
 

Domain Specific Debugging Tools

Volker Krause
vkrause@kde.org



 

General Purpose Tools

● Generic debuggers
● Instruction-level debuggers (gdb)
● printf

● Similar for profilers
● No understanding of your frameworks



 

Framework Complexity

● Increasing abstraction
● Qt model/view

● Asynchronous API
● KJob

● Distributed architecture
● Akonadi/Nepomuk

● Runtime interpreted code / JIT compiler
● QML/JavaScript



 

Debugging JIT'ed QML in GDB?

● Requires understanding of framework internals
● Inefficient
● In some cases even impossible for mere mortals
● In no way specific to Qt/KDE, but we tend to build 

nice frameworks :)



 

Adapting the Tools

● Make tools understand the frameworks
● No longer general purpose
● Requires specialized tools for each framework

● Removes the need of knowing internals
● Makes usage of a framework much more efficient
● Increasingly important feature for your framework



 

What do we have already?

● Developer API
● q/kDebug operator<< overloads
● ModelTest

● Introspection Tools
● QDBusViewer
● Akonadi Console, Plasma Engine Explorer, NepSak
● GammaRay



 

Do we have more?

● Built-in debugging features
● QT_FLUSH_PAINT, QDBUS_DEBUG, ...
● D-Bus interfaces to dump internal state (eg. 

org.kde.dfaure.dump)

● Full-blown development environments
● QML tooling in QtCreator 



 

Should I build my own?

● Struggling with complex control flow
● Repeatedly adding the same non-trivial debug 

output
● Complex internal structures that benefit from a 

specialized visualization
● Performance metrics lacking correlation to the 

actual cost cause



 

But it pollutes my code!

● Having development code built in is perfectly fine!
● Disable by default

● compile time switches
● runtime switches

● Called on-demand 
● e.g. using D-Bus to trigger additional diagnostics

● Introspection hooks/callbacks
● overwriting with library preloading
● registration of callbacks for interesting events



 

Building Stand-Alone Tools

● Using your framework's public API
● Using introspection hooks

● GammaRay provides you easy access to those of Qt

● Binary instrumentation
● Pin, Valgrind

● OS-level tracing tools
● DTrace, SystemTap



 

Qt Introspection Hooks

● Load additional code into any Qt application
● Watch interesting events such as QObject 

creation/destruction
● Runtime information using QMetaObject et al.
● Powerful, but:

● platform specific
● hooks triggered before virtual tables exist
● multi-threading



 

GammaRay

● Framework for building Qt introspection tools
● Hides the nasty details
● Startup or runtime injection on Linux/Mac/Win
● Plug-in based with very simple API

● object creation/destruction notification
● flat object model
● hierarchical object model



 

Let's try!



 

Where do I get it?

● http://github.com/KDAB/GammaRay
● Free Software (GPL)
● Mailing-list: gammaray-interest@kdab.com

http://github.com/KDAB/GammaRay


 

Conclusion

● Efficiency of using a framework is important
● Increased complexity requires better tooling
● Tools will help both framework authors and users

● Makes your framework more efficient to use
● Time invested in tooling easily pays off

● Consider turning your repeatedly added debug 
output into something more reusable :-)



 

Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

