtensionDegiceNotifyEvent 18, 207
XkbFindOwerlayForKey() 106
XkbForceBell()51
XkbForceDeiceBell() 51
XkbFreeClientMap(124
XkbFreeCompatMap(179
XkbFreeComponentList(192
XkbFreeControls(B1
XkbFreeDeicelnfo() 204
XkbFreeGeomColors(}12
XkbFreeGeomDoodads(1)15
XkbFreeGeometry(115
XkbFreeGeomlyAliases()111
XkbFreeGeomlgys() 110

November 10, 1997

Library Version 1.0/Document Rision 1.1

Index-226

The X Keyboard Extension

Index

XkbFreeGeomOutlines(310
XkbFreeGeomQerlayKeys() 114
XkbFreeGeomOerlayRavs() 114
XkbFreeGeomOerlays()113
XkbFreeGeomPoints(}12
XkbFreeGeomProperties()L1
XkbFreeGeomRws() 113
XkbFreeGeomSections())13
XkbFreeGeomShapes()12
XkbFreelndicatorMaps(46
XkbFreekeyboard()29
XkbFreeNames(186
XkbFreeSererMap()125
XKBgeom.h6
XkbGeometryRed 01
XkbGetAccessXimeout()62
XkbGetAutoRepeatRate(57
XkbGetAutoResetControls(55
XkbGetBouncelgysDelay()66
XkbGetCompatMap(174
XkbGetControls()77
XkbGetControlsChanges(80
XkbGetDetectableAutorepeat©8
XkbGetDeviceButtonActions(201
XkbGetDevicelnfo() 200
XkbGetDevicelnfoChanges(208
XkbGetDeviceLedInfo()202
XkbGetGeometry(104
XkbGetlIndicatorChanges(45
XkbGetIndicatorMap(#0
XkbGetIndicatorState(40
XkbGetKeyActions() 160
XkbGetKeyBehaviors() 162
XkbGetKeyboard()28, 197
XkbGetKeyboardByName(194

XkbGetKeyExplicitComponents(163

XkbGetKeyModifierMap() 139
XkbGetKeySyms()136
XkbGetKeyTypes()131
XkbGetKeyVirtualModMap() 166
XkbGetMap()118
XkbGetNameChanges(1)86
XkbGetNamedGeometry(905
XkbGetNamedIindicator(41
XkbGetNames(183
XkbGetPerClientControls(§1
XkbGetSlavKeysDelay()66
XkbGetState(R4
XkbGetStickyKeysOptions()68
XkbGetUpdatedMap(119
XkbGetMrtualMods() 165
XkbGetXlibControls()85
XkbGroupAction data structurb46
XkblgnoreExtension(8
XkbIM_LEDDrivesKB 35, 41
XkbIM_NoAutomatic 35, 42
XkbIM_NoExplicit 35, 41
XkbIM_UseBase37, 38
XkbIM_UseCompat38
XkbIM_UseEfective 37, 38
XkbIM_UseLatched37, 38
XkbIM_UselLocled 37, 38
XkbIM_UseNone37, 38
XkbIndicatorChangesRe£3
XkbiIndicatorDoodadRe&04

XkblIndicatorMapNotify 14, 44
XkbIndicatorMapRe&5
XkblndicatorNotifyEwvent 18, 44
XkbIndicatorRec34
XkbIndicatorStateNotifyl4, 44
XkblnitCanonicalkeyTypes()131
XkbISOAction data structurd51
XkbKB_Default 161
XkbKB_Lock 162
XkbKB_Overlay1162
XkbKB_Overlay2162
XkbKB_Permanenii62
XkbKB_RadioGroupl162
XkbKeyAction macrol42
XkbKeyActionEntry macrol42
XkbKeyActionsPtr macrdl42
XkbKeyAliasRec101, 180
XkbKeycodeDKeysym() 89
XkbKeyGrouplinfo macral35
XkbKeyGroupsWdth macro135
XkbKeyGroupWdth macro136
XkbKeyHasActions macrd41
XkbKeyNameRecl180
XkbKeyNumActions macral41
XkbKeyNumGroups macrd 35
XkbKeyNumSyms macrd .36
XkbKeypadInde canonical ky type 129
XkbKeyRec 102
XkbKeySymEntry macrdl36
XkbKeySymsOfset macrol36
XkbKeySymsPtr macrd.36
XkbKeysymToModifiers()89
XkbKeyType macrol34
XkbKeyTypelndex macro134
XkbKeyTypeRec127
XkbKeyTypesforCoreSymbols(176
XkbKTMapEntryRec127
XkbLatchGroup()23
XkbLatchModifiers()22
XkbLC_AlIControls 85
XkbLC_Alphanumerickys 193
XkbLC_AlternateGroupl93
XkbLC_AlwaysConsumeShiftAndLoc&5
XkbLC_BeepOnComposeit 85
XkbLC_ComposeLEDB5
XkbLC_ConsumelgysOnComposedil 85
XkbLC_ConsumeLookupMod85
XkbLC_Default 193
XkbLC_ForceLatinlLookup5
XkbLC_Functionkeys 193
XkbLC_Hidden193
XkbLC_IgnoreNevKeyboards85
XkbLC_KeypadKeys 193
XkbLC_Modifierkeys 193
XKbLC_Partial 193

