
The XiMpLe Package

m.eik michalke

April 10, 2017

This package provides basic tools for parsing and generating XML into
and from R. It is not as feature-rich as alternative packages, but it’s small
and keeps dependencies to a minimum.

1 Previously on XiMpLe

Before I even begin, I would like to stress that XiMpLe can not replace the XML package,
and it is not supposed to. It has only a hand full of functions, therefore it can only
do so much. Probably the most noteworthy missing feature in this package is any real
DTD support. If you need that, you can stop reading here. Another problem is speed
– XiMpLe is written in pure R, and it’s painfully slow with large XML trees. You won’t
notice this if you’re only dealing with portions of some kilobytes, but if you need to
parse really huge documents, it can take ages to finish.

Historically, this package was written for exactly one purpose: I wanted to be able
to read and write the XML documents of RKWard1, because I was about to write an
R package for scripting plugins for this R GUI. I actually had started another project
shortly before, using the XML package as a dependency, but soon got complaints from
Windows users. As it turned out, that package was not available for Windows, because
somehow it couldn’t be built automatically. When I realised that I only needed a small
subset of its features anyway, I figured it might be easiest to quickly implement those
features myself.

Instead of hiding them in the internals of what eventually became the rkwarddev2

package, I then started working on this package first. And well, “quickly” was rather
optimistic... but since I’m happily using XiMpLe in other packages as well (like roxy-

Package3), I’m satisfied it was worth it.
So now you know. If you need a full-featured package to parse or generate XML in

R, try the XML package. Otherwise, keep on reading.

1http://rkward.kde.org
2http://files.kde.org/rkward/R/pckg/rkwarddev
3http://reaktanz.de/?c=hacking&s=roxyPackage

1

2 And now the continuation

Basically, XiMpLe can do these things for you:

• parse XML from files into an R object, using the parseXML() function

• generate XML R objects, using the functions XMLNode() and XMLTree()

• extract nodes from XML R objects, or change their content, using the node()

function

• write back XML files from R objects, using the pasteXML() function

That about covers it. XML nodes can of course be nested to construct complex
trees, but that’s all. Let’s look at some examples.

3 Naming conventions

Let’s quickly explain what we’ll be talking about here. If you’re parsing an XML
document, it will contain an XML tree. This tree is made up of XML nodes. A
node is indicated by arrow brackets, must have a name, can have attributes, and is
either empty or not. Nodes can be nested, where nodes inside a node are its child
nodes.

<!-- following is an empty node named "useless" -->

<useless />

<!-- the next node is non-empty and has an attribute foo with value bar -->

<other foo="bar">

this text is the child of the "other" node.

</other>

4 Generate XML trees

Now let’s see how these nodes can be generated using the XiMpLe package. Single
nodes are the domain of the XMLNode() function, and to get an empty node you just
give it the name of that node:

> XMLNode("useless")

<useless />

As you see, you will be shown XML code on the console. But what this function
returns is actually an R object of class XiMpLe.node, so what you see is an interpre-
tation of that object, made by the show() method for objects of this type (see section
5 on page 4 on how to export XML to files).

The second node in the example above has an attribute. Attributes can be specified
with the attrs argument, which expects a named list:

2

> XMLNode("other", attrs=list(foo="bar"))

<other foo="bar" />

So, by default, as long as our node doesn’t have any children, it’s assumed to be an
empty node. To force it into a non-empty node (i. e., opening and closing tag) even
without content, we’d have to provide an empty character string as its child. Child
nodes can be provided in two ways – either one by one via the “. . .” argument, or as
one list via the .children argument:

> XMLNode("other", "", attrs=list(foo="bar"))

<other foo="bar">

</other>

> XMLNode("other", attrs=list(foo="bar"), .children=list(""))

<other foo="bar">

</other>

Of course this is also the place to provide our node with the text value:

> XMLNode("other", "this text is the child of the \"other\" node.",

+ attrs=list(foo="bar"))

<other foo="bar">

this text is the child of the "other" node.

</other>

But how about the comments? Well, XiMpLe does detect some special node names,
one being “!- -” to indicate a comment:

> XMLNode("!--", "following is an empty node named \"useless\"")

<!-- following is an empty node named "useless" -->

OK, that’s single nodes. In most cases, you want to have nested nodes which combine
into an XML tree. As a practical example, this is how you could generate an XHTML
document:

> sample.XML.a <- XMLNode("a", "klick here!",

+ attrs=list(href="http://example.com", target="_blank"))

> sample.XML.body <- XMLNode("body", sample.XML.a)

> sample.XML.html <- XMLNode("html", XMLNode("head", ""),

+ sample.XML.body)

> sample.XML.tree <- XMLTree(sample.XML.html,

+ xml=list(version="1.0", encoding="UTF-8"),

+ dtd=list(doctype="html", decl="PUBLIC",

+ id="-//W3C//DTD XHTML 1.0 Transitional//EN",

+ refer="http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"))

> sample.XML.tree

3

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

</head>

<body>

klick here!

</body>

</html>

It should be noted, however, that XiMpLe doesn’t perform even the slightest checks
on what you provide as DOCTYPE or xml attributes.

5 Writing XML files

We’ve learned earlier that XiMpLe objects do not contain the actual XML code. If you
would like to write the XML code to a file, you should use pasteXML(), which will
translate the R objects into a character string:

> useless.node <- XMLNode("useless")

> pasteXML(useless.node)

[1] "<useless />\n"

Now let’s write the XHTML code we created in the previous section to a file called
example.html:

> cat(pasteXML(sample.XML.tree), file="example.html")

And that’s it. The method pasteXML() has some arguments to configure the output,
like shine, which sets the level of code formatting. If you set shine=0, no formatting
is done, not even newlines.

6 Reading XML files

We’ve also just created an example file we can read back in, to see how XML parsing
looks like with XiMpLe:

> sample.XML.parsed <- parseXMLTree("example.html")

parseXMLTree() can also digest XML directly if it comes in single character strings
or vectors. You only need to tell it that you’re not providing a file name this time,
using the object argument:

4

> my.XML.stuff <- c("<start>here it begins","</start>")

> parseXMLTree(my.XML.stuff, object=TRUE)

<start>

here it begins

</start>

7 Mining nodes

Reading and writing XML files is neat, but what if you need to aquire only certain
parts of, say, a parsed XML file? For example, what if we only needed the URL of the
href attribute in our XHTML example?

That’s a job for node(). This method can be used to extract parts from XML
trees, once they are XiMpLe objects. The branch you’d like to get can be defined by a
list of node names, and node() will follow down this hierarchy and then return what
nodes are to be found below that. You can also specify that you don’t want the whole
node(s), but only the attributes:

> node(sample.XML.tree, node=list("html","body","a"), what="attributes")

$href

[1] "http://example.com"

$target

[1] "_blank"

> node(sample.XML.tree, node=list("html","body","a"), what="value")

[1] "klick here!"

This way it’s easy to get the value of all attributes or the link text. You can also
change values with node(). Let’s change the URL and remove the target attribute
completely:

> node(sample.XML.tree, node=list("html","body","a"),

+ what="attributes", element="href") <- "http://example.com/foobar"

> node(sample.XML.tree, node=list("html","body","a"),

+ what="attributes", element="target") <- NULL

> sample.XML.tree

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

</head>

5

<body>

klick here!

</body>

</html>

6