XKBlib.h 6

XkbLibraryVersion()6
XkbListComponents(191
XkbLockGroup()23
XkbLockModifiers()22
XkbLogoDoodadRed 04
XkbLookupKeyBinding() 90
XkbLookupKeySym()89
XkbMapChangesRet21
XkbMapNotify 14, 87, 88, 122, 178

November 10, 1997

Library Version 1.0/Document Rision 1.1

Index-227

The X Keyboard Extension Index
XkbMapNotifyEvent 18, 122 XkbSA_MessageOnPred$5
XkbMessageAction data structui®5 XkbSA MessageOnRelead®d5
XkbModAction data structuré44 XkbSA_MoveAbsoluteX147
XkbModActionVMods macral45 XkbSA_MoveAbsoluteY148
XkbNameChangesRel84 XkbSA MovePtr143, 147
XkbNamesNotify14, 185 XkbSA_NoAcceleratiori47
XkbNamesNotifyEent 18, 185 XkbSA_NoAction143
XkbNamesRed 80 XKbSA_PtrBtn143
XkbNewKeyboardNotify 14, 87, 187 XkbSA_PtrBtn149
XkbNewKeyboardNotifyEent 18, 188 XkbSA_Redirectiey 143 156
XkbNoteControlsChanges(80 XkbSA_SetControlsl43, 154
XkbNoteDeviceChanges(208 XkbSA_SetGroupl43, 146
XkbNotelndicatorChanges(45 XkbSA_SetModsl43, 144
XkbNoteNameChanges(1)85 XkbSA_SetPtrDflt143, 149
XkbOneLevellndex canonical ky type 129 XkbSA_Set\alAbsolute159
XkbOpenDisplay()8 XkbSA_Set\AlCenter159
XkbOutlineRecl101 XkbSA_Set\alMax 159
XkbOutOfRangeGrouplinfo macrb35 XkbSA_Set\alMin 159
XkbOutOfRangeGroupNumber mact@5 XkbSA_Set\AlRelatire 159
XkbOverlayKeyRec 102 XkbSA _SwitchAbsolutel53
XkbOverlayRec102 XkbSA_SwitchApplication153
XkbOverlayRavRec 102 XkbSA_SwitchScreeri43, 153
XkbPointRec101 XkbSA _UseDfltButton149
XkbPropertyRecl01 XkbSA_UseModMapModd445, 152
XkbPtrAction data structur@47 XkbSAActionSetCtrls macrd55
XkbPtrActionX macrol48 XkbSAGroup macrdl47
XkbPtrActionY macrol48 XkbSAPtrDfltValue macral50
XkbPtrBtnAction data structur&48 XkbSARedirectSetVMods macrbs7
XkbPtrDfltAction data structur@50 XkbSARedirectSetVModsMask macidb7
XkbQueryExtension(Y XkbSARedirectVMods macrd57
XkbRedirectintoRangé9, 74, 134 XkbSARedirectVModsMask macrb57
XkbRedirectkeyAction data structurd56 XkbSAScreen macrd53
XkbRefreshkeyboardMapping(PO XkbSASetGroup macrda47
XkbResizeDgiceButtonActions(204 XkbSASetPtrDflt\alue macral50
XkbResizekeyActions() 160 XkbSASetScreen macrbb4
XkbResizekySyms()138 XkbSectionRecl 03
XkbResizekeyType() 132 XkbSelectEentDetails()17
XkbRowRec 102 XkbSelectEents mask constaniy
XkbSA_ActionMessagd 43, 155 XkbSelectEents()16
XkbSA_AffectDfltBtn 149 XkbSenerMapRecl141

XkbSA ClearLocksl45, 146 XkbSetAccessXimeout()63
XkbSA DeviceBtn 143, 158 XkbSetAutoRepeatRate(57
XkbSA_DeviceValuator143, 159 XkbSetAutoResetControls(55
XkbSA_DfltBtnAbsolute150 XkbSetBouncelgysDelay()67
XkbSA_GroupAbsolutel46, 151 XkbSetCompatMap(177
XKkbSA_Ignore\al 159 XkbSetControls()77
XkbSA_ISODfltIsGroupl51, 152 XkbSetDelnggingFlags(210
XkbSA_ISODNoAfectMods152 XkbSetDetectableAutorepeatbB
XkbSA _1SOLock143, 151 XkbSetDeiceButtonActions(206
XkbSA ISONoAfectCtrls151, 152, 153 XkbSetDeicelnfo() 205

XkbSA _ISONoAfectGroupl51, 152, 153 XkbSetlgnoreLockMods(YO
XkbSA_ISONoAfectMods151, 152 XkbSetlndicatorMap(%2

XkbSA ISONoAfectPtr151, 152, 153 XkbSetMap()120
XkbSA_LatchGroupl43, 146 XkbSetModActionVMods macrd45
XkbSA_LatchMods143, 144 XkbSetNamedIndicator(43
XkbSA LatchlLock 145, 146 XkbSetNames(183
XkbSA_LockControlsl43, 154 XkbSetPerClientControls(§1
XKbSA_LockDericeBtn 143 XkbSetPtrActionX macrd 48
XkbSA LockDeviceBtn 158 XkbSetPtrActionY macrd 48
XkbSA_LockGroupl43, 146 XkbSetSererinternalMods()71
XkbSA LockMods143, 144 XkbSetSlavKeysDelay()66

XkbSA LockNolLock145, 149, 152, 154, 158 XkbSetSticlyKeysOptions()68
XkbSA_LockNoUnlock145, 149, 152, 154, 159 XkbSetXlibControls()85
XKkbSA_LockPtrBtn143, 149 XkbShapeDoodadRet03

XkbSA MessageGendgEvent 155 XkbShapeRed 01

November 10, 1997 Library Version 1.0/Document Rision 1.1 Index-228

The X Keyboard Extension

Index

XkbSI_AIIOf 172

XkbSI_AnyOf 172
XkbSI_AnyOfOrNone172
XkbSI_Exactly172

XkbSI_NoneOf172

XkbStateNotify14, 24, 65
XkbStateNotify @ent detail mask&4
XkbStateNotifyEent 18, 25
XkbStateRe24

Xkbstrh 6

XkbSwitchScreenAction data structut&3
XkbSyminterpretRed 72
XkbSymMapRecl33
XkbTextDoodadRecl04
XkbTranslatekyCode()91
XkbTranslatekeySym() 90
XkbTwoLevellndex canonical ky type 129
Xkb-unaware client4, 21

Xkb-unavare Client, glossary enti319
XkbUpdateMapFromCore(375
XkbUseCoreKbd10, 15
XkbVirtualModsToReal()32
XkbWrapintoRanges9, 74, 134
XkbXIDfItID 198
XkbXlibControlsimplemented(35
XKeycodeDKeysym(), Xkb modification88
XKeysymToKeycode(), Xkb modification88
Xlib version required

XLookupKeysym(), Xkb modification88
XLookupString()82

function which is equialent, XkbLookupkeyBinding() 90

Xkb modifications88
XMappingNotify 187
XRebindKeysym(), Xkb modification89
XRefreshkeyboardMapping()

function which is equialent, XkbRefreshigyboardMap-

ping() 90
Xkb modifications88

November 10, 1997 Library Version 1.0/Document Rision 1.1

Index-229

